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Abstract

In this thesis, I generate random numbers using arrival time of photons as a
random variable. Single-photon detection is discussed in relevance to quantum
random number generators. I demonstrate the effect of the detector properties
on the resulting probability distribution and the balance of bits. The results
are compared to the theoretical predictions and prove to be in good agreement.
Furthermore, entropy of the output is estimated and the randomness is enhanced
by a randomness extractor. Different rates of detection are compared and the
highest reported speed of the generation is 160 Mb/s. Randomness is verified
using the Dieharder battery of statistical tests.
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Chapter 1

Introduction

The demand for random numbers began to emerge along with the development
of cryptography, numerical simulations, and statistical analysis. Random num-
bers have a significant role in keeping our data secure as they are necessary for
producing security keys [1]. The performance of a security key directly depends
on the quality of random numbers, which is strongly affected by their genera-
tion method [2]. Another important use of random numbers is the Monte Carlo
method. It involves repeated random sampling to obtain numerical results, and
it is used to analyze complex mathematical systems with a large number of
variables and equations. In statistical physics, it is common to use this method
to simulate the behavior of a system with a large number of particles [3]. Ran-
dom numbers are, among other things, necessary in areas such as lotteries and
gambling [4].

The need for random numbers is often met by pseudo-random number gen-
erators (PRNG), which are algorithms outputting a sequence of numbers similar
to sequences of (trully) random numbers [2]. Probably the simplest algorithms
are the linear congruential generator and the middle square method invented
by John Von Neumann. In the middle square method, the seed is multiple digit
number, for example four-digit number. Then it is squared and the middle four
digits become the next seed [5]. The linear congruential generator is described
by a simple recurrence relation xn+1 = (axn+ c) mod m [6]. One of the widely
used algorithms today is the Mersenne twister. It is a default pseudo-random
number generator on platforms like Python and Matlab and is based on linear
shift feedback registers and their generalizations [7]. The advantage of generat-
ing random numbers using an algorithm is a high speed of the process. However,
no deterministic algorithm can produce perfect randomness, and PRNGs have
proven inefficient in many applications. With the knowledge of the seed, it is
possible to reproduce the whole sequence. It makes the sequence algorithmically
predictable. After a certain time, the string of numbers begins to repeat itself
and it is possible to predict the next output, which is obviously problematic in
areas where security and privacy of data depends on random number genera-
tion [8]. The quality of the pseudo-random numbers depends on the complexity
of the algorithm and on the appropriate choice of the seed. For example, the
middle square method creates strings that begin to repeat in a very short time,
which is highly dependent on the seed. The seed must actually be selected very
carefully in order to achieve fairly good results [9].
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Computers have much greater computational potential than before and that
makes it easier to decode algorithms. Therefore the need for true random-
ness has emerged. True random number generators (TRNG) can be divided
into hardware and physical. Hardware TRNG generates random numbers using
processes directly related to the computer or accessories, like current memory
location, mouse movement coordinates, or thermal noise [10]. Physical random
number generators rely on physical processes such as decay of radioactive ma-
terial, chaotic systems, atmospheric noise, etc. In industry, we can currently
find random number generators based on free-running oscillators (FRO) [11].
Its randomness is derived from electronic noise present in logic circuits and it
offers easy technological implementation [12]. There are also problems tied with
these methods. External influences can impair the function of the generator to
the extent that statistical imperfections occur. Statistical correlations express
the relation between two processes or quantities. Random numbers may exhibit
dependence on previous events of the system or on some external variables [2].

The category of physical TRNGs also includes quantum random number
generators (QRNG), which promise even better results. QRNGs rely on the
fact that randomness is an inherent part of quantum processes [2]. Before
measurement of an observable, state is represented by a linear combination of
eigenstates of given observable. When measurement takes place the system
transforms into one of the eigenstates with a specific probability. Therefore, we
cannot predict the result of a measurement, we can only talk about probabilities
of different outcomes. The probability distribution corresponds to the context
of a given physical system [13]. The analogy of the classical bit is the so-called
qubit. In the case of one-qubit system, it is represented by a state that is in
a superposition of two eigenstates [14]. System of qubits can exhibit quantum
entanglement, which is a phenomenon applicable to quantum random number
generation [15].

We often encounter the use of coherent states of light or individual photons.
Coherent signals can be generated by lasers and measured using homodyne
detection [16]. Very efficient QRNG strategy is measuring vacuum noise [17,
18, 19]. It is realized by homodyning of the vacuum state of light, where we
sample normally distributed quadrature values. The vacuum noise QRNGs
have reached random bit generation rate up to 8 Gb/s [20]. They have been
implemented on optics chips [21, 22]. Furthermore, random numbers can be
generated using fluctuations in the phase or intensity of the laser operating
near threshold level [23, 24].

There is a relatively large number of photonic implementations [2]. Some of
those rely on the behavior of an incoming photon at a beam-splitter to generate
data [25]. The beam splitter either has balanced ratio of reflectivity and trans-
mittance, or it is possible to sent circurally polarized photons at a polarizing
beam splitter. A value 0 is then assigned to a detection event in one detector and
1 to an event in the other detector. The ones and zeros are equaly distributed
[26], but the disadvantage is that only one bit per detection is generated.

