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ABSTRACT
This master thesis focused on automatic segmentation of Multiple Sclerosis (MS) le-
sions on MRI images. We tested the latest methods of segmentation using Deep Neural
Networks and compared the approaches of weight initialization by transfer learning and
self-supervised learning. The automatic segmentation of MS lesions is a very challenging
task, primarily due to the high imbalance of the dataset (brain scans usually contain only
a small amount of damaged tissue). Another challenge is a manual annotation of these
lesions, as two different doctors can mark other parts of the brain as damaged and the
Dice Coefficient of these annotations is approximately 0.86, which further underlines the
complexity of this task. The possibility of simplifying the annotation process by automa-
tization could improve the lesion load determination and might lead to better diagnostic
of each individual patient. Our goal was to propose two techniques that use transfer
learning to pre-train weights to later improve the performance of existing segmentation
models. The theoretical part describes the division of artificial intelligence, machine
learning and deep neural networks and their use in image segmentation. Afterwards,
the work provides a description of Multiple Sclerosis, its types, symptoms, diagnosis and
treatment. The practical part begins with data preprocessing. Firstly, brain scans were
adjusted to the same resolution with the same voxel size. This was needed due to the
usage of three different datasets, in which the scans had been created by devices from
different manufacturers. One dataset also included the skull, therefore it was neces-
sary to remove it by an FSL tool, leaving only the patient’s brain in the scan. The
preprocessed data were 3D scans (FLAIR, T1 and T2 modalities), which were cut into
individual 2D slices and used as an input for the neural network with encoder-decoder
architecture. The whole dataset consisted a total of 6,720 slices with a resolution of
192 x 192 pixels for training (after removing slices where the mask was empty). Loss
function was Combo loss (combination of Dice Loss with modified Cross-Entropy). The
first technique was to use the pre-trained weights from the ImageNet dataset on encoder
in U-Net network, with and without locked encoder weights, respectively, and compare
the results with random weight initialization. In this case, we used only the FLAIR
modality. Transfer learning has proven to increase the metrics from approximately 0.4
to 0.6. The difference between encoder with and without locked weights was about
0.02. The second proposed technique was to use a self-supervised context encoder with
Generative Adversarial Networks (GAN) to pre-train the weights. This network used all
three modalities also with the empty slices (23,040 slices in total). The purpose of GAN
was to recreate the brain image, which was covered by a checkerboard. Weights learned
during this training were later loaded for the encoder to apply to our segmentation
problem. The following experiment did not show any improvement, with a DSC value
of 0.29 and 0.09, with and without a locked encoder, respectively. Such a decrease in
performance might have been caused by the use of weights pre-trained on two distant
problems (segmentation and self-supervised context encoder) or by difficulty of the task
considering the hugely unbalanced dataset.

KEYWORDS
Context Encoder, Data Augmentation, Deep Learning, Generative Adversarial Networks,
Image Segmentation, Medical Images Processing, Multiple Sclerosis, Self-Supervised
Learning, Tensorflow, Transfer Learning.



ABSTRAKT
Hlavným zámerom tejto diplomovej práce bola automatická segmentácia lézií sklerózy
multiplex na snímkoch MRI. V rámci práce boli otestované najnovšie metódy segmen-
tácie s využitím hlbokých neurónových sietí a porovnané prístupy inicializácie váh sietí
pomocou preneseného učenia (transfer learning) a samoriadeného učenia (self-supervised
learning). Samotný problém automatickej segmentácie lézií sklerózy multiplex je veľmi
náročný, a to primárne kvôli vysokej nevyváženosti datasetu (skeny mozgov zvyčajne ob-
sahujú len malé množstvo poškodeného tkaniva). Ďalšou výzvou je manuálna anotácia
týchto lézií, nakoľko dvaja rozdielni doktori môžu označiť iné časti mozgu ako poško-
dené a hodnota Dice Coefficient týchto anotácií je približne 0,86. Možnosť zjednodušenia
procesu anotovania lézií automatizáciou by mohlo zlepšiť výpočet množstva lézií, čo by
mohlo viesť k zlepšeniu diagnostiky individuálnych pacientov. Našim cieľom bolo navrhnu-
tie dvoch techník využívajúcich transfer learning na predtrénovanie váh, ktoré by neskôr
mohli zlepšiť výsledky terajších segmentačných modelov. Teoretická časť opisuje rozdele-
nie umelej inteligencie, strojového učenia a hlbokých neurónových sietí a ich využitie pri
segmentácii obrazu. Následne je popísaná skleróza multiplex, jej typy, symptómy, diag-
nostika a liečba. Praktická časť začína predspracovaním dát. Najprv boli skeny mozgu
upravené na rovnaké rozlíšenie s rovnakou veľkosťou voxelu. Dôvodom tejto úpravy bolo
využitie troch odlišných datasetov, v ktorých boli skeny vytvárané rozličnými prístrojmi
od rôznych výrobcov. Jeden dataset taktiež obsahoval lebku, a tak bolo nutné jej od-
stránenie pomocou nástroju FSL pre ponechanie samotného mozgu pacienta. Využívali
sme 3D skeny (FLAIR, T1 a T2 modality), ktoré boli postupne rozdelené na individuálne
2D rezy a použité na vstup neurónovej siete s enkodér-dekodér architektúrou. Dataset
na trénovanie obsahoval 6720 rezov s rozlíšením 192 x 192 pixelov (po odstránení re-
zov, ktorých maska neobsahovala žiadnu hodnotu). Využitá loss funkcia bola Combo
loss (kombinácia Dice Loss s upravenou Cross-Entropy). Prvá metóda sa zameriavala
na využitie predtrénovaných váh z ImageNet datasetu na enkodér U-Net architektúry so
zamknutými váhami enkodéra, resp. bez zamknutia a následného porovnania s náhodnou
inicializáciou váh. V tomto prípade sme použili len FLAIR modalitu. Transfer learning
dokázalo zvýšiť sledovanú metriku z hodnoty približne 0,4 na 0,6. Rozdiel medzi za-
mknutými a nezamknutými váhami enkodéru sa pohyboval okolo 0,02. Druhá navrhnutá
technika používala self-supervised kontext enkodér s Generative Adversarial Networks
(GAN) na predtrénovanie váh. Táto sieť využívala všetky tri spomenuté modality aj
s prázdnymi rezmi masiek (spolu 23040 obrázkov). Úlohou GAN siete bolo dotvoriť sken
mozgu, ktorý bol prekrytý čiernou maskou v tvare šachovnice. Takto naučené váhy boli
následne načítané do enkodéru na aplikáciu na náš segmentačný problém. Tento experi-
ment nevykazoval lepšie výsledky, s hodnotou DSC 0,29 a 0,09 (nezamknuté a zamknuté
váhy enkodéru). Prudké zníženie metriky mohlo byť spôsobené použitím predtrénovaných
váh na vzdialených problémoch (segmentácia a self-supervised kontext enkodér), ako aj
zložitosť úlohy kvôli nevyváženému datasetu.

KĽÚČOVÉ SLOVÁ
Augmentácia dát, hlboké učenie, konfrontačná generatívna sieť, kontext enkodér, pre-
nesené učenie, samoriadené učenie, segmentácia obrazu, skleróza multiplex, spracovanie
medicínskych obrázkov, Tensorflow.
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ROZŠÍRENÝ ABSTRAKT

Cieľom tejto diplomovej práce bolo navrhnúť metódu využívajúcu hlboké neurónové
siete, ktorá by zlepšila vyhľadávanie lézií sklerózy multiplex v MRI skenoch moz-
gov pacientov. Problém s anotáciou dostatočného množstva dát na trénovanie
neurónovej siete je všeobecne známy. V oblasti medicíny je táto výzva o niečo
zložitejšia, nakoľko je nutné aby túto prácu vykonali skúsení profesionáli, a nie len
široká verejnosť, ako to môže byť napríklad pri anotácií výskytu zvierat na obrázku.
Hlavný problém ale nastáva pri presnosti a časovej náročnosti tohto procesu. Dvaja
rôzni doktori môžu označiť iné časti mozgu ako poškodené, a s odstupom času by
zmenili svoje rozhodnutie. Ako riešenie je možno použiť rôzne techniky hlbokých
neurónových sietí, ktoré sa vedia naučiť segmentovať lézie aj z mála označených dát.
V tejto práci prezentujeme dve metódy využívajúce transfer learning techniku na
možné vylepšenie výkonu súčasných modelov hlbokého učenia.

Teoretická časť diplomovej práce začína popisom umelej inteligencie, jej delenia
a aplikácie na obrazové dáta. Ďalej popisuje segmentáciu obrazu a jednotlivé tech-
niky ktoré ju implementujú, ako Generative Adversarial Networks (GAN), enkodér-
dekodér architektúry alebo Attention-Based modely. Taktiež zahŕňa augmentáciu
dát a rôzne metriky vyskytujúce sa v oblasti dátovej vedy. Pri segmentácii lézií
bolo nutné využiť Dice Similarity Coefficient (DSC), nakoľko počítanie pixelovej
presnosti by pri nevyváženom datasete vykazovalo dobré výsledky aj pri nepres-
ných predikciách (ak lézie obsahujú 1 % celého mozgu a ich predikcia bude 0 %,
pixelová presnosť by v tomto prípade dosiahla 99 %). Koniec teoretickej časti je
venovaný skleróze multiplex – čo toto ochorenia spôsobuje, kedy sa vyskytuje a aké
sú možnosti diagnostiky a liečby.

