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Abstract 
The research presented in this thesis is directed toward the evolutionary optimization 

of selected components of network applications intended for high-speed network monitor­
ing systems. The research started with a study of current network monitoring systems. 
As an experimental platform, the Software Defined Monitoring (SDM) system was cho­
sen. Because traffic processing is an important part of all monitoring systems, it was 
analyzed in greater detail. For detailed studies conducted in this thesis, two components 
were selected: the classifier of application protocols and the hash functions for network flow 
processing. The evolutionary computing techniques were surveyed with the aim to optimize 
not only the quality of processing but also the execution time of evolved components. The 
single-objective and multi-objective versions of evolutionary algorithms were considered and 
compared. 

A new approach to the application protocol classifier design was proposed. Accurate and 
relaxed versions of the classifier were optimized by means of Cartesian Genetic Programming 
(CGP) . A significant reduction in Field-Programmable Gate Array (FPGA) resources and 
latency was reported. 

Specialized, highly optimized network hash functions were evolved by parallel Linear 
Genetic Programming (LGP) . These hash functions provide better functionality (in terms 
of quality of hashing and execution time) than the state-of-the-art hash functions. Using 
multi-objective L G P , we even improved the hash functions evolved with the single-objective 
L G P . Parallel pipelined hash functions were implemented in an F P G A and evaluated for 
purposes of network flow hashing. A new reconfigurable hash function was developed as 
a combination of selected evolved hash functions. Very competitive general-purpose hash 
functions were also evolved by means of multi-objective L G P and evaluated using represen­
tative data sets. The multi-objective approach produced slightly better solutions than the 
single-objective approach. We confirmed that common L G P and C G P implementations 
can be used for automated design and optimization of selected components; however, it 
is important to properly handle the multi-objective nature of the problem and accelerate 
time-critical operations of GP. 
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Abstrakt 
Výzkum prezentovaný v této práci je zaměřen na evoluční optimalizaci vybraných kom­

ponent síťových aplikací určených pro monitorovací systémy vysokorychlostních sítí. Práce 
začíná studiem současných monitorovacích systémů. Jako experimentální platforma byl 
zvolen systém S D M (Software Defined Monitoring). Detailně bylo analyzováno zpracov­
ání síťového provozu, protože tvoří důležitou součást všech monitorovacích systémů. Jako 
demonstrační komponenty pro aplikaci optimálních technik navržených v této práci byly 
zvoleny klasifikátor aplikačních protokolů a hashovací funkce pro síťové toky. Evoluční 
algoritmy byly zkoumány s ohledem nejen na optimalizaci kvality zpracování dat danou 
síťovou komponentou, ale i na čas potřebný pro výpočet dané komponenty. Byly zkoumány 
jednokriteriální i vícekriteriální varianty evolučních algoritmů. 

B y l navržen nový přístup ke klasifikaci aplikačních protokolů. Přesná i aproximativní 
verze klasifikátoru byla optimalizována pomocí C G P (Kartézské Genetické Programování). 
Bylo dosaženo výrazné redukce zdrojů a zpoždění v F P G A (Programovatelné Logické Pole) 
oproti neoptimalizované verzi. 

Speciální síťové hashovací funkce byly navrženy pomocí paralelní verze L G P (Lineární 
Genetické Programování). Tyto hashovací funkce vykazují lepší funkcionalitu oproti mod­
erním hashovacím funkcím. S využitím vícekriteriální optimalizace byly vylepšeny výsledky 
původní jednokriteriální verze L G P . Paralelní zřetězené verze hashovacích funkcí byly im­
plementovány v F P G A a vyhodnoceny za účelem hashování síťových toků. Nová rekonfig-
urovatelná hashovací funkce byla navržena jako kombinace vybraných hashovacích funkcí. 
Velmi konkurenceschopná obecná hashovací funkce byla rovněž navržena pomocí multikri-
teriální verze L G P a její funkčnosti byla ověřena na reálných datových sadách v prove­
dených studiích. Vícekriteriální přístup produkuje mírně lepší řešení než jednokriteriální 
L G P . Také se potvrdilo, že obecné implementace L G P a C G P jsou použitelné pro autom­
atizovaný návrh a optimalizaci vybraných síťových komponent. Je však důležité zvládnout 
vícekriteriální povahu problému a urychlit časově kritické operace GP. 

Klíčová slova 
Evoluční algoritmy, kartézské genetické programování, lineární genetické programování, 
monitorování síťového provozu, síťové aplikace, počítačové sítě, hashovací funkce 
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Chapter 1 

Introduction 

Many hardware providers have announced a support for 100 gigabit-per-second (Gbps) 
networks to overcome current 10-40 Gbps solutions [45, 57, 46]. The 400 Gbps and even 
1 Tbps networks will be needed in a few next years, see Fig. 1.1. Commercial companies, 
data and supercomputer centers, and other entities around the world are now working to­
wards launching 100 Gbps networks in order to benefit from faster communication and wider 
bandwidth in high-throughput requesting applications such as high-performance comput­
ing, high-quality video streaming or Internet of Things (IoT). Managing 100 Gbps networks 
requires more precise performance monitoring (involving bandwidth monitoring, traffic an­
alytics and anomaly detection) than in the previous era. 

