
CZECH UNIVERSITY OF LIFE SCIENCES

PRAGUE

Faculty of Economics and Management

Department of Information Engineering

Diploma Thesis:

PROGRAMMING LANGUAGE DESIGN AND

COMPILER IMPLEMENTATION (AMHARIC BASED)

Author: Tofik Jemal AHMED

Supervisor: Pergl Robert, Dr. Ing.

©2013 CULS

ii

iii

iv

Declaration
I declare that I have worked on my diploma thesis titled “Programming Language Design

and Compiler Implementation (Amharic Based)” by myself and I have only used the

sources mentioned as list of references at the end of the thesis.

In Prague, ………………………………………..

…………………………………………………………….

 Tofik Jemal AHMED

v

Acknowledgment

 I would take the chance to thank several individuals who in one or another way

contributed and extended their valuable assistance in the preparation and completion of this

study.

First and foremost I would like to thank my supervisor, Dr. Ing. Robert Pergl, for his kind

advice and supervision of my thesis, without his comment and appreciation this work

would not have be possible.

PhDr. Vlastimil Černý, CSc. Head of International relations office, for his time and

consultations for any single issues I brought to his office.

Ing. Martin Kozák and all members of the International relations office they have done

their best to help me in my academic and social issues from the start to the end of my

study.

It will be rude of me if I fail to thank for the man who provided the Czech translation of the

summary. Ing. Gera Abate, thank you for the effort you have put to translate the summary.

My dad, Jemal Ahmed, my mom, Zubeyda Mohammed, my Sister, Sada Jemal, and my

fiancé, Nurayni, it is nice of you to give me the freedom and time to concentrate on my

work when you even most demand me. I guess it is with the prayers of yours I am blessed

on happiness and success.

Last but not the least, my close friends, relatives and the one above all of us, the

omnipresent Allah, for answering my prayers for giving me the strength to plod on despite

my constitution wanting to give up and throw in the towel, thank you so much Dear Allah.

1

Programming Language design and Compiler

Implementation (Amharic Based)

Návrh programovacího jazyka a implementace překladače

(založeněho na jazyku Amharic)

2

Summary

Amharic is an official language of The Federal Democratic Republic of Ethiopia

(FDRE) and spoken in Ethiopia, Eritrea and some 2.7 million emigrants all over the world.

It is the second most-spoken Semantic language next to Arabic. It uses Amharic Fidel for

writing, which grew out of the Ethiopian Orthodox Church writing system called Ge’ez.

The alphabets, fidels, of the languages are supported in Unicode from Code range 1200-

137F Ethiopic and 1380-139F Ethiopic Supplement including the punctuations of the

language. This thesis design a programming language that will use the Unicode character

set of Ethiopic and Ethiopic Supplement and implement lexical scanner, syntactic parser

and intermediate code generator.

The first part of the thesis will introduce Amharic language and the thesis in depth.

The second part will explain the objective of the thesis and the methodology of the thesis.

The next part is review of literature related to programming language design, compiler

implementation and programming languages which are based on Unicode characters rather

than ASCII code. Then it will explain and present the solution; BNF based grammar, the

Lexer, Parser and code generator. Lastly it will draw conclusion and recommendations.

Keywords
Compiler, Amharic Based Programming language, Programming Language Design, Lexical

analysis, Syntactic analysis, Parser, Unicode, BNF Grammar for Jempas, C, Jempas

3

Souhrn

 Amharština je oficiálním jazykem Etiopské federativní demokratické republiky

(FDRE) a mluvené v Etiopii, Eritrei a používá to přibližně 2,7 milionů emigrantů po celém

světě. Po arabštině je to nejvíce používaný sémantický jazyk. Pro psání se používá

Amharský Fidel (ABCDA), který pochází z Etiopské ortodoxní církevní systém psáni a

jmenuje se Geéz. Abeceda je podporována unicodem v rozsahu 1200-137F Etiopské a

1380-139F doplňkové Etiopské abecedy včetně přesnosti jazyka. Tato diplomová práce

vytvoří programovací jazyk, který používá Unicode znakové sady Etiopské a doplňkové

Etiopské, implementuje lexikální scanner, syntaktický analyzátor a provádí střední

generátor kódů.

 První část práce zavede amharský jazyk a práce do hloubky. Druhá část vysvětlí cíl

a metodiku práce. Další části obsahuje přehled literatury vztahující se k vývoji

programovacího jazyka, implementace překladače a programovacích jazyků, které jsou

založeny na Unicode znaky než ASCII kód. Pak vysvětli a presentuje řešení; gramatiky na

základě BNF, scanner, analyzátor a generátor kódu. Konečně bude čerpat závěr a nabízí

doporučení.

Klíčová slova
Překladač, Amharic založený programovací jazyk, programovací jazyk Design,

lexikální analýza, syntaktická analýza, analyzátor, Unicode, BNF gramatiky, Jempas,

C, Jempas

4

Table of Contents
Diploma Thesis Assignment .. ii

Declaration .. iv

Acknowledgment ... v

Summary .. 2

Keywords .. 2

Souhrn .. 3

Klíčová slova .. 3

Table of Contents ... 4

Table of Figures ... 6

1. Introduction .. 7

2. Objectives and Methodology ... 10

2.1. Objectives ... 10

2.2. Methodology .. 10

3. Literature Review .. 12

3.1. Language .. 12

3.2. Formal languages and grammars ... 12

3.3. Hierarchy of grammars .. 15

3.4. Programming languages ... 17

3.5. Programming linguistics .. 18

3.6. Language translator and processor ... 26

3.7. Characters and Character sets .. 31

3.8. Open Source versus Closed Source .. 37

3.9. Sample Programming that uses Unicode ... 39

4. Practical Part .. 444

4.1. BNF grammar for the language .. 444

4.2. Source code .. 45

4.3. Lexical Analysis ... 46

4.4. Syntax analyzer .. 48

4.5. Semantic analyzer .. 51

4.6. Symbol table... 51

4.7. Operator table ... 53

4.8. Intermediate code generator ... 54

5

5. Results and Discussion .. 55

6. Conclusion and recommendation ... 56

7. References .. 57

8. Appendix .. 58

8.1. BNF grammar of Jempas ... 58

8.2 Keywords of the language. ... 60

8.3. Utf-8 representation of the characters in the language .. 61

6

Table of Figures

Figure 3.1. Chomsky Hierarchy of languages. Source: Chomsky, 1957 …………… 17

Figure 3.2 Dates and ancestry of major programming languages. Source: Watt

(2004) …………………………………………………………………………………26

Figure 3.3 The compilation process. Source: own ………………………………… 27

Figure 3.4 the process of interpretation. Source:own . ………………………………28

Figure 3.5 phases of a compiler. Source: Aho, et al. 2007 …………………………29

Figure 3.6: alphabets in Amharic language. Source: own ………………………… 36

Figuer 3.7: Sample Hello World program written in Aheui …………………………40

Figure 3.8: A program to solve a quadratic equation in Jeem ………………………41

Figure 3.9 a hello world program in Geez# with AxumLight IDE. Source: Meliyu … 43

Figure 4.1 The simplest possible program in Jempas. Source: own …………………45

Figure 4.2 Structure of Jempas program(Left) and its literal translation …………46

Figure 4.3 Data structure used to define the lexeme-token combination. Source:

own ……………………………………………………………………………………47

Figure 4.4 Screen capture of a successful compilation. Source: own …………… 47

Figure 4.5 code fragment to parse statement. Source: own ……………………… 50

Figure 4.6 Symbol table content (left) and test program (right) Source:own ………52

Figure 4.7The operator table data structure ………………………………………53

Figure 4.8 The content of code.tac for test9.j on ubuntu screen Source: own ……54

7

1. Introduction

 Programming languages are how people talk to computers. The computer would be

just as happy speaking any language that is unambiguous. One of the reason we have high

level languages is because people can't deal with machine language. The point of

programming languages is to prevent human brains from being overwhelmed by a mass of

details. It will be great if we have a programming language that is closer to our mother

tongue. Then programming will be easy to learn and fun to work with that is why

designing a programming language and designing a compiler to it for Amharic speaking

student is considered.

Amharic is a language spoken in Ethiopia and Eritrea. It is the second most spoken

Semitic language next to Arabic with over 80 millions speakers. It uses a characters in

Unicode character sets in range of 1200-137F as main set of characters and extended

ranges are available time to time to support the symbols and dialects in the language. I am

a native speaker of the language and will design a grammar for a Pascal like programming

language in Amharic. The main objective is to design a programming language suitable to

teach programming for Amharic speaking students and to implement its compiler in beta

version. So at the end of the study there will be a language grammar in BNF to describe the

vocabulary and syntax of the intended language, a compiler frontend which could translate

the given language program in to three address code (TAC), sample test program and

sample output in three address code.

Languages like Arabic, Chinese, Korean, Japanese and Amharic are totally based on

Unicode and it is difficult for student from those cultures to learn the ASCII based

programming language. Of course, there are a number of reasons for that; one of them is

closed political system to foreign culture in the case of the Arab world, China and North

Korea. The other reason could be lose of motivation towards a product based on others

language, so developing a programming language that will be based on the students’

mother tongue will raise the motivation by giving ownership. And difficulty to key in the

characters was the main bottleneck but the current technological advancement had already

8

solved this problem for the owner of the language. However, it is still left a problem for

non native.

The reader of this document could be anyone with interest of language theory,

programming language design, language implementation, localization, internationalization

but those with understanding of Amharic or any Unicode based language may benefit the

most. One of the benefits is inspiration, since this research is only academic version,

student in undergraduate and graduate level will be inspired to develop and they can use

this as a startup. The other is Universities will use this as a supplementary material in

teaching formal language theory, compiler construction and programming language

courses. And it will enable researcher and software companies to see the market and

research opportunity in Unicode based languages and its user like Ethiopian. The next

benefit of this research and its output is that it will motivate and encourage students of the

field to learn programming and programming languages which in turn will invite different

stakeholders to invest in the fields of information technology. The last but not the least it

will also have socio-economic advantage in advertising the available opportunity, market

segment and potential skilled manpower in Unicode based language speaking country in

this specific case Ethiopia, for localized products and for localization.

 To my best knowledge this is the only in depth analysis made concerning

programming language based in Amharic. And it is the first of its kind to produce

expandable teaching supplement tool as its output. As compiler construction needs depth

understanding of programming language, grammar, automata and characters, this thesis

have contained a vast amount of information in literature review chapter. Most of the

resource used there, are well recognized by the community of their area or have

contributed to the development of the area in one or another way. Hence, there is no doubt

on the authenticity of the information presented.

9

The rest of the document is organized in the following order. Objective and

methodology is where the objective is properly set and the methodology, tools and method

used are explained. Literature review is the part where different source of information are

visited and presented to support the understanding of the upcoming parts. A chapter is

dedicated for the work of the author, which describe and correlate each development with

the presented literature. To understand this part one might need a basic understanding of

compilation and programming but not limited. As it is designed non programmer in mind

the language is simple, teaser and readable. There is a chapter that discuss on the result

based on the practical work. So it will add in depth analysis of the work done by the author.