The photon arrival time can also represent a quantum random variable
[25, 27]. The intervals between successive photons are governed by Poissonian
statistics. The detection is provided by single-photon detectors, which affect
the resulting statistics [28]. Random numbers are obtained either by binary
representation of measured time differences, or according to the position in the
probability distribution. Generally, the resulting sequence is not balanced, but
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it is possible to achieve equal distribution by post-processing. The advantage
of this quantum random number generator is the ability to generate more than
one bit per detection, which is not always an option in other setups [27].

Moreover, there are QRNGs based on a photon counting since some single-
photon detectors are able to distinguish the number of photons arriving at the
same time [29]. Another method is measuring interaction of photones with
phonons, when Raman scattering takes place. Raman photons can be produced
by illuminating a highly nonlinear glass [30]. Binary value can be assigned to
different intervals of wavelenghts of equal probability. Then, there are atten-
uated pulse generators, which provide randomness by binary measurements of
coherent states [31]. Randomness can be also extracted from bell equations vio-
lation, when examining pairs of entangled photons. Bell test is done repeatedly
on incoming photon pairs [15].

Theoretically, quantum generators are able to produce perfect randomness.
In reality, it depends on the implementation. It is important what the setup is
and what we draw randomness from. It needs to be considered whether there
are classical effects causing correlation and how the numbers are extracted and
post-processed. The method of detection often plays a big role in the discussion
of imperfections. In photonic applications, superconducting nanowire single-
photon detectors (SNSPD) and single-photon avalanche diode detectors (SPAD)
are used most often [32]. The most impactful imperfection of detection is the
dead time of the detector. A single-photon detector needs this time to recover
after detection event and thus is unable to measure until the dead time passes
[33]. There are also other phenomenons such as afterpulsing. Single photon can
result in more than one electrical pulse, which leads to an overestimation of the
incident count rate by up to 10 % and increase of the dead time [34]. Moreover,
false detections sometimes take place. They are referred to as dark counts [35].

Detection effects were investigated in the context of QRNGs and it was
shown that the dead time causes greater imbalance of bits than it would be
without the dead time [28]. In the probability distribution of time differences
between succesive photons, from the beginning of the distribution until the
deadtime, the value of probability is zero. Afterpulsing shows in the first non-
zero bins in the distribution. It causes the bins to have a higher value than
corresponds to the laws of the distribution. Afterpulsing cas also increase auto-
correlation coefficients [25].

Randomness extractors are a way of post-processing used to increase ran-
domness. It is a function or algorithm that erases part of the data based on
some condition. Postprocessing significantly limits the speed of generation of
physical generators and QRNGs. Most of the records set in the QRNG genera-
tion speed were conditioned primarily by an increase in the processing speed of
the classical signal and the subsequent postprocessing of random bits [36].

The preferred type of generator must be selected according to the applica-
tion. PRNGs offer the simplest and fastest generation, but it is also the most
problematic and imperfect generator type. QRNGs are without a doubt the
highest quality, but they are still slower than PRNGs. Currently, the fastest
QRNG is based on intensity fluctuations in a laser and generates 250 000 Gb/s
[37].

In this thesis, I will focus on generating random numbers using the arrival
time of individual photons as a random variable. In Chapter 2, I will describe
all methods I used. Specifically, I will discuss entropy estimation, bit balance
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of resulting binary string, correlations and algorithmic compressibility in Sec-
tion 2.1. In Section 2.2, I will focus on Poissonian process and describe its
properties. The aim is to derive Poisson statistics of time intervals between
adjacent detections. Then, I will describe the basic principles of single-photon
detection with a focus on SPAD and SNSPD detectors in Section 2.3. Among
other things, I will describe the properties of the detector that affect the de-
tection quality. In Section 2.4, I will briefly describe randomness extractors
and hash functions and in Section 2.5, I will discuss randomness testing. In
Chapter 3, I will present results. Firstly, the scheme of the experiment and
component properties will be described in Section 3.1. Then, in Section 3.2,
I will present probability distribution and discuss balance of bits for different
rates. Entropy will by estimated in Section 3.3 and in Section 3.4, results of
randomness testing will be presented. The experimental results agree with the
theoretical models. The generation speed of 160 Mb/s is reached. It is primarily
limited by a detector dead time of 28.7 ns. Chapter 4 will include recapitulation
of used methods and achieved results.
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Chapter 2

Methods

2.1 Random numbers

Binary random numbers are composed of ones and zeros that occur in a se-
quence. The values ought to be uniformly distributed over the set of ones and
zeros and it should be impossible to predict future values based on past ones
[38]. This preposition is related to algorithmic randomness. A sequence is algo-
rithmically random if there is no algorithm able to generate the sequence using
a shorter string of bits than the size of the original one is. This definition di-
rectly ties with the definition of complexity K proposed by Kolmogorov. The
complexity K of a binary sequence of length N is the binary length of the short-
est program able to recreate the sequence. If complexity K is approximately
the same as N , the sequence of N bits is considered algorithmically random.
Algorithmic compression refers to the case when K is smaller than N . It is im-
portant to note that K in never equal to N , because no sequence is absolutely
incompressible. That is the reason why the definition of algorithmic randomness
is only approximate. For quantum sources of randomness, it had been proven
that complexity K actually cannot be computed, it can only be estimated [39].