In order to effectively monitor and analyze high-speed networks at the level of packet 
contents, software defined monitoring (SDM) concept has been developed [43]. Having less 
than 7 ns to process one packet in a 100 Gbps network, S D M performs the analysis using 
relatively simple (and so fast) hardware whose functionality (i.e. the rules of operation) are 
defined in the software. Unrecognized traffic is then processed by sophisticated algorithms 
in the software. The analysis is performed at the level of network flows, where a network 
flow is defined as a set of packets (with the same key features) that passed an observation 
point in the network during a given time interval. 

Because there are only a few nanoseconds to process each packet, monitoring systems 
have to be carefully designed and optimized. Traffic monitoring systems perform many 
operations with flows (such as an extraction of the information from packet headers and 
a deep packet inspection to determine the application protocol) As these operations have 
to be executed for each packet in the flow, it is important to provide their efficient (highly 
optimized) implementations in high-speed networks. 

Evolutionary algorithms (EAs) have successfully been used to design and optimize many 
applications. The automated search for a new or an improved piece of software is a typical 
task specifically for genetic programming (GP). G P can be used to improve existing soft­
ware (e.g. [55]), create or optimize parallel programs (e.g. [ ]) or automate generating full 
computer programs (e.g. [1]). In recent years, significant development and progress have 
been reported in evolutionary circuit design. In many cases these techniques were capable of 
delivering efficient circuit designs in terms of an on-chip area minimization (e.g. [89]), adap­
tation (e.g. [40]), fabrication variability compensation (e.g. [90]), and many other properties 
(see, for example, many requirements on synthetic benchmark circuits in [ ]). 

The main focus of this thesis is the optimization of low-level H W / S W components of 
network monitoring systems. It is important to identify the components that significantly 
influence performance in currently developed and future implementations of these systems. 
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Figure 1.1: The network traffic is increasing rapidiy in the fast years (adopted from [11]). 

The seiected components require an optimization or a re-design not oniy in terms of func­
tionality but also in terms of latency which is critical for high-speed networks. This thesis 
will explore how evolutionary algorithms (in particular genetic programming) can be em­
ployed to design and/or optimize selected components of high-speed network monitoring 
systems. 

1.1 Research Objectives 

We hypothesize that by using well-tuned evolutionary algorithms selected components of 
high-speed network monitoring systems can automatically be re-designed or optimized to 
improve their functionality and optimize other parameters (such as the implementation 
cost) in comparison with the state-of-the-art solutions. 

The following research objectives were formulated: 

1. To study network monitoring systems and identify their components suitable for au­
tomated optimization. 

2. To define objectives and constrains that are important for an efficient optimization of 
the selected components. 

3. To propose and implement single- and multi-objective variants of EAs including suit­
able fitness functions. 

4. To validate the proposed approach and evolved solutions using relevant data sets. 

5. To compare evolved solutions with the state-of-the-art implementations. 
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1.2 Thesis Outline 

The thesis is composed as a collection of papers. The research contribution is presented 
in five peer-reviewed papers that are attached in section Related Papers. The thesis is 
organized as follows. Chapter 2 surveys the state-of-the-art. It primarily includes the 
principles of network monitoring and evolutionary design of circuits and programs. A 
special attention is devoted to the classification of application protocols in hardware and to 
the hash function design because these two problems are later selected as the case studies 
for this thesis. The research methodology and overview of scientific papers constituting 
this thesis is given in Chapter 3. Finally, Chapter 4 concludes the thesis and suggests 
possibilities for future research. 
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Chapter 2 

State of the Ar t 

This chapter provides a necessary background needed to understand the research presented 
in this thesis. Chapter 2.1 introduces relevant concepts of computer networks and network 
applications that are important for monitoring and security of computer networks. The hash 
function design is presented in Chapter 2.3. Chapter 2.4 surveys the principles of genetic 
programming including the graph-based and linear-based variants of GP. Multi-objective 
approaches for evolutionary algorithms are presented in Chapter 2.5. 

2.1 Computer Networks 

A computer network is a telecommunication network that provides connections among 
end-systems in order to share resources. 

Computer networks [ ] consist of end-systems (such as personal computers, servers, 
mobile devices or IoT nodes) and network devices (such as routers, switches, bridges, fire­
walls). These devices are connected by different types of links (wired, wireless or optical). 
Computer networks can be local, connecting nodes in the boundary of space, or global, 
connecting nodes all around the world (the Internet). The basic architecture of a computer 
network includes: 

• A technology for signal transmission, 

• a technology for reliable data transmission and 

• an application layer which provides services for users. 