Na začiatku praktickej časti je ukázané predspracovanie dát. Boli vybrané tri
datasety obsahujúce MRI skeny mozgov a k nim priradených anotovaných masiek
lézií. Využité boli modality FLAIR, T1 a T2. Pri prvotnej analýze sa vyskytli
3 problémy s konzistenciou dát. Jeden z datasetov mal dáta v RAW formáte, čo
bolo nutné prekonvertovať do NifTI formátu na následné načítanie v jazyku Python
pomocou NiBabel balíčku. Ďalšia nutnosť bola zmena rozlíšenia skenov. Nekonzis-
tencie sa ukázali nielen medzi datasetmi, ale aj medzi súbormi v jednom datasete.
Toto bolo spôsobené nasnímaním snímkov pomocou zariadení od iných výrobcov.
Takisto museli mať skeny izotropné voxeli – vo všetkých troch dimenziách rovnakú
veľkosť. Jeden z datasetov obsahoval lebku, a tak bolo nutné jej odstránenie pomo-
cou nástroju FSL, pre ponechanie samotného mozgu pacienta. Tento nástroj vytvoril
binárnu masku, ktorá bola následne aplikovaná na sken, aby sa lebka odstránila. Na
konci predspracovania dát sme mali 3D skeny s dĺžkou jednotlivých strán 192 pixelov.
Tieto skeny boli ďalej načítané do Numpy polí ako 2D rezy po z-ose, ktoré mohli



vstupovať do zvolených modelov neurónových sietí. Nakoniec bolo vybraných 23040
obrázkov (3 modality * 40 pacientov * 192 rezov), z ktorých bolo 87 % použitých
na trénovanie a zvyšné boli využité na testovanie a porovnávanie predikcií. Na dáta
bola taktiež aplikovaná augmentácia, ktorá obsahovala vertikálne otočenie, náhodnú
rotáciu, skreslenie súradnicovej mriežky a kombináciu "shift-scale-rotate".

Prvý zvolený prístup bol transfer learning, ktorý využíval váhy predtrénované
segmentáciou na ImageNet datasete. Tie boli ďalej načítané do enkodéru U-Net ar-
chitektúry a následne dotrénované na našom datasete. V tomto prípade sme použí-
vali iba FLAIR modalitu, keďže trénovanie so všetkými troma modalitami vykazo-
valo horšie výsledky. Taktiež boli niektoré rezy vyfiltrované. Dôvodom bol malý
počet lézií na mozgu pacientov, čo spôsobilo nulové anotácie na maske. Po odstrá-
není týchto rezov ostalo 6720 obrázkov v trénovacej množine. Testovacie snímky os-
tali nevyfiltrované, aby sa simulovalo nasadenie na reálnom prípade. Vyskúšali sme
tri možnosti načítania váh enkodéru – náhodná inicializácia a predtrénované váhy
enkodéru s, resp. bez možnosti trénovania jeho váh. Transfer learning technika dosi-
ahla lepšie výsledky (hotnota DSC približne 0,6) v porovnaní s náhodnou inicializá-
ciou váh (hotnota DSC približne 0,4). Rozdiel medzi zamknutými a nezamknutými
váhami enkodéru sa pohyboval okolo 0,02 (uzamknutie váh sa ukázalo o niečo efek-
tívnejšie).

Ako druhý experiment bola použitá technika self-supervised learning, konkrétne
context encoder pomocou GAN architektúry. Úlohou tohto modelu bolo dokreslenie
skenu mozgu, ktorý bol prekrytý čiernou maskou v tvare šachovnice. Pri predtréno-
vaní sa využíval pôvodný počet obrázkov so všetkými troma modalitami. Po na-
trénovaní sme využili generátor s natrénovanými váhami na segmentáciu lézií. Max-
imálna hodnota DSC na testovacích dátach vystúpila na úroveň 0,29 pri neuzamknu-
tom enkodéri, a 0,09 pri uzamknutom. V porovnaní s prvým experimentom ide
o veľké zníženie sledovanej metriky. Príčinou by mohlo byť viac faktorov. Predtréno-
vanie váh na veľmi odlišnom probléme, ktoré nenávratne nasmeruje nasledujúce
trénovanie, rozličné porovnávané architektúry (U-Net model načítaný knižnicou Seg-
mentation Models a generátor z GAN, ktorý obsahoval batch normalization), alebo
veľmi nevyvážený dataset.



DECLARATION

I declare that I have written the Master’s Thesis titled “Segmentation of Multiple Scle-
rosis Lesions Using Deep Neural Networks” independently, under the guidance of the
advisor and using exclusively the technical references and other sources of information
cited in the thesis and listed in the comprehensive bibliography at the end of the thesis.

As the author I furthermore declare that, with respect to the creation of this Master’s
Thesis, I have not infringed any copyright or violated anyone’s personal and/or ownership
rights. In this context, I am fully aware of the consequences of breaking Regulation S 11
of the Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of
any breach of rights related to intellectual property or introduced within amendments to
relevant Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009
Coll., Section 2, Head VI, Part 4.

Brno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
author’s signature





POĎAKOVANIE

V prvom rade by som veľmi rád poďakoval vedúcemu mojej diplomovej práce, pánovi
inžinierovi Martinovi Kolaříkovi. Bolo mi veľkou oporou mať za sebou človeka, ktorý mi
vždy ochotne pomohol a posúval ma vpred svojimi radami.
Taktiež ďakujem Vysokému učenímu technickému v Brně a predovšetkým ľuďom v or-
ganizačnej štruktúre, za poskytovanie vecnej a finančnej pomoci popri štúdiu, ako aj za
možnosť absolvovať mnohé zahraničné stáže, ktoré ma obohatili nielen v profesionálnej,
ale aj osobnej stránke.
V poslednom rade patrí najväčšia vďaka mojim rodičom. Za celé roky môjho štúdia ma
motivovali a podporovali. Bez nich by bola táto cesta omnoho ťažšia.





Contents

Introduction 17

1 Theoretical Part 19
1.1 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1.1 Introduction to Deep Learning . . . . . . . . . . . . . . . . . . 19
1.1.2 Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . 20

1.1.2.1 U-Net Architecture . . . . . . . . . . . . . . . . . . . 21
1.1.2.2 Generative Adversarial Networks . . . . . . . . . . . 22
1.1.2.3 Transfer Learning . . . . . . . . . . . . . . . . . . . . 23
1.1.2.4 Attention-Based Models . . . . . . . . . . . . . . . . 24

1.1.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.1.3.1 Pixel Accuracy . . . . . . . . . . . . . . . . . . . . . 25
1.1.3.2 Jaccard Index . . . . . . . . . . . . . . . . . . . . . . 25
1.1.3.3 Dice Similarity Coefficient . . . . . . . . . . . . . . . 25
1.1.3.4 Hausdorff Distance . . . . . . . . . . . . . . . . . . . 26

1.1.4 Image Augmentation . . . . . . . . . . . . . . . . . . . . . . . 26
1.2 Multiple Sclerosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.2.1 Pathophysiology . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.2.2 Types of MS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.2.3 Symptoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.2.4 Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.2.5 Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.2.5.1 Medications . . . . . . . . . . . . . . . . . . . . . . . 31
1.2.5.2 Rehabilitation . . . . . . . . . . . . . . . . . . . . . . 31
1.2.5.3 Alternative Medicines . . . . . . . . . . . . . . . . . 32

1.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.3.1 Deep Learning Segmentation of Gadolinium Enhancing Le-

sions in Multiple Sclerosis . . . . . . . . . . . . . . . . . . . . 33
1.3.2 Brain Tumor Segmentation and Survival Prediction Using 3D

Attention U-Net . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.3.3 A Dense U-Net Architecture for Multiple Sclerosis Lesion Seg-

mentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.3.4 Transfusion: Understanding Transfer Learning for Medical

Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.3.5 Image-to-Image Translation with Conditional Adversarial Net-

works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



2 Methodology 37
2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.1 Data Gathering . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 Preparing Data for Models . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.1 Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.2 Data for U-Net Model . . . . . . . . . . . . . . . . . . . . . . 42
2.2.3 Data for GAN Model . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 U-Net Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.1 U-Net Hyperparameters . . . . . . . . . . . . . . . . . . . . . 43

2.4 GAN Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4.1 GAN Hyperparameters . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Generating Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.6 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Results 47
3.1 U-Net Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 GAN Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Results Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Conclusion 53