Another plausible definition of randomness is statistical randomness. It takes
the uniformity of the distribution and auto-correlations into account [40]. In a
binary representation of values of a random variable, it is necessary to examine
the proportionality of the number of zeros and ones for individual bits. The
so-called least significant bits are at the end of the binary representation and
are often unbalanced [41]. This means that in a certain bit, zeros prevail over
ones or vice versa. The least significant bits have the least effect on the value
of the binary number. For large number N of random variable values, we can
introduce a probability of bit i being sampled as 1

lim
N→∞

ni(1)

N
= p(bi = 1), (2.1)

where ni(1) is number of ones in i-th bit position. Autocorrelation is the cor-
relation of a string with a delayed copy of itself. It shows how much dependent
the output of random number generator is on previous events in the generator.

Another important attribute of random numbers is entropy, which quantifies
the average information of a source/generator. Renýi entropy is a generalized
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entropy in information theory and is described by

Ha(X) =
1

1− a
log2

(
Nout∑
i=1

pai

)
, (2.2)

where X is a discrete random variable with Nout possible outcomes with cor-
responding probabilities pi. For a approaching 1, we get Shannon entropy [42],
which is equal to

H1(X) = −
Nout∑
i=1

pi log2 pi. (2.3)

Shannon entropy was named after Claude Shannon, who first introduced the
idea of entropy in information theory [43]. Shannon entropy was one of the first
entropy measures in this area and is widely used to this day. For a approaching
infinity, we get min-entropy, which is equal to

H∞(X) = − log2(max pi). (2.4)

It is called min-entropy because it is the smallest measure of all Renýi entropies,
which also makes it the most conservative measure [42].

2.2 Poissonian process

Poissonian statistics generally apply to processes in which individual events are
independent, are considered random and output consists of discrete events [44].
Detection rate R is given by the number of detection events per second. The
average detection rate is described by

R =
n

T
, (2.5)

where n is the number of detected photons in time T . When the rate is constant,
the number n of detected photons per time T is

n = RT. (2.6)

The probability of one detection event in time interval δT → 0 is

p(1, δT ) = RδT. (2.7)

Considering that p(2, δT ) << p(1, δT ), probability of no detection event in δT
is

p(0, δT ) = 1− p(1, δT ) = 1−RδT. (2.8)

Statistical independence of events will allow us to express the probability of
absence of detection event in the time interval T + δT as

p(0, T + δT ) = p(0, T )p(0, δT ), (2.9)

which leads to differencial equation

d

dT
p(0, T ) = −Rp(0, T ). (2.10)
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With initial condition p(0, 0) = 1, we get

p(0, T ) = e−RT , (2.11)

which describes the distribution of waiting times. Integrating p(0, T ) from zero
to infinity results in 1

R . Therefore, to get a normalized distribution, it needs
to be multiplied by R. It is also convenient to adress p(0, T ) as p(T,R) since
the zero is fixed and the distribution depends on T as a variable and R as a
parameter. The normalized distribution is then described by

p(T,R) = Re−RT . (2.12)

Using the probability distribution P (T,R), we can analogically express the bit
balance from the previous section. When measuring, we perceive time as a dis-
crete quantity according to the time resolution. The resolution then represents
the size of one time-bin.

In order to express the probability p(bi = 1) of bit i being sampled as 1 (2.1),
we integrate over the probability distribution for the time-bins where the i-th
bit is sampled as 1. Therefore, a selection must take place. If we multiply the
probability distribution by the ones and zeros that occupy the i-th bit position,
we obtain only the required bins. Using time T , the pattern of ones and zeros
cas be expressed as b T2i c mod 2. Then, the balance of bits is described by

p(bi = 1) =

∫ 2N

0
P (T,R)

⌊
T
2i

⌋
mod 2 dT∫ 2N

0
P (T,R) dT

(2.13)

introduced in [28]. After applying P (T,R) from (2.12), we obtain

p(bi = 1) =
1

1 + exp (RT2i)
. (2.14)

2.3 Single-photon detection

In order to quantify the properties of a detector, there must be some parameters
defined. After every detection, there is a dead time τd, in which the detector
is not able to detect another photon [45]. The dead time is caused more by
electronics parts of the detector rather than by the detection element [32]. In
general, detectors with lower dead times are preferable, because the dead time
limits the detection rate according to equation

Rdetected =
Rincident

1 + τdRincident
. (2.15)

For most detector types, there is a finite probability that false detection events
(dark counts) take place. Generally, detection events are referred to as counts.
Dark count rate D is also a measure of quality as it is caused by the material
or the susceptibility to external noise.

After the absorption of a photon, an output electrical pulse is generated.
There is a time interval between those events and the variation in this time
interval is the timing jitter. Timing jitter limits the timing resolution [46].
Afterpulsing is a phenomenon that occurs in SPAD detectors. It arises when a
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single incident photon results in more than one electrical pulse. However, this
effect together with the dark counts is outweighed by the dead time effect so the
detected rate is always smaller than the incident rate [34]. It may also happen,
that charge accumulates in the detector during the dead time and right after the
detector fully recovers, the accumulated charge creates a signal called twilight
pulse.

