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Chapter 1 

Introduction 

The understanding of road traffic behavior is a key to effective traffic control, management 
and organization. This task is becoming more and more important with increasing traffic 
demands and the number of registered vehicles. To the end of the year 2014, 6 775 877 
vehicles were registered in the Czech Republic, which is 136 668 more registered vehicles 
than in 2013. The road traffic is essential for today economy and modern life. Unfortunately, 
it has also many negative effects such as traffic accidents or traffic pollution. According 
to Center of Traffic Research in Brno, the losses caused by traffic accidents were about 53 
billions of Czech Crowns in the year 2013 [52]. 

These basic statistics show the importance of accurate information about the current 
traffic, which is available for drivers and for people responsible for road administration. To 
fulfill these demands, it is necessary to be able to measure the traffic flow variables. Traffic 
sensors like inductance loop detectors, radars, or traffic cameras are usually installed on 
one place are provide us with the information about the traffic on a given place. The other 
approach to measure the traffic flow is based on an equipment, which is installed into the 
chosen vehicles. This equipment is moving with a vehicle and provides the information 
about the vehicle position. We call the data obtained using this approach as a floating 
car data. However, with a development in communication and mobile devices, it is even 
not necessary to install a special device into the vehicle. Most of the drivers own a mobile 
phone and for mobile operators it is possible to track the position of these phones. Using 
the information about trajectories of phones, it is possible to get a very comprehensive 
information about the current state of the traffic. 

Measured data can be distributed to the drivers, or can be further processed using 
traffic modelling and traffic prediction algorithms. The origins of traffic modeling and traffic 
flow theory dates backed to 1930s, when Bruce D. Greenshields performed observations of 
the traffic flow and postulated a simple traffic model [17]. Since then, various types of 
traffic models were proposed. These models typically differ in the aggregation level. The 
microscopic models work with each single vehicle and model its behavior. Contrary, the 
macroscopic models work with aggregated data and search for dependencies between the 
traffic variables. 

This thesis is mainly focused on traffic prediction based on machine learning algorithms. 
The machine learning algorithms are part of computer science, evolved from pattern match­
ing and artificial intelligence. These algorithms are able to adapt their behavior according 
to used training data. This thesis primarily deals with supervised learning principle in 
which we have a set of training samples with known values of results. These data are called 
training data set. Using the training data, the machine learning algorithm is capable of 
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finding dependencies between input values and desired outputs. The trained models are 
then evaluated using another data and used for prediction. In many previous works, it 
was shown that the machine learning methods are very successful in short time traffic fore­
casting and travel times estimation. Soft-computing methods such as neural networks and 
support vector regression usually have various meta-parameters which should be properly 
set in order to achieve the best performance. The performance also strongly depends on the 
selected input variables. The reason is that many soft-computing methods can not work 
with missing inputs, or when some inputs can contain unimportant noise, which can deteri­
orate the quality of prediction. Hence automated multiobjective optimization methods are 
highly requested to simultaneously optimize relevant conflicting design objectives (such as 
parameters of soft computing models, selection of input data sensors etc.). 

In the multi-objective optimization, it is possible to optimize two or more objective 
functions simultaneously. In the past, it was shown that the optimization method called 
genetic algorithms are very successful in dealing with multi-objective optimization problems. 
It is mainly because genetic algorithms internally work with a set of candidate solutions. 
The quality of these candidate solutions is evaluated in each iteration of the algorithm and 
the new set of candidate solutions is generated based on the most perspective solutions from 
the last iteration. Finally, because huge volumes of data are processed, the involved soft 
computing methods as well as the meta-optimization methods working over these methods 
have to be carefully implemented in order to minimize the execution time. 

On the basis of the previous brief survey of problems relevant for soft computing meth­
ods used in road traffic prediction, we have identified an open problem which is almost 
untouched neither in the literature nor practice: 

A n efficient approach is missing which will allow the soft computing methods 
to be automatically calibrated and utilized with the most suitable data samples 
in order to maximize the target quality measure. 

The approach proposed to solve this hard problem, which is developed in this thesis, is 
based on multiobjective evolutionary algorithms. In order to demonstrate the effectiveness 
of the proposed approach, it will be evaluated on several case studies and compared with 
relevant methods. In the thesis, we define two main goals: 

Goal 1: To propose a general framework for applying the multiobjective evolu­
tionary optimization paradigm in the context of soft computing methods used 
in the area of traffic prediction and travel times estimation. 

Goal 2: To evaluate the proposed framework using selected case studies. The 
subgoals are defined as follows: 

Goal 2.1: To propose a new method for estimation of missing values in traf­
fic density maps using a multi-objective genetic algorithms and compare this 
method with a conventional quadratic programming approach on real world 
data. 

Many intersections and roads in modern cities are equipped with some kind of mea­
surement device (traffic sensor). Unfortunately, it is very expensive to cover each road and 
each intersection by these devices. In this thesis, we propose a new method to estimate 
the values of traffic intensity on the roads which are not covered by traffic sensors. This 
method is based on a multi-objective genetic algorithms and is capable to provide better es­
timation than traditional quadratic programming approach for some situations. The main 
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advantage of the new method is that the knowledge of a traffic expert can be incorporated 
into the process of estimation. Further, we propose a method which combines the quadratic 
programming approach and multi-objective genetic algorithm. 

Goal 2.2: To propose a new multi-objective method for selection of input data 
(sensors) for support vector regression, in the task of short time traffic fore­
casting. 

The machine learning methods such as support vector regression are quite sensitive to 
the proper selection of input variables. This problem is known as the feature selection. 
The good feature selection is even more important for the traffic prediction, because a huge 
amount of data can be unavailable. This can be caused by sensor malfunction, or by many 
other reasons. And using a sensor, which is very often broken as the input of machine 
learning method can cause that the traffic prediction system is unavailable. On the other 
hand, the selection of a very small subset of input variables (sensors) can lead to a very 
inaccurate prediction. Proposed method is capable to find a proper subset of input variables 
for support vector regression (SVR). It is based on multi-objective genetic algorithm and 
especially useful in the scenarios with many missing data. The multi-objective genetic 
algorithm provides various trade-off solutions between the SVRs requiring many input 
variables (which provides a very precise prediction) and less precise SVRs utilizing only 
several input variables. We also propose a method enabling to dynamically switch among 
these SVRs during the prediction process. The most precise SVRs are then used in the 
situation, when the complete data are available and the less precise SVRs are employed in 
the situations when many of input data streams are missing. 

Goal 2.3: To evaluate the method for multi-objective selection of inputs for 
support vector regression in the task of travel times forecasting. 

The objective is to utilize the method introduced in the previous paragraph for the pre­
diction of travel times. In this case, we will utilize the data from traffic sensors and the data 
from license plate reading systems as potential inputs. The principle of dynamic switching 
among the SVRs remains the same. The goal is to provide more accurate prediction, which 
is available for large portion of time. 

Goal 2.4: To further improve the traffic prediction by simultaneous multi-
objective optimization of input variables and meta-parameters of support vector 
regression. 

The previous approaches have dealt with optimizing only the set of input variables, but 
the meta-parameters of S V R remained unchanged. However, this is far from the optimum, 
because for each S V R the optimal settings of the meta-parameters is different. In order 
to deal with this problem, we will simultaneously optimize the input variables and S V R 
meta-parameters. 

Goal 2.5: To provide an efficient parallel implementation of proposed methods. 

The optimization methods based on genetic algorithms are usually quite computation­
ally expensive. Modern computers are equipped by hardware, which is capable to split 
computational effort among many processor cores. However, this requires a parallel algo­
rithm, which is able to work on many processor cores. The objective is to design, implement 
and evaluate parallel implementations of proposed methods. 
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Chapter 2 

Traffic flow modeling 

2.1 Types of Traffic Data 

The most comprehensive type of traffic data is the trajectory data. This data contains the 
information about trajectories of all vehicles in the area. They are often observed using 
cameras installed in a helicopter or mounted on the top of buildings. Pictures provided 
by the cameras are processed by recognition software. Each vehicle is recognized and the 
information about its trajectory xa(t) is provided. One camera covers only a small area of 
a few hundreds square meters at most. As the process of data collecting is very complex 
many errors can appear. For example, a car can be hidden behind another bigger car. 
The image recognition software can also make some errors. Because of these problems, the 
process of collecting reliable trajectory data is very expensive. 

