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Abstract 
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of the message space that is invariant under the action of TAES-
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14 I Introduction 

1 Introduction 
Many businesses and organizations use the Advanced Encryption Standard (AES), a popular 
encryption algorithm, to protect their data and communications. The four basic operations of 
the AES algorithm are SubBytes, ShiftRows, MixColumns, and AddRoundKey. The key schedule 
generates from the original secret key a sequence of round keys which are xor-ed in each round with 
the partially encrypted state by the AddRoundKey operation. Important cryptographic properties 
of the group generated by the AES-128 key schedule can impact the security and effectiveness of 
the algorithm. In this thesis, we investigate the group theoretical properties of this group and 
how they are related to the AES security of the algorithm. 

1.1 Review of Literature 
The results of Biryukov and Khovratovich in [1] underline the significance of the key schedule 
in the construction of safe block ciphers and offer a standard for assessing the security of block 
ciphers, including the AES algorithm. 

In [2], Boura et at. introduce new techniques and complexity analyses for impossible differential 
cryptanalysis, a block cipher attack.The authors present a novel formula for calculating the temporal 
complexity of an attack and show how the success of an attack depends on the key schedule of a 
cipher. Additionally, they demonstrate how to use numerous differentials to strengthen impossible 
differential attacks and how to combine it w i th other strategies. 

Leurent and Pernot recently made the discovery in [3] that there is an invariant subspace for 
the first four rounds of the AES-128 key schedule despite the fact that the subject of cryptanalysis 
on AES-128 dates more than two decades. They were able to represent the key schedule as 
four distinct actions on each of the round key's four 4-byte-word components as a result of their 
discovery. Despite the fact that this discovery solely pertains to the key schedule, it has been 
uti l ized to strengthen already established differential attacks by revealing subspace structures 
that interact wi th related structures in the main round function, creating security vulnerabilities. 
This emphasizes how critical it is to understand the key schedule in order to comprehend the 
security of the AES-128 cipher. 

In the cryptanalysis of several ciphers, including PRINTcipher and reduced-round AES, ap­
proaches like invariant subspace and subspace trail cryptanalysis have been used to take advantage 
of subspaces that are invariant under encryption functions [4, 5, 6]. The imprimit iv i ty attack, 
which targets block ciphers similar as DES [7], takes advantage of the fact that the encryption 
preserves a full partition of the message space, specifically a linear partition created by the cosets 
of a proper and non-trivial invariant subspace. Whi le it is typically difficult to demonstrate the 
absence of invariant subspaces, group-theoretical arguments that demonstrate how a specific 
group containing the encryption functions acts primitively on the message space can be used to 
demonstrate the absence of invariant linear partitions after one round. 

1.2 Organization of The Thesis 
The structure of this thesis is as follows: in Section 2, we provide an overview of the algebraic 
and mathematical concepts that provide a rigorous mathematical basis for our study of the AES-
128 key schedule's group theoretical properties. Section 3 provides background on cryptography, 
including the difference between symmetric and asymmetric encryption, and focuses on symmetric 
cryptography and block ciphers. It specifically discusses AES and its key schedule. In Section 4, we 
introduce the notation and initial results, and provide an algebraic representation of the AES-128 
key schedule and its corresponding permutation group. The reduction of the primit iv i ty of the 
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AES-128 key schedule (Theorem 5.1) and its application to AES (Corollary 5.6) are presented 
in Section 5 as the main results of the thesis. We presents the proof of Theorem 5.1, ut i l i z ing 
Goursat's lemma, in Section 6. The concluding remarks of the thesis are presented in Section 7. 
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2 Algebraic Background 
Modern cryptography relies heavily on algebraic and mathematical structures, especially in the 
design and analysis of cryptographic algorithms. The Advanced Encryption Standard (AES) is a 
commonly used symmetric-key encryption algorithm that provides robust security guarantees by 
combining substitution and permutation operations. The algebraic and mathematical properties of 
the AES-128 key schedule, which generates the round keys used in the encryption and decryption 
process, have been widely studied. 

In this section, we w i l l provide an overview of the algebraic and mathematical concepts 
that provide a rigorous mathematical basis for our study of the AES-128 key schedule's group 
theoretical properties. See [8, 9 ,10 ,11 ,12 ] as references for the concepts and definitions discussed 
throughout this section. 

Definition 2.1 (Vector Space). A vector space defined over a field F (whose elements are called 
scalars) is a non-empty set V (whose elements are called vectors) together w i th two binary 
operations namely vector addition (+) and scalar multiplication (•). 

• (+) : (u,v) e V x V — > u + v e V 

• (•) : (a, u) G K x V —» a • u e V 

To have a vector space, the operations of vector addition and scalar multiplication are subject to 
the following vector axioms for every u, v, w e V, and a and /? e F. 

1. u + (v + w) = (u + v) + w 

2. u + v = v + u 

3. There exists the zero vector 0 e V, such that V+ 0 = v V v e V 

4. For every v e V, there exists its additive inverse - v such that v + (-v) = 0 

5. a{fi\) = a/3(v) 

6. l v = v, where 1 is the multiplicative identity in F 

7. a(u + v) = au + a\ 

8. (a + j5)x = a v + /?v 

An example of a vector space is GF{2)n, a vector space over a Galois field F2, and of size 2™, whose 
elements are binary vectors of length n e N, and the operations of vector addition and scalar 
multiplication are performed in the binary field F 2 (integer modulo 2). 

Definition 2.2 (Groups). A group is a pair (G, o) consisting of a non-empty set G and an operation, 
here donated by o, defined on its elements. 

o (a,b) e G x G ^ ao b e G 
For the pair (G, o) to qualify as group, the operation o must fulfil l the following conditions. 

• closed: V a , k G : a o b £ G 
• Associativity: V a,b,c e G : (a o b) o c = a o (bo c) 
• Neutral element: Be e G,Va e G : a o e = e o a = a 
• Inverse elements: V a G G , 3b e G \ a o b = b o a = e 

A group is said to be finite i f the cardinality of G, denoted as \G\, is finite. 
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Definition 2.3 (Subgroup). A subset H of a group G is a subgroup if and only if H is a group 
with respect to the group operation of G. That is, H is closed under the group operation and the 
identity element of G is present in H, and every element in H has its inverse in G, which is also 
an element of H. 

Definition 2.4. (Cosets) Let (G, o) be a group and H be a subgroup of G. For every x G G, the 
subsets 

xoH={geG\g = xoh for some h e H} 

and 

H o x = { g e G | g = / i o x for some h e H} 

of G are called the left coset and right coset of H respectively. 

Typically, j o H ^ H o x , We say that H is a normal subgroup when this equality holds. 

Observe that G is the disjoint union of al l the cosets (left and right) of H. 

G = (J x o H. 
xeG 

G = [ j H o x . 
XEG 

Definition 2.5 (Symmetric group). L e t X denote a non-empty set. Abijective mapping a : X —> X 
wi l l be called a permutation of X . The group whose elements are all the bijections from X to itself, 
and whose group operation is the composition of functions is called a symmetric group of X. 

Notably, the symmetric group acting on F£ is the set of all bijective functions that map every 
binary vector in F™ to a unique vector in that form a group under the operation of composition 
of these bijective functions. 

Definition 2.6 (Translation group on F" ) . A group of transformations that translate the elements 
of F£ by a fixed binary vector in F™ is referred to as the translation group on F£. 

More precisely, given any binary vector x and a fixed vector v both in F£, we have the transfor­
mation Tv : x G F™ —» x + v G F^ is a translation of F£. 
The set of al l such transformations Tv, w i th v ranging over al l binary vectors G F™, form a group 
under the operation of function composition, and is called translation group of F™. 

Definition 2.7 (Group of affine permutations of F" ) . A n affine permutation of F™ is a bijective 
map £ : F™ —> F™ represented as T(x) = Ax + b. A is a non-singular n x n matrix over F 2 , & is a 
fixed vector in F£, and x an arbitrary vector in F™. 
The set of such transformations E, with A ranging over all non-singular n x n matrices over the field 
F 2 and b over all vectors G F™, that form a group under the operation of function composition, is 
referred to as the group of affine permutations of F^, which essentially is a subgroup of Sym(F™). 

Definition 2.8 (Group of linear permutations of F" ) . We say that a permutation / of F™ is linear 
if f(x + y) = f(x) + f(y) for every x, y in F£. While every vector in F^ can be uniquely mapped 
to another vector in F™, the operations of vector addition and multipl ication by scalars over F 2 

are preserved. The set of al l such permutations forming a group under function composition is 
called the general linear group of F£. In particular there w i l l be a non-singular matrix A over F2 

such that f(x) = Ax. So this group is a subgroup of the affine group of F™, hence a subgroup of 
Sym(F 2"). 
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Definit ion 2.9 (Group homomorphism). Let (G, *) and (H, o) be two groups. A function / : G —> 
H such that f(x * y) = f(x) o f(y) is called a group homomorphism. 

Def init ion 2.10 (Group isomorphism). A n isomorphism is a homomorphism that is injective and 
surjective. In other words, an isomorphism is bijective homomorphism. 

Def init ion 2.11 (Group automorphism). Let G be a group. A n isomorphism from G onto itself is 
called an automorphism of G. 

Definit ion 2.12 (Partition of a set). A partition P of a set X is the collection of non-empty subsets 
of X such that every subset of X is in exactly one of the elements in P. In particular, X = UyepY 
and Yi n Y2 = 0 if Y\ + Y2. P is said to be a trivial partition of X if P = {X} or P = {{x} | x G X } . 

Def init ion 2.13 (Transitive group). Let G be a group and let X be a non-empty set. Then G acts 
on X if there is a function • : G x X —> X that satisfies the following two conditions: 

1. gi • (g2 • x) = (gig2) • x V g\,g2 € G and x £ X 
2 . I G • x = x for all x e X 

If G acts on X , then we say that G acts transitively on X if for any two elements x, y G X , there 
exists a g G G such that g • x = y. 