The influence of dead time on the statistical distribution of time intervals
between adjacent events should be also mentioned. The time between two de-
tections cannot be smaller than dead time. Therefore the probability of events
is zero for smaller time differences. Considering this fact, probability density of
waiting times [28] is described by

P (T,R, τd) =

{
0, T < τd,

R exp (−R(T − τd)), T ≥ τd.
(2.16)

Using (2.16) in Eq. (2.13), we obtain the probability of bit i being sampled as
1 in the case of a detector with dead time.

1 3 5 7 9 11 13 15 17 19
i

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

p(
bi

=1
)

Without the dead time
With the dead time

(a)

1 3 5 7 9 11 13 15 17 19
i

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

p(
bi

=1
)

Without the dead time
With the dead time

(b)

Figure 2.1: Bit balance distributions (2.13) without the dead time (2.14) and
with the dead time 30 ns for time resolution 1 ps and detection rate (a) 5 MHz,
(b) 15 MHz.

In Fig. 2.1, we can see the effect the dead time has on the bit balance.
At first, both functions remain at value 0.5 and then the dead time causes
oscillations after which the functional value decreases to zero. The oscillations
are more prominent with higher rates. Without the dead time effect, we can
see decrease without any oscillations. Lower rates offer more balanced bits per
detection, but the detections are less frequent than in the case of higher rates.
That raises the question of the optimum rate, at which it is possible to produce
maximum number of balanced bits per second. Using the equation describing
rate saturation (2.15), we can observe that the function of min-entropy (2.4)
multiplied by detected rate R has a maximum. As we can see in equation
(2.16), R is actually a maximum value in this distribution, therefore it can be
used as max pi in Eq. (2.4). For a demonstration, we set the dead time to 30 ns
and show in Fig. 2.2a that the entropy per detection decreases with rate as
expected. The saturation of rate creates an inflection point, where the function
changes from convex to concave. In Fig. 2.2b, the maximum of min-entropy
multiplied by rate is at 29 MHz. The detected rate is saturated to its final value
at the rate equal to 1

τd
, which is 33.3 MHz in this case.
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Figure 2.2: Min-entropy H∞ alone (a) and multiplied by saturated detection
rate R (b) dependence on saturated detection rate R for dead time 30 ns.

Conventional single-photon detectors consist of photomultiplier tubes (PMT)
or avalanche photodiodes [45]. In a photomultiplier, there are components in a
vacuum glass tube. Light is absorbed on a photocathode and free electrons are
generated. Electrons are emitted due to the photo effect and are accelerated
with a high voltage to a first dynode, where they generate secondary electrons.
This is repeated several times and at the end of the cycle a strongly amplified
photocurrent can be collected [46]. PMTs offer larger active areas, more than
ten millimeters. The disadvantages are that they require large operating volt-
ages and are easily damaged and expensive. In certain types of PMT, the excess
noise of the multiplication process is low enough to distinguish one or multiple
photons. Photomultiplier tubes cover the spectral range of 115–1700 nm and
have maximum efficiency of around 40 % at 500 nm wavelength. The high-
est reported count rates are up to 10 MHz, and the typical jitter is 300 ps
[32]. Microchannel plate PMTs have glass capillaries coated with a secondary
electron-emitting material to achieve a single continuous dynode. Microchannel
plate PMTs improved timing jitter to 20 ps [32].

A single-photon avalanche diode (SPAD) is a photodiode, which operates
high above the breakdown point at high voltages thus it is able to detect even
very small signals such as individual photons with a delay that corresponds to
pico seconds. Signal amplification through an avalanche process takes place
over a distance of only a few micrometers and amplifies the photocurrent by a
significant factor and thus increases responsivity. Responsivity is the ratio of
generated photocurrent and incident optical power [47].

An avalanche photodiode consists of four layers: N +, P, pure semiconduc-
tor and P +. Around the N + and P layers, between which the avalanche
phenomenon occurs, there is a protective ring made of an N-type semiconduc-
tor, which increases the diode’s resistance to surface voltage breakdown. The
incident light causes an electron-hole pair. The electron is transported to the
avalanche region by a strong electric field, where it is accelerated to such a speed
that a collision with the crystal lattice causes another electron-hole pair. The
new electron is also accelerated by a strong electric field, and gradually, as if in
a chain reaction, more and more new electron-hole pairs are formed, creating
an avalanche effect. Thus, a single photon can cause ionization of the crystal
lattice leading to an avalanche. Silicon single-photon avalanche photodiodes are
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now a well-established component in quantum measurements [47].
The Geiger mode is used when extremely high gains are required. In this

mode, a voltage just above the breakdown voltage is used, where a single
electron-hole pair causes a strong avalanche. Once this occurs, the external
electronics need to reduce the voltage below the breakdown voltage of the diode
to return it to its original state, in which it is able to detect more photons [46].

