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Abstract
The AES key scheduling algorithm selects the round keys which are xor-ed with the partially
encrypted state in each iteration. In this work, we examine the group Γ that arises from the
AES-128 key scheduling operation. We show that the smallest group ΓAES containing Γ and all
translations of the message space is primitive. This implies that we cannot have a linear partition
of the message space that is invariant under the action of ΓAES.
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14 1 Introduction

1 Introduction

Many businesses and organizations use the Advanced Encryption Standard (AES), a popular
encryption algorithm, to protect their data and communications. The four basic operations of
the AES algorithm are SubBytes, ShiftRows, MixColumns, and AddRoundKey. The key schedule
generates from the original secret key a sequence of round keys which are xor-ed in each roundwith
the partially encrypted state by the AddRoundKey operation. Important cryptographic properties
of the group generated by the AES-128 key schedule can impact the security and effectiveness of
the algorithm. In this thesis, we investigate the group theoretical properties of this group and
how they are related to the AES security of the algorithm.

1.1 Review of Literature
The results of Biryukov and Khovratovich in [1] underline the significance of the key schedule
in the construction of safe block ciphers and offer a standard for assessing the security of block
ciphers, including the AES algorithm.

In [2], Boura et al. introduce new techniques and complexity analyses for impossible differential
cryptanalysis, a block cipher attack.The authors present a novel formula for calculating the temporal
complexity of an attack and show how the success of an attack depends on the key schedule of a
cipher. Additionally, they demonstrate how to use numerous differentials to strengthen impossible
differential attacks and how to combine it with other strategies.

Leurent and Pernot recently made the discovery in [3] that there is an invariant subspace for
the first four rounds of the AES-128 key schedule despite the fact that the subject of cryptanalysis
on AES-128 dates more than two decades. They were able to represent the key schedule as
four distinct actions on each of the round key’s four 4-byte-word components as a result of their
discovery. Despite the fact that this discovery solely pertains to the key schedule, it has been
utilized to strengthen already established differential attacks by revealing subspace structures
that interact with related structures in the main round function, creating security vulnerabilities.
This emphasizes how critical it is to understand the key schedule in order to comprehend the
security of the AES-128 cipher.

In the cryptanalysis of several ciphers, including PRINTcipher and reduced-round AES, ap-
proaches like invariant subspace and subspace trail cryptanalysis have been used to take advantage
of subspaces that are invariant under encryption functions [4, 5, 6]. The imprimitivity attack,
which targets block ciphers similar as DES [7], takes advantage of the fact that the encryption
preserves a full partition of the message space, specifically a linear partition created by the cosets
of a proper and non-trivial invariant subspace. While it is typically difficult to demonstrate the
absence of invariant subspaces, group-theoretical arguments that demonstrate how a specific
group containing the encryption functions acts primitively on the message space can be used to
demonstrate the absence of invariant linear partitions after one round.

1.2 Organization of The Thesis
The structure of this thesis is as follows: in Section 2, we provide an overview of the algebraic
and mathematical concepts that provide a rigorous mathematical basis for our study of the AES-
128 key schedule’s group theoretical properties. Section 3 provides background on cryptography,
including the difference between symmetric and asymmetric encryption, and focuses on symmetric
cryptography and block ciphers. It specifically discusses AES and its key schedule. In Section 4, we
introduce the notation and initial results, and provide an algebraic representation of the AES-128
key schedule and its corresponding permutation group. The reduction of the primitivity of the
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AES-128 key schedule (Theorem 5.1) and its application to AES (Corollary 5.6) are presented
in Section 5 as the main results of the thesis. We presents the proof of Theorem 5.1, utilizing
Goursat’s lemma, in Section 6. The concluding remarks of the thesis are presented in Section 7.
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2 Algebraic Background

Modern cryptography relies heavily on algebraic and mathematical structures, especially in the
design and analysis of cryptographic algorithms. The Advanced Encryption Standard (AES) is a
commonly used symmetric-key encryption algorithm that provides robust security guarantees by
combining substitution and permutation operations. The algebraic and mathematical properties of
the AES-128 key schedule, which generates the round keys used in the encryption and decryption
process, have been widely studied.

In this section, we will provide an overview of the algebraic and mathematical concepts
that provide a rigorous mathematical basis for our study of the AES-128 key schedule’s group
theoretical properties. See [8, 9, 10, 11, 12] as references for the concepts and definitions discussed
throughout this section.

Definition 2.1 (Vector Space). A vector space defined over a field 𝐹 (whose elements are called
scalars) is a non-empty set 𝑉 (whose elements are called vectors) together with two binary
operations namely vector addition (+) and scalar multiplication (·).

• (+) : (u,v) ∈ 𝑉 ×𝑉 → u + v ∈ 𝑉
• (·) : (𝛼, u) ∈ 𝐾 ×𝑉 → 𝛼 · u ∈ 𝑉

To have a vector space, the operations of vector addition and scalar multiplication are subject to
the following vector axioms for every u, v, w ∈ 𝑉 , and 𝛼 and 𝛽 ∈ 𝐹 .

1. u + (v + w) = (u + v) + w
2. u + v = v + u
3. There exists the zero vector 0 ∈ 𝑉 , such that v + 0 = v ∀ v ∈ 𝑉
4. For every v ∈ 𝑉 , there exists its additive inverse −v such that v + (−v) = 0

5. 𝛼 (𝛽v) = 𝛼𝛽 (v)
6. 1v = v, where 1 is the multiplicative identity in 𝐹
7. 𝛼 (u + v) = 𝛼u + 𝛼v
8. (𝛼 + 𝛽)v = 𝛼v + 𝛽v

An example of a vector space is𝐺𝐹 (2)𝑛, a vector space over a Galois field 𝔽2, and of size 2𝑛, whose
elements are binary vectors of length 𝑛 ∈ ℕ, and the operations of vector addition and scalar
multiplication are performed in the binary field 𝔽2 (integer modulo 2).

Definition 2.2 (Groups). A group is a pair (𝐺, ◦) consisting of a non-empty set𝐺 and an operation,
here donated by ◦, defined on its elements.

◦ : (𝑎, 𝑏) ∈ 𝐺 ×𝐺 → 𝑎 ◦ 𝑏 ∈ 𝐺
For the pair (𝐺, ◦) to qualify as group, the operation ◦ must fulfill the following conditions.

• closed: ∀𝑎, 𝑏 ∈ 𝐺 : 𝑎 ◦ 𝑏 ∈ 𝐺
• Associativity: ∀𝑎, 𝑏, 𝑐 ∈ 𝐺 : (𝑎 ◦ 𝑏) ◦ 𝑐 = 𝑎 ◦ (𝑏 ◦ 𝑐)
• Neutral element: ∃ e ∈ 𝐺,∀𝑎 ∈ 𝐺 : 𝑎 ◦ e = e ◦ 𝑎 = 𝑎

• Inverse elements: ∀𝑎 ∈ 𝐺, ∃𝑏 ∈ 𝐺 : 𝑎 ◦ 𝑏 = 𝑏 ◦ 𝑎 = e
A group is said to be finite if the cardinality of 𝐺 , denoted as |𝐺 |, is finite.
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Definition 2.3 (Subgroup). A subset 𝐻 of a group 𝐺 is a subgroup if and only if 𝐻 is a group
with respect to the group operation of 𝐺 . That is, 𝐻 is closed under the group operation and the
identity element of 𝐺 is present in 𝐻 , and every element in 𝐻 has its inverse in 𝐺 , which is also
an element of 𝐻 .

Definition 2.4. (Cosets) Let (G, ◦) be a group and 𝐻 be a subgroup of 𝐺 . For every 𝑥 ∈ 𝐺 , the
subsets

𝑥 ◦ 𝐻 = {𝑔 ∈ 𝐺 | 𝑔 = 𝑥 ◦ ℎ for someℎ ∈ 𝐻 }
and

𝐻 ◦ 𝑥 = {𝑔 ∈ 𝐺 | 𝑔 = ℎ ◦ 𝑥 for someℎ ∈ 𝐻 }
of 𝐺 are called the left coset and right coset of 𝐻 respectively.

Typically, 𝑥 ◦ 𝐻 ≠ 𝐻 ◦ 𝑥 . We say that 𝐻 is a normal subgroup when this equality holds.
Observe that 𝐺 is the disjoint union of all the cosets (left and right) of 𝐻 .

𝐺 =
⋃
𝑥∈𝐺

𝑥 ◦ 𝐻.

𝐺 =
⋃
𝑥∈𝐺

𝐻 ◦ 𝑥 .

Definition 2.5 (Symmetric group). Let𝑋 denote a non-empty set. A bijective mapping 𝜎 : 𝑋 → 𝑋

will be called a permutation of 𝑋 . The group whose elements are all the bijections from 𝑋 to itself,
and whose group operation is the composition of functions is called a symmetric group of 𝑋 .

Notably, the symmetric group acting on 𝔽𝑛2 is the set of all bijective functions that map every
binary vector in 𝔽𝑛2 to a unique vector in 𝔽𝑛2 that form a group under the operation of composition
of these bijective functions.

Definition 2.6 (Translation group on 𝔽𝑛2 ). A group of transformations that translate the elements
of 𝔽𝑛2 by a fixed binary vector in 𝔽𝑛2 is referred to as the translation group on 𝔽𝑛2 .

More precisely, given any binary vector 𝑥 and a fixed vector 𝑣 both in 𝔽𝑛2 , we have the transfor-
mation 𝑇𝑣 : 𝑥 ∈ 𝔽𝑛2 → 𝑥 + 𝑣 ∈ 𝔽𝑛2 is a translation of 𝔽𝑛2 .
The set of all such transformations 𝑇𝑣 , with 𝑣 ranging over all binary vectors ∈ 𝔽𝑛2 , form a group
under the operation of function composition, and is called translation group of 𝔽𝑛2 .

Definition 2.7 (Group of affine permutations of 𝔽𝑛2 ). An affine permutation of 𝔽𝑛2 is a bijective
map Σ : 𝔽𝑛2 → 𝔽𝑛2 represented as 𝑇 (𝑥) = 𝐴𝑥 + 𝑏. 𝐴 is a non-singular 𝑛 × 𝑛 matrix over 𝔽2, 𝑏 is a
fixed vector in 𝔽𝑛2 , and 𝑥 an arbitrary vector in 𝔽𝑛2 .
The set of such transformations Σ, with𝐴 ranging over all non-singular 𝑛×𝑛 matrices over the field
𝔽2 and 𝑏 over all vectors ∈ 𝔽𝑛2 , that form a group under the operation of function composition, is
referred to as the group of affine permutations of 𝔽𝑛2 , which essentially is a subgroup of Sym(𝔽𝑛2 ).

Definition 2.8 (Group of linear permutations of 𝔽𝑛2 ). We say that a permutation 𝑓 of 𝔽𝑛2 is linear
if 𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) + 𝑓 (𝑦) for every 𝑥 , 𝑦 in 𝔽𝑛2 . While every vector in 𝔽𝑛2 can be uniquely mapped
to another vector in 𝔽𝑛2 , the operations of vector addition and multiplication by scalars over 𝔽2
are preserved. The set of all such permutations forming a group under function composition is
called the general linear group of 𝔽𝑛2 . In particular there will be a non-singular matrix 𝐴 over 𝐹2
such that 𝑓 (𝑥) = 𝐴𝑥 . So this group is a subgroup of the affine group of 𝔽𝑛2 , hence a subgroup of
Sym(𝔽𝑛2 ).
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Definition 2.9 (Group homomorphism). Let (𝐺, ∗) and (𝐻,⋄) be two groups. A function 𝑓 : 𝐺 →
𝐻 such that 𝑓 (𝑥 ∗ 𝑦) = 𝑓 (𝑥) ⋄ 𝑓 (𝑦) is called a group homomorphism.
Definition 2.10 (Group isomorphism). An isomorphism is a homomorphism that is injective and
surjective. In other words, an isomorphism is bijective homomorphism.
Definition 2.11 (Group automorphism). Let 𝐺 be a group. An isomorphism from 𝐺 onto itself is
called an automorphism of 𝐺 .
Definition 2.12 (Partition of a set). A partition P of a set 𝑋 is the collection of non-empty subsets
of 𝑋 such that every subset of 𝑋 is in exactly one of the elements in P. In particular, 𝑋 = ∪𝑌∈P𝑌
and 𝑌1∩𝑌2 = ∅ if 𝑌1 ≠ 𝑌2. P is said to be a trivial partition of 𝑋 if P = {𝑋 } or 𝑃 = {{𝑥} | 𝑥 ∈ 𝑋 }.
Definition 2.13 (Transitive group). Let 𝐺 be a group and let 𝑋 be a non-empty set. Then 𝐺 acts
on 𝑋 if there is a function · : 𝐺 × 𝑋 → 𝑋 that satisfies the following two conditions:

1. 𝑔1 · (𝑔2 · 𝑥) = (𝑔1𝑔2) · 𝑥 ∀ 𝑔1, 𝑔2 ∈ 𝐺 and 𝑥 ∈ 𝑋
2. 1𝐺 · 𝑥 = 𝑥 for all 𝑥 ∈ 𝑋

If 𝐺 acts on 𝑋 , then we say that 𝐺 acts transitively on 𝑋 if for any two elements 𝑥,𝑦 ∈ 𝑋 , there
exists a 𝑔 ∈ 𝐺 such that 𝑔 · 𝑥 = 𝑦.
Definition 2.14 (Invariant partition). An invariant partition is a partition of a set that is pre-
served by a group action. More formally, let 𝐺 be a group acting on a set 𝑋 . A partition
P = {𝑃1, 𝑃2, . . . , 𝑃𝑘} of 𝑋 is said to be 𝐺-invariant or an invariant partition if, for any 𝑔 ∈ 𝐺
and 𝑖 ∈ 1, 2, . . . , 𝑘, we have 𝑔𝑃𝑖 = {𝑔𝑝 | 𝑝 ∈ 𝑃𝑖} = 𝑃 𝑗 , for some 𝑗 ∈ {1, 2, . . . , 𝑘}. In other words,
the partition remains the same under the action of any element of the group.