Def in i t ion 2.14 (Invariant partition). A n invariant partit ion is a partition of a set that is pre­
served by a group action. More formally, let G be a group acting on a set X . A partition 
P = {Pi,P2,.. .,Pk} of X is said to be G-invariant or an invariant partition if, for any g G G 
and i G 1,2,... ,k, we have yP; = {gp \ p G P J = P/, for some _/ G { 1 , 2 , . . . , fc}. In other words, 
the partition remains the same under the action of any element of the group. 

For example, consider the group G = {1 , - 1 } acting on the set X = RL\{0} of real numbers 
by multipl ication. The set X can be partitioned into two subsets, X I = { X G X | X > 0 } and 
X 2 = { X G X | X < 0 } . This partition is G-invariant, since gX\ = X\ and gX2 = X2 i f g = 1, and 
gX\ = X2 and gX2 = X\ if g = - 1 . 

Any non-trivial and G-invariant partition P of X is called a block system for G . In particular 
any X ; € P is called an imprimitivity block. The group G is primitive in its action on M (or G acts 
primitively on M) if G is transitive and there exists no block system. Otherwise, the group G is 
imprimitive in its action on X (or G acts imprimitively on X ) . 

Lemma 2.15. If T is a transitive subgroup of G, then a block system for G is also a block system for 
T. 

Proof. (See pages 8 and 1 2 of [ 1 3 ] for idea of proof.) Let G be a group and T be a subgroup of G 
that is transitive on the set X . Let P = {Pi, P2,..., P^} be a block system for G. 

We want to show that P is also a block system for T by showing that if P is preserved by every 
element in G, then it is also preserved by every element in T. 

If P is a block system for G, then for any g e G and any element x e X , i f x and y e P/, for 
some i G { 1 , 2 , . . . , k}, then gx and gy G P;-, for some j G { 1 , 2 , . . . , fc}. 

Since T is transitive on X , for any x and y G X , there exists a t s T such that fx = y. Thus, if 
x and y G Pi} for some i e { 1 , 2 , . . . , k}, then fx and fy G Pj, for some j £ { 1 , 2 , . . . , k}, since !P is 
preserved by every element of G, including t. Therefore, P is also a block system for T. • 

L e m m a 2.16. Let M be a vector space over F2 and T its translation group. Then T is transitive and 
imprimitive on M. A block system 14 for T is composed by the cosets of a non-trivial and proper 
subgroup U of (M, +), i.e. 

1/ = {U + v | v G M } . 
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Proof. The idea of this proof follows from the notion of transitivity of group action, and block 
system discussed earlier. 

1. Transitivity: Since T is the translation group of M, for any two vectors u and v in M, there 
exists a translation t in T such that t(u) = v. Hence, T acts transitively on M . 

2. Imprimitivity: Let U be a non-trivial and proper subgroup of (M, +). Then the cosets of U 
form a partition of M , and each coset U + v is a translate of U by v. Since the translation group T 
acts transitively on M , it also acts transitively on the set of cosets of U. T is imprimitive on M 
since we can also extract an invariant partition 1i of M given by the cosets of U under the action 
of T. i.e. for any t e T and v e M , f (1/ + » ) e 1 / . 

3. Block System: Since 1i is an invariant partition of M under the action of T, it is a block 
system for T, whose blocks are the cosets {U + v \ v e M}. • 

A l l through this work, the block system w i l l be a linear partition. Given a vector space X over 
a field F and G, a group of linear transformations of X, an invariant linear partition of X under 
the action of G can be used to decompose X into a direct sum of G-invariant subspaces. 
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3 Cryptographic Background 
This section w i l l cover the background of cryptography, including an explanation of what it is, a 
comparison of symmetric versus asymmetric encryption, and a focus on symmetric cryptography. 
A general review of block ciphers, including iterated block ciphers, w i l l also be given before we 
delve deeper into the widely used block cipher AES. We w i l l talk specifically on AES in general 
and its key schedule. 

3.1 Brief Background and Overview of Cryptography 
Cryptography is essentially the practice of secure communication amidst adversarial behaviour. 
Cryptography dates as far back as ancient civilizations, where secret messages and codes were 
used for secure communication. In contemporary times, cryptography has become crucial in 
securing internet communication, as well as ensuring secure financial transactions and protecting 
national security. It involves using a set of rules that define how a message is transformed from its 
original form into a form that appear unintelligible to everyone but the intended recipient. This 
set of rules is referred to as a cryptographic algorithm. The message in its original form is called 
the plaintext whilst the disguised message is called the cyphertext. The process of converting a 
plaintext into a ciphertext is known as encryption, whereas that of recovering a plaintext from a 
ciphertext is known as decryption. 

With a block diagram, the encryption and decryption process can be described as follows: 

Encryption & Decryption 

Plain Text Encrypted Text Plain Text 

Figure 3.1: Block Diagram Encryption and Decryption process 

The most widely used cryptographic algorithms are symmetric (secret key) cryptography, 
asymmetric (public key) cryptography, and hash functions. We w i l l discuss only symmetric and 
asymmetric cryptography w i th a rather much focus on the former. Before we do that, let us 
introduce the following definition [14]. 

Definition 3.1 (Cryptosystem). A cryptosystem is a tuple (P, CK, S, D), where: 

• P is the finite set of possible plaintexts, called plaintext space. 
• C is the finite set of possible ciphertexts, called ciphertext space. 
• 7C is the finite set of possible keys used for encryption and decryption, called key space. 
• S is the encryption function that maps plaintexts and keys to ciphertexts. Mathematically, it is 

given by 8 : P x % - » C . 
• D is the decryption function that maps ciphertexts and keys to plaintexts. Mathematically, it is 

given by £>: Cx<K^P. 

S and P must satisfy the following: 
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• For any plaintext p eP and key k e9C, D(8(p, k), k) = p. 
• For any key k e <K, it should be computationally infeasible to recover the plaintext p from the 

ciphertext £>(p, k) without knowledge of the key k. 

Let us now discuss the asymmetric and symmetric cryptographic algorithms. 

3.2 Assymetric Cryptography 
In this section we mainly refer to [15]. In asymmetric cryptography, different encryption keys 
and decryption keys are used. The decryption key is kept secret for its own use and is referred to 
as a private key, whereas the encryption key may be made available to the general public and is 
referred to as a public key. The privacy of the used private key is crucial to the algorithm. This 
algorithm is also known as the public-key algorithm, since the term "public­key" resounds the idea 
that encryption key can be publicized while the decryption is kept private. 

Asymmetric algorithms typically use much longer key sizes compared to the secret key in 
symmetric algorithms. Due to the mathematical complexity involved in the key generation and 
encryption/decryption processes, asymmetric algorithms take longer to execute than symmetric 
algorithms. 

A n asymmetric algorithm in the encryption and decryption process can be mathematically 
represented, using the notation introduced in Definition 3.1, as follows: 

• Encryption: &{p,k\) = c 
• Decryption: D(8(p, k{), k2) = p, 

where k\ is the public key and k2 is the the private key. Examples of asymmetric cryptosystems 
include RSA, Diffie­Hellman, and Elliptic Curve Cryptography (ECC). 

With a block diagram, the asymmetric algorithm can be described as follows: 

Receiver's 
public key 

Plain text 
Encryption 

Ciphertext 

Receiver's 
přival e key 

f 

Decryption Decryption 
Original text 

- > 

Figure 3 . 2 : Asymmetric Encryption 

Let us now introduce symmetric cryptography. 

3.3 Symmetric Cryptography 
In this section we mainly refer to [16]. Symmetric key cryptographic algorithms are the funda­

mental blocks upon which any secure systems which demand high sense of secrecy are built. In 
these kinds of cryptographic algorithms, unlike asymmetric algorithms, the same key is used for 
both encryption and decryption. Practically, it can thought of a a safe­box where messages can 
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be kept, locked and delivered to the other party. The safe-box can be opened and its content 
read by the other party if they possess the key to its lock. The security of this algorithm is solely 
dependent on the private key, known only to the communicating parties involved in the exchange 
of messages. The fact that the secret key is kept private between the communicating parties, 
and is not shared wi th anyone else lends symmetric cryptography the interchangeable name of 
private-key cryptography. 

Since symmetric key algorithms are used to encrypt large amounts the data, they have to run 
at high speeds or at least at the bandwidth of the communication channel so as not to cause a 
bottleneck. There has been extensive research aimed at increasing the efficiency of symmetric key 
cryptography without compromising its security. 

The symmetric algorithm in the encryption and decryption process can be mathematically 
represented, using the notation introduced in Definition 3.1, as follows: 

• Encryption: S(p,k) = c 
• Decryption: D(S(p,k),k) = p, 

where k is the private key used for both encryption and decryption. 
Wi th a block diagram, the symmetric algorithm process can be described as follows: 

plaintext Encryption 
Algorithm 

ciphertext 

Unreadable 

Decryption 
Algorithm 

plaintext 

Figure 3.3: Symmetric Encryption 

Symmetric key algorithms are mainly divided into two categories: stream ciphers and block 
ciphers. In stream ciphers, the plaintext is a binary string, and the ciphertext results from a 
bit-wise addition modulo 2 of the plaintext w i th a pseudorandom binary sting called keystream. 
Since this work prioritizes block ciphers, we employ the reader to refer to [17] for far-reaching 
details about stream ciphers. 

3.3.1 Block Ciphers 

A block cipher is a type of symmetric encryption algorithm that operates on fixed-length group of 
bits called blocks. The input plaintext is split into fixed-sized blocks, and each block is independently 
encrypted using a secret key. The final encrypted message is created by combining the resulting 
ciphertext blocks. Because this work has got to do with the Advanced Encryption Standard (AES), 
which we w i l l formally introduce later in the work, we note that the plaintext space coincides 
w i th the ciphertext space, i.e. P = C = F£, w i th n a positive integer. The key space is given by 
7C = Fl

2, w i th / a positive integer, (cf. Definition 3.1). 
Using the notation of Definition 3.1, let us introduce the definition of an algebraic block cipher 

[18]. 
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Definition 3.2 (Algebraic Block Cipher). Let S be an encryption function and let D be a decryp­
tion function 

S(P,<K),£>(C,<K) : F 2
n x F j - » F 2

n. 

For any k e F 2 , we denote by Sk and the functions 

S f c : F 2 " ^ F 2 " , 8k(P) = 8(P,k). 