References 55

List of Symbols, Quantities and Abbreviations 61



List of Figures
1.1 Relationship between AI, ML and DL. . . . . . . . . . . . . . . . . . 19
1.2 Semantic segmentation (left) and instance segmentation (right). . . . 20
1.3 U-Net architecture by Ronnenberger et al. [4] . . . . . . . . . . . . . 21
1.4 Generative Adversarial Network architecture. . . . . . . . . . . . . . . 23
1.5 Effects of Multiple Sclerosis on nerve fibers [29]. . . . . . . . . . . . . 28
1.6 MRI of a patient with Multiple Sclerosis (left), with corresponding

annotated white matter lesions (right). . . . . . . . . . . . . . . . . . 30
1.7 3D spatial and channel attention module with skip connection [39]. . 34
1.8 U-Net architecture with dense blocks [40]. . . . . . . . . . . . . . . . 35
1.9 Usage of Conditional GAN for mapping edges to photo [41]. . . . . . 36
2.1 Difference between MRI sequences on MICCAI 2008 patient. . . . . . 38
2.2 Graphical user interface of Brain Extraction Tool. . . . . . . . . . . . 39
2.3 Difference between results in all sequences after brain extraction. . . . 39
2.4 Patient 1 of MICCAI 2008 dataset before and after brain extraction. . 40
2.5 Process of loading data for input before training. . . . . . . . . . . . 41
2.6 Original brain scan with annotated lesions (left), and corresponding

scan after augmentation (right). . . . . . . . . . . . . . . . . . . . . . 42
2.7 GAN pre-training: a) epoch number 10, b) epoch number 8,000. . . . 44
2.8 Process of mask predicting after the training. . . . . . . . . . . . . . 45
2.9 Comparison of mask prediction results with and without thresholding. 45
3.1 Results of training with U-Net model. . . . . . . . . . . . . . . . . . . 47
3.2 Comparison of lesion prediction for each U-Net training method. . . . 48
3.3 Ground truth lesions (left) and lesions predicted with U-Net transfer

learning with locked encoder (right). . . . . . . . . . . . . . . . . . . 48
3.4 Results of training after pre-training weights with GAN model. . . . . 49
3.5 Comparison of lesion prediction for both GAN training method. . . . 49
3.6 Ground truth lesions (left) and lesions predicted with GAN transfer

learning without locked encoder (right). . . . . . . . . . . . . . . . . . 50





Introduction
A current trend in computer science is to use all the data we can gather to improve
people’s lives. The data are being collected everywhere, e.g., when using social me-
dia, buying groceries with a credit card, or just visiting a doctor for a routine
checkup. However, what do data scientists use these data for? The main reason is
trying to find patterns in them.
Data from the medical environment comes from doctor notes, lab results, and med-
ical images every day. Therefore, it is essential to evaluate them without spending
too much time manually examining every record. That is where data science comes
to help to increase the efficiency and accuracy of diagnostics [1].
A specific example of such usage is shown in this thesis, where data science, more
precisely Deep Neural Networks in computer vision, are used to detect damaged
tissue on brain scans caused by Multiple Sclerosis (MS) better. Computer vision
has many techniques, such as object detection or image reconstruction. The image
segmentation technique will be used for our challenge since it classifies each pixel of
an image and assigns it to the corresponding class. This can be applied to see the
boundaries of a tumor, or in the case of MS, to see a lesion in the brain’s gray or
white matter.
Early approaches for image segmentation include techniques as thresholding,
histogram-based bundling, or k-means clustering [2]. As a result of the growth of
popularity in deep learning, neural networks started a new generation of image seg-
mentation models, which remarkably improved the performance.
Nowadays, finding the lesions in brain scans is a formidable challenge even for skilled
professionals [3]. This work aims to simplify the detection of lesions in brain scans
and make it more precise. Even though we still depend on doctors, who must anno-
tate the lesions, we want to train a powerful network for segmentation by augmenting
the input data. The proposed solution to address this issue is a combination of self-
supervised learning with transfer learning. The first model trained was a U-Net [4]
model with weights pre-trained on the ImageNet dataset, which does not contain
medical images. The second was GAN [5] model pre-trained with self-supervised
learning on brain scans containing MS lesions.

This thesis is structured into three chapters:
The first chapter introduces the theoretical part of the problem. Mainly, it is devoted
to Deep Learning and shows that it is a subset of Machine Learning and Artificial
Intelligence. Furthermore, it describes the Image Segmentation technique and its
usage in more depth and explains the U-Net and GAN architectures used in this
work. In addition, it is explained which metrics are relevant to be used to evaluate
each of the approaches, since primary ones, such as accuracy and precision, are not
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applicable for this type of challenge.
The chapter also contains an introduction to Multiple Sclerosis – its basic descrip-
tion, symptoms, diagnosis, and related works in this domain.

The second chapter contains a description of data gathering – three chosen
datasets that were pre-processed to be later used for training. Then follows an
explanation of how the data were loaded and passed as an input to neural net-
works. Moreover, the chapter demonstrates a practical application of the chosen
algorithms, where each model was trained with different settings of weights. The
final part explains how the predictions were processed in order to show graphical
results.

The last chapter summarizes the results for both techniques used during this
research. Moreover, each of the approaches used is compared by its metrics and
graphical predictions.
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1 Theoretical Part
This chapter starts by explaining the basics of Deep Learning (DL). It continues with
a specific application of DL – Image Segmentation, which is used in the practical
part of this work, together with U-Net architecture of the neural network and other
techniques applicable in image processing. It continues with an introduction of
Multiple Sclerosis and, in the end, summarizes related works in this area.

1.1 Deep Learning

1.1.1 Introduction to Deep Learning

Deep Learning is a subset of Machine Learning (ML), which is an application of
Artificial Intelligence (AI). The relationship of all three fields is shown in Figure 1.1.

Fig. 1.1: Relationship between AI, ML and DL.

AI is supposed to simulate how a human would respond to stimulation based on
human judgements and intentions.
Machine Learning enhances the AI system with the ability to learn and improve
itself in order to obtain better results and predictions. These algorithms search for
patterns in the data by the usage of statistical techniques to later apply actions
on them.
Deep Learning is an implementation of ML, which simulates the human brain with
Artificial Neural Networks (ANN). These networks are made of neurons (or percep-
trons) connected to create a layered structure. Because of more layers organized
in a row behind each other, the name Deep Neural Networks (DNN) is being used.
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These layers can progressively extract more specific features from raw input, and
therefore find patterns which ML would not be able to see.
DNNs uses many techniques, such as clustering, classification, regression or seg-
mentation, which can be used for self-driving cars, weather prediction or medical
diagnosis purposes [6, 7].

1.1.2 Image Segmentation

Detecting a dog in a picture is not a problem for human, and with modern computer
vision techniques, not even for a computer. On the contrary, detecting a lesion in
a 3D scan of a brain is challenging even for doctors. This is supported by the
fact, that two individual professionals can mark different white spots as lesions, and
additionally, the same doctor can annotate the same sample differently after some
period of time [3]. This is when an image segmentation can be used. It uses various
techniques to divide a picture (divide a space in 3D) into smaller parts with in
common. These parts are called segments.

Image segmentation uses two techniques to segment an image: semantic seg-
mentation and its successor instance segmentation. Semantic segmentation groups
pixels into different classes, in the case in Figure 1.2 (left), the background class
is gray, and the class containing all the lesions is yellow. Instance segmentation
also divides pixels into corresponding classes, but each object of the same class is
separated, which is shown by different colors of the same class for every individual
lesion.

Fig. 1.2: Semantic segmentation (left) and instance segmentation (right).

To segment an image, various algorithms and approaches have been developed.
In [2] Chowdhary et al. proposed a division by time usage of those algorithms.
The oldest were developed in the late 1990s and a majority of them are not used
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anymore. These include Multiresolution Method or Geodesic Minimal Path. Next
group are techniques, which are still being used, although their usage is decreas-
ing due to replacement by modern approaches. Thresholding, Edge Detection or
Markov Random Field Approach belong to this group. Lastly, recent segmentation
techniques were developed to deal with inaccuracies in the segmentation of medical
images. They include the usage of Artificial Neural Networks [2].
Among the many techniques for segmentation, four are described in the following
sections. Namely, U-Net, Generative Adversarial Networks (GANs), Transfer Learn-
ing and Attention-Based Models. First three mentioned techniques are used in the
practical part of this work (Chapter 2).

1.1.2.1 U-Net Architecture

One of the specific implementations of image segmentation is the usage of U-Net. It
is a fully convolutional neural network created by Ronnenberger et al. [4] in 2015,
for the purpose of biomedical images segmentation. The network can be seen in
Figure 1.3, where the left part is a contracting path (also called encoder) and on the
right is an expanding path (decoder).

Fig. 1.3: U-Net architecture by Ronnenberger et al. [4]

The encoder path of U-Net consists of multiple convolutional layers, after which
are max pooling layers. The decoder uses up-convolutional layers instead of pooling
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layers, in order to reconstruct the compressed image. These layers and their purpose
are explained below.

