
Department of Computer Science
Faculty of Science

Palacký University Olomouc

BACHELOR THESIS

Build-time Dependency Resolution In Swift Language

2022
Supervisor:
Mgr. Roman Vyjídáček

ladeas Knz

Study field: Applied Computer Sci
ence, combined form

Bibliografické údaje

Autor:

Název práce:

Typ práce:

Pracoviště:

Rok obhajoby:

Studijní obor:

Vedoucí práce:

Počet stran:

Přílohy:

Jazyk práce:

Tadeáš Kříž

Vyhodnocování stromu závislostí při kompilaci programu v
jazyce Swift

bakalářská práce

Katedra informatiky, Přírodovědecká fakulta, Univerzita
Palackého v Olomouci

2022

Aplikovaná informatika, kombinovaná forma

Mgr. Roman Vyj ídáček

59

1 CD

anglický

Bibliograhic info

Author: Tadeáš Kříž

Title: Build-time Dependency Resolution In Swift Language

Thesis type: bachelor thesis

Department: Department of Computer Science, Faculty of Science,
Palacký University Olomouc

Year of defense: 2022

Study field: Applied Computer Science, combined form

Supervisor: Mgr. Roman Vyjídáček

Page count: 59

Supplements: 1 CD

Thesis language: English

Anotace

Při použití dependency injection frameworků může docházet k chybám za běhu
programu v případě nesprávně deklarovaných závislostí. Proto tyto frameworky
kontrolují graf závislostí při startu. Slabá reflexe v jazyce Swift nicméně omezuje
možnosti frameworků za běhu programu. Některé Swift dependency injection
frameworky obsahují pomocný program, spouštěný při kompilaci, pro překonání
těchto překážek. Bohužel však často omezují přímo vývojáře, či jinak zhoršují
developer experience.

Cílem této práce je tato omezení zmírnit, a to pomocí dvojího přístupu k
závislostem. A to podporou implicitních závislostí filtrovaných regulárními výrazy
nad názvy tříd, a typově bezpečné API v jazyce Swift pro explicitní deklarování a
konfiguraci závislostí.

Vytvořený program analyzuje zdrojový kód v jazyce Swift aby našel chybějící
závislosti a cykly závislostí. Ty jsou vývojáři během kompilace nahlášeny jako
chyby, což vede ke zvýšení bezpečnosti při kompilaci a celkově lepšímu komfortu
pro vývojáře.

Synopsis

Using a dependency injection framework can result in run-time crashes when
dependencies aren't declared correctly. Therefore these frameworks verify the
dependency graph during startup. Swift's minimal reflection limits what depen
dency injection frameworks can do at run-time. Some Swift dependency injection
frameworks include a companion program, ran during compilation, to circumvent
those limitations. However, they are often placing restrictions on the developer,
or sacrificing developer experience.

This thesis aims to alleviate these restrictions, using a two way approach
to dependencies. Supporting implicit dependencies using regex matching of the
class' name, and a type-safe Swift API for explicitly declaring and configuring
dependencies.

The program analyzes Swift code to find missing dependencies and dependency
cycles. Those are reported as errors during compilation to the developer, resulting
in improved compile-time safety and overall better developer experience.

Klíčová slova: injekce závislostí; generátor pro Dip; verifikace závislostí

Keywords: dependency injection; Dip generator; dependency verification

I want to thank my supervisor for his help and guidance. I also want to thank
my family and colleagues for their support and understanding during my studies.

/ hereby declare that I have completed this thesis including its appendices on my
own and used solely the sources cited in the text and included in the bibliography
list.

date of thesis submission author's signature

Contents
1 Introduction 1

2 Dependency Injection 2
2.1 Dependency Injection Methods 5

2.1.1 Constructor Injection 5
2.1.2 Setter/Property Injection 6
2.1.3 Interface Injection 6

2.2 Dependency Graph
2.2.1 Static Configuration 8
2.2.2 Dynamic Configuration 10

2.3 Benefits Of Dependency Injection 12
2.3.1 Testability 12
2.3.2 Extensibility 13
2.3.3 Reusability 14

2.4 Alternatives To Dependency Injection 15
2.4.1 Globally Accessible Instances 15
2.4.2 Service Locators 15

2.5 Prior Art 18
2.5.1 Dip 18
2.5.2 Spring Beans 18

3 Problem Analysis 20
3.1 Missing Dependencies 20
3.2 Constructor Injection Cycles 20
3.3 Dependence On A DI Framework 24

4 Proposed Solution 25
4.1 Dependency Declaration A P I 25

4.1.1 Spring Beans Inspiration 25
4.1.2 Generics Composition A P I 26
4.1.3 Flag Functions A P I 28
4.1.4 Registration Structure A P I 28

4.2 Command-Line Generator 31

5 Implementation 32
5.1 Modes of Operation 33
5.2 Collecting 33
5.3 Graph Building 35
5.4 Analyzing 36
5.5 Generating 38
5.6 Test setup 40

iv

6 Possible Improvements 41
6.1 Support For More Frameworks 41
6.2 Support For Static Configuration 41
6.3 Performance Optimization 41
6.4 Support For Property Injection 41

6.5 Change Detection and Incremental Compilation 42

Zäver 43

Conclusions 44

A User Guide 45
A . l Help Subcommand 45
A.2 Analyze Subcommand 45
A.3 Tree Subcommand 46
A.4 Generate Subcommand 46
A. 5 DpendRuntime Library 47

B Developer Guide 52
B. l Examples 52

B . l . l Library 52
B.1.2 Application 53
B.1.3 Dependency Cycle 53

B.2 Sources 53
B.2.1 dpend 53
B.2.2 DpendKit 54
B.2.3 DpendRuntime 55

B.3 Tests 55

C Contents of attached C D 56

Acronyms 57

References 58

v

List of Figures
1 A plot and a house 3
2 A plot, a house, and three land types 4
3 A dependency graph D 8
4 Caption 10
5 Basic service locator setup 16
6 Dependency cycle 21
7 Collecting phase structures 32
8 Graph building phase structures 36
9 Dependency cycle analysis steps 37

List of Tables
1 Result of collecting code in listing 5.1 34
2 Result of collecting code in listing 5.2 34

List of theorems

List of Source Codes
2.1 Example code without DI 3
2.2 Example code with DI 3
2.3 Example code without DI with DIP broken 4
2.4 Example code with DI with multiple implementations 5
2.5 Example of constructor injection 6
2.6 Property injection of an optional dependency 6
2.7 Injecting a group of interface-injection enabled classes
2.8 Example code for static vs dynamic demonstration 9
2.9 Example of static injection 10
2.10 Example of dynamic injection with Dip 11
2.11 Example of globally accessible singleton 15
2.12 Example of service locator usage 17
2.13 Configuration for classes from 2.8 in Spring 19
3.1 Example of a dependency cycle resolved using property injection. 22
3.2 Example of dependency cycle resolution with Dip 23
4.1 Spring Beans Configuration for inspiration 26
4.2 Draft of the A P I using generics composition 27
4.3 Draft of the A P I using flag functions 29
4.4 Draft of the A P I using registration structures 30
5.1 Example code for implicit collecting 34
5.2 Explicit dependency configuration 35
5.3 Example code for showcasing the generator's output 38

vi

5.4 Library mode output, when running for code in Listing 5.3 39
5.5 Application mode output, when running for code in Listing 5.3. . . 40

vii

1 Introduction
Dependency injection is a popular and recommended component of application
development. But with Swift still being a young language, there wasn't enough
time for the language mature enough to compare with the likes of J V M languages
and robust reflection. Therefore compile-time safe solutions for dependency injec
tion are needed to catch developer mistakes and avoid run-time crashes. Catching
those mistakes during compilation leads to reduction of time required between
making a change in code and seeing results. It can significantly improve developer
experience. Compile-time safety also reduces how many errors are encountered
by users.

This thesis is intended for Swift developers who already use dependency in
jection in Swift and recognize the limitations of current solutions, helping them
alleviate some or most of the limitations. For those who haven't gotten into
dependency injection yet because of the same limitations, this thesis describes
dependency injection and why it should be used. With the program resulting
from this thesis making it easier to declare dependencies in a simple way, the
barrier of entry is significantly lowered.

As an experienced Swift developer, I often need to declare dependencies in a
type-safe manner without using a hierarchical dependency injection which brings
along a different set of limitations. This thesis then solves the problem and so
I'm investing in the quality and enjoyment of my future work as well as the Swift
community as a whole.

This thesis introduces a build-time dependency resolver that scans the source
code of an application written in Swift. From classes in the code, a dependency
graph will be constructed and its validity verified. Upon successful verification,
a dependency container initialization code will be generated, ready to be used by
the developer of said application. The generator is accompanied by a run-time
library that developers can add to their projects, and then declare dependen
cies explicitly with the provided API . To help developers use the generator and
explicit declarations, a user guide is provided.

The next section serves to introduce the concept of dependency injection as
a whole - how it works and why use it. In the third section analyzes three main
problems that are slowing down developers using dependency injection in Swift.
The proposed solution to these problems is then described in the fourth section.
The last two sections describe the implementation process and possibilities for
future improvements.

1

2 Dependency Injection
Dependency Injection (DI) is a practice of providing dependencies to objects from
an outer scope. It's commonly used with Object-Oriented Programming (OOP),
which is guided by five major principles represented by the SOLID acronym.
This set of principles was first introduced by Robert C. Martin in the paper
Design Principles and Design Patterns[l]. These principles are:

• The Single Responsibility Principle (SRP): There should never be more
than one reason for a class to change.

• The Open-Closed Principle (OCP): A module should be open for extension
but closed for modification.

• The Liskov Substitution Principle (LSP): Subclasses should be substi-
tutable for their base classes.

• The Interface Segregation Principle (ISP): Many client specific interfaces1

are better than one general purpose interface.

• The Dependency Inversion Principle (DIP): Depend upon Abstractions.
Do not depend upon concretions.

Implementing these principles in development leads to a better code qual
ity [2]. Although not explicitly mentioned, Dependency Injection is a crucial
component of SOLID. SRP guides us to separate functionality into separate
classes. Such separation can make one of the classes depend on another. If that
happens, the dependent class needs a reference to the class it depends on. One
way is for the dependent class to create a new instance of the dependency class
itself. However, when creating the new instance itself, DIP along with ISP are
not honored.

The other option to obtain the reference is Dependency Injection. That
means the instance (dependency) is passed in (injected) from the outside of the
dependent class. The dependent class doesn't need to know and shouldn't care
about where the instance came from.

Let's look at an example to show the difference between the two approaches
and how they interact with the SOLID principles. Let's begin with two classes,
c l a s s H ouse and c l a s s P l o t shown in Figure 1. H o u s e depends on P l o t , be
cause a house is built on a plot. So any instance of H o u s e needs a reference to a
p l o t instance.

In the listing 2.1 the c l a s s H o u s e creates a new instance of c l a s s P l o t on
the highlighted line. Even with such simple example, it becomes evident it's
breaking the SRP, OCP and DIP principles. Let's now compare with the same

1In this thesis terms protocol and interface are used interchangeably. Although their se
mantics aren't equal, for dependency injection purposes the role of protocols takes on the same
meaning as interface.

2

Plot 1
House

Plot
plot -plot: Plot

Figure 1: A plot and a house.

example, but with Dependency Injection in place. The listing 2.2 shows the
c l a s s H ouse expects a P l o t instance as an argument to its initializer. On the
highlighted line, the new instance of c l a s s P l o t (dependency) is being created
and then passed (injected) into the initializer for c l a s s House.

1 c l a s s H ouse {
2 p r i v a t e l e t p l o t = P l o t ()
3 }

4

5 c l a s s P l o t {}
(i

7 l e t h o u s e = H o u s e ()

Listing 2.1: Example code without DI.

i c l a s s H o u s e {
2 p r i v a t e l e t p l o t : P l o t
3

4 i n i t (p l o t : P l o t) {
5 s e l f . p l o t = p l o t
6 }

r }
8
9 c l a s s P l o t {}

10

11 l e t h o u s e = H o u s e (p l o t : P l o t O)

Listing 2.2: Example code with DI.

Let's dive deeper. Suppose the requirements change and instead of a sin
gle c l a s s P l o t class, we need three kinds of land. So c l a s s P l o t becomes a
p r o t o c o l P l o t and is implemented by c l a s s F a r m L a n d , c l a s s C i t y L a n d , and
c l a s s T o w n L a n d (Figure 2).

In Listing 2.3 these changes are implemented without DI. Since Plot is no
longer a c l a s s , the House can no longer create an instance of Plot. However,
House still needs an instance of Plot. In this case, House creates an instance of
CityLand, clearly breaking the Dependency Inversion Principle. The transition
between Listing 2.1 and 2.3 also shows the Single Responsibility Principle being

3

FarmLand

Plot
1

House

plot -plot: Plot

CityLand TownLand

a house, and three land types.

broken. The only reason for the class House to change should be its own imple
mentation, not a dependency changing from a c l a s s to p r o t o c o l (as long as the
dependency's A P I stays the same).