The other type of traffic data is called the floating car data (FCD). In this case, selected 
vehicles are equipped with a system which is able to send information about the actual po­
sition of the vehicle. This is provided by GPS navigation, mobile phone or other kind of 
devices. Using obtained data, the trajectory of selected vehicles can be reconstructed. The 
selected vehicles can be additionally equipped with other sensors such as radars. These 
sensors provide the information about distance to the leading vehicle, or its speed. We 
call this kind of data as the extended floating car data (xFCD). The main difference be­
tween the F C D and trajectory data is that F C D data contains the information about only 
selected vehicles in the area. The information about the current line is not provided in 
F C D data. The reason is that GPS system is not precise enough to recognize the current 
line. Sometimes F C D are biased with respect to selected probe vehicles, for example, if the 
selected vehicles are public transport or taxies. On the other hand, F C D data can contain 
the information about the state of the vehicle and driver's behavior in the current situation 
[15, 31, 20]. 

The third type of data is called the cross-sectional data. This kind of data is provided 
by stationary sensors such as loop detectors, radars, cameras or infrared sensors placed on 
a certain location of the road. Provided information depends on the type of sensor. These 
sensors are transmitting either single vehicle data or data aggregated into time intervals 
[27]. 
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2.2 Microscopic traffic variables 

The microscopic traffic data provides the most detaiied information about the state of the 
traffic because they contain the information about each singie vehicie. These data are often 
connected with some place of measurement on which the traffic sensor is located, or the 
place is interesting from the traffic analysis point of view. The basic information, which 
practically each measurement technology is able to detect is time i° in which the front of 
vehicle a passes the given place and time , in which the rear end passes the given place. 

Using this basic microscopic data, it is possible to calculate other microscopic quantities, 
which are often called the secondary quantities. The length of vehicle la can be calculated 
as a time difference between the time when the front and tale of the vehicle passes the 
given place multiplied by the vehicle speed. Vehicle type is often detected by means of the 
length of vehicle. Time headway is a time distance between the front bumpers of successive 
vehicles. The distance headway is a distance between front bumpers of successive vehicles. 
Finally, the distance gap is the length between rear and front bumpers of neighboring 
vehicles. [27] 

2.3 Macroscopic traffic variables 

Microscopic data are often aggregated to time intervals between 20 seconds to 5 minutes, 
obtained data are the macroscopic data. The aggregation allows for the disc space and 
processing time reduction. 

The traffic flow Q(x,t) is the number of vehicles passing the current place x within a time 
interval A t . The occupancy 0(x, t) is a dimensionless variable representing the fraction of 
time interval during which the given place is occupied by vehicle. The arithmetic mean 
V(x, t) speed is a mean speed of vehicles passing the given place. The values of traffic flow, 
occupancy and arithmetic mean speed can be obtained by aggregating variables directly 
measured by stationary traffic detectors. However, there also exist variables which are 
measured for the whole road segment. One of the most important ones is traffic density p. 
The traffic density is a spatial average of the number of vehicles on a given road segment, 
where speed V is a spatial average over the whole road segment. [27] 

2.4 Travel times 

Travel time T\I is a time a vehicle needs to pass a road section [x\, x?\. The value of travel 
time depends on the start and end position (x\,X2) and time t. Another useful variable 
for traffic-flow optimization and congestion analyses is called total travel time Ttot- It is a 
cumulative time spent by vehicles in the spatiotemporal region [£i ,£2] x [̂ 1,̂ 2]- [27] 

2.5 Traffic sensors 

Traffic detectors represent the traditional way of collecting traffic data [26, 29, 43]. There 
are two basic groups of traffic sensors: intrusive sensors and non-intrusive sensors. Intrusive 
sensors require the modification of the road surface and thus, in general, the installation 
of these sensors is not trivial. The non-intrusive sensors are installed somewhere near 
the road and don't require the modification of road surface. The sensors also differ in 
the utilized technology, quality of provided data and reliability. Depending on technology, 
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these properties are affected by current weather or day time. The most utiiized types of 
sensors are inductive loop detector, piezoelectric detector, magnetometer detector, radar 
and camera. 

2.6 Soft-computing methods in traffic now forecasting 

In this chapter we will describe methods, which utilize neural networks or support vector 
regression to predict the future traffic state. The section is divided into two parts. In the 
first part, methods for forecasting of the basic traffic flow variables are described. The 
second part contains a description of methods for travel time estimation. 

2.6.1 Traffic flow forecasting 

Many studies about neural networks and traffic forecasting were proposed in recent two 
decades. We will deal with those that are most connected to the topic of this thesis. One of 
the first studise published about the traffic flow forecasting by neural networks was written 
by Brian Smith in 1994. In his study, he predicted the value of volume in next 15 minutes 
by backpropagation neural network. The inputs of neural network were the current volume, 
volume measured 15 minutes ago, historical volume and binary variable, which tells whether 
the pavement is wet. The results have shown, that the neural network outperforms the 
historical average and A R I M A model during the peak periods [44]. Another study written 
in 1997 compares time series methods, such as A R I M A and A T H E N A with neural networks. 
The comparison was done on data from motorway near Beaune in France. However, the 
results of this study have shown, that traditional time series methods outperforms neural 
networks [28]. 

To successfully use neural networks, it is necessary to properly set the structure and 
various meta-parameters of the network. The current trend is to perform these tasks 
automatically. For example, genetic algorithms appear to perform well in this task. The 
evolutionary calibration of the neural network was tested by Vlahogianni et. al . . They 
proposed a method which can simultaneously optimize network dimension and learning 
parameters such as the learning rate or step size [53]. 

The first attempt to predict traffic flow using S V R appears in 2002. The motivation 
for S V R was its good generalization ability for a limited number of training samples, rapid 
convergence and capability to avoid local optima during the learning process. The authors 
focus on prediction of traffic volume. The next value is predicted from a few previously 
measured values. The method was tested using data from one intersection in Xian city, 
but the authors do not provide any comparison with other methods [12]. Another method 
for short term volume prediction is based on Online-SVR, which is a S V R modification 
capable of learning continuously during the preduction phase [33]. This Online-SVR was 
tested to predict the traffic volume in typical and atypical traffic conditions. Atypical traffic 
conditions are holiday traffic and the situation after the traffic collision. The authors com­
pared the results of this method with other methods such as Gaussian maximum likelihood 
(GML) , Holt exponential smoothing and neural networks. The results have shown that the 
O L - S V R has the second best prediction results after G M L under typical traffic conditions 
and the best prediction results under the atypical traffic conditions [5]. 

Another approach is a combination of S V R with the chaotic simulated annealing op­
timization. In this approach, the S V R is utilized to perform the prediction, while simu­
lated annealing optimizes the S V R meta-parameters. The prediction results have shown 
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that this combined method outperforms seasonal autoregressive integrated moving average 
(SARIMA), Holt-Winters model and bacpropagation neural network [19]. 

S V R was also combined with a chaotic cloud particle swarm optimization. Similarly 
to the previous approach, the S V R is utilized to perform the prediction and the chaotic 
cloud particle swarm optimization optimizes the S V R meta-parameters. The method was 
evaluated using the traffic flow data from Dalian city [30]. 

2.6.2 Travel times forecasting 

The neural networks appear to perform well in the task of travel time estimation. For 
example, Laurence Rilett proposed a method for forecasting freeway link travel time by 
multi-layer feed forward neural networks with the back-propagation learning algorithm. He 
considered four possible configurations of neural network inputs. In the first configuration, 
only the previously measured travel times on the road segment are used. In other three 
configurations, various subsets of neighbouring road segments were added among the inputs. 
The results for prediction 1 or 2 time steps ahead were best for the network, which used only 
the values measured on the given road segment. However, in longer prediction horizons, 
the neural networks with inputs from neighbouring sections performed better [37]. 

Another study utilized a different kind of neural networks called counter propagation 
network. The authors compared this neural network with traditional back-propagation and 
reported that the counter propagation neural network is one order of magnitude faster than 
learning of the backpropagation network and provides the results of the same quality [10]. 

S V R was used to predict travel times from the current and a few previously measured 
values. The method was evaluated by publicly available highway data from Intelligent 
Transportation Web Service Project [59, 60]. The authors compared S V R based method 
with other two methods. The first of them estimates the travel time from the speed at the 
enters of the road sections. The second method predicts the future travel time as the mean 
value of travel time at the same time of day and the same day in the week. The results 
showed, that S V R based method outperforms the above described methods [57]. 

