
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

DESIGNING A MULTILINGUAL FACT-CHECKING
DATASET FROMEXISTINGQUESTION-ANSWERING
DATA
TVORBA VÍCEJAZYČNÉ DATOVÉ SADY PRO FACT-CHECKING Z EXISTUJÍCÍCH DAT

PRO ODPOVÍDÁNÍ NA OTÁZKY

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. DANIEL KAMENICKÝ
AUTOR PRÁCE

SUPERVISOR Ing. MARTIN FAJČÍK
VEDOUCÍ PRÁCE

BRNO 2023

Institut: Department of Computer Graphics and Multimedia (UPGM)

Student: Kamenický Daniel, Bc.

Programme: Information Technology and Artificial Intelligence

Specialization: Software Engineering

Category: Speech and Natural Language Processing

Academic year: 2022/23

Assignment:

1. Describe the problem of multilingual fact-checking and the importance of using sources from
different languages.

2. Research available data sources for multilingual fact-checking and describe their problem
formulation.

3. Research how existing question-answering (QA) datasets can be converted into fact-checking
(FC) datasets.

4. Design an automatic approach for QA to FC dataset conversion
5. Implement your design.
6. Analyze the properties of the newly converted dataset.
7. Evaluate the difficulty of the problem introduced in your dataset by the baseline model.
8. Create an A1 poster presenting your work.

Literature:
Thorne, James, et al. "FEVER: a Large-scale Dataset for Fact Extraction and VERification."
Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). 2018.
Park, Jungsoo, et al. "FaVIQ: FAct Verification from Information-seeking Questions."
arXiv preprint arXiv:2107.02153 (2021).
Nørregaard, Jeppe, and Leon Derczynski. "DANFEVER: claim verification dataset for Danish."
Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa). 2021.
SLÁVKA, Michal. Multilingual Open-Domain
Question Answering. Brno, 2020. Master’s thesis. Brno University of Technology, Faculty of
Information Technology. Supervisor Ing. Martin Fajčík
Ruder, S. and Sil, A., 2021, November. Multi-Domain Multilingual Question Answering. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing:
Tutorial Abstracts (pp. 17-21).

Requirements for the semestral defence:
assignment items 1-4

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Fajčík Martin, Ing.

Head of Department: Černocký Jan, prof. Dr. Ing.

Beginning of work: 1.11.2022

Submission deadline: 17.5.2023

Approval date: 2.3.2023

Master's Thesis Assignment
143409

Designing a Multilingual Fact-Checking Dataset from Existing Question-
Answering Data

Title:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
This thesis adresses the lack of multilingual fact-Checking datasets, which contain annotated
evidence grounding the supporting or refuting verdict for a fact. Therefore, this work
explores the conversion into the fact-checking dataset from an already existing question-
answering dataset. In this work, two approaches for converting question-answer pairs into
claims are studied. The first approach is to create a dataset based on a monolingual pre-
trained seq-2-seq model T5. The model is trained on an English dataset and the inputs
and outputs are translated into the desired languages. The second approach is to use the
multilingual mT5 model, which can take input and generate output in the desired language.
For multilingual model, training datasets need to be translated. The main problem of this
work is the machine translation, which achieved around 30 % success rate in a low-resource
languages. The experiments showed better results for claims generated from monolingual
model using machine translation. On the other hand, the claims generated from multilingual
model achieved a success rate of 73 % compared to monolingual model with a success rate
of 88 %. Finally, to analyze possible biases label specific claim biases, a logistic-regression
based TF-IDF classifier is trained. The classifier, that computes the probability of the
claim’s veracity just from itself achieves accuracy close to 0.5 for both converted datasets.
Thus the converted datasets can be challenging for fact-checking models.

Abstrakt
Tato práce se zabývá nedostatkem vícejazyčných datových sad pro kontrolu faktů, které by
obsahovaly důkazy podporující nebo vyvracející fakt. Proto se tato práce zabývá převodem
datového souboru pro kontrolu faktů z již existujícího datového souboru otázek a odpovědí.
V této práci jsou studovány dva přístupy ke konverzi datové sady. Prvním přístupem je
vytvoření datové sady založené na jednojazyčném předem natrénovaném seq-2-seq modelu
T5. Model je trénován na anglickém datovém souboru. Vstupy a výstupy jsou překládány
do požadovaných jazyků. Druhým přístupem je využití vícejazyčného modelu mT5, který
přebírá vstup a generuje výstup v požadovaném jazyce. Pro vícejazyčný model je zapotřebí
přeložit trénovací datové sady. Jako hlavní problém této práce se ukázal překlad, který v
málo zdrojovém jazyce dosáhl kolem 30 % úspěšnosti. Experimenty ukázaly lepší výsledky
v tvrzeních generovaných z jednojazyčného modelu s využitím strojového překladu. Na
druhou stranu, tvrzení generované z vícejazyčného modelu dosáhly úspěšnosti 73 % oproti
tvrzením z jednojazyčného modelu s dosaženou úspěšností 88 %. Modely byly vyhodnoceny
modelem ověřování faktů založeném na TF-IDF. Dosažená přesnost modelu na obou da-
tových sadách se blíží 0,5. Z toho lze usoudit, že výsledné datové sady mohou být náročné
pro modely ověřování faktů.

Keywords
Natural Language Processing, Fact-Checking, Information Retrieval, Multilingual, Trans-
formers, mDPR

Klíčová slova
Zpracování Přirozeného jazyka, Ověřování Faktů, Získávání Informací, Transformers, mDPR

Reference
KAMENICKÝ, Daniel. Designing a Multilingual Fact-Checking
Dataset from Existing Question-Answering Data. Brno, 2023. Master’s thesis. Brno Uni-
versity of Technology, Faculty of Information Technology. Supervisor Ing. Martin Fajčík

Rozšířený abstrakt
Vzhledem k tomu, že se nepravdivé informace a falešné zprávy stále šíří po internetu a so-
ciálních sítích, je pro udržení pravdivého digitálního prostředí nezbytná potřeba ověřovacích
prostředků. V dnešní digitální době je na internetu dostupné obrovské množství informací
a pro jednotlivce může být obtížné rozlišit mezi důvěryhodnými a nedůvěryhodnými zdroji.
Ověřování faktů může pomoci identifikovat a opravit chyby, zabránit šíření dezinformací a
podpořit důvěru v informacích prezentovaných v textu přirozeným jazykem.

Ověřování faktů se týká zjišťování pravdivosti informací, které se nacházejí v textové
podobě, ať už na webových stránkách, sociálních médiích, novinách nebo jiných zdrojích. S
rozsahem a různorodostí dostupných informací je stále obtížnější rozlišit mezi pravdivými
a nepravdivými tvrzeními.

V oblasti zpracování přirozeného jazyka se využívají techniky strojového učení a umělé
inteligence ke zpracování a analýze textu. Existují metody automatického ověřování faktů,
které se snaží identifikovat a klasifikovat pravdivá, nepravdivá a sporná tvrzení. Tyto
metody zahrnují extrakci a porovnání informací z různých zdrojů, analýzu jazyka a kon-
textu, a také využívají dostupná data a znalosti pro srovnání a validaci tvrzení.

Přestože se technologie zpracování přirozeného jazyka neustále zlepšuje, ověřování faktů
je stále náročný úkol. Existují různé výzvy, kterým je třeba čelit, jako jsou rychlost a objem
informací, přítomnost zaujatosti a dezinformace, a také složitost samotného jazyka.

Ověřování faktů je zásadní pro důvěryhodnost a spolehlivost informací, které konzumu-
jeme. Správné rozpoznání pravdivých a nepravdivých tvrzení má široké uplatnění, napřík-
lad v novinářství, vědeckém výzkumu, právu, ale také pro obyčejného člověka při orientaci
ve světě informací.

Tato práce se zabývá problematikou ověřování faktů v oblasti zpracování přirozeného
jazyka. Přesněji v nedostatcích vícejazyčných datových sad, které jsou potřeba k správnému
natrénování vícejazyčného modelu. Na základě nejlepšího vědomí autora a získaných znalostí
bylo zjištěno, že v dnešní době existuje pouze jedna datová sada X-Fact pro vícejazyčné
ověřování faktů. Tato datová sada obsahuje jeden z velkých nedostatků a to chybějicí
důkazy podporující nebo vyvracející fakta, které jsou obsaženy v datové sadě. Toto zjištění
bylo hlavním motivem pro vytvoření této práce, jelikož je v prácí zastáván názor, který
klade důraz pro zakomponování důkazu do datové sady.

To vedlo k myšlence převést existující datové sady otázek a odpovědí do datových sad
ověřující fakta. Pokus o konverzi datové sady byl již představen v publikaci FaVIQ. Zdá
se, že konverze má slibné výsledky, jelikož dnešní datové sady otázek a odpovědí obsahují
vše potřebné k jejich konverzi na datové sady pro kontrolu faktů. Páry otázek a odpovědí
převedené na tvrzení s důkazy získanými z modelu získávání informací se ukázaly jako
dostatečné pro konverzi do datového souboru pro kontrolu faktů. Datová sada pro kontrolu
faktů pak obsahuje všechny požadované části a to zejména důkazy faktů. Celá práce zkoumá
rožšiření konverze pro vícejazyčné datové sady.

V této práci jsou navržené dva přítupy pro vytváření vícejazyčné datové sady. Prvním
přístupem je natrénování jednojazyčného seq-2-seq modelu T5 na anglické datové sadě.
Tento model pak převádí otázky a opovědi z různých jazyků získané z vícejazyčných da-
tových sad otázek a odpovědí. Otázky a odpovědi jsou přeložené pomocí strojového překladu
do anglického jazyka a poté předány modelu pro vygenerování požadovaného tvrzení. Tvrzení
je poté přeloženo zpátky do požadovaného jazyka. Druhým přístupem je natrénování více-
jazyčného modelu, který dokáže převzít vstup a vygenerovat tvrzení již v požadovaném
jazyce. Pro natrénování vícejazyčného modelu je zapotřebí přeložení trénovacích datových
sad. Tyto dva přístupy jsou poté v práci porovnávány.

Modely byly poté vyhodnoceny na základě správnosti překonvertovaných tvrzení. Výsledky
ukázaly, že model T5 dosáhl úspěšnosti 88 % oproti modelu vícejazyčného modelu mT5,
který dosáhl úspěšnosti 73 %. Tyto výsledky musí být podloženy faktem, že využité mod-
ely pro strojový překlad dosahovaly poměrně špatných výsledků a to zejména na jazycích s
nízkými zdroji (low-resource). Z překorventovaných tvrzeních a ostatních důležitých částí
(důkaz, označení pravdivosti) byly vytvořené výsledné datové sady. První datová sada
obsahuje tvrzení, které byly překonvertovány modelem T5. Druhá datová sada obsahuje
tvrzení, které byly překonvertovány modelem mT5. Datové sady byly poté vyhodnoceny na
základě obtížnosti pro model ověřování faktů založeném na TF-IDF. Výsledky ukázaly, že
dosažená přesnost modelu na obou datových sadách se blížila hodnotě 0.5. To znamená že
úspěšnost modelu ověřování faktů není o nic lepší jak náhodný výběr. Z toho lze usoudit,
že výsledné datové sady mohou být náročné pro modely ověřování faktů. Na základě všech
informací a výsledků uvedených v této práci je závěrem, že konverze datových sad otázek a
odpovědí může být velmi přínosná pro budoucnost vícejazyčných modelů ověřování faktů.

Designing a Multilingual Fact-Checking
Dataset from Existing Question-Answering Data

Declaration
I hereby declare that this Master’s thesis was prepared as an original work by the author un-
der the supervision of Ing. Martin Fajčík. I have listed all the literary sources, publications
and other sources, which were used during the preparation of this thesis.

. .
Daniel Kamenický

May 16, 2023

Acknowledgements
I would like to thank my supervisor Ing. Martin Fajčík for his guidance, enthusiasm,
patience and willingness to answer all my questions or help with any issues along the way.
Thank You.

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Transformer . 6

2.1.1 Model architecture . 6
2.2 BERT . 9
2.3 Text-to-text transfer transformer . 11
2.4 Multilingual T5 . 13
2.5 TF-IDF . 14
2.6 Helsinki OPUS-MT . 15

3 Datasets 17
3.1 X-Fact . 17
3.2 FaVIQ . 18
3.3 TyDi QA . 20
3.4 XOR-TyDi QA . 21
3.5 Other datasets . 22

4 Information retrieval 23
4.1 Dense passage retrieval . 24
4.2 Multilingual dense passage retrieval . 26

5 Proposed system for dataset conversion 28
5.1 Answer generation . 29

5.1.1 Data . 29
5.1.2 mDPR . 29
5.1.3 Generation of positive and negative

question-answer-passage triplets . 29
5.2 Conversion system . 31
5.3 Translation . 34
5.4 Final dataset . 34

6 Experimental setup 38
6.1 Top-K accuracy . 38
6.2 F-score . 38
6.3 Rouge . 39
6.4 Exact match score . 40
6.5 Implementation . 41

1

6.5.1 mDPR & mGEN . 41
6.5.2 T5 . 41

7 Experiments 43
7.1 Translation . 43
7.2 Human evaluation of claims . 46
7.3 Discussion of the final dataset quality . 48
7.4 Fact-checking using TF-IDF . 50

8 Conclusion 53

Bibliography 54

2

Chapter 1

Introduction

As false information and fake news continue propagating throughout the internet and social
networks, the need for fact-checking operations becomes necessary in order to maintain a
truthful digital environment. In today’s digital age, there is a vast amount of information
available online, and it can be difficult for individuals to distinguish between credible sources
and unreliable sources. Fact-checking can help to identify and correct errors, prevent the
spread of misinformation, and promote trust in the information presented in natural lan-
guage text. Additionally, in certain fields like journalism, fact-checking is a crucial step to
ensure the credibility of the news and protect the public from being misinformed.

From a social and psychological perspective, humans have been proven irrational [27]
and vulnerable when differentiating between real and fake news. In other words, fake news
can gain broad public trust relatively easier than truthful news because individuals tend to
trust fake news after constant exposure, if it confirms their pre-existing beliefs, or simply
due to the obligation of participating socially and proving a social identity.

Based on these findings, efforts are being made to come up with a solution that can
distinguish between real and fake news. Fact verification efforts are divided into two dis-
tinct approaches, namely manual and automated fact-checking. Manual fact-checking is
time consuming and not a sustainable long-term solution like the manual solutions of Poli-
tiFact.com 1, FactCheck.org 2, FEVER [53], X-Fact [19] and many others [51][62][33]. The
amount of disinformation increases over time and the people verifying the facts cannot keep
up with the increase in disinformation. On the other hand manual fact-checking is consid-
ered to be the most reliable method of verifying the accuracy of information. The other
approach is automated fact-checking that has the advantage of being able to perform ver-
ification quickly and on a large scale. Automated fact-checking systems can analyze large
amounts of text and identify potential errors or inaccuracies much faster than a human
fact-checker could. However, there are also some limitations to automated fact-checking.
One of the main limitations is that automated fact-checking systems rely on pre-existing
knowledge and data, which can be incomplete or out of date. Additionally, automated
fact-checking systems may not be able to understand the nuances and context of natural
language text, which can lead to false positives or negatives.

Another major disadvantage is that information can spread beyond the boundaries of
language in which it was created. Nowadays, there are several fact-checking models that
are based on the English language [38][53][33]. To verify a fact from another language,

1https://www.politifact.com
2https://www.factcheck.org

3

https://www.politifact.com
https://www.factcheck.org

a translation is needed, but as the results of this work showed, the translation may not
always be correct or not everything can be translated. The problem is all the more obvious
for low-resource languages. These language can have relatively small vocabulary, limited
training data or they exhibit complex grammar, sentence structures, and rich morphology.
Therefore there is an effort to create a multilingual model for verifying facts. However,
quality data is required to train a multilingual model. Based on the author’s best knowledge,
one multilingual dataset named X-Fact [19] was found, which is intended for training and
validating a multilingual model, but the individual samples of the dataset lack evidence
where the confirmation or refutation of the fact occurred.

This leads to an idea to convert existing question-answer datasets to fact-checking
datasets. The first attempt to convert dataset was introduced in paper [38]. The conversion
seems to has a promising results as today’s question-answer datasets contain everything we
need for converting them into fact-checking datasets. It is shown that question-answer
pairs converted into the claim with the evidence retrieved from information retrival model
are sufficient for the conversion into the fact-checking dataset. A fact-checking dataset
then contains all the required parts. Especially evidence, which is considered as the main
deficiency in current state-of-the-art and also the research subject of this work.