£ > f c : F 2
n ^ F 2

n , Dk(C)=D(C,k). 

We say that £ is an algebraic block if & k is a permutation of F™ and D = Each key selects 
one permutation from the set of 2" ! possible permutations. 

Modern block ciphers are often iterated ciphers that involve sequences of permutations and 
substitution operations to obtain the needed security. In fact, following Shannon's ideas and 
proposals from his landmark paper [19], the encryption process starts w i th a random key and 
plaintext as input and proceeds through N identical rounds. In each round (with the possible 
exception of a few, which may somewhat differ) the iterated ciphers perform a non-linear substi­
tution operation on disjoint parts of the input, an undertaking aimed at providing confusion. This 
is followed by a permutation (typically a linear or an affine transformation) on the whole partially 
encrypted input data, that provides diffusion. A cryptosystem reaches confusion if the relationship 
between the plaintext and ciphertext is extremely obscure. Diffusion refers to the property of 
spreading the influence of one plaintext symbol over many ciphertext symbols. This implies that 
even little modifications to the plaintext w i l l have a large impact on the ciphertext. With "iterated" 
we mean that the encryption function is composition of other permutations of the plaintext space, 
called round functions. The round function is formed by the operations carried out in a round. 
The round function at the i-th round (1 < i < N) takes as input both the output of the ( i - l ) - th 
round the round key kSl\ which is constructed starting from the master key k e % = F 2 , also 
called the cipher key. The key schedule is a public algorithm that constructs N + 1 round keys 
(fc<°>,lfc<1>,...,fcw). 

3.3.2 Substitution Permutation Networks (SPNs) 

There are several types of block ciphers, each having its own strengths and weaknesses, and the 
choice of which cipher to use depends on requirements of the application. Among these types of 
block ciphers are the two principal types: Substitution Permutation Networks (SPNs) and Feistel 
ciphers. The difference between a typical round of these two is that in the latter, the input data 
of a round is split into two equal halves, and a non-linear function performs substitution and 
permutation operations on one half of the data at a time. The other half of the data and the output 
of the non-linear function are then xor-ed, the halves are swapped, and the procedure is repeated 
for the next round, as opposed to SPNs that use a combination of substitution and permutation 
operations on the entire input block at once. 

Recalling that our work is about AES, we w i l l restrict our reach to only SPNs since the AES 
uses the SPN framework. We formally define an SPN block cipher as follows. 

Definition 3.3. Let F 2 = F| x • • • x F| and let £ : F 2 " x F ^ F 2 , w i th n = bt, be an algebraic 
^ ^ • 

t times 
block cipher wi th N rounds. Let k e F 2 be the master key and 

( f c < ° U ( 1 ) , . . . , f c w ) 
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the N + 1 round keys produced from k v ia the key schedule. & is an SPN block cipher if 

£>k(m) = rjv o T J V - I o . . . o ro (m) , m 6 F2" 

where 
TJ = akd) o o y w 

and 

• y ^ is a non-linear substitution; 

K ( 0 : F* - > F* 

m i ' r i ° ( m i ) " 

m f o . Y(
b
l) (mb) . 

where y s
W : F2t —> F2», for s £ {1,2, . . . , &}. 

• G AGL (F£) c Sym (F£), where AGL (F£) is the subgroup of the affine transformations of 

• ak(i) is the addition wi th the round key; 

aka) : F£ —> F 2 

m 1—> m © 

where © denotes the bitwise addition modulo 2 (XOR). 

3.4 Possible Attacks 
The brute force attack is one of the most natural strategies an attacker might employ to break 
a cryptosystem, which is a difficult process. This approach requires the attacker testing every 
key unti l they locate the right one, which can take some time. To prevent such assaults, modern 
cryptosystems are built to make it computationally impossible to guess the right key. Hence, the 
goal of cryptanalysis is to use a cryptosystem's weaknesses to access the contents of encrypted 
messages. 

The Kerckhoffs' principle, which presumes that the attacker is privy to cryptosystem being 
employed, is one of the presumptions made in cryptanalysis. Modern cryptography thus seeks to 
provide secure cryptosystems without hiding the algorithm that was used. 

The attack model in cryptanalysis defines the resources and information at the disposal of an 
adversary during an attack on a cryptosystem. Depending on the resources and information at the 
attacker's disposal, the power of the attack can be classified into distinct types, as follows [20]: 

• Ciphertext-only Attack (COA): This is the least powerful attack, in which the attacker can 
only access the encrypted messages and makes assumptions about certain characteristics of the 
plaintexts. A n example of attack under this model is the brute force attack. 

• Known Plaintext Attack (KPA): The attacker in a known-plaintext attack has access to some 
plaintext-ciphertext pairs. This information is used by the attacker to determine the encryption 
key, which can subsequently be used to decrypt other messages that were encrypted using the 
same key. A prominent cryptanalysis method that uses this attack model is linear cryptanalysis. 



3 Cryptographic Background 25 

• Chosen Plaintext Attack (CPA): In a chosen plaintext attack, the plaintext messages to be 
encrypted are selected by the attacker, who can then look at the accompanying ciphertexts. 
The ability to learn the encryption algorithm and determine the key used in the encryption 
process makes this kind of attack particularly powerful. A prominent cryptanalysis method that 
uses this attack model is differential cryptanalysis. 

• Chosen Ciphertext Attack (CCA): In this attack model, the attacker selects a ciphertext and 
recovers its corresponding plaintext v ia a decryption algorithm. In other words, the attacker 
can request that a ciphertext of his choice be decrypted and use the corresponding plaintext to 
gain insight about the encryption or secret key used. A prominent cryptanalysis method that 
uses this attack model is differential cryptanalysis on stream ciphers. 

• Related-Key Attack (RKA): In this model of attack, the attacker can gain access to the 
encryption or decryption of a message under related keys, which are keys that are generated 
from the original key in a specific way. A n RKA's objective is to obtain information about the 
master key by taking advantage of the relationship between the related keys. 

While the earlier discussed models of attack do a good job of capturing many realistic scenarios, 
they are not exhaustive, and advanced cryptanalysis techniques have been created to get around 
their l imitations. In these techniques, an attacker needs a combination of mathematical and 
puzzle-solving skills, plus luck. There are a few of these more advanced techniques which can be 
employed [21]: 

• Differential Cryptanalysis: In differential cryptanalysis one looks at ciphertext pairs, where 
the corresponding plaintexts have a particular difference. The exclusive-or of such pairs is 
called a differential and certain differentials have certain probabilities associated w i th them, 
depending on what the key is. By analysing the probabilities of the differentials computed in a 
chosen plaintext attack one can hope to reveal the underlying structure of the key. 

• Linear Cryptanalysis: Even though a good block cipher should contain non-linear compo­
nents the idea behind linear cryptanalysis is to approximate the behaviour of the non-linear 
components with linear functions. Again the goal is to use a probabilistic analysis to determine 
information about the key. 

• Algebraic Cryptanalysis: Using a set of algebraic equations to represent the encryption function, 
algebraic cryptanalysis is a potent method for breaking into cryptographic systems. A n attacker 
can decrypt communications or create new ones by solving these equations in order to obtain 
the secret encryption key. 

Surprisingly these two methods are quite successful against some ciphers. Both DES and AES 
are designed to resist differential cryptanalysis, whereas AES is designed to also resist linear 
cryptanalysis. 

3.5 ADVANCED ENCRYPTION STANDARD (AES) 

3.5.1 AES Selection Process 

The Advanced Encryption Standard was chosen in a five-year competition that was organized 
by NIST (National Institute of Standards and Technology) in 1997 to replace the outdated DES 
(Data Encryption Standard) encryption algorithm after it had become susceptible to some attacks, 
thus losing its security potency. In the end, the Rijndael algorithm, created by two Belgian 
cryptographers Joan Daemen and Vincent Rijmen, was chosen after a thorough review of 15 
candidate algorithms from around the world. In the international cryptography community, the 
AES selection procedure is regarded as a model of openness, transparency, and collaboration [11]. 



26 3 Cryptographic Background 

Rijndael was selected by NIST as the Advanced Encryption Standard for a number of reasons, 
including its high security margin, quick encryption/decryption speed, elegant structure, and 
suitability for effective software implementations on a wide range of computing platforms. The 
cryptography world praised Rijndael for its security, performance, and adaptability, and according 
to NIST, it displayed a strong security margin. Furthermore, compared to the other entries in the 
AES competition, Rijndael was a lot faster, making it a desirable choice for real-world applications 
[22]. 

3.5.2 Structure 

The Rijndael block cipher, which is defined by its specification, is a version of the AES. The 
fundamental distinction between the two is that Rijndael may accept any multiple of 32 bits with 
a minimum of 128 bits and a maximum of 256 bits, whereas AES can only handle a block length 
of 128 bits and key lengths of 128, 192, or 256 bits. AES uses one-dimensional arrays of bytes for 
input and output, with encryption producing ciphertext blocks from plaintext blocks and keys as 
inputs. Similar to encryption, decryption produces a plaintext block from an input ciphertext block 
and key. The AES, like every other block cipher, consists of a repetitive round transformation that 
operates on an intermediate result known as the state. The key length determines the number of 
rounds, which w i l l be indicated by Nr as shown in Table 3.1. 

Table 3.1: Key length and number of rounds for A E S 

Key length 

128 bits 10 

192 bits 12 

256 bits 14 

The state can be represented as by 4 x 4 matrix of bytes, w i th each byte representing a 
different element of the matrix. The plaintext block can be represented by popip2 • • - pis, where 
po represents the first byte and pis represents the last byte of the plaintext block. Likewise, a 
ciphertext block can be represented by C0C1C2 . . . c\s- Finally, let the state matrix be represented 
by 

S = (Sij)o<iJ<4, 

where Sjj denotes the byte in the ( i + 1) row and (j + l ) t h column. 

The following equation describes how the plaintext block is mapped into the state matrix 
during encryption process. 

stj = pi+4j, 0 < i < 4,0 < ; < 4. 

After encryption, each byte of the ciphertext is extracted from the state matrix following the 
equation; 

Ch = 5 / j m o d 4 , | > / 4 J > 0 < /l < 16, 

where [h/4\ denotes the largest integer less than or equal to 4. 
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The following equation describes how the ciphertext block is mapped into the state matrix 
during decryption process. 

sitj = ci+4J, 0 < i < 4,0 < ; < 4. 