Several network architecture models have been proposed. The reference network archi­
tecture model is the ISO/OSI model [97], which contains seven layers, namely Physical, 
Datalink, Network, Transport, Session, Presentation and Application layers. The most 
widespread model is the T C P / I P model, which is based on the ISO/OSI model, but uses a 
simpler architecture than the ISO/OSI model. It has only four instead of seven layers used 
in the ISO/OSI model. A comparison of these models is shown in Table 2.1. 

2.1.1 T C P / I P Mode l 

The T C P / I P model [33, 85] has been designed with respect to reliability, independence of 
the transmission medium, decentralized and simple implementation. Table 2.1 shows all 
the layers and the typical protocols associated with each layer. Each layer uses services 

(i 
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Figure 2.1: Example of the data encapsulation on the Sender side and the data decapsula­
tion on the Receiver side. 

provided by lower layers. Each layer adds a header or a footer to the data coming from the 
higher layers and delegates the encapsulated data to the lower layer for the next processing. 
Example of the data encapsulation on the sender side and decapsulation on the receiver 
side is shown in Figure 2.1. The lowest layer sends all the data with headers (footers) to a 
target device. 

Network interface layer defines requirements on physical medium, electrical signals 
and optical signals. Examples of the network interface layer implementations are Ethernet, 
TokenRing, Frame Relay, F D D I or RS-232C. In addition to these requirements, the network 
interface layer defines the methods enabling the access to a physical medium. 

Internet layer addresses and routes basic transfer structures (the so-called datagrams) 
containing the header and pay load sections. Datagrams are routed using the best-effort 
delivery strategy, which tries to find a compromise between the shortest and the fastest 
paths through the entire network. If the datagram is lost during its transport via the 
network, the sender has to arrange for its re-sending. The internet layer typically uses five 
protocols. The Internet Protocol (IP) provides services for transport layer protocols. It 
distinguishes devices in the network. Two versions of IP are currently used IPv4 and IPv6, 
see Figure 2.2. Next protocols are Address Resolution Protocol (ARP) and Reverse A R P 
(RARP) . The A R P translates an IP address to a M A C address and R A R P translates a M A C 
address to an IP address. Internet Group Message Protocol (IGMP) is used for logging to 
multicast groups. Internet Control Message Protocol (ICMP) sends error messages in the 
networks, for example, a device goes offline or a service is unavailable. A l l internet layer 
protocols have to be implemented in the operation system. 

Transport layer ensures logical connections between processes on the end devices 
connected through the IP. The logical connection is identified by a port number. The 
transport protocol divides the data coming from the application layer to smaller pieces and 
adds a header in order to form a packet. The packets create a sequence which is called the 
network flow. The network flow is defined as a set of packets with the same key features 
and is passed by an observation point in the network during a given time interval. The 
transport layer uses two protocols, (i) The Transmission Control Protocol (TCP) ensures 
reliable connections. It means that all the data sent from a sender will be delivered to a 
recipient correctly. The T C P adds special packets to the communication to establish the 
connection, finish the connection, confirm an acceptance, synchronize all entities, etc. (ii) 
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Figure 2.2: Comparison of IPv4 header (left) and IPv6 header (right). 

Table 2.1: Comparison of ISO/OSI model and T C P / I P model. 
ISO/OSI model T C P / I P model Group of Layers Examples 

Application Layer 
Presentation Layer 

Session Layer 
Application Layer Application Layer Web Pages and 

Internet browsers 

Transport Layer 
Network Layer 

Transport Layer 
Network Layer 

Internetwork Layer T C P / I P Software 

Data Link Layer 
Physical Layer 

Data Link Layer 
Physical Layer 

Hardware Layer 
Ethernet ports, cables 
and ethernet drivers 

The User Datagram Protocol (UDP), in fact, creates unreliable connections as there is no 
mechanism to check if a packet is delivered correctly. The data transfer is faster using U D P 
than T C P because there are no additional control packets. U D P is employed by services 
which need a fast transmission but can tolerate some undelivered packets, for example, 
Video on Demand (VOD), audio stream, etc. 

Application layer covers many different application protocols developed for specific 
applications. Each protocol uses either T C P or U D P as transport protocol. Well-known 
protocols such as H T T P , SMTP, SIP, SSH have a port number assigned. The port numbers 
are divided into three ranges. The well-known ports, also known as the system ports, belong 
to the interval from 0 to 1023. These applications have to e strictly registered. The second 
group of ports (with numbers from 1024 to 49151) is a subject to registration at I A N A 
organization. For the last group, with the so-called dynamic (or private) ports in the range 
from 49152 to 65535, there are no specific requirements for registration. 