For example, consider the group 𝐺 = {1,−1} acting on the set 𝑋 = ℝ\{0} of real numbers
by multiplication. The set 𝑋 can be partitioned into two subsets, 𝑋1 = {𝑥 ∈ 𝑋 | 𝑥 > 0} and
𝑋2 = {𝑥 ∈ 𝑋 | 𝑥 < 0}. This partition is 𝐺-invariant, since 𝑔𝑋1 = 𝑋1 and 𝑔𝑋2 = 𝑋2 if 𝑔 = 1, and
𝑔𝑋1 = 𝑋2 and 𝑔𝑋2 = 𝑋1 if 𝑔 = −1.

Any non-trivial and 𝐺-invariant partition P of 𝑋 is called a block system for 𝐺 . In particular
any 𝑋𝑖 ∈ P is called an imprimitivity block. The group 𝐺 is primitive in its action on M (or G acts
primitively on M) if 𝐺 is transitive and there exists no block system. Otherwise, the group G is
imprimitive in its action on 𝑋 (or 𝐺 acts imprimitively on 𝑋 ).

Lemma 2.15. If 𝑇 is a transitive subgroup of 𝐺 , then a block system for 𝐺 is also a block system for
𝑇 .

Proof. (See pages 8 and 12 of [13] for idea of proof.) Let 𝐺 be a group and 𝑇 be a subgroup of 𝐺
that is transitive on the set 𝑋 . Let P = {𝑃1, 𝑃2, . . . , 𝑃𝑘} be a block system for 𝐺 .

We want to show that P is also a block system for𝑇 by showing that if P is preserved by every
element in 𝐺 , then it is also preserved by every element in 𝑇 .

If P is a block system for 𝐺 , then for any 𝑔 ∈ 𝐺 and any element 𝑥 ∈ 𝑋 , if 𝑥 and 𝑦 ∈ 𝑃𝑖 , for
some 𝑖 ∈ {1, 2, . . . , 𝑘}, then 𝑔𝑥 and 𝑔𝑦 ∈ 𝑃 𝑗 , for some 𝑗 ∈ {1, 2, . . . , 𝑘}.

Since 𝑇 is transitive on 𝑋 , for any 𝑥 and 𝑦 ∈ 𝑋 , there exists a 𝑡 ∈ 𝑇 such that 𝑡𝑥 = 𝑦. Thus, if
𝑥 and 𝑦 ∈ 𝑃𝑖 , for some 𝑖 ∈ {1, 2, . . . , 𝑘}, then 𝑡𝑥 and 𝑡𝑦 ∈ 𝑃 𝑗 , for some 𝑗 ∈ {1, 2, . . . , 𝑘}, since P is
preserved by every element of 𝐺 , including 𝑡 . Therefore, P is also a block system for 𝑇 .
Lemma 2.16. Let 𝑀 be a vector space over 𝔽2 and 𝑇 its translation group. Then 𝑇 is transitive and
imprimitive on 𝑀 . A block system U for 𝑇 is composed by the cosets of a non-trivial and proper
subgroup 𝑈 of (𝑀, +), i.e.

U = {𝑈 + 𝑣 | 𝑣 ∈ 𝑀}.
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Proof. The idea of this proof follows from the notion of transitivity of group action, and block
system discussed earlier.

1. Transitivity: Since 𝑇 is the translation group of 𝑀 , for any two vectors 𝑢 and 𝑣 in 𝑀 , there
exists a translation 𝑡 in 𝑇 such that 𝑡 (𝑢) = 𝑣 . Hence, 𝑇 acts transitively on 𝑀 .

2. Imprimitivity: Let 𝑈 be a non-trivial and proper subgroup of (𝑀, +). Then the cosets of 𝑈
form a partition of M, and each coset 𝑈 + 𝑣 is a translate of 𝑈 by 𝑣 . Since the translation group 𝑇
acts transitively on 𝑀 , it also acts transitively on the set of cosets of 𝑈 . 𝑇 is imprimitive on 𝑀
since we can also extract an invariant partitionU of 𝑀 given by the cosets of 𝑈 under the action
of 𝑇 . i.e. for any 𝑡 ∈ 𝑇 and 𝑣 ∈ 𝑀 , 𝑡 (𝑈 + 𝑣) ∈ U.

3. Block System: Since U is an invariant partition of 𝑀 under the action of 𝑇 , it is a block
system for 𝑇 , whose blocks are the cosets {𝑈 + 𝑣 | 𝑣 ∈ 𝑀}.

All through this work, the block system will be a linear partition. Given a vector space 𝑋 over
a field 𝐹 and 𝐺 , a group of linear transformations of 𝑋 , an invariant linear partition of 𝑋 under
the action of 𝐺 can be used to decompose 𝑋 into a direct sum of 𝐺-invariant subspaces.
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3 Cryptographic Background

This section will cover the background of cryptography, including an explanation of what it is, a
comparison of symmetric versus asymmetric encryption, and a focus on symmetric cryptography.
A general review of block ciphers, including iterated block ciphers, will also be given before we
delve deeper into the widely used block cipher AES. We will talk specifically on AES in general
and its key schedule.

3.1 Brief Background and Overview of Cryptography

Cryptography is essentially the practice of secure communication amidst adversarial behaviour.
Cryptography dates as far back as ancient civilizations, where secret messages and codes were
used for secure communication. In contemporary times, cryptography has become crucial in
securing internet communication, as well as ensuring secure financial transactions and protecting
national security. It involves using a set of rules that define how a message is transformed from its
original form into a form that appear unintelligible to everyone but the intended recipient. This
set of rules is referred to as a cryptographic algorithm. The message in its original form is called
the plaintext whilst the disguised message is called the cyphertext. The process of converting a
plaintext into a ciphertext is known as encryption, whereas that of recovering a plaintext from a
ciphertext is known as decryption.

With a block diagram, the encryption and decryption process can be described as follows:

Figure 3.1: Block Diagram Encryption and Decryption process

The most widely used cryptographic algorithms are symmetric (secret key) cryptography,
asymmetric (public key) cryptography, and hash functions. We will discuss only symmetric and
asymmetric cryptography with a rather much focus on the former. Before we do that, let us
introduce the following definition [14].

Definition 3.1 (Cryptosystem). A cryptosystem is a tuple (P, C,K, E,D), where:
• P is the finite set of possible plaintexts, called plaintext space.
• C is the finite set of possible ciphertexts, called ciphertext space.
• K is the finite set of possible keys used for encryption and decryption, called key space.
• E is the encryption function that maps plaintexts and keys to ciphertexts. Mathematically, it is

given by E : P × K → C.
• D is the decryption function that maps ciphertexts and keys to plaintexts. Mathematically, it is

given by D : C × K → P.
E and P must satisfy the following:
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• For any plaintext 𝑝 ∈ P and key 𝑘 ∈ K, D(E(𝑝, 𝑘), 𝑘) = 𝑝.
• For any key 𝑘 ∈ K, it should be computationally infeasible to recover the plaintext 𝑝 from the

ciphertext E(𝑝, 𝑘) without knowledge of the key 𝑘.
Let us now discuss the asymmetric and symmetric cryptographic algorithms.

3.2 Assymetric Cryptography
In this section we mainly refer to [15]. In asymmetric cryptography, different encryption keys
and decryption keys are used. The decryption key is kept secret for its own use and is referred to
as a private key, whereas the encryption key may be made available to the general public and is
referred to as a public key. The privacy of the used private key is crucial to the algorithm. This
algorithm is also known as the public-key algorithm, since the term "public-key" resounds the idea
that encryption key can be publicized while the decryption is kept private.

Asymmetric algorithms typically use much longer key sizes compared to the secret key in
symmetric algorithms. Due to the mathematical complexity involved in the key generation and
encryption/decryption processes, asymmetric algorithms take longer to execute than symmetric
algorithms.

An asymmetric algorithm in the encryption and decryption process can be mathematically
represented, using the notation introduced in Definition 3.1, as follows:
• Encryption: E(𝑝, 𝑘1) = 𝑐
• Decryption: D(E(𝑝, 𝑘1), 𝑘2) = 𝑝,
where 𝑘1 is the public key and 𝑘2 is the the private key. Examples of asymmetric cryptosystems
include RSA, Diffie-Hellman, and Elliptic Curve Cryptography (ECC).

With a block diagram, the asymmetric algorithm can be described as follows:

Figure 3.2: Asymmetric Encryption

Let us now introduce symmetric cryptography.

3.3 Symmetric Cryptography
In this section we mainly refer to [16]. Symmetric key cryptographic algorithms are the funda-
mental blocks upon which any secure systems which demand high sense of secrecy are built. In
these kinds of cryptographic algorithms, unlike asymmetric algorithms, the same key is used for
both encryption and decryption. Practically, it can thought of a a safe-box where messages can
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be kept, locked and delivered to the other party. The safe-box can be opened and its content
read by the other party if they possess the key to its lock. The security of this algorithm is solely
dependent on the private key, known only to the communicating parties involved in the exchange
of messages. The fact that the secret key is kept private between the communicating parties,
and is not shared with anyone else lends symmetric cryptography the interchangeable name of
private-key cryptography.

Since symmetric key algorithms are used to encrypt large amounts the data, they have to run
at high speeds or at least at the bandwidth of the communication channel so as not to cause a
bottleneck. There has been extensive research aimed at increasing the efficiency of symmetric key
cryptography without compromising its security.

The symmetric algorithm in the encryption and decryption process can be mathematically
represented, using the notation introduced in Definition 3.1, as follows:
• Encryption: E(𝑝, 𝑘) = 𝑐
• Decryption: D(E(𝑝, 𝑘), 𝑘) = 𝑝,
where 𝑘 is the private key used for both encryption and decryption.

With a block diagram, the symmetric algorithm process can be described as follows:

Figure 3.3: Symmetric Encryption

Symmetric key algorithms are mainly divided into two categories: stream ciphers and block
ciphers. In stream ciphers, the plaintext is a binary string, and the ciphertext results from a
bit-wise addition modulo 2 of the plaintext with a pseudorandom binary sting called keystream.
Since this work prioritizes block ciphers, we employ the reader to refer to [17] for far-reaching
details about stream ciphers.

3.3.1 Block Ciphers

A block cipher is a type of symmetric encryption algorithm that operates on fixed-length group of
bits called blocks. The input plaintext is split into fixed-sized blocks, and each block is independently
encrypted using a secret key. The final encrypted message is created by combining the resulting
ciphertext blocks. Because this work has got to do with the Advanced Encryption Standard (AES),
which we will formally introduce later in the work, we note that the plaintext space coincides
with the ciphertext space, i.e. P = C = 𝔽𝑛2 , with 𝑛 a positive integer. The key space is given by
K = 𝔽 𝑙2, with 𝑙 a positive integer. (cf. Definition 3.1).

Using the notation of Definition 3.1, let us introduce the definition of an algebraic block cipher
[18].
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Definition 3.2 (Algebraic Block Cipher). Let E be an encryption function and let D be a decryp-
tion function

E(P,K),D(C,K) : 𝔽𝑛2 × 𝔽 𝑙2 → 𝔽𝑛2 .

For any 𝑘 ∈ 𝔽 𝑙2, we denote by E𝑘 and D𝑘 the functions

E𝑘 : 𝔽𝑛2 → 𝔽𝑛2 , E𝑘 (P) = E(P, 𝑘) .

D𝑘 : 𝔽𝑛2 → 𝔽𝑛2 , D𝑘 (C) = D(C, 𝑘) .
We say that E is an algebraic block if E𝑘 is a permutation of 𝔽𝑛2 and D = E−1. Each key selects
one permutation from the set of 2𝑛! possible permutations.

Modern block ciphers are often iterated ciphers that involve sequences of permutations and
substitution operations to obtain the needed security. In fact, following Shannon’s ideas and
proposals from his landmark paper [19], the encryption process starts with a random key and
plaintext as input and proceeds through 𝑁 identical rounds. In each round (with the possible
exception of a few, which may somewhat differ) the iterated ciphers perform a non-linear substi-
tution operation on disjoint parts of the input, an undertaking aimed at providing confusion. This
is followed by a permutation (typically a linear or an affine transformation) on the whole partially
encrypted input data, that provides diffusion. A cryptosystem reaches confusion if the relationship
between the plaintext and ciphertext is extremely obscure. Diffusion refers to the property of
spreading the influence of one plaintext symbol over many ciphertext symbols. This implies that
even little modifications to the plaintext will have a large impact on the ciphertext. With "iterated"
we mean that the encryption function is composition of other permutations of the plaintext space,
called round functions. The round function is formed by the operations carried out in a round.
The round function at the 𝑖-th round (1 ≤ 𝑖 ≤ 𝑁 ) takes as input both the output of the (𝑖 − 1)-th
round the round key 𝑘 (𝑖), which is constructed starting from the master key 𝑘 ∈ K = 𝔽 𝑙2, also
called the cipher key. The key schedule is a public algorithm that constructs 𝑁 + 1 round keys
(𝑘 (0), 𝑘 (1), . . . , 𝑘 (𝑁 )).

3.3.2 Substitution Permutation Networks (SPNs)

There are several types of block ciphers, each having its own strengths and weaknesses, and the
choice of which cipher to use depends on requirements of the application. Among these types of
block ciphers are the two principal types: Substitution Permutation Networks (SPNs) and Feistel
ciphers. The difference between a typical round of these two is that in the latter, the input data
of a round is split into two equal halves, and a non-linear function performs substitution and
permutation operations on one half of the data at a time. The other half of the data and the output
of the non-linear function are then xor-ed, the halves are swapped, and the procedure is repeated
for the next round, as opposed to SPNs that use a combination of substitution and permutation
operations on the entire input block at once.

Recalling that our work is about AES, we will restrict our reach to only SPNs since the AES
uses the SPN framework. We formally define an SPN block cipher as follows.

Definition 3.3. Let 𝔽𝑛2 = 𝔽𝑏2 × · · · × 𝔽𝑏2︸          ︷︷          ︸
𝑡 times

and let E : 𝔽𝑛2 × 𝔽 𝑙2 → 𝔽𝑛2 , with 𝑛 = 𝑏𝑡 , be an algebraic

block cipher with 𝑁 rounds. Let 𝑘 ∈ 𝔽 𝑙2 be the master key and

(𝑘 (0), 𝑘 (1), . . . , 𝑘 (𝑁 ))
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the 𝑁 + 1 round keys produced from 𝑘 via the key schedule. E is an SPN block cipher if

E𝑘 (𝑚) = 𝜏𝑁 ◦ 𝜏𝑁−1 ◦ . . . ◦ 𝜏0(𝑚), 𝑚 ∈ 𝔽𝑛2

where
𝜏𝑖 = 𝜎𝑘 (𝑖 ) ◦ _(𝑖) ◦ 𝛾 (𝑖)

and
• 𝛾 (𝑖) is a non-linear substitution;

𝛾 (𝑖) : 𝔽𝑏2𝑡 −→ 𝔽𝑏2𝑡
𝑚1
...