After decryption, each byte of the plaintext is extracted from the state matrix following the 
equation 

Ph = Sh m o d 4 , | f c / 4 | > 0 < h < 16. 

Similarly, the key is mapped onto a rectangular array having four rows. The number of columns 
of the cipher key we w i l l denote by Njt, and is equal to the length of the key divided by 32. 

Let the bytes of keys be represented by z§z\Zi... z^k-i and the cipher key by 

K = kij, 0 < i < 4,0 < j < Nk. 

The key bytes are mapped into the cipher key according to: 

ktj = zi+4j, 0 < i < 4,0 < ; < JV f c. 

The matrix representations of the state key and cipher key for the case Njt = 4 are given, respectively, 
as: 

Po P4 P8 Pl2 zo z4 Z8 Zl2 

pi P5 P9 Pl3 Zl zs Z
9 Zl3 

P2 P6 PlO Pl4 Z2 Z6 ZlO Zl4 

p3 P7 Pll pis Z3 Zl Zll Zl5 

3.5.3 Encryption 
Adding an initial key to the input state is the first step in the AES encryption process. Next, a series 
of Nr - 1 round transformations are applied, w i th the final round being unique from the earlier 
rounds. The current state and a round key, which is created using the key schedule derived from 
the cipher key, are the only inputs required for each round. The SubBytes, ShiftRows, MixColumns, 
and AddRoundKey stages make up the round transformation. Because it skips the MixColumns 
step, the final round is atypical. 
Table 3.2 shows the steps of the AES encryption process for a 128-bit block size and a 128-bit 
cipher key. 
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Table 3.2: AES Encryption Process 

Round Input Key Transformation Output 

Initial Plaintext Cipher Key Key Addit ion State 

Round 1 State Round Key 1 SubBytes State' 
State' ShiftRows State" 
State" MixColumns State'" 
State'" AddRoundKey State1 

Round 9 State8 Round Key 9 SubBytes State8' 
State8' ShiftRows State8" 
State8" MixColumns State8"' 
State8"' AddRoundKey State9 

Final State9 Round Key 10 SubBytes State9' 
State9' ShiftRows State9" 
State9" AddRoundKey Ciphertext 

SubBytes 
The SubBytes step is a non-linear byte substitution that swaps out each byte of the state matrix 
for a corresponding byte from the S-Box, a fixed 256-element lookup table. AES employs two 
different types of S-Boxes, one for encryption and the other for decryption rounds, each of which 
is the inverse of the other. The S-Box used in the AES encryption algorithm is designed to have 
a simple mathematical structure, al lowing for a formal argument of the resistance of cipher to 
differential and linear cryptanalysis. The mathematical operations of AES are based on arithmetic 
in the finite fields F2s and F 2. The elements in the finite field F2s are represented as polynomials 
with coefficients in the field F 2 and a degree strictly less than 8. This means that each element of 
F28 may be expressed as a polynomial w i th binary coefficients (i.e., 0 or 1), and a degree of no 
more than seven. Arithmetic in F2s in the AES algorithm is performed using polynomial modulo 
the irreducible polynomial 

m(x) = x 8 + x4 + x3 + x + 1. 

Each byte s = [ S 7 , . . . , so] of the AES state matrix is taken in turn and considered as an element of 
F2s. Mathematically, the S-Box can be described in two steps: 

1. Compute the multiplicative inverse of s in F2s to produce a new byte x = [x-j,.. .,XQ]. However, 
for the element [0 , . . . , 0], wh ich has no multiplicative inverse, it is mapped to zero using a 
convention to maintain a one-to-one mapping between the input and output of the S-Box. 

2. After obtaining the bitvector x, it is mapped to another bitvector y using the following affine 
F 2 transformation: 

yo 1 0 0 0 1 1 1 1 x 0 1 

yi l l 0 0 0 1 1 1 X i 1 

yi l l 1 0 0 0 1 1 X2 0 

ys l l 1 1 0 0 0 1 *3 as 0 

y4 l l 1 1 1 0 0 0 X 4 0 

ys 0 l 1 1 1 1 0 0 1 

ye 0 0 1 1 1 1 1 0 x 6 1 

yi. 0 0 0 1 1 1 1 1 x 7 0 
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By first inverting the affine transformation and then taking the multiplicative inverse, the decryption 
S-Box is obtained. 

ShiftRows 
In the ShiftRows step, the bytes in each row of the state array are shifted cyclically to the left by a 
certain number of bytes. The first row is left unaltered, followed by a leftward shift of one byte, 
two bytes, and finally three bytes in the second, third, and fourth rows respectively. The inverse 
of the ShiftRows operation is simply the equivalent shift in the opposite direction. The ShiftRows 
operation helps to diffuse the input data and increase the security of the encryption algorithm. 
The matrix representation of the operation is given by 

so,i SQ,2 $0,3 so,i SQ,2 $0,3 
Sl,0 S U s l ,2 s l ,3 1—> s u s l ,2 s l ,3 Sl,0 
$2,0 s 2,l S2,2 $2,3 

1—> 
52,2 $2,3 $2,0 s 2, l 

53,0 s 3,l $3,2 $3,3 53,3 $3,0 s 3, l $3,2 

Let St j and s', represent the state bytes in position (i + l,j + 1) position before and after the 
ShiftRows operation. Then, mathematically, we have 

s

i J
 =  s

hj+i m o d 4> 0 < i, j < 3. 

MixColumns 
In the state matrix, the MixColumns operation makes sure that the rows interact with one another 
over a number of rounds, and when combined wi th the ShiftRows operation, it makes sure that 
each byte of the output state is dependent on each byte of the input state. The columns of the state 
are considered as polynomials over F2s and multiplied modulo x4 +1 with a fixed polynomial c(x). 
Conditions are placed on the coefficients of c(x) by the requirements for invertibility, diffusion, 
and performance [11]. The polynomial c(x) is given by 

c(x) = 03 • x 3 + 01 • x2 + 01 • x + 02, 

and is coprime to x 4 +1, hence invertible. Let s'-(x) = c(x) • s,(x) mod x 4 +1, where s ' (x), s,(x) 
J J J J 

G F2s are the polynomials generated by the (j + l ) t h columns of the state before and after the 
MixColumns operation respectively. Since modular multiplication with a fixed polynomial can be 
written as a matrix multiplication, we have 

02 03 01 01 
01 02 03 01 s i J 

4 , , 01 01 02 03 

h i 03 01 01 03 S

3J 

The above matrix is invertible in F2s, making it also possible to construct the inverse of the 
MixColumns operation using a matrix multiplication like the one above. 
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AddRoundkey 
The key addition is denoted AddRoundKey. In this transformation, the state is modified by 
combining it with a round key with the bitwise XOR operation, as given by the matrix representation 

so,i SQ,2 S0,3 ko,o fco,i ^0,2 ^0,3 
Sl,0 s l , l sl,2 s l , 3 ffl fci,o fci,i fcl,2 fcl,3 
$2,0 s 2 , l S2,2 $2,3 h,o ^2,1 fo,2 ^2,3 
$3,0 s 3 , l $3,2 $3,3 h,o ^3,1 ^3,2 ^3,3 

In each round h, 0 < h < Nr, of the encryption process, a round key whose length coincides with 
that of the block, is generated from the cipher key using the key schedule. The hth round key is 
composed of bytes k\h}, where i and j represent the position of the byte in the round key. The 
state of the cipher is represented by bytes s/j, where i and j represent the position of the byte in 
the state. After the AddRoundKey transformation is performed, the state is updated to s',., which 

is equal to the XOR operation of s/j and kfv. Mathematically speaking, we have 

s/
iJ = sij®k%), V i, j G {0,1, 2, 3}. 

3.5.4 Key Schedule 
In this section we present the general structure of the Key Schedule of AES. Then in Section 4 we 
give its algebraic representation. The key expansion and the round key selection make up the two 
components of the key schedule. The key expansion specifies how the ExpandedKey is derived 
from the cipher key. Since the encryption requires one round key for the init ial key addition and 
one for each round, the total amount of bits in ExpandedKey is equal to the block length multiplied 
by the number of rounds plus 1. During the key expansion the cipher key is expanded into a 
matrix of bytes, consisting of 4 rows and 4(Nr + 1) columns. We w i l l denote by W such matrix. 
The round key of the /1TH round, given that h 6 N is such that 0 < h < Nr, is given by columns Ah 
to Ah - 3 of W. 

The key expansion function depends on the value of A^: there is a version for Nk less than or 
equal to 6, and a version for greater than 6. In both versions of the key expansion, the first Nfc 
columns of W are filled wi th the cipher key. The subsequent columns are defined recursively in 
terms of previously defined columns. The recursion uses the bytes of the previous column, the 
bytes of the column Nk positions earlier, and round constants -RC[f], defined by a recursion rule 
in F2s, given below. 

RC[l] = l , 

RC[2] = x, 

RC[t] =x-RC[t-l] =xt~1, t>2. 

The behavior of the recursion function is determined by the position of the column in W. Suppose 
Nk < h < ANr and Wh e (F 2 s) 4 is the hth co lumn of W. When Nk < 6, the following Equation 
3.1 holds: 

Wh--

However, when Nk > 6, the following Equation 3.2 applies 

Wh-Nk © Wft-! i f f i g tO modAk 
Wh-Afc © Fh/Nk (Wh^) i f h = 0 modNk ' 
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Wh_Nk © Fh/Nk (Wh^) i f h = 0 mod N f c 

Wh-Nk © G (W^_!) if h = 4 mod Nk 

otherwise, 

where 

• {-Fr}re^ is the set of non-linear functions: 

FT : (F 2 s) 4 -

• G is the non-linear function: 

! ^ 
a3 

G : ( F 2 B ) 4 

a 2 

a 3 

04 

( F 2 B ) 4  

r ( a 2 ) © i ? C [ r ] 

yM 
yM 

+ ( F 2 B ) 4 

yM 
yM 
yM 
yM 

y is the AES S-Box. 