The good practice will be encouraged and the bad path will be commented. The last

chapter will present conclusion and recommendation. Which will extend the comments

given in results chapter and will point out further research area in the field which could be

the extension of this thesis, a branch or a stand alone. Reference list and appendixes are

attached for further study on the concept used in this thesis. And the appendix might

consist of a full front end of a compiler for the designed language, sample test program and

output.

10

2. Objectives and Methodology

2.1. Objectives

 The objective is to develop a programming language that can be used to teach

programming, compiler construction and formal language theory for Amharic speaking

students and composed of the grammar of the language in Backus-Naur form (BNF), the

lexical analyzer, the syntax analyzer and the intermediate code generator.

2.2. Methodology

 The main sources of information for the thesis are from literature reviews and

Internet resources. The output is the development of a compiler with the capability of

lexical analyzer; scanning wide characters from the given input file and converting them in

to a sequence of tokens, syntax analyzer or parser; analyzing the syntax based on the given

grammar rule and code generator, generating three address codes (TAC).

 Different tools are used, to list them: c language; to write the lexer, parser, symbol

table and code generating capability, BNF; to represent the grammar of the language, Kate

text editor; as code editor; Terminal, to enter command and GCC compiler.

 The first step during the development was to configure the development

environment and make ready to support for Amharic input method. During the

configuration stage installation of Ubuntu, VMware, Kate, intelligent input bus (ibus) and

activation of the Amharic input method (Am) is performed.

 The language, Jempas, is developed and tested in ubuntu 9.0 using VMware and

should compile and run in any c compiler in Linux and Unix. The source code editor must

be utf-8 compatible and the input method has to be set to Am or the Nyala font should be

supported by the editor to write the source code properly. The source code file could have

any extension but preferable to use .j to point that this language is Jempas.

11

 Programming should be as easy as writing email in the next decades, that is why

programming now becomes relatively simper from the age of Ada. So I have followed a

modular approach in writing a program to make a program simple, readable and reusable.

Due to the influence of knowledge in C++, Jempas is developed and organized in modules

by using header files for public functions and variables.

 Incremental development and test methodology is applied during the development

of Jempas. Each part of the compiler is developed and tested separately then integrated

and tested.

12

3. Literature Review

The study of programming language design and compiler writing touches upon

linguistics, programming language, machine architecture, language theory, algorithms and

software engineering. Those could be categorized broadly in theoretical computing, which

consists of language theory, machine architecture and algorithms, and practical computing

or software engineering. So the main focus of this thesis will be on theoretical computing.

3.1. Language

Noam Chomsky considered a language to be a set (finite or infinite) of sentences,

each finite in length and constructed out of a finite set of elements. All natural languages in

their spoken or written form are languages in this sense, since each natural language has a

finite number of phonemes (or letters in its alphabet) and each sentence is representable as

a finite sequence of these phonemes (or letters), though there are infinitely many sentences.

Similarly, the set of sentences' of some formalized system of mathematics can be

considered a language. The fundamental aim in the linguistic analysis of a language L is to

separate the grammatical sequences which arc the sentences of L from the ungrammatical

sequences which are not sentences of L and to study the structure of the grammatical

sequences. The grammar of L will thus be a device that generates all of the grammatical

sequences of L and none of the ungrammatical ones. (Chomsky, 1957)

3.2. Formal languages and grammars

The theory of formal languages originated in the study of natural languages. “The

description of natural language is traditionally called a GRAMMAR; it should indicate

how the sentences of a language are composed of elements, how elements from larger

units, and how these units are related within the context of the sentence” (levelt, 2008).

The theory of formal languages rose from the need to provide a formal mathematical basis

for such description.

13

William, (Levelt, 2008), mentioned that Chomsky, the founder of the theory, was

primarily concerned with a more thorough examination of the basis of linguistic theory.

This involves such questions as “what are the goals of linguistic theory?”, “what

conditions must a grammar fulfill in order to be adequate in view of these goals?” and

“what is the general form of a linguistic theory?”And said “without a formal basis, these

and similar questions cannot be handled with sufficient precision.”

A formal language can be used as a mathematical model for a natural language;

while a formal grammar can act as a model for a linguistic theory. In computer science it

is used as basis for defining programming languages and other systems in which the

words of the language are associated with particular semantics.

From mathematical point of views grammars are formal systems like Turing

machines, computer programs, prepositional logic, theories of inference and neural nets.

A formal system is, broadly defined as any well-defined system of abstract thought based

on the model of mathematics. “Formal systems characteristically transform a certain input

into output by means of completely explicit, mechanically applicable rules” (levelt, 2008).

Based on their input William, (levelt, 2008), had discussed three types of formal systems:

Generative system, the input is an abstract start symbol and its output is a string of

‘words’ which constitutes a ‘sentence’ of the formal ‘language’; Automata, use the

sentences of a language as input and gives an abstract stop symbol as its output; and

Grammatical Inference procedure, takes a sample of the sentences of a language as input

and its output is a grammar which is in some way adequate for the language1.

1

 The quotation marks around ‘word’, ‘sentence’, and ‘language’ indicate that these terms are not
used in their full linguistic sense, but rather are concepts which must be strictly defined within the formal
system (Levelt, 2008).

14

A formal definition of a grammar and its building blocks are given in Chomsky

(1956, 1957) as a grammar G = (VN , VT , P, S) is a system consisting of a nonterminal

vocabulary VN , a terminal vocabulary VT , a set of productions P, and a start symbol S,

with the following properties:

1. VN, VT and P are finite, nonempty sets.

2. VN ∩ VT = 0.

3. P ⊂ V
+
 × V

*
.

4. S ∈VN.

A sentence generated by G is every element s of V*T for which S *⇒s, i.e. it is a

terminal string derivable from S by the productions of P. The language L(G) generated by

G is the set of sentences generated by G.

To support the formal definition of grammar we must elaborate the four component

of the definition: terminal vocabulary, nonterminal vocabulary, production rule, and start

symbol.

Terminal vocabulary, VT, is the set of terminal elements with which the sentences of

a language may be constructed. It is also called alphabet of the language. Elements of VT

will be denoted by lower case letters from the beginning of the Latin alphabet.

The nonterminal vocabulary, VT, consists of elements which are only used in the

derivation of a sentence; they never occur as such in the sentences of the language.

Elements of VN are indicated by upper case Latin letters and are called variables.

The production rules or productions of a grammar are ordered pairs of strings. They

take the form α → β, where α ∈V
+
 (V

+
 is the set of all possible strings of vocabulary

elements except the null-string, λ) and β ∈V* (V* is the set of all possible strings of

vocabulary elements). This means that string of elements α of positive length can be

replaced by, or rewritten as, string of elements β, possibly λ. Such rules apply in any

context, i.e. if α is part of a longer string γαδ, then γαδ may be rewritten as γβδ by the same

rule. When a string is rewritten as another string by a single application of a production

rule, we use the symbol ⇒; thus γαδ ⇒ γβδ. The latter string derives directly from the

15

former. If there are productions such that αl ⇒ α2, α2 ⇒ α3, … αn–l ⇒ αn, we may write

α1 *⇒ αn, read “α1 derives αn”.

The set of productions of a grammar is denoted by P; the set may also be described as a

cartesian product. The set of all possible rules consists of all ordered pairs of strings which

can be constructed in this manner; it may be denoted by V
+
 × V*, the Cartesian product of

V
+
 and V*. The productions of a grammar are a subset of this product: some strings of V

+

may be replaced by some strings in V*. Thus P ⊂ V
+
 × V*.

The start symbol of a grammar is denoted by S (originally for ‘sentence’); it is a

particular element of VN.

3.3. Hierarchy of grammars
Chomsky (1959 a,b) devised a scheme for the classification of grammars which is

now in general use. It is based on three increasingly restrictive conditions on the

production rules.

First limiting condition: For every production α → β in P, |α| ≤ |β|. Thus the

grammar contains no productions whose application would result in a decrease of string

length.

Second limiting condition: For every production α → β in P, (1) α consists of only

one variable, i.e. α ∈VN , and (2) β ≠ λ. The productions are of the form A → β, where β

∈V +.

Third limiting condition: For every production α → β in P, (1) α ∈VN , and (2) β

has the form a or aB, where a ∈VT and β ∈VN . The rules are thus either of the form A →

a or of the form A → aB.

With these limiting conditions, grammars may be classified in the following way.

Type-0 grammars are grammars which are not restricted by any of the limiting

conditions. Their definition is simply that of ‘grammar’; they are also called unrestricted

rewriting systems. Productions are of the form α → β.

Type-1 grammars are grammars restricted by the first limiting condition.

Productions have the form α → β, where |α| ≤ |β|. Type-1 grammars are also called context-

16

sensitive grammars (CSG) and it isa way to describe the syntax of natural language where

it is indeed often the case that a word may or may not be appropriate in a certain place

depending upon the context. They obviously constitute a subclass of type-0 grammars. In

fact they are a strict subset of the set of type-0 grammars, for there are type-0 grammars

which are not of type-1, namely, those grammars with at least one production where |α| >

|β|.

Type-2 grammars are grammars restricted by the second limiting condition.

Productions have the form A → β where β ≠ λ. Grammars of this type are called context-

free grammars (CFG). The second condition implies the first: from |β| ≥ 1 and |A| = 1 it

follows that |A| ≤ |β|. Context-free grammars are therefore context-sensitive, but the

inverse is not true; the class of context-free grammars is a strict subset of the class of

context sensitive grammars. Syntax of programming languages are presented in CFG.

Type-3 grammars are grammars restricted by the third limiting condition.

Productions have the form A → a or A → aB. These are regular grammars (in linguistic

literature they are often called finite state grammars), In its turn the third limiting condition

implies the second.

Therefore the class of regular grammars is a subclass of the class of context-free

grammars; in fact it is a strict subset.

Language types may be defined according to the various classes of grammars. A

type-3 grammar generates a regular language (or finite state language), a type-2 grammar

generates a context-free language, a type-1 grammar generates a context-sensitive

language, and a type-0 grammar generates a (recursively enumerable) language.

It does not follow, however, from the relations of inclusion which exist among the

various types of grammars that corresponding languages are bound by the same relations

of inclusion. We cannot exclude the possibility a priori that for every context-free grammar

there might exist, an equivalent regular grammar. In that case all context-free languages

might be generated by regular grammars, and consequently regular languages would not

form a strict subset of context-free grammars. However in the following it will become

apparent that the language types do show the same relations of strict inclusion as the

grammar types: there are type-0 languages which are not context-sensitive, context-

17

sensitive languages which are not context-free, and context-free languages which are not

regular. Figure 3.1., illustrates this hierarchical relation, called the Chomsky Hierarchy.

Every regular grammar is evidently context free. The statement that the grammars

type 1 are at the same time type 0, is trivial, because all the grammars are type 0. The

context free grammar, however, does not have to be necessarily type 1. Vanicek, et al.

(2008)

 Figure 3.1. Chomsky Hierarchy of languages. Source: Chomsky, 1957

3.4. Programming languages
According to Watt (2004) programming languages are how people talk to

computers. The computer would be just as happy speaking any language that was

unambiguous. The reason we have high level languages is because people can't deal with

machine language. The point of programming languages is to prevent our poor frail human

brains from being overwhelmed by a mass of detail.