The rest of the thesis is organised as follows. Chapter 2 introduces the basics of all the
topics related to and essential to this thesis. The datasets that are considered to be related
to this thesis and all the information taken from it’s knowledge are described in Chapter 3.
Subsequently, the information retrieval models are described in Chapter 4. Chapter 5
presents all the proposed systems for the conversion of dataset. The experimental setup
with all the metrics used in this thesis is then described in Chapter 6. The experimental
evaluation of the converted datasets and other experiments performed within this thesis
are discussed in Chapter 7. Finally, the thesis is concluded in Chapter 8.

4

Chapter 2

Preliminaries

Nowadays, systems are based on existing pre-trained models. Most of the models benefit
from prior information that has been developed in the past and try to adapt it for a specific
use case. One of the basic qualities required to create something new and beneficial to
society is to understand the work that has already been published and be able to apply and
possibly modify it to achieve better results.

Several new papers were published, such as the BERT model [15], the T5 model[42] or
the GPT model [41], which are based on the knowledge gained from the paper discussing
transformer [56]. Nowadays, there are publications of models such as [35] that are still being
experimented with. There is still an ongoing effort to find out the limits of the models.

One of the model is the Recurrent Neural Network [50][17]. The architecture of RNN is
a variation of a basic neural network. RNNs are good for processing sequential data such
as natural language processing and audio recognition. But there is one major issue that
the RNNs suffer from short-term-memory problems. One of the mostly known issue is the
vanishing gradient problem. This is the main problem during the training as the gradients
for the weights at each layer are computed via the Chain Rule, their gradient values will
exponentially shrink as it propagates through each time step, eventually “vanishing”.

Long Short-Term Memory [57] (LSTM) and Gated Recurrent Unit [10] (GRU) were
proposed to mitigate the vanishing gradient problem. LSTMs use a memory cell that can
store information over long periods of time and gating mechanisms that allow them to
selectively forget or remember information. GRUs are similar to LSTMs, but they have
fewer gating mechanisms and are computationally less expensive.

However RNN, LSTM, and GRU are all types of recurrent neural networks that are
designed to work with sequential data, such as natural language text. They are all based
on the idea of having a ”memory“ that allows the network to keep track of previous in-
puts, enabling the network to model sequential dependencies in the data. Additionally, all
three architectures involve passing information between units of the network in a recurrent
fashion. This means that the output of a unit can serve as input to another unit in the
network, allowing information to flow backwards and forwards in the network.

Thus, even though the vanishing gradient problem has been mitigated, there is still
the problem that RNN type models are very slow to train, so much so that truncated
back-propagation [46] is used to update the parameters.

5

2.1 Transformer
Since RNN-based models use sequential data flow, they cannot be parallelized as well as
the other type of neural networks called transformer [56]. Transformers are a type of neural
network architecture that have revolutionized natural language processing once again. The
transformer architecture utilizes a self-attention mechanism, which allows the model to
attend to different parts of the input sequence during training.

This self-attention mechanism is able to learn non-trivial alignments between words in
the input sequence, which helps the model to better understand the relationships between
words in a sentence. This is in contrast to previous approaches such as recurrent neural
networks, which process the input sequence one word at a time and have difficulty captur-
ing long-term dependencies. Transformers replaced RNNs in many areas, such as language
translation, text classification, question answering, and became new state-of-the-art archi-
tecture for language modeling [25].

2.1.1 Model architecture

The network employs an encoder-decoder architecture much like RNNs shown in figure 2.1.
Only some parts of the architecture are described in this paper. A more precise and complete
description of all parts can be found in the publication [56]. The difference is that the input
sequence can be passed in parallel compared to RNNs which need to take the input sequence
word by word because of the hidden state dependencies. The input sentence is passed to the
encoder that generates the input embeddings simultaneously for each word. The decoder
then generates an output sequence of symbols. At each step, the model is auto-regressive
and consumes the previously generated symbols as the next input when generating the next
step.

6

Figure 2.1: Encoder-Decoder structure of the transformer architecture [56].

Scaled Dot-Product Attention

Scaled Dot-Product Attention is a key component of the self-attention mechanism used
in transformers for natural language processing. It involves computing the dot product
between a query vector and a set of key vectors, and then using the resulting scores to
weight the corresponding value vectors.

Query vector, key vector, and value vector are components of the attention mechanism.
In the attention mechanism, the input sequence is mapped into these three vectors using
learned linear projections. The query vector is used to attend to specific parts of the input
sequence by computing the similarity between the query vector and each key vector. The
similarity scores are then used to weight the corresponding value vectors, which are summed
up to produce the attended output.

To obtain the query, key, and value vectors, three weight matrices, 𝑊 𝑞, 𝑊 𝑘, and 𝑊 𝑣,
are multiplied with the input sequence, and they project the input sequence into the query
vector, key vector, and value vector, respectively:

𝑄 = 𝑋𝑊 𝑞,𝐾 = 𝑋𝑊 𝑘,𝑉 = 𝑋𝑊 𝑣. (2.1)

7

where 𝑋 is the input sequence, each weight matrix is learned during training to optimize
the performance of the model, and the size of the weight matrices depends on the desired
dimensionality of the query, key, and value vectors.

Each of the vectors extracts different components of the input token. Thus, for each
input token 𝑥𝑖, the query vector 𝑞𝑖, the key 𝑘𝑖 and the value 𝑣𝑖 are extracted, where 𝑖
represents the index of the token in the input sequence. The computation is processed
simultaneously. Matrices 𝑄, 𝐾, and 𝑉 are then used to compute the attention matrix for
each word using formula:

Attention(𝑄,𝐾,𝑉) = softmax(𝑄𝐾𝑇

√
𝑑𝑘

)𝑉 (2.2)

The computation of the attention function on the set of queries is performed simultane-
ously, packed in the matrix 𝑊 𝑞 and keys and values are also packed into matrices 𝑊 𝑘

and 𝑊 𝑣. Scaled Dot-Product Attention allows the model attend to different parts of the
input sequence based on the query, capturing complex dependencies between tokens in the
sequence.

Multi-Head Attention

Multi-Head Attention is an extension of the Scaled Dot-Product Attention mechanism used
in transformers for natural language processing. It allows the model to attend to different
parts of the input sequence simultaneously, by computing multiple attention functions in
parallel. The input query vector 𝑄 ∈ R𝑑𝑞 , key vector 𝐾 ∈ R𝑑𝑘 , and value vectors 𝑉 ∈
R𝑑𝑣 are linearly projected ℎ times with different learned linear projections 𝑊 𝑖

𝑞 ∈ R𝑑𝑞×𝑑ℎ ,
𝑊 𝑖

𝑘 ∈ R𝑑𝑘×𝑑ℎ , and 𝑊 𝑖
𝑣 ∈ R𝑑𝑣×𝑑ℎ respectively, as each of these linear projections are learned

independently.
Here, 𝑑𝑞, 𝑑𝑘, and 𝑑𝑣 represent the dimensions of the query vector, key vector, and value

vectors, respectively. ℎ represents the number of times these vectors are linearly projected,
and 𝑖 represents the index of each projection. 𝑊 𝑖

𝑞, 𝑊 𝑖
𝑘, and 𝑊 𝑖

𝑣 represent the learned
linear projections for query, key, and value vectors, respectively. The outputs from each
of the attention head is then concatenated and once again projected, resulting in the final
values, as depicted in Figure 2.2.

8

Figure 2.2: Multi-Head Attention layer

Multi-head attention allows the model to jointly attend to information from different
representation subspaces at different positions.

2.2 BERT
BERT [15] stands for Bidirectional Encoder Representations from Transformers and it is
a model that is pre-trained on unsupervised tasks using large amount of data. The pre-
trained BERT model can be fine-tuned with just one additional output layer, without
needing to retrain the entire model, for a wide range of tasks, such as question-answering
and Natural Language Inference.

Architecture

BERT’s model architecture consists of a multi-layer bidirectional Transformer encoder based
on the original implementation of transformer [56]. The architecture is identical with the
transformer model section 2.1.

BERT model was published in two different model sizes: BERTBASE model consists of
12 layers (i.e., transformer blocks), with the hidden size of 768 and 12 self-attention heads
resulting in a total of 110M parameters and BERTLARGE model consists of 24 layers (i.e.,
transformer blocks) with the hidden size of 1024 and 16 self-attention heads resulting in a
total of 340M parameters.

Training

The model was pre-trained on two unsupervised tasks namely Masked Language Modeling
and Next Sentence Prediction which will be explained below. For fine-tuning, the BERT
model is first initialized with the pre-trained parameters, and all of the parameters are fine-
tuned using labeled data from the downstream tasks. Each downstream task has separate
fine-tuned models, even though they are initialized with the same pre-trained parameters.

9

The process of the fine-tuning and the pre-training is shown in figure 2.3, where [CLS] is
a special classification token that is the first token of every sentence, [SEP] is token for
differentiation of the sentence pairs, input embeddings are denoted as E, the final hidden
vector for special token [CLS] is denoted as C and the final hidden vector for the 𝑖𝑡ℎ input
token is denoted as 𝑇𝑖. The final hidden vector refers to the output of the BERT model
for a given input sequence. Specifically, BERT consists of a stack of transformer layers,
where each layer takes in an input sequence and generates a new sequence of hidden states.
The final hidden vector is the hidden state corresponding to the special [CLS] token that
is added at the beginning of the input sequence.

Figure 2.3: The question-answering example of overall pre-training and fine-tuning proce-
dures for BERT [15]. For different tasks (NER [48], MNLI [63] and QA) the same initial-
ization of the pre-trained model parameters is used.

Masked Language Modeling (MLM)

Masked Language Modeling (MLM) is a task in natural language processing that involves
masking some words in a sentence and then predicting the masked words based on the
context.

The BERT model was pre-trained by masking 15 % of the input tokens and then pre-
dicting these masked tokens. In the publication [15], they refer to this procedure as a
“masked Language Modeling” (MLM), although it is often referred to as a Cloze task in
the literature [52].

However, since the [MASK] token does not appear during fine-tuning, this leads to
mismatch in pre-training and fine-tuning. To mitigate this, masked tokens are not always
masked by the [MASK] token, but only in 80 % of the time. In the remaining 10 % of the
time, the masked token is replaced by a random token, and in the last 10 % of the time the
masked token is not changed.

Next Sentence Prediction (NSP)

For some important tasks like Question-Answering, it is not enough to train only on lan-
guage modeling, but it also rely on understanding the relationship between two sentences,
that is not directly captured by MLM. Therefore, the model is trained on pairs of sentences
to predict whether the next sentence is following the first sentence in the original text or

10

not. This is done by choosing sentence A and B in the way that in the 50 % of the time the
sentence B is the actual next sentence that follows A and 50 % of the time it is a random
sentence from the corpus. The sentences are separated with the special token [CLS] and the
result of the next sentence prediction is then denoted as 𝐶 shown in figure 2.3. However,
this objective was shown to be redundant since RoBERTa paper [30].

2.3 Text-to-text transfer transformer
The Text-to-Text Transfer Transformer [42] (T5) is a language model that is based on
the transformer architecture and is trained in a text-to-text framework, meaning that it is
trained to generate text outputs from text inputs. T5 is trained on a diverse set of tasks,
including machine translation, summarization, question answering, and text classification,
among others. This makes it a highly versatile language model that can be fine-tuned for
a wide range of downstream tasks with relatively little additional training data.

Architecture

The T5 model is based on the Transformer encoder-decoder architecture [56] as it has
been found to perform well in both generative and classification tasks. The encoder and
decoder are each designed to be similar in size, specifically, both consist of 12 blocks, each
block comprising self-attention, optional encoder-decoder attention, and a feed-forward
network [7]. The “key” and “value” matrices of all attention mechanisms have an inner
dimensionality of 𝑑𝑘𝑣 = 64 and all attention mechanisms have 12 heads. The feed-forward
networks in each block consist of a dense layer with an output dimensionality of 𝑑ff = 3072
followed by a ReLU [1] nonlinearity and another dense layer. All other sub-layers and
embeddings have a dimensionality of 𝑑model = 768. The model contains about 220 million
parameters and uses a dropout probability of 0.1 for regularization. A dropout probability
of 0.1 is applied everywhere dropout is used in the model.

Dropout probability is a regularization technique used to prevent overfitting in neural
networks. During training, a certain proportion of randomly selected neurons in a layer are
dropped out, meaning their outputs are set to zero.

Training data

To create a dataset, Common Crawl was used as a source of text. Due to the scraped text
data a significant portion of it is not natural language. It consists of gibberish, duplicate
text, menus, error messages, and other non-useful content. To clean up Common Crawl’s
web extracted text, several heuristics were employed. These include retaining lines that end
in a terminal punctuation mark, discarding pages with fewer than five sentences, removing
any page containing a word on the “List of Dirty, Naughty, Obscene or Otherwise Bad
Words”1, removing any line with the word Javascript, among others. The dataset was then
posprocessed with use of langdetect2 to filtered out any pages that were not classified as
English with a probability of at least 0.99.

To assemble the base data set, the web extracted text from April 2019 was downloaded,
and the aforementioned filtering was applied. This produced a collection of text known as
the “Colossal Clean Crawled Corpus” (C4).

1https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words
2https://pypi.org/project/langdetect/

11

https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words
https://pypi.org/project/langdetect/

Pre-training tasks

An objective that does not require labels but teaches the model generalizable knowledge
is necessary for leveraging unlabeled data to pre-train the model. Inspired by BERT’s
“Masked Language Modeling” objective (described in section 2.2) and the “word dropout”
regularization technique [9], an objective is designed that randomly samples and then drops
out 15 % of tokens in the input sequence. All consecutive spans of dropped-out tokens are
replaced by a single sentinel token. A token ID that is unique to the sequence is assigned to
each sentinel token. The sentinel IDs are special tokens which are added to the vocabulary
and do not correspond to any wordpiece. The target then corresponds to all of the dropped-
out spans of tokens, delimited by the same sentinel tokens used in the input sequence plus
a final sentinel token to mark the end of the target sequence.

Figure 2.4: Schematic of the objective for pre-training.

Downstream tasks

Downstream tasks were chosen to measure general language learning abilities. Therefore
diverse set of benchmarks were used including machine translation, question answering,
abstractive summarization, and text classification. Specifically the performance of the
model was measured on the GLUE [61] and SuperGLUE [60] text classification, CNN/Daily
Mail abstractive summarization [21], SQuAD question answering [43] and WMT English
to German, French and Romanian translation [8].

Input and output format

A ”text-to-text“ format is used to cast all the tasks considered for training a single model
in order to provide a consistent training objective for both pre-training and fine-tuning. In
this format, the model is given some text as context or conditioning and is then required to
produce some output text. The maximum likelihood objective is used to train the model,
using “teacher forcing” [64] regardless of the task. To indicate which task the model should
perform, a task-specific prefix is added to the original input sequence before it is fed to the
model. The example of the input sequence is shown in section 5.2.

Training

All the tasks were formulated as text-to-text tasks. This allowed always to the training use
standard maximum likelihood and a cross-entropy loss. For optimization the AdaFactor

12

was used. At test time the greedy decoding was used (i.e. choosing the highest-probability
logit at every timestep).

The model was pre-trained on the C4 dataset for 524,288 steps. The maximum sequence
length was set to 512 and the batch size was set to 128 sequences. The ”inverse square
root“ was used as the learning rate schedule: 1/

√︀
max(𝑛, 𝑘), where n is the current training

iteration and k is the number of warm-up steps. The warm-up steps were set to 104. This
set a constant learning rate of 0.01 for the first 104 steps and then exponentially decreased
the learning rate until pre-training was over.

The model was then fine-tuned on all the downstream tasks for 262,144 steps. This value
was chosen as a trade-off between the high-resource tasks, which benefit from additional
fine-tuning, and low-resource task, which overfit quickly. The maximum sequence length
and batch size were same as in pre-training. The learning rate was set to a constant value
of 0.001. Every 5000 steps the checkpoint was saved and the model reported results to the
model checkpoint corresponding to the highest validation preformance.

2.4 Multilingual T5
The mT5 model [65] is multilingual variant of the T5 model. The model was created base
on the T5’s recipe as closely as possible. Thus the architecture and the training procedure
is almost identical as for T5 model. The main differences are in the dataset that was used
for pre-trainig and some minor changes in the pre-training procedure.