𝑚𝑏

 ↦−→

𝛾
(𝑖)
1 (𝑚1)
...

𝛾
(𝑖)
𝑏
(𝑚𝑏)

 ,
where 𝛾 (𝑖)𝑠 : 𝔽2𝑡 −→ 𝔽2𝑡 , for 𝑠 ∈ {1, 2, . . . , 𝑏}.

• _(𝑖) ∈ AGL
(
𝔽𝑛2

)
⊂ Sym

(
𝔽𝑛2

)
, where AGL

(
𝔽𝑛2

)
is the subgroup of the affine transformations of

𝔽𝑛2 .

• 𝜎𝑘 (𝑖 ) is the addition with the round key;

𝜎𝑘 (𝑖 ) : 𝔽𝑛2 −→ 𝔽𝑛2
𝑚 ↦−→𝑚 ⊕ 𝑘 (𝑖),

where ⊕ denotes the bitwise addition modulo 2 (XOR).

3.4 Possible Attacks
The brute force attack is one of the most natural strategies an attacker might employ to break
a cryptosystem, which is a difficult process. This approach requires the attacker testing every
key until they locate the right one, which can take some time. To prevent such assaults, modern
cryptosystems are built to make it computationally impossible to guess the right key. Hence, the
goal of cryptanalysis is to use a cryptosystem’s weaknesses to access the contents of encrypted
messages.

The Kerckhoffs’ principle, which presumes that the attacker is privy to cryptosystem being
employed, is one of the presumptions made in cryptanalysis. Modern cryptography thus seeks to
provide secure cryptosystems without hiding the algorithm that was used.

The attack model in cryptanalysis defines the resources and information at the disposal of an
adversary during an attack on a cryptosystem. Depending on the resources and information at the
attacker’s disposal, the power of the attack can be classified into distinct types, as follows [20]:
• Ciphertext-only Attack (COA): This is the least powerful attack, in which the attacker can

only access the encrypted messages and makes assumptions about certain characteristics of the
plaintexts. An example of attack under this model is the brute force attack.

• Known Plaintext Attack (KPA): The attacker in a known-plaintext attack has access to some
plaintext-ciphertext pairs. This information is used by the attacker to determine the encryption
key, which can subsequently be used to decrypt other messages that were encrypted using the
same key. A prominent cryptanalysis method that uses this attack model is linear cryptanalysis.
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• Chosen Plaintext Attack (CPA): In a chosen plaintext attack, the plaintext messages to be
encrypted are selected by the attacker, who can then look at the accompanying ciphertexts.
The ability to learn the encryption algorithm and determine the key used in the encryption
process makes this kind of attack particularly powerful. A prominent cryptanalysis method that
uses this attack model is differential cryptanalysis.

• Chosen Ciphertext Attack (CCA): In this attack model, the attacker selects a ciphertext and
recovers its corresponding plaintext via a decryption algorithm. In other words, the attacker
can request that a ciphertext of his choice be decrypted and use the corresponding plaintext to
gain insight about the encryption or secret key used. A prominent cryptanalysis method that
uses this attack model is differential cryptanalysis on stream ciphers.

• Related-Key Attack (RKA): In this model of attack, the attacker can gain access to the
encryption or decryption of a message under related keys, which are keys that are generated
from the original key in a specific way. An RKA’s objective is to obtain information about the
master key by taking advantage of the relationship between the related keys.

While the earlier discussed models of attack do a good job of capturing many realistic scenarios,
they are not exhaustive, and advanced cryptanalysis techniques have been created to get around
their limitations. In these techniques, an attacker needs a combination of mathematical and
puzzle-solving skills, plus luck. There are a few of these more advanced techniques which can be
employed [21]:
• Differential Cryptanalysis: In differential cryptanalysis one looks at ciphertext pairs, where

the corresponding plaintexts have a particular difference. The exclusive-or of such pairs is
called a differential and certain differentials have certain probabilities associated with them,
depending on what the key is. By analysing the probabilities of the differentials computed in a
chosen plaintext attack one can hope to reveal the underlying structure of the key.

• Linear Cryptanalysis: Even though a good block cipher should contain non-linear compo-
nents the idea behind linear cryptanalysis is to approximate the behaviour of the non-linear
components with linear functions. Again the goal is to use a probabilistic analysis to determine
information about the key.

• Algebraic Cryptanalysis: Using a set of algebraic equations to represent the encryption function,
algebraic cryptanalysis is a potent method for breaking into cryptographic systems. An attacker
can decrypt communications or create new ones by solving these equations in order to obtain
the secret encryption key.

Surprisingly these two methods are quite successful against some ciphers. Both DES and AES
are designed to resist differential cryptanalysis, whereas AES is designed to also resist linear
cryptanalysis.

3.5 ADVANCED ENCRYPTION STANDARD (AES)

3.5.1 AES Selection Process

The Advanced Encryption Standard was chosen in a five-year competition that was organized
by NIST (National Institute of Standards and Technology) in 1997 to replace the outdated DES
(Data Encryption Standard) encryption algorithm after it had become susceptible to some attacks,
thus losing its security potency. In the end, the Rijndael algorithm, created by two Belgian
cryptographers Joan Daemen and Vincent Rijmen, was chosen after a thorough review of 15
candidate algorithms from around the world. In the international cryptography community, the
AES selection procedure is regarded as a model of openness, transparency, and collaboration [11].
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Rijndael was selected by NIST as the Advanced Encryption Standard for a number of reasons,
including its high security margin, quick encryption/decryption speed, elegant structure, and
suitability for effective software implementations on a wide range of computing platforms. The
cryptography world praised Rijndael for its security, performance, and adaptability, and according
to NIST, it displayed a strong security margin. Furthermore, compared to the other entries in the
AES competition, Rijndael was a lot faster, making it a desirable choice for real-world applications
[22].

3.5.2 Structure

The Rijndael block cipher, which is defined by its specification, is a version of the AES. The
fundamental distinction between the two is that Rijndael may accept any multiple of 32 bits with
a minimum of 128 bits and a maximum of 256 bits, whereas AES can only handle a block length
of 128 bits and key lengths of 128, 192, or 256 bits. AES uses one-dimensional arrays of bytes for
input and output, with encryption producing ciphertext blocks from plaintext blocks and keys as
inputs. Similar to encryption, decryption produces a plaintext block from an input ciphertext block
and key. The AES, like every other block cipher, consists of a repetitive round transformation that
operates on an intermediate result known as the state. The key length determines the number of
rounds, which will be indicated by 𝑁𝑟 as shown in Table 3.1.

Table 3.1: Key length and number of rounds for AES

Key length 𝑁𝑟

128 bits 10
192 bits 12
256 bits 14

The state can be represented as by 4 × 4 matrix of bytes, with each byte representing a
different element of the matrix. The plaintext block can be represented by 𝑝0𝑝1𝑝2 . . . 𝑝15, where
𝑝0 represents the first byte and 𝑝15 represents the last byte of the plaintext block. Likewise, a
ciphertext block can be represented by 𝑐0𝑐1𝑐2 . . . 𝑐15. Finally, let the state matrix be represented
by

𝑆 = (𝑠𝑖, 𝑗 )0≤𝑖, 𝑗<4,

where 𝑠𝑖, 𝑗 denotes the byte in the (𝑖 + 1)th row and ( 𝑗 + 1)th column.

The following equation describes how the plaintext block is mapped into the state matrix
during encryption process.

𝑠𝑖, 𝑗 = 𝑝𝑖+4 𝑗 , 0 ≤ 𝑖 < 4, 0 ≤ 𝑗 < 4.

After encryption, each byte of the ciphertext is extracted from the state matrix following the
equation;

𝑐ℎ = 𝑠ℎ mod 4,⌊ℎ/4⌋, 0 ≤ ℎ < 16,
where ⌊ℎ/4⌋ denotes the largest integer less than or equal to 4.
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The following equation describes how the ciphertext block is mapped into the state matrix
during decryption process.

𝑠𝑖, 𝑗 = 𝑐𝑖+4 𝑗 , 0 ≤ 𝑖 < 4, 0 ≤ 𝑗 < 4.

After decryption, each byte of the plaintext is extracted from the state matrix following the
equation

𝑝ℎ = 𝑠ℎ mod 4,⌊ℎ/4⌋, 0 ≤ ℎ < 16.
Similarly, the key is mapped onto a rectangular array having four rows. The number of columns

of the cipher key we will denote by 𝑁𝑘 , and is equal to the length of the key divided by 32.
Let the bytes of keys be represented by 𝑧0𝑧1𝑧2 . . . 𝑧4𝑁𝑘−1 and the cipher key by

𝐾 = 𝑘𝑖, 𝑗 , 0 ≤ 𝑖 < 4, 0 ≤ 𝑗 < 𝑁𝑘 .

The key bytes are mapped into the cipher key according to:

𝑘𝑖, 𝑗 = 𝑧𝑖+4 𝑗 , 0 ≤ 𝑖 < 4, 0 ≤ 𝑗 < 𝑁𝑘 .

Thematrix representations of the state key and cipher key for the case𝑁𝑘 = 4 are given, respectively,
as: 

𝑝0 𝑝4 𝑝8 𝑝12
𝑝1 𝑝5 𝑝9 𝑝13
𝑝2 𝑝6 𝑝10 𝑝14
𝑝3 𝑝7 𝑝11 𝑝15



𝑧0 𝑧4 𝑧8 𝑧12
𝑧1 𝑧5 𝑧9 𝑧13
𝑧2 𝑧6 𝑧10 𝑧14
𝑧3 𝑧7 𝑧11 𝑧15

 .
3.5.3 Encryption

Adding an initial key to the input state is the first step in the AES encryption process. Next, a series
of 𝑁𝑟 − 1 round transformations are applied, with the final round being unique from the earlier
rounds. The current state and a round key, which is created using the key schedule derived from
the cipher key, are the only inputs required for each round. The SubBytes, ShiftRows, MixColumns,
and AddRoundKey stages make up the round transformation. Because it skips the MixColumns
step, the final round is atypical.
Table 3.2 shows the steps of the AES encryption process for a 128-bit block size and a 128-bit
cipher key.
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Table 3.2: AES Encryption Process

Round Input Key Transformation Output

Initial Plaintext Cipher Key Key Addition State
Round 1 State Round Key 1 SubBytes State’

State’ ShiftRows State”
State” MixColumns State”’
State”’ AddRoundKey State1

... ... ... ... ...
Round 9 State8 Round Key 9 SubBytes State8’

State8’ ShiftRows State8”
State8” MixColumns State8”’
State8”’ AddRoundKey State9

Final State9 Round Key 10 SubBytes State9’
State9’ ShiftRows State9”
State9” AddRoundKey Ciphertext

SubBytes

The SubBytes step is a non-linear byte substitution that swaps out each byte of the state matrix
for a corresponding byte from the S-Box, a fixed 256-element lookup table. AES employs two
different types of S-Boxes, one for encryption and the other for decryption rounds, each of which
is the inverse of the other. The S-Box used in the AES encryption algorithm is designed to have
a simple mathematical structure, allowing for a formal argument of the resistance of cipher to
differential and linear cryptanalysis. The mathematical operations of AES are based on arithmetic
in the finite fields 𝔽28 and 𝔽2. The elements in the finite field 𝔽28 are represented as polynomials
with coefficients in the field 𝔽2 and a degree strictly less than 8. This means that each element of
𝔽28 may be expressed as a polynomial with binary coefficients (i.e., 0 or 1), and a degree of no
more than seven. Arithmetic in 𝔽28 in the AES algorithm is performed using polynomial modulo
the irreducible polynomial

𝑚(𝑥) = 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1.
Each byte 𝑠 = [𝑠7, . . . , 𝑠0] of the AES state matrix is taken in turn and considered as an element of
𝔽28 . Mathematically, the S-Box can be described in two steps:
1. Compute the multiplicative inverse of 𝑠 in 𝔽28 to produce a new byte 𝑥 = [𝑥7, . . . , 𝑥0]. However,

for the element [0, . . . , 0], which has no multiplicative inverse, it is mapped to zero using a
convention to maintain a one-to-one mapping between the input and output of the S-Box.

2. After obtaining the bitvector 𝑥 , it is mapped to another bitvector 𝑦 using the following affine
𝔽2 transformation: 

𝑦0
𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
𝑦6
𝑦7


←



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1


·



𝑥0
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7


⊕



1
1
0
0
0
1
1
0


.
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By first inverting the affine transformation and then taking themultiplicative inverse, the decryption
S-Box is obtained.

ShiftRows

In the ShiftRows step, the bytes in each row of the state array are shifted cyclically to the left by a
certain number of bytes. The first row is left unaltered, followed by a leftward shift of one byte,
two bytes, and finally three bytes in the second, third, and fourth rows respectively. The inverse
of the ShiftRows operation is simply the equivalent shift in the opposite direction. The ShiftRows
operation helps to diffuse the input data and increase the security of the encryption algorithm.
The matrix representation of the operation is given by

𝑠0,0 𝑠0,1 𝑠0,2 𝑠0,3
𝑠1,0 𝑠1,1 𝑠1,2 𝑠1,3
𝑠2,0 𝑠2,1 𝑠2,2 𝑠2,3
𝑠3,0 𝑠3,1 𝑠3,2 𝑠3,3

 ↦→

𝑠0,0 𝑠0,1 𝑠0,2 𝑠0,3
𝑠1,1 𝑠1,2 𝑠1,3 𝑠1,0
𝑠2,2 𝑠2,3 𝑠2,0 𝑠2,1
𝑠3,3 𝑠3,0 𝑠3,1 𝑠3,2

 .
Let 𝑠𝑖, 𝑗 and 𝑠′𝑖, 𝑗 represent the state bytes in position (𝑖 + 1, 𝑗 + 1) position before and after the
ShiftRows operation. Then, mathematically, we have

𝑠′𝑖, 𝑗 = 𝑠𝑖, 𝑗+𝑖 mod 4, 0 ≤ 𝑖, 𝑗 < 3.