18

According to (Aho, et al 2007) programming languages are notations for describing

computations to people and machines. And the world depends on programming languages,

because all the software running on all the computers are written in some programming

language.

3.5. Programming linguistics
Linguistics is the scientific study of human language including form, meaning and

context. Likewise, for programming language there is a linguistics that studies its meaning,

form and the languages meaning in a given context.

Watt(2004) defined programming linguistics as follows:

We sometimes use the term programming linguistics to

mean the study of programming languages. This is by

analogy with the older discipline of linguistics,which

is the study of natural languages. Both programming

languages and natural languages have syntax (form) and

semantics (meaning). However, we cannot take the analogy

too far. Natural languages are far broader, more

expressive, and subtler than programming languages. A

natural language is just what a human population speaks

and writes, so linguists are restricted to analyzing

existing (and dead) natural languages. On the other

hand, programming linguists can not only analyze

existing programming languages; they can also design and

specify new programming languages, and they can

implement these languages on computers.(p. 3)

If we look at the history of programming languages, a lot of the best ones were

languages designed for their own authors to use, and a lot of the worst ones were designed

for other people to use.

When languages are designed for other people, it's always a specific group of other

people: people not as smart as the language designer. So you get a language that talk down

19

to you. COBOL (COmmon Business Oriented Language) is the most extreme case, but a

lot of languages are pervaded by this spirit (Watt, 2004).

It has nothing to do with how abstract the language is. C is pretty low-level, but it

was designed for its authors to use, and that's why hackers like it.

Historical development of programming languages according to watt (2004):

Today’s programming languages are the product of

developments that started in the 1950s. Numerous

concepts have been invented, tested, and improved by

being incorporated in successive programming languages.

With very few exceptions, the design of each programming

language has been strongly influenced by experience with

earlier languages. The following brief historical survey

summarizes the ancestry of the major programming

languages and sketches the development of the concepts

introduced in this book. It also reminds us that today’s

programming languages are not the end product of

developments in programming language design; exciting

new concepts, languages, and paradigms are still being

developed, and the programming language scene ten years

from now will probably be rather different from today’s.

Figure 3.2 summarizes the dates and ancestry of several

important programming languages. This is not the place

for a comprehensive survey, so only the major

programming languages are mentioned.

FORTRAN was the earliest major high-level language. It

introduced symbolic expressions and arrays, and also

procedures (‘‘subroutines’’) with parameters. In other

respects FORTRAN (in its original form) was fairly low-

level; for example, control flow was largely affected by

20

conditional and unconditional jumps. FORTRAN has

developed a long way from its original design; the

latest version was standardized as recently as 1997.

COBOL was another early major high-level language. Its

most important contribution was the concept of data

descriptions, a forerunner of today’s data types. Like

FORTRAN, COBOL’s control flow was fairly low-level. Also

like FORTRAN, COBOL has developed a long way from its

original design, the latest version being standardized

in 2002.

ALGOL60 was the first major programming language to be

designed for communicating algorithms, not just for

programming a computer. ALGOL60 introduced the concept

of block structure, whereby variables and procedures

could be declared wherever in the program they were

needed. It was also the first major programming language

to support recursive procedures. ALGOL60 influenced

numerous successor languages so strongly that they are

collectively called ALGOL-like languages.

FORTRAN and ALGOL60 were most useful for numerical

computation and COBOL for commercial data processing.

PL/I were an attempt to design a general-purpose

programming language by merging features from all three.

On top of these it introduced many new features,

including low-level forms of exceptions and concurrency.

The resulting language was huge, complex, incoherent,

and difficult to implement. The PL/I experience showed

that simply piling feature upon feature is a bad way to

make a programming language more powerful and general-

purpose.

21

A better way to gain expressive power is to choose an

adequate set of concepts and allow them to be combined

systematically. This was the design philosophy of

ALGOL68. For instance, starting with concepts such as

integers, arrays, and procedures, theALGOL68 programmer

can declare an array of integers, an array of arrays, or

an array of procedures; likewise, the programmer can

define a procedure whose parameter or result is an

integer, an array, or another procedure.

PASCAL, however, turned out to be the most popular of

the ALGOL-like languages. It is simple, systematic, and

efficiently implementable. PASCAL and ALGOL68 were among

the first major programming languages with both a rich

variety of control structures (conditional and iterative

commands) and a rich variety of data types (such as

arrays, records, and recursive types).

C was originally designed to be the system programming

language of the UNIX operating system. The symbiotic

relationship between C and UNIX has proved very good for

both of them. C is suitable for writing both low-level

code (such as the UNIX system kernel) and higher-level

applications. However, its low-level features are easily

misused, resulting in code that is unportable and

unmaintainable.

PASCAL’s powerful successor, ADA, introduced packages

and generic units –designed to aid the construction of

large modular programs – as well as high-level forms of

exceptions and concurrency. Like PL/I, ADA was intended

by its designers to become the standard general-purpose

programming language. Such a stated ambition is perhaps

very rash, and ADA also attracted a lot of criticism.

22

(For example, Tony Hoare quipped that PASCAL, like

ALGOL60 before it, was a marked advance on its

successors!) The critics were wrong: ADA was very well

designed, is particularly suitable for developing high-

quality (reliable, robust, maintainable, efficient)

software, and is the language of choice for mission-

critical applications in fields such as aerospace.

We can discern certain trends in the history of

programming languages. One has been a trend towards

higher levels of abstraction. The mnemonics and symbolic

labels of assembly languages are abstract away from

operation codes and machine addresses. Variables and

assignment abstract away from inspection and updating of

storage locations. Data types abstract away from storage

structures. Control structures abstract away from jumps.

Procedures abstract away from subroutines.

Packages achieve encapsulation, and thus improve

modularity. Generic units abstract procedures and

packages away from the types of data on which they

operate, and thus improve reusability.

Another trend has been a proliferation of paradigms.

Nearly all the languages mentioned so far have supported

imperative programming, which is characterized by the

use of commands and procedures that update variables.

PL/I and ADA support concurrent programming,

characterized by the use of concurrent processes.

However, other paradigms have also become popular and

important.

Object-oriented programming is based on classes of

objects. An object has variable components and is

23

equipped with certain operations. Only these operations

can access the object’s variable components. A class is

a family of objects with similar variable components and

operations. Classes turn out to be convenient reusable

program units, and all the major object-oriented

languages are equipped with rich class libraries.

The concepts of object and class had their origins in

SIMULA, yet another ALGOL-like language. SMALLTALK was

the earliest pure object-oriented language, in which

entire programs are constructed from classes.

C++ was designed by adding object-oriented concepts to

C. C++ brought together the C and object-oriented

programming communities, and thus became very popular.

Nevertheless, its design is clumsy; it inherited all C’s

shortcomings, and it added some more of its own.

JAVA was designed by drastically simplifying C++,

removing nearly all its shortcomings. Although primarily

a simple object-oriented language, JAVA can also be used

for distributed and concurrent programming. JAVA is well

suited for writing applets (small portable application

programs embedded in Web pages), as a consequence of a

highly portable implementation (the Java Virtual

Machine) that has been incorporated into all the major

Web browsers. Thus JAVA has enjoyed a symbiotic

relationship with the Web, and both have experienced

enormous growth in popularity. C# is very similar to

JAVA, apart from some relatively minor design

improvements, but its more efficient implementation

makes it more suitable for ordinary application

programming.

24

Functional programming is based on functions over types

such as lists and trees. The ancestral functional

language was LISP, which demonstrated at a remarkably

early date that significant programs can be written

without resorting to variables and assignment.

ML and HASKELL are modern functional languages. They

treat functions as ordinary values, which can be passed

as parameters and returned as results from other

functions. Moreover, they incorporate advanced type

systems, allowing us to write polymorphic functions

(functions that operate on data of a variety of types).

ML (like LISP) is an impure functional language, since

it does support variables and assignment. HASKELL is a

pure functional language.

As noted in Section 1.1.1, mathematical notation in its

full generality is not implementable. Nevertheless, many

programming language designers have sought to exploit

subsets of mathematical notation in programming

languages.

Logic programming is based on a subset of predicate

logic. Logic programs infer relationships between

values, as opposed to computing output values from input

values. PROLOG was the ancestral logic language, and is

still the most popular.

In its pure logical form, however, PROLOG is rather weak

and inefficient, so it has been extended with extra-

logical features to make it more usable as a programming

language.

25

Programming languages are intended for writing

application programs and systems programs. However,

there are other niches in the ecology of computing.

An operating system such as UNIX provides a language in

which a user or system administrator can issue commands

from the keyboard, or store a command script that will

later be called whenever required. An office system

(such as a word processor or spreadsheet system) might

enable the user to store a script (‘‘macro’’) embodying

a common sequence of commands, typically written in

VISUAL BASIC.

The Internet has created a variety of new niches for

scripting. For example, the results of a database query

might be converted to a dynamic Web page by a script,

typically written in PERL. All these applications are

examples of scripting. Scripts (‘‘programs’’ written in

scripting languages) typically are short and high-level,

are developed very quickly, and are used to glue

together subsystems written in other languages. So

scripting languages, while having much in common with

imperative programming languages, have different design

constraints. The most modern and best-designed of these

scripting languages is PYTHON. (P.6-10)

26

 Figure 3.2 Dates and ancestry of major programming languages. Source: Watt (2004)

3.6. Language translator and processor

In order to solve a problem using computer; we must write instruction in

programming language, translate in to a form understandable by the computer and execute

instruction. To support this process of problem solving; we will use tools like language

processor and translator.

Watt (2004) defined language processer as “Any system for processing programs –

executing programs, or preparing them for execution – is called a language processor.

Language processors include compilers, interpreters, and auxiliary tools like source-code

editors and debuggers.”

27

Now a day there are plenty of language processors which range from notepad to

IDE (Integrated Development Environment). Some of these have advanced features to aid

the programmer, like .Net’s intellisense, error report of turbo C++. Availability of such

tools had made programming easier and comfortable, even for beginners.

Before a program can be run, it first must be translated into a form in which it can

be executed by a computer. The software systems that do this translation are called

language translators. Based on the way of the translation we have two kinds of translator;

Compiler and Interpreter.

Compiler, based on Aho, et al. (2007), is a program that can read a program in one

language- the source language - and translate it into an equivalent program in another

language - the target language. An important role of the compiler is to report any errors in

the source program that it detects during the translation process. If the target program is an

executable machine-language program, it can then be called by the user to process inputs

and produce outputs. Compilation is presented in figure 3.3

 Figure 3.3 The compilation process. Source: own

 Interpreter, according to Aho, et al. (2007), is another common kind of language

processor. Instead of producing a target program as a translation, an interpreter appears to

directly execute the operations specified in the source program on inputs supplied by the

user.

28

 Figure 3.4 the process of interpretation. Source: own

The machine-language target program produced by a compiler is usually much

faster than an interpreter at mapping inputs to outputs. An interpreter, however, can usually

give better error diagnostics than a compiler, because it executes the source program

statement by statement.