(3.2) 
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4 Preliminary Results and Model 
To begin, we w i l l provide some notation and init ial findings, and we w i l l commence by briefly 
reminding the definition of the AES-128 key schedule. The reader is encouraged to consult 
Daemen and Rijmen for a ful l discussion and comments on design decisions [11]. 

The AES-128 key schedule is an injective function e Sym ^ F ^ 2 8 ) , which starting from the master 
key, takes as input the previous round key and produces/releases as output the corresponding 
round key at each round of the encryption process. 
Below is the ith transformation of the AES-128 key schedule. 

e-

Figure 4.1: The ith transformation of the AES-128 key schedule 

Components of Figure 4.1 are given by: 

- X : F| 2 —» F^2 is a function that takes as input a 32-bit binary string (i.e., an element of the 
vector space F^2) and outputs another 32-bit binary string. It performs a left circular shift on 
the previous round key (RotWord operation). 

- y : F 8 —» F 8 is a function that takes as input an 8-bit binary string (i.e., an element of the 
vector space F 8 ) and outputs another 8-bit binary string. It represents a byte substitution 
operation that maps each byte input to a unique byte output. 

- ret G F 8 is an 8-bit binary string in F 8 . It is a round constant different in each round. 

Observe that the bits of the round key are split into four blocks, with four bytes making up each 
block. The bytes of the last block are shifted to the left by one position, resulting in the leftmost 
byte occupying the rightmost position. The newly bitwise arranged block is then transformed by 
the cipher's S-Box after which a round dependent counter is xor-ed to the first byte of the block. 
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After the transformation, the resulting output is xor-ed w i th the other three blocks of bytes, as 
depicted in Figure 4.1. 

Notation 

Throughout this work the following notations are used: n e Z + U { 0 } i s a non-negative integer 
and V = F 2 is an n-dimensional vector space over the finite field F 2. We write A < V i f A is 
a subspace of V, and the same notation is the case if A is a subgroup of V. 0 : V —> V is the 
nul l function on V i.e. it maps every element of V to the zero vector of V. Sym(V) denotes the 
symmetric group acting on V and 1 its identity. We use the notation xf to represent the output of 
the function / when it is evaluated at the input x, provided that / e Sym(F) and x G V. The 
group of translations on V is denoted by Tn. The group of affine permutations of V is denoted by 
AGL(V), while the group of linear permutations is denoted by GL(V). 

Naturally we w i l l think of n as the size of each block of 4 bytes, i.e. n = 32 bits. Fol lowing 
from this, V = F f , V2 = F 2

6 4, V3 = F 2
9 6, and V4 = F 2

1 2 8 . 
It is then easily noticeable that the key scheduling transformation, acting on al l four blocks of 
bytes i.e. V4 , is an element of Sym(V4). The translation group on V4 w i l l be denoted by T4n, 
where the translation o~(VliV2iV3ilH) e T4n acts on {x\, x2, x3, X4) e V4 as 

(xi, x2, x3, x4) 1 ^ ( 0 1 + Xi, v2 + x2, v3 + x3, v4 + x4). 

Note that the transformation done by the round counter of the AES-128 key schedule is an 
element of T4n. 

To make things easier to understand, we wi l l use different symbols for elements in V, V2, and V4. 
Specifically, we w i l l represent an element in V4 by adding an arrow above the symbol, like this: 
v G V4. A n element in V2 w i l l be denoted using bold symbols, like this: v = (v\, v2), in such a 
way that we have the following relation: 

v = (vi, v2) = (vi, v2, 03,04) G V4, 

where vt G V2 and v: G V for 1 < i < 2 and 1 < < 4. 

The key-schedule representation 
Let us now introduce the representation of the AES-128 key-schedule, given in [23], that allows 
us to provide an easy description of the subgroup of Sym (V4) which is the subject of this work. 
Let us start by defining the transformation acting on the last group of four bytes, as in Figure 4.1 

Definition 4.1. Let p AES represent the transformation of the last block of bytes before the addition 
w i th the round counter to the first byte in the block. This transformation is essentially the 
composition of functions A G Sym(V), and y' G Sym(V), i.e. 

def , , 
PAES = 

where y' • F^2 H-> F^2, (VI, v2, v3, v4) ^ (piy, v2y, v3y, v4y), w i th vt G F|. 
NB: PAES e Sym(V), (since Sym(V) is closed under the operation of function composition). 

The above transformation captures only the last block of bytes of the AES-128 key schedule. As 
a result, a more general description of the full transformation is given in the following definition. 
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V-

v-\+v4p 

p 

v^+v^+v^ v^+v9+v7l+v4p v^+v9+v7l+v4+v4p 

Figure 4.2: The key schedule operator induced by p 

Definition 4.2. Given p e Sym(V) , we define the operator p induced by p as the formal matrix 

( "\ "\ "\ "\ \ 
_ def 
P = 

\P P P 1 + P / 

acting on V4 as 

\ 

H-> (Vi + V4p, Vi+V2+ V4p, Vi + V2 + V3 + V4p, Vi+V2 + V3 

\P P P *+P J 
+ v4 + v4p), 

as corroborated by Figure 4.2. The inverse, p - 1 of the operator p acts on V4 as 

(oi, 0 2 . v3, v4) p - 1 1 ^ ( 0 1 + (t»3 + o 4 )p , 0 1 + o2> ^2 + 03» Y 3 + 0 4 ) • 

Observe that the map PAESC(7cj,rcj,7C7,?cj) t ightly corresponds to and represents the i th round 
key's transformation of the AES-128 key schedule (4.1), where Tel = (rcu 0,0,0) £ F^ 2 . 
°~(rci,rci,rci,rci) a c t S On 

(t»i + O 4 P A E S , 0 1 + ^2 + O 4 P A E S , Vi+V2 + V3+ V4pAES, Vi+V2 + V3 + V4 + V4pAES) 
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as 

( 0 1 + O4PAES, Vj + V2 + v4pAES, v1 + v2 + v3 + v4pAES, v1 + v2 + v3 + v4 + v4pAES) 1 > 

1-» (oi + y 4 p A ES + rci, 0 1 + o 2 + ^PAES + ^ , 0 1 + 0 2 + ^3 + *>4PAES + ^ , 0 1 + 0 2 + ^3 + ^4 + «4PAES + 
Reminding ourselves, the focus of this work is to study the group theoretical properties of 

the subgroup T < Sym(V 4 ) generated by maps of the type /?AESff(Jvi,m,rci,rct) f ° r e a c h admissible 
value ret G F| and show that it is primitive in the spirit of Lemma 2.16. Let us remark that T does 
not contain the whole translation group Ti2s- This is captured in the fact that each rci can admit 
only 2 8 elements G F^2 as opposed to the 2 3 2 elements making up whole vector space F 3 2 . Due 
to this, we need to extend T by assuming a rather general action of the round counter. 

Definition 4.3. We define the group 

TABS =F (p~AESCT(x,y,z,t) I (x,y,Z,t) G V4) . 

Notice the following facts. 

- LAES> which contains T, is the smallest subgroup of the symmetric group Sym(V 4 ) that contains 
both the whole translation group Ti2% and the transformation of the AES-128 key-schedule, 
when the correct round counter is chosen. 

- TAES = (PAES> T\2%) • 

Proof. By definition, pAEsO'{x,y,z,t) is in TAES for each (x, y, z, t) in V4 including (0,0,0,0) . Therefore 
PAESC(O,O,O,O) = PAES Id = PAES is in r A E s (where Id is the identity permutation). Since r A E s is a 
group and PAES is in r A E S , we have that PAES" 1 is also in TAES and PAES _ 1PAEsO"( w ,t ) = V(x,y,z,t) is 
in IAES for every (x, y, z, t) in V4. Hence, we have that both p AES and o~(x,y,z,t) are in TAES, and so, 
TAES = (PAES> ^128 ) • C 

Left to us is to establish the primitivity of IAES> with consequence that no partition which is a 
block system for TAES c a n be generated from any nontrivial and proper subgroup U < V4. 
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5 The primitivity of rAEs 
We w i l l prove the primitivity of LAES in this section, and while we are at it, we w i l l show that the 
transitivity of (p, T 4 n ) and nonexistence of a block system for (p, T 4 n ) reduces to the transitivity 
of (p, Tn) and nonexistence of a block system for (p, Tn) when ~p~ as presented in Definition 4.2 is 
bijective and not affine. 

Theorem 5.1 (Primitivity reduction). Let p e Sym(V )\AGL(V ) . If(p,Tn) is primitive on V, then 
(p, T^n) is primitive on V4. 

Before we delve into the proof, let us first prove that p = p AES satisfies the hypothesis of 
Theorem 5.1 (i.e. the group (PAES> T32) is primitive). To do so, the following definitions and the 
general notion of primitivity of substitution-permutation networks (SPNs) serve useful for us. 

Let us write n as the product of two positive integers s and b such that s and b are both greater 
than 1, i.e., n = s • b. We decompose the vector space V into a direct sum of b subspaces, denoted 
as Vi, V2,..., Vb, where each subspace VJ has dimension s. These subspaces are referred to as 
"bricks". The subspace V; is spanned by the canonical basis vectors es(,-_i)+i, e s ( i - i)+2, • • • > es(i-i)+s> 
where e\, e2, • • •, en are the canonical basis vectors of V. For PARS, n = 32, s = 8 and b = 4. 

Let us recall some useful notions from boolean functions [24]. 

Given the vector space F*, we refer to a function / : F™ —» F™, n, m e Z + as a vectorial 
boolean function or (n - m) function. In what follows in this work, we consider m = n. Given 

A 

/ : F* —» Fj, for each nonzero u e F ,̂ denote by xfu = xf © (x © u)f the derivative of / in the 
direction of u. 

Definition 5.2. We say that / is deferentially 5-uniform if for each nonzero u e F ,̂ 

This means that fu has an image w i th at least y distinct outputs. In other words, if we flip 
any nonzero input bit, the resulting output bits are uniformly distributed across all possible s-bit 
strings wi th high probability. 

Definition 5.3. / is said to be (5-anti-invariant if for any two subspaces W\ and W2 of F̂  such that 
Wif = W2, either d im(Wi ) = dim(V/ 2) < s - 5 or W1 = W2 = Fs

2. 