Now, in Listing 2.4 the Plot becomes a p r o t o c o l with the three new im
plementations. With DI, the code for the House class doesn't change at all.
What changes is the initialization of House on the highlighted lines. Thanks to
DI, House doesn't decide what land it uses, and can be reused with any of the
implementations of Plot.

1 c l a s s H o u s e {
2 p r i v a t e l e t p l o t : P l o t = C i t y L a n d ()
3 }

4

5 p r o t o c o l P l o t {}
(i

7 c l a s s F a r m L a n d : P l o t {}
8

9 c l a s s C i t y L a n d : P l o t {}
10

n c l a s s T o w n Land: P l o t {}
12

13 l e t h o u s e = H o u s e ()

Listing 2.3: Example code without DI with DIP broken.

To summarize, Dependency Injection is a practice of providing instances of
dependencies from a scope outside of the object itself. DI makes code easier to
test, maintain, reuse and extend.

4

1 c l a s s H o u s e {
2 p r i v a t e l e t p l o t : P l o t
3

4 i n i t (p l o t : P l o t) {
5 s e l f . p l o t = p l o t
6 }

7 }

8

9 p r o t o c o l P l o t {}
10

11 c l a s s F a r m L a n d : P l o t {}
12

13 c l a s s C i t y L a n d : P l o t {}
14

15 c l a s s T o w n Land: P l o t {}
16

17 l e t f a r m H o u s e = H o u s e (p l o t : F a r m L a n d ())
is l e t c i t y H o u s e = Ho u s e (p l o t : C i t y L a n d O)
19 l e t t o w n H o u s e = Ho u s e (p l o t : T o w n L a n d O)

Listing 2.4: Example code with DI with multiple implementations.

2.1 Dependency Injection M e t h o d s

There are multiple ways to inject dependencies into a class. If the Dependency
Inversion Principle is being honored and each implementation has one or more
interfaces it implements, those interfaces should never reveal which injection
method is used. Otherwise the A P I of those interfaces might change when a
class needs to switch to a different method (e.g. trying to resolve a dependency
cycle 3.2).

2.1.1 Constructor Injection

When the object's constructor declares all the object's dependencies as its pa
rameters, it is called a constructor injection (see Listing 2.5). Doing so makes it
clear which dependencies are required by the class. It's a good practice to use
constructor injection as much as possible.

Requiring all of the dependencies up front is helpful in both tests and the
program itself. Combined with a type-safe language that checks the parameters
in compile-time, developers are notified about missing dependencies right away
during the compilation. This leads to a shorter development loop2 as the compiler
prints all the errors and the developer can fix them in one go.

2Development loop is the process of changing code, building it, deploying it, and seeing the
changes. The longer it takes between making the change and seeing it, the less efficient the
developer is.

5

c l a s s P e r s o n {}

c l a s s C a r {
p r i v a t e l e t o w n e r : P e r s o n

i n i t (o w n e r : P e r s o n) {
s e l f . o w n e r = ow n e r

}
}

l e t c a r = C a r (o w n e r : P e r s o n ())

Listing 2.5: Example of constructor injection.

2.1.2 Setter/Property Injection

Setter injection (in some languages also property injection, see Listing 2.6) is
good for dependencies that might not be required for the object to function.
Although such use-case could be fulfilled by marking a dependency in constructor
optional, property injection allows for changing the dependency. That makes it
easier to replace a dependency of an existing object without the need for a proxy.
The main downside is the need for a two-step object initialization. When an
object is created, and the dependency isn't optional, the created object cannot
be used right away and has to have its properties injected first. This method
also makes it easier to make mistakes and forget to inject a dependency, leading
to a longer development loop. This is because the crash will only happen during
run-time and not at compile-time or startup. More importantly, the crash would
only happen when the property is accessed, so it may slip under the QA's radar
and get deployed to production.

c l a s s P e r s o n { }

c l a s s C a r {
v a r o w n e r : P e r s o n ?

}

l e t c a r = C a r ()
c a r . o w n e r = P e r s o n ()

Listing 2.6: Property injection of an optional dependency.

2.1.3 Interface Injection

Interface injection is similar to the setter injection, but there is one major dif
ference. The setter is declared as a single method of an interface. The interface
has a single purpose - to be injected. This method allows for an easy grouping

of multiple implementations of the interface in a collection and injecting them
all at once (see Listing 2.7).

A n alternative to creating an interface for each possible dependency is using
function references in languages supporting such feature. Developers can then
reference the setters directly without the need for an interface, as the signature
of the function will behave as the interface.

1 c l a s s P e r s o n { }
2

3 p r o t o c o l O w n e r l n j e c t a b l e {
4 f u n c i n j e c t (o w n e r : P e r s o n)
5 }

(i

7 c l a s s C a r : O w n e r l n j e c t a b l e {
8 p r i v a t e v a r o w n e r : P e r s o n !
9

10 f u n c i n j e c t (o w n e r : P e r s o n) {
n s e l f . o w n e r = o w n e r
12 }

13 }

14

15 l e t c a r = C a r ()
16 l e t o w n e r l n j e c t a b l e s : [O w n e r l n j e c t a b l e] = [c a r]
17 f o r o w n e r l n j e c t a b l e i n o w n e r l n j e c t a b l e s {
is o w n e r l n j e c t a b l e . i n j e c t (o w n e r : P e r s o n ())
19 }

Listing 2.7: Injecting a group of interface-injection enabled classes.

2.2 Dependency G r a p h

Before classes with DI can be injected, a dependency graph has to be constructed.
A dependency graph is a directed graph[3], where vertices represent classes and
arcs represent dependencies between the classes. A vertex at the tail of an arc
depends on a vertex at the head of the arc. A dependency graph D can be
described by a vertex set V(D) and an arc set A(D). A vertex set contains all
classes that are part of the graph. A n arc set contains tuples (u, v) where u
depends on v.

Such description for the example graph in Figure 3 would be:

V(D) = {a, b, c, d, e, / } , A(D) = {(a, b), (a, d), (b, c), (b, e), (c, d)} (1)

The order \D\ of the graph tells us how many classes there are in total.
For each class u G V(D), the out-degree d~jj(u) tells us how many dependencies
the class has. Classes with the out-degree equal to zero {d^iu) = 0) have no
dependencies and can be constructed directly. For each class v G V(D), the
in-degree dp(v) tells us how many classes depend on the class v. Classes with
the in-degree equal to zero (d]j(v) = 0) have no class depend on them.

7

Analyzing the graph in Figure 3 gives us detailed information about the graph
and dependencies:

• \D\ — 6 (there are 6 classes in total).

• d~jj(d) = d~jj(e) = d~jj(f) — 0 (d, e and f don't depend on any other class),

• dp(a) = dp(f) = 0 (no class depends on a and f),

• d~jj(f) = OAdp(f) = 0 (no class depends on f and it has no dependencies),

• the graph is acyclic (no class has direct nor transitive dependency on itself,
see 3.2).

Figure 3: A dependency graph D.

Listing 2.8 contains a basic example of a simple dependency graph with classes
using constructor injection (see 2.1.1). The goal is to create an instance of the
D e f a u l t G r e e t i n g C o n t r o l l e r and call the g r e e t (name:) method on it.

2.2.1 Static Configuration

Static configuration means the dependency graph never exists in run-time of the
application. Instead, dependencies are declared statically - either by creating
instances directly, providing them with instances they depend on, or by declar
ing factory lambda functions, which create new instances of dependencies. It's
usually done without a DI framework. The main advantage of such approach
is not depending on a third party software (see 3.3). Static configuration is
preferred on small projects to keep them simple, or in libraries to minimize num
ber of transitive dependencies. From Listing 2.9, it's clear the implementations
have to be instantiated in a specific order. The D e f a u i t G r e e t i n g R e p o s i t o r y
has to be first, as it doesn't depend on any other protocol. The second is the

8

1 p r o t o c o l G r e e t i n g R e p o s i t o r y {
2 f u n c g r e e t i n g () -> S t r i n g
3 }

4

5 p r o t o c o l G r e e t e r S e r v i c e {
6 f u n c c o m p o s e G r e e t i n g (n a m e : S t r i n g) -> S t r i n g
7 }
8

9 p r o t o c o l G r e e t e r C o n t r o l l e r {
10 f u n c g r e e t (name: S t r i n g)
11 }

12

13 c l a s s D e f a u l t G r e e t i n g R e p o s i t o r y : G r e e t i n g R e p o s i t o r y {
14 f u n c g r e e t i n g () -> S t r i n g {
15 r e t u r n " H e l l o , "
16 }

17 }

18

19 c l a s s D e f a u l t G r e e t e r S e r v i c e : G r e e t e r S e r v i c e {
20 p r i v a t e l e t g r e e t i n g R e p o s i t o r y : G r e e t i n g R e p o s i t o r y
21

22 i n i t (g r e e t i n g R e p o s i t o r y : G r e e t i n g R e p o s i t o r y) {
23 s e l f . g r e e t i n g R e p o s i t o r y = g r e e t i n g R e p o s i t o r y
24 }

25

26 f u n c c o m p o s e G r e e t i n g (n a m e : S t r i n g) -> S t r i n g {
27 r e t u r n g r e e t i n g R e p o s i t o r y . g r e e t i n g () + name
28 }

29 }

30

31 c l a s s D e f a u l t G r e e t e r C o n t r o l l e r : G r e e t e r C o n t r o l l e r {
32 p r i v a t e l e t g r e e t e r S e r v i c e : G r e e t e r S e r v i c e
33

34 i n i t (g r e e t e r S e r v i c e : G r e e t e r S e r v i c e) {
35 s e l f . g r e e t e r S e r v i c e = g r e e t e r S e r v i c e
36 }

37

38 f u n c g r e e t (name: S t r i n g) {
39 p r i n t (g r e e t e r S e r v i c e . c o m p o s e G r e e t i n g (n a m e : name))
40 }

41 }

Listing 2.8: Example code for static vs dynamic demonstration.

9

GreetingRepository

DefaultGreetingRepository

x v - , ^depends on^>

GreeterService

DefaultGreeterService

" - ~ _ _ <Cdepends on^>

GreeterController

DefaultGreeterController

Figure 4: Caption

D e f a u l t G r e e t e r S e r v i c e , which depends on the repository. After the two are
successfully instantiated, an instance of D e f a u l t G r e e t e r C o n t r o l l e r is created.

The strict order is required by the compiler, since the dependent classes can't
be instantiated without providing all their dependencies to the initializer. This
behavior is the main advantage of the static configuration. If the program com
piles, developers can rest assured all the required dependencies are configured.
However, once the project grows, maintaining the configuration takes more de
velopment time, especially if multiple modules are needed.

l e t g r e e t i n g R e p o s i t o r y : () -> G r e e t i n g R e p o s i t o r y
= { D e f a u l t G r e e t i n g R e p o s i t o r y () }

l e t g r e e t e r S e r v i c e : () -> G r e e t e r S e r v i c e
= { D e f a u l t G r e e t e r S e r v i c e (g r e e t i n g R e p o s i t o r y :
•-• g r e e t i n g R e p o s i t o r y ()) }

l e t g r e e t e r C o n t r o l l e r : () -> G r e e t e r C o n t r o l l e r
= { D e f a u l t G r e e t e r C o n t r o l l e r (g r e e t e r S e r v i c e : g r e e t e r S e r v i c e ()) }

g r e e t e r C o n t r o l l e r () . g r e e t (n a m e : " W o r l d ") // p r i n t s " H e l l o , W o r l d "

Listing 2.9: Example of static injection.

2.2.2 Dynamic Configuration

For dynamic configuration, using a framework is recommended. Listing 2.10
shows dynamic configuration, using the Dip dependency container (see 2.5.1) to
register and resolve dependencies. Main differences between dynamic and static
configuration are registration order and compile-time safety. When using dy
namic configuration, the registration order usually doesn't matter, which makes

10

adding new dependencies straightforward. However, dynamic configuration loses
the validation of the dependency graph by the compiler. Most DI frameworks
support startup verification. These checks look for missing dependencies and
dependency cycles. If found, the check fails and crashes the application during
startup. Unfortunately, depending on how many registrations are missing, fixing
the issues can take quite a while. As the framework will usually fail on the first
missing dependency, multiple runs are required to ensure all dependencies are
properly registered.

Depending on the selected injection framework, dynamic configuration brings
additional features, such as:

• dependency scoping,

• debug information about dependencies,

• composing multiple configurations into a single one,

• dependency overrides.