MixColumns

In the state matrix, the MixColumns operation makes sure that the rows interact with one another
over a number of rounds, and when combined with the ShiftRows operation, it makes sure that
each byte of the output state is dependent on each byte of the input state. The columns of the state
are considered as polynomials over 𝔽28 and multiplied modulo 𝑥4 + 1 with a fixed polynomial 𝑐 (𝑥).
Conditions are placed on the coefficients of 𝑐 (𝑥) by the requirements for invertibility, diffusion,
and performance [11]. The polynomial 𝑐 (𝑥) is given by

𝑐 (𝑥) = 03 · 𝑥3 + 01 · 𝑥2 + 01 · 𝑥 + 02,

and is coprime to 𝑥4 +1, hence invertible. Let 𝑠′𝑗 (𝑥) = 𝑐 (𝑥) · 𝑠 𝑗 (𝑥) mod 𝑥4 +1, where 𝑠′𝑗 (𝑥), 𝑠 𝑗 (𝑥)
∈ 𝔽28 are the polynomials generated by the ( 𝑗 + 1)th columns of the state before and after the
MixColumns operation respectively. Since modular multiplication with a fixed polynomial can be
written as a matrix multiplication, we have

𝑠′0, 𝑗
𝑠′1, 𝑗
𝑠′2, 𝑗
𝑠′3, 𝑗

 =

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 03



𝑠0, 𝑗
𝑠1, 𝑗
𝑠2, 𝑗
𝑠3, 𝑗

 .
The above matrix is invertible in 𝔽28 , making it also possible to construct the inverse of the
MixColumns operation using a matrix multiplication like the one above.
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AddRoundkey

The key addition is denoted AddRoundKey. In this transformation, the state is modified by
combining it with a round keywith the bitwise XOR operation, as given by thematrix representation

𝑠0,0 𝑠0,1 𝑠0,2 𝑠0,3
𝑠1,0 𝑠1,1 𝑠1,2 𝑠1,3
𝑠2,0 𝑠2,1 𝑠2,2 𝑠2,3
𝑠3,0 𝑠3,1 𝑠3,2 𝑠3,3

 ⊕

𝑘0,0 𝑘0,1 𝑘0,2 𝑘0,3
𝑘1,0 𝑘1,1 𝑘1,2 𝑘1,3
𝑘2,0 𝑘2,1 𝑘2,2 𝑘2,3
𝑘3,0 𝑘3,1 𝑘3,2 𝑘3,3

 .
In each round ℎ, 0 ≤ ℎ ≤ 𝑁𝑟 , of the encryption process, a round key whose length coincides with
that of the block, is generated from the cipher key using the key schedule. The ℎth round key is
composed of bytes 𝑘 (ℎ)

𝑖, 𝑗
, where 𝑖 and 𝑗 represent the position of the byte in the round key. The

state of the cipher is represented by bytes 𝑠𝑖, 𝑗 , where 𝑖 and 𝑗 represent the position of the byte in
the state. After the AddRoundKey transformation is performed, the state is updated to 𝑠′𝑖, 𝑗 , which
is equal to the XOR operation of 𝑠𝑖, 𝑗 and 𝑘 (ℎ)𝑖, 𝑗 . Mathematically speaking, we have

𝑠′𝑖, 𝑗 = 𝑠𝑖, 𝑗 ⊕ 𝑘 (ℎ)𝑖, 𝑗 , ∀ 𝑖, 𝑗 ∈ {0, 1, 2, 3}.

3.5.4 Key Schedule

In this section we present the general structure of the Key Schedule of AES. Then in Section 4 we
give its algebraic representation. The key expansion and the round key selection make up the two
components of the key schedule. The key expansion specifies how the ExpandedKey is derived
from the cipher key. Since the encryption requires one round key for the initial key addition and
one for each round, the total amount of bits in ExpandedKey is equal to the block length multiplied
by the number of rounds plus 1. During the key expansion the cipher key is expanded into a
matrix of bytes, consisting of 4 rows and 4(𝑁𝑟 + 1) columns. We will denote by𝑊 such matrix.
The round key of the ℎth round, given that ℎ ∈ ℕ is such that 0 ≤ ℎ ≤ 𝑁𝑟 , is given by columns 4ℎ
to 4ℎ − 3 of𝑊 .

The key expansion function depends on the value of 𝑁𝑘 : there is a version for 𝑁𝑘 less than or
equal to 6, and a version for 𝑁𝑘 greater than 6. In both versions of the key expansion, the first 𝑁𝑘
columns of𝑊 are filled with the cipher key. The subsequent columns are defined recursively in
terms of previously defined columns. The recursion uses the bytes of the previous column, the
bytes of the column 𝑁𝑘 positions earlier, and round constants 𝑅𝐶 [𝑡], defined by a recursion rule
in 𝔽28 , given below.

𝑅𝐶 [1] = 1,
𝑅𝐶 [2] = 𝑥,
𝑅𝐶 [𝑡] = 𝑥 · 𝑅𝐶 [𝑡 − 1] = 𝑥𝑡−1, 𝑡 > 2.

The behavior of the recursion function is determined by the position of the column in𝑊 . Suppose
𝑁𝑘 ≤ ℎ ≤ 4𝑁𝑟 and𝑊ℎ ∈ (𝔽28)4 is the ℎth column of𝑊 . When 𝑁𝑘 ≤ 6, the following Equation
3.1 holds:

𝑊ℎ =

{
𝑊ℎ−𝑁𝑘

⊕𝑊ℎ−1 if ℎ ≠ 0 mod𝑁𝑘
𝑊ℎ−𝑁𝑘

⊕ 𝐹ℎ/𝑁𝑘
(𝑊ℎ−1) if ℎ ≡ 0 mod𝑁𝑘 , (3.1)

However, when 𝑁𝑘 > 6, the following Equation 3.2 applies:
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𝑊ℎ =


𝑊ℎ−𝑁𝑘

⊕ 𝐹ℎ/𝑁𝑘
(𝑊ℎ−1) if ℎ ≡ 0 mod 𝑁𝑘

𝑊ℎ−𝑁𝑘
⊕ 𝐺 (𝑊ℎ−1) if ℎ ≡ 4 mod 𝑁𝑘

𝑊ℎ−𝑁𝑘
⊕𝑊ℎ−1 otherwise,

(3.2)

where
• {𝐹𝜏 }𝜏∈ℕ is the set of non-linear functions:

𝐹𝜏 : (𝔽28)4 −→ (𝔽28)4
𝑎1
𝑎2
𝑎3
𝑎4

 ↦−→

𝛾 (𝑎2) ⊕ 𝑅𝐶 [𝜏]

𝛾 (𝑎3)
𝛾 (𝑎4)
𝛾 (𝑎1)


• 𝐺 is the non-linear function:

𝐺 : (𝔽28)4 −→ (𝔽28)4
𝑎1
𝑎2
𝑎3
𝑎4

 ↦−→

𝛾 (𝑎1)
𝛾 (𝑎2)
𝛾 (𝑎3)
𝛾 (𝑎4)


.

• 𝛾 is the AES S-Box.
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4 Preliminary Results and Model

To begin, we will provide some notation and initial findings, and we will commence by briefly
reminding the definition of the AES-128 key schedule. The reader is encouraged to consult
Daemen and Rijmen for a full discussion and comments on design decisions [11].

The AES-128 key schedule is an injective function ∈ Sym(𝔽 128
2 ), which starting from the master

key, takes as input the previous round key and produces/releases as output the corresponding
round key at each round of the encryption process.
Below is the 𝑖th transformation of the AES-128 key schedule.

g

λ

rci

g g g

Figure 4.1: The 𝑖th transformation of the AES-128 key schedule

Components of Figure 4.1 are given by:
− _ : 𝔽 32

2 → 𝔽 32
2 is a function that takes as input a 32-bit binary string (i.e., an element of the

vector space 𝔽 32
2 ) and outputs another 32-bit binary string. It performs a left circular shift on

the previous round key (RotWord operation).
− 𝛾 : 𝔽 8

2 → 𝔽 8
2 is a function that takes as input an 8-bit binary string (i.e., an element of the

vector space 𝔽 8
2 ) and outputs another 8-bit binary string. It represents a byte substitution

operation that maps each byte input to a unique byte output.
− 𝑟𝑐𝑖 ∈ 𝔽 8

2 is an 8-bit binary string in 𝔽 8
2 . It is a round constant different in each round.

Observe that the bits of the round key are split into four blocks, with four bytes making up each
block. The bytes of the last block are shifted to the left by one position, resulting in the leftmost
byte occupying the rightmost position. The newly bitwise arranged block is then transformed by
the cipher’s S-Box after which a round dependent counter is xor-ed to the first byte of the block.
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After the transformation, the resulting output is xor-ed with the other three blocks of bytes, as
depicted in Figure 4.1.

Notation

Throughout this work the following notations are used: 𝑛 ∈ ℤ+ ∪ {0} is a non-negative integer
and 𝑉 = 𝔽𝑛2 is an 𝑛-dimensional vector space over the finite field 𝔽2. We write 𝐴 ≤ 𝑉 if 𝐴 is
a subspace of 𝑉 , and the same notation is the case if 𝐴 is a subgroup of 𝑉 . 𝟘 : 𝑉 → 𝑉 is the
null function on 𝑉 i.e. it maps every element of 𝑉 to the zero vector of 𝑉 . Sym(𝑉 ) denotes the
symmetric group acting on 𝑉 and 𝟙 its identity. We use the notation 𝑥 𝑓 to represent the output of
the function 𝑓 when it is evaluated at the input 𝑥 , provided that 𝑓 ∈ Sym(𝑉 ) and 𝑥 ∈ 𝑉 . The
group of translations on 𝑉 is denoted by 𝑇𝑛. The group of affine permutations of 𝑉 is denoted by
AGL(𝑉 ), while the group of linear permutations is denoted by GL(𝑉 ).

Naturally we will think of 𝑛 as the size of each block of 4 bytes, i.e. 𝑛 = 32 bits. Following
from this, 𝑉 = 𝔽 32

2 , 𝑉 2 = 𝔽 64
2 , 𝑉 3 = 𝔽 96

2 , and 𝑉 4 = 𝔽 128
2 .

It is then easily noticeable that the key scheduling transformation, acting on all four blocks of
bytes i.e. 𝑉 4 , is an element of Sym(𝑉 4). The translation group on 𝑉 4 will be denoted by 𝑇4𝑛,
where the translation 𝜎(𝑣1,𝑣2,𝑣3,𝑣4) ∈ 𝑇4𝑛 acts on (𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ 𝑉 4 as

(𝑥1, 𝑥2, 𝑥3, 𝑥4) ↦→ (𝑣1 + 𝑥1, 𝑣2 + 𝑥2, 𝑣3 + 𝑥3, 𝑣4 + 𝑥4) .

Note that the transformation done by the round counter of the AES-128 key schedule is an
element of 𝑇4𝑛.
To make things easier to understand, we will use different symbols for elements in 𝑉 , 𝑉 2, and 𝑉 4.
Specifically, we will represent an element in 𝑉 4 by adding an arrow above the symbol, like this:
®𝑣 ∈ 𝑉 4. An element in 𝑉 2 will be denoted using bold symbols, like this: ®𝑣 = (𝒗1, 𝒗2), in such a
way that we have the following relation:

®𝑣 = (𝒗1, 𝒗2) = (𝑣1, 𝑣2, 𝑣3, 𝑣4) ∈ 𝑉 4,

where 𝒗 𝒊 ∈ 𝑉 2 and 𝑣 𝑗 ∈ 𝑉 for 1 ≤ 𝑖 ≤ 2 and 1 ≤ 𝑗 ≤ 4.

The key-schedule representation

Let us now introduce the representation of the AES-128 key-schedule, given in [23], that allows
us to provide an easy description of the subgroup of Sym

(
𝑉 4) which is the subject of this work.

Let us start by defining the transformation acting on the last group of four bytes, as in Figure 4.1

Definition 4.1. Let 𝜌AES represent the transformation of the last block of bytes before the addition
with the round counter to the first byte in the block. This transformation is essentially the
composition of functions _ ∈ Sym(𝑉 ), and 𝛾 ′ ∈ Sym(𝑉 ), i.e.

𝜌AES
def
= _𝛾 ′

where 𝛾 ′ : 𝔽 32
2 ↦→ 𝔽 32

2 , (𝑣1, 𝑣2, 𝑣3, 𝑣4) ↦→ (𝑣1𝛾, 𝑣2𝛾, 𝑣3𝛾, 𝑣4𝛾), with 𝑣𝑖 ∈ 𝔽 8
2 .

NB: 𝜌AES ∈ Sym(𝑉 ), (since Sym(𝑉 ) is closed under the operation of function composition).

The above transformation captures only the last block of bytes of the AES-128 key schedule. As
a result, a more general description of the full transformation is given in the following definition.
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Figure 4.2: The key schedule operator induced by 𝜌

Definition 4.2. Given 𝜌 ∈ Sym(𝑉 ), we define the operator 𝜌 induced by 𝜌 as the formal matrix

𝜌
def
=

©«
𝟙 𝟙 𝟙 𝟙

𝟘 𝟙 𝟙 𝟙

𝟘 𝟘 𝟙 𝟙

𝜌 𝜌 𝜌 𝟙 + 𝜌

ª®®®¬ ,
acting on 𝑉 4 as

(𝑣1, 𝑣2, 𝑣3, 𝑣4)
©«
𝟙 𝟙 𝟙 𝟙

𝟘 𝟙 𝟙 𝟙

𝟘 𝟘 𝟙 𝟙

𝜌 𝜌 𝜌 𝟙 + 𝜌

ª®®®¬ ↦→ (𝑣1 + 𝑣4𝜌, 𝑣1 + 𝑣2 + 𝑣4𝜌, 𝑣1 + 𝑣2 + 𝑣3 + 𝑣4𝜌, 𝑣1 + 𝑣2 + 𝑣3
+ 𝑣4 + 𝑣4𝜌) ,

as corroborated by Figure 4.2. The inverse, 𝜌−1 of the operator 𝜌 acts on 𝑉 4 as

(𝑣1, 𝑣2, 𝑣3, 𝑣4) 𝜌−1 ↦→ (𝑣1 + (𝑣3 + 𝑣4)𝜌, 𝑣1 + 𝑣2, 𝑣2 + 𝑣3, 𝑣3 + 𝑣4) .