2.7 Open problems 

In this chapter we try to identify the open problems in the area of short term forecasting. 
A comprehensive summary of the open problems was provided in the article „ Short-term 
traffic forecasting: Where we are and where we're going" which was written by Eleneni et 
al [54]. We will focus on those problems that correspond to the topic of this thesis. 

Open problem 1: Arterial and network traffic predictions 

Most short-term traffic forecasting algorithms were built to predict the freeway traffic flow. 
It is because the traffic prediction for city arterials is a much more complex problem. It is 
necessary to deal with new problems, such as signalization and traffic lights. The complexity 
of the problem also arises with the number of intersections and complexity of road network 
in which many roads may not be covered by measurement devices. 

The data driven approaches, such as machine learning algorithms can succeed in this 
complex environment, where other conventional methods usually fail [38, 46, 13]. 

The methods proposed in this thesis are mainly designed to work in complex 
traffic networks. We used data from city arterials to evaluate the prediction 
quality of our methods. 
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Open problem 2: Short-term predictions: from volume to travel time 

Most studies dealing with short term traffic forecasting focus on prediction of traffic vari­
ables such as volume and occupancy. It is mainly due to the traditional measurement devices 
such as radars and loop detectors that are able to measure these variables. However, in 
recent years, many devices capable to measure the travel times were developed. 

As a part of this thesis, we proposed a new method to predict travel times. 
This method is able to combine the inputs from traffic sensors and modern 
license plate reading systems. 

Open problem 3: Combining of the models 

The quality of prediction is usually determined using an error metric such as the root mean 
squared error (RMSE) or mean absolute error. However, such a comparison is not always 
fair [25]. It is also necessary to consider other aspects, such as time complexity, adaptability, 
robustness and requested expertise and skills. 

Because it is often hard to decide which model is the best one, it can be very useful to 
develop methods and heuristics which are capable of combining the results. For example, 
the approach which combines the backpropagation and R B F neural networks appears to 
outperform singular predictors on the task of freeway volume production. The Bayes rule 
was utilized to combine the results of two different neural networks in this approach [62]. 
Another method uses the neural network to combine the prediction results provided by three 
different models. These models are moving average, exponential smoothing and A R I M A 
[48]. The fuzzy logic also appears to work well in combining the model results [45]. 

In our approach, we combine multi-objective optimization methods with 
machine learning algorithms. These methods internally create different models, 
which are dynamically switched according to the currently available data. 

Open problem 4: Employng the full potential of artificial intelligence 

In the recent years, algorithms of modern artificial intelligence (AI) are becoming more 
widely used in the area of traffic systems. At the beginning the AI models were mainly used 
in the area of data analysis and traffic forecasting. However, it is possible to use them in 
many other areas such as modeling of driver behavior and employ them in decision making 
in modern ATIS and A T M S systems [35]. 

There is also a sceptical view, caused mainly by three reasons. Many results produced 
by artificial intelligence such predictors based on neural networks can not be interpreted 
by human and can be considered as a kind of black box. The second reason is that these 
methods do not guarantee finding an optimal solution. Moreover, many of them do not 
guarantee finding even a feasible solution. This problem is more visible for evolutionary 
optimization techniques. The third reason is that the AI methods often have various meta-
parameters which must be set properly in order to obtain sufficient results. However, the 
setting of these parameters is often not trivial and requires a lot of expert knowledge. [6]. 

Methods designed in this thesis can calibrate their meta-parameters using 
multi-objective genetic algorithms or self-adaptation. 
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Chapter 3 

Soft-comupting methods 

Soft-computing methods are capable of dealing with uncertainty and problems showing high 
complexity. These kinds of problems often appear in the area of image processing, signal 
processing, multi-objective optimization and many others. In this thesis, we mainly utilize 
two types of soft-computing methods. The first type is machine learning based on neural 
networks and support vector regression and the second type is a genetic algorithm. 

3.1 Machine learning algorithms 

Machine learning algorithms are capable of adapting their behavior according to the input 
data. There exist three basic types of machine learning algorithms. In the case of supervised 
learning, the machine learning model is trained using these samples. Then the model can be 
used to provide answers for new samples. The second type of machine learning algorithms 
uses unsupervised learning technique. The input data doesn't contain the correct answers 
and the goal of the learning process is to find similarities in data and select the correct 
categories for samples. Finally, in reinforcement learning, the algorithm gets to know when 
the answer is wrong, but does not get the correct answer. In this thesis, we will focus 
mainly on the supervised learning techniques. 

In the supervised learning scenario, we have given a set of pairs 
1.. . iV}. The goal of the learning is to find mathematical dependency between the input 
x and the output y in such manner that if a new value x* is given, the calculated value y* 
is shows as small error as possible. The new tuple (x*,y*) may not be in the set D, but 
has to be generated by the same process as the members of D. In the case the value of y 
belongs to one of a few discrete values, the process is called classification. In the case the 
value of y is continuous, the process is called regression. 

The supervised learning process has three phases. In the phase one, the first part Dtrain 
is used to train the machine learning model. Then it is necessary to validate the quality 
of the trained model using set Dtest (phase 2). If the model provides results of sufficient 
quality then it is ready for the use (phase 3) [34, 50]. 

3.2 Support vector machine and support vector regression 

The support vector machine (SVM) is a very popular soft computing method for solving 
classification tasks [3]. It was successfully used in the area of computer vision [22, 41], 
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handwriting recognition [61], bioinformatics [40], economy [23] and many others. The ba­
sic variant of S V M is capable of solving only linearly separable problems. The algorithm 
becomes more powerful when the so-called kernels are introduced. Kernels are special 
functions capable of transforming input data into a more dimensional space. This trans­
formation allows S V M to successfully solve non-linear problems, because in these more 
dimensional spaces data can often be separated. 

The tasks discussed in this thesis are mostly regression tasks and S V M algorithm is 
not able to solve them. Fortunately there exists a modification of S V M : support vector 
regression (SVR) which is able to solve regression tasks. S V R appears to be very useful in 
forecasting of time-series such as [49, 4, 56]. 

However, S V M and S V R have various meta-parameters, such as the kernel function, 
regularisation parameter and other parameters related to currently used kernel. It is nec­
essary to set up these meta-parameters properly in order to obtain the best classification 
or regression quality [14]. In the past, several conventional optimization techniques and 
guidelines were proposed to solve this problem [32]. Some of these approaches are based on 
the principles of evolutionary algorithms [21, 55, 56]. 

For example, the H G A - S V R is a method for kernel function selection and parameter 
optimization in SVR. This method is based on genetic algorithm which simultaneously 
optimizes the type of kernel and meta-parameters of SVR. In case of H G A - S V R , each 
chromosome consists of the integer part and real valued part. The integer part has one 
value, which defines the kernel type: linear kernel (0), polynomial kernel (1) or R B F kernel 
(2). The real valued part of chromosome specifies the values of S V R meta-parameters. 

This method was originally designed to predict maximal daily electric load. It was 
tested on the daily electricity loading problem announced at 'World Competition within 
the E U N I T E network'. The E U N I T E is abbreviation for 'European Network on Intelligent 
Technologies for Smart Adaptive Systems'. H G A - S V R method provided better generaliza­
tion capability and a lower prediction error than other approaches based on neural networks 
or traditional S V R [56]. 

3.3 Multi-objective optimization 

In the area of single objective optimization, the quality of a candidate solution is defined 
using one objective function / . The goal of the single objective optimization is to find 
a solution with the minimal or maximal value of a given function / . However, many real 
world optimization problems can't be described using only one objective function and it is 
necessary to use more objective functions / i , . . . , fm, each of which has to be minimized or 
maximized. In this case, we speak about a multi-objective optimization. In many cases, 
objective functions are conflicting, i.e. improving one objective means worsening the other 
one. More formally, the multiobjective optimization problem (MOOP) is defined as follows 
[7]: 

minimize: fm(x), m = 1, 2 , M 

subject to: x[L^ < Xi < x[U\ m = 1 , 2 , M 

9j(x)>0, j = 1,2,..., J (3.1) 
hk(x) = 0, fc = 1,2, 
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A candidate solution x is a vector of n decision variables x = (xi,... ,xn). Functions 
. . , / m represent objective functions. Each component Xi of vector x must be within 

the range x[L^ and x[U^. We call values x[L^ and x[U^ as variable bounds. The functions gi 
and hi are called constraint functions, where gj define inequality constraints and hk define 
equality constraints. Solution x is feasible if it satisfies all constraints and is within defined 
variable bounds. Otherwise, x is an infeasible solution [7]. 