Intuitively, this means that if two subspaces of the input space of / have the same output under 
/, then either they have the same dimension and their dimension is less than s - 5, or they are 
the entire input space. This is a desirable property for cryptographic functions because it makes it 
difficult for an attacker to exploit any linear relationships between the input and output of the 
function. 

The notation that was presented earlier in this section is used to express the following theorem. 

Theorem 5.4. [24] Let f e Sym (F*) such that Of = 0, let F e Sym(7) be the function acting as f 
on each s-dimensional brick VJ of V and let A e GL( V). If no non-trivial and proper direct sum of 
bricks ofV is invariant under A and for some 2 < 8 < s - 1 the function f is 
-2s-differentially uniform, 
-(8 - 1)-anti-invariant, 
then (FA, Tn) is primitive 

It can be proved that (PAES> ^ 3 2 ) is primitive as a result of Theorem 5.4. 

Theorem 5.5. The group (PAES, ^ 3 2 ) < S y m ^ 2 ) is primitive. 
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Proof. [23] As Definition 4.1 has it, Let X e GL(V) and y' £ Sym(V) be the RotWord transforma­
tion and the S-Box SubBytes respectively. Essentially, it is widely recognized that the function y, 
up to affine transformations, fixes the zero element and sends every non-zero element into its 
multiplicative inverse in F2*. Such a function is 4-differentially uniform and 1-anti invariant. This 
means that it satisfies the premises of Theorem 5.4 for 5 = 2. It is worth noting that anti-invariance 
and differential uniformity remain unchanged under inversion and affine transformations. Thus, 
y'1 also satisfies the hypotheses of Theorem 5.4. We can easily verify that X does not leave any 
non-trivial and proper direct sum of bricks in V invariant. The same applies to A - 1 . By Theorem 
5.4, we know that ( ( y ' ) - 1 A - 1 , T 3 2 ) is primitive. Consequently, (Xy\ T 3 2 ) = (PAES>?32) is also 
primitive. 

• 
The conclusive statement that follows is obtained. 

Corollary 5.6. The group (PAES> 7i2s) < Sym (F^ 2 8 ) generated by the transformations oftheAES-
128 key-schedule is primitive. 
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6 The Primitivity Reduction - Proof of Theorem 5.1 
This section is completely dedicated to the somewhat technical proof of Theorem 5.1. Notwith­
standing its seeming intricacy, the (repeated) application of Goursat's lemma, as presented below, 
is a reasonable way to characterize any generic subspace U that is a candidate for a linear block. 

To demonstrate our outcome, we must identify a block system for V4, which is equivalent 
to f inding the set of cosets of a suitable subgroup of V2 x V2. We can achieve this by ut i l iz ing 
the following characterization of subgroups of the direct product of two groups, which involves 
identifying appropriate sections of the direct factors [25]. 

Theorem 6.1 (Goursat's lemma). Let G\ and G2 be two groups. There exists a bijection between 
(1) the set of all subgroups of the direct product G\ x G2, and 
(2) the set of all triples (A/B, C/D, f), where 

• A is a subgroup of G\, 
• C is a subgroup of G2, 

• B is a normal subgroup of A, 
• D is a normal subgroup of C, 
• \j/ : A/B —> C/D is a group isomorphism. 

Then, each subgroup of U < G\ x G2 can be uniquely written as 

U = U^ = {(a,c) £ Ax C \ (a + B)\j/ = c + D}. (6.1) 

Proof. See page 6 of [26] for an outline of the proof. • 

Note that the isomorphism \j/ induces a homomorphism <p : A —> C where a \—> a<p is such that 
(a + B)xj/ = a<p + D for any a £ A, and such that B<p < D. 
Such a homomorphism is not necessarily unique. In fact, i f \j/ is an isomorphism between A/B 
and C/D, then we can define a different homomorphism <p' as a<p' = c' where (a + B)\j/ = c' + D. 
This w i l l also satisfy the required properties, but may be different from <p. 

Corollary 6.2. Following the notation of Theorem 6.1, given any homomorphism cp induced by 
we have 

Uf = {{a, a<p + d) I a £ A,d £ D} 

Proof. Let (a, c) £ Uf. By definition of <p, {a + B)xj/ = c + D = acp + D. From a<p + D = c + D, we 
know that c and a<p are in the same coset of D. In other words, c £ a<p + D wh ich translates to 
mean that c = a<p + d for some d £ D, where d is the unique element of D that satisfies c = a<p + d. 
Conversely, i f a £ A and d £ D, then (a + B)xj/ = a<p + D = a<p + d + D. 

• 

6.1 Use of Goursat's Lemma 

Given a subspace U of V4 = V2 x V2, and motivated by Theorem 6.1 and Corol lary 6.2, we 
have that there exist A,B,C,D < V2 and an isomorphism \j/ : A/B —> C/D that induces an 
homomorphism <p : A —> C such that 

U = {(a, acp + d) \ a £ A, d £ D}. 

Without loss of generality, we can extend a basis of A to that of ¥ 2 n by adding vectors to the 
original basis of A to obtain a basis for the entire vector space ¥ 2 n , and we can choose any basis of 
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Ac and any basis of (Im(<p))c, where A° and (Im(<p))c are the complements of A in V2 and Im(<p) 
respectively, and then extend the function <p to a linear map that maps the basis elements of A° to 
the basis elements of (lm((p))c. 

Notice that <p can be arbitrarily defined from the basis of the complement A° of A to a basis 
of (lm((p))c: This means that we have some flexibility in defining how the linear transformation 
<p maps vectors outside of A to vectors in C as long as we do not interfere w i th the parts of the 
space that are already determined by A and <p, i.e. (Im(<p))c. In our case, we define <p to map 
the basis of A° to the basis of (lm((p))c. Note that any vector in A° can be expressed as a linear 
combination of the basis vectors of A°, and since <p is linear, it w i l l preserve this l inearity when 
mapping A° to (lm((p))c. Therefore, any mapping from A° to (Im(<p))c by <p can be expressed as 
a linear combination of the basis vectors of (lm((p))c. Hence, <p maps the entire A° to (Im(<p))c. 

Having extended <p on the whole space ¥ 2 n , the matrix representation theorem (i.e. every 
linear map between finite-dimensional vector spaces can be represented as a matrix) provides us 
wi th a matrix representation of <p as 

/ <Pll <Pl2 \ 
\ <P21 <P22 }' 

such that for each {a\, a2) £ A < ¥2n 

def 

a<p = (ai,a2) (p = (ai(pu + a2(p2i,ai<pi2 + a2(p22) = (afi,af2), 

where for 1 < i < 2 

- ( : : : ) • 
Applying again Goursat's lemma on A, D < V2, we obtain that: 

(i) there exist A', B', C, D' < V and q>A '• A' —> C an homomorphism such that 

A = {(a', a'<pA + d') \ a' e A', d' e D'}, 

(ii) there exist A", B", C", D" < V and <pD : A" C" an homomorphism such that 

D = {(a", d'cpr) + d") | a" e A", d" £ D"} . 

In the rest the work, whenever a subspace U is considered as the linear component of an 
invariant linear subspace, the above construction and notations w i l l be used, as w i l l be precised 
in the following. 
Definition 6.3. A subgroup U < V4 is a linear block for / £ Sym (V4) if for each v £ V4 there 
exists w £ V4 such that 

(U + v)f = U + w, 

where we can always choose w = vf. 

By virtue of Lemma 2.16, when we have found a linear block U for /, then the group (/, T 4 n ) 
is imprimitive where the block system of the group is constructed from the cosets of U. It is also 

worth noting that i f / £ Sym (V4) is such that 0f=0 and U < V4 is a linear block for /, then 
U is an invariant subspace for /, i.e. Uf Q U. From Definition 6.3 we have that 

(U + v)f = U + w =^> (U + v)f = U + vf 

=> Uf = U, choosing v = 0. 
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The last equality follows from the fact that / is bijective, i.e. for every u e U there exists a unique 
w G U such that uf = w. Expressing the relation Uf = U using the notation presented earlier in 
this section, we have that for every a in A and d in D, there exist x in A and y in D such that 

In the forthcoming results, we w i l l make significant use of Equation 6.2 when discussing 
functions wi th linear blocks without explicit reminder. 

6.2 Main proof of the thesis 
This section w i l l present the procedure for proving Theorem 5.1, and the notation established in 
Section 6.1 w i l l be uti l ized throughout the remainder of the work. To only make things simpler 
and no more, we assume without loss of generality that Op = 0, which is reasonable because every 
conceivable translation is examined in the group being studied (cf. Definition 4.3). 

The proof of Theorem 5.1 begins by assuming the presence of a l inear block (which in fact 
w i l l be an invariant subspace) for p and using it to find an invariant subspace for p. If such a 
subspace exists, it may be trivial or non-trivial. However, If a non-trivial subspace is found, our 
main claim follows directly from Lemma 6.6, which we w i l l prove in this section. The rest of the 
work w i l l focus on the remaining scenarios. 

Corollary 6.4. IfU<V4bea linear block for p G Sym (V4), then it is also an invariant subspace 
for p under our assumption that Op = 0. 

Proof See Definition 6.3 for what we mean by U < V4 is a linear block for p G Sym (V4). Setting 

v = 0, we have (U + 0)p = U + Op, but Op = (0,0,0,0) p = (Op, Op, Op, Op) = 0. Therefore, we 
have the relation \J~p = U, and consequently, U is an invariant subspace for p. • 

Corollary 6.5. U is a linear block for each element of (p) < Sym (V4) if it is a linear block for p. 

Proof. This follows directly from Lemmas 2.15 and 2.16. • 

Let us show that U is an invariant subspace for p - 1 when the relation Op = 0 holds. 
From Definition 6.3, setting v = 0, we have (U+typ'1 = U+Op'1, but Op " 1 = (0,0,0,0) p " 1 = 

(Op, 0,0,0) = 0. Hence, we have Up'1 = U wh ich concludes our c la im that U is an invariant 
subspace for p~ . 

The proof of the following result is taken from [23]. 

Lemma 6.6. Let p G Sym(F) and let U < V4 be a linear block for p. In the notation of Section 6.1, 
we have D"p = D". 