Although these features can be achieved with static configuration, switching to
dynamic configuration results in way less work. The most useful is dependency
scoping. It allows for dependency lifetime management. In a typical application,
some classes are supposed to only be instantiated once. Those are called single
tons and the DI framework should keep such instance alive and in-memory until
the application exits. In Spring, the backend development framework, scopes can
be generally used to have a single instance per user session, or per web request.

i m p o r t D i p

l e t c o n t a i n e r = D e p e n d e n c y C o n t a i n e r { c o n t a i n e r i n
c o n t a i n e r . r e g i s t e r {

D e f a u l t G r e e t e r S e r v i c e (
g r e e t i n g R e p o s i t o r y : t r y c o n t a i n e r . r e s o l v e ()

) a s G r e e t e r S e r v i c e
}
c o n t a i n e r . r e g i s t e r {

D e f a u l t G r e e t e r C o n t r o l l e r (
g r e e t e r S e r v i c e : t r y c o n t a i n e r . r e s o l v e ()

) a s G r e e t e r C o n t r o l l e r
}
c o n t a i n e r . r e g i s t e r {

D e f a u l t G r e e t i n g R e p o s i t o r y () a s G r e e t i n g R e p o s i t o r y
}

}

l e t c o n t r o l l e r = t r y ! c o n t a i n e r . r e s o l v e () a s G r e e t e r C o n t r o l l e r
c o n t r o l l e r . g r e e t (n a m e : " W o r l d ") // p r i n t s " H e l l o , W o r l d "

Listing 2.10: Example of dynamic injection with Dip.

11

2.3 Benefits O f Dependency Injection

Projects using Dependency Injection usually benefit from it in multiple ways,
such as:

• easier maintenance,

• testability,

• better extensibility,

• improved reusability.

Additionally, splitting a project into submodules is usually easier when using
DI. The dependency graph can be used to decide which interfaces and classes
can be split into a separate module. As long as the visibility of classes in the
original module is permissive enough to be used from the new module, creating
a new module is effortless.

2.3.1 Testability

Software tests should be reliable, repeatable and parallelizable. However software
itself is full of side-effects like updating state of a database, or sending requests
to a third party service. If left unhandled, such side-effects lead to unreliable
tests.

Since DI is built on providing implementations to objects from the outside, a
different implementation can be injected when running tests than when running
in production. Injecting so called mock dependencies, allows the developer to
isolate the functionality being tested and ensure reliable tests.

Additionally, the developer can make the mock behave in a way that would
be too difficult to setup with a real implementation, or even in invalid way to
ensure the tested functionality handles it as expected. A good use-case of mocks
is replacing communication with hardware, allowing tests to run without the real
hardware and only simulating the communication. Simulating the communica
tion saves a lot of time during tests as the communication can be instantaneous.
Also it improves the test reliability as hardware can be unreliable.

When coupled with constructor injection (see 2.1.1), the developer, who is
writing tests, has to provide all the dependencies of the component under test.
When the tested component is modified to require an additional dependency, the
test will fail to compile, indicating a problem and possibly a new and untested
functionality.

Let's demonstrate how DI can be used to inject a mocked dependency. Sup
pose a program needs a component providing caching to filesystem. To conform
with SRP it's split into two classes:

1. Cache containing an algorithm deciding when to keep and when to delete
the cached values

12

2. Datastorage containing logic to save and load data to disk.

Without Dependency Injection, the C a c h e would create a new instance of the
D a t a s t o r a g e in its constructor and use it for storing the cached values. This
brings two problems to testing. Firstly the tests are testing two functionalities,
the code of the caching algorithm and the data saving code, making it more
difficult to find which of the two is working incorrectly. Secondly, the tests have
to access the disk to cache and make sure the cached data is deleted after the
testing is done.

With DI, the C a c h e would receive an instance of the D a t a s t o r a g e as an con
structor parameter and use it for storing the cached values. In the production
application, a D a t a s t o r a g e implementation that stores the data onto the filesys-
tem would be injected into the C a c h e . In tests however, it makes more sense to
inject an implementation of D a t a s t o r a g e that stores the data in memory. Stor
ing the data in memory results in a clean cache storage each time the tests run
without the need to manually delete any files.

2.3.2 Extensibility

Injecting an implementation allows developers to create multiple different im
plementations and then inject them based on the required functionality. For
example:

• Database connection interface with implementations for different databases,

• fake implementation providing nice data for marketing materials,

• service implementation performing method invocations as remote proce
dure calls.

Another category of use-cases is decorating[4]. Before injecting a dependency,
the developer can wrap it inside a different implementation of the same inter
face. This way an additional functionality can be layered on top of an existing
implementation. For example:

• Logging before and after calling each method in the interface,

• timing how long a call to an interface's method took for performance test
ing,

• adding security by checking if an interface's method can be called,

• adding caching to long-running networking calls to improve responsiveness.

A l l of the above can be achieved without Dependency Injection, but using
DI allows deciding which implementation is used in runtime and doesn't require
any changes to the implementation to use a different dependency.

13

Let's extend the example set in the previous section. A useful extension might
be a logging decorator for C a c h e , that would be used in a development environ
ment. Such decorator, let's call it C a c h e L o g g e r would wrap a C a c h e instance and
implement the Cache interface itself. That way any consumers of the C a c h e in
stance would call methods on the C a c h e L o g g e r . It would log debug information
about caching and call the respective method in the wrapped C a c h e instance it
holds. With DI, developers can even have multiple such decorators wrapping
each other, providing additional functionality, without changing a single line in
the original implementation.

p r o t o c o l C a c h e {
f u n c r e t r i v e (n a m e : S t r i n g) : D a t a ?

}

c l a s s C a c h e L o g g e r : C a c h e {
p r i v a t e l e t c a c h e : C a c h e

i n i t (c a c h e : C a c h e) {
s e l f . c a c h e = c a c h e

}

f u n c r e t r i e v e (n a m e : S t r i n g) : D a t a ? {
p r i n t (" R e t r i e v i n g c a c h e d v a l u e f o r name: W (n a m e) ")
l e t r e s u l t = c a c h e . r e t r i e v e (n a m e : name)
p r i n t (" V a l u e f o r name: W (n a m e) was c a c h e d : \ \ (r e s u l t ! =

n i l) ")
r e t u r n r e s u l t

}
}

2.3.3 Reusability

Along with extensibility, Dependency Injection can help with code reusability.
Since each component has a final set of dependencies, it can be instantiated
multiple times with different dependency implementations that perform the same
work, but in a different way based on the dependencies provided. This leads to
unexpected amount of reusable components.

Let's look at the example from testability section 2.3.1. Suppose the original
purpose of C a c h e was to cache files that are used the most often. During the
development, the developer decided to also cache results of a complex compu
tation. Now the developer needs two instances of C a c h e , one storing data in
memory, one on the disk. Without DI, they would have to either change the
C a c h e to support both, or duplicate the C a c h e , one for most used files, one for
the computation results. With DI though, a second instance of C a c h e can be
created with a different D a t a s t o r a g e .

14

2.4 Al te rna t ives To Dependency Injection

Dependency Injection isn't the only option for objects to obtain instances of their
dependencies from an outside scope.

2.4.1 Globally Accessible Instances

With globally accessible instances, each class may have a static property, con
taining the instance of the class. Listing 2.11 shows how a simple code with a
global instance might look like. In this example, the R e p a i r S h o p is the single
ton, and can be accessed by the static property s h a r e d (usage shown on the
highlighted line).

It can be tempting to have each dependency accessible in any place in the
program. However, the disadvantages are way worse than advantages. The main
disadvantage is an uncertainty what part of the program is being accessed and/or
mutated. It also makes modularization a way more difficult and time consuming
process, compared to a project that's using DI.

c l a s s C a r { }

c l a s s R e p a i r S h o p {

s t a t i c l e t s h a r e d = R e p a i r S h o p ()

p r i v a t e i n i t () {}

f u n c r e p a i r (c a r : C a r) {
p r i n t l n (" C a r : \ \ (c a r) r e p a i r e d ")

}
}

c l a s s P e r s o n {
l e t c a r = C a r ()

f u n c r e p a i r M y C a r () {
R e p a i r S h o p . s h a r e d . r e p a i r (c a r : c a r)

}

}

l e t p e r s o n = P e r s o n ()
p e r s o n . r e p a i r M y C a r ()

Listing 2.11: Example of globally accessible singleton.

2.4.2 Service Locators

Service locators, described in [5] are a suitable alternative for Dependency In
jection. Service locators are half-way between globally accessible singletons and
dependency injection. They are objects providing access to implementations of

15

interfaces that other implementations might need. Service locators are usually
static, but configured during the program start-up by an Assembler.

In Figure 5 is an example of references between classes when using a service
locator. The important thing is the C a c h e doesn't depend on an implementation
of the D a t a s t o r a g e . Instead the A s s e m b l e r ' s responsibility is to configure the
S e r v i c e L o c a t o r before it's used by the C a c h e . Since the locator can be config
ured during start-up, tests can replace implementations with mocks if needed.
Listing 2.12 shows a possible implementation of service locator in Swift.

Since the service locator is used from inside of a class, like in the C a c h e ,
it's not clear what dependencies are used by a class. Compared to constructor
injection, this makes writing and maintaining tests more difficult.

ServiceLocator

MemoryDataStorage

Figure 5: Basic service locator setup.

16

c l a s s S e r v i c e L o c a t o r {

p r i v a t e (s e t) s t a t i c v a r s h a r e d : S e r v i c e L o c a t o r !

l e t d a t a s t o r a g e : D a t a s t o r a g e

i n i t (d a t a s t o r a g e : D a t a s t o r a g e) {
s e l f . d a t a s t o r a g e = d a t a s t o r a g e

}

c l a s s f u n c l o a d (l o c a t o r : S e r v i c e L o c a t o r) {
s h a r e d = l o c a t o r

}
}

p r o t o c o l D a t a s t o r a g e {
}

c l a s s M e m o r y D a t a S t o r a g e : D a t a s t o r a g e {
}

c l a s s C a c h e {
p r i v a t e l e t d a t a s t o r a g e = S e r v i c e L o c a t o r . s h a r e d . d a t a s t o r a g e

}

c l a s s A s s e m b l e r {
c l a s s f u n c a s s e m b l e L o c a t o r () {

S e r v i c e L o c a t o r . l o a d (l o c a t o r :
S e r v i c e L o c a t o r (d a t a s t o r a g e : M e m o r y D a t a S t o r a g e ())

)
}

Listing 2.12: Example of service locator usage.

17

2.5 P r i o r A r t

Swift language, like many other languages, doesn't have a dependency injection
framework built-in. Therefore it needs to be added via an external dependency.
There are many frameworks to choose from, one of them being Dip [6].

2.5.1 Dip

Dip[6] is a dependency injection container for Swift. It supports scopes, named
definitions and arguments.

Dip features its own code generator, but its main disadvantage is relying on
code comments for information about the dependency graph. Annotating the
code with comments loses IDE auto-completion and refactoring support.

2.5.2 Spring Beans

In the Java framework Spring[7], Dependency Injection is a first-class citizen. It's
dependencies can be configured using annotations or X M L files. The framework
is fully featured with support for scoping, dependency visibility, tagging and
more. Since configuration is dynamic, it checks the dependency graph for missing
dependencies, when the Spring application starts. When missing a dependency,
the application terminates during the startup phase.

When configuring dependencies using annotations, any class annotated us
ing g c o m p o n e n t annotation gets added to the dependency graph. For third
party dependencies, or where more control over the class instantiating is needed,
Spring supports an explicit configuration method. Each class annotated with
@Conf i g u r a t i o n is scanned for methods annotated with B e a n , called bean defi
nitions. Bean definitions declare their dependencies as method parameters. The
return type of these methods declares the interface provided. And the method
body returns an instance of a class implementing the promised interface. List
ing 2.13 contains an example of such configuration, with three bean definitions
g r e e t i n g R e p o s i t o r y , g r e e t e r S e r v i c e and g r e e t e r C o n t r o l l e r .

18

@ C o n f i g u r a t i o n
c l a s s G r e e t i n g C o n f i g u r a t i o n {

@Bean
f u n g r e e t i n g R e p o s i t o r y () : G r e e t i n g R e p o s i t o r y {

r e t u r n D e f a u l t G r e e t i n g R e p o s i t o r y ()
}

@Bean
f u n g r e e t e r S e r v i c e (r e p o s i t o r y : G r e e t i n g R e p o s i t o r y) :

G r e e t e r S e r v i c e {
r e t u r n D e f a u l t G r e e t e r S e r v i c e (r e p o s i t o r y)

}

@Bean
f u n g r e e t e r C o n t r o l l e r (s e r v i c e : G r e e t e r S e r v i c e) :

G r e e t e r C o n t r o l l e r {
r e t u r n D e f a u l t G r e e t e r C o n t r o l l e r (s e r v i c e)

}
}

Listing 2.13: Configuration for classes from 2.8 in Spring.