One of the most important difficulties in the multiobjective optimization is how to 
compare the quality of candidate solutions. In the single objective optimization domain, 
the situation is quite straightforward. The solution a is better than solution b if the value 
of /(a) is better than f(b). We will denote the situation in which the value of function / 
for solution a is better than for b as f{a) <l f(b). In the case of minimization of function 
/ , the statement f{a) <l f(b) would mean that /(a) < f(b). In the case of maximization, 
the same statement would mean that f{a) > f(b). Moreover, we will denote the situation 
in which the value of function / for solution a is not worse than for b as f{a) fif(b). This 
means that /(a) < f(b) in case of minimization and /(a) > f(b) in case of maximization. 

However, in the multiobjective optimization the situation is much more complicated. 
The main problem is that we have a vector with two or more values of objective functions 
for each candidate solution. Because of it, the Pareto dominance relation was established 
[7]-

Definition 1 A solution a is said to dominate the other solution b (a <b), if both following 
conditions are met: 

1. The solution a is not worse than b in all objectives (fi{a) fifi(b), Vi = 1,... , M). 

2. The solution a is better than b in at least one objective (3i G { 1 , . . . , M } : fi(a)<fi(b)). 

Figure 3.1 shows an example of Pareto dominated and non-dominated solutions. The 
depicted scenario expects minimization of two objective functions f\ and fi- We can say 
that solution A dominates C. The first condition is satisfied because fi(A) < fi(C) and 
fi(A) = /2(C)- The second condition is satisfied, because fi(A) < / i ( C ) . The most 
interesting subset of solutions consists of solutions which are not dominated by any other 
solution in the set (filled circles). We call these solutions non-dominated solutions. 

3.4 Multi-objective genetic algorithms 

Genetic algorithm (GA) is a very popular method for solving optimization problems. The 
first version of G A was proposed by John Holland in seventies. G A is inspired by evo­
lutionary and genetic processes of nature. G A is an iterative algorithm, which internally 
works with a set of candidate solutions. A new set of new candidate solutions replaces 
the previous set in each iteration. The new set of candidate solutions is produced using 
selection, crossover and mutation operators. In the area of G A , we call the iteration as 
generation and the set of candidate solutions as population. The items in the population 
are called individuals or chromosomes. 

G A works as follows.At the beginning the initial population is created. Fitness values 
are calculated for each individual in the population. Then the termination criterion is 
evaluated. If the termination condition is satisfied, the algorithm ends. Otherwise, the 
selection operator is performed. This operator selects perspective candidate solutions for 
the crossover and mutations. The crossover operator creates a new solution by using parts 
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Figure 3.1: Examples of dominated and non-dominated solutions. 

of two or more previous solutions. The mutation operator creates a new chromosome by a 
small modification of the parent chromosome [42]. 

Unfortunately, the original genetic algorithm can solve only single objective problems. 
To overcome this disadvantage, many modifications of G A which are capable to solve the 
multi-objective problems were proposed. For example, the fast and elitist multi-objective 
genetic algorithm NSGAII splits the entire population into many non-dominated layers in 
each generation [8]. The solutions into the new generation are selected according to which 
non-dominated layer they belong to. A new approach for non-dominated sorting is utilized 
in the algorithm. This approach has the complexity 0(MN2) instead of 0 ( M J V 3 ) , where M 
represents the number of objectives and iV represents the population size. The algorithm 
also utilizes a mechanism for preserving of the diverse set of candidate solutions. This 
mechanism doesn't need any sharing parameter like previous version of N S G A . One of the 
important advantages of the NSGAII is that it can easily deal with constraint optimization 
problems. 

In multi-objective optimization different solutions often appear, which have the same 
values of objective functions. In prediction tasks these solutions can, for example, represent 
models with the same quality, but with different input sensors. Obtaining many solutions 
of this type can be very useful, because we can use the proper solution according to the 
situation for a particular set of sensors and without any loss of quality. 

To find multi-modal solutions, it is necessary to use modified versions of multi-objective 
genetic algorithms. In the past, a modified version of NSGAII for solving of multi-modal 
problems was proposed [9]. The difference between the standard NSGAII and modified 
version is in the accommodation of solutions into the new population. 
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Chapter 4 

Traffic data 

The traffic data are essential for understanding of the current traffic situation and traffic 
behavior. These data are obtained by methods described in Chapter 2 and sent by protocols 
such as Datex II or Alert-C into the traffic data centers, where they are stored, processed 
and further analyzed. In this chapter, we will discuss the data, which will be used for 
verification of our new methods for traffic prediction. Two groups of data are considered. 
The first group contains the data from the city of Seattle and we will use them to verify 
our methods for data imputation, traffic forecasting and travel time prediction. The sec­
ond group contains the data from Prague and we will use them to verify our method for 
estimation of missing values in traffic density maps. 

4.1 Research Data Exchange Project 

The Research Data Exchange [1] is a project developed to share traffic data to researchers, 
application developers, and others. Provided data are well-documented and freely available 
to the public. The data are divided into many datasets according to the place of measure­
ments or data source. Many different sources of measurements are available, for example 
traffic detectors or probe vehicles. 

In particular, Seattle Sensys Dataset containing the data from sensors in the downtown 
of Seattle and Arterial Travel Time dataset containing travel time data will be discussed in 
this thesis. 

The Seattle Sensys Data was collected from traffic sensors. This data contains infor­
mation about the traffic flow, occupancy and mean speed on selected intersections (see the 
map in Figure 4.1). In this case, sensors are placed at 23 intersections in the city. The data 
was measured from May 1 to October 31 and aggregated to 1 minute intervals. 

Observation 4.1: The data obtained by traffic sensors contains many missing 
values. The analysis has also shown that there are many correlations between 
sensors. It is very desirable to create a method capable to approximate the 
missing values using the data obtained by other sensors in the area. 

The second type of data are the travel times of vehicles measured by a license plate 
recognition system. The data are distributed in two tables in Arterial Travel Times dataset. 
The first table provides locations of cameras, camera ID, GPS coordinates and primary and 
secondary streets. The second table contains the travel times of individual vehicles matched 
by the camera system (IDs of camera A and B , time stamps and travel time). 
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Figure 4.1: Map of the centre of the area. Sensors are marked by filled circles. Measured 
travel time road segments are marked by empty circles. 

In the data, 97 different combination of begin and end places are recorded. This means 
that there exists at least 97 possible trajectories of vehicles for which it is reasonable to 
measure travel times. However, most of these trajectories are not interesting for data 
analyses, because of the low number of vehicles recorder for them. We tried to analyse 
trajectories taken by more than 15000 vehicles per month. 

Observation 4.2: The travel times data provided by the license plate reading 
system are strongly dependent on the daytime. The number of matched ve­
hicles decreases at night and early in the morning. The travel times are also 
deteriorated by many outlier values. On the other hand, missing values in the 
data comming from traffic sensors do not depend on daytime and do not con­
tain too many outliers, but it is harder to use them for travel time prediction. 
A method is needed capable of utilizing both data types (from license plate 
reading system and sensors) to provide more robust and precise travel times 
prediction. 

4.2 Prague data 

The second source of data for our work was the dataset for Prague. This dataset is not 
provided by ITS-RDE and we used it mainly to verify our method for estimation of missing 
values in traffic density maps. 

The dataset contains the information about traffic volume in Prague for years 2008 and 
2009 (Table 4.1). It is split into two tables. The first table provides the information about 
intersections (intersection id and GPS coordinates). The second table contains the data for 
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road segments connecting the intersections. The id, beginning and end intersections define 
each segment. The table provides the value of intensity for segments measured in the year 
2008 and 2009. 

Number of intersections 126 
Border intersections 28 
Inner intersections 98 
Number of road segments 277 
Measured road segments in 2009 117 
Not measured road segments in 2009 160 

Table 4.1: Prague data - basic description. 