Architecture

The ”T5.1.1“ recipe3 was used as the basis for mT5’s model architecture and training
procedure, which closely follows that of T5. The improvements in T5.1.1, such as the use
of GeGLU nonlinearities [49], scaling both 𝑑model and 𝑑ff (instead of just 𝑑ff in the larger
models), and pre-training on unlabeled data only with no dropout, were also incorporated
into mT5. The base variant of the mT5 model was used in this work that has 580M
parameters. The increase in parameter counts compared to the corresponding T5 model
variants comes from the larger vocabulary used in mT5. Further details on T5 can be found
in section 2.3.

Training data

The training data (multilingual C4) used for pre-training the mT5 model follows the same
methodology as for C4 dataset that was used for pre-training T5 model. However the
C4 dataset was constructed to handle only English language. Thus from C4 any pages
that were not classified as English with a probability of at least 0.99 were filtered out by
langdetect4. In contrast, for mC4 cld35 was used to identify over 100 languages.

The removal of lines that did not end in an English terminal punctuation mark was
an important heuristic filtering step in C4. Instead of using English terminal punctuation
marks, a “line length filter” is applied that requires pages to contain at least three lines
of text with 200 or more characters. The creation of mC4 then followed C4’s filtering by

3https://github.com/google-research/text-to-text-transfer-transformer/blob/main/
released_checkpoints.md#t511

4https://pypi.org/project/langdetect/
5https://github.com/google/cld3

13

https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511
https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511
https://pypi.org/project/langdetect/
https://github.com/google/cld3

deduplicating lines across documents and removing pages containing bad words as the same
in the C4 dataset. Finally, the primary language of each page is detected using cld3 and
those with a confidence below 70 % are removed. After applying these filters, the remaining
pages are grouped by language. All languages with 10,000 or more pages are included in
the corpus.

Training

In pre-training mT5 model, a major factor was how to sample data from each language. The
choice ultimately became a zero-sum game: If low-resource languages were sampled too of-
ten, the model may overfit, and if high-resource languages were not trained on enough,
the model may underfit. Therefore, the approach used in [12][2] was followed, where
lower-resource languages are boosted by sampling examples according to the probability
𝑝(𝐿) ∝ |𝐿|𝛼, where 𝑝(𝐿) is the probability of sampling text from a given language dur-
ing pre-training and |𝐿| is the number of examples in the language. The hyperparameter
𝛼 was set to value 0.3 and was used to control how much the probability of training on
low-resource languages was boosted.

mT5 was only pre-trained on mC4 excluding any supervised training. mT5 model
variants are pre-trained for 1 million steps on batches of 1024 length and input sequences
with length of 1024. The same “inverse square root” learning rate schedule was used as in
the pre-training of T5 model. Dropout was not applied during pre-training, as done in the
“T5.1.1” recipe. The same self-supervised objective as T5 was used, with 15 % of tokens
masked 2.3.

2.5 TF-IDF
TF-IDF stands for term frequency-inverse document frequency and is a measure used in the
fields of information retrieval (IR) and machine learning that can quantify the importance
of terms (words, phrases, lemmas, etc.) in a document amongst a collection of documents
(also known as a corpus).

TF-IDF can be broked down into two parts, the term frequency (TF) and the inverse
document frequency (IDF).

Term frequency

Term frequency (TF) is a simple technique used in natural language processing (NLP) to
represent the importance of each term in a document. The idea of TF is to count the
number of occurrences of a term in a document and use this number as a measure of the
importance of the term in the document. Term frequency, TF(t,d), is the relative frequency
of term t within document d,

TF(𝑡, 𝑑) = 𝑓𝑡,𝑑∑︀
𝑡′∈𝑑 𝑓𝑡′,𝑑

, (2.3)

where 𝑓𝑡,𝑑 is the count of the term occurences in the document.

Inverse document frequency

The IDF of a term is a measure of how rare that term is across the corpus. The idea behind
IDF is that terms that appear frequently in a single document, but rarely in the rest of the

14

corpus, are more important for understanding the content of that document. On the other
hand, terms that appear frequently in many documents are less important, since they do
not provide as much information about any individual document. The basic equation for
the IDF can be written as follows,

IDF(𝑡,𝐷) = log
𝑁

|{𝑑 ∈ 𝐷 : 𝑡 ∈ 𝑑}|
, (2.4)

where 𝑡 denotes the term, 𝐷 denotes the corpus, and 𝑁 denotes the number of documents
that are in the corpus.

Term frequency–inverse document frequency

Once we have computed the term frequency (TF) and inverse document frequency (IDF)
for term t in a document, we can use them to calculate the TF-IDF weight for that term in
that document. The TF-IDF weight is calculated by multiplying the TF value of the term
in the document by the IDF value of the term across the corpus,

TF-IDF(𝑡, 𝑑,𝐷) = TF(𝑡, 𝑑) · IDF(𝑡,𝐷), (2.5)

Classifier

Once the TF-IDF scores are computed for each term in a document, they can be used
to train a classifier. In general, the classifier is an algorithm that takes input data and
predicts the label that the data belongs to. It predicts the labels by learning a function
that separates data into different labels. The function is often defined in terms of a set of
parameters that are learned from training data. Once the classifier is trained, it can be
used to make predictions on new, unseen data.

One common approach is to use a linear classifier, such as logistic regression, which
learns the parameters on a set of weights for each term in the TF-IDF vector. The weights
are then used to compute a score for each label, and the label with the highest score is then
predicted.

2.6 Helsinki OPUS-MT
Translation is one of the important parts of creating a multilingual dataset in this work.
Since professional translators are hard to find and their work is time and money consuming,
the best alternative is to choose a machine translation model that performs well to do the
work for them. Thus, the OPUS-MT [54] translator was chosen, which is based on machine
translation using several different models. The starting point is OPUS [55], a growing
collection of public parallel datasets that is the primary fuel for open data-driven machine
translation.

It serves aligned bitexts for a large number of languages and language pairs,
providing publicly available data sets for machine translation from various do-
mains and sources. Currently, the released data sets cover over 600 languages
and additional regional language variants that are compiled into sentence- aligned
bitexts for more than 40,000 language pairs. In total there are ca. 20 billion
sentences and sentence fragments that correspond to 290 billion tokens in the
entire collection. The released data sets amount to about 12 TB of compressed
files. [55]

15

Public data with good language coverage is crucial for good machine translation. OPUS-MT
builds on that collection and provides public translation solutions.

OPUS-MT provides the public with state-of-the-art translation solutions and is the
main centre for pre-trained translation models. OPUS-MT is based on Marian [22], an
efficient implementation of neural machine translation (NMT) in pure C++ with minimal
dependencies. Marian is a production-ready framework and includes optimized routines
that enable a scalable approach to the development and exploitation of modern MT systems.

OPUS-MT models have been fully integrated into the transformers library by converting
them to PyTorch. Models are available from the Huggingface model hub. The pre-trained
models are based on state-of-the-art transformer-based neural machine translation. Models
were pre-trained on freely available parallel corpora collected in the large OPUS repository.
The architecture is based on a standard transformer setup with 6 self-attentive layers in
both encoder and decoder networks with 8 attention heads in each layer.

16

Chapter 3

Datasets

Natural Language Processing (NLP) is a subfield of artificial intelligence that deals with
the interaction between humans and computers using natural language. This subfield is
very popular nowadays and is slowly becoming part of everyday life. One of the proofs is
the published ChatGPT model [41], which is the most discussed topic nowadays.

However, any model is based on adequate training and and the quality of the data used
for training. Statistical models used in natural language processing are getting bigger and
bigger, with even billions of trainable parameters. Therefore, there is a great emphasis on
creating new datasets. Large models require a large collection of examples in order to learn
their parameters to approximate probability distributions over the data.

NLP datasets are used to train models that can then be used for various tasks such as
text classification, entity recognition, machine translation, etc. Fact checking is also one
of the vast areas. Although disinformation crosses country and language boundaries, most
of the work focuses on statements and assertions in English. The actual development of
automated fact checking in other languages is much more challenging. There are far fewer
fact-checkers in languages other than English, and thus a multilingual dataset itself will be
small and less effective in developing a fact-checking system.

The lack of this annotated data leads to the training of multilingual models that can
replace the work of fact-checkers to some extent. The existence of a subfield of question
answering in NLP that is more widespread was the main motivation for this work.

Datasets are usually divided into sets: training, development and testing. This split
into three sets allows us to compare multiple different models against each other. Each of
the given set is used for something different.
Training set — used to estimate the model’s parameters.
Development set — used to evaluate different checkpoints of the proposed models during
training and to select the best performing checkpoint.
Test set — is used to validate the results performed on the development set. These should
be questions that do not overlap in any way with any other set.

3.1 X-Fact
X-Fact [19] is a publicly available multilingual dataset for factual verification of naturally
existing real world claims. The dataset contains short statements in 25 languages and and
is labeled for veracity by expert fact-checkers.

17

The dataset contains 31,189 short assertions in 25 different languages from 11 different
language families.

X-FACT is compiled from several fact-checking sources. All sources were taken from the
International Fact-Checking Network [36] (IFCN) list of nonpartisan fact-checkers and the
Duke Reporter’s Lab. This data was then divided into 7 labels, namely True, Mostly-True,
Partly-True, Mostly-False, False, Unverifiable and Other. An example from the
dataset is shown in table 3.1.

Claim Muslimische Gebete sind Pflichtprogramm an katholischer Schule.
Muslim prayers are compulsory in Catholic schools.

Label Mostly-False (Grösstenteils Falsch)
Claimant Freie Welt
Language German
Source de.correctiv.org
Claim Date March 16, 2018
Review Date March 23, 2018

Table 3.1: Example from X-FACT [19].

Since this work focuses on creating a dataset, the dataset was taken as one of the
samples that exist today. The X-Fact dataset was mostly created by real fact-checkers and
thus it is a very natural dataset, but it is also time and resource consuming. One of the
negative is that the dataset is the merging of several different rating scales from multiple
languages, which can lead to the point that the annotations can be non-agreeing. The major
shortcoming however is that in the dataset there are no explicit annotation of documents
relevant to claims. The ability to provide grounding for predicted veracity verdict is often
more important than the verdict itself [28].

This shortcoming was considered to be the main problem in training a fact-checking
model, and therefore it was the main motivation of this work. This work is based on the
judgment that providing evidence for a fact is important because it allows the fact-checking
model to make informed judgments about the truthfulness of a claim. Without evidence,
a fact-checking model would have no basis on which to evaluate the veracity of a claim. In
other words, the model would not be able to distinguish between true and false claims.

3.2 FaVIQ
This work was greatly inspired by the collection method introduced in FaVIQ Dataset [38].
The authors built a large-scale fact-checking dataset consisting of 188,000 assertions. Some
of them were derived from an existing corpus of ambiguous information-seeking questions.
The ambiguity of the questions allows to automatically construct true and false statements.
Therefore, it allows to reflect more questions with a different ways of interpretation, leading
to different answers. The use of ambiguity is shown in figure 3.1.

Despite considerable interest in developing general-purpose fact-checking models, it is
difficult to build a large-scale dataset for fact-checking with real-world assertions. Existing
claims are either authored by people in the crowd, introducing subtle subjective biases that
are difficult to control. To mitigate the subjective biases the claims are manually verified
by professional fact-checkers, making them expensive and limited in scale. This led to the
idea of converting existing question answering datasets into fact-checking dataset.

18

de.correctiv.org

The dataset was created from two QA datasets namely Natural Questions (NQ) [24]
and AmbigQA [32]. NQ is a large dataset consisting of English information retrieval queries
obtained from Google search engine. AmbigQA provides disambiguated question-answer
pairs for NQ dataset, highlighting the ambiguity inherent in information-seeking questions.

Figure 3.1: An example of a refute and support claim on FAVIQ, constructed using
ambiguity in the information-seeking question and with the use of the reference answer
(Deckard Shaw) and the incorrect prediction from DPR. 𝑓 is a T5 model that transforms
question-answer pairs to claims. [38].

FaVIQ is composed from two sets. The first set, denoted as the A set, consists of claims
that were created with ambiguous questions and their disambiguation. The second set is
labeled as the R set and consists of claims that were created with reference answer for the
support claim and the incorrect prediction from the Dense Passage Retrieval (DPR) [23]
model for refute claim. The claims are then generated by T5 model. The statistics of the
R set and A set are shown in table 3.2.

Total Support Refute

Train A 17,008 8,504 8,504
R 140,977 70,131 70,846

Dev A 4,260 2,130 2,130
R 15,566 7,739 7,827

Test A 4,688 2,344 2,344
R 5,877 2,922 2,955

Table 3.2: FaVIQ dataset statistics [38]. A includes claims derived from ambiguous ques-
tions, while R includes claims from regular question-answer pairs.

The question-answer pairs were converted into claims using a trained neural model that
maps (question, answer) pairs to claims. A claim is marked as support if the pair from
which the claim is generated contains the correct answer to the questions, otherwise the
claim is marked as refuted. The model was firstly pre-trained on very similar dataset
with thousands of examples and then fine-tuned using a dataset of 250 valid and invalid
question-answer pairs that were manually converted. The T5-3B model [42] was then
trained using 150 statements for training and 100 statements for validation.

In this work, the same methodology is followed in converting QA datasets to Fact-
Checking, however, disambiguated questions are not used. This work is based on the
system called CORA [5]. The system returns top-K documents for the question and then
generate the answer based on these documents. The data from [38] was used for training
the T5 and mT5 model to generate claims.

19

3.3 TyDi QA
The typologically diverse question answering dataset (TyDi QA) [11] is a dataset that
consists of 11 typologically diverse languages with 204 thousands question-answer pairs. Of
these, 167 thousands are one-way annotated, to be used for training, and 37 thousands are
3-way annotated, comprising the dev and test sets shown in table 3.3.

Language Train Dev
(1-way) (3-way)

English 9,211 1031
Arabic 23,092 1380
Bengali 10,768 328
Finnish 15,285 2082
Indonesian 14,952 1805
Japanese 16,288 1709
Kiswahili 17,613 2288
Korean 10,981 1698
Russian 12,803 1625
Telugu 24,558 2479
Thai 11,365 2245
Total 166,916 18,670

Table 3.3: Number of samples from each language represented in the dataset [11].

Due to its typological diversity, the QA abilities of the model are tested in many dis-
tinctive cultural settings. To provide a realistic information-seeking task and avoid priming
effects, the questions were written by people who wanted to know the answer but did not
yet know the answer. This was achieved by presenting the person with a short prompts
consisting of the first 100 characters of Wikipedia articles. After reading it, the person
needed to ask a question to which they wanted to know the answer, but this information
was not represented in the short prompts. Annotators were asked to provide a question
about anything interesting that came to mind, no matter how unrelated to the topic. This
allows annotators even more freedom to ask about topics that really interest them, includ-
ing topics not covered in the Wikipedia articles shown in table 3.4. The data are collected
directly in each language without the use of translation.

Article: Apple is a fruit...
Question: What disease did Steve Jobs die of?

Table 3.4: Example showing the part of an Wikipedia prompts and a possible question
based on the Wikipedia prompts [11].

The dataset contains 10 languages: English, Arabic, Bengali, Finnish, Indonesian,
Japanese, Kiswahili, Korean, Russian, Telugu, Thai.

Each question was then matched with a Wikipedia article by searching for the question
text in Google search, restricted to the Wikipedia domain for each language, and then the
annotators selected the top-ranked result. The top-ranked result had to be selected based
on whether the Wikipedia article contained the answer to the question or whether the
question could not be answered using any article (or that no single passage is a satisfactory
answer). If such a passage is found annotators were then asked to select the minimum

20

response. Most often, the answer is a few words, but in some cases can span most of a
sentence.

3.4 XOR-TyDi QA
The Cross-lingual Open Retrieval Question Answering (XOR-TyDi QA) dataset [4] is a col-
lection of multilingual question-answer pairs that was created for development and evalua-
tion of cross-lingual open-domain QA models. The dataset TyDi QA contains only answers
of the same language. Unlike TidyQA, the dataset XOR-TyDi QA was built on questions
from the pairs that are lacking same-language answers. Thus the dataset contain questions
paired with target documents and answers in English only. These pairs are unanswerable
in original dataset. XOR-TyDi QA includes 40k information-seeking questions from across
7 diverse non-English languages: Arabic, Bengali, Finnish, Japanese, Korean, Russian and
Telugu shown in Table 3.5.

Language Ar Bn Fi Ja Ko Ru Te
Size 20,379 5,704 12,110 9,564 5,847 11,218 8,196

Table 3.5: Dataset size of the XOR-TYDI QA corpus.