19

3 Problem Analysis
Because Swift doesn't have a complex reflection, dependency injection containers
in Swift require registering implementations for protocols manually. Doing so is
error-prone as the errors appear only at run-time. Over time as the program's
code-base grows, it becomes easier to make mistakes and the errors become more
frequent. Dependency containers have checks to verify that all dependencies are
satisfied and without cycles. However, it's usually a run-time check requiring a
fresh build and program startup. Fixing missing dependency errors then slows
down development.

To combat this, a program analyzing the dependency graph at compile-time
and generating the supporting code is needed. Some injection container frame
works include their take on compile-time generators. Some generators require
definition in code comments, foregoing all type-safety and automatic IDE refac-
toring capabilities. Others use Swift's property wrappers feature, requiring a
single dependency container and disallow initializer injection.

3.1 M i s s i n g Dependencies

The easiest mistake to make is forgetting to register a new implementation to the
dependency container. When the application is then ran, unless there's a class
that depends on the new implementation, nothing out of the ordinary happens.
It's when the implementation is declared as a dependency of another class, when
the problems arise. When the application is run, it will crash because of the
missing dependency. The developer trying to use it has to register it to the
dependency container for it to work.

Because of the missing reflection in Swift, the dependency container can't
use meta information about the program to construct the dependency graph and
find all missing dependencies. Instead it can only report the first encountered.
When there's a chain of dependencies not registered to the container, it can take
a while for the developer to fix it.

To improve the situation, I need to support implicit dependencies, so that
there's less need to declare new implementations manually. Additionally, a de
pendency graph has to be created during compilation and verified for missing
dependencies all at once. That way developers get as much information right
away and don't have to wait for the application to deploy and start.

3.2 Cons t ruc tor Injection Cycles

When using constructor injection (see 2.1.1), all dependencies are required be
fore a new instance of an implementation can be created. In some cases, one
implementation, let's call it Aimpi, implementing an interface A might depend
on an interface B . When the implementation Bimpi of the interface B requires an
instance of the interface A , it results in a dependency cycle (also called circular
dependency). This scenario is shown in Figure 6.

20

<Cimplemented b y S ^ '

i
Almpl

<Cdepends onS>s B

v<Cdepends onS>

Blmpl

/

'<Cimplemented byS>

Figure 6: Dependency cycle

There are multiple ways to resolve such cycles, however most of them require
changes in one of the implementations. Listing 3.1 is a simplified real-world
example of a hierarchy of sections and items. Each item can either be a single
text, or a whole new sub-section. When it comes to displaying the data, it needs
to be converted to view models (classes with the VM suffix). However, the view
model factories depend on one another. That's caused by the apparent circular
dependency present in the data structures. There a section contains multiple
items, and a sub-section item contains a section structure, that represents the
inner section. In the example, the circular dependency is resolved using property
injection (see 2.1.2). The assignment is shown on the highlighted lines.

21

s t r u c t S e c t i o n {
l e t i t e m s : [I t e m]

enum I t e m {
c a s e r o w f t e x t : S t r i n g)
i n d i r e c t c a s e s u b s e c t i o n (s e c t i o n : S e c t i o n)

}
}
c l a s s S e c t i o n V M {

l e t i t e m s : [ItemVM]

c l a s s F a c t o r y {
v a r i t e m F a c t o r y : I t e m V M . F a c t o r y !

f u n c c r e a t e (e n t i t y : S e c t i o n) -> S e c t i o n V M {
r e t u r n S e c t i o n V M (i t e m s :

e n t i t y . i t e m s . map (i t e m F a c t o r y . c r e a t e))
}

}

}

c l a s s ItemVM {
c l a s s S u b s e c t i o n : ItemVM {

l e t s e c t i o n : S e c t i o n V M
}

c l a s s Row: ItemVM {
l e t t e x t : S t r i n g

}
c l a s s F a c t o r y {

v a r s e c t i o n F a c t o r y : S e c t i o n V M . F a c t o r y !

f u n c c r e a t e (e n t i t y : S e c t i o n . I t e m) -> ItemVM {
s w i t c h e n t i t y {
c a s e . r o w (l e t t e x t) :

r e t u r n R o w (t e x t : t e x t)
c a s e . s u b s e c t i o n (l e t s e c t i o n) :

r e t u r n S u b s e c t i o n (s e c t i o n :
•-• s e c t i o n F a c t o r y . c r e a t e (e n t i t y : s e c t i o n))

}
}

}

}

l e t i t e m F a c t o r y = I t e m V M . F a c t o r y ()
l e t s e c t i o n F a c t o r y = S e c t i o n V M . F a c t o r y ()
i t e m F a c t o r y . s e c t i o n F a c t o r y = s e c t i o n F a c t o r y
s e c t i o n F a c t o r y . i t e m F a c t o r y = i t e m F a c t o r y

Listing 3.1: Example of a dependency cycle resolved using property injection.3

Listing 3.2 contains an example of resolving a dependency cycle using prop
erty injection and the Dip dependency framework. Two classes, c l a s s A and
c l a s s B , are registered to the container. Each is dependent on the other, result-

22

ing in a dependency cycle. However, since the c l a s s A can be created without
requiring an instance of B , the container is able to break the dependency cycle.
The process that happens in the container when c o n t a i n e r . r e s o l v e () a s B is
called consists of (simplified):

1. The container knows that an instance of the class A is required to initialize
an instance of B,

2. the container initializes a new instance of A , AQ,

3. the container initializes a new instance of B, B0,

4. the container runs the closure passed to r e s o i v i n g P r o p e r t i e s for instance
A0.

c l a s s A {
v a r b: B ?

}

c l a s s B {
p r i v a t e l e t a: A

i n i t (a : A) {
s e l f . a = a

}

}

c o n t a i n e r . r e g i s t e r () { A () }
. r e s o i v i n g P r o p e r t i e s { c o n t a i n e r , s e r v i c e i n

s e r v i c e . b = t r y c o n t a i n e r . r e s o l v e () a s B
}

c o n t a i n e r . r e g i s t e r () { B (a : c o n t a i n e r . r e s o l v e ()) }

Listing 3.2: Example of dependency cycle resolution with Dip.

Dependency cycles should be avoided wherever possible as they lead to a
confusing and hard to maintain code. Problems with dependency cycles between
packages are described by Robert C. Martin in the paper Granularity[8], where
he defines Acyclic Dependencies Principle (ADP). Although it describes depen
dency cycles between packages, the principle applies to classes as well. In Swift
dependency cycles can lead to memory leaks if the two classes hold strong refer
ences to one another. This creates a so-called strong reference cycle, which won't
be automatically freed[9].

Due to the added complexity and requirements for the implementations, I will
implement dependency cycle check, which will result in an error during build if
a cycle is found. This will make the developers restructure their code to get rid
of the cycle.

23

3.3 Dependence O n A D I Framework

Manual dependency management is tedious especially when advanced injection
features like scoping and tagging is required. Inevitably developers decide to use
a DI framework. Some of these frameworks offer unique features, or work in a
different way than the rest of the frameworks. This can create a dependence
on such framework, as migrating to a different solution can require substantial
rewrites of the code using it.

The aforementioned support for implicit dependencies should reduce the de
pendency on a run-time DI framework. It could be argued it will be replaced by
a dependency on the generator itself, but the generator doesn't place any special
requirements on the code, other than disallowing circular dependencies. There
fore moving away from the generator and writing the registration code manually
shouldn't pose a problem for the development.

24

4 Proposed Solution
Based on the problem analysis, I need to develop an A P I that developers can put
into their applications and use it to declare dependencies. I also need to make a
command-line program, that developers will run before compilation, to generate
dependency registration for a dependency injection container.

4.1 Dependency Dec la ra t ion A P I

The A P I has to be a suitable replacement for the missing meta programming in
Swift. It has to allow declaring and tagging dependencies. Developers should be
able to choose a scope of the dependency using the A P I too. Tagging dependen
cies will allow having a single interface available with multiple implementations,
so consumers can choose which one to use.

4.1.1 Spring Beans Inspiration

I decided to take inspiration from the explicit configurations in Spring Beans
(see 2.5.2). With Spring Beans developers declare so called configuration classes.
These classes are annotated using g c o n f i g u r a t i o n . Methods declared in such
class can be annotated with @Bean to become a dependency provider. The return
type of the method declares the interface being provided. If the method has any
parameters, these are considered dependencies of the returned interface. The
configuration class can have dependencies of its own and they are implicitly
added as dependencies of each of the providers declared in the class.

For tagging dependencies, Spring Beans uses string names. They can be
applied to B e a n methods using the gNamed annotation. It accepts a string value
which is the name for the dependency. Adding the name to a dependency makes
it available only when the name is specified in a dependency declaration. So
a @Bean method with a parameter accepting the dependency has to have the
@Named annotation with the same value as the original declaration.

Similar to the dependency naming, assigning scopes to dependencies is done
by annotating the provider method with @Scope annotation. The annotation
accepts a string value, the name of the scope. To make a dependency a singleton,
we'd put @Scope (" s i n g l e t o n ") above the provider method.

Listing 4.1 shows how these features would be used together using Spring
Beans. The configuration class, S p r i n g C o n f i g u r a t i o n has a single dependency
on SomeDependency. It has two dependency providers, firstDependency and
secondDependency. The firstDependency provider depends on an instance of
O t h e r D e p e n d e n c y and implicitly on SomeDependency, which is brought in by
the configuration class. The firstDependency provider provides an instance of
F i r s t D e p e n d e n c y , named as a name. The other provider, secondDependency,
depends on the F i r s t D e p e n d e n c y . Notice the use of @Named("a name") applied
to the type of the method's parameter. That's required for the dependency to

25

be resolved, as there is no provider of an unnamed F i r s t D e p e n d e n c y . A n in
stance of S e c o n d D e p e n d e n c y is provided by secondDependency, this time with no
name. But the method is annotated with the @Scope annotation, resulting in
the S e c o n d D e p e n d e n c y being a singleton.

@ C o n f i g u r a t i o n
c l a s s S p r i n g C o n f i g u r a t i o n (

p r i v a t e v a l s o m e D e p e n d e n c y : SomeDependency,
) {

@Named("a name")
@Bean
f u n f i r s t D e p e n d e n c y (o t h e r D e p e n d e n c y : O t h e r D e p e n d e n c y) :
•-f F i r s t D e p e n d e n c y {

r e t u r n F i r s t D e p e n d e n c y l m p l (o t h e r D e p e n d e n c y)
}

@ S c o p e (" s i n g l e t o n ")
@Bean
f u n s e c o n d D e p e n d e n c y (f i r s t D e p e n d e n c y : @Named("a name")
•-f F i r s t D e p e n d e n c y) : S e c o n d D e p e n d e n c y {

r e t u r n S e c o n d D e p e n d e n c y l m p l (f i r s t D e p e n d e n c y , s o m e D e p e n d e n c y)
}

}

Listing 4.1: Spring Beans Configuration for inspiration.

4.1.2 Generics Composition API

Unfortunately the closest feature Swift has to annotations are property wrap
pers, which cannot be applied on methods and classes. So an alternative way
to describe the dependencies is needed. The @ C o n f i g u r a t i o n annotation can
simply be replaced by a marker protocol, that the configuration class will have
to conform to.

Replacing the @Scope and gNamed annotations isn't as easy. I drafted three
possibilities for the API . The first one, shown in Listing 4.2 would use generics
and composition instead of the annotations. To tag a dependency, developers
would create a generic structure conforming to D e p e n d e n c y T a g with a prop
erty for the dependency instance. The firstDependency provider would then
return the F i r s t D e p e n d e n c y wrapped in the AName tag structure. Same as in
the Spring Beans configuration, the secondDependency provider depends on the
tagged F i r s t D e p e n d e n c y . It does so by accepting it wrapped in the A T a g struc
ture.

To scope a dependency, developers would use one of the provided scoping
structures. The secondDependency provider shows how declaring a s i n g l e t o n
would work. It's similar to the tagging, except the scopes are predefined and
new ones can't be added. Unfortunately, when using both scopes and tags, it

26

becomes too verbose. The two structures need to be composed, with the type
resulting in S i n g l e t o n < A N a m e < A n o t h e r D e p e n d e n c y > > .