Proof. Since U is a linear block for p, setting a = 0 in Equation 6.2 and considering the description 
of D as a subgroup of V2 (cf. (ii) in Section 6.1), for each a" G A" and d" G D", we have 
(0,0, a", a"(pr> + d") G U. Also, since U is a linear block for each element of (p) < Sym (V4), we 
have (0,0,0, d") p = (d"p, d"p, d"p, d" + d"p) e U and (0,0,0, d") p " 3 = (d"p, d"p, d"p, d") e 
U when a" = 0. (Observe that 0<pr> = 0 follows from the linearity of <p). Therefore, we can 
conclude: 

Hence, there exist x G A and y G D such that (0,0,0, d"p) = (x, xcp + y). Consequently, x = 0 
and (0, d"p) = y G D. From (0, d"p) G D we have that there exist x" G A" and y" G D" such 
that (0,d"p) = (x",x"(pD + y"). This implies x" = 0 and d"p = y" G D", wh ich gives us the 
relation D"p = D", as desired, since p is a permuation, and therefore a bijective map. 

(a, acp + d)f = (x, xcp + y). (6.2) 

(d"p, d"p, d"p, d" + d"p) + (d"p, d"p, d"p, d") = (0,0,0, d"p) G U. (6.3) 

• 
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Lemma 6.6 is used to show that if (p, T 4 n ) is imprimitive, then it is possible to find an imprim-
itivity block for (p, T„). The first natural candidate for this block is D", inferring from Lemma 
6.6. The proof of Theorem 5.1 proceeds as follows: assuming that U is an imprimitivity block for 
(p, T 4 n ) , we use Lemma 6.6 to show that D" is a block for p. If D" is nontrivial and proper, then 
there is nothing more to prove. If D" = F™, we reach a contradiction, and if D" = 0, we show that 
C" is a block for p. Like before, the proof is completed when C" is nontrivial and proper and we 
reach a contradiction when C" = F£. In the remaining case when C" = {0}, we prove that A' is 
a block for p, and we exclude the extreme possibilities for A' by way of contradictions. We w i l l 
need the following lemma to prove our anticipated results in some of the above cases. Its proof is 
given in [23]. 

L e m m a 6.7. Let p £ Sym(V) and let U < V4 be a linear block for p. Following the notation of 
Section 6.1, if D = {0}, we have 
(1) A = Acp; 
(2) if (ai, a2) £ A, then a\, a2 £ A'. 

Proof. D = {0} means that U = {(a, acp) \ a £ A}. Since U is a l inear block for ~p, it is also is a 
linear block and in fact an invariant subspace for p - 1 as shown earlier. It follows from Equation 
6.2 that for each a = (a i , a2) £ A and d = (0,0) £ D, there exist x £ A and y = (0,0) £ D such 
that (a, acpfp'1 = (x,xf). This means that 

(ai, a2, a<pi, a<p2) p " 1 = (fli + (a<pi + a<p2) p, fli + a2, a2 + a<pi, a<pi + a<p2) = (x, x<p) 

By comparison, xcp = (a2 + acp\, acp\ + a<p2) = (a2, a<p\) + a<p £ A<p. By the linearity of f, 
(x + a)f = (a2, acpi). Hence (a2, acpi) £ A<p. In a similar manner, for each a = (a i , a2) £ A and 
d = (0,0) £ D, there exist x e A and y = (0,0) £ D such that 

(a, a<p)p~2 = (a i + I, + (a2 + a<p2) p, a2 + a\ + a<pi, a2 + a<p2) = (x, x<p), 

where ^ = (acpi + a(p2) p. We have x<p = (ai + a<p\, a2 + a<p2) = (a\, a2)+acp £ Acp. Exploiting 
the l inearity of cp, (x + a)<p = {a\, a2). Therefore {a\, a2) £ Acp. This result proves that A < Acp. 
Furthermore, considering the fact that \A\ > \Acp\, and since we cannot guarantee the bijectivity 
of cp, we obtain our first claim, namely A = Acp. 

Having proved that (a2, acpi) £ Acp = A, and considering A as a subgroup of V2 as presented 
in (i) of Section 6.1, there exist x' £ A' and y' £ D' such that (a2, acpi) = (x', x'cpA + y'), which 
implies that a2 = x' £ A'. In like manner, for each {a\, a2) £ A we have that a\ £ A'. This result 
proves our second claim that a\, a2 £ A'. • 

We wi l l now fall on the previous lemma to present our principal result, which essentially is prove 
that, generally speaking, the construction of the AES-like key-schedule generates a permutation 
group wi th no block system, given that the key-schedule operator p is induced by a permutation 
p such that (p, Tn) has no block system. As earlier indicated, the proof is structured into multiple 
steps and we w i l l follow the approach outlined in the paragraph preceding Lemma 6.7. 

6.2.1 Proof of Theorem 5.1 

Assuming that (p, T 4 n ) is imprimitive, i.e. there exists a block system 1i for (p, T 4 n ) . Then, from 
Lemma 2.16, the block system is characterized as being of the type 

1/ = {U + v | v £ V4} , 

where U is a nontrivial and proper subspace of V4. We have from Lemma 6.6 that D"p = D", 
which translates to mean that should D" be a nontrivial and proper of V, then it is an imprimitivity 
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block for (p, T„), and there is nothing to prove. We w i l l finalize the proof by tackling apart the 
extreme cases, D" = and D" = {0 } . 

D " = F 2
n Recall from Equation 6 . 3 that for each d" G D", ( 0 , 0 , 0 , d") G U. Since U is an 

invariant subspace for ~p, it follows that 

( 0 , 0 , 0 , d") p = (d"p, d"p, d"p, d" + d"p) e U. 

But U is a subspace, and so ( 0 , 0 , 0 , d") + (d"p, d"p, d"p, d" + d"p) = (d"p, d"p, d"p, d"p) G U. 
D" = F 2 implies that D"p = F 2 . Since we have shown that for each d"p G D", (d"p,d"p,d"p,d"p) G 
U, i f we c la im that D" = F 2 , then for each a G F 2 , v\ = (a, a, a, a) G U. Note that v2 = 

vip'1 = (a, 0 , 0 , 0 ) e U,v3 = v2~p~1 = (a, a, 0 , 0 ) G U and v4 = v-ip'1 = (a, 0 , a, 0 ) G U. But 
0 5 = v2 + v3 = ( 0 , a, 0 , 0 ) G U, VQ = v3 + v4 + vs = ( 0 , 0 , a,0) G U and v7 = v\ + o 4 + o 5 = 
( 0 , 0 , 0 , a) G U. If we are considering every possible a G F 2 , then v2, v5, and v7 are al l the 
complementary vector subspaces of U whose direct sum is the entire vector space U = F 2

n = V4. 
But this contradicts the fact that U is a proper subspace of F 2

n = V4. 

D" = {0} First, Let us prove that B" = { 0 } holds true in the case under discussion. Recall 
from the general definition of U = UfD (cf. Equation 6.1 ) that really, B ' V D ^ D". But D" 
implies B"(pD = {0 } . Considering 6 . 2 and setting a = 0 and d = (b",b"(pD) = (b",0) w i th 
b" G B" < A", it follows that ( 0 , 0 , b", 0 ) G U. Additionally, ( 0 , 0 , b", 0 ) p = ( 0 , 0 , b", b") G U, 
hence ( 0 , 0 , b", b") + ( 0 , 0 , b", 0 ) = ( 0 , 0 , 0 , b") G U. Consequently, (0,0)<p + ( 0 , b") = ( 0 , b") G D, 
and therefore there exists x" G A" such that ( 0 , b") = (x",x"(pn)- This means 0 = 0(pn = b", 
hence B" = { 0 } . Since {0}"<pD = {0 } , we have also proved that <pr) : A" —> C" is trivial ly an 
isomorphism. 

If we assign a = 0, we obtain 

< r\ r\ " " \ — { " II II , II II , II ,11 \ T T 
( 0 , 0 , a , a <PB) p = {a <PDP, a <PDP, a + # <PDP, a + a (po + a <PDP) G U 

and 
I'm n II II \ 3 / // // H , ( H , H \ II , II \ _ 77 
( 0 , 0 , a , a (po) p = (a <PDP, a <PDP, a + \a + # (po) p,a + # (PD) E 

As a result, 

( 0 , 0 , a " , a"<pri) ~p + ( 0 , 0 , a", a'fo) P~ 3 = ( 0 , 0 , a" (pop + W + O"<PD) p, O"<PDP) 

= (x, xcp + y), 

for some x G A and y G D. Observe that (a"(pop + {a" + a"(prf) p, a"(pr>p) G D, with meaning that 
there exists x" G A" such that a"(pr>p = x"(pr>. So a"(pr>p G A"(po and since p is a permutation, 
A"(pr)P = A"(pr). Having shown that (pr> is an isomorphism, the last equality gives us that C"p = C". 
If C" a subgroup of V is nontrivial and proper, then we have found another imprimit iv i ty block 
for (p, Tn), thus proving our claim. Let us now tackle the extreme cases C" = F™ and C" = { 0 } 
one after the other. 

C " F " The reader should first notice that under this case, A" = F™ since we already 

proved that (pry is an isomorphism, (pry transcends being just an isomorphism and it is in fact an 
automorphism since it is an isomorphism and maps F 2 to itself. If we set a = 0, we obtain 

/r\ r\ II II \ 1 / / II . II \ r\ " " . " \ ^ TT 
( 0 , 0 , a ,a <PD)p = ((« + a cpB)p,0,a ,a + a cpB) G U, 
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w i th (a" + a"(pD) p £ A'. Let S = {a" + a"<pD \ a" £ A"}, then Sp < A'. Assume a £ A" is in­
variant under the action of <po, i.e. d + dcpn = 0, then (0,0, a, dcpn) p1 = (0,0, a, 0). Consequently, 
there exists x" £ A" such that a = x" and 0 = X 'VD- This implies that d<pjj = 0 and since <PD is 
an isomorphism, a = 0. We have thus proved that 11 + <pjj is injective, recalling that if the kernel of 
a linear map is trivial, then the linear map is injective. As a result, 5 = F™, since A" = F^. Since 
p £ Sym (F 2

l ) , we have F^ = Sp < A' < F£, and hence A' = F£. 
We w i l l now show that D' = F£. Let 

VQ = (0,0,a",a'cpo) + ( 0 ,0 ,a" ,a ' f o )p = WfDp,a"fDp,d'fDP,a" + a"fDp) £ U, 

then for each a" £ A", we obtain 

V Q P _ 1 + vo~p~3 = (0, a"p, a'fDP + a"p, 0) £ U, 

wi th (0, a"p) £ A and a"p £ D'. Equivalently, A"p < D', and since A" = F^ and p £ Sym (F 2
I ) , 

we have D' = ¥£, which proves our claim. Therefore, we have A' = D' = F™, and thus B' = C = F^ 
since, by hypothesis, A'/B' = C'/D' (there exists an isomorphism between the quotient group 
formed out of the cosets of B' in A' and the quotient group formed out of the cosets of D' in C). 
This proves that A = ¥2n. 