2.2 Network Monitoring 

The network monitoring is crucial for ensuring the correct functionality of computer net­
works. It is based on probing of device states, traffic analysis and collecting traffic informa­
tion. Results of monitoring are useful for administrators to improve network security, per­
formance and functionality. Two types of network monitoring techniques exist [78, 66, 54]. 
(i) The active monitoring lies in injecting test traffic into the network and analyzing its 
impact. These tests can reveal real-time problems such as packet loss, jitter, insufficient 
bandwidth, unknown device status, latency and measure the quality of services (QoS). The 
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Figure 2.3: Schema of a monitoring system architecture. 

active monitoring can thus relatively quickly detect network problems. The disadvantages 
of the active monitoring are increased network traffic and missing information about the 
data in the packed payload because only injected packets are analyzed, (ii) The passive 
monitoring is based on an analysis of real network traffic without injecting any new network 
traffic. It requires either special network devices to capture the network data or a built-in 
support in switches and other network devices. The passive monitoring provides more op­
portunities for the analysis than active monitoring. For example, the volume of the data 
generated by a device or anomalies in the traffic behavior can be detected. Any specific 
application, any user or any specific traffic may be observed and analyzed. The long-term 
statistics created from captured data are of a great importance for future infrastructure 
planning and upgrades. A monitoring probe is typically inserted between two networks, 
see Figure 2.3. The network probes typically send the data to a collector that analyses the 
data and distribute them to users or makes certain automatic or semi-automatic actions 
such as blocking of specific devices (users), applications or attacks in real-time. 

Current high-speed networks operate at lOGbps and 40Gbps. Solutions for lOOGbps 
networks have been already demonstrated [43]. The specifications for 400Gbps and even 
1 Tbps are under design. High-speed networks require a novel approach to traffic monitoring 
because the monitoring systems used in lOGbps networks do not have enough throughput. 
A common feature of software implementations of network monitoring systems is that the 
monitoring probe is flexible and easily adapts to a given network. However, the software 
solution is often insufficient in terms of performance. Hardware implementations of mon­
itoring systems, based on field-programmable gate arrays (FPGA) or application-specific 
integrated circuits (ASIC), usually have a sufficient throughput but it is often difficult to 
adapt them to a certain network or add new monitoring features. 

A new approach to high-speed network monitoring known as Software Defined Mon­
itoring (SDM) has recently been developed [13, ]. The S D M combines hardware and 
software approaches. The S D M consists of three fundamental parts: i) a special hardware 
card with an F P G A based network monitoring accelerator, ii) a firmware controlling the 
data preprocessing in hardware and iii) user applications, see Fig. 2.4. The main benefit 
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Figure 2.4: Software Defined Monitoring system architecture (adopted from [ ]). 

of S D M is its ability to control the hardware preprocessing of network flows by means of 
software applications. The control software sets the rules for the hardware accelerator with 
respect to the particular flows, groups of flows, devices (users) or selected protocols. It also 
sets various actions specifying how to discard packets, collect basic network characteristics, 
capture all packets for detailed analysis, etc. A rule or a set of rules is defined to preprocess 
each flow. Because the software part has to process only a small portion of the traffic 
(already preprocessed and aggregated data) it can be executed on a standard multi-core 
processor. About 80% of flows can be processed in hardware after the learning phase of 
the S D M system is finished [ ]. However, during the learning phase, the software has to 
handle most of the flows. 

2.2.1 Processing of Network Traffic and Network Flows 

This section briefly describes the flow processing in the S D M system and identifies the most 
time-critical operations. 

Network Traffic Processing 

In the current networks, which are mostly based on T C P / I P model [72], a packet is formed 
by headers and payload. Every layer has its own header for identification and processing. 
A flow can be uniquely identified by a 5-tuple extracted from these headers: source and 
destination internet protocol addresses (IPv4 or IPv6), source and destination ports and 
transport protocol (mostly T C P or UDP) . Each flow represents one direction of the com­
munication between two applications on the devices. In the flow-based monitoring, we deal 
with the basic flow characteristics such as the flow length (the number of packets or bytes) 
and timing (the start time, the end time, the duration). These characteristics are often 
amended by certain interesting information from an application layer such as the type of 
protocol or some information extracted from the payload. 
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Figure 2.5: Packet processing in monitoring systems such as S D M . 

Flow Processing 

Fig. 2.5 shows a typical packet processing pipeline in the monitoring systems such as S D M . 
At first, the 5-tuple identification of the packet is extracted from packet headers. The 
packet is assigned to a flow record if the corresponding flow already exists in the flow cache. 
Otherwise, a new flow record is created in the flow cache and rules for the processing of the 
packets belonging to this flow are defined. There are different types of rules, for example, 
"capture all traffic", "get basic characteristics" or "get advanced characteristics". These 
rules can affect complete network traffic, a specific user, a subnet, a specific protocol or a 
group of protocols (e.g. communication protocols). 