Additionally, using generic dependencies results in ambiguity. Suppose a
provider requires C a c h e < D a t a > , is the C a c h e supposed to be a tag for D a t a , or is
it a class of its own? The generator could decide based on the tag conforming
to the D e p e n d e n c y T a g protocol, but that could lead to confusion. Since the
generator can only scan source codes in one module a structure could conform
to the D e p e n d e n c y T a g , but the generator wouldn't know it.

s t r u c t AName<D>: D e p e n d e n c y T a g {
l e t d e p e n d e n c y : D

}

c l a s s S w i f t C o n f i g u r a t i o n : D e p e n d e n c y C o n f i g u r a t i o n {
p r i v a t e l e t s o m e D e p e n d e n c y : SomeDependency

i n i t (s o m e D e p e n d e n c y : SomeDependency) {
s e l f . s o m e D e p e n d e n c y = s o m e D e p e n d e n c y

}

f u n c f i r s t D e p e n d e n c y (o t h e r D e p e n d e n c y : O t h e r D e p e n d e n c y) ->
•-f A N a m e < F i r s t D e p e n d e n c y > {

AName(
d e p e n d e n c y : F i r s t D e p e n d e n c y l m p l (

o t h e r D e p e n d e n c y : o t h e r D e p e n d e n c y
)

)
}

f u n c s e c o n d D e p e n d e n c y (f i r s t D e p e n d e n c y : A N a m e < F i r s t D e p e n d e n c y >)
•-t -> S i n g l e t o n < S e c o n d D e p e n d e n c y > {

S i n g l e t o n (
d e p e n d e n c y : S e c o n d D e p e n d e n c y l m p l (

f i r s t D e p e n d e n c y : f i r s t D e p e n d e n c y . d e p e n d e n c y ,
s o m e D e p e n d e n c y : s o m e D e p e n d e n c y

)
)

}

f u n c t h i r d D e p e n d e n c y (s e c o n d D e p e n d e n c y : S e c o n d D e p e n d e n c y) ->
•-t T h i r d D e p e n d e n c y {

T h i r d D e p e n d e n c y l m p l (s e c o n d D e p e n d e n c y : s e c o n d D e p e n d e n c y)
}

}

Listing 4.2: Draft of the A P I using generics composition.

27

4.1.3 Flag Functions API

The second draft, shown in Listing 4.3, doesn't include the generics and the
providers return provided types directly. To configure the dependencies, flag
functions would be used. To tag a dependency, the function tagged would be
used, with the tag's type as parameter. To depend on a tagged dependency,
a new structure T a g g e d is introduced with two generic parameters, one for the
dependency type, the other for the tag. Compared to the first draft, using tags
is no longer ambiguous, as the Swift compiler is checking the conformance to
D e p e n d e n c y T a g protocol instead of the generator. Scoping would be a set of flag
functions, like singleton that developers would wrap the dependency initialization
with.

The generator would look for the flag functions and consider them a config
uration of the dependency. The main downside is, that the code seems to be
doing nothing and would require looking in the documentation to see why that's
happening. Another issue arises when combining scopes and tags. It requires a
conscious choice whether to apply the tagged, or the singleton flag function first.
Additionally a new type of ambiguity is introduced, where developers could wrap
a dependency initialization in two tagged function calls. There would have to be
clear rules for which tag gets used.

4.1.4 Registration Structure API

The last draft in Listing 4.4 makes the dependency declaration more explicit. In
Spring Beans, methods providing dependencies have to be annotated with the
@Bean annotation. Here methods have to return the D e p e n d e n c y R e g i s t r a t i o n
structure to be collected by the generator. The structure would have a single
generic parameter for the dependency type. The structure's initializer accepts tag
and scope parameters. Similarly to the tagged flag function, the tag parameter
accepts a type of a tag instead of using an instance of it. This allows using the
T a g g e d structure to depend on a tagged dependency. The scope would be an
enum of possible values, so providing it to the initializer can be done the short
hand way without naming the type. This option has the least ambiguity and
guides the developer as much as possible through declaring a dependency.

28

1 enum A T a g : D e p e n d e n c y T a g { }
2

3 c l a s s S w i f t C o n f i g u r a t i o n : D e p e n d e n c y C o n f i g u r a t i o n {
4 p r i v a t e l e t s o m e D e p e n d e n c y : SomeDependency
5

6 i n i t (s o m e D e p e n d e n c y : SomeDependency) {
7 s e l f . s o m e D e p e n d e n c y = s o m e D e p e n d e n c y
s }
9

io f u n c f i r s t D e p e n d e n c y (o t h e r D e p e n d e n c y : O t h e r D e p e n d e n c y) ->
•-f F i r s t D e p e n d e n c y {

n t a g g e d (A N a m e . s e l f) {
12 F i r s t D e p e n d e n c y l m p l (
13 o t h e r D e p e n d e n c y : o t h e r D e p e n d e n c y
14)

is }
16 }

17

is f u n c s e c o n d D e p e n d e n c y (f i r s t D e p e n d e n c y : T a g g e d < F i r s t D e p e n d e n c y ,
AName>) -> S e c o n d D e p e n d e n c y {

19 s i n g l e t o n {
20 S e c o n d D e p e n d e n c y (
21 f i r s t D e p e n d e n c y : f i r s t D e p e n d e n c y . d e p e n d e n c y ,
22 s o m e D e p e n d e n c y : s o m e D e p e n d e n c y
23)

24 }

25 }

26 }

Listing 4.3: Draft of the A P I using flag functions.

29

1 enum A T a g : D e p e n d e n c y T a g { }
2

3 c l a s s S w i f t C o n f i g u r a t i o n : D e p e n d e n c y C o n f i g u r a t i o n {
4 p r i v a t e l e t s o m e D e p e n d e n c y : SomeDependency
5

6 i n i t (s o m e D e p e n d e n c y : SomeDependency) {
7 s e l f . s o m e D e p e n d e n c y = s o m e D e p e n d e n c y
s }
9

io f u n c f i r s t D e p e n d e n c y (o t h e r D e p e n d e n c y : O t h e r D e p e n d e n c y) ->
D e p e n d e n c y R e g i s t r a t i o n < F i r s t D e p e n d e n c y > {

n D e p e n d e n c y R e g i s t r a t i o n (t a g : A N a m e . s e l f) {
12 F i r s t D e p e n d e n c y l m p l (
13 o t h e r D e p e n d e n c y : o t h e r D e p e n d e n c y
14)

is }
16 }

17

is f u n c s e c o n d D e p e n d e n c y (f i r s t D e p e n d e n c y : T a g g e d < F i r s t D e p e n d e n c y ,
AName>) -> D e p e n d e n c y R e g i s t r a t i o n < S e c o n d D e p e n d e n c y > {

19 D e p e n d e n c y R e g i s t r a t i o n (s c o p e : . s i n g l e t o n) {
20 S e c o n d D e p e n d e n c y (
21 f i r s t D e p e n d e n c y : f i r s t D e p e n d e n c y . d e p e n d e n c y ,
22 s o m e D e p e n d e n c y : s o m e D e p e n d e n c y
23)

24 }

25 }

26 }

Listing 4.4: Draft of the A P I using registration structures.

30

4.2 C o m m a n d - L i n e Generator

The command line program should traverse source code of an application writ
ten in Swift. It should note all protocols and classes it encounters and construct
a dependency graph from them. It should also be able to load explicit depen
dencies declared using the api library (see above 4.1). Once constructed, the
program should run analysis on the graph to find any missing dependencies and
dependency cycles. If it finds some, the program should terminate and inform
the developer about it. Otherwise, a Swift file should be generated creating a
dependency container instance and registering all the dependencies.

The program should also support printing the dependency graph as an out
put. This will allow developers to look at it and see the relationships between
classes. For future-proofing, a command running just the analysis without gen
erating an output should be provided. It can also be used by developers to check
the graph validity without changing any code, making it perfect to use from a
pre-commit1 script.

The program should use the Dip dependency container (see 2.5.1) as I have
prior experience with it and it's one of the popular ones. It has support for both
dependency tagging and scopes so it's a good fit.

4Version Control software like Git support running scripts before submitting changes to it.
Those scripts can verify the code passes predefined check, like having a valid dependency tree
or passing tests.

31

5 Implementation
Before I began working on the generator, I needed to decide which of the API
proposals would be the best for developers to give information about dependen
cies. Since the program is supposed to make developer's lives easier, I went with
the most explicit, the least ambiguous variant (see 4.1.4). I implemented the
run-time library first to support the structure from Listing 4.4. Then I drafted
an example to test the next development on. The finished examples are available
on the CD in the Example/ directory.

Next step was defining the main structures the program will work with. Each
dependency needs a unique identifier for the program, and later on for the de
pendency container. A module-name and a type-name identifies a class uniquely.
Since the program runs for a single module at a time, type-name is enough to
identify a class in this context. Because dependencies can have an optional tag,
it has to be included as part of the identifier - D e p e n d e n c y K e y .

Moving on, D e p e n d e n c y F a c t o r y is a description of a function, that takes
dependencies as parameters and returns an instance of a provided dependency.
The associations and properties are shown in Figure 7.

DependencyFactory

DependencyKey dependencies: [DependencyKey]
key: DependencyKey
kind: Initializer ConfigurationMethod
requiredModules: [String]

tag: String?
name: String

dependencies: [DependencyKey]
key: DependencyKey
kind: Initializer ConfigurationMethod
requiredModules: [String]

tag: String?
name: String

dependencies: [DependencyKey]
key: DependencyKey
kind: Initializer ConfigurationMethod
requiredModules: [String]

ConfigurationMethod

configuration: DependencyKey
methodName: String
parameters: [Parameter]

Parameter Initializer

name: String?
dependency: DependencyKey

type: String
parameters: [Parameter]

name: String?
dependency: DependencyKey

type: String
parameters: [Parameter]

Figure 7: Collecting phase structures.

32

5.1 M o d e s of Opera t ion

When I tried to use the generator in a real project that was modular, I realized
I had to change the program to have two modes of operation:

• when running for a library target - library mode,

• when running for an executable target - application mode.

The main difference is in the program's output. In library mode it's an inter
mediate representation, containing the information about all dependencies pro
vided by the library. The application mode would then use these files as sources of
dependency providers when generating the dependency container registrations.
For the sake of simplicity, I decided the mode will be selected automatically
based on the file extension of the output file. If it's a file with .dpendmodule
extension, it runs in the library mode, otherwise it runs in an application mode.

5.2 Col lec t ing

I began developing the generator phase by phase, so first I tackled the collecting
phase. This phase expects a directory and returns all dependency declarations
it finds.

It begins with F a c t o r y L o a d e r and D e p e n d e n c y C o l l e c t o r classes. The F a c -
t o r y L o a d e r is provided a collection of paths and it's recursively going through the
directory tree to find all Swift files. Then the files are passed into SwiftSyntax5

which outputs an AST for each of the Swift files. Then it provides the collection
of those ASTs to the D e p e n d e n c y C o l l e c t o r .

The D e p e n d e n c y C o l l e c t o r first walks a visitor through each of the ASTs.
When the visitor encounters a class conforming to the p r o t o c o l D e p e n d e n c y C o n -
f i g u r a t i o n , it walks a child visitor on the children to find all dependency
provider declarations. Otherwise it notes the class as a possible implicit de
pendency and moves on.

After visiting all of the ASTs, the D e p e n d e n c y C o l l e c t o r filters out all of
the possible implicit dependencies that don't match one of the provided regu
lar expressions6. Once filtered, initializers of implicit dependencies are trans
formed into dependency factories. Each combination of an initializer and a pro
tocol conformance of the class' results in a unique D e p e n d e n c y F a c t o r y . Col
lecting factories from the code in Listing 5.1, would result in the total of 7
D e p e n d e n c y F a c t o r y instances. Table 1 shows all of these instances.

5SwiftSyntax[lQ] is a library from Apple for Swift code introspection. Using visitor pattern,
it allows traversing any Swift code easily, in a type-safe way.

6Later on, I also had to filter out classes that aren't public when running in the library
mode.

7The program considers only directly declared conformances, not those declared using ex
tensions.

33

p r o t o c o l A { }
p r o t o c o l B { }
p r o t o c o l C { }
p r o t o c o l D { }

c l a s s A l m p l : A { }
c l a s s B l m p l : B { }
c l a s s C D I m p l : C, D {

i n i t (a : A) { }

i n i t (b : B) { }
}

Listing 5.1: Example code for implicit collecting.

Dependency Factories
Interface Dependencies Factory

A 0 Almpl . init
B 0 Blmpl. init
B 0 Blmpl. init
C A CDImpl.init(a:)
C B CDImpl. init(b:)
D A CDImpl.init(a:)
D B CDImpl. init(b:)

Table 1: Result of collecting code in listing 5.1.

Similar process is applied to explicit configurations, with a couple of differ
ences. The configuration class becomes a dependency itself, with its initializers
having the same treatment as implicit dependency initializers. Then each method
that returns D e p e n d e n c y R e g i s t r a t i o n results in a unique D e p e n d e n c y F a c t o r y
with the configuration class as one of its dependencies. Collecting factories from
the code in Listing 5.2, would result in the total of 3 D e p e n d e n c y F a c t o r y in
stances. Table 2 shows all of these instances.

Dependency Factories
Interface Dependencies Factory

Example Configuration (EC)
A
C

B
EC

EC, A

£C.ini t
EC. provide A
i?C.provideC(a:)

Table 2: Result of collecting code in listing 5.2.