The question-answer pairs in the XOR-TyDi QA dataset were collected from Wikipedia
articles as it was derived from TyDI QA dataset. The data was human curated and anno-
tated to ensure a high level of quality and relevance. The professional translation service
Gengo4 was used to translate all collected questions into English. As named entities were
crucial for quality control, translators were instructed to translate them carefully by search-
ing for common English translations from the English Wikipedia or other external sources.
Manual quality assessments by native speakers were performed on 50 sample translations,
and more than 95 % of the translations were found to be correct.

Language Train Dev Test
Ar 18,402 708 1,269
Bn 5,010 427 267
Fi 9,768 615 1,727
Ja 7,815 433 1,316
Ko 4,325 371 1,151
Ru 9,290 568 1,360
Te 6,759 351 1,086

Table 3.6: Dataset size of the XOR-TYDI QA corpus splited into sets.

To evaluate the performance of models on the XOR-TyDi QA dataset, the data was
divided into a training set, a validation set, and a test set that is shown in Table 3.6. Models
were trained on the training set and their performance was evaluated on the validation and
test sets.

21

3.5 Other datasets
In addition to X-Fact, there are many other datasets [53][59][33][51][62] that are designed to
support training of modern models. However, most of the datasets, are created in English
only and there is quite a small spectrum that deals with multilingual datasets.

One of the many datasets, for example, is the FEVER: Fact Extraction and VERification
dataset [53]. It consists of 185,445 statements created by modifying sentences extracted
from Wikipedia and then verified without knowledge of the sentence from which they were
derived. Claims are classified by annotators as Supported, Refuted or NotEnoughInfo.
For the first two classes (Supported and Refuted), the annotators also labeled the sentences
constituting the necessary evidence for their judgment, which is one of the key shortcomings
of the X-Fact dataset. However, the dataset is constructed in English only.

Another dataset is, for example, the Politifact dataset. This is a high-quality dataset
that collects data from the PolitiFact website [59]. The dataset contains 21,152 passages
that are checked by professional fact-checkers. The dataset is expanded every year with
additional data. All passages are divided into 6 categories, namely: true, mostly true,
half true, mostly false, false, and pants on fire. It also lists the sources where the
statement appeared, which can be crucial for gaining different insights on fact-checking.

There are other datasets [33][51][62] that deal with fact-checking, but to the best of the
author’s knowledge no other multilingual datasets have been published. Nowadays, it is
important to emphasize multilingual datasets as information/disinformation is disseminated
beyond the boundaries of the language in which the disinformation originated1.

1https://eufactcheck.eu/

22

https://eufactcheck.eu/

Chapter 4

Information retrieval

Ranking retrieval is a process of ordering a set of documents in response to a user query in
such a way that the most relevant documents appear at the top of the list. Formally, given
a query 𝑞 and a collection of documents 𝐷 = {𝑑1, 𝑑2, ..., 𝑑𝑛}, the ranking retrieval function
𝑓(𝑞,𝐷) assigns a score to each document 𝑑𝑖 in 𝐷, such that the documents are sorted in
descending order of their scores, and the top-ranked documents are considered the most
relevant to the query.

Information retrieval models are statistical models used to represent the process of
retrieving relevant information from a large collection of documents or other data sources.
The goal of information retrieval models is to assist users in finding the most relevant
documents or information in response to a specific query.

There are various information retrieval models, but some of the most common include
the Boolean model [44], the vector space model [47], the probabilistic model, the latent se-
mantic indexing (LSI) model [26], and neural network models [16]. The Boolean model uses
Boolean logic to match documents to queries. The vector space model represents documents
and queries as vectors in a high-dimensional space, where each dimension corresponds to a
term in the vocabulary. It computes the similarity between them using measures such as
cosine similarity.

Cosine similarity measures the similarity between two vectors of an inner
product space. It is measured by the cosine of the angle between two vectors
and determines whether two vectors are pointing in roughly the same direction.
It is often used to measure document similarity in text analysis. [20]

The probabilistic model, on the other hand, uses probabilistic techniques to rank documents
based on the likelihood that they are relevant to a query, taking into account factors such
as term frequency and document length. The LSI model uses singular value decomposition
to identify hidden relationships between terms in the corpus, while neural network models
such as convolutional neural networks (CNN) [37] and transformers [56] show promising
results when applied to information retrieval tasks. One of the transformer-based docu-
ment retrieval models is Multilingual Dense Passage Retrieval (mDPR) [5]. It is a dense
retrieval method that encodes the query and documents into dense representations using
pre-trained multilingual language models such as mBERT [40], and then compares the
query and documents in a vector space to retrieve the most relevant passages.

Information retrieval models can also be divided into sparse and dense models based
on their approach to representing and matching textual data. Sparse information retrieval
models, such as the classical Boolean model, represent textual data as binary vectors that

23

indicate whether or not each term occurs in a document. In contrast, dense information
retrieval models use continuous, dense representations of textual data that capture more
subtle information about the relationships between terms, that is the key advantages.

Information retrieval models are essential in natural language processing and enable
effective retrieval over large text corpus.

4.1 Dense passage retrieval
Dense Passage Retrieval (DPR) [23] is a method of dense retrieval model used for informa-
tion retrieval tasks that involves retrieving relevant passages of text from a large corpus.
DPR encodes both the query and documents into dense representations using pre-trained
transformer models such as BERT [15], and then matches them in a vector space to retrieve
the most relevant passages.

Dense passage retrieval uses a dense encoder 𝐸𝑃 (·) which maps any input passage to a
d-dimensional real-valued vectors and builds an index for all the M passages that will be
used for retrieval:

𝐸𝑃 (x,m) : (R𝑛×𝑑,R𝑛×1) → R𝑑 (4.1)

where x ∈ R𝑛×𝑑 is a matrix representing the input document tokens, m ∈ R𝑛×1 is a vector
representing the attention mask for the input tokens, and 𝐸𝑃 (x,m) ∈ R𝑑 is the output
vector representing the encoded document.

A different encoder 𝐸𝑄(·) is applied at the run-time, which maps the input query to a
𝑑-dimensional vector and obtains the 𝑘 passages that are closest to the query vector:

𝐸𝑄(x,m) : (R𝑛×𝑑,R𝑛×1) → R𝑑 (4.2)

where x ∈ R𝑛×𝑑 is a matrix representing the input query tokens, m ∈ R𝑛×1 is a vector
representing the attention mask for the input tokens, and 𝐸𝑄(x,m) ∈ R𝑑 is the output
vector representing the encoded query.

These encoders are two different BERT networks with output on the token [CLS], so
d = 768. The input tokens are first tokenized and passed through the BERT model, which
consists of multiple transformer layers. Each transformer layer applies self-attention and
feed-forward neural networks to the input tokens to compute a contextualized representation
of each token. The output of the final transformer layer is then used as the encoded
representation of the input document or query.

In particular, the 𝐸𝑃 takes as input a matrix x of document tokens and a vector m of
attention masks, where each element of m is either 0 or 1 to indicate whether a correspond-
ing token should be masked out or not. The 𝐸𝑃 passes x and m through the BERT model
to obtain a matrix of contextualized token representations. The attention mask is used to
ensure that the masked tokens do not affect the output of the BERT model. The matrix of
contextualized token representations is then aggregated into a single vector representation
of the document using an attention mechanism.

Similarly, the 𝐸𝑄 takes as input a matrix x of query tokens and a vector m of attention
masks. The 𝐸𝑄 passes x and m through the same BERT model to obtain a matrix of con-
textualized token representations. The 𝐸𝑄 also uses an attention mechanism to aggregate
the matrix of contextualized token representations into a single vector representation of the
query.

24

The similarity is defined as a dot product between the query vector and the document
vector:

𝑠𝑖𝑚(𝑞, 𝑝) = 𝐸𝑄(𝑞)
𝑇𝐸𝑃 (𝑝). (4.3)

Training

Encoder training is done to maximize the cosine similarity between the query and relevant
passages and minimize the cosine similarity between the query and irrelevant passages.
The goal is to create a vector space that contains relevant pairs of question and passage
vectors with smaller distance (i.e., higher similarity) than the irrelevant ones. Let 𝐷 =
{⟨𝑞𝑖, 𝑝+𝑖 , 𝑝

−
𝑖,1, . . . , 𝑝

−
𝑖,𝑛⟩}𝑚𝑖=1 be the training data that contains m instances. Each instance

contains one question 𝑞𝑖 and one positive passage 𝑝+𝑖 along with n negative passages 𝑝+𝑖,𝑗
shown in table 4.1. The loss function is then optimized as the negative log-likelihood of the
positive passage:

𝐿(𝑞𝑖, 𝑝
+
𝑖 , 𝑝

−
𝑖,1, . . . , 𝑝

−
𝑖,𝑛) = − log

𝑒𝑠𝑖𝑚(𝑞𝑖,𝑝
+
𝑖)

𝑒𝑠𝑖𝑚(𝑞𝑖,𝑝
+
𝑖) +

∑︀𝑛
𝑗=1 𝑒

𝑠𝑖𝑚(𝑞𝑖,𝑝
−
𝑖,𝑗)

. (4.4)

Question: What is the capital of France?
Positive passage: The capital of France is Paris, one of the

most famous cities in the world, known for
its art, fashion, and cuisine.

Negative passage 1: France is a beautiful country located in
Western Europe. It is home to a diverse
range of landscapes, from the snowy peaks
of the Alps to the sandy beaches of the
Mediterranean coast.

Negative passage 2: The Eiffel Tower is a famous landmark in
France that attracts millions of visitors ev-
ery year. It was built in the late 19th cen-
tury as part of a World’s Fair held in Paris.

Table 4.1: Example of a query, positive passages and negative passages.

For retrieval problems, it is often the case that positive examples are available explicitly,
while negative examples must be selected from an extremely large set. Relevant passages
to the question may be listed in the QA dataset or may be found by using the answer.
All other passages could be considered irrelevant in this case. Therefore, negative passages
were selected using three different procedures:

1. the first procedure, the so-called random procedure, was to select a random passage
from the corpus,

2. the second procedure, the so-called BM25 procedure, was to select passages that were
returned as best by BM25 model [44] and contain most of the question tokens but do
not contain the answer,

25

3. the last procedure, the so-called in-batch negatives, consisted of selecting a positive
passage and pairing it as negative with another question that appeared in the training
set.

Using in-batch negatives has proven to be an effective approach because it’s an easy and
memory-efficient way to reuse negative examples already in a batch rather than creating
new ones. The experiments in DPR paper [23] led to the conclusion that combining the
second and third approaches is the best approach. That is, they took the negative passages
from the in-batch negatives and added 7 negative passages from the BM25 procedure.

4.2 Multilingual dense passage retrieval
Multilingual dense passage retrieval [5] (mDPR) is a retrieval model used for information
retrieval tasks. It is a variant of the dense passage retrieval [23] (DPR) model and is designed
to be multilingual and cross-lingual, meaning that it can handle queries and documents
in multiple languages. mDPR encodes both the query and the documents into a dense
representation in the same way as DPR. However, since mDPR is designed as a multilingual
model, it uses multilingual BERT (mBERT) [40].

mDPR is used to rank passages based on their relevance to a given query. It does so by
representing each passage as a dense vector, using a combination of language models and
transformer networks.

To rank passages for a given query, mDPR uses the following basic equation:

Score(P,Q) = cosine_similarity(P,Q), (4.5)

where P is the dense vector representation of the passage, Q is the dense vector repre-
sentation of the query and cosine_similarity is a measure of the similarity between
two vectors, calculated as the dot product of the vectors divided by the product of their
magnitudes:

cosine_similarity(P,Q) =
Q ·P

‖Q‖‖P‖
=

∑︀𝑛
𝑖=1𝑄𝑖𝑃𝑖√︁∑︀𝑛

𝑖=1𝑄
2
𝑖

√︁∑︀𝑛
𝑖=1 𝑃

2
𝑖

. (4.6)

mDPR can handle queries by taking into account the full context of the passages it
is ranking, in addition to evaluating their relevance to a given query. This makes it an
attractive option for tasks such as question answering, where the meaning of the query may
not be clear from the individual terms alone.

mDPR has been shown to be an effective method for ranking passages based on their
relevance to a given query. It has been compared to other retrieval models, including Okapi
BM25, and has demonstrated strong performance in a number of different benchmarks [44].
As such, it is often used as a baseline method for evaluating the performance of other
retrieval models and has the potential to be a useful tool in a variety of information retrieval
tasks.

Comparsion of mDPR with DPR

Let 𝐷 = {⟨𝑞𝑖, 𝑝+𝑖 , 𝑝
−
𝑖,1, . . . , 𝑝

−
𝑖,𝑛⟩}𝑚𝑖=1 be m training instances. Each instance consists of a

question 𝑞𝑖, a passage that answers the question 𝑝+𝑖 (a positive passage), and n passages

26

that do not answer the question 𝑝−𝑖,𝑗 (negative passages). The mDPR model is then trained
in the same way as the DPR model with equation 4.4, as described in the section on DPR.

DPR is originally initialized with the English BERT [15]. For multilingual search
and to take advantage of cross-language transfer, the mDPR model was initialized with
mBERT [40], while all other aspects of training remained the same [67].

Several works [3][31][45][58] have shown that monolingual BERT models can be more
efficient than mBERT in various natural language processing tasks, but the gains are not
consistent. In a publication [67], the results of the comparison of the monolingual model
with the multilingual model were published. The results showed that it is possible that there
are “better” monolingual BERT models for the target language than mBERT. However,
the advantage of the mBERT model is that it can be easily pre-finetuned by using the
MS MARCO dataset [34] and leveraging datasets from other languages. Obviously, for
monolingual (non-English) BERT, it is no longer possible to pre-fine-tune the model on MS
MARCO. A recommendation is included in the publication:

Using a monolingual BERT backbone can yield a model that is more effective
than using mBERT, but the monolingual model is not consistently better. Thus,
it seems “safer” to just use mBERT as the backbone. [67]

A comparison of the results of all experiments can be found in the publication [67]. Part
of the results table is presented in Table 4.2.

Language Ar En Fi Id Ko
multilingual DPR 0.900 0.841 0.856 0.860 0.785
monolingual DPR 0.894 0.805 0.893 0.888 0.820

Table 4.2: Results from the publication [67] with a performance metric Recall@100.

To achive this results monolingual DPR was trained for all languages separately. The
languages represented in the experiment were: Arabic, English, Finnish, Indonesian and
Korean. Multilingual DPR was trained for all languages. The models were trained in 40
epochs with the corresponding training data (single or multiple languages) with 128 batch
size without using transaltions. The monolingual DPR models were trained on data used
from Mr. TYDI dataset [66]. The multilingual DPR was trained on MS MARCO dataset.
The Recall@100 metric was then used for the evaluation of the models. Recall@100 is a
metric used to evaluate the performance of information retrieval models. It measures the
percentage of relevant documents that are retrieved among the top 100 results for a given
query.

27

Chapter 5

Proposed system for dataset
conversion

Following text is based on the findings presented in paper [38] about creation of a multi-
lingual dataset for fact verification from an existing question-answering dataset. The main
goal was to see if it is possible to automatically create a challenging dataset without help
of human translators and annotators.

This work also goes trough this topic with additional comparison where two different
approaches for dataset creation are attempted. The XOR-TyDi QA dataset was used for
the conversion. The dataset consist of 7 languages: Arabic, Bengali, Finnish, Japanese,
Korean, Russian and Telugu. This work assumes that the question-answer pairs are in
the same language. It is proceed in the way when someone asks a question, he receives the
answer in the same language in which the question was asked. However, this may not always
be true for the evidence that contains the necessary information for the model to answer
the question. The evidence may be in a different language than the language in which the
question is represented. Even so, the model should be able to take the information from
the other language and then return the answer in the desired language shown in Figure 5.1.

Figure 5.1: Example of question in English an the information in the Russian language
with the generated answer in English.

28

5.1 Answer generation

5.1.1 Data

The data which were used to return the documents are from the February 2019 Wikipedia
dumps of 13 diverse languages contain all XOR-TyDi QA languages [5]. These 13 languages
have a large number of Wikipedia articles and a variety of both Latin and non-Latin scripta
continua. The data were extracted from Wikipedia using wikiextractor [6] and then each
article was splitted into 100-token segments. In [5] they also filtered out the short articles
with fewer than k (i.e., k = 20 in the paper) tokens resulting in 43.6M passages in total.

5.1.2 mDPR

One of the main part of the proposed system is article document retrieval. The implemen-
tation of the mDPR model taken from [5] covered all the steps described in this subsection.
The mDPR produced dense embeddings of a question and all multilingual passages, thereby
retrieving passages across all languages.