Convolutional Layers
Convolutional layers are used to capture a specific context of an image. As an in-
put, they take an image, which is being processed by a kernel, also called a feature
extractor. This kernel is simply a filter smaller than the input image (usually 3 × 3
pixels) [8], which is being applied across the input. This convolution process does
linear operations that decrease the resolution and eventually create a feature map.
The result of convolution operation is then passed through ReLU – a nonlinear ac-
tivation function to map the output to a specific value.
After each downsampling step, the number of feature masks doubles. On the oppo-
site side of U-Net, the up-convolution will halve the number of feature masks.

Many convolutional networks are used for classification tasks, which means they
intend is to find an object in the picture. However, the purpose in the medical
field is often to localize where the object is – label each pixel. The expanding path
enables a precise localization of an object by upsampling the image. It is combined
with the spatial information from the contracting path by skip connections. At the
end of U-Net, a 1 × 1 convolution kernel is used to map a vector of 64 feature masks
to a desired number of classes [9].

Max Pooling Layers
After the convolution layer, the feature masks are created. Those masks are sensitive
to the location of the features. To address this issue, a reduction of dimensionality
by a pooling layer is applied.
The most popular technique is Max Pooling. It takes a patch from an input image,
searches through it to find the maximum value, which is then copied to an output
array of numbers. In practice, filter with 2×2 dimension is often used to go through
whole input image [9].

Despite the relatively older age of this architecture (given that there has been
significant progress in deep learning for computer vision in past years), U-Net is still
being used in current research with various modifications, e.g. 3D U-Net for spatial
data [10] or an attention-aware U-Net [11].

1.1.2.2 Generative Adversarial Networks

Generative Adversarial Networks offer a different approach for segmenting image
data. In [5], authors propose a generative model with an adversarial process. Their
model consists of two neural networks, which are simultaneously trained and com-
pete against each other (Figure 1.4). One network is a generator (G), and the second
is a discriminator (D). Their purpose and functioning are described below. The main
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focus of this technique is to learn how to generate new content, which resembles an
actual image.

Generator
The generator uses a random vector with a fixed length from vector space as an
input seed to create a new image. This vector space, referred to as Latent Space
in Figure 1.4, contains latent variables (variables that cannot be observed directly).
The goal is to set the weights of G in a way that will transform an input vector to
a state that represents a targeted distribution. With the training process, G tries to
maximize the discriminator network’s error by creating more realistic images [12, 13].

Discriminator
The critical process happening in the discriminator is a correct classification, if
the image which it received as an input is an actual image, or if the generator
randomly generated it. Therefore D is trying to minimize its classification error
(detect fake images) and maximizing the loss function. After the training process is
finished, the discriminator is discarded since only the generator is valuable for later
predictions [13].

Fig. 1.4: Generative Adversarial Network architecture.

Both of these networks fine-tune their parameters by backpropagation. A unique
solution is when D cannot decide if the input image is actual or generated, so the
probability for mistake is 50% [5]. That indicates the generator was successfully
trained to create images hardly indistinguishable from the real ones.

1.1.2.3 Transfer Learning

Since training of a neural network can be a very time-consuming process, which in
some cases might not lead to desirable results, Transfer Learning is used as a shortcut
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to address this issue. Instead of creating a model with randomly initialized weights
that are later trained, part of the model can be initialized with already pre-trained
weights on big datasets, such as ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [14]. This dataset is part of an ImageNet project and contains 150,000
photographs. Its function is to detect the object and classify it into one of 1,000
different categories. A pre-trained model like this can be reused as a whole or just
use specific layers that may be applied to a different task (e.g. image segmentation).

There are a few challenges to this approach. One of them is applying the Transfer
Learning technique trained on the ImageNet on medical data due to significant
differences in input images. ImageNet contains pictures of real-world objects (cars,
animals, etc.), yet most of the medical images are scans of patient’s bodies. Another
challenge is the number of classes. Medical tasks like segmentation of MS lesion
need only two classes (damaged/healthy brain tissue); therefore, the model learned
to classify into 1,000 categories is redundant [15].

Raghu et al. [15] explored the application of Transfer Learning in medical imag-
ing and found slightly better results in performance, despite all the above-stated
challenges. The details of this work are explained in section 1.3.4

1.1.2.4 Attention-Based Models

Attention-based models were developed to train the network on suppressing irrele-
vant regions in an input image while highlighting other features essential for a specific
task. It has been largely used for natural language processing tasks as translation
or speech recognition but can be applied to better visual identification of objects in
image processing as well.
Chen et al. [16] used attention for semantic segmentation to improve the estimation
of features with different scale or features at various positions. That means the
network assigns small weights for big objects and big weights for smaller objects in
the picture. By differencing the weight for multi-scale features, the model showed
a slight improvement in its performance.

Another use of Attention-Based Models is shown in [17]. Here the authors inte-
grated attention into the U-Net model architecture described in section 1.1.2.1. The
contracting path stayed unchanged, whilst the expanding path had attention gate
integrated with each upsampling step.
This change resulted in increased sensitivity and prediction accuracy, with minimal
computational overhead. This approach demonstrated improved tissue and organ
identification and localisation for the pancreas segmentation task.
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1.1.3 Metrics

Metrics are used to evaluate the results, which were predicted by the neural net-
work. There is not one suitable metric for all the challenges, due to differences
in unbalanced datasets or individuality of each problem [18]. Below are described
different types of metrics for image segmentation, such as Pixel Accuracy, Jaccard
Index, Dice Similarity Coefficient or Hausdorff Distance.

1.1.3.1 Pixel Accuracy

Pixel Accuracy is an early technique, which calculates how many pixels were classi-
fied correctly [18]. The equation is as follows:

𝑃𝑖𝑥𝑒𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
, (1.1)

where TP, TN, FP, and FN are the true positive, true negative, false positive, and
false negative rates, respectively.
In the case of Multiple Sclerosis and segmentation of lesions in the human brain,
these metrics would not evaluate the results the way we wanted. The reason is the
class imbalance. Given the ratio of brain and lesions which are present in it, if the
neural network classifies all the pixels as "not lesion", the Pixel Accuracy might be
even 95%, since the lesions would cover only 5% of the brain.

1.1.3.2 Jaccard Index

To address the problem of unbalanced classes, metrics as Jaccard Index or Dice
Coefficient were implemented. Jaccard Index, or Intersection-Over-Union (IoU) is
defined by

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 = |𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵|

= |𝐴 ∩ 𝐵|
|𝐴| + |𝐵| − |𝐴 ∩ 𝐵|

, (1.2)

where A is a class that represents the ground truth, and B represents the predicted
class [18, 19].

1.1.3.3 Dice Similarity Coefficient

Dice Similarity Coefficient (DSC) is the most used metric in validating medical
volume segmentation [20]. It is calculated as two times the overlapping area divided
by a total number of pixels in both images. The equation is as follows:

𝐷𝑆𝐶 = 2 * |𝐴 ∩ 𝐵|
|𝐴| + |𝐵|

= 2 * 𝑇𝑃

2 * 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
, (1.3)

where A and B represents the same as in equation 1.2 [19, 20].
DSC and Jaccard Index are positively correlated – when one metrics evaluates one
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prediction better than another, the second metrics will evaluate it likewise. DSC is
always smaller than Jaccard, except at the extrema {0, 1}, where those two metrics
are equal. Since they both measure the same aspects and provide the same system
ranking, it is unnecessary to use both metrics [20].

1.1.3.4 Hausdorff Distance

Hausdorff Distance (HD) is the maximum of all distances from a point in one set to
the closest point in the other set. In other words it represents the maximum nearest
neighbor Euclidean distance between contours. It is defined as

ℎ(𝐴, 𝐵) = max
𝑎∈𝐴

{min
𝑏∈𝐵

{𝑑(𝑎, 𝑏)}}, (1.4)

where A and B represents the sets, a and b are points in these sets, and d(a, b) is
any metric between these points.
The advantage is the possibility of quantifying the similarity of two sets without
establishing one to one correspondence of points in them. That is helpful since, in
many cases, the number of points in two 3D sets is not identical. The drawback is the
calculation of distances between all pairs of voxels (considering 3D space). When
applied to large images, this technique becomes computationally very intensive;
therefore it is restricted to applications for large scale data [21].

1.1.4 Image Augmentation

To obtain satisfactory high metrics, it is necessary to train a model effectively. That
can be achieved not only by a well-chosen model but also by using datasets with
enough training samples. Unfortunately, labeled datasets in the medical field are
often limited – therefore, overfitting might occur during the training process. To
address this issue, various image augmentation techniques are applied to input data.
Augmented samples then artificially enlarge training images.
There are numerous algorithms for this task. Nalepa et al. [22] divide data augmen-
tation, specifically for brain tumour segmentation, into two groups:

1. Transformation of the original data – algorithms such as random rota-
tion and cropping, or applying a pixel-level transformation (Gaussian noise,
gamma correction, etc.). The advantage is a simple implementation, although
a drawback can be the production of correlated images.