Compiler is a software system which has five or more phases. Those phases are

grouped as front end and back end, also called analysis and synthesis respectively. The

analysis part is responsible for braking down the source code in to a serious of lexeme (a

sequence of characters from the input that match a pattern) and produce tokens (symbolic

names for the entities that make up the text of the program) representation of the language.

It is also responsible to provide sophisticated error message related to syntax violation and

semantic interpretation, which will be used by the programmer for debugging. The

synthesis part is responsible for generating the target program and make use of the symbol

table and the intermediate representation generated by the previous part.

Aho, et al. (1986), defined the function of these parts as follows:

 The analysis part breaks up the source program

into constituent pieces and imposes a grammatical

structure on them. It then uses this structure to

create an intermediate representation of the source

program. If the analysis part detects that the

source program is either syntactically ill formed

or semantically unsound, then it must provide

informative messages, so the user can take

corrective action. The analysis part also collects

information about the source program and stores it

29

in a data structure called a symbol table, which is

passed along with the intermediate representation

to the synthesis part.

The synthesis part constructs the desired target

program from the intermediate representation and

the information in the symbol table.

The analysis part consists of lexical analyzer, syntax analyzer, semantic analyzer

and intermediate code generator; the synthesis part is composed of machine-independent

intermediate representation, code generator, target-machine code and machine-dependent

code optimizer. A typical decomposition of compiler into phases is shown in Fig. 3.5

 Figure 3.5 phases of a compiler. Source: Aho, et al. 2007

The first phase of a compiler is called lexical analysis

or scanning. The lexical analyzer reads the stream of

characters making up the source program and groups the

30

characters into meaningful sequences called lexemes. For

each lexeme, the lexical analyzer produces as output a

token of the form (token-name, attribute-value) that it

passes on to the subsequent phase, syntax analysis. In

the token, the first component token-name is an abstract

symbol that is used during syntax analysis, and the

second component attribute-value points to an entry in

the symbol table for this token. Information from the

symbol-table entry 'is needed for semantic analysis and

code generation.

The second phase of the compiler is syntax analysis or

parsing. The parser uses the first components of the

tokens produced by the lexical analyzer to create a

tree-like intermediate representation that depicts the

grammatical structure of the token stream. A typical

representation is a syntax tree in which each interior

node represents an operation and the children of the

node represent the arguments of the operation.

The semantic analyzer uses the syntax tree and the

information in the symbol table to check the source

program for semantic consistency with the language

definition. It also gathers type information and saves

it in either the syntax tree or the symbol table, for

subsequent use during intermediate-code generation

In the process of translating a source program into

target code, a compiler may construct one or more

intermediate representations, which can have a variety

of forms. Syntax trees are a form of intermediate

representation; they are commonly used during syntax and

semantic analysis.

After syntax and semantic analysis of the source

program, many compilers generate an explicit low-level

or machine-like intermediate representation, which we

31

can think of as a program for an abstract machine. This

intermediate representation should have two important

properties: it should be easy to produce and it should

be easy to translate into the target machine.

The machine-independent code-optimization phase attempts

to improve the intermediate code so that better target

code will result. Usually better means faster, but other

objectives may be desired, such as shorter code, or

target code that consumes less power.

The code generator takes as input an intermediate

representation of the source program and maps it into

the target language. If the target language is machine

code, registers or memory locations are selected for

each of the variables used by the program. Then, the

intermediate instructions are translated into sequences

of machine instructions that perform the same task. A

crucial aspect of code generation is the judicious

assignment of registers to hold variables. Aho, et al.

(2007)

3.7. Characters and Character sets
Characters (The Linux Information Project, 2007) are the basic symbols that are

used to write or print a language. For example, the characters used by the English language

consist of the letters of the alphabet, numerals, punctuation marks and a variety of symbols

(e.g., the ampersand, the dollar sign and the arithmetic symbols).

According to Linux information project (The Linux Information Project,

2007) characters are fundamental to computer systems. They are used for input (e.g.,

through the keyboard or through optical scanning) and output (e.g., on the screen or on

printed pages), writing programs in programming languages, as the basis of some operating

systems (such as Linux) which are largely collections of plain text(i.e., human-readable

character) files and for the storage and transmission of non-character data (e.g., the

transmission of images by e-mail using base64).

32

A general definition of character set is given by Linux information project (The

Linux Information Project, 2007), as a collection of characters that is used to write a

particular language. Most languages have a single character set, and similar character sets

are often used by a number of languages (e.g., variants of the Roman alphabet are used to

write English, Spanish, Finnish, Dutch, etc.)

Webopedia, www.webopedia.com, defined character set as a defined list

of characters recognized by the computer hardware and software. Each character is

represented by a number. There are different character sets: ASCII (American standard

code for information interchange), uses the numbers 0 through 127 to represent all English

characters as well as special control characters; ISO 8859-1(Latin-1), are similar to ASCII

but they contain additional characters for European languages; Unicode, which contains all

of the characters commonly used in information processing.

ASCII functions as a common denominator between computers that otherwise have

nothing in common. It works by assigning standard numeric values to letters, numbers,

punctuation marks and other characters such as control codes. Bob Bemer, who was

instrumental in ASCII's development, said "we had over 60 different ways to represent

characters in computers. It was a real Tower of Babel". ASCII is contained within 2
7
, or

128 characters. There's room in ASCII for upper and lowercase English, American English

punctuation, digits and a few control characters. Although very primitive, it's important to

note ASCII is the one common denominator contained in all the other common character

sets - so the only means of interchanging data across all major languages (without risk of

character mapping loss) is to use ASCII (or have all sides understand Unicode).(ASCII).

 ISO 8859-1 encodes what it refers to as "Latin alphabet no. 1," consisting of

191 characters from the Latin script. This character-encoding scheme is used throughout

The Americas, Western Europe, Oceania, and much of Africa. It is also commonly used in

most standard Romanization of East-Asian languages. Each character is encoded as a

single eight-bit code value. These code values can be used in almost any data interchange

system to communicate in the following European languages (with a few exceptions due to

missing characters)(ISO/IEC 8859-1:1998.).

http://www.webopedia.com/

33

 Unicode is a 16-bit character set which contains all

of the characters commonly used in information

processing. Approximately 1/3 of over 1 million

possible code points are still unassigned, to allow

room for adding additional characters in the future. It

is not a technology in itself. Sometimes people

misunderstand Unicode and expect it to 'solve'

international engineering, which it doesn't. It is an

agreed upon way to store characters, a standard

supported by members of the Unicode Consortium.

The fundamental idea behind Unicode is to be language-

independent, which helps conserve space in the

character map - no single character is assumed to

identify a language in itself. Just like a character

"a" can be a French, German or English "a" even if they

have different meanings, a particular Han ideograph

might map to a character used in Chinese, Japanese and

Korean. Sometimes native speakers of these languages

misunderstand Unicode as not "looking" correct in

Japanese for example, but that's intentional -

appearance should reside in the font as an artistic

issue, not the code point as an engineering issue.

Although it's technically possible to ship one font

which covers all Unicode characters, it would have very

limited commercial use, since end-users in Asia will

expect fonts dedicated and designed to look correct in

their language.

This language-independence also means Unicode does not

imply any sort order. The older 8-bit and DBCS

character sets usually contain a sort order, but this

means they had to create a new character set to change

the sort order, which makes a mess out of data

34

interchange between languages. Instead, Unicode expects

the host operating system to handle sorting, as the

Win32 NLS APIs do.

(http://www.microsoft.com/typography/unicode/cs.htm)

Computer programs are still written using part of 128 characters, the ASCII

characters, or 256 characters, the ISO-latin-1 characters. But in a few years, using all the

Unicode characters in programs may be standard, which consists of 109384 encoded

characters in Unicode 6.0 and 1114112 total codes which include 1111998 characters in 17

planes, 2048 surrogates and 66 non characters (The Unicode Consortium, 2012).

Mathematics is a language that uses many more tokens than most of the current

programming languages, both dedicated symbols and letters from many alphabets. It can

describe concepts extremely tersely, since the greater the range of characters a language

has, the terser it can be written.

 Committed programmers are continually looking for ways to make programs terser,

yet still readable. They choose languages and tools that enable such terseness, so

programming languages evolved, into the 2GL (second generation language: assembly

language), the 3GL, and the visual 4GL. But 4GL’s were limited in their scalability and

readability. It’s easier to write a program in a 4GL than a 3GL, but more difficult to read

and debug it. So some used IDE’s, supplementing 3GL's with visual aids. Others looked

for a more productive language, so terser languages, such as Perl, Python, and Ruby,

became popular. Regular expressions are a successful attempt at tersity, now used by many

languages, but many consider them unreadable. The K programming language, used by

financial businesses, could be the tersest language ever invented. It only uses ASCII

symbols, but overloads them profusely. However, the price is the inability to give different

precedence to the operators, so everything unbracketed is evaluated from the right. The

terseness of present-day programming languages is derived from maximizing the use of

grammar, the different ways characters can be combined.

Operator overloading in C++ was a similar attempt at tersity. Programmers could

define meanings for some combinations of the 35 ASCII symbols. Although programs

became terser, they were more difficult to understand because of the unpredictable

meaning of these symbols in different code contexts, and they were eventually dropped in

35

Java. The problem wasn't with operator overloading itself, but with the uncontrolled

association of meanings with each operator. Eventually certain meanings would have

become generally accepted, the others falling into disuse, but this would have taken many

years, with too many incompatible uses produced in the meantime. If there was such a

problem with a few dozen operators, what hope would there be for the hundreds of unused

Unicode symbols? If programmers were allowed to overload them with any meaning, the

increase in program tersity would be at the cost of readability.

Perhaps adding the many Unicode symbols to programming languages would

enable terser programs to be written. Although some Unicode symbols will have an

obvious meaning, such as some mathematical symbols, most would have no meaning that

could be transferred easily to the programming context. To retain readability of programs

in a terse language, the meanings of the Unicode symbols would have to be carefully

controlled by the custodians of that language. They would activate new Unicode symbols

at a gradual pace only, with control of their meanings, after carefully considering existing

use of the symbols.

 Programming languages do, however, already allow Unicode characters in some

parts of their programs. The contents of strings and comments can use any Unicode

character. User-defined names can use all the alphabetic letters and symbols in utf-

8(Unicode transformation format) character set, and because there is already agreed

meanings for combinations of these, derived from their respective natural languages, we

can increase tersity while keeping readability. But the core of the language, the grammar

keywords and symbols, and names in supplied libraries, still only use ASCII characters.

Perhaps some programmers use non-Latin characters wherever they can in their programs.

 Programmers from cultures not using the Latin alphabet won't be motivated to use

their own alphabets in user-defined names when they don't with pre-supplied names, such

as keywords or standard libraries. Often, most of the names in a program are from libraries

standard to the language. To trigger the widespread use of Unicode characters from non-

ASCII alphabets in programs, the pre-supplied names must also be in those alphabets. And

this could easily be done. The grammar of a language and its vocabulary are two different

concepts. A programming language grammar could conceivably have many vocabulary

options. Almost all programming languages only have English. Other vocabularies could

36

be based on other natural languages. A Spanish vocabulary plugged into a certain

programming language would have Spanish names for the keywords, modules, classes,

methods, variables, etc.