In order to answer a question, we need to find the record in which the answer to the
question is located. This is the document retrieval task to returns a certain number of
the most relevant documents in which the answer might be located. These documents
are returned in different languages. The documents are then evaluated based on an exact
match score metric (explained in Section 6.4) with the correct answer, since the answers are
represented in the dataset from which the question is taken. Thus, the label “has_answer”
was added to each sample to indicate whether the target answer is present in the document.

5.1.3 Generation of positive and negative
question-answer-passage triplets

The generation model (mGEN) taken from [5] was trained to output an answer in the
target language based on the retrieved multilingual passages. The resulting dataset must
contain not only positive answers but also negative answers. They were created in the
FaVIQ paper [38] using two approaches, particularly with the help of ambiguous questions
and documents retrieved by document retrieval. In this work, only the approach with help
of documents retrieved mDPR was used.

Let 𝑄* = {𝑞1, 𝑞2, ..., 𝑞𝑛} be all questions and 𝐴* = {𝑎+1 , 𝑎
+
2 , ..., 𝑎

+
𝑛 } be all answers to the

questions from the XOR-TyDi QA dataset [4].

Positive triplets

To generate a positive answer 𝑎+, the questions 𝑞𝑖 were submitted to mDPR, which retrieved
the top 100 documents. Let 𝑃 be all passages returned from mDPR for the question 𝑞𝑖.
Since mGEN was trained with a set of 15 documents, these 100 documents denoted as 𝑃
retrieved by mDPR were then post-processed in the way that only the top 15 documents
that have the “has_answer” label set to True are taken into mGEN. If there were less
than 15 documents with a label set to True, the sample was not considered in further
triplet formation. Based on these documents mGEN then generates an answer 𝑎+ for each
question 𝑞𝑖 ∈ 𝑄* with the resulting scores shown in table 5.1.

The generated answer 𝑎+ was then postprocessed with a goal to eliminate answer that
was not present in any of the passages 𝑃 retrieved by mDPR. Therefore, let EM(𝑎+, 𝑃𝑖) be
the exact match score metric 6.4 that calculates the score with each passage 𝑃𝑖 ∈ 𝑃 returned

29

from mDPR. The EM was ten evaluated in the way EM(𝑎+, 𝑃𝑖) = 1. If the result score was
equal to 1 the answer 𝑎+ was presented in the passage 𝑃𝑖. The answer 𝑎+ is paired with the
passage 𝑃𝑖 and question 𝑞𝑖. This resulted into formation of the final positive triplet. Rest
of the passages in 𝑃 were not used in the final output. Samples that had no 𝑃𝑖 passage
that contained the answer 𝑎+ information were not converted to the final positive triplet.
The results are shown in table 5.1.

Dataset Postprocess Number of Samples F1 score EM Score

Dev
Original 3473 46.08 % 34.35 %
EM procedure 1145 61.09 % 49.78 %

Train
Original 61340 54.36 % 42.96 %
EM procedure 29751 73.69 % 62.91 %

Table 5.1: Results using F1 and EM metrics (explained in Section 6.4) from the postprocess
procedure for positive answers. The column named “Postprocess” indicates the specific
procedure step. In the EM procedure the data was filtered in the way to eliminate answers
that did not contain an passage with the evidence of the answer.

Negative triplets

To generate a negative answer 𝑎−, the same procedure was followed as for a positive answer
𝑎+, with the only difference that the top 15 passages 𝑃 that have the “has_answer” label
set to False are taken to generate the answer. The label set to false means they do not
contain any answer match. Based on these documents mGEN generated an answer 𝑎− for
each question 𝑞𝑖 ∈ 𝑄* with the resulting scores shown in table 5.2.

The generated answer 𝑎− was then postprocessed with a goal to eliminate answer in the
way F1(𝑎−, 𝐴*) = 1. This score indicates that generated answer 𝑎− was likely correct, as it
was included in the original dataset answers 𝐴* and since the purpose of this answer was
to be incorrect, it was not considered in further triplet formation. Then for each answer
𝑎− the EM was ten evaluated for each passage 𝑃𝑖 ∈ 𝑃 in the way EM(𝑎−, 𝑃𝑖) = 1. If the
EM score was equal to 1 the answer 𝑎− was presented in the passage 𝑃𝑖. The answer 𝑎−

was paired with the passage 𝑃𝑖 and question 𝑞𝑖. This resulted into formation of the final
negative triplet. Rest of the passages 𝑃 were not used in the final output. Samples that
had no 𝑃𝑖 passage that contained the answer 𝑎− information were not converted to the final
negative triplet. The results are shown in table 5.2.

30

Dataset Postprocess Number of Samples F1 score EM Score

Dev
Original 3473 17.72 % 11.66 %
F1 procedure 3068 6.86 % 0.00 %
EM procedure 1080 9.01 % 0.00 %

Train
Original 61340 25.50 % 19.33 %
F1 procedure 49452 7.59 % 0.00 %
EM procedure 18037 9.13 % 0.00 %

Table 5.2: Results using F1 and EM metrics (explained in Section 6.4) from the postprocess
procedure for negative answers. The column named “Postprocess” indicates the specific
procedure step. In the F1 procedure the data was filtered in the way to eliminate answers
that was likely correct as they were included in the original dataset. In the EM procedure
the data was filtered in the way to eliminate answers that did not contain an passage with
the evidence of the answer.

5.2 Conversion system
The mGEN model only generated a set of correct and incorrect answers to the question,
but the final result to be achieved in this work is to create a multilingual fact-checking
dataset. So the questions and answers need to be converted into the claims. Based on
the question the mGEN generates the answer. As a result we have a question-answer
pairs. From these pairs, the T5 model 2.3 was trained to generate a claim. The question
contains information about what the answer specifically refers to and the answer itself is the
information we want to transfer to the claim. From this point the execution flow was split
into two approaches. The first approach was to train a multilingual T5 model [65] (mT5)
with the use of the dataset that has the question-asnwer pairs in all considered languages.
The second apporach is to train the monolingual T5 model [42] with dataset that contains
only the data in English language.

Training

The training of these two models was done using data that were collected from the original
paper FaVIQ [38]. The data consist of three datasets. The first dataset was used for
pre-training and has 60k examples of the question-answer pairs and the target outputs
that stand for the target claims. It includes also 10k examples for validation [38]. The
dataset was collected from one of the authors of the Faviq paper [38]. The sample from the
pre-training dataset is shown in table 5.3.

Dataset: SQuAD
ID: 570bf0896b8089140040fada
Question: Why did the committee debate adding a shift

function?
Answer: would allow more than 64 codes to be repre-

sented by a six-bit code
Claim: Committees debated on adding a shift function

because it would allow more than 64 codes to be
represented by a six-bit code.

Table 5.3: Sample from dataset used for pre-training.

31

The other two datasets are manually annotated samples in English for the purpose of
fine-tuning a monolingual T5 model. The datasets were collected from one of the authors of
the Faviq paper [38]. They were created in the same way as R Set and A Set described in
section 3.2. They consist of the same data structure that was needed for pre-training. Each
dataset has the structure of one example as: question, positive answer, negative answer,
positive claim and negative claim. Each dataset has ≈ 150 samples for training and ≈ 100
samples for validation. The sample from the fine-tuning dataset is shown in table 5.4.
These datasets were used for fine-tuning of the models. There was no difference between
positive and negative question-answer pairs that were used for fine-tuning, as mentioned
by the author of these datasets. Thus the samples from both datasets were separated
into two examples (positive and negative). Therefore, for fine-tuning task the dataset
had 600 samples for training (each dataset consist of 150 samples of positive and negative
example, i.e. 22 ·150) and 400 samples for validation (each dataset consist of 100 samples of
positive and negative example, i.e. 22 ·100). The datasets were created in english language.
Therefore, theses datasets need to be translated into all desired languages for training of a
multilingual mT5 model.

Question: Who was the comedian who said chase
me?

Positive Answer: duncan norvelle
Positive Claim: duncan norvelle was the comedian who

said chase me
Negative Answer: chevy chase
Negative Claim: chevy chase was the comedian who said

chase me

Table 5.4: Sample from dataset used for fine-tuning.

English

The pre-trained model from the huggingface library, namely “t5-base”, was used for the
monolingual T5 English model. The ”t5-base“ model was pre-trained on the large C4
corpus [56]. The base version of T5 has 220M parameters that can be tuned.

The model was first pre-trained on the first dataset on 10 epochs. One epoch means
that the model went through all the samples from the dataset exactly once and tried to
predict the correct outputs. Each epoch was run with a batch size of 12, which means
that 12 samples from the datasets were taken and computed at a time. The maximum
sequence length was set to 256. A loss function was then calculated for each batch and
gradients were calculated to update the model weights. Gradient accumulation was also
used, meaning that the weights were only updated in some iteration of the training process.
The gradient accumulation was set to 3 in this case. It means that every third iteration
of training loop updated the model weights. At the end of each pre-training epoch, the
checkpoint was evaluated based on the Rouge score, exact match score and F1 metrics 6.4.
After 10 epochs, the performance of the model began to fluctuate. Thus, the model was
not pre-trained for any further epochs and moved to the fine-tuning phase.

The model was fine-tuned using two other datasets on 900 epochs. The maximum
sequence length and the batch size were the same as in pre-training. The gradient accumu-
lation was also set to 3. During fine-tuning, a checkpoint was evaluated every 20 epochs.
Fine-tuning was stopped in the 900 epoch, as it became clear that the model was already

32

performing well in manual tests. Manual tests consisted of manually created questions and
answers. Tests were used to check that the model generates correct claims.

After training the model, the resulting claims were generated using translation of the
questions and answers into English. The model generated claims in English, which were then
translated back into the desired language. Translations were made using the machine trans-
lation model described below. The model input structure was created by adding the prefixes
“question:” before the target question and “answer:” before the target answer: “question:
Who was the comedian who said chase me? answer: duncan norvelle”. The rec-
ommended generation method1 from the HuggingFace library was used. The max length
of the sequence was set to 256. Generation was based on the beam search [18] which re-
duces the risk of missing hidden high probability word sequences by keeping the most likely
“num_beams” of hypotheses at each time step and eventually choosing the hypothesis that
has the overall highest probability. The “num_beam” parameter was set to 5. The param-
eter “early_stopping” was set to True with the “no_repeat_ngram_size” parameter set
to 3. The “n-grams” penalty ensured that no “n-gram” (i.e. 3-gram in this case) appears
twice by manually setting the probability of next words that could create an already seen
“n-gram” to 0. The resulting scores for the T5 model are shown in table 5.5.

Multilingual

For the multilingual T5 model, which was trained for all languages, a pre-trained model
“google/t5-base” from the huggingface library was used. The base version of mT5 has 580M
parameters that can be tuned. To train the model, the datasets collected from one of the
authors of FaVIQ paper were translated into all desired languages and then combined into
target datasets. For training, the same approach as for the T5 model was used, except
that only 3 epochs were performed for pre-training and then 900 epochs were used for
fine-tuning. The batch size was the same as for T5 training, with the use of gradient
accumulation. The difference between the number of pre-training epochs was due to the
size of the training data. Since the original dataset was translated into all target languages,
the size of the training dataset was almost 500,000 samples. The generation method with
the same parameters was used as for monolingual T5 English model.

After the training process, the input was passed to the model to generate the claim. The
structure of the input to the model was the same as shown in the T5 model except that
a prefix for the target language was added: ”language: en question: Who was the
comedian who said chase me? answer: duncan norvelle“. The resulting scores for
the mT5 model are shown in table 5.5.

As can be seen the T5 model achieved better results than the mT5 model in automatic
metrics. This was caused with the bad performance of the translation models as the metrics
were calculated on the validation dataset that was used for fine-tuning the mT5 and T5
models. These datasets were firstly translated into all desired languages for the training of
the mT5 model.

Therefore two errors are for the bad performance of the mT5 model. The error#1 is
because of translations in some languages did not even reach 50 % success rate (described
in Section 7.1), therefore the target claims were translated into claims that were not correct
prediction in the target language for the model. The error#2 is that after the translation
of the sample into the target language, the question and answer did not represent the
same meaning as the translated claim. Thus the mT5 generated relevant claim for the

1https://huggingface.co/blog/how-to-generate

33

https://huggingface.co/blog/how-to-generate

Model Metric Score

T5

Rouge-1 85 %
Rouge-2 78 %
Rouge-L 84 %
EM 19 %

mT5

Rouge-1 66 %
Rouge-2 51 %
Rouge-L 61 %
EM 6 %

Table 5.5: Evaluation of the trained models based on Rouge and Exact Match score metrics
(explained in Section 6.4).

input question and answer but the target claim was different because of the translation.
Unfortunately, these are still only hypotheses and experiments have not been performed to
explain this problem.

5.3 Translation
The translation was performed using the Helsinki OPUS-MT [54] described in Section 2.1.
For each language, a different model was used. Each model was trained for the target
language. Since the Helsinki OPUS-MT lacked a translator model for Korean, a second
translator model was used in this work, namely ”facebook/m2m100_1.2B“. The model
was trained for Many-to-Many multilingual translation and covers Korean as well.

All models were taken from the huggingface library, where the models are already pre-
trained for the translation task. Translation is one of the main limitations of this work, as
after manual analyses it was found that not all models translated the input to the target
language correctly, especially for non-Latin languages. An example of a query translated
from English to Telugu and then translated back to English is shown in table 5.6. On the
other hand, the models work well in Latin languages, as can be seen in section 7.1.

Original query: The chicken is afraid of the road.
Translated query: The cold night’s scared.

Table 5.6: Example of a translated query from English to Telugu and back to English.

However, the sentences in the original dataset are not that complex and each translator
model performed well. The back-translation is evaluated in Section 7.1.

5.4 Final dataset
All the parts that are needed for the final pipeline are described and therefore the final
pipeline structure can be interpreted. Both approaches are almost identical except the
translation part. For the monolingual approach, the pipeline is shown in figure 5.2.

34

Figure 5.2: Pipeline for the approach with the English T5 model.

For the multilingual model the pipeline is shown in figure 5.3.

Figure 5.3: Pipeline for the approach with the multilingual T5 model.

As the final result both approaches convert dataset with the same samples and structure.
The structure of one sample from the dataset is shown in table 5.4. The datasets consists
of the validation dataset and the training dataset. The test dataset for final testing was
not converted in this work, since in this work there were no evaluations of final fact-
checking model that required the test dataset and therefore it was not needed for the
experiments. Experiments were performed on the fact-checking model based on TF-IDF
and it did not need a test data set to evaluate 7.4. However, to convert also the test dataset
is straightforward since all the required parts for the creation were described.

35

Figure 5.4: Example of one sample from the dataset. The second sample is the same,
translated into English for the reader.

The final datasets consists of 3 different sample types. The first is positive claim, that
is matched with the evidence that supports the claim. Second type of sample is a negative
claim, that is matched with the evidence that likely refutes the negative claim but containing
the positive answer for the claim. To ensure the quality of the datasets and that the task
were not that simple for the fact-checking model, the third type of samples were created in
such a way that negative claim that is matched with the evidence containing the negative

36

information based on which the claim was generated. The total number of the samples and
its split is shown in the table 5.7.

Dataset Type Size Support Refute Refute+ Refute−

T5 train 47788 29751 18037 11784 6253
dev 2225 1145 1080 497 583

mT5 train 47788 29751 18037 11784 6253
dev 2225 1145 1080 497 583

Table 5.7: Overview of data file sizes. Refute+ stands for negative claims matched with the
evidence that contains correct answer. Refute− stands for negative claims matched with
the evidence that supports incorrect answer.

37

Chapter 6

Experimental setup

In this work Python was selected as the main programming language since it is popular
in the machine learning community and contains many machine learning libraries that are
used in this work. The vast majority of the code is based on the transformer library with
a large collection of pre-trained models running on Pytorch [39] backend.

6.1 Top-K accuracy
Top-k accuracy is a common evaluation metric used in retrieval tasks. It is used to measure
the performance of a model in retrieving the most relevant documents or passages for a
given query.

Top-K accuracy is calculated as the percentage of queries for which the model was able
to retrieve at least one of the top k most relevant documents or passages. The value of
k is typically set to a small number to ensure that the model is able to retrieve the most
relevant documents or passages (i.e., k=100 in this work).

The basic equation for calculating top-k accuracy is as follows:

Top-k Accuracy =

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 𝑤𝑖𝑡ℎ 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒
𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑖𝑛 𝑡𝑜𝑝-𝐾 𝑟𝑎𝑛𝑘𝑒𝑑 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑞𝑢𝑒𝑟𝑖𝑒𝑠
(6.1)

Top-k accuracy is a useful evaluation metric because it focuses on the ability of the model to
retrieve the most relevant documents or passages for a given query. It is particularly useful
for tasks where it is important to retrieve a small number of highly relevant documents or
passages, such as in question answering task. Thus it is a valuable tool for measuring the
performance of models in retrieving any relevant documents or passages for a given query.