Another significant method of detection uses a superconducting nanowire
[48]. Superconducting nanowire single-photon detectors (SNSPD) have lower
than 50 ps timing jitter. Detection takes place due to the current density being
just below the critical level, above which the wire reverts to normal resistance.
After photon absorption, small spot on a wire acquires normal resistance, which
causes increase of current in nearby spots and therefore resistance area forms all
the way across the width of the wire. This occurrence causes sudden increase
of voltage allowing detection [49].

2.4 Extractors and hash functions

It was shown that quantum processes are random by nature. However, when
implementing quantum random number generator in practice, we have to deal
with issues that can spoil the randomness. To deal with these negative effects,
data post-processing is necessary. The first technique of randomness extraction
was proposed by Von Neumann [5]. The data are divided into two bit strings.
If the two bits match, no output is generated and if the bits are different, the
value of the first bit is the output. The number of bits is reduced to less than a
half and quality increases. Another option is a least-significant-bits operation.
When the least-significant bits are disproportionate to ones and zeros, removing
them from the data file can establish an unitary distribution and thus enhance
the quality of the string [50]. More elaborate and newer extractor is Trevisan’s.
He proposed randomness extraction based on pseudorandom number generators
[51].

A hash function is a mathematical function or algorithm for converting input
data into a smaller number or string. Hash functions are used to search for items
in a database, detect duplicate records, search for malware by an antivirus
program. In the form of a cryptographic hash function, it is used to create and
verify an electronic signature, ensure data integrity, protect stored passwords,
etc. Any amount of input data results in the same length of output and a small
change in the input data will cause a large change in the output. It is practically
impossible to reconstruct the original data from the hash (fingerprint). These
features ensure safety. In principle, hashing can be used as an extractor. When
searching for similar data, hash from a part of the data is counted several times
and the match of the fingerprints and thus matching parts of data are spotted
[52, 53] and can be eliminated in order to increase randomness.

2.5 Randomness testing

Randomness tests are based on statistical testing. The null hypothesis H0 is
first established. In this case, H0 is that the sequence is random. Then, the
alternative hypothesis HA is that the sequence is not random. It could be the
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other way around but most testing batteries use this setting. Test statistic T
is used for the testing itself. It is a formula, a function of data that indicates
how probable the measured data are if the null hypothesis applies. The zero
distribution is the distribution of the test statistic with H0 applying. Moreover,
p is the probability that at H0 applying the result of test statistic T would
acquire a value that indicates that H0 does not apply. The test level is denoted
by α. It is a selected number from the interval from 0 to 1. Most often α =
0.05 = 5%. If p < α, then the validity of H0 is very unlikely and then we
reject H0 and accept HA. Either H0 applies, but there have been data that
appear with a probability less than α (something very unlikely has happened),
or indeed HA is valid, which we are leaning towards. If p ≥ α, then this does
not mean that we reject HA, but only do not reject H0. There are two types of
errors. Type I is that we reject H0 while it applies and type II is accepting H0

while it is actually not true [54].
NIST (National Institute of Standards and Technology) tests and Dieharder

test verify statistical randomness. NIST battery includes 15 tests. First two
tests are focused on proportion of ones and zeros in the whole sequence and in
blocks. Then, there is a test for number of uninterrupted sequence of identi-
cal bits. Fourier transform test detects periodic features by applying discrete
Fourier transform to the sequence, linear complexity test computes the length of
the shortest linear feedback shift register that generates sn sequence as its first
n output items. Other tests involve random walks across the data. Purpose and
description of each test is listed in the manual together with recommended input
and examples [54]. Dieharder battery offers similar tests [55]. The major disad-
vantage of statistical tests is that they often fail to distinguish algorithmically
generated sequences from truly random ones [39].
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Chapter 3

Experiment and discussion

3.1 Scheme and experiment description

Infrared light from a luminiscence diod (LED) is attenuated by neutral density
filter (ND), a polarizer, and an analyzer, which allows for continuous tunability.
Part of the intensity is transferred into a single-mode optical fiber connected to
a SPAD detector. Then, time tagger converts detection times to digital data
and streams them to a computer. To verify parameters of the time tagger such

Figure 3.1: Experiment scheme. Infrared light is emitted by a LED diode, aten-
uated by ND filter and polarizers, and detected by a SPAD detector. Detection
data are obtained using time tagger.

as time jitter, signal or clock generator can be used. Before the measurement
depicted in Fig. 3.1, we measure the optical signal with a biased photodiode
(DET36A THORLABS), which provides photocurrent, so it can be detected
by a voltmeter. The reading was 2.2 mV, the multimeter had 1 MΩ internal
resistance R and therefore the power P equaled 4.4 nW according to equation