 Computer software nowadays is internationalized, web pages are, and most

programming languages enable internationalized software. But the languages themselves

and their libraries are not internationalized. An internationalized programming language

would enable a fully functional program to be written totally in a natural language of one’s

choice. Not only could all user-defined names be specified in any alphabet, but also all

keywords and names in the standard libraries would be available in many natural

languages.

Amharic is a language spoken in Ethiopia and Eritrea. It is the second most spoken

Semitic language next to Arabic. It uses Unicode characters in range of 1200-137F as main

set of characters and extended ranges are available time to time to support the symbols and

dialects in the language. The author a native speaker of the language will design a grammar

for a Pascal like language in Amharic. The main purpose of the author is to design a

programming language suitable to teach programming for Amharic speaking student and to

implement it in beta version. So at the end of the study there will be language grammar in

BNF to describe the vocabulary and syntax of the intended language, a compiler front end

which could translate the given language program in to three address code, sample test

program and sample output in three address code.

 Figure 3.6: alphabets in Amharic language. Source: own

37

3.8. Open Source versus Closed Source
As discussed in (The Linux Information Project, 2007)

One of the most intensely debated topics in the computer

field continues to be the relative merits of open

source and closed source software. The former is

software for which the source code is freely available

(i.e., at no cost and easily accessible) for anyone to

use for any purpose, including studying, modifying,

extending, giving away or even selling. Although there

are some philosophical differences behind the movements,

in most cases open source software is basically the same

as free software.

The latter provide their source code either with the

compiled software or by allowing it to be downloaded

from the Internet. The GNU General Public License (GPL),

the most widely used free software license, actually

makes it a legal requirement that the source code for

all software released under it be made freely available

to all users.

Closed source software is software for which the source

code is kept secret. Most proprietary (i.e., commercial)

software is closed source. There are several reasons

that developers of proprietary software take great pains

to keep their source code secret, including the concerns

that:

1. Other developers might copy some of their code and

use it in other programs.

2. Hackers will find vulnerabilities in the code that

will enable them to to develop viruses, spyware or

other malware (i.e., malicious software) for it.

3. Public disclosure of the source code could expose

38

its developers to charges that some of the code was

plagiarized from other programs.

4. Customers will try to modify the source code,

resulting in new problems that could be difficult for

either the customers or developer to correct.

5. The source code could be used as evidence in legal

proceedings, particularly those related to whether the

developer has been complying with certain legislation or

court decisions.

6. The source code could contain

unfavorable comments inserted by programmers about their

employer, customers or competitors. Comments are words,

phrases, sentences or paragraphs that are interspersed

in source code but which do not affect the operation of

the code. Their official purpose is to document the code

and explain it to other programmers (who may have to

repair or revise the code at some future date), although

they are frequently used for other purposes as well. It

can be difficult to find and remove potentially

offensive comments because of the great length of the

code for large programs and the subtlety with which some

comments are written.

There are also reasons for not keeping source code

secret and for allowing, or even encouraging, others to

view and study it. Advocates of open source point out

that this approach makes it possible for a much larger

and more diverse set of qualified people to examine the

source code, thus resulting in the discovery of more

bugs and providing more and better suggestions for

improvements and extensions.

http://www.linfo.org/documentation.html

39

That this approach has been extremely successful is

evidenced by the rapid improvements in performance of

numerous open source programs, many of which are equal

to or superior to their closed source counterparts. One

of the most outstanding examples is the Apache web

server, which is currently, hosts more than 70 percent

of all web sites on the Internet.

Undoubtedly the most famous example is Linux, the use of

which is continuing to grow rapidly for a wide range of

applications, including supercomputers, enterprise

computing systems, personal computers and embedded

systems. Another example is the GNU Compiler

Collection (GCC), which contains very highly rated and

widely used compilers for C, C++, FORTRAN, Java and

other programming languages. In fact, the concept of

open source is so appealing that there are currently

thousands of open source projects in various stages of

development.

3.9. Sample Programming that uses Unicode
Even though there are many programming language now a day, most of them share

that they are based on English. And with the available tools and computing power

developing language become much easier than the past when it comes to English based

languages.

Non-English-based programming languages are computer programming

languages that, unlike known programming languages, do not use keywords taken from, or

inspired by, the English vocabulary.

40

Algol 68 is a powerful, high-level, general-purpose programming language ideally

suited to modern operating systems. It was the first to publish the standard in many

languages, and the standard allowed the internationalization of the language itself. On

December 20, 1968, the "Final Report" (MR 101) was adopted by the Working Group 2.1,

then subsequently approved by the General Assembly of UNESCO's IFIP for publication.

Translations of the standard were made for Russian, German, French, Bulgarian, and then

later Japanese. The standard was made available in Braille. It went on to become

the GOST/ГОСТ-27974-88 standard in the Soviet Union2. In English, its reverent case

statement reads case ~ in ~ out ~ esac. In Cyrillic, this reads выб ~ в ~ либо ~ быв .

Aheui3(아희) is an esoteric programming language, a computer programming

language designed to experiment with weird ideas, to be hard to program in, or as a joke,

rather than for practical use, first ever to be designed for the Hangul/Hangeul which is the

Korean alphabet. It is functionally a family of INTERCAL, Brainfuck and Befunge but

many of the language's concept is derived from Befunge
4
, except the fact that it has no

instruction for self-modifying, and that it has 26 stacks and one queue. The code of Aheui

is written in UTF-8 encoding. Only Hangul syllables (from AC00 to D7A3) are recognized

as a command; others are ignored.

 Figuer 3.7: Sample Hello World program written in Aheui

2
 "GOST 27974-88 Programming language ALGOL 68 - Язык программирования АЛГОЛ 68" (in Russian)

(PDF).
3
 http://puzzlet.springnote.com/pages/219154.xhtml

4
 http://esolangs.org/wiki/Befunge

http://vak.ru/lib/exe/fetch.php/book/gost/pdf/gost-27974-88.pdf
http://puzzlet.springnote.com/pages/219154.xhtml
http://esolangs.org/wiki/Befunge

41

 Jeem (ج)– Arabic programming language, based on C and Pascal with simple

graphics implementation. This language is developed with the aim of making programming

easy for Arab students, and uses the utf-8 code range from 0600 to 06FF. Since this

language is written for Arabic user the documentation is also in Arabic so it is hard to learn

for non-Arabic speaker.

 Figure 3.8: A program to solve a quadratic equation in Jeem

42

 AMMORIA(in Arabic) is an object oriented programming language uses Arabic

words instead of English words, to make learning programming for Arab children easy and

fast, it's planned to support Urdo and Farsi too, AMMORIA has its won IDE and Visual

tools.

 Chinese Programming language, are languages which use Chinese characters from

Unicode character set. And consists Chinese BASIC, Easy Programming Language,

ChinesePython, Mama: is an educational programming language and was designed to help

young students develop 3D animations and games, and RoboMind: is another educational

programming language available in many non-English languages, including Chinese and it

introduces computer science and robotics.

Now a day there are tones of programming languages in non-English based

language even if, it is not comparable the number of programming language available in

English. Most of the language has been developed, in USA, UK, Canada and Australia.

And English is their native language or second language, so English become dominant in

computing area. This has difficulty for those countries which use English by no means.

Ethiopia is a history rich country with its own script and calendar. Since it has more

than eighty ethnic groups, there are languages which are Latin based and Geez based (A

language dominant in Orthodox Church). And It uses Amharic, which is geez based, as its

official language, while regions can implement their own official language, but academics

is unified in English as primary teaching language. Even if Amharic is spoken in almost all

the nation of Ethiopia and part of Eretria there is no or very little effort to make this

language a computing language. As a matter of fact students have to learn two things at the

same time to learn programming, English and Programming language.

Geez#, a fidel based C#, which it can be considered as the localized version of C#.

It is based upon the Amharic alphabet and uses Semitic-based “Geez” characters native to

Ethiopian languages. It is a great breakthrough for fidel to be used in computing but Geez#

is mainly geez; a predominant language used in Ethiopian Orthodox Church and ancestor

of Amharic. The problem of geez as a language for programming is that it is very difficult

than English for most youngster; because the Church is not dictating the direction of

education after the downfall of the Imperial regime and geez is not thought by force.

43

 Figure 3.9 a hello world program in Geez# with AxumLight IDE. Source: Meliyu

 This thesis will solve the problem of Geez# by implementing open source Jempas, a

Pascal like language, totally based on Amharic. It will also provide the grammar for the

language, which could enable teaching formal language theory, compiler construction and

programming language much easier than now for Amharic speaking students.

44

4. Practical Part

4.1. BNF grammar for the language
The first step in developing a programming language is to design the grammar. The

grammar is the definition or specification of the language and any grammar in BNF

consists of start symbol. In my grammar the start symbol is program and in the grammar

there are terminal and non-terminal symbols. Terminal of the grammars are composed of

alphabet of the language and they make up the keywords in the language developed. Part

of the grammar is enlisted here and explained, full of the grammar can be found in

appendix.

The rule <program> = ’ፕሮግራም’ ’ዋና’ <NAME> ’(’ ’)’ ’{’ [<var_part>]

[<fun_part>] [<stat_part>]’}’ is the first rule, and consists of <program>, the start

symbol; ’ፕሮግራም’ and ’ዋና’, keywords, ; <NAME>, [<var_part>], [<fun_part>]and

[<stat_part>], non-terminals; and ’(’, ’)’, ’{’ and ’}’, terminals. Angle brackets < > is used

to represent non-terminals, square brackets [] is used to represent optional component of

the grammar and single quotation is used to represent terminals in the grammar. Based on

this rule a program is syntactically correct if it has the keyword ፕሮግራም followed by

keyword ዋና and then the name of the program, opening and closing bracket, opening curl

bracket, optional parts for variable declaration, function part and statement part, and

terminated by closing curl bracket.

The rule <var_part> = [’ማስቀመጫ’ (<var_decl>)+]* is the next rule I want to

explain due to some additional grammar symbols in it. The symbol + in grammar means

that at least one occurrence of the symbol must occur. And the other symbol in this rule is

the asterisk or *, which is to mean zero or more occurrence. So this rule explains that

variable part could be empty or can be repeated where as if a variable part exist there

should be at least one variable declaration.

The rule <type> = ’ለቁጥር’ | ’ለሀረግ’ | ’ለእውነትሀሰት’ | ’ባዶ’ is the last rule I will be

covering in my explanation. Here we have met a new symbol, |, it is to mean selection.

One of the listed options could be used as a substitute for the non-terminal symbol <type>.

And from the rule above one can learn there are four data types in my program.

45

 Figure 4.1 The simplest possible program in Jempas. Source: own

4.2. Source code

Source code is a text listing of commands to be compiled or assembled into an

executable computer program. Source code (also referred to as source or code) is the

human readable version of software as it is originally written (i.e., typed into a computer)

by a human in plain text (i.e., human readable alphanumeric characters). It contains

variable declarations, instructions, functions, loops, and other statements that tell the

program how to function. And source code in Jempas should give a clue even for non-

programmer Amharic language speakers. Jempas is writen in c on Linux and well commented to

help any programmer understand, add future(s) or modify it, to be open source and will be

available in GNU general public licenses.