Observe that the map 𝜌AES𝜎(𝑟𝑐𝑖 ,𝑟𝑐𝑖 ,𝑟𝑐𝑖 ,𝑟𝑐𝑖 ) rightly corresponds to and represents the 𝑖th round
key’s transformation of the AES-128 key schedule (4.1), where 𝑟𝑐𝑖 = (𝑟𝑐𝑖, 0, 0, 0) ∈ 𝔽 32

2 .
𝜎(𝑟𝑐𝑖 ,𝑟𝑐𝑖 ,𝑟𝑐𝑖 ,𝑟𝑐𝑖 ) acts on

(𝑣1 + 𝑣4𝜌AES, 𝑣1 + 𝑣2 + 𝑣4𝜌AES, 𝑣1 + 𝑣2 + 𝑣3 + 𝑣4𝜌AES, 𝑣1 + 𝑣2 + 𝑣3 + 𝑣4 + 𝑣4𝜌AES)
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as
(𝑣1 + 𝑣4𝜌AES, 𝑣1 + 𝑣2 + 𝑣4𝜌AES, 𝑣1 + 𝑣2 + 𝑣3 + 𝑣4𝜌AES, 𝑣1 + 𝑣2 + 𝑣3 + 𝑣4 + 𝑣4𝜌AES) ↦→

↦→ (𝑣1 + 𝑣4𝜌AES + 𝑟𝑐𝑖 , 𝑣1 + 𝑣2 + 𝑣4𝜌AES + 𝑟𝑐𝑖 , 𝑣1 + 𝑣2 + 𝑣3 + 𝑣4𝜌AES + 𝑟𝑐𝑖 , 𝑣1 + 𝑣2 + 𝑣3 + 𝑣4 + 𝑣4𝜌AES + 𝑟𝑐𝑖 ) .
Reminding ourselves, the focus of this work is to study the group theoretical properties of

the subgroup Γ < Sym(𝑉 4) generated by maps of the type 𝜌AES𝜎(𝑟𝑐𝑖 ,𝑟𝑐𝑖 ,𝑟𝑐𝑖 ,𝑟𝑐𝑖 ) for each admissible
value 𝑟𝑐𝑖 ∈ 𝔽 8

2 and show that it is primitive in the spirit of Lemma 2.16. Let us remark that Γ does
not contain the whole translation group 𝑇128. This is captured in the fact that each 𝑟𝑐𝑖 can admit
only 28 elements ∈ 𝔽 32

2 as opposed to the 232 elements making up whole vector space 𝔽 32
2 . Due

to this, we need to extend Γ by assuming a rather general action of the round counter.

Definition 4.3. We define the group

ΓAES
def
=

〈
𝜌AES𝜎(𝑥,𝑦,𝑧,𝑡) | (𝑥,𝑦, 𝑧, 𝑡) ∈ 𝑉 4〉 .

Notice the following facts.
− ΓAES, which contains Γ, is the smallest subgroup of the symmetric group Sym(𝑉 4) that contains

both the whole translation group 𝑇128 and the transformation of the AES-128 key-schedule,
when the correct round counter is chosen.

− ΓAES = ⟨𝜌AES,𝑇128⟩ .

Proof. By definition, 𝜌AES𝜎(𝑥,𝑦,𝑧,𝑡) is in ΓAES for each (𝑥,𝑦, 𝑧, 𝑡) in𝑉 4 including (0, 0, 0, 0). Therefore
𝜌AES𝜎(0,0,0,0) = 𝜌AES Id = 𝜌AES is in ΓAES (where Id is the identity permutation). Since ΓAES is a
group and 𝜌AES is in ΓAES, we have that 𝜌AES−1 is also in ΓAES and 𝜌AES−1𝜌AES𝜎(𝑥,𝑦,𝑧,𝑡) = 𝜎(𝑥,𝑦,𝑧,𝑡) is
in ΓAES for every (𝑥,𝑦, 𝑧, 𝑡) in 𝑉 4. Hence, we have that both 𝜌AES and 𝜎(𝑥,𝑦,𝑧,𝑡) are in ΓAES, and so,
ΓAES = ⟨𝜌AES,𝑇128⟩ .

Left to us is to establish the primitivity of ΓAES, with consequence that no partition which is a
block system for ΓAES can be generated from any nontrivial and proper subgroup 𝑈 < 𝑉 4.
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5 The primitivity of ΓAES
We will prove the primitivity of ΓAES in this section, and while we are at it, we will show that the
transitivity of ⟨𝜌,𝑇4𝑛⟩ and nonexistence of a block system for ⟨𝜌,𝑇4𝑛⟩ reduces to the transitivity
of ⟨𝜌,𝑇𝑛⟩ and nonexistence of a block system for ⟨𝜌,𝑇𝑛⟩ when 𝜌 as presented in Definition 4.2 is
bijective and not affine.

Theorem 5.1 (Primitivity reduction). Let 𝜌 ∈ Sym(𝑉 )\AGL(𝑉 ). If ⟨𝜌,𝑇𝑛⟩ is primitive on𝑉 , then
⟨𝜌,𝑇4𝑛⟩ is primitive on 𝑉 4.

Before we delve into the proof, let us first prove that 𝜌 = 𝜌AES satisfies the hypothesis of
Theorem 5.1 (i.e. the group ⟨𝜌AES,𝑇32⟩ is primitive). To do so, the following definitions and the
general notion of primitivity of substitution-permutation networks (SPNs) serve useful for us.

Let us write 𝑛 as the product of two positive integers 𝑠 and 𝑏 such that 𝑠 and 𝑏 are both greater
than 1, i.e., 𝑛 = 𝑠 · 𝑏. We decompose the vector space 𝑉 into a direct sum of 𝑏 subspaces, denoted
as 𝑉1,𝑉2, . . . ,𝑉𝑏 , where each subspace 𝑉𝑖 has dimension 𝑠. These subspaces are referred to as
"bricks". The subspace 𝑉𝑖 is spanned by the canonical basis vectors 𝑒𝑠 (𝑖−1)+1, 𝑒𝑠 (𝑖−1)+2, . . . , 𝑒𝑠 (𝑖−1)+𝑠 ,
where 𝑒1, 𝑒2, . . . , 𝑒𝑛 are the canonical basis vectors of 𝑉 . For 𝜌AES, 𝑛 = 32, 𝑠 = 8 and 𝑏 = 4.
Let us recall some useful notions from boolean functions [24].

Given the vector space 𝔽 𝑠2, we refer to a function 𝑓 : 𝔽𝑛2 → 𝔽𝑚2 , 𝑛,𝑚 ∈ ℤ+ as a vectorial
boolean function or (𝑛 −𝑚) function. In what follows in this work, we consider𝑚 = 𝑛. Given
𝑓 : 𝔽 𝑠2 → 𝔽 𝑠2, for each nonzero 𝑢 ∈ 𝔽 𝑠2, denote by 𝑥 𝑓𝑢 = 𝑥 𝑓 ⊕ (𝑥 ⊕ 𝑢) 𝑓 the derivative of 𝑓 in the
direction of 𝑢.

Definition 5.2. We say that 𝑓 is deferentially 𝛿-uniform if for each nonzero 𝑢 ∈ 𝔽 𝑠2,
���Im (

𝑓𝑢

)��� ≥ 2𝑠
𝛿
.

This means that 𝑓𝑢 has an image with at least 2𝑠
𝛿
distinct outputs. In other words, if we flip

any nonzero input bit, the resulting output bits are uniformly distributed across all possible 𝑠-bit
strings with high probability.

Definition 5.3. 𝑓 is said to be 𝛿-anti-invariant if for any two subspaces𝑊1 and𝑊2 of 𝔽 𝑠2 such that
𝑊1𝑓 =𝑊2, either dim(𝑊1) = dim(𝑊2) < 𝑠 − 𝛿 or𝑊1 =𝑊2 = 𝔽 𝑠2.

Intuitively, this means that if two subspaces of the input space of 𝑓 have the same output under
𝑓 , then either they have the same dimension and their dimension is less than 𝑠 − 𝛿 , or they are
the entire input space. This is a desirable property for cryptographic functions because it makes it
difficult for an attacker to exploit any linear relationships between the input and output of the
function.

The notation that was presented earlier in this section is used to express the following theorem.

Theorem 5.4. [24] Let 𝑓 ∈ Sym
(
𝔽 𝑠2
)
such that 0𝑓 = 0, let 𝐹 ∈ Sym(𝑉 ) be the function acting as 𝑓

on each s-dimensional brick 𝑉𝑖 of 𝑉 and let Λ ∈ GL(𝑉 ). If no non-trivial and proper direct sum of
bricks of 𝑉 is invariant under Λ and for some 2 ≤ 𝛿 ≤ 𝑠 − 1 the function 𝑓 is
−2𝛿 -differentially uniform,
−(𝛿 − 1)-anti-invariant,
then ⟨𝐹Λ,𝑇𝑛⟩ is primitive

It can be proved that ⟨𝜌AES,𝑇32⟩ is primitive as a result of Theorem 5.4.

Theorem 5.5. The group ⟨𝜌AES,𝑇32⟩ < Sym
(
𝔽 32
2
)
is primitive.
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Proof. [23] As Definition 4.1 has it, Let _ ∈ GL(𝑉 ) and 𝛾 ′ ∈ Sym(𝑉 ) be the RotWord transforma-
tion and the S-Box SubBytes respectively. Essentially, it is widely recognized that the function 𝛾 ,
up to affine transformations, fixes the zero element and sends every non-zero element into its
multiplicative inverse in 𝔽2𝑠 . Such a function is 4-differentially uniform and 1-anti invariant. This
means that it satisfies the premises of Theorem 5.4 for 𝛿 = 2. It is worth noting that anti-invariance
and differential uniformity remain unchanged under inversion and affine transformations. Thus,
𝛾−1 also satisfies the hypotheses of Theorem 5.4. We can easily verify that _ does not leave any
non-trivial and proper direct sum of bricks in 𝑉 invariant. The same applies to _−1. By Theorem
5.4, we know that

〈
(𝛾 ′)−1 _−1,𝑇32

〉
is primitive. Consequently, ⟨_𝛾 ′,𝑇32⟩ = ⟨𝜌AES,𝑇32⟩ is also

primitive.

The conclusive statement that follows is obtained.

Corollary 5.6. The group ⟨𝜌AES,𝑇128⟩ < Sym
(
𝔽 128
2

)
generated by the transformations of the AES-

128 key-schedule is primitive.
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6 The Primitivity Reduction - Proof of Theorem 5.1

This section is completely dedicated to the somewhat technical proof of Theorem 5.1. Notwith-
standing its seeming intricacy, the (repeated) application of Goursat’s lemma, as presented below,
is a reasonable way to characterize any generic subspace U that is a candidate for a linear block.

To demonstrate our outcome, we must identify a block system for 𝑉 4, which is equivalent
to finding the set of cosets of a suitable subgroup of 𝑉 2 ×𝑉 2. We can achieve this by utilizing
the following characterization of subgroups of the direct product of two groups, which involves
identifying appropriate sections of the direct factors [25].

Theorem 6.1 (Goursat’s lemma). Let 𝐺1 and 𝐺2 be two groups. There exists a bijection between
(1) the set of all subgroups of the direct product 𝐺1 ×𝐺2, and
(2) the set of all triples (𝐴/𝐵,𝐶/𝐷,𝜓 ), where

• 𝐴 is a subgroup of 𝐺1,
• 𝐶 is a subgroup of 𝐺2,
• 𝐵 is a normal subgroup of 𝐴,
• 𝐷 is a normal subgroup of 𝐶,
• 𝜓 : 𝐴/𝐵 → 𝐶/𝐷 is a group isomorphism.

Then, each subgroup of 𝑈 ≤ 𝐺1 ×𝐺2 can be uniquely written as

𝑈 = 𝑈𝜓 = {(𝑎, 𝑐) ∈ 𝐴 ×𝐶 | (𝑎 + 𝐵)𝜓 = 𝑐 + 𝐷}. (6.1)

Proof. See page 6 of [26] for an outline of the proof.

Note that the isomorphism𝜓 induces a homomorphism 𝜑 : 𝐴→ 𝐶 where 𝑎 ↦→ 𝑎𝜑 is such that
(𝑎 + 𝐵)𝜓 = 𝑎𝜑 + 𝐷 for any 𝑎 ∈ 𝐴, and such that 𝐵𝜑 ≤ 𝐷.
Such a homomorphism is not necessarily unique. In fact, if 𝜓 is an isomorphism between 𝐴/𝐵
and 𝐶/𝐷, then we can define a different homomorphism 𝜑′ as 𝑎𝜑′ = 𝑐′ where (𝑎 + 𝐵)𝜓 = 𝑐′ + 𝐷.
This will also satisfy the required properties, but may be different from 𝜑 .

Corollary 6.2. Following the notation of Theorem 6.1, given any homomorphism 𝜑 induced by𝜓 ,
we have

𝑈𝜓 = {(𝑎, 𝑎𝜑 + 𝑑) | 𝑎 ∈ 𝐴,𝑑 ∈ 𝐷}

Proof. Let (𝑎, 𝑐) ∈ 𝑈𝜓 . By definition of 𝜑, (𝑎 + 𝐵)𝜓 = 𝑐 + 𝐷 = 𝑎𝜑 + 𝐷. From 𝑎𝜑 + 𝐷 = 𝑐 + 𝐷, we
know that 𝑐 and 𝑎𝜑 are in the same coset of 𝐷. In other words, 𝑐 ∈ 𝑎𝜑 + 𝐷 which translates to
mean that 𝑐 = 𝑎𝜑 +𝑑 for some 𝑑 ∈ 𝐷 , where 𝑑 is the unique element of 𝐷 that satisfies 𝑐 = 𝑎𝜑 +𝑑.
Conversely, if 𝑎 ∈ 𝐴 and 𝑑 ∈ 𝐷, then (𝑎 + 𝐵)𝜓 = 𝑎𝜑 + 𝐷 = 𝑎𝜑 + 𝑑 + 𝐷.