P =
U

RS
, (3.1)
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where U is the voltage and S is the responsivity of the photodiode equal to 0.5.
LED diode we used emitted 810 nm wavelength. Since power represents energy
per time unit, it was possible to calculate the number of photons n emitted per
second as

n =
P

h cλ
, (3.2)

where denominator of the fraction represent energy of one photon (c is the light
speed in vacuum, h is Planck‘s constant and λ is the wavelength). The result
corresponds to approximately 1010 photons, which is sufficient as an estimate
for the required attenuation. We used an ND filter to reduce the number to
108. Filter NE-530 lets through 0.9 % infrared light of given wavelength. Then,
it was possible to attenuate as needed by the polarizer and the analyzer. Each
lets through 42 % unpolarized infrared light at 810 nm wavelength. At a cer-
tain polarizer position, we get only the intensity corresponding to the extinction
(1:10000) and after turning 90◦ the intensity peaks. The SPAD detector is sen-
sitive to light and could be damaged, so it is necessary to find the position of
the lowest intensity as a starting point before the main measurement. Com-
ponents used in the measurement are listed with more details in Tab. 3.1 and
Tab. 3.2. The stability of the experiment is affected by fluctuations of intensity

Component Type and relevant information
Power supply TTi PL303QMD quad-mode dual power supply
LED MTE2081-OH5 810 nm wavelength
ND filter NE530 0.9 % transmission at 810 nm
Polarizer, Analyzer 2× LPNIRE050-B 42 % transmission at 810 nm
Optical fiber NUFERN 780-HP Single-mode fiber

SPAD detector EXCELITAS SPCM CD 3432 H

Serial number: 24336
Dark count: 46 Hz
Light count: 31 MHz
Dead time: 28.7 ns
Total after-pulse: 0.1
High level voltage: 5.25 V

Time tagger SWABIAN Time tagger 20
RMS jitter: 43 ps
Transfer rate: 8.5M tags/s
Digital resolution: 1 ps

Table 3.1: Components of the main measurement.

Component Type
Signal generator SMB 100A
Programmable multimeter 1705 TRUE RMS
Biased photodiode DET36A/M Si biased detector

Table 3.2: Components used for testing.

of the infrared light, which depends on the stability of the power supply output.
Our power supply utilizes line regulation to enhance stability. The fluctuations
than make 0.01 % of the average current and voltage. Among other things, it
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is important to ensure that the background intensity is constant and the mea-
surement is not disturbed by changes in lighting conditions in the laboratory.
In my experiment, the background noise was slightly different in each measure-
ment, but throughout the measurement for a given rate it stayed constant. The
differences might have been caused by the light emitted by my notebook screen
and its position relative to the aperture. The highest measured background rate
was 340 Hz and the lowest was 250 Hz.

Maximum rate we were able to achieve was 11 MHz. By turning the polar-
izer, we were able to attenuate the infrared light continuously from background
noise to the maximum possible rate. Saturation rate is according to equation
(2.15) 34.8 MHz, maximum transfer rate of the time tagger is according to the
manufacturer 8.5 MHz. The connection is provided by USB 2.0, which can
transfer 60 MB/s and one tag is about 6 MB. That results in maximum trans-
fer rate of 10 MHz, which shows that the transfer rate can be higher than the
guaranteed one. In any case, the guaranteed transfer rate of the time tagger
respresents the biggest limitation.

With a relatively small delay, it is possible to observe the measured rate in
time tagger application. Using this application, we can set the rate by turning
the polarizer. For the main measurement, time tagger Python package was
installed. First, the createTimeTagger command must be used. Then, trigger
level should be set by setTriggerLevel. FileWriter creates a file with the
data and FileReader allows to upload them again. Then, the getTimeStamps

command helps extracting time stamps into a separate variable. To obtain the
time differences, each time stamp must be subtracted from the following one.
A histogram of the time differences shows the negative exponential distribution
(2.12). The graph depicting the balance of bits (2.13) in data can be obtained
by creating a two-dimensional data field. The binary representation of time
differences is coded in lines and columns represent the bit positions. In Tab.
3.3, there is an example of the procedure. Then the number of ones in a column
is summed up and divided by the number of lines and that number represents
the functional value for the given bit position.

Time difference

[ps]

Binary representation
Bit position
1 2 3 4 5 . . .

219692 0 0 1 1 0 . . .
136385 1 0 0 0 0 . . .
51654 0 1 1 0 0 . . .

Table 3.3: An example of making a two dimensional data field out of time
differences. The values of bit position are 1, 2, 3, 4, 5,... according to the order
of the bits in the binary representation of time differences.

There are two ways to obtain random numbers from raw bit stream. The
first is dividing the distribution by quantiles into sections of equal probability
and then assigning each interval a binary value. For example, distribution di-
vided by quartiles would have binary values 00, 01, 10 and 11. Generally, 2n

intervals result in n bits per detection. This method works for an arbitrary
distribution, which is particularly convenient in the case of complex detection
process where the accurate model is not known. However, it requires excessive
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computational resources. With increasing n, the process in Python is slowing
down exponentially. The highest number of bits I generated using this method
is 24 per a single time difference.

The other method is directly tied with the balance of bits and entropy. It
is addressed as the least-significant bit operation as mentioned in Section 2.1.
After examining the balance of bits, we decide how many bits per detection
should maintain in the data file to keep them balanced. Acceptable deviation
in balance is determined by min-entropy. It can help to decide from which
bit on to cut off, since the output of min-entropy function is a number of bits
per detection. Then, it is possible to implement a randomness extractor. Von
Naumann extraction can be performed by reshaping random numbers into two
dimensional data field with two columns and then deleting the lines if the bits
match, or keeping only first bit if they differ.