6.2 F-score
F-score [14] describes model performance using a scale from zero to one. F-score itself is
derived from two summary measures: precision and recall. Precision describes the propor-
tion of entities which a model returns that are correct. Recall describes the proportion of
all entities that potentially should be found, that a given model actually returns.

Precision and recall

Precision measures the proportion of true positive results among the total number of positive
results predicted by a model shown in equation 6.2. In other words, it is the ratio of true

38

positives to the sum of true positives and false positives. High precision means that a
model is producing few false positives relative to the number of true positives, indicating a
low rate of false positives. However, precision alone may not give a complete picture of a
model’s performance, and it is often used in conjunction with the recall to provide a more
comprehensive evaluation.

𝑃 =
|𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠|

|𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠|+ |𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠|
(6.2)

Recall is a measure of a system’s ability to identify all relevant instances of a target
concept within a dataset. It is defined as the ratio of true positive results to the sum of true
positive and false negative results shown in equation 6.3. In other words, recall measures
the proportion of relevant items in the dataset that were correctly identified by the model.
A high recall value indicates that the system is effective at finding all relevant instances
of the target concept, while a low recall value indicates that many relevant instances were
missed.

𝑅 =
|𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠|

|𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠|+ |𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠|
(6.3)

F1 score

These metrics can be balanced out together. It is noted that these extreme situations,
which were previously exploited, contrast with each other: when everything is returned,
only a baseline precision is achieved, and returning just one thing typically results in a very
low recall measure. Thus, it is a common practice to combine precision and recall with a
weighted harmonic mean, known as an F-score:

𝐹𝛽 = (1 + 𝛽2)
𝑃𝑅

𝛽2𝑃 +𝑅
(6.4)

The balance between precision and recall is determined by the coefficient 𝛽 in this
equation, with high values favoring recall. A harmonic weighted mean of precision and
recall is obtained in this manner. Typically F-score is used with 𝛽 = 1, c.f. its sometimes
being called “F1 score”.

6.3 Rouge
The quality of a summary is determined automatically by comparing it to other (ideal)
summaries created by humans, using measures included in ROUGE (Recall-Oriented Un-
derstudy for Gisting Evaluation) [29]. The number of overlapping units such as n-gram,
word sequences, and word pairs are counted between the computer-generated summary
to be evaluated and the ideal summaries created by humans. In this work the measures
Rouge-N and Rouge-L were used.

39

Rouge-N: N-gram co-occurrence statistics

ROUGE-N is an n-gram recall between a candidate summary and a set of reference sum-
maries. Rouge-N is computed as follows:

𝑅𝑂𝑈𝐺𝐸-𝑁 =

∑︀
𝑆∈{𝑆𝑢𝑚𝑚𝑎𝑟𝑦}

∑︀
𝑔𝑟𝑎𝑚𝑛∈𝑆

𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝑔𝑟𝑎𝑚𝑛)∑︀
𝑆∈{𝑆𝑢𝑚𝑚𝑎𝑟𝑦}

∑︀
𝑔𝑟𝑎𝑚𝑛∈𝑆

𝐶𝑜𝑢𝑛𝑡(𝑔𝑟𝑎𝑚𝑛)
(6.5)

where 𝑛 stands for the length of the n-gram, 𝑔𝑟𝑎𝑚𝑛, and 𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝑔𝑟𝑎𝑚𝑛) is the max-
imum number of n-grams co-occurring in a candidate summary and a set of reference
summaries (𝑆𝑢𝑚𝑚𝑎𝑟𝑦).

When multiple references are used, pairwise summary-level Rouge-N is computed be-
tween a candidate summary 𝑠 and every reference, 𝑟𝑖, in the reference set. The maximum
of pairwise summary-level ROUGE-N scores is then taken as the final multiple reference
Rouge-N score. This can be written as follows:

𝑅𝑂𝑈𝐺𝐸-𝑁𝑚𝑢𝑙𝑡𝑖 = argmax𝑖𝑅𝑂𝑈𝐺𝐸-𝑁(𝑟𝑖, 𝑠) (6.6)

This procedure is also applied to computation of Rouge-L.

Rouge-L: longest common subsequence

A sequence 𝑍 = [𝑧1, 𝑧2, ..., 𝑧𝑛] is a subsequence of another sequence 𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑚],
if there exists a strict increasing sequence [𝑖1, 𝑖2, ..., 𝑖𝑘] of indices of 𝑋 such that for all
𝑗 = 1, 2, ..., 𝑘, we have 𝑥𝑖𝑗 = 𝑧𝑗 [13]. When considering two sequences 𝑋 and 𝑌 , the
common subsequence with maximum length is a longest common subsequence (LCS) that
can be obtained.

To apply LCS in summarization evaulation, the summary sentence is viewed as a se-
quence of words. The intuition is that the longer the LCS of two summary sentences is,
the more similar the two summaries are. In it was proposed to use LCS-based F-measure
to estimate the similarity between two summaries 𝑋 of length 𝑚 and 𝑌 of length 𝑛. 𝑋
stands for a reference summary sentence and 𝑌 stands for candidate summary sentence, as
follows:

𝑅𝑙𝑐𝑠 =
𝐿𝐶𝑆(𝑋,𝑌)

𝑚
(6.7)

𝑃𝑙𝑐𝑠 =
𝐿𝐶𝑆(𝑋,𝑌)

𝑛
(6.8)

𝐹𝑙𝑐𝑠 =
(1 + 𝛽2)𝑅𝑙𝑐𝑠𝑃𝑙𝑐𝑠

𝑅𝑙𝑐𝑠 + 𝛽2𝑃𝑙𝑐𝑠
(6.9)

where 𝐿𝐶𝑆(𝑋,𝑌) is the length of a longest common subsequence of 𝑋 and 𝑌 , and 𝛽 =
𝑃𝑙𝑐𝑠/𝑅𝑙𝑐𝑠 when ?𝐹𝑙𝑐𝑠/?𝑅𝑙𝑐𝑠 =?𝐹𝑙𝑐𝑠/?𝑃𝑙𝑐𝑠. 𝛽 is set to a very big number. Therefore, only
𝑅𝑙𝑐𝑠 is considered.

6.4 Exact match score
The exact match score is a metric used to evaluate the accuracy of natural language pro-
cessing (NLP) models in predicting exact matches between two pieces of text.

40

In NLP tasks such as question-answering or text classification, the goal is often to
predict a specific answer or label that exactly matches the true answer or label. The exact
match score measures the percentage of predictions that are exactly correct, with no errors
or variations from the true answer.

It is calculated as the number of exact matches between the predicted text and the true
text, divided by the total number of examples:

EM =
number of exact matches
total number of examples . (6.10)

The exact match score is a useful metric for evaluating the performance of NLP models
in scenarios where precision is more important than recall. It is more strict evaluation
metric than other commonly used metrics, such as the F1 score, which may give partial
credit for answers that are close but not exact.

6.5 Implementation
The implementation is divided into four main parts: mDPR, mGEN, T5 and translator.
Each of these parts can be independent and thus none of the parts is explicitly dependent
on the other. One of the main drawbacks is that each part requires different versions of the
libraries, especially the pytroch and transformer libraries. These versions are described in
the documentation for the code, which can be found on the github repository1. However,
if the different parts of the code are run in the same order as described in chapter XX, the
results will be the same as in this work.

6.5.1 mDPR & mGEN

Since the implementations of multilingual dense passage retrieval and multilingual generator
were already implemented in article [5], the code was taken from there. Some minor changes
were applied in the code to eliminate some of the issues with the different versions of
libraries. However, all the versions of libraries that were mention in the documentation of
the code were used.

6.5.2 T5

Two implementations of the T5 model are presented in this work. Implementation for
the T5 model was done with the own training loop and “t5-base” pre-trained model was
used. However, there is nothing special about the implementation, as it was based on the
HuggingFace2 tutorial. For the mT5 model the ’google/mt5-base’ model was used from
HuggingFace library. This implementation is based on library simpletransformers3, that
consist of all the required functions for the training process.

For the validation of the models two metrics was used namely rouge score (specificaly
rouge-1, rouge-2 and rouge-L) and exact match score. The calculation of the rouges scores

1https://github.com/xkamen21/designing-a-multilingual-fact-checking-dataset-from-
existing-question-answering-data.git

2https://huggingface.co
3https://pypi.org/project/simpletransformers/0.26.0/

41

https://github.com/xkamen21/designing-a-multilingual-fact-checking-dataset-from-existing-question-answering-data.git
https://github.com/xkamen21/designing-a-multilingual-fact-checking-dataset-from-existing-question-answering-data.git
https://huggingface.co
https://pypi.org/project/simpletransformers/0.26.0/

was done by the library evaluate library from HuggingFace. The implementation of the
exact match score was taken from The Google AI Language Team4.

4https://github.com/google-research/language/blob/6019bb3ab669fff3a0bc65feb438caa58c262233/
language/orqa/utils/eval_utils.py#L97

42

https://github.com/google-research/language/blob/6019bb3ab669fff3a0bc65feb438caa58c262233/language/orqa/utils/eval_utils.py#L97
https://github.com/google-research/language/blob/6019bb3ab669fff3a0bc65feb438caa58c262233/language/orqa/utils/eval_utils.py#L97

Chapter 7

Experiments

The aim of this work was to compare two different approaches of creating fact-checking
dataset from existing question-answering dataset. Several experiments were conducted to
determine which of the approaches is better. As some stepts of dataset conversion are not
easily evaluated automatically (such as translation evaluation and correctness of generated
claims), this work resorted to Human Evaluation. To make the results as accurate as pos-
sible, most of the experiments consisted of human evaluation of the generated statements.
The major part of the experiments consist of comparing the resulting datasets that were
converted by the trained mT5 and T5 models. The Section 7.1 deals with the evaluation
of translation into other languages, as it turned out during the work 7.1 that this part was
the most critical for correct results.

For the claim validation 70 samples from each resulting dataset were randomly selected
for experiments. These 70 samples were then given to 5 annotators who proceeded with the
evaluation based on the attached instructions. The instructions can be seen in the Appendix
A.

Human evaluation of the translations was performed only for the Russian language, as
no sufficiently qualified persons were found for the other languages.

7.1 Translation
The translation of datasets using machine learning proved to be one of the main challenges
of the entire work. The work deals with diverse languages from several different language
families. The languages contain also low-resource languages (Bengali, Telugu). These
language can have relatively small vocabulary, limited training data or they exhibit complex
grammar, sentence structures, and rich morphology. This can lead to difficulties in training
the translation model. Latin languages were translated well, but non-Latin languages were
often translated into completely different statements, that are different from the original.

Human Evaluation

One of the experiments was to perform a human evaluation of a machine translation into
the Russian language. Evaluation was performed on 100 samples from the original XOR-
TyDi QA dataset [4]. One sample consisted of two parts. The first part contained Russian
questions, which were then paired with English translations. The second part was the
evaluation of the reverse translation from English to Russian. For this evaluation, English
claim was taken and translated into Russian.

43

The translation was evaluated by an annotator who is a native speaker. The task of the
annotator was to evaluate the translations into three different classes: correct, incorrect
and excellent. The class correct stands for a translation that is correct with minor
errors, the class excellent stands for a correct translation without any errors, and the class
incorrect stands for a translation with important errors that affected the understanding
of the sentence. The results can be seen in table 7.1.

Type Samples Good Bad Excellent
ru-en 100 29 % 26 % 45 %
en-ru 100 18 % 15 % 67 %

Table 7.1: Russian evaluation of translations.

As can be seen in the table, the results are very positive. The model can translate from
Russian to English with more than 70 % success rate and from English to Russian with an
success rate greater than 80 %.

All Languages

It is difficult to find annotators for each language that are native speakers. Therefore, the
validation of the translation for other languages was done by translating an English sentence
into the resulting language and then converting it back into English (back-translation). The
task of this experiment was to check the translation of individual languages.

Data from the original FaVIQ dataset [38] were used for evaluation. Then 4 statements
in the English language were taken from the dataset. These statements were then translated
into all 7 languages and then translated back into the English language as you can see in
Table 7.2.

44

Lang Sequence
en Additional information can be obtained.
ar Additional information can be obtained.
bn You can receive more information.
fi Further information can be obtained.
ja You can get additional information.
ko You can get additional information.
ru For further information, please click here.
te More information is available.
en A sniper bullet hit Matt on the right side of the neck.
ar Sniper bullet hit Matt on the right side of the neck.
bn A sniper went right on the right side of the car.
fi The sniper’s bullet hit Matt on the right side of his neck.
ja The sniper’s been shot on the right side of the mat.
ko The sniper bullet hit the mat on the right side of his neck.
ru A sniper bullet hit Matt on the right side of his neck.
te A snooze butt on the right side of the heat.
en He called his slave army the Black Guard.
ar His slave army called his Black Guard.
bn He told his slave soldier in the Black Guard.
fi He called his slave army the Black Guard.
ja He called the Slaves Blackwords.
ko He called the slave army the Black Guard.
ru He called his army slaves a black guard.
te He was called the Black Guard of his servant’s army.
en Plants eventually formed chemical defenses against insects.
ar Plants eventually formed chemical defences against insects.
bn Finally, the rains were prevented by Comprick.
fi The plants eventually formed chemical defenses against insects.
ja Finally, plants established a chemical protection against insects.
ko The plant eventually formed chemical defenses against insects.
ru Plants eventually created chemical protection against insects.
te In time, the fruitage produced by the family produced spiritual

protection.

Table 7.2: Example of back translation.

The results have shown that the machine translation has a problem with languages
like Bengali, Japanese or Telugu. Since the translation is part of the process of creating
a dataset using the T5 model, the samples from these languages are of lower quality. It
would be necessary to use another better model for translation. The other languages that
are shown in table 7.2 were translated without major problems. It can be concluded that
this methodology works well with Latine languages and could work with better models for
other languages.

Additional manual analysis was performed on twenty samples based on back-translation.
The results are shown in Table 7.3.

45

Language ar bn fi ja ko ru te
Score 65 % 30 % 75 % 35 % 70 % 80 % 25 %

Table 7.3: Results from manual back-translation evaluation over 20 samples.

As can be seen, the results showed that languages like Bengali, Japanese or Telugu were
mistranslated more than 65 % of the time. On the other hand, using “facebook/m2m100_1.2B”
showed very good results in Korean. Thus, it can be considered that there are better models
that could be used for machine translation in future works.

The evaluation of the next parts was based on usage of samples from the languages
which translation was done correctly. This approach was selected because the goal of the
work was not to evaluate the translation, but the resulting datasets.

7.2 Human evaluation of claims
One of the main parts of the experiments was the human evaluation of the generated claims.
The evaluation was performed by five annotators. They were provided 3-way annotation for
70 identical samples from both datasets (one generated by mT5 and the other generated by
the T5 model). The annotator’s task involved assessing the accuracy of the individual claims
in terms of their generation. The factual side of the statement was not taken into account,
and thus the annotators should have been purely concentrated on the claim conversion
from the question-answer pairs. A/B testing was applied to evaluate the performance and
effectiveness of the multilingual T5 model and monolingual T5 English model. The primary
objective of A/B testing was to measure the performance of the models. By comparing the
performance of the two models, statistical analysis was conducted to determine if there was
a significant difference in performance between the models. The exact instructions which
the annotators followed can be seen in Appendix A.

The first part of the experiment was to assess whether the claim is generated correctly
or incorrectly. In this evaluation, the annotators were not supposed to compare the claims
with each other. They only evaluated the correctness of the generation. For a specific
case where the statement was generated correctly but the information was not expressed
explicitly, or the statement was interesting in some way to the annotator, he could mark the
statement as interesting. This third class of evaluation is taken as correct but not entirely
specific. The results of each annotator’s evaluation are shown in Table 7.4.

Model Annotator Correct Incorrect Interesting

T5

1 50 13 7
2 61 9 0
3 64 4 2
4 52 11 7
5 56 2 12

mT5

1 30 34 6
2 43 25 2
3 55 7 8
4 47 16 7
5 47 10 13

Table 7.4: Results from annotators from 70 samples of the dataset.