34

p r o t o c o l A { }
p r o t o c o l B { }
p r o t o c o l C { }
p r o t o c o l D { }

c l a s s A l m p l : A { }
c l a s s B l m p l : B { }
c l a s s C D I m p l : C, D {

i n i t (a : A, b: B) { }
}

c l a s s E x a m p l e C o n f i g u r a t i o n : D e p e n d e n c y C o n f i g u r a t i o n {
p r i v a t e l e t b: B

i n i t (b : B) {
s e l f . b = b

}

f u n c p r o v i d e A O -> D e p e n d e n c y R e g i s t r a t i o n < A > {
D e p e n d e n c y R e g i s t r a t i o n {

A l m p l ()
}

}

f u n c p r o v i d e C (a : A) -> D e p e n d e n c y R e g i s t r a t i o n < C > {
D e p e n d e n c y R e g i s t r a t i o n {

C D I m p l (a : a, b: b)
}

}

Listing 5.2: Explicit dependency configuration.

5.3 G r a p h B u i l d i n g

The c l a s s D e p e n d e n c y G r a p h B u i i d e r takes the output of the collecting phase
and constructs a dependency graph. Each node in the graph is represented using
the D e p e n d e n c y G r a p h N o d e structure. This structure stores the factory and all
nodes that depend on it. The result of this phase is a collection of satisfied
dependency nodes, and a map of unsatisfied dependency keys. The map of
unsatisfied dependency keys has an associated collection of dependency nodes
that depend on it. These structures are shown in Figure 8.

35

Dependency GraphNode

factory: DependencyFactory
dependents: [DependencyGraphNode]

dependents

Dependency GraphResult

satisfiedDependencies: [DependencyGraphNode]
unsatisfiedDependencies: [DependencyKey: [DependencyGraphNode]]

Figure 8: Graph building phase structures.

5.4 A n a l y z i n g

For the analysis phase I've chosen the visitor pattern, to walk each of the the
dependency trees and analyze them. The core of the analysis is the c l a s s
D e p e n d e n c y A n a i y z e r , which accepts result from the previous phase and returns
all issues found by the analysis. To find the issues, the analyzer is provided with
a list of visitors that will walk the trees and accumulate errors. There's two types
of errors:

• unsatisfied dependency,

• dependency cycle.

The first type is constructed by the analyzer directly, by wrapping each of
the unsatisfied dependencies from the chaining result into an instance of the
error. The other type is constructed by the D e p e n d e n c y C y c i e F i n d e r . Walking
with a visitor is essentially a depth-first search on a dependency graph. So the
cycle finder keeps a set of seen nodes. It check each visited node if it's already
present in the seen nodes set. If not, it puts the node into the set and continues
the traversal. If it is present, a dependency cycle error is constructed and the
traversal is interrupted.

Figure 9 shows a traversal of a graph with a transitive cycle in it. The
traversal proceeds in the opposite direction of the arrows from A through B and
C to D. The current node and edge are highlighted in blue. Nodes that were
visited once are highlighted in green. In the fifth step, the analysis visits the node
B which is depends on the node D. However, the node B was already visited
in the current traversal. This means to resolve the node B we need an instance
of the node B. The analysis phase stores the error and continues traversing the
tree, in this case it traverses from the node A to nodes E and F is visited and

36

the analysis completes. Once done, the analysis reports all errors to the user.
A n analysis of the example in Figure 9 will result in a dependency cycle error
with path A^B-rC^rD-rB.

3. A^B^C 4. A^B^C^D

5. A^B^C^D^B 6. A^ E

7. A ->• E ->• F 8. Done

Figure 9: Dependency cycle analysis steps.

37

5.5 Genera t ing

Once the analysis is complete, the program can generate its output. When
running in the library mode, the result is a JSON file containing an array of
D e p e n d e n c y F a c t o r y declarations. In the application mode, it generates a Swift
file declaring the dependency container and dependency registrations.

Best way to showcase the difference between the two modes is with an exam
ple. Listing 5.3 has three classes, A, B and C. The class A has no dependencies,
B depends on A, and C depends on both A and B. Let's look at the library mode
output first shown in Listing 5.4. It contains all the necessary information about
the classes A and B. The class C is missing in the JSON because of its i n t e r n a l
visibility. However, looking at the output when running application mode shown
in Listing 5.5, all three classes have a dependency registration generated.

p u b l i c c l a s s A {
p u b l i c i n i t () { }

}

p u b l i c c l a s s B {
p u b l i c i n i t (a : A) { }

}

c l a s s C {
i n i t (b : B, a: A) { }

}

Listing 5.3: Example code for showcasing the generator's output.

38

1 [

2 {

3 "dependencies" : [] ,
4 "key" : {
5 "name" : "A"
6 },

7 " k i n d " : {
8 " i n i t i a l i z e r " : {
9 "parameters" : [] ,

10 " t y p e " : "A"
11 }

12 } ,

13 "requiredModules" : []
14 } ,

15 {

16 "dependencies" : [
17 {

is "name" : "A"
19 }

20] ,

21 "key" : {
22 "name" : " B "
23 } ,

24 " k i n d " : {
25 " i n i t i a l i z e r " : {
26 "parameters" : [
27 {

28 "dependency" : {
29 "name" : "A"
30 } ,

31 "name" : " a "
32 }

33] ,

34 "type" : " B "
35 }

36 } ,

37 "requiredModules" : []
38 }

39]

Listing 5.4: Library mode output, when running for code in Listing

39

i m p o r t D i p

l e t d e p e n d e n c y C o n t a i n e r = D e p e n d e n c y C o n t a i n e r { c o n t a i n e r i n
c o n t a i n e r . r e g i s t e r (. u n i q u e) { A () as A }

c o n t a i n e r . r e g i s t e r (. u n i q u e) { B (a : t r y c o n t a i n e r . r e s o l v e ()
•-• a s A) as B }
c o n t a i n e r . r e g i s t e r (. u n i q u e) { C (b : t r y c o n t a i n e r . r e s o l v e ()
•-• a s B, a: t r y c o n t a i n e r . r e s o l v e () a s A) a s C }

}

Listing 5.5: Application mode output, when running for code in Listing 5.3.

5.6 Test setup
Collecting, chaining and analysis are all tested separately using the Quick[ll]
and Nimble[12] frameworks. Since the generator's output is a Swift code, I
decided against implementing automated tests for it. The structure of the code
is not part of the API , so writing automated tests comparing the generated
sources with expected sources would only add work needed when improving the
generator's output and adding features. A proper testing setup for the generator
would require a separate application that would run the generator on its sources
and then run its own tests to ensure the generated container declares all of the
expected dependencies. Such setup is complex and outside of the scope for this
thesis. Instead, I've been testing the program by running it against the examples
in the Example/ directory and verifying the output manually.

40

6 Possible Improvements
The generator works well for the example project included with the generator's
source code. I also had the opportunity to use it in a production application
project. Since the project used Dip framework and constructor injection, the
implicit configuration worked quite well. However, in the future, the following
improvements will have to be added to cover more use-cases.

6.1 Suppor t For M o r e Frameworks

In its current version, the generator only supports generating code for the Dip
framework. Adding support for other dependency containers is mostly straight
forward and should require nothing more than changing the generator's output.
This is a blocker to wider adoption as only projects using Dip can use the gen
erator now. Support for hierarchical injectors (see Needle[13] and Cleanse[14])
would require more work, as these injectors require declaring the dependencies
in a hierarchy.

6.2 Suppor t For Stat ic Conf igura t ion

Since the generator knows the entire dependency graph when running in the
application mode, it could generate static code for the whole graph. This would
remove the dependency on a run-time dependency injection framework. Imple
menting the static configuration would require changing the generator and figure
out a way to support different scopes.

6.3 Performance Op t imiza t i on

In a larger codebase, the dependency graph can get enormous. Each of the
phases needs to traverse most of the dependency graph and does so serially.
Scanning, analysis and generating can be parallelized to make use of modern
multi-core CPUs. Additionally, the scanning phase runs SwiftSyntax which is
still in development on the codebase, and it's expected to perform better with
future releases.

6.4 Suppor t For P r o p e r t y Injection

Some teams prefer the property injection instead of the constructor injection.
Support for the property injection could improve Developer Experience by gen
erating a factory method for the object, accepting all required dependencies as
parameters. This generated method would be especially helpful in tests because
it 'd be easy to see required dependencies to have a properly initialized object.
As such it would make the property injection behave similarly to the construc
tor injection as far as test codebase is concerned, alleviating one of the main
disadvantages of the property injection.

41

6.5 Change Detec t ion and Incremental C o m p i l a t i o n

In its current state, the generator has to be run during each build. Doing so in
evitably makes the build time longer. However, each build where the dependency
graph didn't change runs the generator unnecessarily.

A possible solution is to store the inputs and their modified time at each
successful generator run. Then each next run would check its inputs with the
previous inputs. If none were added, removed or changed between the runs, the
run is skipped.

42

Závěr
Cílem této práce bylo analyzovat a zmírnit omezení dependency injection ve
Swiftu a zlepšit developer experience. Bylo důležité přijít s řešením, které by vý
vojáře co nejméně zatěžovalo. Vývojář by měl mít možnost deklarovat nové třídy
a používat je jako závislosti, aniž by se musel starat o registraci do dependency
injection containeru.

Během implementace jsem se musel několikrát vrátit zpět k návrhu, většinou
kvůli omezením jazyka Swift. Hlavní překážkou byla absence metaprogramování,
která omezuje strukturu A P I a zhoršuje developer experience. Druhou překážkou
bylo, když jsem si uvědomil, že program musí podporovat dva režimy běhu, jeden
pro knihovny a druhý pro spustitelné programy. Implementace je nyní připravena
na budoucí rozšíření. Jako první bych přidal podporu pro další frameworky pro
dependency injection a také bych přidal podporu pro generování kódu, který
žádný dependency injection framework nebude ke své funkci potřebovat.

Vyvinutý program sestaví graf závislostí z kódu napsaném v jazyce Swift a
ověří zda neobsahuje cykly závislostí a chybějící závislosti. Po ověření je vygene
rován Swift kód připravený k použití v aplikaci. Implicitní a explicitní deklarace
závislostí dohromady umožňují vývojářům psát co nejméně kódu, a přitom mít
v případě potřeby plnou kontrolu.

43

Conclusions
This thesis was supposed to analyze and alleviate limitations of dependency
injection in Swift and improve the developer experience. It was important to
come up with a solution that would get out of the developer's way as much as
possible. The developer should be able to declare new classes and use them as
dependencies without worrying about registration to an injection container.

During implementation, I had to get back to the drawing board multiple
times, mostly due to limitations of the Swift language. The main hurdle being the
absence of meta-programming which limits the API's structure and the developer
experience. The other was when I realized the program has to support two modes
of operation, one for libraries and one for executables. The implementation
is ready to be extended in the future. I'd add support for other dependency
injection frameworks as well as making dependency injection frameworks optional
altogether.

The developed program constructs a dependency graph from Swift code-base
as intended and verifies its validity by checking for dependency cycles and missing
dependencies. Once verified, Swift code is generated, ready to be used in an
application. The two options for declaring dependencies, implicit and explicit,
work great together, allowing developers to write as little code as possible, while
still having full control when needed.

44

A User Guide
The program dpend is a command line tool used to generate a compile-time safe
dependency injection module. It does this by:

1. constructing a dependency graph,

2. analyzing it for cycles and unsatisfied dependencies,

3. generating Swift file for the dependency module with a binary file describing
provided and required dependencies.

The recommended way of running the program is using Swift Package Man
ager's run command, like SO: s w i f t r u n d p e n d <subcommand>.

A . l H e l p Subcommand

The help subcommand prints information how to use the program. When run
without any parameters (s w i f t r u n d p e n d h e l p) , it prints a list of available
subcommands.

OVERVIEW: A u t i l i t y f o r a n a l y z i n g d e p e n d e n c i e s a n d g e n e r a t i n g a
d e p e n d e n c y g r a p h .

USAGE: d p e n d <subcommand>

OPTIONS:

- h , — h e l p Show h e l p i n f o r m a t i o n .

SUBCOMMANDS:
a n a l y z e A n a l y z e t h e d e p e n d e n c y g r a p h t o f i n d

c y c l e s a n d u n s a t i s f i e d d e p e n d e n c i e s ,
t r e e C o n s t r u c t a n d p r i n t t h e d e p e n d e n c y g r a p h

o f a m o d u l e .
g e n e r a t e (d e f a u l t) C o n s t r u c t d e p e n d e n c y g r a p h , a n a l y z e i t a n d

g e n e r a t e n e e d e d f i l e s .
S ee 'dpend h e l p <subcommand>' f o r d e t a i l e d h e l p .

A . 2 A n a l y z e Subcommand

Running the analyze subcommand is intended for quickly checking the module for
issues, like missing dependencies and dependency cycles. Once advanced plugin
support is added to Xcode, this subcommand should be run by an Xcode plugin to
show dependency analysis in real-time during development. The documentation
for the command can be printed by running s w i f t r u n d p e n d h e l p a n a l y z e .