We analyzed the values of traffic volume in the year 2008 and 2009. It appears there 
are a few segments with very high volume (about 50000 vehicles) and many others with 
values about 10000 vehicles. 
Observation 4.3: A n algorithm with specific properties is needed to estimate 
missing values in traffic networks. In particular, the algorithm should be able 
to tolerate inaccurate measurements and it should be able to exploit data from 
previous measurement to improve the quality of the result. 
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Chapter 5 

Estimation of missing values in 
traffic density maps 

The traffic density map (TDM) represents the density of road network traffic as the number 
of vehicles per a specific time interval. This interval can be given in minutes or hours. 
Usually, T D M s are used by traffic experts as a base documentation for planning a new 
infrastructure (long-term) or by drivers for showing a current traffic status (short-term). 
Such T D M s can be composed automatically - with the aid from standard surveillance 
technologies (e.g. various data sensors such as loop detectors or traffic cameras). Another 
approach, which can be used for T D M calculation, is the manual counting on selected road 
segments. However, counting where people are involved in the process is usually quite 
inaccurate and also inefficient [36]. 

5.1 Method 

In this thesis we propose a new approach for estimation of missing values in traffic density 
maps, which is based on NSGAII . This enables us to obtain more realistic solutions, because 
we can consider more aspects in optimization process. In our approach, each candidate so­
lution is defined by a vector of real numbers. Every component of the vector represents 
a traffic density on one road segment, for which the density is not avalaible. The parameter 
value should be rounded to have the integer value. In the first generation of G A , compo­
nents of vectors are initialized to positive randomly generated values. Then a single point 
crossover and a normally distributed mutation are utilized during the optimization process. 

The main reason to utilize NSGAII is that it allows us to use more fitness functions 
directly. In our case there will be two objective functions. The first is the sum of errors on 
nodes and the second is the sum of differences to historic values. 

In order to maximize performance of the genetic algorithm it is necessary to correctly 
set various control parameters such as the population size, the probability of crossoever, the 
probability of mutation etc. In our evolutionary approach we use a self-adaptive method, 
which enables to encode some control parameters of genetic algorithm in to the chromosome 
[18], [2] and [16]. 

In order to obtain the best performance, we propose three variants of evolutionary 
estimation of missing values in T D M . The first variant is based on the multi-objective 
genetic algorithm and doesn't use the self-adaptation. The second variant utilizes the self-
adaptation. The first two variants start with a randomly generated initial population. The 
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third variant uses quadratic programming approach to generate the initial population. The 
result of QP approach is transformed into chromosome and this chromosome is copied into 
the initial population. The third variant also uses self-adaptation. 

5.2 Experimental results 

In order to evaluate the proposed methods we utilized field data from annual manual 
counting from the city of Prague (counting in year 2008 and 2009). The data cover the 
central part of the city which is modelled using 126 nodes (28 of them are border nodes) 
and 277 edges (117 of them without the traffic intensity). 

It was shown that two-objective optimization process gives many tradeoff solutions 
situated on the Parreto front. This is usefull for iterative estimation, because one can 
choose the best trade-off according to his/her knowledge. Also, it is possible to use the 
constraints in the same way discussed in the QP approach. The best results results were 
obtained by combining both methods, when the initial solution is generated by the quadratic 
programming and then further optimized by G A . 

We developed a computer program in Java, which uses an incremental process of traffic 
density estimation. This process is supposed to be driven by a user - traffic expert. At the 
begining the user sets the values for measured edges and runs the multiobjective genetic 
optimization process. There are several optimized solutions at the end of this process. 
One of them can be chosen and eventually edited. The user can also change importance 
of the errors on nodes and constraints as mentioned previously. After this editing, the 
optimization process can be performed again and again. This iterative process continues 
until a sufficient estimation is reached 5.1. 

B@](g| 
File V iew Es t ima t ion Help 

Figure 5.1: A Screenshot of application for estimation of missing values in T D M . 
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Chapter 6 

Multiobjective Selection of Input 
Sensors for SVR Applied to Road 
Traffic Prediction 

Modern traffic sensors can measure various road traffic variables such as the traffic flow 
and average speed. However, some measurements can lead to incorrect data which cannot 
further be used in subsequent processing tasks such as traffic prediction or intelligent con­
trol. In this thesis, we propose a method selecting a subset of input sensors for a support 
vector regression (SVR) model which is used for traffic prediction. The method is based 
on a multimodal and multiobjective NSGA-II algorithm. The multiobjective approach al­
lowed us to find a good trade-off between the prediction error and the number of sensors 
in real-world situations when many traffic data measurements are unavailable. 

6.1 Method 

The proposed method can be used to either predict the traffic flow or estimate missing 
values for a broken sensor. In the first phase, the S V R model is trained using historical 
data (the train set) in the supervised learning scenario. Trained S V R model then describes 
mathematical dependencies among the values of the sensor for which predictions are desired 
and other sensors in the area. Other historical data, unseen during the learning phase (the 
test set), are used to validate the resulting model. The multiobjective multimodal NSGA-II 
algorithm is employed to find the proper subset of input sensors for the S V R model. 

Traffic data are usually available as a set of time series si,..., sn; one time series for 
each variable measured by a traffic sensor. In order to train the S V R model, it is necessary 
to convert these data into training samples (Fig. 6.1). By means of a sliding window, the 
current value (sf^) and a few (h) previous values (s[ 1 ^ ) from each series are 
taken into a training sample. In the case of estimating the current value of a broken sensor 
(Fig. 6.1, left), the current value is included into the training sample as a dependent 
variable. In the case of traffic forecasting in the place of sensor, the future value / (-+ '* ) is 
included into the training sample (Fig. 6.1, right), where / represents the prediction horizon. 

We employed the multiobjective multimodal NSGA-II [9] operating over binary strings 
to select proper input sensors for SVR. Each gene represents one input sensor, where 1 
denotes including and 0 excluding of a particular sensor from the input vector fed to S V R 
(Fig. 6.2). 
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Figure 6.1: Composition of training samples for SVR: prediction of a current value (left) 
and prediction of a future value (right) of a sensor producing / . 

Three objectives are considered (all to be minimized) - the number of sensors used as 
inputs for SVR, the rate of missing samples for prediction and the prediction error. The rate 
of missing samples is portion of time for which the concrete model can't be used because of 
missing data. Two well-known error metrics can be used as error objective function: root 
mean squared error (RMSE) or relative squared error (RSE). A l l objectives are evaluated 
using the test set. 
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Figure 6.2: Chromosome encoding and a corresponding phenotype (SVR model) 

6.2 Method Evaluation 

The proposed method was evaluated on places 6, 11, 19, 22, and 23 of the Seattle area. 
For each sensor located on these places, four S V R models were created. The first two S V R 
models are trained to perform a short-term prediction in the horizon of 15 minutes. One of 
them uses only the actual values measured on the neighbor detectors in the area and the 
second one uses the actual values and the values measured on these sensors in previous 15 
minutes. The other two S V R models are trained to estimate the actual value on the sensor 
in the case of a sensor error. And again, one of them uses only the actual values measured 
on the neighbor detectors in the area and the second one uses the actual values and the 
values measured on these sensors in previous 15 minutes. 

In order to justify the multiobjective approach, we consider a single criterion optimiza­
tion scenario, in which R M S E is used as the only fitness function. The single-objective G A 
works with 40 individuals in the population, the probability of crossover is 70%, the prob­
ability of mutation is 5%, and 2-individual tournament selection (with elitism) is chosen. 
Table 6.1 compares NSGA-II with the single objective G A for several places and sensors 
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Location Multiobjective approach Best single objective 
R M S E for Unavailable ratio: G A result 

Place Sensor Variable < 10% < 30% < 50% < 70% R M S E Unavailable 
ratio 

Current values on sensor. 
11 3 traffic flow 5.27 4.63 4.16 4.01 2.66 96.9 
11 3 occupancy 3.81 3.50 3.31 3.31 0.31 99.4 
22 4 traffic flow 5.33 4.86 4.31 4.20 1.48 99.4 
Prediction horizon 15 min. 
11 3 traffic flow 5.50 4.9 4.37 4.23 2.96 97.2 
11 3 occupancy 4.02 3.57 3.41 3.35 0.33 99.4 
22 4 traffic flow 5.51 4.89 4.56 4.35 1.84 99.0 
Current values on sensor, 15 min. history. 
11 3 traffic flow 5.20 4.58 3.91 3.34 1.15 99.4 
11 3 occupancy 4.04 2.72 2.18 1.50 0.19 99.4 
22 4 traffic flow 5.62 4.71 4.09 3.37 1.04 99.4 
Prediction horizon 15 min., 15 min. history 
11 3 traffic flow 5.62 5.05 4.48 3.82 1.17 99.4 
11 3 occupancy 4.03 2.68 2.27 1.59 0.24 99.4 
22 4 traffic flow 5.64 4.98 4.17 3.66 1.15 99.4 

Table 6.1: The best R M S E on selected sensors and places for NSGA-II (less than 10%, 
30%, 50% and 70% samples unavailable) and a single objective G A 

(the best values from 20 independent runs are reported). It can be seen that the single 
objective G A tends to provide solutions with very small R M S E values; however, it op­
portunistically exploits the test data containing over 85% missing values (in many cases, 
over 99%, see the Unavailable ratio column). Such a S V R model will thus be useless in 
practice, because it will not provide any prediction most of the time. Therefore, the single 
optimization scenario fails in this task. 