46

It can be seen from the results in Table 7.4 that both models generated statements
with very good accuracy. For a more reliable evaluation an objective score was calculated
for each individual model. This score was derived from the number of correct results for
each sample (the sum of interesting and correct statements), which was then divided by the
number of annotators who participated in the evaluation. After all samples were calculated,
the values were summed to obtain the final model score. For a perfect evaluation, the model
had to score 70 points, which would mean that all annotators would rate all samples as
correct or interesting.

The next objective for the annotators was to select claim they would prefer as more
accurately generated. Both evaluation ways results are shown in Table 7.5.

Model Examples Total Score Score [%] Preference [%]
T5 70 62 89 56
mT5 51.4 73 27

Table 7.5: Results of custom metrics over results from annotators. The “Preferences”
column contains only preferences from annotators for the model. The remaining 17 % were
rated as cannot be judged.

As can be seen, the results show that the T5 model resulted in better score. For T5
the annotators determined 89 % of the generated statements to be correct, compared to
the mT5 model, which generated a resulting accuracy of 73 %. Thus, the preference of the
generated statements prevailed for the T5 model, when out of the total 70 samples. The
annotators were in favor of the T5 model.

The above metrics considered each individual response from the annotators. For a
different point of view, table 7.6 shows correctly identified statements using the methodology
of at least one agreement and unanimous agreement.

Type mT5 T5
Count In precent Count In precent

at least one agreement 66 94 % 69 99 %
unanimous agreement 33 47 % 49 70 %

Table 7.6: The table shows the number of samples for which the annotators agreed on
the correct one ”unanimous agreement“ and the number of samples for which at least one
annotator determined the sample to be correct ”at least one agreement“.

Model preference was evaluated based on the majority of individual preferences. In the
table 7.5 we can see that 39 samples were preferred by the annotators for the T5 model and
only 19 samples were preferred for the mT5 model. The remaining 12 samples could not be
judged as they had an inconclusive preference. For a more accurate evaluation, individual
preferences were converted into numbers. For the T5 model, the preference was converted
to value of -1, for mT5 the preference was converted to value of 1, and the samples that
could not be assessed were set to 0. These values were then added up. The result is shown
in Figure 7.1.

47

Figure 7.1: Result of custom metric for annotators preference.

As can be seen, most of the preferences were still leaning towards the T5 model, but
the difference is no longer so significant. The maximum score that each model could get
was 350 for mT5 and -350 for T5. The resulting score ended up at -82 in favor of the T5
model.

Unfortunately, a disclaimer must be given here, as the data that was passed to the
annotators contained information about which claim was generated by which model and
therefore the annotators could be biased by previous results. Thus, this section should be
re-examined and done without identifying models in future works.

However, the results of both models are very positive. If we take into account that the
use of the T5 model requires additional computing power for translation and the generation
process itself is then that much longer, then the use of the multilingual T5 model is definitely
an interesting option.

7.3 Discussion of the final dataset quality
The translation of the text was worse than expected. Therefore, an optimistic and pes-
simistic estimate of the size of the usable dataset was made. The estimate is based on three
baseline values that were evaluated during the experiments. The first value is the number
of generated claims, which is described in Section 5.1.3. The second value is the success
rate of text translation in individual languages, which was obtained using back translation
in Section 7.1. These values are shown in Table 7.7.

Language Ar Bn Fi Ja Ko Ru Te

Samples Train 17900 4108 8655 1891 2224 7909 5101
Dev 610 311 445 60 161 429 209

Translation 65 % 30 % 75 % 35 % 70 % 80 % 25 %

Table 7.7: Values for the estimation of the final datasets size.

48

The last value refers to the success rate of the claim generation itself using individual
models. The claim generation value was used from two evaluation heuristics. Based on this
estimate, an estimate of the size of the useful data in the dataset was then evaluated.

The first heuristic was calculated using an optimistic evaluation, where the success rate
value of the claim generation was obtained by the at least one agreement method 7.2.
In this case, the monolingual T5 model had a success rate of 99 % and the multilingual
mT5 model had a success rate of 94 %. For each language, the number of successfully
translated samples was calculated in the way that number of samples from each language
were miltyplied with the success rate of the translation for the target language. For Arabic,
the value of correctly translated samples was calculated: 0.65 * 17900 = 11635 for the
training dataset and 0.65 * 610 = 396 for the validation dataset. The estimation is that
11635 samples in the training data set and 396 samples in the validation data set were
correctly translated. This methodology was performed for all languages.

As a result of multiplying the correctly translated samples with the success of generating
an individual model, the value of the number of usable samples in each data set was reached.
Thus, for the values calculated for Arabic and the T5 model, the resulting number of usable
samples would be calculated: 11635 * 0.99 = 11518 for the training dataset. This was done
for a single model in particular over all languages. The resulting count shows how many
usable causes from each language a single data set contains.

The second heuristic was calculated using an pessimistic evaluation, where the success
rate value of the claim generation was obtained by the unanimous agreement method 7.2.
The same methodology was used as for the first estimation. The values of the success rate
were 70 % for the T5 model and 47 % for the mT5 model. The final results of the datasets
are shown in table 7.8.

Model Variant Dataset Ar Bn Fi Ja Ko Ru Te Total

T5
Opt Train 11518 1220 6426 655 1541 6264 1262 28887

Dev 393 92 330 21 112 340 52 1340

Pess Train 8144 863 4544 463 1090 4429 893 20426
Dev 278 65 234 15 79 240 37 948

mT5
Opt Train 11169 1183 6232 635 1495 6074 1224 28013

Dev 381 90 320 20 108 329 50 1298

Pess Train 5468 579 3051 311 732 2974 599 13714
Dev 186 44 157 10 53 161 25 636

Table 7.8: The estimation number of final samples in each data set. The “Variant” column
represents optimistic and pessimistic heuristics.

It can be seen from the results that the converted datasets still have a large number of
samples. However, some languages have a smaller number of samples, almost unusable. This
is due to poor machine translation where a large number of samples were mistranslated.
The heuristics used this fact into account. Heuristics themselves have their limitations.
This is because random samples were not selected to evaluate the correct generation of
claims. Instead, samples that made sense when translated were used. One sample means
the translated question, answer, and claim itself from the target dataset. This may have
filtered out samples from low-resource languages and thus cannot guarantee that the models
generate claims with the same accuracy for these languages as well.

Nevertheless, using a better translation model for low-resource languages could make
the evaluations more accurate. The results could then be more balanced for all languages.

49

Therefore, the translation turned out to be the main critical point of this work. The
conversions of claims themselves turned out to be almost perfect. And so the work shows
beneficial information that could be used to convert an existing question-answering dataset
into a fact-checking dataset.

7.4 Fact-checking using TF-IDF
In this section, the machine evaluation of resulting dataset was performed with help of
logistic regression classifier to determine if a claim is supported or refuted.

Logistic regression is a commonly used classification algorithm that is well suited for
binary classification tasks. It works by estimating the probability that an input belongs to
a particular class based on the values of its features. The model uses a logistic function to
map the input features to the output probabilities.

In the evaluation phase, the logistic regression model was trained on the training data
and then used to make predictions on the validation data. The confusion matrix 7.2 was
used to evaluate the performance of the models in terms of true positives, true negatives,
false positives, and false negatives. The result for the mT5 model is shown in table 7.9.

Figure 7.2: mt5 logistic regression

Precision Recall F1-score # Samples Accuracy
refute 0.54 0.19 0.28 1080 0.53support 0.53 0.85 0.65 1145

Table 7.9: Classification report for dataset from mT5 model.

The classification report shows that the model is better at predicting the ”support“ class
compared to the ”refute“ class. The model has a high precision for both classes, but the
recall for ”refute“ class is low. This means that the model is not able to correctly identify
all ”refute“ claims, and is more biased towards predicting ”support“ claims.

After evaluating the T5 model on the same dataset, it was found that the confusion
matrix 7.3 and classification report 7.10 were almost identical to the T5 model.

50

Figure 7.3: T5 logistic regression

Precision Recall F1-score # Samples Accuracy
refute 0.58 0.18 0.28 1080 0.54support 0.53 0.88 0.66 1145

Table 7.10: Classification report for dataset from T5 model.

These results suggest that the performance of the T5 model is similar to the mT5 model
in classifying claims as either supported or refuted. This finding showed that there is almost
no difference for machine classification between the two datasets. The classification model
was able to correctly predict supported claims on both datasets, but failed to correctly
identify refuted claims.

The resulting classification report for all languages from each dataset can be seen in
Table 7.11.

51

Dataset Lang Precision Recall F1-score # Samples Accuracy

T5

Ar refute 0.55 0.13 0.21 291 0.53support 0.53 0.90 0.67 319

Bn refute 0.59 0.46 0.52 170 0.53support 0.48 0.60 0.54 141

Fi refute 0.56 0.11 0.18 199 0.56support 0.56 0.93 0.70 246

Ja refute 0.50 0.04 0.07 25 0.58support 0.59 0.97 0.73 35

Ko refute 0.49 0.26 0.34 68 0.57support 0.60 0.80 0.68 93

Ru refute 0.61 0.16 0.25 226 0.50support 0.49 0.89 0.63 203

Te refute 0.73 0.11 0.19 101 0.55support 0.54 0.96 0.69 108

mT5

Ar refute 0.52 0.16 0.24 291 0.53support 0.53 0.87 0.66 319

Bn refute 0.58 0.45 0.50 170 0.52support 0.47 0.60 0.53 141

Fi refute 0.48 0.08 0.14 199 0.55support 0.56 0.93 0.70 246

Ja refute 0.00 0.00 0.00 25 0.55support 0.57 0.94 0.71 35

Ko refute 0.45 0.29 0.36 68 0.55support 0.59 0.74 0.66 93

Ru refute 0.59 0.19 0.29 226 0.50support 0.49 0.85 0.62 203

Te refute 0.44 0.07 0.12 101 0.51support 0.51 0.92 0.66 108

Table 7.11: Classification report for all languages from both datasets.

52

Chapter 8

Conclusion

The objective of this work was to propose, develop and compare different approaches to con-
verting a multilingual fact-checking dataset from existing question-answering (QA) dataset.
The dataset was converted from an existing XOR-TyDi QA dataset. From this dataset,
question-answer-passage triplets were constructed in 7 diverse languages from which claims
were generated. The proposed systems are based on generative transformer model T5. Two
main approaches were tested. The first was to adapt the English monolingual model to a
multilingual task using machine translation to translate both input and output. The second
approach was to use a natively multilingual model that would take input in any language
and generate statements directly in the target language.

In order to create a system for automatic data set conversion, it was necessary to become
familiar with the current problems of multilingual fact-checking and the importance of using
sources from different languages. Therefore, the work describes the relevant data sources
that were needed to convert the datasets. The work also examines an already existing
approach for converting datasets. The work is based on this approach.

The answers were generated using the adopted CORA system. An evidence (passage)
was added, resulting in a question-answer-passage triplet. These triplets were translated
into the English and passed to the T5 model. The model converted question-answer pairs
presented in triplet into the resulting claims in English. Each claim was then translated
back to the target language. The second approach was based on mT5 model that takes the
triplets in the original languages. The mT5 converted the question-answer pair presented
in the triplet into the claim. The converted claims were already in the target language
without help of translation. Datasets were then created based on the generated claims.

To analyze possible biases label specific claim biases, the logistic-regression based TF-
IDF classifier was trained. The classifier achieved accuracy close to 0.5 for both converted
datasets. The qualitative value of the dataset was evaluated by several annotators with
positive results compare to the FaVIQ where they achieved success rate of 95 %. The
claims generated from multilingual model achieved a success rate of 73 % compared to
monolingual model with a success rate of 88 %. However, compared to the FaVIQ, only the
smaller model variants of the T5 models were used.

The result of this work is that the conversion of a multilingual dataset from an existing
QA dataset is possible, but with the use of more complex models both for translation and
for generating the resulting claims, it would be possible to achieve much better results. The
low-resource languages were translated with the success rate around 35 %.

53

Bibliography

[1] Agarap, A. F. Deep Learning using Rectified Linear Units (ReLU). CoRR. 2018,
abs/1803.08375. Available at: http://arxiv.org/abs/1803.08375.

[2] Arivazhagan, N., Bapna, A., Firat, O., Lepikhin, D., Johnson, M. et al.
Massively Multilingual Neural Machine Translation in the Wild: Findings and
Challenges. CoRR. 2019, abs/1907.05019. Available at:
http://arxiv.org/abs/1907.05019.

[3] Armengol-Estapé, J., Carrino, C. P., Penagos, C. R., Bonet, O. D. G.,
Armentano-Oller, C. et al. Are Multilingual Models the Best Choice for
Moderately Under-resourced Languages? A Comprehensive Assessment for Catalan.
CoRR. 2021, abs/2107.07903. Available at: https://arxiv.org/abs/2107.07903.

[4] Asai, A., Kasai, J., Clark, J. H., Lee, K., Choi, E. et al. XOR QA: Cross-lingual
Open-Retrieval Question Answering. In: NAACL-HLT. 2021.

[5] Asai, A., Yu, X., Kasai, J. and Hajishirzi, H. One Question Answering Model for
Many Languages with Cross-lingual Dense Passage Retrieval. In: Ranzato, M.,
Beygelzimer, A., Dauphin, Y., Liang, P. and Vaughan, J. W., ed. Advances in
Neural Information Processing Systems. Curran Associates, Inc., 2021, vol. 34,
p. 7547–7560. Available at: https://proceedings.neurips.cc/paper/2021/file/
3df07fdae1ab273a967aaa1d355b8bb6-Paper.pdf.

[6] Attardi, G. WikiExtractor [https://github.com/attardi/wikiextractor].
GitHub, 2015.

[7] Bebis, G. and Georgiopoulos, M. Feed-forward neural networks. IEEE Potentials.
1994, vol. 13, no. 4, p. 27–31. DOI: 10.1109/45.329294.

[8] Bojar, O., Buck, C., Federmann, C., Haddow, B., Koehn, P. et al. Findings of
the 2014 workshop on statistical machine translation. In: Proceedings of the ninth
workshop on statistical machine translation. 2014, p. 12–58.

[9] Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Józefowicz, R. et al.
Generating Sentences from a Continuous Space. CoRR. 2015, abs/1511.06349.
Available at: http://arxiv.org/abs/1511.06349.

[10] Chung, J., Gulcehre, C., Cho, K. and Bengio, Y. Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence Modeling. arXiv, 2014. DOI:
10.48550/ARXIV.1412.3555. Available at: https://arxiv.org/abs/1412.3555.

54

http://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1907.05019
https://arxiv.org/abs/2107.07903
https://proceedings.neurips.cc/paper/2021/file/3df07fdae1ab273a967aaa1d355b8bb6-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/3df07fdae1ab273a967aaa1d355b8bb6-Paper.pdf
https://github.com/attardi/wikiextractor
http://arxiv.org/abs/1511.06349
https://arxiv.org/abs/1412.3555

[11] Clark, J. H., Choi, E., Collins, M., Garrette, D., Kwiatkowski, T. et al.
TyDi QA: A Benchmark for Information-Seeking Question Answering in
Typologically Diverse Languages. 2020.

[12] Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G. et al.
Unsupervised Cross-lingual Representation Learning at Scale. In: Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics. Online:
Association for Computational Linguistics, July 2020, p. 8440–8451. DOI:
10.18653/v1/2020.acl-main.747. Available at:
https://aclanthology.org/2020.acl-main.747.

[13] Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C. Introduction to
Algorithms, Third Edition. 3rdth ed. The MIT Press, 2009. ISBN 0262033844.

[14] Derczynski, L. Complementarity, F-score, and NLP Evaluation. In: Proceedings of
the Tenth International Conference on Language Resources and Evaluation
(LREC’16). Portorož, Slovenia: European Language Resources Association (ELRA),
May 2016, p. 261–266. Available at: https://aclanthology.org/L16-1040.

[15] Devlin, J., Chang, M., Lee, K. and Toutanova, K. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. CoRR. 2018,
abs/1810.04805. Available at: http://arxiv.org/abs/1810.04805.

[16] Dimitrov, P. Neural network models. 2023.

[17] Elman, J. L. Finding structure in time. Cognitive science. Wiley Online Library.
1990, vol. 14, no. 2, p. 179–211.

[18] Freitag, M. and Al-Onaizan, Y. Beam Search Strategies for Neural Machine
Translation. CoRR. 2017, abs/1702.01806. Available at:
http://arxiv.org/abs/1702.01806.

[19] Gupta, A. and Srikumar, V. X-FACT: A New Benchmark Dataset for Multilingual
Fact Checking. In: Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics. Online: Association for Computational Linguistics, July
2021.