2. Generation of artificial data – these methods use Generative Adversarial
Networks described in section 1.1.2.2. They can synthesize realistic examples,
but the major disadvantage is a high time complexity [22].
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Some of the above-mentioned methods can be combined to increase the strength
of augmentation. Authors in [23] developed an algorithm to find an optimal aug-
mentation technique, which can be applied to 3D medical images. Their approach
outperformed the state-of-the-art models that used hand-made and simple augmen-
tation methods.

An augmentation technique proposed by Eaton-Rosen et al. [24] try to address
the problem of an imbalanced dataset for semantic segmentation. This paper in-
troduced a ’mixmatch’ technique, which applies a linear combination on training
images, as well as a linear combination of training labels with ground-truth labels.
Authors were inspired by ’mixup’ technique [25], with a change in combining images
with the highest foreground amounts with the lowest and doing this process ran-
domly. Results of both methods were similar, although an increase in DSC compared
to training without augmentation was achieved.

Augmentation might not be helpful in all cases. If the given diagnose is based on a
specific location of irregularity (e.g. damaged brain matter), rotation or other change
of the input data could discard a piece of important information. For example,
cropping of an image might alter with a label or remove it entirely from the training
image [26].
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1.2 Multiple Sclerosis
Multiple Sclerosis is an autoimmune inflammatory disease. This means that the
immune system attacks components of the body as if they are foreign – in this case,
it attacks the brain or spinal cord of the nervous system [27].
MS mostly affects people between ages 20 to 50 and is three times more common
in women than in men. The researches show, that MS is not contagious or directly
inherited, but there are certain factors in the distribution around the world, that
might help determine what causes the disease. The evidence is growing, that lack of
vitamin D, smoking, and obesity play an important role in MS, and they have been
identified as risk factors [28].

1.2.1 Pathophysiology

As mentioned above, the immune system attacks the layer which surrounds and
protects the nerves called the myelin sheath, a fatty substance that insulates nerve
fibers. The result may be multiple areas of scarring (sclerosis), which can eventually
lead to the blockage of nerve signals. These scars are also called plaques or lesions
and can be visible on brain scans as white spots [27, 29]. Figure 1.2.1 shows, how
the signal traveling between neurons becomes disrupted by MS.

Fig. 1.5: Effects of Multiple Sclerosis on nerve fibers [29].

The cure has not yet been found, but treatments can help speed up the recovery
from symptoms. However, if the formation of lesions continues, MS often leads to
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physical disability. This process can take up to 20-25 years and occurs in more than
30% of patients [27][30].

1.2.2 Types of MS

Even though it is uncertain how the disease will progress, there are four primary
MS disease courses (or types) defined. They concentrate on the level of disability
caused over time.
Clinically Isolated Syndrome (CIS)
CIS is the first stage of neurological symptoms caused by inflammation in the central
nervous system. People who experience CIS might not develop MS, because the
lesions as in Figure 1.6 might not be present. Early treatment has been shown to
delay the onset of MS.
Relapsing-Remitting MS (RRMS)
RRMS is the most common stage. It is characterized by attacks of increasing neuro-
logical symptoms. These attacks, which are also called relapses, happen months or
years apart, and cause an increase level of disability. They are followed by the stage
of partial or complete recovery (remissions). During remissions, patient’s condition
does not worsen. Approximately 85% of people with MS are initially diagnosed with
RRMS.
Primary Progressive MS (PPMS)
PPMS is characterized by worsening of the neurological functions from the begin-
ning, without early relapses or remissions. However, short periods of stability can
occur. It occurs in approximately 15% of patients with MS.
Secondary Progressive MS (SPMS)
SPMS is very similar to RRMS. It occurs, after RRMS transitions into progressive
form. In this stage, the patient’s syndromes will not worsen with each relapse, but
will be progressively worsening over time [35, 33].

1.2.3 Symptoms

Multiple Sclerosis is unpredictable and varies in severity. No two people have exactly
the same symptoms. In some cases, it is a mild illness, but it can lead to perma-
nent disability in others. The reason is the blockage of nerve signals, mentioned in
part 1.2.1, which controls muscle coordination, strength, sensation, and vision [28].
The symptoms can occur on various parts of body.
If symptoms affect movement, MS can cause:

• Numbness or weakness in one or more limbs.
• Electric-shock sensations occurring during neck movement.
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• Tremors or lack of coordination.
Common are problems with vision, such as:

• Partial or complete loss of vision.
• Double vision or blurry vision.

Multiple Sclerosis can also cause:
• Emotional changes and depression.
• Dizziness and bowel problems.
• Problem with sexual functions [28].

These symptoms can lead to psychological and social problems, due to limitations
in everyday life. Although most of the them can be managed effectively with medi-
cations or rehabilitation, after correct diagnosis [30].

1.2.4 Diagnosis

Since the symptoms of the disease can be confused with other illnesses, it is difficult
to determine if the patient has Multiple Sclerosis. There are various strategies for
ruling out other conditions. They include magnetic resonance imaging, spinal fluid
analysis and blood tests.

The process of exclusion of other diagnoses may be quick for some, however, it
can also take longer periods, when repeated testing is necessary [31].
The patient is given contrast agents, which improve the visibility of brain structure
during the scan. In this case Gadolinium, so the lesions in Figure 1.6 are visible.

Fig. 1.6: MRI of a patient with Multiple Sclerosis (left), with corresponding anno-
tated white matter lesions (right).

Diagnostic Criteria for MS
1. Evidence of damage in at least two separate areas of the central nervous system

(brain, spinal cord and optic nerves).
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2. Evidence that the damage occurred at different points in time. A true relapse,
which causes the damage, must last at least 24 hours and must happen at least
30 days after the previous one.

3. Rule out other possible diagnoses [31].
The arrival of MRI has revolutionized the diagnosis and monitoring of MS. MRI
demonstrates a high rate of abnormal findings used for accurate diagnoses. In
a study by Paty et al. [32], MRI findings were abnormal in 124 of 133 patients
with clinically definite MS.

Similar to MRI, computed tomography (CT) scanning has been used in the
diagnosis of MS. CT scans might exclude other neurological diagnoses, but they
have a low positive predictive value in the diagnosis of MS – the false-negative rate
is high.

It can take few years to accurately diagnose Multiple Sclerosis since the symp-
toms can worsen slowly. By regular examinations with brain scans, the medical
experts can determine if the patient has MS, and can find out which type it is.

1.2.5 Treatment

Once the MS is diagnosed, the patient starts with a lifetime treatment. Although
there is no cure currently available, there are multiple options for treatment from
the early stage of the disease. The goal is to manage symptoms, control relapses and
slow down the progression of Multiple Sclerosis. This can be done by medications,
rehabilitation and often patients incorporate alternative medicine as well [34].

1.2.5.1 Medications

A lot of progress has been made in developing new medications to treat MS. Since
the cause is inflammation in the central nervous system, medications called Disease
Modifying Drugs are prescribed to work with the immune system to reduce it, and
hence decrease the progression of symptoms.

The treatment of attacks is realized by corticosteroids, which are given after
the relapse. This decreases the recovery time but does not prevent future relapses.
Many of the patients observed side effects like diabetes, osteoporosis or weight gain.
Due to this, corticosteroids should not be used more than 3 times a year [37, 36].

1.2.5.2 Rehabilitation

Another possible treatment is rehabilitation. It is important to maintain an ac-
tive lifestyle even after being diagnosed with MS. Rehabilitation can address the
symptoms which affect mobility – functioning at home or work, personal care or
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free-time activities. This can prevent complications with the weakening of muscles
and de-conditioning. Physical therapy might include exercises including mobility
aids (crutches, wheelchairs or poles), and training which focuses on the pelvic floor,
to help with bladder issues [37].
For patients with speech and swallowing problems, a speech-language therapist can
help enhance the clarity of communication as well as focus on safe swallowing.

1.2.5.3 Alternative Medicines

Complementary and alternative medicine varies from the usage of supplements and
diets to meditation and Tai Chi. Those methods usually take place in combination
with MS treatments prescribed by professional. Since there is not enough scientific
research on these techniques, is not proven if they can be effective, or in some cases
might harm the patient [34]. The most important factor in treating MS is the
compliance of the patient and regularity of two previously mentioned treatments.
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1.3 Related Works
This part introduces related works for Multiple Sclerosis lesion detection and shows
multiple state-of-the-art techniques used for image segmentation in the medical field.
Each section describes individual work, therefore to increase the readability, the
quote is only at the beginning of a section.

1.3.1 Deep Learning Segmentation of Gadolinium Enhancing Le-
sions in Multiple Sclerosis

In paper [38] Coronado et al. proposed a multi-class three-dimensional convolutional
neural network (CNN) to automate the detection and delineation of gadolinium
(Gd) enhanced lesions. Authors focused on this type of lesions, due to the fact
that not all the lesions which are shown on MRI scan are active. Patients with MS
are given gadolinium contrast agents during the MRI scan to see if the size and
number of lesions increase. This increase correlates with the patient’s occurrence
of relapses. Even though the segmentation of Gd enhancement is considered the
simplest to implement, automation could make the process faster and more effective
by minimizing human error.