The term software refers to all operating systems, application programs and data

that are used by products containing microprocessors (also called processors or central

processing units). Such products include not only personal computers but also a vast array

of other products, such as aircraft electronic systems, railway signaling systems, industrial

robots, electronic medical equipment, space vehicle guidance systems, electronic cameras

and even simple electronic toys.

Source code can be written in any of the hundreds of programming languages that

have been developed. Some of the most popular of these are C, C++, Cobol, Fortran, Java,

Perl, PHP, Python and Tcl/Tk.

There are many programs that can be used for writing source code in the desired

programming language, ranging from simple, general purpose text editors (such

as vi or gedit on Linux or Notepad on Microsoft Windows) to integrated development

environments (such as Visual C++ on Microsoft Windows or the cross-platform Eclipse

ፕሮግራም ዋና ካልኩላተር () {

}

Program main calculator (){

}

46

Platform for constructing and running integrated software-development tools). After

writing, the source code is saved in a single file or, more commonly, in multiple files, with

the number of files depending on such factors as the programming language and the size of

the project. For Jempas It is advisable to use Unicode or utf aware text editor to write the

source code in UNIX/Linux like environment. Therefore, Kate, Gedit and Vi are

recommended.

 Figure 4.2 Structure of Jempas program (Left) and its literal translation(Right)

4.3. Lexical Analysis
Lexical analyzer or scanner is part of a compiler which scans characters in the

source code and identifies them in to tokens. It removes whitespaces separating lexemes in

the source program. The source code is written in Amharic in any utf supported text editor.

To read the source file properly we have to handle wide character. Wide character is

defined in c header file wchar.h.

 To provide main function of a lexer, Jempas’s scanner defined three public

functions, get_prog(), get_token(), and get_lexem(). It reads the content in the input file in

to buffer using get_prog(), and group meaning full character sequence as a lexeme using

get_lexem() and it returns token for each lexeme in the source program. Those functions

declared in lexer.h file externally to make them accessible from any file which has

included lexer.h.

Program main calculator (){
Var int a,b;
Var char c, d;
Var boolean t;
Define add();
Begin
End
Begin
A=7;
B=12;
end
}

47

The setlocale() function have been used throughout the project to assist on the

output statement of a wide character format Amharic text. It is defined under the header

file locale.h. setlocale sets the program’s current local for the category specified in

parameter of setlocal(category, locale). To make a program portable for all locales one can

call setlocale(LC_ALL, ""); that is what this project also preferred to use.

The lexer, to achieve its goal of reading a sequence of character, grouping them in

to a meaning full lexeme and returning a token; it makes use of keytoktab.c file. This file

consists of the definition of the lex2tok (), key2tok () and tok2lex () returning token, token

and lexeme. It is in keytoktab.c the value of all token are defined as a pair of lexeme and

token. For those lexemes which are more than single character long and are not in ASCII

range a constant integer value greater than 256 is assigned in keytoktab.h with the

declaration of lex2tok(), key2tok() and tok2lex().

The keytoktab.c file has a declaration for tab struct as in figure below and based on

this, two tabs are created for keywords and other lexemes. So whenever there is a call to

lex2tok() it looks in lexeme tab and return the associated token and if a call is made for

key2tok() it looks in keywords tab and return the integer associated with that key word but

if the call is to tok2lex() it has to look in both table sequentially.

 Figure 4.3 Data structure used to define the lexeme-token combination . Source: own

 Figure 4.4 Screen capture of a successful compilation. Source: own

typedef struct tab {

wchar_t * text;
int token;
} tab

48

4.4. Syntax analyzer
Syntax as defined by Noam Chomsky (Chomsky, 1957) is the study of the

principles and processes by which sentences are constructed in particular languages.

Syntactic investigation of a given language has as its goal the construction of a grammar

that can be viewed as a device of some sort for producing the sentences of the language

under analysis.

Syntax analyzer or parser is the part where previously identified tokens are grouped

into grammatical phrases that are used by the next phase of the compiler to synthesize the

output. This is the part is where any syntax violation will be identified and reported. And

those violations are identified by looking into the grammar of the language.

In parser, there is a function for each and every grammar rule of the language and a

function to match a terminal. It results in function call if there is a non-terminal or a token

matching is done for terminal with the help of match() function. The match() function

compares the current token with the expected token and if they are the same it gets the next

token by calling the get_token() function defined in the lexer else reports a syntax error

and change the value of status indicator variable, is_parse_ok, to zero.

The parser checks if the program is syntactically correct based on the specified

grammar of the language. It reports if there is any grammar error and there is an error

message based on the error type. Syntax error is when the programmer violates the

grammar of the language, for example missing ‘::’ at the end of statement or if there is

chains of syntactic units that do not conform to the syntax of the source language.

The parser also make use of functions in keytoktab.c to convert token into lexeme

and to get lexeme in wprintf() function. The code listed as figure 4.4 below shows the

partial source code used to parse the grammar rule given here.

<stat_part> = [‘መነሻ’ <stat_list> ‘መጨረሻ’]*

<stat_list> = (<statement>’፡፡’)*

<statement> = <assign_stat> | <input_stat> | <output_stat> | <if_stat> | <for_stat> | <fun_call> | <return_stat>

<assign_stat> = <variable> ‘=’ <expression>

<variable> = <name>

// <assignment> => <variable> = < expression> is parsed here

49

void assign_stat()

{

 int op=undef, x=undef;

 wchar_t lobuf[10];

 if(DEBUG) printf("\n *** In assign_stat");

 wcscpy(lobuf, get_lexeme());

 op=variable();

 match(assign);

 x=expression();

 assignm(lobuf, lbuf, L"", L"");

 if (x!=op){num_error++;

 is_parse_ok=0;

 wprintf(L"\n *** የዓይነት ዕለመመሳሰል ስህተት");

 }

}

// Identify the statement type based on the initial token and call the function for it

void statement()

{

 if(DEBUG) printf("\n *** In statement");

 switch(lookahead){

 case NAME: assign_stat(); break;

 case output: output_stat(); break;

 case input: input_stat(); break;

 case tif: if_stat(); break;

 case tfor: for_stat(); break;

 case call: func_call(); break;

 case treturn: return_stat(); break;

 default: wprintf(L"\n ስህተት-የአረፍተ ነገሩ አይነት አልተገለጠም");

 }

}

50

//<stat_list> => <stat>:: is realized here

void stat_list()

{

 if(DEBUG) printf("\n *** In stat_list");

 statement();

 match(fullstop);

}

// check to see if it is a statment

int is_statment()

{

 if(DEBUG) printf("\n *** In is_statment");

 return(lookahead==tif || lookahead==tfor || lookahead==input || lookahead==output ||

lookahead==NAME || lookahead==call || lookahead==treturn);

}

/* The grammar <stat_part> => begin <stat_list> end is <stat_list> could be empty so call

is_statment to see */

void stat_part()

{

 if(DEBUG) printf("\n *** In stat_part");

 match(begin);

 while(is_statment(lookahead))stat_list();

 match(end);

}

 Figure 4.5 code fragment to parse statement. Source: own.

51

4.5. Semantic analyzer
Semantic analyzer is an implicit part of a compiler with the responsibility of

identifying semantic errors. Semantic errors are those which violate the meaning

specification of the language, like operations conducted on incompatible types, undeclared

variables, double declaration of variable, reference before assignment.

This part uses the operator table to perform its main function, type checking, which

defines the legal operator with their respective return type. Using the operator table Jempas

performs a type checking for arithmetic operators and for relational operator it does not

need the help of the operator table. It checks if the return type is a Boolean or not.

The parser extensively uses the symbol table to see if a variable is declared or if a

name is unique. A variable is declared before its first use in statement and added in to the

symbol table entry. If it is already exist in symbol table or there is extra character(s) after

the closing curl bracket, then the parsing will fail and a proper error message will be given.

4.6. Symbol table
Symbol tables are data structures that are used by compilers to hold information

about source program constructs. The information is put into the symbol table when the

declaration of an identifier is analyzed. A semantic action gets information from the

symbol table when the identifier is subsequently used, for example, as a factor in an

expression.

Both front end and back end of a compiler uses the symbol table. The analysis part

collects the information for symbol table entry which then used by the synthesis part to

generate the target machine code.

Entries in the symbol table contain information about an identifier such as its

character string (or lexeme), its type, its position in storage, and any other relevant

information. Symbol tables typically need to support multiple declarations of the same

identifier within a program. The symbol table in Jempas is design in such a way to

facilitate the storage of the basic information about the source program constructs. There

are public functions which help other part to access the content of the symbol table. And

those functions are declared in symtab.h file which could be included as a user defined

header file for any part which will access the symbol table.

52

The content of the symbol table could be printed from any program which has

included the symtab.h header file properly by calling the p_symtab() function. This will

print the name, role, type, size and address of each entry in row. If a program wants to add

an entry into the symbol table, it should call one of the public functions. The public

functions are; addp_name(wchar_t program_name) to add the name of the program into

the symbol table, role will be set to ፕሮግራም and type to የተገለጠ, addf_name(wchar_t

function_name) to add a function name into the entry of the symbol table, role is set to

ፋንክሽን and type to የተገለጠ, addv_name(wchar_t variable_name) to add a variable name

setting its role and type respectively to ማስቀመጫ and ያልተገለጠ.

Additional functions to set and get type of a variable when the type clause is

realized or if a variable is used in expression and to find name before adding it into the

symbol table to avoid double declaration of a name are available in the form of public

scope. These functions are used in semantic check part for type checking and error

handling. A print out of the symbol table for a test program is given below.

 Figure 4.6 Symbol table content (left) and test program (right) Source:own

53

4.7. Operator table
The operator table is designed to support the type checking function of the

compiler. Type checking is one of the error handling in semantic checking and one of the

main tasks that a compiler should solve. This table is arranged in optab.h and optab.c with

the public like function in optab.h header file.

The optab.c defines a data structure to support the table structure as static int

optab[][Size] where size is defined in macro as four. Implying the table has four entries in

each row, which represent the operator with its argument and the resulting type. A sample

code is given in the figure below.

The operator table has a definition for get_otype(op, arg1, arg2) which returns the

resulting type on realizing an expression, where op is a binary operator, arg1 is the type of

the first argument and arg2 is the type of the second argument. It also has a definition for

p_optab() the call of which will result on the displaying of the current definition of

supported operators and types. These two functions could be imported to any file by

including the header file optab.h.

#define NEVENTS 4

static int optab[][NEVENTS] = {

 '+', integer, integer, integer,

 '-', integer, integer, integer,

 '*', integer, integer, integer,

 '/', integer, integer, integer,

 equal, integer, integer, boolean,

 equal, boolean, boolean, boolean,

 tand, boolean, boolean, boolean,

 tor, boolean, boolean, boolean,

 '$', undef, undef, undef

 };

 Figure 4.7 The operator table data structure

54

4.8. Intermediate code generator
Intermediate code is a code that is generated by the first pass of a compiler. Rather

than translating source code directly from one language to another, compilers first translate

it to this more generic and easier to manipulate language and then spit it at the code

generator, which creates the finished product. The semantic phase of a compiler first

translates parse trees into an intermediate representation (IR), which is independent of the

underlying computer architecture, and then generates machine code from the IRs. This

makes the task of retargeting the compiler to computer architecture easier to handle.