[20] Han, J., Kamber, M. and Pei, J. 2 - Getting to Know Your Data. In: Han, J.,
Kamber, M. and Pei, J., ed. Data Mining (Third Edition). Third Editionth ed.
Boston: Morgan Kaufmann, 2012, p. 39–82. The Morgan Kaufmann Series in Data
Management Systems. DOI: https://doi.org/10.1016/B978-0-12-381479-1.00002-2.
ISBN 978-0-12-381479-1. Available at:
https://www.sciencedirect.com/science/article/pii/B9780123814791000022.

[21] Hermann, K. M., Kociský, T., Grefenstette, E., Espeholt, L., Kay, W. et al.
Teaching Machines to Read and Comprehend. CoRR. 2015, abs/1506.03340.
Available at: http://arxiv.org/abs/1506.03340.

[22] Junczys Dowmunt, M., Grundkiewicz, R., Dwojak, T., Hoang, H., Heafield,
K. et al. Marian: Fast Neural Machine Translation in C++. In: Proceedings of ACL
2018, System Demonstrations. Melbourne, Australia: Association for Computational
Linguistics, July 2018, p. 116–121. DOI: 10.18653/v1/P18-4020. Available at:
https://aclanthology.org/P18-4020.

55

https://aclanthology.org/2020.acl-main.747
https://aclanthology.org/L16-1040
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1702.01806
https://www.sciencedirect.com/science/article/pii/B9780123814791000022
http://arxiv.org/abs/1506.03340
https://aclanthology.org/P18-4020

[23] Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L. et al. Dense Passage
Retrieval for Open-Domain Question Answering. In: Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP). Online:
Association for Computational Linguistics, November 2020, p. 6769–6781. DOI:
10.18653/v1/2020.emnlp-main.550. Available at:
https://www.aclweb.org/anthology/2020.emnlp-main.550.

[24] Kwiatkowski, T., Palomaki, J., Redfield, O., Collins, M., Parikh, A. et al.
Natural Questions: A Benchmark for Question Answering Research. Transactions of
the Association for Computational Linguistics. MIT Press. 2019. Available at:
https://aclanthology.org/Q19-1026.

[25] Lakew, S. M., Cettolo, M. and Federico, M. A Comparison of Transformer and
Recurrent Neural Networks on Multilingual Neural Machine Translation. CoRR.
2018, abs/1806.06957. Available at: http://arxiv.org/abs/1806.06957.

[26] Landauer, T. K. and Dumais, S. T. A Solution to Plato’s Problem: The Latent
Semantic Analysis Theory of Acquisition, Induction, and Representation of
Knowledge. Psychological Review. 1997, vol. 104, no. 2, p. 211–240. DOI:
10.1037/0033-295x.104.2.211.

[27] Lewandowsky, S., Ecker, U. K. H., Seifert, C. M., Schwarz, N. and Cook, J.
Misinformation and Its Correction: Continued Influence and Successful Debiasing.
Psychological Science in the Public Interest. 2012, vol. 13, no. 3, p. 106–131. DOI:
10.1177/1529100612451018. PMID: 26173286. Available at:
https://doi.org/10.1177/1529100612451018.

[28] Lewandowsky, S., Ecker, U. K. H., Seifert, C. M., Schwarz, N. and Cook, J.
Misinformation and Its Correction: Continued Influence and Successful Debiasing.
Psychological Science in the Public Interest. Sage Publications, Inc. 2012, vol. 13,
no. 3, p. 106–131. ISSN 15291006. Available at:
http://www.jstor.org/stable/23484653.

[29] Lin, C.-Y. ROUGE: A Package for Automatic Evaluation of Summaries. In: Text
Summarization Branches Out. Barcelona, Spain: Association for Computational
Linguistics, July 2004, p. 74–81. Available at: https://aclanthology.org/W04-1013.

[30] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M. et al. RoBERTa: A Robustly
Optimized BERT Pretraining Approach. CoRR. 2019, abs/1907.11692. Available at:
http://arxiv.org/abs/1907.11692.

[31] Martin, L., Müller, B., Suárez, P. J. O., Dupont, Y., Romary, L. et al.
CamemBERT: a Tasty French Language Model. CoRR. 2019, abs/1911.03894.
Available at: http://arxiv.org/abs/1911.03894.

[32] Min, S., Michael, J., Hajishirzi, H. and Zettlemoyer, L. AmbigQA: Answering
Ambiguous Open-domain Questions. In: Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP). Association for
Computational Linguistics, 2020. Available at:
https://aclanthology.org/2020.emnlp-main.466.

56

https://www.aclweb.org/anthology/2020.emnlp-main.550
https://aclanthology.org/Q19-1026
http://arxiv.org/abs/1806.06957
https://doi.org/10.1177/1529100612451018
http://www.jstor.org/stable/23484653
https://aclanthology.org/W04-1013
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1911.03894
https://aclanthology.org/2020.emnlp-main.466

[33] Mohr, I., Wührl, A. and Klinger, R. Covert: A corpus of fact-checked biomedical
covid-19 tweets. ArXiv preprint arXiv:2204.12164. 2022.

[34] Nguyen, T., Rosenberg, M., Song, X., Gao, J., Tiwary, S. et al. MS MARCO:
A Human Generated MAchine Reading COmprehension Dataset. CoRR. 2016,
abs/1611.09268. Available at: http://arxiv.org/abs/1611.09268.

[35] OpenAI. GPT-4 Technical Report. 2023.

[36] Orsek, B. International Fact Checking Network. Available at:
https://ifcncodeofprinciples.poynter.org.

[37] O’Shea, K. and Nash, R. An Introduction to Convolutional Neural Networks.
CoRR. 2015, abs/1511.08458. Available at: http://arxiv.org/abs/1511.08458.

[38] Park, J., Min, S., Kang, J., Zettlemoyer, L. and Hajishirzi, H. FaVIQ: FAct
Verification from Information-seeking Questions. CoRR. 2021, abs/2107.02153.
Available at: https://arxiv.org/abs/2107.02153.

[39] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J. et al. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. CoRR. 2019,
abs/1912.01703. Available at: http://arxiv.org/abs/1912.01703.

[40] Pires, T., Schlinger, E. and Garrette, D. How multilingual is Multilingual
BERT? CoRR. 2019, abs/1906.01502. Available at:
http://arxiv.org/abs/1906.01502.

[41] Radford, A., Narasimhan, K., Salimans, T., Sutskever, I. et al. Improving
language understanding by generative pre-training. OpenAI. 2018.

[42] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S. et al. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. arXiv, 2019.
DOI: 10.48550/ARXIV.1910.10683. Available at: https://arxiv.org/abs/1910.10683.

[43] Rajpurkar, P., Zhang, J., Lopyrev, K. and Liang, P. SQuAD: 100, 000+
Questions for Machine Comprehension of Text. CoRR. 2016, abs/1606.05250.
Available at: http://arxiv.org/abs/1606.05250.

[44] Robertson, S. and Zaragoza, H. The Probabilistic Relevance Framework: BM25
and Beyond. Foundations and Trends® in Information Retrieval. 2009, vol. 3, no. 4,
p. 333–389. DOI: 10.1561/1500000019. ISSN 1554-0669. Available at:
http://dx.doi.org/10.1561/1500000019.

[45] Rönnqvist, S., Kanerva, J., Salakoski, T. and Ginter, F. Is Multilingual BERT
Fluent in Language Generation? CoRR. 2019, abs/1910.03806. Available at:
http://arxiv.org/abs/1910.03806.

[46] Rumelhart, D. E., Hinton, G. E. and Williams, R. J. Learning representations
by back-propagating errors. Nature. Nature Publishing Group UK London. 1986,
vol. 323, no. 6088, p. 533–536.

[47] Salton, G., Wong, A. and Yang, C. S. A Vector Space Model for Automatic
Indexing. Association for Computing Machinery. 1975.

57

http://arxiv.org/abs/1611.09268
https://ifcncodeofprinciples.poynter.org
http://arxiv.org/abs/1511.08458
https://arxiv.org/abs/2107.02153
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1906.01502
https://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1606.05250
http://dx.doi.org/10.1561/1500000019
http://arxiv.org/abs/1910.03806

[48] Sang, E. F. T. K. and Meulder, F. D. Introduction to the CoNLL-2003 Shared
Task: Language-Independent Named Entity Recognition. CoRR. 2003,
cs.CL/0306050. Available at: http://arxiv.org/abs/cs/0306050.

[49] Shazeer, N. GLU Variants Improve Transformer. CoRR. 2020, abs/2002.05202.
Available at: https://arxiv.org/abs/2002.05202.

[50] Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long
Short-Term Memory (LSTM) Network. CoRR. 2018, abs/1808.03314. Available at:
http://arxiv.org/abs/1808.03314.

[51] Shu, K., Mahudeswaran, D., Wang, S., Lee, D. and Liu, H. FakeNewsNet: A
Data Repository with News Content, Social Context and Dynamic Information for
Studying Fake News on Social Media. ArXiv preprint arXiv:1809.01286. 2018.

[52] Taylor, W. L. “Cloze Procedure”: A New Tool for Measuring Readability.
Journalism & Mass Communication Quarterly. 1953, vol. 30, p. 415 – 433.

[53] Thorne, J., Vlachos, A., Christodoulopoulos, C. and Mittal, A. FEVER: a
Large-scale Dataset for Fact Extraction and VERification. In: NAACL-HLT. 2018.

[54] Tiedemann, J. and Thottingal, S. OPUS-MT — Building open translation
services for the World. In: Proceedings of the 22nd Annual Conferenec of the
European Association for Machine Translation (EAMT). Lisbon, Portugal: [b.n.],
2020.

[55] Tiedemann, J., Aulamo, M., Bakshandaeva, D., Boggia, M., Grönroos, S.-A.
et al. Democratizing Machine Translation with OPUS-MT. arXiv, 2022. DOI:
10.48550/ARXIV.2212.01936. Available at: https://arxiv.org/abs/2212.01936.

[56] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L. et al. Attention
Is All You Need. arXiv, 2017. DOI: 10.48550/ARXIV.1706.03762. Available at:
https://arxiv.org/abs/1706.03762.

[57] Vennerød, C. B., Kjærran, A. and Bugge, E. S. Long Short-term Memory RNN.
arXiv, 2021. DOI: 10.48550/ARXIV.2105.06756. Available at:
https://arxiv.org/abs/2105.06756.

[58] Virtanen, A., Kanerva, J., Ilo, R., Luoma, J., Luotolahti, J. et al.
Multilingual is not enough: BERT for Finnish. CoRR. 2019, abs/1912.07076.
Available at: http://arxiv.org/abs/1912.07076.

[59] Vo, N. and Lee, K. Where Are the Facts? Searching for Fact-checked Information to
Alleviate the Spread of Fake News. In: Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP 2020). 2020.

[60] Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A., Michael, J. et al.
SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding
Systems. CoRR. 2019, abs/1905.00537. Available at:
http://arxiv.org/abs/1905.00537.

58

http://arxiv.org/abs/cs/0306050
https://arxiv.org/abs/2002.05202
http://arxiv.org/abs/1808.03314
https://arxiv.org/abs/2212.01936
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2105.06756
http://arxiv.org/abs/1912.07076
http://arxiv.org/abs/1905.00537

[61] Wang, A., Singh, A., Michael, J., Hill, F., Levy, O. et al. GLUE: A Multi-Task
Benchmark and Analysis Platform for Natural Language Understanding. CoRR.
2018, abs/1804.07461. Available at: http://arxiv.org/abs/1804.07461.

[62] Wang, W. Y. “Liar, Liar Pants on Fire”: A New Benchmark Dataset for Fake News
Detection. In: Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers). 2017.

[63] Williams, A., Nangia, N. and Bowman, S. R. A Broad-Coverage Challenge
Corpus for Sentence Understanding through Inference. CoRR. 2017, abs/1704.05426.
Available at: http://arxiv.org/abs/1704.05426.

[64] Williams, R. J. and Zipser, D. A Learning Algorithm for Continually Running
Fully Recurrent Neural Networks. Neural Computation. 1989, vol. 1, no. 2,
p. 270–280. DOI: 10.1162/neco.1989.1.2.270.

[65] Xue, L., Constant, N., Roberts, A., Kale, M., Al-Rfou, R. et al. MT5: A
massively multilingual pre-trained text-to-text transformer. CoRR. 2020,
abs/2010.11934. Available at: https://arxiv.org/abs/2010.11934.

[66] Zhang, X., Ma, X., Shi, P. and Lin, J. Mr. TyDi: A Multi-lingual Benchmark for
Dense Retrieval. CoRR. 2021, abs/2108.08787. Available at:
https://arxiv.org/abs/2108.08787.

[67] Zhang, X., Ogueji, K., Ma, X. and Lin, J. Towards Best Practices for Training
Multilingual Dense Retrieval Models. 2022.

59

http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1704.05426
https://arxiv.org/abs/2010.11934
https://arxiv.org/abs/2108.08787

Appendix A

Introduction into the task

The aim of my thesis is to evaluate two different approaches to building a multilingual
dataset for fact-checking models. What does a fact-checking model mean? In simple terms,
you can imagine that a fact is passed to the model, for example: ”President Barack Obama
was born in 2012.“ and the model tries to evaluate whether that fact is true or false.
To train such a model, it is important to have a dataset that contains as many examples
as possible. Each example must contain a claim, an evidence, that supports or refutes the
claim and the correct label (in my case: refute/support). Nowadays, there are already
many datasets, but they are all mostly only in English and thus there is a lack of multilingual
datasets.

A similar task is a model that answers questions. A question is passed to the model and
the model generates an answer. To train such a model, one needs a dataset that contains
the question-answer pair, ideally including a record of where the answer to the question
occurred.

It can be seen that the approach to training the two models is quite similar. Therefore,
I decided to create the fact-checking dataset from another existing multilingual dataset for
the question-answering model that contains question-answer pairs. From these pairs, the
seq2seq model (a model that has a sequence of words as input and the output is again a
sequence of words) was trained to generate a fact, since in the question we have information
about what the answer specifically refers to, and the answer itself is the information we
want to transfer to the fact.

Question: When was Barack Obama born? Answer: 1961

Table 1: Example of the Question-Answer pair.

Since generating a fact is not a trivial task for the model (especially for multilingual
data), two different approaches were therefore taken.

• The first approach is to train the model on the English dataset. The translated input
(question and answer) is then passed to the model. The model returns the output
(fact) in English, which is then translated back into the original language.

• The second approach is to train a multilingual model that receives the input in the
desired language and therefore returns the output in the desired language.

Task for annotators

Automatic evaluation of the results of each approach is difficult to perform and therefore
human evaluation is also important. In the attached file you have received an excel that
contains the generated claim (translated into the english) from both models. These results
need to be manually analyzed to determine whether the resulting fact is understandable or
not.

Therefore, I would like to ask you to perform a manual analysis. One line of the file
corresponds to one example from the dataset. Each line contains information about the
original question and its answer. This is followed by the claim that was generated by model
A and then the claim that was generated by model B. Your task is to assign to each claim
one of your answers at your discretion: whether the claim is correct, whether the claim

60

is wrong, or whether the claim is generated in an interesting way. An interesting claim
contains all the necessary information, but is not quite as specific as you would expect.

Question: Where was Barack Obama born? Answer: USA
Claim: Barack Obama was born in Honolulu, Hawaii

Table 2: Example of the generated calim from the Question-Answer pair.

ToDo list for annotators

In summary, you need to add a label to each claim and then select a preference for the
claim that you think is better generated:

1. fill in the column to the right of the claim with one of the answers:

correct incorrect interesting

Table 3: Labels for the claim validation.

2. fill in the last column with your preference for the generated fact based on the model
as follows:

A B CBJ

Table 4: Labels for the claim preference.

* (CBJ stands for: cannot be judged)

61

	Introduction
	Preliminaries
	Transformer
	Model architecture

	BERT
	Text-to-text transfer transformer
	Multilingual T5
	TF-IDF
	Helsinki OPUS-MT

	Datasets
	X-Fact
	FaVIQ
	TyDi QA
	XOR-TyDi QA
	Other datasets

	Information retrieval
	Dense passage retrieval
	Multilingual dense passage retrieval

	Proposed system for dataset conversion
	Answer generation
	Data
	mDPR
	Generation of positive and negativequestion-answer-passage triplets

	Conversion system
	Translation
	Final dataset

	Experimental setup
	Top-K accuracy
	F-score
	Rouge
	Exact match score
	Implementation
	mDPR & mGEN
	T5

	Experiments
	Translation
	Human evaluation of claims
	Discussion of the final dataset quality
	Fact-checking using TF-IDF

	Conclusion
	Bibliography