One of the challenges in network monitoring is the identification of application protocols. 
The research in the area of application identification has come up with distinct approaches 
to identify the applications carried out in the traffic. These approaches differ in the level of 
detail that is utilized in the identification method. The most abstract one is the behavioral 
analysis [38, 95]. Its idea is to observe only the port numbers and destination of the 
connections per each host and then to deduce the application running on the host by its 
typical connection signature. If more details per connection are available, the statistical 
fingerprinting [ ] comes into play. In this feature set is collected per each flow 
and the assumption is that the values of the feature set vary across applications, and 
hence, the applications leave a unique fingerprint. Behavioral and statistical fingerprinting 
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Table 2.2: Characteristics of different speed links. *Packet size is 64 bytes * * C P U fre­
quency = 3.6GHz 

Link speed Packets* Time to process approximate C P U * * 
[Gbps] per second one packet [ns] clocks cycles 

1 1 953 125 512.0 1843 
10 19 531 250 51.2 184 
40 78 125 000 12.8 46 
100 195 312 500 5.12 18 
400 781 250 000 1.28 5 

generally classifies the traffic into the application classes rather than into the particular 
applications. The reason is that different applications performing the same task often 
exhibit similar behavior. For instance, application protocols such as Oscar (ICQ), M S N 
and X M P P (Jabber) transport interactive chat communications, and hence, they exhibit 
a similar behavior, which is very hard to differentiate for the monitoring system. The 
inability to distinguish applications within the same class is in some situations seen as a 
drawback, for example, when it is necessary to block/capture an application while other 
applications of the same class have to remain running. The approach utilizing the greatest 
level of detail is called deep packet inspection. It identifies applications based on the packet 
payload. The payload is matched with known patterns (defined, for example, by regular 
expressions) derived for each application [80]. 

The L7 filter [25] is a popular program for the application protocol identification, which 
utilizes regular expressions to describe the application protocols. It performs pattern match­
ing in network flows. If a known pattern is matched in the payload, the corresponding appli­
cation protocol is assigned to the network flow. Current processors are not powerful enough 
to achieve 100 Gbps throughput for the regular expression matching. The throughput of L7 
decoder is less than 1 Gbps per one C P U core even for the latest Xeon processors [31, 32]. 
In order to achieve 100 Gbps throughput, it is necessary to use highly optimized hardware 
accelerators. 

2.2.2 F P G A Based Accelerators 

Table 2.2 shows how requirements on CPUs are growing with increased link speed. As a 
processor-based network monitoring is only applicable to 10 Gbps, hardware acceleration is 
needed for faster links. 

Paxson et al. [ ] argue that these performance requirements should be met by leveraging 
a high degree of possible parallelism that is inherent to network traffic monitoring. F P G A s , 
as well as ASICs, may deliver a vast support of parallelism. However, only F P G A s enable 
possibility to prototype and implement critical components for various network applications 
at the highest speeds while the optimized ASICs follow broad deployment a few years 
later. F P G A s are extensively used in the so-called hardware-accelerated network cards to 
implement the first line of network traffic processing such as monitoring, forwarding and 
other applications [1, 44]. 

F P G A s consist of programmable routing network and basic building blocks such as look­
up tables (LUTs), registers, and block memories. A particular setup of the routing network 
defines the interconnection of these components. The LUTs serve to implement combi­
national logic while registers and block memories serve to keep the stateful information. 
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Figure 2.6: Increasing the throughput by multiple pattern matching units. 

Modern F P G A s contain millions of LUTs and registers and thousands of block memories 
with the total capacity of hundreds M B [ i]. A l l these components may, theoretical, work 
in parallel, independently of each other, and provide enormous computation power with low 
energy consumption in tens of Watts per chip. Moreover, F P G A s targeting the network 
market provide more than a hundred of high-speed transceivers allowing for connection to 
high-speed network links (e.g. high-end Virtex UltraScale-l- F P G A offers up to 4 Tbps of 
aggregated transceiver throughput [93]). 

The crucial task is to transform a high-level description of the circuit (for example, writ­
ten in V H D L or SystemC) into an effective implementation in F P G A from the perspective 
of meeting the timing and resource constraints. 

In recent years, many researchers have proposed high-speed pattern matching hardware 
architectures, which utilize the fine-grained parallelism of F P G A technology. Mapping of 
the regular expressions matching to an F P G A was first explored by Floyd and Ullman [26], 
who showed that pattern matching realized by a Nondeterministic Finite Automaton (NFA) 
can be implemented using a programmable logic array. Sindhu et al. [ !] proposed an 
efficient mapping of NFAs to F P G A and Clark et al. improved the implementation by a 
shared decoder [12, 13] which significantly reduced the amount of consumed logic resources. 
The A M T H (At Most Two-Hot encoding) architecture [{ ] provides another improvement 
of the N F A implementation in the F P G A . The combination of one-hot and binary encoding 
reduces the amount of flip-flops, representing the N F A states. 

Several authors introduced an optimized mapping of Perl Compatible Regular Expres­
sions (PCRE) , which are widely used in Intrusion Detection Systems (IDS), to the F P G A . 
Sourdis et al. published in [ ] an architecture that allows for the sharing of character 
classes, static sub patterns and introduced components for efficient mapping of constrained 
repetitions to the F P G A . L in et al. created an architecture for sharing infixes and suf­
fixes [58]. Nevertheless, these optimizations are relevant only for large sets of P C R E s in 
IDS systems. 