Experiments show that the proposed method, in contrast with a common approach 
reported in the literature, can provide reasonable results even if many samples are unavail­
able. 
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Chapter 7 

Multiobjective Selection of Input 
Sensors for Travel Times 
Forecasting Using Support Vector 
Regression 

Travel time information can be used for various purposes, for example, as a source for 
different transportation analyses or for drivers who are planning their itinerary. Especialy 
in the situation when there are two or more possible ways to travel and the driver wants to 
choose one which will take shorter time. 

In this thesis, we propose a new method for travel time prediction which uses a support 
vector regression. The inputs of our method are data from license plate detection systems 
and traffic sensors such as induction loops or radars placed in the area. These traffic sensors 
enable us to measure traffic variables such as traffic volume, road occupancy, average speed 
and many others [27]. This method is mainly designed to be capable of dealing with missing 
values in the traffic data. The method is able to create many different S V R models with 
different input variables. These models are then dynamically switched according to which 
traffic variables are currently available. Hence the proposed method provides much reliable 
predictions than traditional license plate detection methods or regression methods, which 
use the data obtained by a static set of traffic sensors. 

In the past, many methods for travel time estimation have been proposed. In this thesis, 
we will utilize a license plate based approach and a regression based approach. 

7.1 Known methods for travel times prediction 

One of the approaches to measurement and prediction of travel times is based on license 
plate recognition. The basic principle of this approach is depicted in Figure 7.1. It is 
necessary to have at least two cameras. The first camera (A) is placed at the begining of 
the road segment and the second one (B) is placed at the end of the road segment. Each 
camera is connected to a pattern recognition software, which is able to read numbers on 
license plates. The license plate number for each vehicle is stored in a database. When the 
same license plate number is detected by both cameras for a given vehicle then the travel 
time can be calculated [47, 24]. 

Based on this data, the information of the expected travel time can be displayed to 
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drivers at the begining of the road segment. The main advantage of this method is that it 
is a quite straightforward principle. The biggest drawback is that the information displayed 
to drivers is delayed because it is based on conditions which existed in the current place when 
the last vehicle leaving the road segment was registered by camera A . Another drawback 
is that the license plate reading systems are not highly reliable and many vehicles pass the 
segment undetected. 

Camera A Travel time info Camera B 

Figure 7.1: The principle of travel times estimation using license plate recognition. 

Another approach to predict travel times is based on the data from traffic sensors such as 
radars, loop detectors, etc. Based on historic experience, the regression approaches predict 
the expected value of travel times using traditional supervised learning techniques known 
from the machine learning area. For example, the regression model can be constituted using 
neural network or support vector regression [58, 11]. 

Figure 7.2: The principle of travel times estimation using traffic sensors in the area. 

7.2 Method 

The quality and availability of both described methods for travel times estimation is largely 
dependent on the quality of the input data. In the license plate based approach, the qual­
ity of prediction is largely dependent on the quality of the pattern recognition software for 
license plate reading. The data produced by sensors such as loop detectors, radars and cam­
era detectors is not absolutely reliable and there are many missing values. Unfortunately, 
support vector regression and many other regression methods can not deal with missing 
values. In our approach, we will focus on selection of proper input sensors for travel times 
prediction. 
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In order to predict travel times, S V R with a radial basis kernel is exploited. Potential 
input variables for S V R are the data measured by traffic detectors in the area and travel 
times estimated by a license plate recognition system. The main goal of the optimization 
process is to minimize the travel time prediction error. However, as it was mentioned earlier, 
the data produced by license plate recognition systems or traffic detectors are sometimes 
unavailable, so it means that if any input value for this model is missing the model will not 
work. Some of these systems are more reliable than others. Because of it we also decided 
to minimize the time for which the prediction of the S V R is not available and the number 
of input variables. 

The reason why it is good to have multiple models with different characteristics is that 
we can switch among them during the real time prediction process according to a given 
situation. The main factor which is changing over the time is data availability from sensors. 
The key idea of our approach is to dynamicaly switch among these models according to 
which data are currently available. The highest-quality model is activated if possible. If 
the input data for this model are missing, the second best model is taken. If the input data 
for this model are not available, we will use the next model. We can continue with this 
process, until we get the model for which the data are available, or we have to stop because 
the data are unavailable. 

7.3 Experimental results 

The proposed method was evaluated using real world publicly available data from Seattle. 
We performed our experiments on two trajectories denoted as A and B . These trajectorise 
shown in the figure 4.1. We compared our new method to a simple license plate recognition 
method that was implemented. The results in terms of availability and R M S E are summa­
rized in Table 7.1. Which gives median values from 80 runs for each experiment. It can be 
seen that our method provides better prediction, which is available for a longer period of 
time. 

Method Available R M S E 
Section A 
License plate method 0.65 33.22 
Our method (median) 0.99 25.23 
Section B 
License plate method 0.50 63.81 
Our method (median) 0.99 52.47 

Table 7.1: Comparission of our algorithm with a simple license plate approach (median 
values). 
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Chapter 8 

Optimization of Met a-parameters 
and comparison with other 
methods 

In our previous work, we have shown that it is possible to use a multi-objective optimization 
to find many S V R models for prediction of traffic variables. These S V R models differ in the 
set of input variables that they utilize. We optimized only the set of input variables, but 
the meta-parameters of S V R remained unchanged. However, this is far from the optimum, 
because for each S V R the optimal settings of the meta-parameters is different. In this 
chapter, we try to improve the prediction results by simultaneous search for the optimal 
data inputs for S V R and the optimal meta-parameters in one run of the multiobjective-
genetic algorithm. Moreover, we will propose a parallel implementation of this method 
capable to significantly accelerate the optimization process. 

8.1 Optimization of meta-parameters 

In order to obtain high quality predictions, it is necessary to properly select the kernel 
function and set various parameters. Two types of kernels are supported in our work: linear 
S V R and S V R with radial basis kernel. For linear S V R it is necessary to optimize only the 
regularization coefficient C. The radial kernel requires, in addition to C , to optimize the 
kernel parameter 7. 

The method is based on a multimodal and multiobjective NSGA-II algorithm. The 
whole chromosome is divided into two parts. The first part contains the information about 
used input variables. Each gene represents one potential input variable. The binary part of 
the chromosome also contains one additional bit, which defines the type of kernel (0 - the 
linear kernel; 1 - the radial kernel). We use the uniform crossover and bit flip mutations 
to modify this part of the chromosome. The second part of the chromosome consists of 
real values, which are devoted to S V R meta-parameters. The first real value defines the 
regularization coefficient in the case that linear S V R is used. In this case the value of 
regularisation coefficient is equal to 2c'Unear. 

The second parameter is the value of regularization coefficient in the case that radial 
kernel is used. In this case the regularisation coefficient is equal to 2c'radial. Finally, the 
third real value is for gamma parameter (7 = 2gamma). We use S B X crossover and normally 
distributed mutations to modify the real valued part of the chromosome. The schema of 
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the whole chromosome is depicted in Figure 8.1. 
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Figure 8.1: Chromosome scheme. 

We evaluated our new method for simultaneous optimization of S V R inputs and meta-
parameters on three different tasks. It was data imputation task, short term traffic predic­
tion task, and travel time prediction task. We utilized the model switching described in 
previous Chapter to obtain the prediction results. The experiments shown that the mean 
improvement for data imputation is 2.29 % and for short time traffic forecasting with 15 
minutes prediction horizon is 26.35 %. The method was compared with method, which 
optimizes only model inputs. New method provides only a small improvement for travel 
times estimation (the mean is 0.32 %). 