The dataset consisted of 1006 scans of patients with relapsing-remitting MS. Pre-
processing included – skull stripping, bias field correction, co-registration, intensity
normalization and anisotropic diffusion filtering. The authors used 3 models with
different inputs, namely U5 (inputs images: proton density-weighted, T2w, pre- and
post-contrast T1w, FLAIR), U2 (inputs images: pre- and post-contrast T1w) and
U1 (input images: post-contrast T1w). Next, the images were used as an input to
3D U-Net, which took image patches of size 128 × 128 × 8 not to exceed compu-
tational memory limits. The scans were divided by ratio 6:2:2 (training, validation
and test set), and the loss function was multi-class weighted Dice. The results can
be seen in Table 1.1 below. It contains the Dice Similarity Coefficient values for
lesions segmentation and brain tissues – grey matter (GM), white matter (WM)
and cerebrospinal fluid (CSF), which this model additionally segmented.

Tab. 1.1: DSC values of 3D U-Net model by Coronado et al.

Model Gd-Enhancing Lesion GM WM CSF
U5 0.77 0.95 0.94 0.98
U2 0.72 0.80 0.82 0.83
U1 0.72 0.78 0.78 0.80

This work showed good results for automated MS lesions segmentation with the
usage of a very large dataset. It also showed that usage of more modalities may be
beneficial, compared to our work where it decreased the overall performance.
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1.3.2 Brain Tumor Segmentation and Survival Prediction Using
3D Attention U-Net

Authors in [39] developed an attention convolutional neural network, which segments
brain tumours. Another part of the work was a prediction of survival rate, but since
it was done by machine learning techniques, it will not be described.
The used architecture is a 3D U-net with integrated channel and spatial attention.
This 3D attention module was integrated with the decoder blocks and can be seen
in Figure 1.7 below.

Fig. 1.7: 3D spatial and channel attention module with skip connection [39].

Firstly, to cluster all spatial feature correlations into 𝐻 × 𝑊 × 1 dimension, a
1 × 1 × 𝐶 convolution was performed on the 3D scan. In parallel with this process,
an average pooling was done and fed to the neural network to obtain the 1 × 1 × 𝐶

channel correlation. Authors also integrated skip connection to make the learning
more generic, and hence improve the segmentation.

The data used for this work are from the BraTS 2019 dataset, which consists of
626 scans – each scan with 4 modalities (T1, post-contrast T1-weighted, T2-weighted
and T2 Fluid Attenuated Inversion Recovery), and voxel size randomly reduced to
128 × 192 × 192 from original 240 × 240 × 155. Data were split into 335, 125 and
166 patients (train, validation and test). Results can be seen in Table 1.2 below.

Tab. 1.2: DSC values of 3D U-Net model with attention by Islam et al.

Model Enhancing Tumor Whole Tumor Tumor Core
3D U-Net 0.68 0.89 0.75

3D Attention U-Net 0.70 0.90 0.79

It is visible that a model with integrated attention achieved slightly higher DSC
in segmenting different parts of tumors, compared to a model without the attention
module, and that U-Net network used in this work might benefit by the attention
module as well.
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1.3.3 A Dense U-Net Architecture for Multiple Sclerosis Lesion
Segmentation

A proposal in [40] contains a modified version of U-Net architecture with dense net.
The formerly mentioned network has dense block added before every max-pooling
and up-sampling layer. This can be seen in Figure 1.8. By the usage of dense
connection, the model strengthens the feature propagation and reduces overfitting.

Fig. 1.8: U-Net architecture with dense blocks [40].

There were 5991 scans in total, divided at a ratio of 8:2 for training and testing
data. Data were taken from MICCAI 2016 dataset, with MPRAGE, FLAIR, T1-w,
T1-w gadolinium-enhanced and T2-w/DP contrast-enhanced modalities. Prepro-
cessing steps included slicing 3D scan into 2D slices, and removing slices without
any lesion in mask, normalization, centering and augmentation as rotate and flip.
The results were promising, with a DSC value of 0.866 with augmentation and 0.803
without it (with the usage of softmax binary cross-entropy loss function). These re-
sults are comparable to the ratings of medical professionals.

1.3.4 Transfusion: Understanding Transfer Learning for Medical
Imaging

A transfer learning technique was used by Raghu et al. [15] to compare its usability
and performance in the medical field, in contrast to the usual usage of this method
on real-world images. Authors focused on evaluating Diabetic Retinopathy, which
is an eye disease classified into five groups of severity. They used three different
architectures: ResNet, Inception-v3 and a custom smaller network consisting of 2D
convolution, normalization and ReLU activation, with various numbers of channels
and layers. The custom network was used to compare the performance between
smaller and bigger architectures, which is not relevant for this work. The key asset
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of the paper for this work was training on a small dataset, with a focus on the dif-
ference between a randomly initialized network and a pre-trained one. This dataset
consisted of 5000 datapoints from Retina dataset, with a resolution of 587 × 587
used for training. The preprocessing included contrast and hue augmentation, as
well as random vertical and horizontal flips.
Results showed that random initialization of the Resnet50 model performed worse by
2% of AUC (Area Under the Curve) compared to a pre-trained model. This proved
a slight benefit of transfer learning usage for classification in medical imaging and
motivated the idea to implement this technique also for the MS lesion segmentation.

1.3.5 Image-to-Image Translation with Conditional Adversarial
Networks

Research in [41] aimed to unify different approaches for image-to-image translation
tasks. Since problems as colorizing images, converting daylight picture to night-
light or reconstructing photos from edge maps can be seen as a similar concept –
translating an input image to output image – authors wanted to create a common
framework to cover all of them. This supports the possibility of using GAN for
recreating medical images, specifically brain scans used in this work.
They obtained it by Conditional GANs (cGANs), which are Generative Adversarial
Networks that do not use only a random vector as an input, but use a vector of
features with a random vector to influence the result (Figure 1.9). This way, both
the generator, as well as the discriminator see the input edge map.

Fig. 1.9: Usage of Conditional GAN for mapping edges to photo [41].

Among many demonstrated techniques, the authors applied cGAN also for se-
mantic segmentation. The focus was to segment objects in cityscape photos. The
dataset contained 2975 training images of size 256 × 256. All metrics (per-pixel
accuracy, per-class accuracy and class IoU) showed worse results with the usage of
cGAN loss compared to L1 loss or their combination. Even though cGAN results
were sharp, it produced many made-up objects, which were not included in the input
picture.
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2 Methodology
The methodology part begins with an explanation of preprocessing the datasets
which were used for later work. It shows work with the FSL software tool, which
removes the patient’s skull and extracts the brain from MRI scans. This chapter
also explains how the data were loaded before passing them as an input and finishes
with creating and training the neural networks with generating predictions.

2.1 Dataset

2.1.1 Data Gathering

MRI scans for this work were taken from three public datasets. Together they
consisted of 55 scans with manually annotated lesions by medical experts and 31
scans without annotations, used for testing. Used datasets:

• MSSEG 2016 Grand Challenge [42],
• IACL 2015 Longitudinal MS Segmentation [43],
• MICCAI 2008 MS Segmentation Challenge [44].

2.1.2 Data Preprocessing

The first stage of preprocessing the datasets was exploratory data analysis (EDA).
The aim of EDA was to obtain parameters of scans. The information for individual
datasets can be seen in Table 2.1 below.

Tab. 2.1: Exploratory data analysis of used datasets.

Dataset Format Scan Resolution [mm] Sequences

MSSEG 2016 NifTI
Siemens 3T Verio: 144 x 512 x 512
Siemens Aera 1.5T: 128 x 224 x 256
Philips Ingenia 3T: 261 x 336 x 336

FLAIR
T1
T2
DP

T1 Gd

IACL 2015 NifTI
T1: 181 x 217 x 181
T2: 181 x 217 x 181
FLAIR: 181 x 217 x 181

T1
T2
PD

FLAIR

MICCAI 2008 RAW FLAIR, T1, T2: 512 x 512 x 512
T1
T2

FLAIR
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There were three challenges with those datasets. Firstly, they were not in the
same format. MICCAI 2008 data were in RAW format, whereas IACL 2015 and
MSSEG 2016 were in NifTI. It was necessary to unify them to NifTI format, which
could be later loaded with the NiBabel package in Python.
Another challenge that occurred was a various resolution of scans. In some cases,
even different resolutions within the same dataset (this was caused by using diver-
gent MRI scanners). The resampling to uniform resolution was made by the NiBabel
package.
It was also important to have isotropic voxels in each scan. These voxels must have
had all three dimensions with identical size. The last challenge was choosing the
proper sequences for later use. Since all three datasets had T1, T2, and FLAIR
sequences available, they were chosen. Those sequences differentiated in the set-
tings of pulse sequences and gradients, which resulted in images with a particular
appearance [45]. Below are the details for each sequence:

• T1 – gadolinium enhanced, fat suppressed,
• T2 – fat suppressed, fluid attenuated, susceptibility sensitive,
• FLAIR – special inversion recovery sequence made to null the signal for cer-

tain tissues [45].