6.1 Use of Goursat’s Lemma

Given a subspace 𝑈 of 𝑉 4 = 𝑉 2 × 𝑉 2, and motivated by Theorem 6.1 and Corollary 6.2, we
have that there exist 𝐴, 𝐵,𝐶, 𝐷 ≤ 𝑉 2 and an isomorphism 𝜓 : 𝐴/𝐵 → 𝐶/𝐷 that induces an
homomorphism 𝜑 : 𝐴→ 𝐶 such that

𝑈 = {(𝒂, 𝒂𝜑 + 𝒅) | 𝒂 ∈ 𝐴, 𝒅 ∈ 𝐷}.

Without loss of generality, we can extend a basis of 𝐴 to that of 𝔽 2𝑛
2 by adding vectors to the

original basis of 𝐴 to obtain a basis for the entire vector space 𝔽 2𝑛
2 , and we can choose any basis of
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𝐴𝑐 and any basis of (Im(𝜑))𝑐 , where 𝐴𝑐 and (Im(𝜑))𝑐 are the complements of 𝐴 in 𝑉 2 and Im(𝜑)
respectively, and then extend the function 𝜑 to a linear map that maps the basis elements of 𝐴𝑐 to
the basis elements of (Im(𝜑))𝑐 .

Notice that 𝜑 can be arbitrarily defined from the basis of the complement 𝐴𝑐 of 𝐴 to a basis
of (Im(𝜑))𝑐 : This means that we have some flexibility in defining how the linear transformation
𝜑 maps vectors outside of 𝐴 to vectors in 𝐶 as long as we do not interfere with the parts of the
space that are already determined by 𝐴 and 𝜑 , i.e. (Im(𝜑))𝑐 . In our case, we define 𝜑 to map
the basis of 𝐴𝑐 to the basis of (Im(𝜑))𝑐 . Note that any vector in 𝐴𝑐 can be expressed as a linear
combination of the basis vectors of 𝐴𝑐 , and since 𝜑 is linear, it will preserve this linearity when
mapping 𝐴𝑐 to (Im(𝜑))𝑐 . Therefore, any mapping from 𝐴𝑐 to (Im(𝜑))𝑐 by 𝜑 can be expressed as
a linear combination of the basis vectors of (Im(𝜑))𝑐 . Hence, 𝜑 maps the entire 𝐴𝑐 to (Im(𝜑))𝑐 .

Having extended 𝜑 on the whole space 𝔽 2𝑛
2 , the matrix representation theorem (i.e. every

linear map between finite-dimensional vector spaces can be represented as a matrix) provides us
with a matrix representation of 𝜑 as (

𝜑11 𝜑12
𝜑21 𝜑22

)
,

such that for each (𝑎1, 𝑎2) ∈ 𝐴 ≤ 𝔽 2𝑛
2

𝒂𝜑 = (𝑎1, 𝑎2) 𝜑 = (𝑎1𝜑11 + 𝑎2𝜑21, 𝑎1𝜑12 + 𝑎2𝜑22)
def
= (𝒂𝜑1, 𝒂𝜑2) ,

where for 1 ≤ 𝑖 ≤ 2
𝜑𝑖 =

(
𝜑1𝑖
𝜑2𝑖

)
.

Applying again Goursat’s lemma on 𝐴, 𝐷 ≤ 𝑉 2, we obtain that:
(i) there exist 𝐴′, 𝐵′,𝐶′, 𝐷′ ≤ 𝑉 and 𝜑𝐴 : 𝐴′→ 𝐶′ an homomorphism such that

𝐴 = {(𝑎′, 𝑎′𝜑𝐴 + 𝑑′) | 𝑎′ ∈ 𝐴′, 𝑑′ ∈ 𝐷′} ,

(ii) there exist 𝐴′′, 𝐵′′,𝐶′′, 𝐷′′ ≤ 𝑉 and 𝜑𝐷 : 𝐴′′→ 𝐶′′ an homomorphism such that

𝐷 = {(𝑎′′, 𝑎′′𝜑𝐷 + 𝑑′′) | 𝑎′′ ∈ 𝐴′′, 𝑑′′ ∈ 𝐷′′} .

In the rest the work, whenever a subspace 𝑈 is considered as the linear component of an
invariant linear subspace, the above construction and notations will be used, as will be precised
in the following.

Definition 6.3. A subgroup 𝑈 ≤ 𝑉 4 is a linear block for 𝑓 ∈ Sym
(
𝑉 4) if for each ®𝑣 ∈ 𝑉 4 there

exists ®𝑤 ∈ 𝑉 4 such that
(𝑈 + ®𝑣) 𝑓 = 𝑈 + ®𝑤,

where we can always choose ®𝑤 = ®𝑣 𝑓 .

By virtue of Lemma 2.16, when we have found a linear block 𝑈 for 𝑓 , then the group ⟨𝑓 ,𝑇4𝑛⟩
is imprimitive where the block system of the group is constructed from the cosets of 𝑈 . It is also
worth noting that if 𝑓 ∈ Sym

(
𝑉 4) is such that −→0 𝑓 =

−→0 and 𝑈 < 𝑉 4 is a linear block for 𝑓 , then
𝑈 is an invariant subspace for 𝑓 , i.e. 𝑈 𝑓 ⊆ 𝑈 . From Definition 6.3 we have that

(𝑈 + ®𝑣) 𝑓 = 𝑈 + ®𝑤 =⇒ (𝑈 + ®𝑣) 𝑓 = 𝑈 + ®𝑣 𝑓
=⇒ 𝑈 𝑓 = 𝑈 , choosing ®𝑣 = ®0.



40 6 The Primitivity Reduction - Proof of Theorem 5.1

The last equality follows from the fact that 𝑓 is bijective, i.e. for every ®𝑢 ∈ 𝑈 there exists a unique
®𝑤 ∈ 𝑈 such that ®𝑢𝑓 = ®𝑤 . Expressing the relation 𝑈 𝑓 = 𝑈 using the notation presented earlier in
this section, we have that for every 𝑎 in 𝐴 and 𝑑 in 𝐷, there exist 𝑥 in 𝐴 and 𝑦 in D such that

(𝒂, 𝒂𝜑 + 𝒅) 𝑓 = (𝒙, 𝒙𝜑 +𝒚) . (6.2)
In the forthcoming results, we will make significant use of Equation 6.2 when discussing

functions with linear blocks without explicit reminder.

6.2 Main proof of the thesis
This section will present the procedure for proving Theorem 5.1, and the notation established in
Section 6.1 will be utilized throughout the remainder of the work. To only make things simpler
and no more, we assume without loss of generality that 0𝜌 = 0, which is reasonable because every
conceivable translation is examined in the group being studied (cf. Definition 4.3).

The proof of Theorem 5.1 begins by assuming the presence of a linear block (which in fact
will be an invariant subspace) for 𝜌 and using it to find an invariant subspace for 𝜌. If such a
subspace exists, it may be trivial or non-trivial. However, If a non-trivial subspace is found, our
main claim follows directly from Lemma 6.6, which we will prove in this section. The rest of the
work will focus on the remaining scenarios.
Corollary 6.4. If 𝑈 ≤ 𝑉 4 be a linear block for 𝜌 ∈ Sym

(
𝑉 4) , then it is also an invariant subspace

for 𝜌 under our assumption that 0𝜌 = 0.
Proof. See Definition 6.3 for what we mean by𝑈 ≤ 𝑉 4 is a linear block for 𝜌 ∈ Sym

(
𝑉 4) . Setting

®𝑣 = ®0, we have (𝑈 + ®0)𝜌 = 𝑈 + ®0𝜌, but ®0𝜌 = (0, 0, 0, 0) 𝜌 = (0𝜌, 0𝜌, 0𝜌, 0𝜌) = ®0. Therefore, we
have the relation 𝑈𝜌 = 𝑈 , and consequently, 𝑈 is an invariant subspace for 𝜌.
Corollary 6.5. 𝑈 is a linear block for each element of ⟨𝜌⟩ ≤ Sym

(
𝑉 4) if it is a linear block for 𝜌.

Proof. This follows directly from Lemmas 2.15 and 2.16.
Let us show that 𝑈 is an invariant subspace for 𝜌−1 when the relation 0𝜌 = 0 holds.

From Definition 6.3, setting ®𝑣 = 0, we have (𝑈 +®0)𝜌−1 = 𝑈 +®0𝜌−1, but ®0𝜌−1 = (0, 0, 0, 0) 𝜌−1 =
(0𝜌, 0, 0, 0) = ®0. Hence, we have 𝑈𝜌−1 = 𝑈 which concludes our claim that 𝑈 is an invariant
subspace for 𝜌−1.

The proof of the following result is taken from [23].
Lemma 6.6. Let 𝜌 ∈ Sym(𝑉 ) and let 𝑈 ≤ 𝑉 4 be a linear block for 𝜌. In the notation of Section 6.1,
we have 𝐷′′𝜌 = 𝐷′′.

Proof. Since𝑈 is a linear block for 𝜌, setting 𝒂 = 000 in Equation 6.2 and considering the description
of 𝐷 as a subgroup of 𝑉 2 (cf. (ii) in Section 6.1), for each 𝑎′′ ∈ 𝐴′′ and 𝑑′′ ∈ 𝐷′′, we have
(0, 0, 𝑎′′, 𝑎′′𝜑𝐷 + 𝑑′′) ∈ 𝑈 . Also, since 𝑈 is a linear block for each element of ⟨𝜌⟩ ≤ Sym

(
𝑉 4) , we

have (0, 0, 0, 𝑑′′) 𝜌 = (𝑑′′𝜌,𝑑′′𝜌, 𝑑′′𝜌,𝑑′′ + 𝑑′′𝜌) ∈ 𝑈 and (0, 0, 0, 𝑑′′) 𝜌−3 = (𝑑′′𝜌, 𝑑′′𝜌,𝑑′′𝜌, 𝑑′′) ∈
𝑈 when 𝑎′′ = 0. (Observe that 0𝜑𝐷 = 0 follows from the linearity of 𝜑). Therefore, we can
conclude:

(𝑑′′𝜌, 𝑑′′𝜌,𝑑′′𝜌, 𝑑′′ + 𝑑′′𝜌) + (𝑑′′𝜌,𝑑′′𝜌, 𝑑′′𝜌,𝑑′′) = (0, 0, 0, 𝑑′′𝜌) ∈ 𝑈 . (6.3)
Hence, there exist 𝒙 ∈ 𝐴 and 𝒚 ∈ 𝐷 such that (0, 0, 0, 𝑑′′𝜌) = (𝒙, 𝒙𝜑 + 𝒚). Consequently, 𝒙 = 000
and (0, 𝑑′′𝜌) = 𝒚 ∈ 𝐷. From (0, 𝑑′′𝜌) ∈ 𝐷 we have that there exist 𝑥′′ ∈ 𝐴′′ and 𝑦′′ ∈ 𝐷′′ such
that (0, 𝑑′′𝜌) = (𝑥′′, 𝑥′′𝜑𝐷 + 𝑦′′). This implies 𝑥′′ = 0 and 𝑑′′𝜌 = 𝑦′′ ∈ 𝐷′′, which gives us the
relation 𝐷′′𝜌 = 𝐷′′, as desired, since 𝜌 is a permuation, and therefore a bijective map.
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Lemma 6.6 is used to show that if ⟨𝜌,𝑇4𝑛⟩ is imprimitive, then it is possible to find an imprim-
itivity block for ⟨𝜌,𝑇𝑛⟩. The first natural candidate for this block is 𝐷′′, inferring from Lemma
6.6. The proof of Theorem 5.1 proceeds as follows: assuming that 𝑈 is an imprimitivity block for
⟨𝜌,𝑇4𝑛⟩, we use Lemma 6.6 to show that 𝐷′′ is a block for 𝜌. If 𝐷′′ is nontrivial and proper, then
there is nothing more to prove. If 𝐷′′ = 𝔽𝑛2 , we reach a contradiction, and if 𝐷′′ = 0, we show that
𝐶′′ is a block for 𝜌. Like before, the proof is completed when 𝐶′′ is nontrivial and proper and we
reach a contradiction when 𝐶′′ = 𝔽𝑛2 . In the remaining case when 𝐶′′ = {0}, we prove that 𝐴′ is
a block for 𝜌, and we exclude the extreme possibilities for 𝐴′ by way of contradictions. We will
need the following lemma to prove our anticipated results in some of the above cases. Its proof is
given in [23].
Lemma 6.7. Let 𝜌 ∈ Sym(𝑉 ) and let 𝑈 ≤ 𝑉 4 be a linear block for 𝜌. Following the notation of
Section 6.1 , if 𝐷 = {000}, we have
(1) 𝐴 = 𝐴𝜑;
(2) if (𝑎1, 𝑎2) ∈ 𝐴, then 𝑎1, 𝑎2 ∈ 𝐴′.
Proof. 𝐷 = {000} means that 𝑈 = {(𝒂, 𝒂𝜑) | 𝒂 ∈ 𝐴}. Since 𝑈 is a linear block for 𝜌, it is also is a
linear block and in fact an invariant subspace for 𝜌−1 as shown earlier. It follows from Equation
6.2 that for each 𝒂 = (𝑎1, 𝑎2) ∈ 𝐴 and 𝒅 = (0, 0) ∈ 𝐷, there exist 𝒙 ∈ 𝐴 and 𝒚 = (0, 0) ∈ 𝐷 such
that (𝒂, 𝒂𝜑)𝜌−1 = (𝒙, 𝒙𝜑). This means that

(𝑎1, 𝑎2, 𝒂𝜑1, 𝒂𝜑2) 𝜌−1 = (𝑎1 + (𝒂𝜑1 + 𝒂𝜑2) 𝜌, 𝑎1 + 𝑎2, 𝑎2 + 𝒂𝜑1, 𝒂𝜑1 + 𝒂𝜑2) = (𝒙, 𝒙𝜑)

By comparison, 𝒙𝜑 = (𝑎2 + 𝒂𝜑1, 𝒂𝜑1 + 𝒂𝜑2) = (𝑎2, 𝒂𝜑1) + 𝒂𝜑 ∈ 𝐴𝜑 . By the linearity of 𝜑 ,
(𝒙 + 𝒂)𝜑 = (𝑎2, 𝒂𝜑1). Hence (𝑎2, 𝒂𝜑1) ∈ 𝐴𝜑 . In a similar manner, for each 𝒂 = (𝑎1, 𝑎2) ∈ 𝐴 and
𝒅 = (0, 0) ∈ 𝐷, there exist 𝒙 ∈ 𝐴 and 𝒚 = (0, 0) ∈ 𝐷 such that

(𝒂, 𝒂𝜑)𝜌−2 = (𝑎1 + Z + (𝑎2 + 𝒂𝜑2) 𝜌, 𝑎2 + Z , 𝑎1 + 𝒂𝜑1, 𝑎2 + 𝒂𝜑2) = (𝒙, 𝒙𝜑),

where Z = (𝒂𝜑1 + 𝒂𝜑2) 𝜌. We have 𝒙𝜑 = (𝑎1 + 𝒂𝜑1, 𝑎2 + 𝒂𝜑2) = (𝑎1, 𝑎2)+𝒂𝜑 ∈ 𝐴𝜑 . Exploiting
the linearity of 𝜑 , (𝒙 + 𝒂)𝜑 = (𝑎1, 𝑎2). Therefore (𝑎1, 𝑎2) ∈ 𝐴𝜑 . This result proves that 𝐴 ≤ 𝐴𝜑 .
Furthermore, considering the fact that |𝐴| ≥ |𝐴𝜑 |, and since we cannot guarantee the bijectivity
of 𝜑 , we obtain our first claim, namely 𝐴 = 𝐴𝜑 .