8.1.1 Parallel implementation 

There exist many approaches to parallelize genetic algorithms. The basic approach is 
known as the master-slave model. In this case, the master process performs all operators 
like selection, crossover and mutation. The only part of the algorithm which is conducted 
in parallel, is evaluation of the quality of candidate solutions. In our work we utilized this 
principle. Each computational unit, which is one processor core in our case, computes the 
values of fitness functions for some portion of the population. 

generations 

per hour 

o 
o -

Figure 8.2: Speedup for short time traffic forecasting using parallel version of our method. 

26 



In order to show the speedup provided by parallel implementation, we performed 10 
independent runs of our method for short time traffic prediction using a different number 
of processor cores. We measured the number of G A iterations (generations) performed in 
1 hour. The results are shown in Figure 8.2. 

The Figure shows the number of generations processed during one hour. The results are 
depicted in the form of box plots, because we have performed 10 independent runs for each 
number of cores. The population consists of 40 individuals. According to our experiments, 
it is possible to achieve speedup of almost 10 times when 16 processor cores are employed. 

8.2 Comparison with other methods 

In the area of machine learning, we usually split the available data into two distinct datasets. 
The first set is used for training and the second for evaluation of the prediction quality. 
This basic approach works well in simple scenarios. However, sometimes we need to know 
the prediction quality of the model before its learning is finished. For example, we need it 
to evaluate the termination condition in iterative algorithms, or we use it in the calibration 
and optimization of meta-parameters for machine learning algorithm. In this case, we need 
to split the available data into three groups. The first is utilized for training, the second is 
used in the termination condition or for calibration and the third is for final evaluation of 
the obtained model. This approach is called the cross-validation and we will use it in this 
chapter to compare our methods with other methods [34]. 

For each of the discused methods, we will split the data into a training set for learning 
and a test set for evaluation of the objective functions in genetic algorithm. After the model 
is finally created, the validation set is used to evaluate the prediction quality. The reason 
we use the validation set for comparison is that these data were not used for training and 
during the optimization process and they can provide us a fair comparison. 

8.2.1 Data imputation 

The Principal Component Analysis is often used for dimensionality reduction of the input 
data. However, after some modifications, it can be also utilized to estimate the missing 
values. In this chapter, we provide the results of the P C A methods for imputation of the 
missing traffic data and compare them with the proposed method, which utilizes SVR. 

We performed the imputation using two variants of P C A method. The first is called 
Singular Value Decomposition [51] and the second is probabilistic principal component 
analysis ( P P C A ) [39]. The results for the imputation of traffic volume are shown in Table 
8.1 - four sensors with the biggest mean volume on four places in the centre of Seattle are 
analysed. We used the data from 1st July to 15th July as the training set, 16th to 31st July 
as the test set and the data from August as the validation set. The R M S E in Table 8.1 is 
given for the validation set. 

It can be observed that our method provides a better precision for almost every sensors. 
The exception are sensors number 1 on place 11 and number 8 on place 23, where Singular 
Value Decomposition and P P C A perform slightly better. For sensor 7 on place 23, the 
P P C A method also works better than our method. The results for occupancy under the 
same test scenario are provided in Table 8.2. In this case, our method based on the S V R 
is in most cases worse than Singular Value Decomposition (6 sensors out of 15) and P P C A 
(4 sensors out of 15). This might be caused by highrer noise in occupancy data. The rate 
between standard deviation and mean value is usually higher than for volume. 
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Place Sensor Our Method P C A method P P C A method 
R M S E R M S E Improvement R M S E Improvement 

11 1 6.70 6.46 -3.72 % 6.49 -3.24 % 
11 3 6.50 6.93 6.20 % 6.70 2.99 % 
11 13 6.94 6.94 0.00 % 7.02 1.14 % 
11 17 5.20 5.30 1.89 % 5.30 1.89 % 
19 3 5.98 7.91 24.40 % 7.53 20.58 % 
19 4 6.14 7.30 15.89 % 7.23 15.08 % 
19 7 5.54 7.87 29.61 % 7.78 28.79 % 
19 8 4.93 5.93 16.86 % 5.82 15.29 % 
22 1 4.20 5.12 17.97 % 4.90 14.29 % 
22 4 5.44 6.73 19.17 % 6.64 18.07 % 
22 7 4.91 5.40 9.07 % 5.40 9.07 % 
22 8 4.35 5.42 19.74 % 5.18 16.02 % 
23 6 4.43 4.89 9.41 % 4.84 8.47 % 
23 7 11.27 11.39 1.05 % 10.48 -7.54 % 
23 8 10.95 10.86 -0.83 % 9.95 -10.05 % 
23 9 5.07 5.98 15.22 % 5.83 13.04 % 

Table 8.1: Results of the volume imputation compared with P C A and P P C A method 
(Seattle Sensys data). 

Place Sensor Our Method P C A method P P C A method 
R M S E R M S E Improvement R M S E Improvement 

11 1 7.28 7.72 5.70 % 7.70 5.45 % 
11 3 6.52 6.60 1.21 % 6.63 1.66 % 
11 4 8.41 8.48 0.83 % 8.43 0.24 % 
11 17 7.04 6.74 -4.45 % 6.77 -3.99 % 
19 3 3.66 4.17 12.23 % 4.17 12.23 % 
19 4 4.72 4.67 -1.07 % 4.68 -0.85 % 
19 8 10.44 9.13 -14.35 % 8.97 -16.39 % 
22 1 4.26 4.12 -3.40 % 4.11 -3.65 % 
22 3 5.14 4.52 -13.72 % 4.52 -13.72 % 
22 6 3.92 3.87 -1.29 % 3.87 -1.29 % 
22 8 4.15 3.95 -5.06 % 3.96 -4.80 % 
23 1 12.55 12.59 0.32 % 12.52 -0.24 % 
23 2 10.27 10.25 -0.20 % 10.16 -1.08 % 
23 3 11.61 11.45 -1.40 % 11.20 -3.66 % 
23 7 21.35 20.89 -2.20 % 20.57 -3.79 % 

Table 8.2: Results of the occupancy imputation compared with P C A and P P C A method. 

8.2.2 Short Term Traffic Forecasting 

To justify the proposed approach for traffic forecasting which is based on multi-objective 
genetic algorithms, we will compare it with the method utilizing only SVR. It is almost 
impossible to utilize S V R directly for traffic forecasting, because there are many missing 
values in the real world data. This is problematic because the S V R needs all inputs avail­
able. Hence, we have to fill these missing input data somehow. In our experiments, we 
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utilized two simple techniques. The first technique fills the missing values by zero and the 
second one by the mean value of the given variable (computed from the previous samples). 

Place Sensor Our Method Imputation by zero Imputation by mean 
R M S E R M S E Improvement R M S E Improvement 

11 1 7.50 8.01 6.37 % 8.08 7.18 % 
11 3 8.12 8.47 4.13 % 8.78 7.52 % 
11 13 7.88 9.10 13.41 % 9.85 20.00 % 
11 17 6.81 9.36 27.24 % 10.75 36.65 % 
19 3 7.76 10.35 25.02 % 11.46 32.29 % 
19 4 7.83 10.98 28.69 % 10.65 26.48 % 
19 7 7.78 9.86 21.10 % 11.34 31.39 % 
19 8 6.64 8.71 23.77 % 8.02 17.21 % 
22 1 6.23 6.35 1.89 % 5.72 -8.92 % 
22 4 7.59 9.88 23.18 % 9.27 18.12 % 
22 7 6.97 6.81 -2.35 % 7.30 4.52 % 
22 8 6.46 7.59 14.89 % 8.04 19.65 % 
23 6 6.04 6.95 13.09 % 6.01 -0.50 % 
23 7 6.39 16.56 61.41 % 14.96 57.29 % 
23 8 6.65 14.86 55.25 % 13.67 51.35 % 
23 9 6.39 10.79 40.78 % 9.88 35.32 % 

Table 8.3: Results of volume forecasting compared with imputation by the zero and mean. 

It is important to note that our method based on the multi-objective G A utilizes many 
SVRs which differ in the input variables involved and these SVRs can be used according 
to which input data are currently available. Thus, it is not necessary to directly deal with 
missing data. 