There are three types of intermediate representation; syntax trees, postfix notation

and three-address code (TAC). A syntax tree depicts the natural hierarchical structure of a

source program. Postfix notation is a linearized representation of a syntax tree; it is a list of

the nodes of the in which a node appears immediately after its children. Three-address

code is a sequence of statements of the general form x = y Op z where x, y, and z are

names, constants, or compiler-generated temporaries; op stands for any operator, such as a

fixed- or floating-point arithmetic operator, or a logical operator on Boolean-valued data.

The reason for the term “three-address code” is that each statement usually contains three

addresses, two for the operands and one for the result.

Although there are other intermediate codes specific to the language being

implemented like, P-code for Pascal and Byte code for java, the language independent

TAC is supported by Jempas. TAC is not only language independent it is also easy to

generate, understand and convert it to assembly and machine code.

Jempas produce its final output into two files, code.tac and symtab.stb. These files

could be used in the next phase of a compiler, code generation. Symtab.stb is the symbol

table file and code.tac is the TAC file. The simple command used to compile is gcc –o cg

*.c followed by ./cg <test9.j but a make file is also provided with command to perform

different unit test on each phase and their respective driver.

 Figure 4.8 The content of code.tac for test9.j on ubuntu screen

55

5. Results and Discussion
The result of this thesis is Jempas, a compiler that runs on linux, Unix or ubuntu

and a grammar for the language it compile. Jempas is totally open source and for academic

purpose only, on current version, and any development from academic community,

therefore, is welcomed. The source file is well organized, commented and a module driver

is included to support unit test for each part of the compiler.

The input file for the Jempas could have any extension provided that the editor is

Unicode aware, has support for Amharic input method and the owner would identify it is a

Jempas source file. But it will be consistent if every individual could use .j files.

Given a grammatically and semantically correct source code the output of Jempas is

a three address code in code.tac file, a symbol table in symtab.stb file and a parse

successful notification in the terminal, which makes Jempas useful in teaching the

following courses: Compiler Construction, formal language theory, procedural

programming, and part of computer architecture. Whereas, if the source code is ill formed

syntactically or semantically the output is a message on the type of error, and a notification

of a failed parsing.

Since java might not be a good place to start learning programming for beginners,

procedural programming like c and Pascal comes in to play in teaching communities.

Jempas will play a great role in smoothing the steep learning curve of programming for

most of Ethiopian students in the field of technologies.

 Since incremental development is employed in the development it is easy to make

any kind of development in future. Development in this approach is performed by adding

one functionality at a time and testing if it works. Driver for each module is included in the

source code file. It was really help full to use this approach of development for that you

know at which point your code stop working.

56

6. Conclusion and recommendation
On this thesis it is clearly shown that there is much to do on area of theoretical

computing specifically in relation to Amharic and many of the Unicode only supported

languages. As the theoretical computer science is the building block for current

development, fellow researchers’ origin from Unicode only supported language should

give attention to this area of study. It is a successful start in developing amharic

programing language and implementing its compiler, and that was the objective of this

thesis.

This thesis could be an inspiration for further work in developing Amharic based

compilers and programming languages. One can extend the result of this thesis to make a

commercial compiler and develop a back end of the Jempas which convert the TAC to

machine code or add features to it, like IDE.

It is recommended to use incremental development approach during development

of any software, so that creating test scenario will be relatively easy and you will have bug

free code at any point in time.

Academic institutions in Ethiopia, by current setup, are focused to teach science

using already available tools and methods or do field research focused on existing problem

mostly agriculture related. But it will be more valuable and attract young researchers if the

academic institutions develop tools tailored to the student. When teaching material and

tools are tailored to the student, the student will have a chance to grasp the knowledge as

easy as talking to someone with mother tongue. Furthermore, the student will develop the

creativity, the problem solving and the logical thinking ability, which in turn will allow the

development of new idea, technology and solutions.

Based on the economic, social and political advantages of open source software,

developing economy should cooperate and advocate the open source projects. Localization

will merely take advanced understanding of the open sourced software and little or no

knowledge of programming. Therefore, it is recommended to use open source software and

localize them whenever possible rather than violating local, regional or international copy

right laws.

57

7. References

Abay, A. A. 2004. Compiler construction using flex and bison. Washington: Walla Walla

College

Aho, A.V., Lam, M.S., Sethi, R. & Ullman, J.D. 2007. Compilers: principles, techniques &

tools(2
nd

 ed.). Boston: Addison Wesley

ASCII, ASA X3.4-1963, American Standards Association, June 17, 1963

Chomsky, N. 1959a. On certain formal properties of grammars. Information and

Control 2: 137–67.

Chomsky, N. 1959b. A note on phrase structure grammars. Information and

Control 2: 393–95.

Chomsky, N. (1956). "Three Models for the Description of Language". IRE Transactions

on Information Theory 2 (2): 113–123.

Chomsky, N. (1957). Syntactic Structures. The Hague: Mouton.

Levelt, W.J.M. (2008). An introduction to the theory of formal languages and automata.

Amsterdam: John Benjamins Publishing Company.

Meliyu. "AxumLight Features." AxumLight Features. Meliyu, June 2011. Web. 07 Feb.

2013

Watt, David A. (2004). Programming language design concepts. Chichester: Johan Wiley

& Sons, Ltd.

Vanicek, J., Papik, M., Pergl, R., Vanicek T.(2008). Mathematical foundations of computer

science. Prague: Alfa Publishing.

ISO 7185:1990. Information technology: Programming Languages -- Pascal

ISO/IEC 8859-1:1998. Information technology: 8-bit single-byte coded graphic character

sets -- Part 1: Latin alphabet No. 1

The Linux Information Project (2007) Characters. Available at:

http://www.linfo.org/character.html (Accessed: 11 June 2012).

The Unicode Consortium (2012) Charts. Available at: http://www.unicode.org/chart.html

(Accessed: 11 June 2012).

http://www.linfo.org/character.html
http://www.unicode.org/chart.html

58

8. Appendix

8.1. BNF grammar of Jempas
<program> = ’ፕሮግራም’ ’ዋና’ NAME ’(’ ’)’ ’{’ ‹var_part› ‹fun_part› ‹stat_part›’}’

<var_part> = [’ማስቀመጫ’ (<var_decl>)+]*

<var_decl> =[var_dec›(‘፣’var_decl)*]

<Var_dec>=[‹type› ‹NAME> ‘::’]

<type> = ’ለቁጥር’ | ’ለሀረግ’ | ’ለእውነትሀሰት’ | ’ባዶ’

<fun_part> = [<fun_heading><fun_def>]*

<fun_head> = ‘አዘጋጅ’ <name> ‘(’ <formals> ‘)’ [‘፤’ <type>]’::’

<fun_def> = = ‘መነሻ’ <stat_list>‘መጨረሻ’ ‘::’

<formals> = [<var_decl> (‘፣’ <var_decl>)*]

<stat_part> = [‘መነሻ’ <stat_list> ‘መጨረሻ’]*

<stat_list> = (<statement>’፡፡’)*

<statement> = <assign_stat> | <input_stat> | <output_stat> | <if_stat> | <for_stat> |

<fun_call> | <return_stat>

<assign_stat> = <variable> ‘=’ <expression>

<input_stat> = ‘ተቀበል’ ‘(’<name>‘)’

<output_stat> = ‘ስጥ’ ‘(’ <expression> ‘)’

<if_stat> = ‘ከሆነ’ <expression> <stat_list> [‘ካልሆነ’ <stat_list>]

<for_stat> = ‘ከ’ <expression> ‘እስከ’ <expression> <stat_list>

<func_call> = ‘ጥራ’ <name> ‘(’ [<expression> (‘፣’ <expression>)*] ‘)’

<return_stat> = ‘መልስ’ <expression> | ‘መልስ’

<expression> = <simple_expression> [<RELOP> <simple_expression>]

<simple_expression> = <term> (<ADDOP> <term>)*

<term> = <factor> (<MULOP> <factor>)*

<factor> = ‘(’ <expression> ‘)’ | <variable> | <constant> | <func_call>

59

<variable> = <name>

<constant> = <int_constant> | <boolean_constant> | <string_constant>

<int_constant> = <digit>+

<boolean_constant> = ‘እውነት’ | ’ሀሰት’

<string_constant> = ‘”’ <alph_numer>+ ‘”’

<alph_numer> = <letter> | <digit> | ‘!’ | ‘?’ | ‘.’

<RELOP> = ‘>=’ | ‘<=’ | ‘==’ | ‘=’ | ‘<’ | ‘>’ | ‘<>’

<ADDOP> = ‘+’ | ‘-’ | ‘ወይም’

<MULOP> = ‘*’ | ‘/’ | ‘እና’

<name> = <letter> (<idchar>)*

<idchar> = <letter> | <digit> | ‘_’

<digit> = ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’

<letter> =’ሀ’ | ‘ሁ’ | ‘ ሂ’ | ‘ ሃ’ | ‘ ሄ’ | ‘ ህ’ | ‘ ሆ’ | ‘ ለ’ | ‘ ሉ’ | ‘ ሊ’ | ‘ ላ’ | ‘ ሌ’ | ‘

’ | ‘ ሎ’ | ‘ ሐ’ | ‘ ሑ’ | ‘ ሒ’ | ‘ ሓ’ | ‘ ሔ’ | ‘ ሕ’ | ‘ ሖ’ | ‘ መ’ | ‘ ሙ’ | ‘ ሚ’ | ‘ ማ’ | ‘ ሜ’ | ‘ ም’ | ‘

ሞ’ | ‘ ሠ’ | ‘ ሡ’ | ‘ ሢ’ | ‘ ሣ’ | ‘ ሤ’ | ‘ ሥ’ | ‘ ሦ’ | ‘ ረ’ | ‘ ሩ’ | ‘ ሪ’ | ‘ ራ’ | ‘ ሬ’ | ‘ ር’ | ‘ ሮ’ | ‘ ሰ’ | ‘ ሱ’ |

‘ ሲ’ | ‘ ሳ’ | ‘ ሴ’ | ‘ ስ’ | ‘ ሶ’ | ‘ ሸ’ | ‘ ሹ’ | ‘ ሺ’ | ‘ ሻ’ | ‘ ሼ’ | ‘ ሽ’ | ‘ ሾ’ | ‘ ቀ’ | ‘ ቁ’ | ‘ ቂ’ | ‘ ቃ’ | ‘ ቄ’ | ‘

ቅ’ | ‘ ቆ’ | ‘ በ’ | ‘ ቡ’ | ‘ ቢ’ | ‘ ባ’ | ‘ ቤ’ | ‘ ብ’ | ‘ ቦ’ | ‘ ተ’ | ‘ ቱ’ | ‘ ቲ’ | ‘ ታ’ | ‘ ቴ’ | ‘ት’ | ‘ ቶ’ | ‘ ቸ’ | ‘

ቹ’ | ‘ ቺ’ | ‘ ቻ’ | ‘ ቼ’ | ‘ ች’ | ‘ ቾ’ | ‘ ኀ’ | ‘ ኁ’ | ‘ ኂ’ | ‘ ኃ’ | ‘ ኄ’ | ‘ ኅ’ | ‘ ኆ’ | ‘ ነ’ | ‘ ኑ’ | ‘ ኒ’ | ‘ ና’ | ‘