Fig. 2.1: Difference between MRI sequences on MICCAI 2008 patient.

Skull Stripping
After adjusting the datasets to the same file format and resampling to the same
dimensions, MICCAI 2008 scans had to be skull stripped since these scans included
not only the brain part but also the skull. For this procedure, FSL library was used.
This library consists of special tools for the analysis of fMRI, MRI, and DTI brain
image data. It can be operated and automatized through a command line, or the
user can control it by GUI [46].
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A Brain Extraction Tool (BET) helped with skull stripping and getting only the
brain out of the scans. The GUI can be seen in Figure 2.2.

Fig. 2.2: Graphical user interface of Brain Extraction Tool.

The preprocessed image of the MICCAI 2008 scan was chosen as an Input image.
The Fractional intensity threshold had to be manually set for each scan (usually
around the value of 0.7 with a maximal deviation of 0.2) to achieve the required
accuracy in removing the skull. In the dropdown menu, the Robust brain centre
estimation showed the best results since it repeated the process several times.
The last setting was under the advanced options – Create a binary brain mask image
as an output. This mask was then applied to all three sequences.

Because all three sequences were done on the same scan, the position of the brain
remained unchanged. Therefore only one binary mask was needed to be created.
It was essential to choose the best sequence for brain extraction to be applied to.
Figure 2.3 shows the comparison of BET application on each sequence.

Fig. 2.3: Difference between results in all sequences after brain extraction.
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The three colored brains were obtained by applying brain extractions on different
sequences from patient 1 of MICCAI 2008 dataset. The colors were assigned as
follows:

• Red – T2,
• Green – FLAIR,
• Blue – T1.

T2 sequence showed the worst results since the brain was extracted with many
irregularities and included many parts of the skull. T1 and FLAIR sequences were
similar, so the binary mask was chosen among them by individually comparing the
results. The scan before the brain extraction and after can be seen in Figure 2.4.

Fig. 2.4: Patient 1 of MICCAI 2008 dataset before and after brain extraction.

This was the last step of preprocessing and unifying all three datasets. Several
scans out of all 55 with annotated lesions and 31 without annotations were discarded
due to bad quality. The final number of scans was 40 and 15, with annotated masks
and without, respectively.
After this, the data had the same format, isotropic voxel size, identical resolution
and all scans contained only a brain without the skull. They were ready to be used
for training the neural network.

2.2 Preparing Data for Models

After the preprocessing part was finished, the last step that needed to be done was
loading and passing the input data into the neural network. All the scans had been
skullstripped and had the same resolution. They were divided into two separate
groups – train data and test data. The first mentioned group contained scans of
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the brain and corresponding masks of lesions. The second group had only the brain
scans.1

The NifTI files were loaded with NiBabel package. 2D axial cuts were made
along the z-axis of the brain and saved as a list (see Figure 2.5). Each scan was
saved after the previous one. This process was done for both groups (train and test)
and for both files in the train group separately (brain and corresponding mask).
Therefore we had three separate lists. After this step, the lists were converted to
a Numpy array.
Since the pixel values might have varied due to different scanners, the data in arrays
were normalized. This was done by dividing each value of an array by the maximum
value of the array, which resulted in every value being in a range [0, 1].

Fig. 2.5: Process of loading data for input before training.

2.2.1 Generator

The generator was another part of the loading process prior to input of the neural
network. It was incorporated with "on the fly" augmentation, so the modified scans
were not saved but flowed directly to the chosen model. The generator was based on
ImageDataAugmentor [47], which supports the Albumentations [48] Python library.
Augmentation applied on input data (with a probability of occurrence in percentage)
are listed below:

• Vertical Flip (50%),
• Random Rotate 90° (50%),
• Shift Scale Rotate (50%),
• Grid Distortion (20%).

These techniques were randomly applied to the input data with a batch size of 32
slices. It was crucial that the library modified the brain and corresponding mask the

1In fact, even for testing data, we were using scans, which had a corresponding annotated mask,
but the neural network would not see the masks. The reason for it is to show the comparison of
ground truth and predicted lesions in the chapter 3 Results.
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same way, in order to match annotations with damaged brain tissue. In Figure 2.6
can be seen how the brain looks before and after the augmentation.

Fig. 2.6: Original brain scan with annotated lesions (left), and corresponding scan
after augmentation (right).

Even though this might seem as an insignificant change for a human observer,
the network considers it a new patient, which increases the model’s performance and
decreases overfitting. Training with and without augmentation lead to improvement
of Dice Similarity Coefficient from values ≈ 0.3 to ≈ 0.5.

2.2.2 Data for U-Net Model

Due to an unbalanced distribution of MS lesions, multiple brain slices from Figure 2.5
did not contain any values in the mask slices. Training of the U-Net model with
empty masks, as well as with the usage of all three modalities, showed worse results.
To address this issue and narrow the focus of training, only the FLAIR modality
slices containing a nonzero mask were saved to a Numpy array.
In the end, the filtering left 6,720 slices, compared to 23,040 slices of previously
saved data with zero slices (120 patients × 192 slices).

2.2.3 Data for GAN Model

As for the GAN model, training was done on two different data. We did not use
the ImageNet dataset to pre-train weights for transfer learning; instead, we only
used the initial, unfiltered brain scans without corresponding masks with all three
modalities from our prepared datasets.
After the weights of the generator were trained with GAN, the second round of
training was done with the same data as for U-Net, described in section 2.2.2 above.
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2.3 U-Net Training
The first architecture which we used was a 2D U-Net build by Segmentation Mod-
els [49]. It is a library based on Keras and Tensorflow that provides a high-level API
to create models for segmentation tasks. The encoder weights could be either ran-
domly generated before training or loaded as pre-trained on the ImageNet dataset.
We tested the U-Net model with a ResNet-34 backbone, with three different settings
of encoder weights:

• randomly initialized weights,
• pre-trained weights,
• pre-trained weights, which are locked during the training.

2.3.1 U-Net Hyperparameters

Since the U-Net model was already predefined, all the layers and activation functions
were as in Figure 1.3. Other parameters were as follows:

• Optimizer: Adam
• Learning Rate: 2𝑒−5

• Loss Function: Binary Crossentropy
• Metrics: Combo Loss2

• Steps Per Epoch: 128
• Validation Steps: 24
• Batch Size: 32
• Epochs: 300

The results of this testing with predictions are shown in section 3.1.

2.4 GAN Training
As mentioned in 2.2.3, GAN training was divided into two stages for the purpose of
transfer learning. The first stage aimed to pre-train weights of the GAN generator
on the whole dataset. The second stage used a filtered dataset with only FLAIR
modality and loaded pre-trained weights from the first stage to encoder to later
adapt them for MS segmentation challenge.
The pre-training code was based on Pix2Pix [41]. We implemented self-supervised
learning, specifically context encoder, which learned how to reconstruct brain scans
from incomplete input. The input image was combined with a "checkerboard"; there-
fore, it had missing pieces in it (see Figure 2.7) that served as an input seed.

2Loss proposed in [50], which combines Dice Loss and modified Cross-Entropy.
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The training pipeline went as follows:
1. Discriminator updated its weights after seeing a fake (generated) image.
2. Discriminator updated its weights after seeing a real image.
3. Generator updated its weights.

Only the weights of the generator were saved (after 8,000 epochs). At this point,
the generator was able to create almost identical brain scans as ground truth.

Fig. 2.7: GAN pre-training: a) epoch number 10, b) epoch number 8,000.

The second stage of GAN training used the generator, along with pre-trained
weights from the first stage, to perform transfer learning. Results of randomly
generated weights were used from U-Net training as a reference point. Another two
settings were the same as in section 2.3.

2.4.1 GAN Hyperparameters

The generator part had encoder-decoder architecture and was used for both pre-
training and later transfer learning. The only difference was changing the output
activation function in the second stage to sigmoid. Other hyperparameters stayed
as in the first experiment (2.3.1). The results of this testing with predictions are
shown in section 3.2.
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2.5 Generating Predictions
After the training of both models was done, we could create predictions of lesions.
As Figure 2.8 shows, we inserted a brain scan from the testing group created in
section 2.2 into the model. This model loaded the weights which had been trained
on the training dataset and outputted predicted masks.

Fig. 2.8: Process of mask predicting after the training.

The grey border around predicted masks was used only for better visualisation
and was not included in actual predictions. As well as rotation of the output, which
corresponded with input slices (axial cuts along the z-axis).
The predicted masks were further processed with thresholding into two values – 0 (no
lesion detected) or 1 (lesion detected). The thresholding ranges were individually
chosen after each training to obtain the highest DSC on test data. These ranges,
as well as how the results improved, are in Table 3.1. The results could be later
compared with the ground truth since we also had the annotated lesions of these
test scans.