The results for traffic forecasting of traffic volume with the prediction horizon of 15 
minutes are shown in Table 8.3. We employed the data sets in the same way as in the 
previous task. 

The results have shown that our method performs better in almost all cases. The 
approach based on a simple S V R with the missing inputs filled with zeros performs slightly 
better only for one sensor. If the mean is used, 2 out of 15 cases are predicted more precisely. 

We tested the same scenario of short term traffic forecasting for the occupancy. In this 
case, our method provide better prediction than simple S V R with missing inputs filled by 
zero as well as the mean for 10 out of 15 sensors. The results are shown in Table 8.4. 
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Place Sensor Our Method Imputation by zero Imputation by mean 
R M S E R M S E Improvement R M S E Improvement 

11 1 7.10 7.77 8.62% 7.80 8.97 % 
11 17 6.49 8.27 21.52% 8.43 23.01 % 
11 3 5.52 6.54 15.60% 6.59 16.24 % 
11 4 8.76 8.74 - 0.23% 8.64 -1.39 % 
19 3 3.80 4.65 18.28% 4.80 20.83 % 
19 4 4.90 5.58 12.19% 5.46 10.26 % 
19 8 9.09 12.65 28.14% 12.38 26.58 % 
22 1 4.82 4.59 - 5.01% 4.60 -4.78 % 
22 3 4.90 7.08 30.79% 7.28 32.69 % 
22 6 4.59 4.24 - 8.25% 4.29 -6.99 % 
22 8 4.33 4.43 2.26% 4.43 2.26 % 
23 1 14.99 13.38 -12.03% 13.79 -8.70 % 
23 2 11.98 11.08 - 8.12% 10.95 -9.41 % 
23 3 13.72 13.95 1.65% 14.42 4.85 % 
23 7 20.07 21.78 7.85% 22.05 8.98 % 

Table 8.4: Results of occupancy forecasting compared with imputation by the zero and 
mean. 

8.2.3 Travel Times Forecasting 

The same approach, the same utilization of data and filling the missing values was imple­
mented for the travel times forecasting. The results summarized in Table 8.5 show that our 
multi-objective method outperforms the simple S V R method in all test scenarios. 

Begin End Our Method Imputation by zero Imputation by mean 
R M S E R M S E Improvement R M S E Improvement 

Imputation by zero 
Place 7 Place 58 26.04 43.72 40.44% 31.92 18.42% 

Place 58 Place 46 53.42 57.71 7.43% 79.74 33.01% 
Imputation by mean 

Place 7 Place 58 25.68 42.28 39.26% 34.69 25.97% 
Place 58 Place 46 52.99 63.33 16.33% 59.78 5.61% 

Table 8.5: Results of travel times forecasting compared with imputation by the zero and 
mean. 
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Chapter 9 

Conclusions 

The main objective of this thesis was to improve soft-computing methods for road traffic 
prediction by utilizing multiobjective evolutionary algorithms. The first goal of the thesis 
was to create a general framework for traffic prediction and travel times estimation. This 
framework should internally use a multi-objective optimization (such as evolutionary algo­
rithms) in order to provide good trade-offs between various conflicting objectives the users 
typically formulate in this domain. Moreover, this framework should be capable of working 
with real world traffic data, which often contain a huge portion of missing values. 

To fulfill this goal, we proposed a prediction framework, which internally utilizes SVR-
based prediction. The meta-parameters and inputs of S V R are simultaneously optimized by 
a multi-objective genetic algorithm. The multimodal-NSGAII algorithm is used to perform 
this optimization task. We choose the R M S E of prediction, the number of S V R inputs 
and the portion of time in which the S V R can not be used for prediction (because of 
missing data) as the objective functions. The multi-objective optimization provided us 
with many solutions (SVRs), which differ in values of the objective functions. We typically 
obtained solutions showing very small prediction errors (RMSE), but requiring many input 
variables, but they often cannot be used because of missing input data. On the other hand, 
we obtained solutions with a higher prediction error which utilize only a few input variables. 
We also got many compromise solutions between these two extremes. 

The reason why it is good to have multiple models with different characteristics is that 
we can switch among them during the real time prediction process. The main factor which 
is changing over the time is the data availability from sensors or camera. The key idea of 
the approach developed in this thesis is to dynamicaly switch among these models according 
to which data are currently available. The highest-quality model is activated if possible. 
If the input data for this model are missing, the second best model is taken. If the input 
data for this model are not available, we will use the next model. We can continue with 
this process, until we get the model for which the data are available, or we have to stop 
because the data are unavailable. 

The second goal of this thesis was to evaluate this framework on real world case studies. 
We compared our prediction framework with the current state of the art methods. In order 
to provide a fair comparison, we utilized a validation data set containing new data which 
were used neither during learning nor the optimization process. Results were provided 
for three different tasks: data imputation, short term traffic forecasting and estimating of 
travel times. 

In the case of data imputation, we compared our framework with Singular Value De­
composition and Probabilistic Principal Component Analysis. The results shown that our 
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method provides better results than these methods in the imputation of volume and pro­
vides slightly worse results for the imputation of occupancy. For the short time traffic 
prediction, we have compared our method with a single SVR. The missing inputs of this 
S V R were filled by zero or the mean values of the missing variable. In this case, our multi-
objective method performed better than simple S V R in almost all cases. The last task was 
the estimation of travel times. In this case, we also used a simple S V R with the missing 
input values filled with zero or the mean. Here, our multi-objective method outperformed 
the single S V R for all test road segments. 

9.1 Conference Publications 

• Petrlik Jiri , Korcek Pavol, Fucik Otto, Beszedes Marian and Sekanina 
Lukas. Estimation of traffic density map using evolutionary algorithm. 
In: Proceedings of the 15th International I E E E Conference on Intelligent 
Transportation Systems. Anchorage: I E E E Intelligent Transportation Sys­
tems Society, 2012, pp. 632-637. ISBN 978-1-4673-3062-6 

• Petrlik Jiri and Sekanina Lukas. Multiobjective Evolution of Multiple-Constant Mul ­
tipliers. In: Proceedings of the 18th International Conference on Soft Computing 
(MENDEL2012). Brno: Faculty of Mechanical Engineering B U T , 2012, pp. 64-69. 
ISBN 978-80-214-4540-6. 

• Petrlik Jiri and Sekanina Lukas. Multiobjective evolution of approximate multiple 
constant multipliers. In: I E E E International Symposium on Design and Diagnostics 
of Electronic Circuits and Systems 2013. Brno: I E E E Computer Society, 2013, pp. 
116-119. ISBN 978-1-4673-6133-0. 

• Petrlik Jiri , Fucik Otto and Sekanina Lukas. Multiobjective Selection of 
Input Sensors for Travel Times Forecasting Using Support Vector Regres­
sion. In: 2014 I E E E Symposium on Computational Intelligence in Vehicles 
and Transportation Systems Proceedings. Piscataway: Institute of Electri­
cal and Electronics Engineers, 2014, pp. 14-21. ISBN 978-1-4799-4498-9. 

• Petrlik Jiri , Fucik Otto and Sekanina Lukas. Multiobjective Selection of 
Input Sensors for S V R Applied to Road Traffic Prediction. In: Parallel 
Problem Solving from Nature - P P S N XIII. Heidelberg: Springer Verlag, 
2014, pp. 802-811. ISBN 978-3-319-10761-5. 

• Petrlik Jiri and Sekanina Lukas. Towards Robust and Accurate Traffic 
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9.2 Software 
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.3 Research Projects and Grants 

• Natural Computing on Unconventional Platforms, G A C R , GAP103/10/1517, 2010-
2013, completed 

• The IT4Innovations Centre of Excellence, M L M T , EDI.1.00/02.0070, 2011-2015, 
running 

• Verification and Optimization of Computer Systems, V U T Brno, FIT-S-12-1, 2012-
2014, completed 

• Research and development focused on monitoring and management of lorry movement 
on lower class road network in the Czech Republic, T A C R , TA02030841, 2012-2014, 
completed 

• Architecture of parallel and embedded computer systems, V U T Brno, FIT-S-14-2297, 
2014-2016, running 

• Advanced Methods for Evolutionary Design of Complex Digital Circuits, G A C R , 
GA14-04197S, 2014-2016, running 

• Verification of the implementation of continuous traffic load map using modern clas­
sification and prediction methods, T A C R , TA02030915, 2012-2014, completed 
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