ኔ’ | ‘ ን’ | ‘ ኖ’ | ‘ ኘ’ | ‘ ኙ’ | ‘ ኚ’ | ‘ ኛ’ | ‘ ኜ’ | ‘ ኝ’ | ‘ ኞ’ | ‘ አ’ | ‘ ኡ’ | ‘ ኢ’ | ‘ ኣ’ | ‘ ኤ’ | ‘ እ’ | ‘ ኦ’ | ‘

ከ’ | ‘ ኩ’ | ‘ ኪ’ | ‘ ካ’ | ‘ ኬ’ | ‘ ክ’ | ‘ ኮ’ | ‘ ኸ’ | ‘ ኹ’ | ‘ ኺ’ | ‘ ኻ’ | ‘ ኼ’ | ‘ ኽ’ | ‘ ኾ’ | ‘ ወ’ | ‘ ዉ’ | ‘ ዊ’

| ‘ ዋ’ | ‘ ዌ’ | ‘ ው’ | ‘ ዎ’ | ‘ ዐ’ | ‘ ዑ’ | ‘ ዒ’ | ‘ ዓ’ | ‘ ዔ’ | ‘ ዕ’ | ‘ ዖ’ | ‘ ዘ’ | ‘ ዙ’ | ‘ ዚ’ | ‘ ዛ’ | ‘ ዜ’ | ‘ ዝ’ |

‘ ዞ’ | ‘ ዠ’ | ‘ ዡ’ | ‘ ዢ’ | ‘ ዣ’ | ‘ ዤ’ | ‘ ዥ’ | ‘ ዦ’ | ‘ የ’ | ‘ ዩ’ | ‘ ዪ’ | ‘ ያ’ | ‘ ዬ’ | ‘ ይ’ | ‘ ዮ’ | ‘ ደ’ | ‘

ዱ’ | ‘ ዲ’ | ‘ ዳ’ | ‘ ዴ’ | ‘ ድ’ | ‘ ዶ’ | ‘ ጀ’ | ‘ ጁ’ | ‘ ጂ’ | ‘ ጃ’ | ‘ ጄ’ | ‘ ጅ’ | ‘ ጆ’ | ‘ ገ’ | ‘ ጉ’ | ‘ ጊ’ | ‘ ጋ’ | ‘

ጌ’ | ‘

’ | ‘ ጎ’ | ‘ ጠ’ | ‘ ጡ’ | ‘ ጢ’ | ‘ ጣ’ | ‘ ጤ’ | ‘ ጥ’ | ‘ ጦ’ | ‘ ጨ’ | ‘ ጩ’ | ‘ ጪ’ | ‘ ጫ’ | ‘ ጬ’ | ‘ ጭ’ | ‘ ጮ’

| ‘ ጰ’ | ‘ ጱ’ | ‘ ጲ’ | ‘ ጳ’ | ‘ ጴ’ | ‘ ጵ’ | ‘ ጶ’ | ‘ ጸ’ | ‘ ጹ’ | ‘ ጺ’ | ‘ ጻ’ | ‘ ጼ’ | ‘ ጽ’ | ‘ ጾ’ | ‘ ፀ’ | ‘ ፁ’ | ‘ ፂ’ |

‘ ፃ’ | ‘ ፄ’ | ‘ ፅ’ | ‘ ፆ’ | ‘ ፈ’ | ‘ ፉ’ | ‘ ፊ’ | ‘ ፋ’ | ‘ ፌ’ | ‘ ፍ’ | ‘ ፎ’ | ‘ ፐ’ | ‘ ፑ’ | ‘ ፒ’ | ‘ ፓ’ | ‘ ፔ’ | ‘ ፕ’ |

‘ ፖ’ | ‘ ቐ’ | ‘ ቑ’ | ‘ ቒ’ | ‘ ቓ’ | ‘ ቔ’ | ‘ ቕ’ | ‘ ቖ’ | ‘ ቨ’ | ‘ ቩ’ | ‘ ቪ’ | ‘ ቫ ’ | ‘ቬ’ | ‘ ቭ’ | ‘ ቮ’

60

8.2 Keywords of the language.
 E1 8D 95 E1 88 AE E1 8C 8D E1 88 AB E1 88 9D ፕሮግራም program

 E1 8B 8B E1 8A 93 ዋና main

 E1 88 9B E1 88 B5 E1 89 80 E1 88 98 E1 8C AB ማስቀመጫ var

 E1 88 88 E1 89 81 E1 8C A5 E1 88 AD ለቁጥር int

 E1 88 88 E1 88 83 E1 88 A8 E1 8C 8D ለሃረግ char

 E1 88 88 E1 8A A5 E1 8B 8D E1 8A 90 E1 89 B5 E1 88 80 E1 88 B0 E1 89 B5

ለእውነትሀሰት boolean

 E1 89 A3 E1 8B B6 ባዶ void

 E1 8A A0 E1 8B 98 E1 8C 8B E1 8C 85 አዘጋጅ define

 E1 88 98 E1 8A 90 E1 88 BB መነሻ begin

 E1 88 98 E1 8C A8 E1 88 A8 E1 88 BB መጨረሻ end

 E1 89 B0 E1 89 80 E1 89 A0 E1 88 8D ተቀበል input

 E1 88 B5 E1 8C A5 ስጥ output

 E1 8A A8 E1 88 86 E1 8A 90 ከሆነ if

 E1 8A AB E1 88 8D E1 88 86 E1 8A 90 ካልሆነ else

 E1 8A A8 ከ from

 E1 8A A5 E1 88 B5 E1 8A A8 እስከ to

 E1 8C A5 E1 88 AB ጥራ call

 E1 8A A5 E1 8B 8D E1 8A 90 E1 89 B5 እውነት true

 E1 88 80 E1 88 B0 E1 89 B5 ሀሰት false

 E1 8B 88 E1 8B AD E1 88 9D ወይም or

 E1 8A A5 E1 8A 93 እና and

 E1 88 98 E1 88 8D E1 88 B5 መልስ return

61

8.3. Utf-8 representation of the characters in the language
Base symbol 1 2 3 4 5 6 7

ሀ E1 88 80 E1 88 81 E1 88 82 E1 88 83 E1 88 84 E1 88 85 E1 88 86

ለ E1 88 88 E1 88 89 E1 88 8a E1 88 8b E1 88 8c E1 88 8d E1 88 8e

ሐ E1 88 90 E1 88 91 E1 88 92 E1 88 93 E1 88 94 E1 88 95 E1 88 96

መ E1 88 98 E1 88 99 E1 88 9a E1 88 9b E1 88 9c E1 88 9d E1 88 9e

ሠ E1 88 a0 E1 88 a1 E1 88 a2 E1 88 a3 E1 88 a4 E1 88 a5 E1 88 a6

ረ E1 88 a8 E1 88 a9 E1 88 aa E1 88 ab E1 88 ac E1 88 ad E1 88 ae

ሰ E1 88 b0 E1 88 b1 E1 88 b2 E1 88 b3 E1 88 b4 E1 88 b5 E1 88 b6

ሸ E1 88 b8 E1 88 b9 E1 88 ba E1 88 bb E1 88 bc E1 88 bd E1 88 be

ቀ E1 89 80 E1 89 81 E1 89 82 E1 89 83 E1 89 84 E1 89 85 E1 89 86

በ E1 89 a0 E1 89 a1 E1 89 a2 E1 89 a3 E1 89 a4 E1 89 a5 E1 89 a6

ተ E1 89 b0 E1 89 b1 E1 89 b2 E1 89 b3 E1 89 b4 E1 89 b5 E1 89 b6

ቸ E1 89 b8 E1 89 b9 E1 89 ba E1 89 bb E1 89 bc E1 89 bd E1 89 be

ኀ E1 8a 80 E1 8a 81 E1 8a 82 E1 8a 83 E1 8a 84 E1 8a 85 E1 8a 86

ነ E1 8a 90 E1 8a 91 E1 8a 92 E1 8a 93 E1 8a 94 E1 8a 95 E1 8a 96

ኘ E1 8a 98 E1 8a 99 E1 8a 9a E1 8a 9b E1 8a 9c E1 8a 9d E1 8a 9e

አ E1 8a a0 E1 8a a1 E1 8a a2 E1 8a a3 E1 8a a4 E1 8a a5 E1 8a a6

ከ E1 8a a8 E1 8a a9 E1 8a aa E1 8a ab E1 8a ac E1 8a ad E1 8a ae

ኸ E1 8a b8 E1 8a b9 E1 8a ba E1 8a bb E1 8a bc E1 8a bd E1 8a be

ወ E1 8b 88 E1 8b 89 E1 8b 8a E1 8b 8b E1 8b 8c E1 8b 8d E1 8b 8e

ዐ E1 8b 90 E1 8b 91 E1 8b 92 E1 8b 93 E1 8b 94 E1 8b 95 E1 8b 96

ዘ E1 8b 98 E1 8b 99 E1 8b 9a E1 8b 9b E1 8b 9c E1 8b 9d E1 8b 9e

ዠ E1 8b a0 E1 8b a1 E1 8b a2 E1 8b a3 E1 8b a4 E1 8b a5 E1 8b a6

የ E1 8b a8 E1 8b a9 E1 8b aa E1 8b ab E1 8b ac E1 8b ad E1 8b ae

ደ E1 8b b0 E1 8b b1 E1 8b b2 E1 8b b3 E1 8b b4 E1 8b b5 E1 8b b6

ጀ E1 8c 80 E1 8c 81 E1 8c 82 E1 8c 83 E1 8c 84 E1 8c 85 E1 8c 86

62

ገ E1 8c 88 E1 8c 89 E1 8c 8a E1 8c 8b E1 8c 8c E1 8c 8d E1 8c 8e

ጠ E1 8c a0 E1 8c a1 E1 8c a2 E1 8c a3 E1 8c a4 E1 8c a5 E1 8c a6

ጨ E1 8c a8 E1 8c a9 E1 8c aa E1 8c ab E1 8c ac E1 8c ad E1 8c ae

ጰ E1 8c b0 E1 8c b1 E1 8c b2 E1 8c b3 E1 8c b4 E1 8c b5 E1 8c b6

ጸ E1 8c b8 E1 8c b9 E1 8c ba E1 8c bb E1 8c bc E1 8c bd E1 8c be

ፀ E1 8d 80 E1 8d 81 E1 8d 82 E1 8d 83 E1 8d 84 E1 8d 85 E1 8d 86

ፈ E1 8d 88 E1 8d 89 E1 8d 8a E1 8d 8b E1 8d 8c E1 8d 8d E1 8d 8e

ፐ E1 8d 90 E1 8d 91 E1 8d 92 E1 8d 93 E1 8d 94 E1 8d 95 E1 8d 96

ቐ E1 89 90 E1 89 91 E1 89 92 E1 89 93 E1 89 94 E1 89 95 E1 89 96

ቨ E1 89 a8 E1 89 a9 E1 89 aa E1 89 ab E1 89 ac E1 89 ad E1 89 ae