The throughput of a pattern matching circuit is determined by the number of bytes 
processed within one clock cycle and frequency of the hardware matching unit. The F P G A 
technology limits the maximum frequency to several hundreds of MHz. To increase the 
processing speed, the N F A can be modified to process multiple bytes per one clock cy­
cle [8]. Unfortunately, with the increasing size of the N F A input, the amount of N F A 
transitions grows exponentially. As a result, the hardware matching unit consumes more 
F P G A resources and its frequency decreases rapidly. 
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The throughput can be increased by introducing multiple parallel matching units. These 
units need additional logic resources and buffers to distribute the network data to the 
matching units and join the results. The overhead of parallel processing is illustrated in 
Fig. 2.6. First, the splitter has to assign the sequence number for every packet and store the 
packet to a buffer. The packet data are then sent with a lower rate to one of the parallel 
matching units. The units perform pattern matching and send the results to a binder, 
which contains buffers to put the results in the right sequence order. 

Introducing the parallel matching units can improve the matching speed up to 100 Gbps, 
but only at the cost of significant overhead in terms of latency, F P G A logic resources 
and memory buffers. This overhead is avoided by focusing on highly optimized hardware 
architectures with high throughput and low latency [59, 60]. 

2.3 Hash Function Design 

Hash functions are often employed in hardware accelerators of network monitoring systems. 
They are responsible for searching in the rule table, for distributing data to process units and 
for storing the flows data to database. For example, in the distribution unit, a hash function 
is called for each packet. In order to maximize the performance of network monitoring 
systems, hashing has to be not only of a high quality, but also fast. 

A hash function is a mathematical function h that maps an input binary string (of 
length ID) to a binary string of fixed length (IR), h : D —>• R, where ID > IR- The 
output value is called a hash value or simply hash [50]. The definition of hash function 
implies the existence of collisions, i.e. h(d) = h(ď), where d,ď G D are two different input 
messages. A n important requirement imposed on hash functions is that a small change in 
the input should generate a large change in the output, which is called the avalanche effect. 
Good hash functions usually satisfy both criteria - maximizing the avalanche effect and 
minimizing the collision rate. 

Two major types of hash functions exist, cryptographic and non-cryptographic. The 
cryptographic hash functions are suitable for cryptographic applications [86]. They have to 
satisfy many requirements, e.g.: 

• practical efficiency - for d G D it is computationally efficient to find a hash value 
r G R s.t. h(d) = r: 

• first preimage resistance (one-way) - for r G R it is computationally infeasible to find 
an input value d G D s.t. h(d) = r: 

• second preimage resistance (weak collision resistance) - for d G D it is computationally 
infeasible to find a value ď G D, s.t. ď / d and h(ď) = h(d); 

• collision resistance (strong collision resistance) - it is computationally infeasible to 
find two distinct values ď,d G D, s.t. h(ď) = h(d). 

These requirements lead to more complicated construction of hash functions and, hence, 
the cryptographic hash functions need more time to compute the hash value than the non-
cryptographic hash functions. The cryptographic hash functions have many applications, 
for example, in message authentication tools, digital signatures or in other forms of authen­
tication. 
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Figure 2.7: Merkle-Damgard construction of hash functions. 

The non-cryptographic hash functions have to satisfy weaker requirements, but the 
practical efficiency and collision resistance are also important. These properties are often 
used to quantify the hashing quality of non-cryptographic hash functions. 

Because the input size is usually arbitrary, hash functions are often designed using a 
pipelined (Merkle-Damgard) construction, see Fig. 2.7. It means that an input message is 
divided into blocks of a fixed size and processed block by block. The block is processed one 
at a time with an inside reduction function, each time combining the input block with the 
output of the previous round. The size of the output is typically the same as the size of 
the hash value. The last round produces the hash value. The last block of the message is 
typically padded with zeros to the required size. 

The non-cryptographic hash functions have many applications, for example, in hash 
tables, search duplication, caches, bloom filters [61, 71, 36]. The hash table is a data 
structure used to implement an associative array, a structure which maps keys to values, 
see Figure 2.8. Hash tables have many applications, such as database indexing, object 
representation in programming languages or sets. Because hash functions produce collisions, 
it is necessary to resolve them in the hash tables. A well-known technique is separate 
chaining, where each slot in the hash table refers to a linear list that contains the records 
having the same hash. While determining the slot for a given input is performed in constant 
time, a particular record have to be searched sequentially. Next approach the collision 

h(K1) 

h(K3) 

h(K2) 

K1 K1 

K2 

Figure 2.8: Example of hash table with size 6 slots, utilizing the separate chaining. 
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Figure 2.9: Example of inserting key to hash table with Cuckoo hashing 

resolving is the open addressing. This method searches (using some algorithms) for an 
alternative position in the hash table, where to store the data. Another approach, cuckoo 
hashing [68], uses two hash functions. A key is hashed by both hash functions and the 
data are stored to an empty slot indexed by one of them. If both slots are occupied, one 
of the keys stored in the table is rehashed by the other hash function and stored there, see 
example in Figure 2.9. 