OVERVIEW: A n a l y z e t h e d e p e n d e n c y g r a p h t o f i n d c y c l e s a n d
>-> u n s a t i s f i e d d e p e n d e n c i e s .

45

USAGE: d p e n d a n a l y z e [< i n p u t - f i l e s > ...] [— i m p l i c i t - f i l t e r
>-> < i m p l i c i t - f i l t e r > . . .]

ARGUMENTS:
< i n p u t - f i l e s > P a t h s t o f i l e s a n d d i r e c t o r i e s .
•-f D i r e c t o r i e s a r e t r a v e r s e d r e c u r s i v e l y t o f i n d a l l . s w i f t

f i l e s .

OPTIONS:
— i m p l i c i t - f i l t e r < i m p l i c i t - f i l t e r >

R e g e x u s e d t o c h o o s e p r o t o c o l s a n d c l a s s e s
t o b e p a r t o f t h e d e p e n d e n c y g r a p h .
M u l t i p l e f i l t e r s b e h a v e l i k e OR. When

•-t no f i l t e r s a r e p r o v i d e d , no i m p l i c i t
d e p e n d e n c i e s w i l l b e a n a l y z e d ,

- h , — h e l p Show h e l p i n f o r m a t i o n .

A . 3 Tree Subcommand

The tree subcommand is useful for debugging and learning the app structure. It
constructs the dependency graph and prints it in a human readable way. The
documentation for the command can be printed by running s w i f t r u n d p e n d
h e l p t r e e .

OVERVIEW: C o n s t r u c t a n d p r i n t t h e d e p e n d e n c y g r a p h o f a m o d u l e .

USAGE: d p e n d t r e e [< i n p u t - f i l e s > ...] [— i m p l i c i t - f i l t e r
>-> < i m p l i c i t - f i l t e r > . . .]

ARGUMENTS:
< i n p u t - f i l e s > P a t h s t o f i l e s a n d d i r e c t o r i e s .
•-f D i r e c t o r i e s a r e t r a v e r s e d r e c u r s i v e l y t o f i n d a l l . s w i f t

f i l e s .

OPTIONS:
— i m p l i c i t - f i l t e r < i m p l i c i t - f i l t e r >

R e g e x u s e d t o c h o o s e p r o t o c o l s a n d c l a s s e s
t o b e p a r t o f t h e d e p e n d e n c y g r a p h .
M u l t i p l e f i l t e r s b e h a v e l i k e OR. When

•-t no f i l t e r s a r e p r o v i d e d , no i m p l i c i t
d e p e n d e n c i e s w i l l b e a n a l y z e d ,

- h , — h e l p Show h e l p i n f o r m a t i o n .

A . 4 Generate Subcommand

The most important subcommand is generate. It supports two modes of opera
tion:

• library mode.

• application mode.

46

The library mode doesn't generate any Swift code. A JSON file with .dpend-
module extension is generated, containing all available dependency providers.

The application mode's output is a single Swift file, configuring the Dip de
pendency injection container. The application mode should be used for an ex
ecutable module which is supposed to be compiled and linked with all library
dependencies. The application mode accepts one or more — l i b r a r y < i i b r a r y >
arguments, to provide the application with dependencies declared in libraries.

The documentation for the command can be printed by running s w i f t r u n
d p e n d h e l p g e n e r a t e .

OVERVIEW: C o n s t r u c t d e p e n d e n c y g r a p h , a n a l y z e i t a n d g e n e r a t e n e e d e d
>-> f i l e s .

USAGE: d p e n d g e n e r a t e [< i n p u t - f i l e s > ...] — o u t p u t - f i l e
>-> < o u t p u t - f i l e > [— i m p l i c i t - f i l t e r < i m p l i c i t - f i l t e r > ...]
>-> [— l i b r a r y < l i b r a r y > ...]

ARGUMENTS:
< i n p u t - f i l e s > P a t h s t o f i l e s a n d d i r e c t o r i e s .
•-f D i r e c t o r i e s a r e t r a v e r s e d r e c u r s i v e l y t o f i n d a l l . s w i f t

f i l e s .

OPTIONS:
— o u t p u t - f i l e < o u t p u t - f i l e >

P a t h w h e r e t h e o u t p u t i s g e n e r a t e d t o . I t
a l s o s e l e c t s t h e g e n e r a t o r ' s mode. I f
t h e o u t p u t f i l e h a s . d p e n d m o d u l e
e x t e n s i o n , t h e g e n e r a t o r w i l l p r o d u c e
d e s c r i p t i o n o f t h e l i b r a r y ' s
d e p e n d e n c i e s .

— i m p l i c i t - f i l t e r < i m p l i c i t - f i l t e r >
R e g e x u s e d t o c h o o s e p r o t o c o l s a n d c l a s s e s

t o b e p a r t o f t h e d e p e n d e n c y g r a p h .
M u l t i p l e f i l t e r s b e h a v e l i k e OR. When

•-t no f i l t e r s a r e p r o v i d e d , no i m p l i c i t
d e p e n d e n c i e s w i l l b e a n a l y z e d .

— l i b r a r y < l i b r a r y > P a t h t o a . d p e n d m o d u l e f i l e f o r a l i n k e d
•-f l i b r a r y .
- h , — h e l p Show h e l p i n f o r m a t i o n .

A . 5 D p e n d R u n t i m e L i b r a r y

To get the explicit configuration support from dpend, add the DpendRuntime
library to your application or library targets. It's lightweight with no transitive
dependencies.

To declare an explicit configuration, begin by creating a new class implement
ing the D e p e n d e n c y C o n f i g u r a t i o n marker protocol. We'll call it F o o C o n f i g u r a -
t i o n . Don't forget to put the i m p o r t D p e n d R u n t i m e at the top of the file.

i i m p o r t D p e n d R u n t i m e

47

c l a s s F o o C o n f i g u r a t i o n : D e p e n d e n c y C o n f i g u r a t i o n {
}

This configuration will be picked up automatically by the dpend program (as
opposed to implicit dependencies that require explicit filter argument). If the
configuration class is declared in a library, it's required to have p u b l i c modifier,
so that it can be used from a dependent module.

Now let's add our first explicit dependency declaration. Add a new method,
f o o S e r v i c e with no parameters, returning the generic structure D e p e n d e n c y R e -
g i s t r a t i o n < D > . The generic type D specifies the type of the provided depen
dency. In our case we'll also declare a p r o t o c o l F o o S e r v i c e and use it.

i m p o r t D p e n d R u n t i m e

c l a s s F o o C o n f i g u r a t i o n : D e p e n d e n c y C o n f i g u r a t i o n {
f u n c f o o S e r v i c e () -> D e p e n d e n c y R e g i s t r a t i o n < F o o S e r v i c e > {

}

}

p r o t o c o l F o o S e r v i c e { }

Next step is deciding what scope will the dependency be in and whether or
not i t ' l l be tagged. Supported scopes are:

• . u n i q u e - each time a class needs this dependency, a new instance is created
(default),

• . s h a r e d - during a top-most container r e s o l v e call a same instance is
used,

• . s i n g l e t o n - once created, an instance of the class is retained and reused
until the application terminates,

• . e a g e r s i n g i e t o n - same as . s i n g l e t o n , but an instance is created along
with the DI container,

• . w e a k s i n g i e t o n - same as . s i n g l e t o n , but an instance is stored using
weak reference, so once deallocated a new instance is created when needed.

Tag can be any type conforming to the D e p e n d e n c y T a g marker protocol. Sup
pose our F o o S e r v i c e will be . s i n g l e t o n scoped and we'll create a new tag enum
B a r for it (using an enum to declare tags is recommended as they cannot be
instantiated or overriden).

i m p o r t D p e n d R u n t i m e

p u b l i c enum B a r : D e p e n d e n c y T a g { }

c l a s s F o o C o n f i g u r a t i o n : D e p e n d e n c y C o n f i g u r a t i o n {

48

f u n c f o o S e r v i c e () -> D e p e n d e n c y R e g i s t r a t i o n < F o o S e r v i c e > {
D e p e n d e n c y R e g i s t r a t i o n (t a g : B a r . s e l f , s c o p e : . s i n g l e t o n) {

}

}

}

p r o t o c o l F o o S e r v i c e { }

Our F o o S e r v i c e dependency declaration is almost done. Last step is cre
ating an instance of a class conforming to the p r o t o c o l F o o S e r v i c e in the
D e p e n d e n c y R e g i s t r a t i o n lambda. In our case, we'll create a new c l a s s
D e f a u i t F o o S e r v i c e and return a new instance of it.

i m p o r t D p e n d R u n t i m e

p u b l i c enum B a r : D e p e n d e n c y T a g { }

c l a s s F o o C o n f i g u r a t i o n : D e p e n d e n c y C o n f i g u r a t i o n {
f u n c f o o S e r v i c e () -> D e p e n d e n c y R e g i s t r a t i o n < F o o S e r v i c e > {

D e p e n d e n c y R e g i s t r a t i o n (t a g : B a r . s e l f , s c o p e : . s i n g l e t o n) {
D e f a u i t F o o S e r v i c e ()

}
}

}

p r o t o c o l F o o S e r v i c e { }
c l a s s D e f a u i t F o o S e r v i c e : F o o S e r v i c e { }

Let's declare a p r o t o c o l B a r S e r v i c e and a c l a s s D e f a u i t B a r S e r v i c e con
forming to the B a r S e r v i c e protocol. This class will need an instance of F o o S e r
v i c e before it can be instantiated. Let's add it to our configuration.

i m p o r t D p e n d R u n t i m e

p u b l i c enum B a r : D e p e n d e n c y T a g { }

c l a s s F o o C o n f i g u r a t i o n : D e p e n d e n c y C o n f i g u r a t i o n {
f u n c f o o S e r v i c e () -> D e p e n d e n c y R e g i s t r a t i o n < F o o S e r v i c e > {

D e p e n d e n c y R e g i s t r a t i o n (t a g : B a r . s e l f , s c o p e : . s i n g l e t o n) {
D e f a u i t F o o S e r v i c e ()

}
}

f u n c b a r S e r v i c e (f o o S e r v i c e : T a g g e d < F o o S e r v i c e , Bar>) ->
D e p e n d e n c y R e g i s t r a t i o n < B a r S e r v i c e > {
D e p e n d e n c y R e g i s t r a t i o n {

D e f a u i t B a r S e r v i c e (f o o S e r v i c e : f o o S e r v i c e . d e p e n d e n c y)
}

}

49

19 p r o t o c o l F o o S e r v i c e { }
20 c l a s s D e f a u l t F o o S e r v i c e : F o o S e r v i c e { }
21

22 p r o t o c o l B a r S e r v i c e {}
23 c l a s s D e f a u l t B a r S e r v i c e : B a r S e r v i c e {
24 i n i t (f o o S e r v i c e : F o o S e r v i c e) { }
25 }

Notice the parameter of the new b a r S e r v i c e method. Adding parameters to
dependency declarations makes the declaration depend on the parameter types.
In this case, it depends on F o o S e r v i c e SO that the D e f a u l t B a r S e r v i c e can be
instantiated. However, since we registered the F o o S e r v i c e with a tag B a r , wrap
ping the type in T a g g e d is required. This structure tells dpend which dependency
is required.

Let's add our last declaration, a p r o t o c o l B a z S e r v i c e with a c l a s s
D e f a u l t B a z S e r v i c e : B a z S e r v i c e . This new class will depend on B a r S e r v i c e
and we'll accept an instance of it as a parameter. This time without being
wrapepd in T a g g e d , as the declaration doesn't specify a tag.