Let us now show that A < A<p + D < C. See that for each a = {a\, a-i) £ A, and setting d = 0, 
there exist x £ A and y £ D such that 

(a, a<p)p~2 == (a i + £ + ( a 2 + a<p2) p, a2 + a\ + a<pi, a2 + a<p2) = (x, x<p + y), 

where ^ = {acpi + a(p2) p. By comparison, 

(ai + aq>i, a2 + aq>2) = (a\, a2) + (acp) = xcp + y £ Acp + D. 

Rewrit ing the second-to-last equation, we have {a\, a2) = (x + a)<p + y. This implies that 
(ai , a2) £ Acp + D, which proves that A < A<p + D. Let us now show that A<p + D < C. Recall that 
A<p and D are both subspaces of C. Thus, it can be shown that A<p+D = {a<p+d \ a<p £ A<p, d £ D} 
is also a subspace of C, i.e. A<p + D < C in the notation of our work. Furthermore, note that 
C < ¥2n. Consequently, from the chain of inclusions ¥2n = A < A<p + D < C < ¥2n, we deduce 
that C = ¥2n. As a result, we can conclude that D = F^, given that D" = {0} and <pjj is an 
automorphism. 

From A/B = C/D, we can deduce that B = ¥£. Our c la im is that B = D. Let's consider 
Equation 6.2 w i th b = (b\, b2) £ B < A. Since we already have the relation B<p < D, we can 
choose d £ D such that d = b<p. This allows us to derive the following expressions: 

def _ 

oi = (h, b2,0,0) p = (h, bY + b2, h + b2, h + b2) £ U, 

v2 =f (bi, b2,0,0) p-1 = (h, b1 + b2, b2,0) G U. 

Thus, we have v\ + v2 = (0,0, b\, b\ + b2) £ U. Since D" = {0}, we can conclude that: 
b1<pD = b1 + b2. (6.4) 

Furthermore, we know that b\ £ A" = A"<pjj and b\ + b2 £ A"(pjj. Consequently, b2 £ A"<pjj 
as wel l . Since D" = {0}, we can express D as: D = {(a", a"<pjj) \ a" £ A"} . It is important to 
observe that (b\, b2) £ D, which can be equivalently stated as B < D. Therefore, we can conclude 
that B = D. 
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Let us show that a contradiction arises from this result. From Equation 6.2, setting a = 0 and 
d = (bi, b2) £ B = D, we obtain 

v3 = f (0,0, h, b2) p'1 = ((&i + b2) p, 0, h, h + b2) e U. 

def 
Additionally, v\ + v2 + v3 = v4 = ((bi + b2) p, 0,0,0) £ U. Similar to the case when D" = ¥£, 
through a few computations, we can find (0,0,0, {b\ + b2) p) £ U. This implies that {b\ +b2) p = 
0(po = 0, which leads to b\ = b2. However, based on Equation 6.4 and the isomorphism of cpr>, we 
have b\ = b2 = 0, indicating that B is trivial, which is a contradiction. 

C " = {0} Based on the fact that <pD is an isomorphism, we have C" = D" = B" = A" = {0}, 

which implies D = {0}. 
Next, we wi l l prove that B = {0}. From B<p < D = {0}, we have Bcp = {0}. If (b\, b2) £ B, then 

(bi, b2) f = (0,0) = d, and thus {b\, b2,0,0) £ U. Similarly to the previous case, we also have 
(0,0, b\, b\ + b2) £ U, wh ich means there exists x £ A such that (0,0, b\, b\ + b2) = (x, xcp). By 
comparing the components, we find that (b\, b\ + b2) = (0,0), which implies {b\, b2) = 0. This not 
only proves that B = {0}, but it also demonstrates that <p : A —> C is an automorphism of A (cf. (1) 
of Lemma 6.7). Furthermore, for each a = (a i , a2) £ A , we have {a\, a2) f = (afi, af2) £ A<p = A. 
According to (2) of Lemma 6.7, a<p\, a<p2 £ A', and therefore a<p\ + a<p2 £ A' since A' is closed 
under addition. Consequently, 

Im (<pi + q>2) = {aq>i + aq>2 \ a £ A } < A'. 

Note that <p\ + <p2 is surjective, since <p = {<p\, <p2) is an invertible matrix. More precisely, it has 
max imum rank, that is, the number of rows of {<p\, <p2) coincides w i th the number of rows of 
<Pi + <P2- This means that Im {<p\ + <p2) = A'. Now, for each a = {a\, a2) £ A , there exists x £ A 
such that 

(a, a<p)p~2 = (a i + t, + (a2 + a<p2) p, a2 + £, a\ + a<pi, a2 + a<p2) = (x, x<p). 

Thus, we obtain 

(ai + I + (a2 + a<p2) p,a2 + ^)<p = (a i , a2) + (a i , a2) <p £ A<p = A, 

where t, = (aq>i + af2) p. We have 

(ai + I + (a2 + a<p2) p,a2 + ^)<p + (a i , a2) <p = (a i , a2) = 

= ( (a i + f + ( a 2 + acp2) p, a2 + f) + (a i , a2))cp = (a i , a2). 

Hence, substituting back we get 

((a<pi + a<p2) p + (a2 + a<p2) p, (a<pi + a<p2) p) = {a\, a2) cp'1 £ A<p = A. (6.5) 

We infer from (2) of Lemma 6.7 that for each a £ A, {a<p\ + a<p2) p) £ A', from which A'p = A', 
recalling that 

Im (<pi + <p2) = {acpi + acp2 \ a £ A } = A' 

and p permutes A'. As before, we conclude the proof given that A ' is a non-trivial and proper 
subgroup of V, since by that we would have found an imprimitivity block for (p, T„). Otherwise, 
there are two situations that stil l need to be explored. 
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A ' = F» Let us define 

and denote 

a d e f -v = <p 

ft* & and 

Examining the right-hand side of Equation 6.5, we obtain (a6i, a62). By comparing this with the 
left-hand side of the equation, we arrive at the following expression: 

(aq>i + <up2) p = a62, 

which implies that p acts linearly on the set {a<p\ + a<p2 \ a £ A} = A' = However, this leads 
to a contradiction because p, being a permutation, is not necessarily linear over the entire space F™. 

A ' = {0} First, this case implies that A'fA = {0} since fA is a homomorphism, hence 
inear map. For each d' £ D', and setting a" = 0, there exists y' £ D' such that necessarily a 

(0, d", dq>i, dcp^p'1 = {(dcpi + d(p2)p, d", d! + dcpi, dcpi + d(p2) = (0, y, y<pi, ycp2), 

where d = (0, d') and y = (0, y'). Hence (d(pi+d(p2)p = 0, from which d(p\+d(p2 = 0. As a result, 
by substitution, we have (0, d', d! + dcpi, 0) £ U. Note that (0, d', dcpi, dcp2) + (0, d', d' + dcpi, 0) = 
(0,0, d!, d<p2) £ U, since both summands are in U. This result implies that d' £ A" for every 
d' £ D', which is equivalent to saying that D' < A" = {0}. Therefore, we conclude that D' = {0}. 
Since there exists an isomorphism between the quotient space A'/B' and the quotient space C'/D', 
denoted as A'/B's C'/D', and we have A' = {0} and D' = {0} as trivial, it follows that C and B' 
are also trivial, specifically C = B' = {0}. In conclusion, we can deduce that A = {0}. Finally, 
considering that D is trivial and A/B is isomorphic to C/D, it follows that both C and B must also 
be trivial. However, this leads to the contradiction that U is trivial. 

Remarks 
We proved our c la im in Theorem 5.1 v ia contradiction that i f (p, T 4 n ) generates an imprimitive 
group, it reduces to obtaining that D" (or C" or A" ) is an invariant subspace for p. What we should 
actually show is that we can construct a block system from D". Nevertheless, the computations are 
almost the same and equally tiresome, so they have not been incorporated in this work. However, 
the reader whose interest we have piqued may find the same results rewriting the proof of Theorem 
5.1, obtaining that (D" + v) p H-> D" + w for some w e F2", 
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7 Conclusions 
This study focuses on the group TAES = (PAES> 7i28)> wh ich is generated by the AES-128 key 
schedule transformations. We have shown that no partition of the vector space V4 = F ^ 2 8 remains 
invariant under the action of this group. However, when the composition of more rounds is 
taken into account, the slow global diffusion of the operator is insufficient to free the schedule 
transformation from invariant linear partitions. Specifically, by examining the subspaces X2 and 
A 4 , it is observed that they possess proper and nontrivial invariant subspaces, which are a direct 
sum of bricks of V. Consequently, we can conclude that (PAES\ 7 i 2 s ) is primitive if i = 1 (which 
essentially is this work), and imprimitive if i 6 {0,2 mod 4} (see [27], Proposition 5.1] or [28] 
and [3]). 

Therefore, it should come as no surprise that p X i s 4 admits invariant subspaces like those 
discovered by Leurent and Pernot [3], leveraging an algorithm introduced by Leander et at [29]. 
One such example is the subspace U < V4, defined as follows: 

U =f {(a, b, c, d, 0, b, 0, d, a, 0,0, d, 0,0,0, d) \ a, b, c, d e F 8 } . 
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