Many (non-cryptographic) hash functions have been proposed, for example, DJBHash [6], 
DEKHash [ ], F V N (Fowler-Noll-Vo) [ ], One At Time and Lookup3 [36]. MurmurHash2 
and MurmurHash3, which are utilized in many open source projects, are hash functions 
suitable for general hash-based lookup [2]. CityHash is a family of non-cryptographic 
hash functions designed for fast hashing of strings [ ]. Additional details are available 
in Paper II. 

In addition to the general purpose non-cryptographic hash functions, there are also 
exist application-specific hash functions. They address specific properties of a particular 
application and, therefore, can be better (with respect to these properties) than the general-
purpose hash functions. For hashing of network flows, the so-called X O R folding has been 
proposed [9]. Its implementation works with inputs of fixed size and is optimized in terms 
of performance. 

SHMHasher [ ] is a framework developed for evaluation of hash functions. It pro­
vides a test suite to evaluate the distribution, collision and performance properties of non-
cryptographic hash functions. It contains many hash functions that can be used for a 
comparison. We used this framework in Paper V to measure the performance of hash 
functions. 

2.4 Evolutionary Design 

Evolutionary algorithms (EAs) [75] are inspired by the principles of biological evolution 
which is seen as an excellent optimization system. EAs are a class of stochastic optimization 
algorithms in which a population (a set) of candidate solutions is modified by genetic 
operations in order to solve a particular optimization problem. The quality of candidate 
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solutions is evaluated by means of the fitness function. A general evolutionary algorithm 
works as follows: 

1. Initialize the population of candidate solutions (individuals). 

2. Evaluate all individuals to determine their fitness value. 

3. If termination conditions are met then stop. The result of E A is the individual with 
the best fitness value. 

4. By means of a selection method select individuals from the population to a set of 
parents. 

5. Create a set of offspring by applying genetic operators on the parents: 

(a) Reproduction - copy an individual to the offspring set unchanged 

(b) Recombination - exchange some parts of two or more individuals 

(c) Mutation - randomly modify some parts of an individual 

6. Create a new population using the set of parents and offspring 

7. Continue with step 2. 

Many variants of evolution algorithms have been proposed in the literature, for exam­
ple, evolution strategy [ ], differential evolution [73], genetic algorithm [15] and genetic 
programming [52]. 

Genetic programming (GP) [52, 53] is primarily used for automated design of computer 
programs. Candidate programs are represented in memory as syntactic trees in the so-called 
tree version of GP. Nodes of the tree represent operations (arithmetic, logic, control etc.) 
and leaves contain terminal symbols such as program's inputs or constant values. During 
evolution, every candidate program is executed on a training data set in order to obtain its 
fitness value. Genetic operators randomly modify one candidate tree (mutation) or two or 
more candidate trees (swapping of subtrees) in crossover. The resulting tree is evaluated 
using a test set to validate its behavior on unseen data. 

Other variants of G P use a different encoding of candidate programs. Cartesian G P 
and Linear G P are described in greater detail in the next chapter because they are relevant 
for this thesis. 

2.4.1 Cartesian Genetic Programming 

Cartesian genetic programming (CGP) has been developed by Miller since 1999 [ ] and has 
been utilized in many applications as summarized in monograph [62]. A typical application 
of C G P is evolutionary circuit design. The idea of evolvable hardware and automated circuit 
design by means of artificial evolution was introduced by Higuchi et al. in 1993 [ ]. A 
recent survey of the field covering key subfields (evolutionary hardware design and adaptive 
hardware) is available in [79]. In C G P , a candidate solution is modeled as a directed acyclic 
graph and represented in a 2D array of nc x nr processing nodes. Each node can perform 
one of the n a-input functions specified in - set. The setting of n c , nr and - significantly 
influences the performance of C G P [63, 29]. 

The remaining parameters of C G P are the number of primary inputs (n^), the number 
of primary outputs (n 0), and the level-back parameter (L) specifying which columns can 
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z Q - i Q - i Q - z Q -
Figure 2.10: Example of a combinational circuit in C G P with parameters: na = 2, m = 5, 
n o = 2, L = 4, nc = 4, n r = 2, - = { A N D (0), OR (1), X O R (2)}. Gates 8, 11 and 12 
are not utilized. Chromosome: 2,3,0; 4,3,2; 5,4,1; 2,0,1; 5,7,0; 5,6,1; 0,6,2; 7,6,2; 9, 10. The 
last two integers indicate the outputs of the circuit. 

be used as inputs for a given gate. The primary inputs are labeled 0 . . . — 1. The outputs 
of all nodes are labeled tii — 1... nc • nr + tii — 1 and considered as addresses where the 
connections can be fed to. In the chromosome, each n a-input node is then encoded using 
na + 1 integers (n a inputs and a node function). Finally, for each primary output, the 
chromosome contains one integer specifying the connection address. In C G P , the encoding 
is redundant because some nodes, some of their inputs or some primary inputs need not be 
used in the phenotype. 