3.2 Probability distribution and balance of bits

Measurements of time differences were made for rates 100 kHz, 500 kHz, 1 MHz,
3 MHz, 5 MHz, 7 MHz, and 10 MHz. Data analysis was performed in Python,
where it was possible to obtain a histogram of frequency and a probability
density distribution.

Fig. 3.2a shows the typical distribution of time differences for 3 MHz rate.
Horizontal axis represents the time differences in picoseconds and vertical axis
the number of detection events. The negative exponential trend is visible as the
fit curve traces the bin heights. The fitting function has the form a exp (−bx),
where x represents the values on the x-axis and a and b are the fit parameters.
Moreover, two important discrepancies are visible. The first bin is higher than it
should be according to the negative exponential fit, which is caused by twilight
pulses. In Tab. 3.1, we can see that the afterpulsing of the detector occupies
0.1 % of the number of counts. The percentage of counts that are above the
negative exponential fit is presented for different rates in Tab. 3.4. It includes
the after-pulses as well as twilight pulses. That is the reason why it is above
1 % and not just 0.1 %. Also, the percentage of after-pulses alone should not
be changing with rate. Up to 7 MHz, the percentage grows and then it drops
at 10 MHz by 0.5 %. It is also visible that the distribution does not start at
zero. It actually starts at the dead time of the detector, which is 28.7 ns. In

R
[Hz]

Percentage of after-pulses
and twilight pulses

100 k 1.364 %
500 k 1.411 %
1 M 1.435 %
3 M 2.165 %
5 M 2.260 %
7 M 2.447 %
10 M 1.984 %

Table 3.4: Standard deviation of fit parameters modeling a negative exponential
distribution for measured rates.
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(c) Probability distribution of time differ-
ences on logarithmic scale.

Figure 3.2: Measured distribution for 3 MHz detected rate.

Fig. 3.2b, the probability density distribution is shown. It has the same shape
as the distribution of counts in Fig. 3.2a because it is just scaled, so that the
sum over the whole distribution equals one.

Depicting the distribution on logarithmic scale results in almost linear de-
crease of bin heights in Fig. 3.2c. Imperfections at the end of the distribution
are also more visible.

The fitting was also done for other measured rates and standard deviation
of fit parameters was estimated, see Tab. 3.5. The deviation is the measure of
how much the data correspond to the negative exponential fit. Fig. 3.3 shows
dependence of standard deviation of fit parameters on rate R. In Fig. 3.3b,
there is a visible increase of the deviation of the parametr b depending on rate.
This trend is less pronounced for a in Fig. 3.3a, but we could still make the
case for increase on average. It shows that the detection errors become more
significant with incresing rate since they have a greater effect on the shape of
the distribution.

Then the balance of bits in the data was examined by comparing number
of ones and zeros in each bit position as was described in Section 3.1. Results
for rates 100 kHz, 500 kHz, 1 MHz, 3 MHz, 5 MHz, 7 MHz and 10 MHz were
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R
[Hz]

Standard deviation of a Standard deviation of b

100 k 1.133 3.477× 10−10

500 k 1.031 1.508× 10−9

1 M 1.044 3.042× 10−9

3 M 2.305 1.847× 10−8

5 M 3.133 3.847× 10−8

7 M 2.958 4.602× 10−8

10 M 3.042 5.646× 10−8

Table 3.5: Standard deviation of fit parameters modeling a negative exponential
distribution for measured rates.
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Figure 3.3: Standard deviation of fit parameters a (a) and b (b) dependence on
detected rate R.

obtained and are presented in Fig. 3.4. Fig. 3.4 shows that the theoretical curve
according to equation (2.13) with the dead time models the real situation very
well especially for lower rates. The number of balanced bits decreases with
increasing rate. As we can see, the blue curves and green curves coincide for
rates up to 3 MHz. For higher rates, there is a slight shift between the blue
curve and green one at the end before they drop to zero. The theory predicts
more balance then there really is for these bit positions.

Both green and blue curves are slightly shifted from the red one. It shows
that accounting for the dead time predicts more balance in certain bit positions.

In Fig. 3.4c, it is visible that the shape of blue and green curve is different
from the red one and their functional value goes above 0.5 at a certain points,
where ones are more prevalent than zeros.

Visible oscillations are formed from 3 MHz in Fig. 3.4d up and the peak is
getting higher with increasing rate because the dead time effect is emphasized,
when photons arrive more frequently.

Entropy then answers the question of the optimum rate, at which we obtain
the highest number of balanced bits, and determines what deviation from 0.5
still constitutes as balanced.
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Figure 3.4: Bit balance distributions (2.13) without the dead time (2.14), with
the dead time, and the measured distributions.
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3.3 Entropy and test results

Min-entropy was estimated from the measured probability distributions. Ap-
proximatively, max pi is the height of the first bin in the histogram of probability
density distribution, which is then applied to equation (2.4). Inaccuracies can
be caused by after-pulses and twilight pulses since they make the first bin in
the distribution higher than expected. We can see in Fig. 3.5 that the measured
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Figure 3.5: The dependence of min-entropy H∞ on rate R.

entropy (red points) approximatively corresponds to theory (blue curve). Min-
entropy is a measure of generated balanced bits per detection. The min-entropy
decreases with increasing rate, which corresponds to the results of the discussion
about the balance of bits in previous section. In Tab. 3.6, there are results of
min-entropy for the measured rates rounded to integers.