Figure 2.9 indicates the difference among original mask, predicted mask and
predicted mask with thresholding. After thresholding (with a thresholding point
of 0.7), the image had most of the incorrectly annotated lesions removed and pro-
vided a more accurate prediction.

Fig. 2.9: Comparison of mask prediction results with and without thresholding.
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2.6 Implementation Details
This section aims to describe the hardware, as well as the software (language, li-
braries and their versions) used for this work.
All the experiments were conducted on a remote Linux server at the Brno University
of Technology. The machine was equipped with 66 GB of RAM and a GeForce GTX
1080 Ti graphics card, which used CUDA 11.2 to speed up the training process. The
size of the whole training dataset was 1.6 GB, with one brain scan varying from 10 to
40 MB.
The language used for work was Python 3.7.8, with all libraries isolated in one Conda
environment. A brief description of the main ones can be seen below.

Tensorflow 1.14.0 – open-source deep learning library.
Keras 2.3.1 – API which runs on the top of Tensorflow.
Numpy 1.19.2 – library to run mathematical functions on arrays.
NiBabel 3.2.1 – package which provides read and write access to neuroimaging
files (e.g. MRI scans in .nii format).
Numpy 1.19.2 – library to run mathematical functions on arrays.
Segmentation Models 1.0.1 – high level API used to create various models for
segmentation with possibility of loading pre-trained weights on ImageNet dataset.
Albumentations 0.5.2 – computer vision library that augments data before pass-
ing them into the input of network. In our work it was integrated with custom image
data generator ImageDataAugmentor 0.2.8.
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3 Results
This chapter presents the results of the two proposed methods. Firstly for U-Net
architecture and all three settings of encoder weights, and secondly results of the
GAN model.

3.1 U-Net Results
As Figure 3.1 shows, after 300 epochs of training, the Dice Similarity Coefficient
reached the value ≈ 0.5 for all three testings.

Fig. 3.1: Results of training with U-Net model.

Randomly initialized weights had proven to be moderately less effective compared
to weights initialized with transfer learning. In all cases, the difference between
DSC of train data and test data significant, which indicates overfitting in later
epochs. The experiments with transfer learning without locked weights had faster
convergence and performed best out of all three tests – reaching value ≈ 0.53 DSC
on validation data.
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Figure 3.2 displays the difference of predictions for each type of training and
the ground truth. It is visible that more significant lesions were always correctly
predicted, whereas smaller ones were in some cases omitted.

Fig. 3.2: Comparison of lesion prediction for each U-Net training method.

Predictions of the method with the highest Dice Similarity Coefficient (transfer
learning with encoder without locked weights) can be seen in Figure 3.3. Results
on test data, as well as a comparison of this approach with the second experiment
is visible in Table 3.1.

Fig. 3.3: Ground truth lesions (left) and lesions predicted with U-Net transfer learn-
ing with locked encoder (right).
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3.2 GAN Results

The values of DSC after 300 epochs can be seen in Figure 3.4. The graph of training
without initialization of weights is excluded (for reference value see Figure 3.1).
The proposed method has shown a worse outcome by ≈ 0.1 DSC during training,
compared to pre-trained weights with segmentation on the ImageNet dataset.

Fig. 3.4: Results of training after pre-training weights with GAN model.

Locked encoder proved to have faster convergence, although, in later training, the
trend is decreasing. Worse results might have been caused by batch normalization,
which must have been used in the encoder block of GAN architecture during pre-
training of weights. Even though it improves the network stability, for a challenge
with hugely imbalanced data, it might lower the performance.

Fig. 3.5: Comparison of lesion prediction for both GAN training method.

Figure 3.5 indicates that the predicted masks are far from the ground truth. Even
after thresholding, the network could not predict lesions correctly, which resulted in
many false positive pixels.
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How the network performed with regard to brain scan can be seen in Figure 3.6,
where the experiment with best results (encoder with pre-trained weights) was able
to segment lesions at the correct location but missed out on much of damaged tissue.

Fig. 3.6: Ground truth lesions (left) and lesions predicted with GAN transfer learn-
ing without locked encoder (right).

3.3 Results Comparison
The summary of all the results for individual methods is in Table 3.1. It is clear
that pre-training weights with self-supervised learning by the GAN model did not
improve the used metrics, and even after thresholding showed worse values of DSC.

Tab. 3.1: Comparison of Dice Similarity Coefficient values on training data for all
proposed techniques.

Method
Thresholding

Value
Initial
DSC

DSC After
Thresholding

U-Net Random Weights 0.99 0.363 0.402
U-Net Pre-Trained Weights 0.97 0.594 0.614

U-Net Locked Encoder 0.96 0.604 0.632
GAN Pre-Trained Weights 0.99 0.236 0.289

GAN Locked Encoder 0.46 0.09 0.094

There might be at least three possibilities of such a decrease in performance
compared to the first and second approach. One of them is batch normalization,
which was already mentioned in section 3.2.
Another one could be the difference in the implementation of our two architectures.
Since we needed the first experiment to use already pre-trained weights on the
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ImageNet dataset (to avoid the tedious process of pre-training them by ourselves),
the usage of the Segmentation Models library was necessary. On the contrary, the
GAN generator had to use a slightly modified version of U-Net, which might have
caused dissimilarity in the results. Lastly, the problem might have been the difficulty
of the MS segmentation task. The datasets were significantly imbalanced; hence the
neural networks were not able to train properly.
In terms of the time difference, none of the experiments showed significant differences
in training time (approximately 3 hours) and prediction time (1 second for a patient).
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Conclusion
In this work we have tested and compared approaches to Multiple Sclerosis lesion
segmentation with emphasis on transfer learning methods.
The theoretical part of the master thesis explained image segmentation and its vari-
ous techniques, which are currently being used in many fields, including healthcare.
It also described what Multiple Sclerosis is, as well as what causes this disease and
how it can be diagnosed and treated.

The practical part started with exploratory data analysis of three datasets, which
were chosen for this work. All datasets needed to be preprocessed since they had
different resolutions, voxel size and file format. For a MICCAI 2008 dataset, a skull
stripping had to be done to remove the skull from the scan. FSL library with the
Brain Extraction Tool helped with this task. We had to check each scan manually, so
the threshold for brain extraction was set correctly. After this process, all datasets
were connected and loaded as a Numpy array to be further used for training.
The training included two different approaches. Both made use of transfer learning
with pre-trained weights, which were obtained by two techniques. First was a U-Net
architecture with pre-trained weights on the ImageNet dataset. The second experi-
ment acquired weights from a self-supervised context encoder created with the GAN
model. We compared three settings of encoder weights (randomly initialized, loaded
pre-trained weights and loaded pre-trained weights with locked encoder).
The Dice Similarity Coefficient reached a value of approximately 0.63 for testing
data with the best technique of U-Net (pre-trained weights with locked encoder)
and for GAN around 0.29 (pre-trained weights without locked encoder).

The presented results showed a vast difference in the performance of the pro-
posed techniques. Compared to transfer learning with U-Net, the pre-trained GAN
generator reported poor results when used for this type of problem. The cause of
this difference might have been caused in multiple areas. The first one is the usage of
batch normalization, which was needed in the initial training of GAN and needed to
remain in the generator in later training. Another challenge could have been a slight
variance in encoder-decoder architectures (U-Net model was implemented with ro-
bust library Segmentation Models, whereas GAN generator had modified U-Net for
the early pre-training). Lastly, the incompatibility of approaches (segmentation and
self-supervised context encoder) and the imbalanced distribution of lesions could
have caused worsen results. Further research could be made based on these results,
with a possibility of improvement with a better architecture of the GAN generator.

This work showed a chance of performance improvement in MS lesion segmen-
tation with transfer learning. The assignment of work has been fulfilled. The codes
are available at https://github.com/DomSas/master-thesis under MIT license.
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List of Symbols, Quantities and Abbreviations
3D Three-dimensional

AI Artificial Intelligence

ANN Artificial Neural Networks

API Application Programming Interface

BET Brain Extraction Tool

cGANs Conditional Generative Adversarial Networks

CIS Clinically Isolated Syndrome

CNN Convolutional Neural Network

DSC Dice Similarity Coefficient

DL Deep Learning

DNN Deep Neural Networks

DTI Diffusion Tensor Imaging

EDA Exploratory Data Analysis

FLAIR Fluid Attenuated Inversion Recovery

GANs Generative Adversarial Networks

Gd Gadolinium

GUI Graphical User Interface

IoU Intersection-Over-Union

MRI Magnetic Resonance Imaging

fMRI Functional Magnetic Resonance Imaging

FN False Negative

FP False Positive

HD Hausdorff Distance

ML Machine Learning
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MS Multiple Sclerosis

NifTI Neuroimaging Informatics Technology Initiative

PPMS Primary Progressive MS

ReLU Rectified Linear Unit

RRMS Relapsing-Remitting MS

SPMS Secondary Progressive MS

TN True Negative

TP True Positive
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