Having proved that (𝑎2, 𝒂𝜑1) ∈ 𝐴𝜑 = 𝐴, and considering 𝐴 as a subgroup of 𝑉 2 as presented
in (i) of Section 6.1, there exist 𝑥′ ∈ 𝐴′ and 𝑦′ ∈ 𝐷′ such that (𝑎2, 𝒂𝜑1) = (𝑥′, 𝑥′𝜑𝐴 + 𝑦′), which
implies that 𝑎2 = 𝑥′ ∈ 𝐴′. In like manner, for each (𝑎1, 𝑎2) ∈ 𝐴 we have that 𝑎1 ∈ 𝐴′. This result
proves our second claim that 𝑎1, 𝑎2 ∈ 𝐴′.

We will now fall on the previous lemma to present our principal result, which essentially is prove
that, generally speaking, the construction of the AES-like key-schedule generates a permutation
group with no block system, given that the key-schedule operator 𝜌 is induced by a permutation
𝜌 such that ⟨𝜌,𝑇𝑛⟩ has no block system. As earlier indicated, the proof is structured into multiple
steps and we will follow the approach outlined in the paragraph preceding Lemma 6.7.

6.2.1 Proof of Theorem 5.1

Assuming that ⟨𝜌,𝑇4𝑛⟩ is imprimitive, i.e. there exists a block systemU for ⟨𝜌,𝑇4𝑛⟩. Then, from
Lemma 2.16, the block system is characterized as being of the type

U =
{
𝑈 + ®𝑣 | ®𝑣 ∈ 𝑉 4} ,

where 𝑈 is a nontrivial and proper subspace of 𝑉 4. We have from Lemma 6.6 that 𝐷′′𝜌 = 𝐷′′,
which translates to mean that should𝐷′′ be a nontrivial and proper of𝑉 , then it is an imprimitivity
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block for ⟨𝜌,𝑇𝑛⟩, and there is nothing to prove. We will finalize the proof by tackling apart the
extreme cases, 𝐷′′ = 𝔽𝑛2 and 𝐷′′ = {0}.

D′′ = 𝔽 n
2 Recall from Equation 6.3 that for each 𝑑′′ ∈ 𝐷′′, (0, 0, 0, 𝑑′′) ∈ 𝑈 . Since 𝑈 is an

invariant subspace for 𝜌, it follows that

(0, 0, 0, 𝑑′′) 𝜌 = (𝑑′′𝜌,𝑑′′𝜌, 𝑑′′𝜌,𝑑′′ + 𝑑′′𝜌) ∈ 𝑈 .

But 𝑈 is a subspace, and so (0, 0, 0, 𝑑′′) + (𝑑′′𝜌, 𝑑′′𝜌,𝑑′′𝜌, 𝑑′′ + 𝑑′′𝜌) = (𝑑′′𝜌, 𝑑′′𝜌,𝑑′′𝜌, 𝑑′′𝜌) ∈ 𝑈 .
𝐷′′ = 𝔽𝑛2 implies that𝐷′′𝜌 = 𝔽𝑛2 . Since we have shown that for each𝑑′′𝜌 ∈ 𝐷′′, (𝑑′′𝜌,𝑑′′𝜌, 𝑑′′𝜌,𝑑′′𝜌) ∈
𝑈 , if we claim that 𝐷′′ = 𝔽𝑛2 , then for each 𝛼 ∈ 𝔽𝑛2 , 𝑣1 = (𝛼, 𝛼, 𝛼, 𝛼) ∈ 𝑈 . Note that 𝑣2 =

𝑣1𝜌
−1

= (𝛼, 0, 0, 0) ∈ 𝑈 , 𝑣3 = 𝑣2𝜌
−1

= (𝛼, 𝛼, 0, 0) ∈ 𝑈 and 𝑣4 = 𝑣3𝜌
−1

= (𝛼, 0, 𝛼, 0) ∈ 𝑈 . But
𝑣5 = 𝑣2 + 𝑣3 = (0, 𝛼, 0, 0) ∈ 𝑈 , 𝑣6 = 𝑣3 + 𝑣4 + 𝑣5 = (0, 0, 𝛼, 0) ∈ 𝑈 and 𝑣7 = 𝑣1 + 𝑣4 + 𝑣5 =

(0, 0, 0, 𝛼) ∈ 𝑈 . If we are considering every possible 𝛼 ∈ 𝔽𝑛2 , then 𝑣2, 𝑣5, 𝑣6 and 𝑣7 are all the
complementary vector subspaces of 𝑈 whose direct sum is the entire vector space 𝑈 = 𝔽 4𝑛

2 = 𝑉 4.
But this contradicts the fact that 𝑈 is a proper subspace of 𝔽 4𝑛

2 = 𝑉 4.

D′′ = {000} First, Let us prove that 𝐵′′ = {0} holds true in the case under discussion. Recall
from the general definition of 𝑈 = 𝑈𝜓𝐷 (cf. Equation 6.1 ) that really, 𝐵′′𝜑𝐷 ≤ 𝐷′′. But 𝐷′′
implies 𝐵′′𝜑𝐷 = {0}. Considering 6.2 and setting 𝒂 = 000 and 𝒅 = (𝑏′′, 𝑏′′𝜑𝐷) = (𝑏′′, 0) with
𝑏′′ ∈ 𝐵′′ ≤ 𝐴′′, it follows that (0, 0, 𝑏′′, 0) ∈ 𝑈 . Additionally, (0, 0, 𝑏′′, 0) 𝜌 = (0, 0, 𝑏′′, 𝑏′′) ∈ 𝑈 ,
hence (0, 0, 𝑏′′, 𝑏′′) + (0, 0, 𝑏′′, 0) = (0, 0, 0, 𝑏′′) ∈ 𝑈 . Consequently, (0, 0)𝜑 + (0, 𝑏′′) = (0, 𝑏′′) ∈ 𝐷,
and therefore there exists 𝑥′′ ∈ 𝐴′′ such that (0, 𝑏′′) = (𝑥′′, 𝑥′′𝜑𝐷). This means 0 = 0𝜑𝐷 = 𝑏′′,
hence 𝐵′′ = {0}. Since {0}′′𝜑𝐷 = {0}, we have also proved that 𝜑𝐷 : 𝐴′′ → 𝐶′′ is trivially an
isomorphism.

If we assign 𝒂 = 000, we obtain

(0, 0, 𝑎′′, 𝑎′′𝜑𝐷) 𝜌 = (𝑎′′𝜑𝐷𝜌, 𝑎′′𝜑𝐷𝜌, 𝑎′′ + 𝑎′′𝜑𝐷𝜌, 𝑎′′ + 𝑎′′𝜑𝐷 + 𝑎′′𝜑𝐷𝜌) ∈ 𝑈

and
(0, 0, 𝑎′′, 𝑎′′𝜑𝐷) 𝜌−3 = (𝑎′′𝜑𝐷𝜌, 𝑎′′𝜑𝐷𝜌, 𝑎′′ + (𝑎′′ + 𝑎′′𝜑𝐷) 𝜌, 𝑎′′ + 𝑎′′𝜑𝐷) ∈ 𝑈 .

As a result,

(0, 0, 𝑎′′, 𝑎′′𝜑𝐷) 𝜌 + (0, 0, 𝑎′′, 𝑎′′𝜑𝐷) 𝜌−3 = (0, 0, 𝑎′′𝜑𝐷𝜌 + (𝑎′′ + 𝑎′′𝜑𝐷) 𝜌, 𝑎′′𝜑𝐷𝜌)
= (𝒙, 𝒙𝜑 +𝒚),

for some 𝒙 ∈ 𝐴 and𝒚 ∈ 𝐷. Observe that (𝑎′′𝜑𝐷𝜌 + (𝑎′′ + 𝑎′′𝜑𝐷) 𝜌, 𝑎′′𝜑𝐷𝜌) ∈ 𝐷 , with meaning that
there exists 𝑥′′ ∈ 𝐴′′ such that 𝑎′′𝜑𝐷𝜌 = 𝑥′′𝜑𝐷 . So 𝑎′′𝜑𝐷𝜌 ∈ 𝐴′′𝜑𝐷 and since 𝜌 is a permutation,
𝐴′′𝜑𝐷𝜌 = 𝐴′′𝜑𝐷 . Having shown that𝜑𝐷 is an isomorphism, the last equality gives us that𝐶′′𝜌 = 𝐶′′.
If 𝐶′′ a subgroup of 𝑉 is nontrivial and proper, then we have found another imprimitivity block
for ⟨𝜌,𝑇𝑛⟩, thus proving our claim. Let us now tackle the extreme cases 𝐶′′ = 𝔽𝑛2 and 𝐶′′ = {0}
one after the other.

C′′ = 𝔽𝑛2 The reader should first notice that under this case, 𝐴′′ = 𝔽𝑛2 since we already
proved that 𝜑𝐷 is an isomorphism. 𝜑𝐷 transcends being just an isomorphism and it is in fact an
automorphism since it is an isomorphism and maps 𝔽𝑛2 to itself. If we set 𝒂 = 000, we obtain

(0, 0, 𝑎′′, 𝑎′′𝜑𝐷) 𝜌−1 = ((𝑎′′ + 𝑎′′𝜑𝐷) 𝜌, 0, 𝑎′′, 𝑎′′ + 𝑎′′𝜑𝐷) ∈ 𝑈 ,
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with (𝑎′′ + 𝑎′′𝜑𝐷) 𝜌 ∈ 𝐴′. Let 𝑆 def
= {𝑎′′ + 𝑎′′𝜑𝐷 | 𝑎′′ ∈ 𝐴′′}, then 𝑆𝜌 ≤ 𝐴′. Assume 𝑎 ∈ 𝐴′′ is in-

variant under the action of 𝜑𝐷 , i.e. 𝑎 +𝑎𝜑𝐷 = 0, then (0, 0, 𝑎, 𝑎𝜑𝐷) 𝜌−1 = (0, 0, 𝑎, 0). Consequently,
there exists 𝑥′′ ∈ 𝐴′′ such that 𝑎 = 𝑥′′ and 0 = 𝑥′′𝜑𝐷 . This implies that 𝑎𝜑𝐷 = 0 and since 𝜑𝐷 is
an isomorphism, 𝑎 = 0. We have thus proved that 𝟙 +𝜑𝐷 is injective, recalling that if the kernel of
a linear map is trivial, then the linear map is injective. As a result, 𝑆 = 𝔽𝑛2 , since 𝐴′′ = 𝔽𝑛2 . Since
𝜌 ∈ Sym(𝔽𝑛2 ), we have 𝔽𝑛2 = 𝑆𝜌 ≤ 𝐴′ ≤ 𝔽𝑛2 , and hence 𝐴′ = 𝔽𝑛2 .

We will now show that 𝐷′ = 𝔽𝑛2 . Let

𝑣0 = (0, 0, 𝑎′′, 𝑎′′𝜑𝐷) + (0, 0, 𝑎′′, 𝑎′′𝜑𝐷) 𝜌 = (𝑎′′𝜑𝐷𝜌, 𝑎′′𝜑𝐷𝜌, 𝑎′′𝜑𝐷𝜌, 𝑎′′ + 𝑎′′𝜑𝐷𝜌) ∈ 𝑈 ,

then for each 𝑎′′ ∈ 𝐴′′, we obtain

𝑣0𝜌
−1 + 𝑣0𝜌−3 = (0, 𝑎′′𝜌, 𝑎′′𝜑𝐷𝜌 + 𝑎′′𝜌, 0) ∈ 𝑈 ,

with (0, 𝑎′′𝜌) ∈ 𝐴 and 𝑎′′𝜌 ∈ 𝐷′. Equivalently, 𝐴′′𝜌 ≤ 𝐷′, and since 𝐴′′ = 𝔽𝑛2 and 𝜌 ∈ Sym(𝔽𝑛2 ),
we have𝐷′ = 𝔽𝑛2 , which proves our claim. Therefore, we have𝐴′ = 𝐷′ = 𝔽𝑛2 , and thus 𝐵′ = 𝐶′ = 𝔽𝑛2
since, by hypothesis, 𝐴′/𝐵′ � 𝐶′/𝐷′ (there exists an isomorphism between the quotient group
formed out of the cosets of 𝐵′ in 𝐴′ and the quotient group formed out of the cosets of 𝐷′ in 𝐶′).
This proves that 𝐴 = 𝔽 2𝑛

2 .
Let us now show that 𝐴 ≤ 𝐴𝜑 + 𝐷 ≤ 𝐶. See that for each 𝒂 = (𝑎1, 𝑎2) ∈ 𝐴, and setting 𝒅 = 000,

there exist 𝒙 ∈ 𝐴 and 𝒚 ∈ 𝐷 such that

(𝒂, 𝒂𝜑)𝜌−2 == (𝑎1 + Z + (𝑎2 + 𝒂𝜑2) 𝜌, 𝑎2 + Z , 𝑎1 + 𝒂𝜑1, 𝑎2 + 𝒂𝜑2) = (𝒙, 𝒙𝜑 +𝒚),

where Z = (𝒂𝜑1 + 𝒂𝜑2) 𝜌. By comparison,

(𝑎1 + 𝒂𝜑1, 𝑎2 + 𝒂𝜑2) = (𝑎1, 𝑎2) + (𝒂𝜑) = 𝒙𝜑 +𝒚 ∈ 𝐴𝜑 + 𝐷.