R
[Hz]

H∞
[bits per detection]

100 k 23
500 k 21
1 M 20
3 M 18
5 M 17
7 M 17
10M 16

Table 3.6: Measured min-entropy H∞ for different rates R.
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Figure 3.6: The dependence of min-entropy H∞ multiplied by rate R on rate
R.

The optimum rate can be found as the maximum of the function obtained
by multiplying the min-entropy by saturated rate (2.15). This function then
will transform the measure of bits per detection to bits per second, since there
are Rdetected detection events per second on average.

As we can see in Fig. 3.6, the maximum is at 29.3 MHz, which is lower that
the guaranteed light count rate of 31 MHz in Tab. 3.1. This rate is unfortunately
unreachable because of the maximum transfer rate of the time tagger. If the
detector maximum continuous rate suggested by the manufacturer is possible,
we would obtain 352 Mb/s bits per second. For the maximum achievable rate
of 10 MHz, we obtained 160 Mb/s.

Finally, random numbers for rates 100 kHz, 500 kHz, 1 MHz, 3 MHz, 5 MHz,
7 MHz and 10 MHz were generated. One way was dividing the probability distri-
bution into 16 quantiles and another way was cutting the binary representation
of the time differences at the value of min-entropy for that rate. That makes
it 14 files in total. Then, the Von Neumenn extractor was applied. All of the
files passed the Dieharder battery of tests. There was no difference between the
results of the files where the extractor was applied and where it was not. It is
highly likely that the tests are not sensitive enough to tell the difference or the
quality of our QRNG is very high.
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Chapter 4

Conclusion

The aim of the thesis was to demonstrate and compare methods of random
number generation using quantum generators based on photonic detectors. Par-
ticularly, I used arrival times of individual photons as a random variable. I
performed measurements with single-photon avalanche diode and analyzed the
generated random bit sequences.

First, the employed methods were discussed. In Section 2.1, randomness
and binary random numbers were defined together with complexity. The bal-
ance of bits was introduced in the form of probability of bit i beind sampled as 1.
Moreover, Renýi family of entropies was described. Then, in Section 2.2, it was
shown that the Poisson statistics of time intervals between adjacent detections
is negative exponential. The Section 2.3 discussed single-photon detection, its
properties affecting the detection quality. It was shown that the dead time of
the detector affects the probability distribution and the balance of bits. Fur-
thermore, the means of single-photon detection were described with a focus on
SPAD and SNSPD detectors. Extractors and hash functions were introduced
in Section 2.4. The randomness extractor invented by Von Neumann was de-
scribed. Then, in Section 2.5, it was shown how the statistical randomness tests
are designed.

Results and experiment description were provided in Chapter 3. In Sec-
tion 3.1, experiment scheme and component properties were presented. Mea-
surement and data acquisition were also described together with data processing.
Tunability and stability were discussed. The transfer rate of the time tagger
turned out to be the biggest limitation. It was possible to achieve only 10 MHz
rate. The detector saturation, which is caused by its dead time, would result in
rate limitation to 34.8 MHz. In Section 3.2, the resulting frequency and proba-
bility distributions for measured rate 3 MHz were presented and visible effects
of detection properties were discussed. Together with 3 MHz, distributions for
rates 100 kHz, 500 kHz, 1 MHz, 5 MHz, 7 MHz and 10 MHz were measured and
plotted with a negative exponential fit. The percentage of detection events that
are above the fit represent the percentage of after-pulses and twilight pulses.
Standard deviation of fitting parameters are also presented. It is shown, that
the standard deviation increases with increasing rate, which indicates that the
distribution is more affected by detection imperfections at higher rates.

The corresponding balance of bits is presented in Section 3.3. The dead time
of 28.7 ns resulted in oscillations that became more pronounced with increas-
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ing rate. Minor inaccuracies were caused by after-pulsing and twilight pulses.
Otherwise, the experimental results are in good agreement with the theoretical
models. The min-entropy was estimated in Section 3.3 and used to determine
the number of balanced bits per detection. The entropy obtained from the data
agreed with the theoretical estimate. Based on entropy, it was possible to de-
termine the speed of random bit generation. For rate 10 MHz, the maximum
speed of 160 Mb/s was achieved. The results of statistical testing are presented
at the end of Section 3.3. Every generated file of random numbers passed the
Dieharder battery of tests.

A time tagger with higher transfer rate could be used to improve the gener-
ator in the future. Among other things, we would reach the maximum random
bit rate and we could verify the validity of the model over the full dynamic
range of the detector. Post-processing options should also be further explored
[50], because Von Neumann extractor is rather simple mean of randomness ex-
traction. There are also different ways to test randomness than just statistical
testing [56, 57]. These options should be examined too because statistical test-
ing is not always efficient and sensitive enough. Apart from the time arrival
method presented in this thesis, there are other methods to generate random
numbers and some of them are more efficient. It is possible to circumvent some
limitations by choosing homodyne detection [16].
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