1 i m p o r t D p e n d R u n t i m e
2

3 p u b l i c enura B a r : D e p e n d e n c y T a g { }
4

5 c l a s s F o o C o n f i g u r a t i o n : D e p e n d e n c y C o n f i g u r a t i o n {
6 f u n c f o o S e r v i c e () -> D e p e n d e n c y R e g i s t r a t i o n < F o o S e r v i c e > {
7 D e p e n d e n c y R e g i s t r a t i o n (t a g : B a r . s e l f , s c o p e : . s i n g l e t o n) {
8 D e f a u l t F o o S e r v i c e ()
9 }

10 }

11

12 f u n c b a r S e r v i c e (f o o S e r v i c e : T a g g e d < F o o S e r v i c e , Bar>) ->
D e p e n d e n c y R e g i s t r a t i o n < B a r S e r v i c e > {

13 D e p e n d e n c y R e g i s t r a t i o n {
14 D e f a u l t B a r S e r v i c e (f o o S e r v i c e : f o o S e r v i c e . d e p e n d e n c y)
15 }

16 }

17

is f u n c b a z S e r v i c e (b a r S e r v i c e : B a r S e r v i c e) ->
D e p e n d e n c y R e g i s t r a t i o n < B a z S e r v i c e > {

19 D e p e n d e n c y R e g i s t r a t i o n {
20 D e f a u l t B a z S e r v i c e (b a r S e r v i c e : b a r S e r v i c e)
21 }

22 }

23 }

24

25 p r o t o c o l F o o S e r v i c e { }
26 c l a s s D e f a u l t F o o S e r v i c e : F o o S e r v i c e { }
27

28 p r o t o c o l B a r S e r v i c e {}
29 c l a s s D e f a u l t B a r S e r v i c e : B a r S e r v i c e {
30 i n i t (f o o S e r v i c e : F o o S e r v i c e) { }
31 }

50

p r o t o c o l B a z S e r v i c e {}
c l a s s D e f a u l t B a z S e r v i c e : B a z S e r v i c e

i n i t (b a r S e r v i c e : B a r S e r v i c e) { }
}

51

B Developer Guide
This guide describes how to get the project set up for local development using
Xcode. The project is using Swift Package Manager[15], so it can be opened
using Xcode. However, to run the program from Xcode, an extra environment
variable must be added to the run scheme:

D Y L D _ L I B R A R Y _ P A T H = / A p p l i c a t i o n s / X c o d e . a p p / C o n t e n t s / D e v e l o p e r / T o o l c h j
>-> a i n s / X c o d e D e f a u l t . x c t o o l c h a i n / u s r / l i b / s w i f t / m a c o s x /

Without it, the program crashes as the dyld cannot find the UbSwiftSyntax
library. Another option is to run the program using SwiftPM from the terminal:
s w i f t r u n dpend.

The code-base is split into three main directories:

• Example - contains examples to run the program against,

• Sources - contains modules of the program itself,

• Tests - contains tests for the program.

B . l Examples

Three examples are currently implemented:

• Example/Library,

• Example/Application,

• Example/Dependency Cycle.

The first two are happy path examples to show how dpend can be used.
The third shows, as name suggests, how dpend behaves when it encounters a
dependency cycle.

B . l . l Library

The example in Example/Library showcases the explicit configuration support.
To generate the .dpendmodule file, run the following from the dpend project root
directory:

s w i f t r u n d p e n d g e n e r a t e — o u t p u t - f i l e
>-> E x a m p l e / L i b r a r y / D e r i v e d / E x a m p l e L i b r a r y . g e n e r a t e d . d p e n d m o d u l e
>-> E x a m p l e / L i b r a r y

Although the generated file has the .dpendmodule extension, it's a JSON file,
so it can be opened in any text editor and its contents inspected. The JSON is
pretty-printed and the contents should be stable, so it's recommended to commit
the file to version control. That way, changes in the dependencies provided by
the library can be tracked throughout version history. It also removes the need
to run the generator to build the project, and only becomes needed when making
changes.

52

B.1.2 Application

The example in Example/Application shows the implicit dependencies support.
Since it's an executable, the generator is run in application mode and generates
a single Swift file. To generate it, run the following from the dpend project root
directory:

s w i f t r u n d p e n d g e n e r a t e — o u t p u t - f i l e E x a m p l e / A p p l i c a t i o n / D e r i v e d / j
>-> E x a m p l e A p p l i c a t i o n M o d u l e . g e n e r a t e d . s w i f t — l i b r a r y
>-> E x a m p l e / L i b r a r y / D e r i v e d / E x a m p l e L i b r a r y . g e n e r a t e d . d p e n d m o d u l e
>-> — i m p l i c i t - f i l t e r ". +\\. F a c t o r y " E x a m p l e / A p p l i c a t i o n

The command passes in the ExampleLibrary module as -library argument,
since the ExampleApplication module depends on the ExampleLibrary module.
To enable implicit dependencies, a filter argument -implicit-filter ". +
.Factory" is passed in. This filter will match any inner class called Factory.
Similar to the .dpendmodule file, the generated Swift file should be stable and
adding it to version control is recommended.

B.1.3 Dependency Cycle

The example in Example/Dependency Cycle uses an explicit configuration that
creates a dependency cycle, to end-to-end test the program against it.

The following three commands can be run to test the program:

s w i f t r u n d p e n d t r e e E x a m p l e / D e p e n d e n c y C y c l e

s w i f t r u n d p e n d a n a l y z e E x a m p l e / D e p e n d e n c y C y c l e

s w i f t r u n d p e n d g e n e r a t e — o u t p u t - f i l e
>-> E x a m p l e / D e p e n d e n c y C y c l e / D e r i v e d / D I . s w i f t E x a m p l e / D e p e n d e n c y C y c l e

B . 2 Sources

The Sources directory contains source files for the dpend program and for a
run-time library to be included in user programs.

B.2.1 dpend

The dpend directory contains the main.swift executable, along with the Dpend
program and its subcommands. It's using Apple's Swift argument parser[16]
to parse terminal arguments and print helpful information about the programs
usage, dpend executable depends on the DpendKit target for the main logic.

53

B.2.2 DpendKit

For future-proofing, the dpend program is split and most of the logic lies in the
DpendKit module. In the future, this module could be used from an IDE plugin,
or from a command-line linter tool.

There are two structures used throughout the module, these are D e p e n d e n c y -
K e y and D e e p e n d e n c y F a c t o r y . The former is used as a unique identifier of de
pendency declarations. It has an optional tag and a required name. D e p e n d e n c y -
F a c t o r y describes how a dependency can be obtained. It's identified by a
D e p e n d e n c y K e y and declares its dependencies using an array of D e p e n d e n c y K e y .
For the generated Swift code to be compilable, the factory also retains all required
imports in the requiredModules property. Last but not least, there's currently
two factory kinds:

• initializer factory - instance is obtained by initializing a type,

• configuration method factory - instance is obtained by calling a method
on an instance of explicit dependency configuration.

The first kind is used for implicit dependencies and for initializing explicit
configurations. It has an array of parameters, so the generator know which
initializer to use. The second kind is used for explicit dependencies. As such it
keeps the D e p e n d e n c y K e y to obtain an instance of the configuration. Then the
generator can generate code that resolves the configuration instance first and
then calls the method on it which returns the dependency.

Each of the program's phases has its own directory:

• Collecting,

• Chaining,

• Analysis,

• Generating.
SwiftSyntax[10] is being used for collecting information about the Swift code

in users' code-base. It relies heavily on the visitor pattern.
The dependency graph is constructed in the Chaining phase, after which the

c l a s s D e p e n d e n c y A n a i y z e r can be used to traverse the graph and analyze the
dependencies. The D e p e n d e n c y A n a i y z e r takes a list of visitor factories, which
are invoked when analysis starts. The visitors are then run on the graph nodes.
Each visitor can decide whether to visit dependent nodes or not. The analysis
visits dependent nodes recursively as long as any visitors remain.

Currently dpend has a single analysis visitor implementation, which is the
c l a s s D e p e n d e n c y C y c i e F i n d e r . Use it as a reference when developing new anal
ysis visitors.

54

B.2.3 DpendRuntime

Developers who want to use the dpend program to its full potential have to
include DpendRuntime library in their project. This library has to be kept
lightweight with no transitive dependencies. It contains the explicit configu
ration API , which is needed to specify dependency scopes and tags. Any new
A P I to be added into the DpendRuntime sources has to be reviewed thoroughly,
as it becomes public A P I and changes in it might break users' code-bases.

As new versions of Swift are released, new features introduced in these ver
sions should be added to the DpendRuntime library in a backward compatible
manner, possibly deprecating an old method if a vastly better new method is
added.

B . 3 Tests

Tests are written using a BDD library Quick[ll}. Currently D e p e n d e n c y A n a i y z e r ,
D e p e n d e n c y C h a i n n g and D e p e n d e n c y C o i i e c t o r are being unit tested. Library
Nimble[\2] is used for assertions as recommended by the authors of Quick.

55

C Contents of attached C D
The attached C D contains the following files and directories,

b i n /
Contains the dpend binaries, one compiled for x86_64 and one for arm64.
It's macOS only and doesn't support other operation systems. Com
patible with Swift 5.5.2 toolchain, which needs to be downloaded from
https: / /www. swift. org / download / .

doc/
The thesis in P D F format and DTpX. source files used to compile it.

src/
Source code for the dpend program. It can be opened in Xcode.

src/README.md
Short instructions for running the program. For more detailed instructions
see the user guide.

56

Acronyms
A D P Acyclic Dependencies Principle

API Application Programming Interface

A S T Abstract Syntax Tree

B D D Behavior-Driven Development

DI Dependency Injection

DIP Dependency Inversion Principle

D X Developer Experience

IDE Integrated Development Environment

ISP Interface Segregation Principle

LSP Liskov Substitution Principle

O C P Open-Closed Principle

OOP Object-Oriented Programming

QA Quality Assurance

SRP Single Responsibility Principle

57

References
[1] M A R T I N , Robert Cecil. Design Principles and Design Patterns. 2000. Available

from W W W : (https://web.archive.org/web/20150 90 6155800/htt
p://www.objectmentor.com/resources/articles/Principles_a
nd_Patterns .pdf).

[2] SINGH, Harmeet; HASSAN, Syed Imtiyaz. Effect of SOLID Design Principles on
Quality of Software: A n Empirical Assesment. International Journal of Scientific
& Engineering Research. 2015, vol. 6, no. 4 pp. 1.6:1-1.6:64. Available also from
W W W : (https : / / www . i j s e r . org / researchpaper / E f f e c t - o f -
SOLID-Design-Principles-on-Quality-of-Software-An-Empiri
cal-Assessment.pdf). ISSN 2229-5518.

[3] B A N G - J E N S E N , J0rgen; GUTIN, Gregory Z.; G U T I N , Gregory. Digraphs: the
ory, algorithms and applications. 2. print. London Berlin Heidelberg: Springer,
2006. ISBN 9781852336110.

[4] G A M M A , Erich (ed.). Design patterns: elements of reusable object-oriented soft
ware. Reading, Mass: Addison-Wesley, 1995. Addison-Wesley professional com
puting series. ISBN 9780201633610.

[5] F O W L E R , Martin. Inversion of Control Containers and the Dependency Injec
tion pattern. 2004. Available from W W W : (https : / /martinf owler . com/a
r t i c l e s / i n j e c t i o n . html).

[6] H A L L I G O N , Olivieer. Dip [online]. 2022-1-7. Available from W W W : (https :
/ / g i t hub . com/Ali Software/Dip).

[7] Spring makes Java simple, [online]. 2022-1-7. Available from W W W : (https :
/ / s p r i n g . io /) .

[8] M A R T I N , Robert Cecil. Granularity. Available from W W W : (https : //cond
or.depaul.edu/dmumaugh/OCT/Design-Principles/granularity
.pdf).

[9] Automatic Reference Counting — The Swift Programming Language (Swift 5.5).
[online]. 2022-1-7. Available from W W W : (https : / /docs . s w i f t . org/swi
ft-book/LanguageGuide/AutomaticReferenceCounting.html).

[10] SwiftSyntax. [online]. 2022-1-7. Available from W W W : (https : / /github . c
om/apple/swift-syntax).

[11] Quick, [online]. 2022-1-7. Available from W W W : (https : / /github . com/Qu
ick/Quick).

[12] Nimble, [online]. 2022-1-7. Available from W W W : (https : / / github . com
/Quick/Nimble).

[13] Needle, [online]. 2022-1-7. Available from W W W : (https : / /github . com/u
ber/needle).

[14] Cleanse, [online]. 2022-1-7. Available from W W W : (https : / / github . com
/ square/ Cleanse).

58

http://web.archive.org/web/20150
http://90
http://6155800/htt
http://www.objectmentor.com/resources/articles/Principles_a

[15] Package Manager - - The Swift Programming Language (Swift 5.5). [online].
2022-1-7. Available from W W W : (h t t p s : / / w w w . s w i f t . o r g / p a c k a g e - m a
nager) .

[16] Swift Argument Parser, [online]. 2022-1-7. Available from W W W : (h t t p s : / / g
i t h u b . c o m / a p p l e / s w i f t - a r g u m e n t - p a r s e r) .

[17] M A R T I N , Robert Cecil. DIP: The Dependency Inversion Principle. Available
from W W W : (h t t p : //www . l a b r i . f r / p e r s o / c l e m e n t / e n s e i g n e m e n t
s / a o / D I P .pdf) .

[18] B O E N D E R , Ferry. Dependency Resolving Algorithm. 2010. Available from W W W :
(h t t p s : / / w w w . e l e c t r i c m o n k . n l / d o c s / d e p e n d e n c y _ r e s o l v i n g _ a l
g o r i t h m / d e p e n d e n c y _ r e s o l v i n g _ a l g o r i t h m . h t m l) .

[19] P U C H K A , Ilya. dipgen [online]. 2022-1-7. Available from W W W : (h t t p s : / / g
i t h u b . c o m / i l y a p u c h k a / d i p g e n) .

59

http://www.swift.org/package-ma
https://www.electricmonk.nl/docs/dependency_resolving_al