Rewriting the second-to-last equation, we have (𝑎1, 𝑎2) = (𝒙 + 𝒂)𝜑 + 𝒚. This implies that
(𝑎1, 𝑎2) ∈ 𝐴𝜑 +𝐷 , which proves that 𝐴 ≤ 𝐴𝜑 +𝐷 . Let us now show that 𝐴𝜑 +𝐷 ≤ 𝐶. Recall that
𝐴𝜑 and𝐷 are both subspaces of𝐶. Thus, it can be shown that𝐴𝜑+𝐷 = {𝒂𝜑+𝒅 | 𝒂𝜑 ∈ 𝐴𝜑, 𝒅 ∈ 𝐷}
is also a subspace of 𝐶, i.e. 𝐴𝜑 + 𝐷 ≤ 𝐶 in the notation of our work. Furthermore, note that
𝐶 ≤ 𝔽 2𝑛

2 . Consequently, from the chain of inclusions 𝔽 2𝑛
2 = 𝐴 ≤ 𝐴𝜑 + 𝐷 ≤ 𝐶 ≤ 𝔽 2𝑛

2 , we deduce
that 𝐶 = 𝔽 2𝑛

2 . As a result, we can conclude that 𝐷 � 𝔽𝑛2 , given that 𝐷′′ = {0} and 𝜑𝐷 is an
automorphism.

From 𝐴/𝐵 � 𝐶/𝐷, we can deduce that 𝐵 � 𝔽𝑛2 . Our claim is that 𝐵 = 𝐷. Let’s consider
Equation 6.2 with 𝒃 = (𝑏1, 𝑏2) ∈ 𝐵 ≤ 𝐴. Since we already have the relation 𝐵𝜑 ≤ 𝐷, we can
choose 𝒅 ∈ 𝐷 such that 𝒅 = 𝒃𝜑 . This allows us to derive the following expressions:

𝑣1
def
= (𝑏1, 𝑏2, 0, 0) 𝜌 = (𝑏1, 𝑏1 + 𝑏2, 𝑏1 + 𝑏2, 𝑏1 + 𝑏2) ∈ 𝑈 ,

𝑣2
def
= (𝑏1, 𝑏2, 0, 0) 𝜌−1 = (𝑏1, 𝑏1 + 𝑏2, 𝑏2, 0) ∈ 𝑈 .

Thus, we have 𝑣1 + 𝑣2 = (0, 0, 𝑏1, 𝑏1 + 𝑏2) ∈ 𝑈 . Since 𝐷′′ = {0}, we can conclude that:

𝑏1𝜑𝐷 = 𝑏1 + 𝑏2. (6.4)
Furthermore, we know that 𝑏1 ∈ 𝐴′′ = 𝐴′′𝜑𝐷 and 𝑏1 + 𝑏2 ∈ 𝐴′′𝜑𝐷 . Consequently, 𝑏2 ∈ 𝐴′′𝜑𝐷
as well. Since 𝐷′′ = {0}, we can express 𝐷 as: 𝐷 = {(𝑎′′, 𝑎′′𝜑𝐷) | 𝑎′′ ∈ 𝐴′′} . It is important to
observe that (𝑏1, 𝑏2) ∈ 𝐷, which can be equivalently stated as 𝐵 ≤ 𝐷 . Therefore, we can conclude
that 𝐵 = 𝐷.
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Let us show that a contradiction arises from this result. From Equation 6.2, setting 𝒂 = 0 and
𝒅 = (𝑏1, 𝑏2) ∈ 𝐵 = 𝐷, we obtain

𝑣3
def
= (0, 0, 𝑏1, 𝑏2) 𝜌−1 = ((𝑏1 + 𝑏2) 𝜌, 0, 𝑏1, 𝑏1 + 𝑏2) ∈ 𝑈 .

Additionally, 𝑣1 + 𝑣2 + 𝑣3 = 𝑣4
def
= ((𝑏1 + 𝑏2) 𝜌, 0, 0, 0) ∈ 𝑈 . Similar to the case when 𝐷′′ = 𝔽𝑛2 ,

through a few computations, we can find (0, 0, 0, (𝑏1 + 𝑏2) 𝜌) ∈ 𝑈 . This implies that (𝑏1 + 𝑏2) 𝜌 =

0𝜑𝐷 = 0, which leads to 𝑏1 = 𝑏2. However, based on Equation 6.4 and the isomorphism of 𝜑𝐷 , we
have 𝑏1 = 𝑏2 = 0, indicating that 𝐵 is trivial, which is a contradiction.

C′′ = {0} Based on the fact that 𝜑𝐷 is an isomorphism, we have 𝐶′′ = 𝐷′′ = 𝐵′′ = 𝐴′′ = {0},
which implies 𝐷 = {000}.

Next, we will prove that 𝐵 = {000}. From 𝐵𝜑 ≤ 𝐷 = {000}, we have 𝐵𝜑 = {000}. If (𝑏1, 𝑏2) ∈ 𝐵, then
(𝑏1, 𝑏2) 𝜑 = (0, 0) = 𝒅, and thus (𝑏1, 𝑏2, 0, 0) ∈ 𝑈 . Similarly to the previous case, we also have
(0, 0, 𝑏1, 𝑏1 + 𝑏2) ∈ 𝑈 , which means there exists 𝒙 ∈ 𝐴 such that (0, 0, 𝑏1, 𝑏1 + 𝑏2) = (𝒙, 𝒙𝜑). By
comparing the components, we find that (𝑏1, 𝑏1 + 𝑏2) = (0, 0), which implies (𝑏1, 𝑏2) = 0. This not
only proves that 𝐵 = {000}, but it also demonstrates that 𝜑 : 𝐴→ 𝐶 is an automorphism of𝐴 (cf. (1)
of Lemma 6.7). Furthermore, for each 𝒂 = (𝑎1, 𝑎2) ∈ 𝐴, we have (𝑎1, 𝑎2) 𝜑 = (𝒂𝜑1, 𝒂𝜑2) ∈ 𝐴𝜑 = 𝐴.
According to (2) of Lemma 6.7, 𝒂𝜑1, 𝒂𝜑2 ∈ 𝐴′, and therefore 𝒂𝜑1 + 𝒂𝜑2 ∈ 𝐴′ since 𝐴′ is closed
under addition. Consequently,

Im (𝜑1 + 𝜑2) = {𝒂𝜑1 + 𝒂𝜑2 | 𝒂 ∈ 𝐴} ≤ 𝐴′.
Note that 𝜑1 + 𝜑2 is surjective, since 𝜑 = (𝜑1, 𝜑2) is an invertible matrix. More precisely, it has
maximum rank, that is, the number of rows of (𝜑1, 𝜑2) coincides with the number of rows of
𝜑1 + 𝜑2. This means that Im (𝜑1 + 𝜑2) = 𝐴′. Now, for each 𝒂 = (𝑎1, 𝑎2) ∈ 𝐴, there exists 𝒙 ∈ 𝐴
such that

(𝒂, 𝒂𝜑)𝜌−2 = (𝑎1 + Z + (𝑎2 + 𝒂𝜑2) 𝜌, 𝑎2 + Z , 𝑎1 + 𝒂𝜑1, 𝑎2 + 𝒂𝜑2) = (𝒙, 𝒙𝜑) .
Thus, we obtain

(𝑎1 + Z + (𝑎2 + 𝒂𝜑2) 𝜌, 𝑎2 + Z ) 𝜑 = (𝑎1, 𝑎2) + (𝑎1, 𝑎2) 𝜑 ∈ 𝐴𝜑 = 𝐴,

where Z = (𝒂𝜑1 + 𝒂𝜑2) 𝜌. We have

(𝑎1 + Z + (𝑎2 + 𝒂𝜑2) 𝜌, 𝑎2 + Z ) 𝜑 + (𝑎1, 𝑎2) 𝜑 = (𝑎1, 𝑎2) =

= ((𝑎1 + Z + (𝑎2 + 𝒂𝜑2) 𝜌, 𝑎2 + Z ) + (𝑎1, 𝑎2))𝜑 = (𝑎1, 𝑎2) .
Hence, substituting back Z , we get

((𝒂𝜑1 + 𝒂𝜑2) 𝜌 + (𝑎2 + 𝒂𝜑2) 𝜌, (𝒂𝜑1 + 𝒂𝜑2) 𝜌) = (𝑎1, 𝑎2) 𝜑−1 ∈ 𝐴𝜑 = 𝐴. (6.5)

We infer from (2) of Lemma 6.7 that for each 𝒂 ∈ 𝐴, (𝒂𝜑1 + 𝒂𝜑2) 𝜌) ∈ 𝐴′, from which 𝐴′𝜌 = 𝐴′,
recalling that

Im (𝜑1 + 𝜑2) = {𝒂𝜑1 + 𝒂𝜑2 | 𝒂 ∈ 𝐴} = 𝐴′

and 𝜌 permutes 𝐴′. As before, we conclude the proof given that 𝐴′ is a non-trivial and proper
subgroup of 𝑉 , since by that we would have found an imprimitivity block for ⟨𝜌,𝑇𝑛⟩. Otherwise,
there are two situations that still need to be explored.
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A′ = 𝔽 n
2 Let us define

\
def
= 𝜑−1 =

(
\11 \12
\21 \22

)
and denote

\1
def
=

(
\11
\21

)
and \2

def
=

(
\12
\22

)
.

Examining the right-hand side of Equation 6.5, we obtain (𝒂\1, 𝒂\2). By comparing this with the
left-hand side of the equation, we arrive at the following expression:

(𝒂𝜑1 + 𝒂𝜑2) 𝜌 = 𝒂\2,

which implies that 𝜌 acts linearly on the set {𝒂𝜑1 + 𝒂𝜑2 | 𝒂 ∈ 𝐴} = 𝐴′ = 𝔽𝑛2 . However, this leads
to a contradiction because 𝜌, being a permutation, is not necessarily linear over the entire space 𝔽𝑛2 .

A′ = {0} First, this case implies that 𝐴′𝜑𝐴 = {0} since 𝜑𝐴 is a homomorphism, hence
necessarily a linear map. For each 𝑑′ ∈ 𝐷′, and setting 𝑎′′ = 0, there exists 𝑦′ ∈ 𝐷′ such that

(0, 𝑑′, 𝒅𝜑1, 𝒅𝜑2)𝜌−1 = ((𝒅𝜑1 + 𝒅𝜑2)𝜌, 𝑑′, 𝑑′ + 𝒅𝜑1, 𝒅𝜑1 + 𝒅𝜑2) = (0, 𝑦′,𝒚𝜑1,𝒚𝜑2),

where 𝒅 = (0, 𝑑′) and𝒚 = (0, 𝑦′). Hence (𝒅𝜑1+𝒅𝜑2)𝜌 = 0, from which 𝒅𝜑1+𝒅𝜑2 = 0. As a result,
by substitution, we have (0, 𝑑′, 𝑑′ + 𝒅𝜑1, 0) ∈ 𝑈 . Note that (0, 𝑑′, 𝒅𝜑1, 𝒅𝜑2) + (0, 𝑑′, 𝑑′ + 𝒅𝜑1, 0) =
(0, 0, 𝑑′, 𝒅𝜑2) ∈ 𝑈 , since both summands are in 𝑈 . This result implies that 𝑑′ ∈ 𝐴′′ for every
𝑑′ ∈ 𝐷′, which is equivalent to saying that 𝐷′ ≤ 𝐴′′ = {0}. Therefore, we conclude that 𝐷′ = {0}.
Since there exists an isomorphism between the quotient space𝐴′/𝐵′ and the quotient space𝐶′/𝐷′,
denoted as 𝐴′/𝐵′ � 𝐶′/𝐷′, and we have 𝐴′ = {0} and 𝐷′ = {0} as trivial, it follows that𝐶′ and 𝐵′
are also trivial, specifically 𝐶′ = 𝐵′ = {0}. In conclusion, we can deduce that 𝐴 = {000}. Finally,
considering that 𝐷 is trivial and 𝐴/𝐵 is isomorphic to 𝐶/𝐷 , it follows that both 𝐶 and 𝐵 must also
be trivial. However, this leads to the contradiction that 𝑈 is trivial.

Remarks

We proved our claim in Theorem 5.1 via contradiction that if ⟨𝜌,𝑇4𝑛⟩ generates an imprimitive
group, it reduces to obtaining that𝐷′′ (or𝐶′′ or𝐴′′ ) is an invariant subspace for 𝜌 . What we should
actually show is that we can construct a block system from 𝐷′′. Nevertheless, the computations are
almost the same and equally tiresome, so they have not been incorporated in this work. However,
the reader whose interest we have piqued may find the same results rewriting the proof of Theorem
5.1, obtaining that (𝐷′′ + 𝑣) 𝜌 ↦→ 𝐷′′ +𝑤 for some 𝑤 ∈ 𝔽𝑛2 .
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7 Conclusions

This study focuses on the group ΓAES = ⟨𝜌AES,𝑇128⟩, which is generated by the AES-128 key
schedule transformations. We have shown that no partition of the vector space 𝑉 4 = 𝔽 128

2 remains
invariant under the action of this group. However, when the composition of more rounds is
taken into account, the slow global diffusion of the operator is insufficient to free the schedule
transformation from invariant linear partitions. Specifically, by examining the subspaces _2 and
_4, it is observed that they possess proper and nontrivial invariant subspaces, which are a direct
sum of bricks of 𝑉 . Consequently, we can conclude that

〈
𝜌AES

𝑖,𝑇128
〉
is primitive if 𝑖 = 1 (which

essentially is this work), and imprimitive if 𝑖 ∈ {0, 2 mod 4} (see [27], Proposition 5.1] or [28]
and [3]).

Therefore, it should come as no surprise that 𝜌AES4 admits invariant subspaces like those
discovered by Leurent and Pernot [3], leveraging an algorithm introduced by Leander et al. [29].
One such example is the subspace 𝑈 ≤ 𝑉 4, defined as follows:

𝑈
def
= {(𝑎, 𝑏, 𝑐, 𝑑, 0, 𝑏, 0, 𝑑, 𝑎, 0, 0, 𝑑, 0, 0, 0, 𝑑) | 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝔽 8

2 }.
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