Algorithm 1: C G P 
Input: C G P parameters, fitness function, original circuit p 
Output: The highest scored individual and its fitness 

1 P <— CreatelnitialPopulation(p); 
2 EvaluatePopulation(P); 
3 while (terminating condition not satisfied) do 
4 
5 
6 

a <— SelectHighest-scored-individual(P); 
i f fitness (a) > fitness (p) then 
|_ V <~ a; 

P <— {p} U {A offspring of p created by mutation}; 
EvaluatePopulation(P); 

9 return p, fitness(p); 

C G P utilizes a search method known as 1 + A, where A is the population size [62]. The 
initial population is randomly generated or seeded using conventional solutions. A new 
population consisting of A individuals is generated by applying the mutation operator on 
the best individual of the previous population. The mutation operator randomly modifies 
h integers of the chromosome. The evolution is terminated after producing a given number 
of generations or a suitable solution is discovered, see Algorithm 1. 

In the standard C G P used for combinational circuit evolution, the number of primary 
inputs Hi and outputs n0 is set accordingly to the requirements of the target circuit and 
- contains a set of Boolean functions. Figure 2.10 shows an example of a circuit and a 
corresponding chromosome. 

A candidate circuit is evaluated by checking its responses for all possible input combi­
nations. In order to accelerate the fitness function evaluation on a common processor, a 
bit-level parallel simulation of a candidate combinational circuit is employed. Contrasted 
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double L G P (double x ){ 
r[0] = x 

r[0] * r[0] 
r[2] + r[0] 
r[l] + r[0] 
r[l] + r[4] 

} 
Figure 2.11: Example of a candidate program in L G P . 

to a naive simulation, in which 2ni vectors are sequentially submitted for evaluation (where 
Hi is the number of primary inputs), the bit-level parallel simulation exploits the fact that 
current processors enable performing bitwise operations over two u>-bit operands in paral­
lel [62]. Hence, the input vectors are grouped into u>-bit words and simulated in parallel. 
The obtained speedup is w on a u;-bit processor, for example, 64 x on a 64 bit common 
personal computer. 

Although various new designs have been discovered using the standard C G P , the method 
is not directly applicable for the design of large combinational circuits because the fitness 
evaluation time grows exponentially with the number of primary inputs. Moreover, the 
number of requested fitness evaluations can easily go into millions, even for small (but 
nontrivial) circuits such as 4 bit multipliers. This problem has partially been eliminated by 
introducing circuit decomposition techniques at the representation level [87, 81] and formal 
verification methods in the fitness function [89]. Other successful applications of C G P have 
been proposed in domains in which candidate circuits are not evaluated using all possible 
input combinations (see, e.g., hash functions [ ], image operators [88] or classifiers [ ]). 

The modern F P G A s contain 4- or 6-inputs LUTs. There are only a few papers dealing 
with the evolutionary circuit design at the level of 4-input LUTs [10, 41] and no paper 
dealing with 6-input LUTs. Unfortunately, the bit-level parallel simulation is inefficient for 
circuits consisting of LUTs because their logic function has to be emulated using a sequence 
of binary logic operations. As discussed in Paper I, employing C G P with 6-input LUTs 
(each of them encoded using 64 bits in the chromosome) would lead to long chromosomes, 
complex search spaces and very inefficient search procedures. 

2.4.2 Linear Genetic Programming 

Linear genetic programming (LGP) [7, 67, 92] is a variant of G P which uses a linear repre­
sentation of candidate programs. Every program is composed of operations (called instruc­
tions) that are executed in a register machine. Operands, intermediate results and final 
results are stored in registers or in an external memory. Example of a candidate program 
is given in Figure 2.11. Linear G P evolves sequences of instructions in a machine language. 

A n instruction is typically represented by the instruction code, destination register 
and two source registers, for example, [+,rO,rl,r2] represent the operation rO = r l + r2. 
The program result is returned in a predefined register. The number of instructions in 
a candidate program varies during the evolution, but the minimal and maximal size are 
defined. The number of registers available in the register machine is constant. The function 
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set known from G P corresponds with the set of available instructions. The instructions are 
general-purpose (e.g., addition and multiplication) or domain-specific (e.g., read sensor 1). 
Conditional and branch instructions are important for solving many problems. As in tother 
branches of GP, protected versions of some instructions (e.g., a division returning a value 
even if the divisor is zero) are employed in order to execute all programs without exceptions 
(such as division by zero). 

L G P is usually used with a tournament selection, one-point or two-point crossover and 
a mutation operator modifying either the instruction type or the register index. Advanced 
genetic operators have been proposed for L G P , for example [21, 22]. 

Like in other G P branches, the most computationally expensive part of L G P is the 
fitness function evaluation. In order to obtain the program's fitness score, the candidate 
program is executed on a set of training inputs, its outputs are collected and compared 
with desired values. 

A n individual can contain unused code parts, called introns, which do not affect the 
fitness value. However, the introns slow down the program execution. If introns are detected 
and eliminated, the evaluation time can be significantly reduced. According to [7], the 
existence of introns is important for the evolution process. Introns may act as a protection 
that reduces the effect of the variation process on the effective code. 

The fitness function is typically focused on functionality, but other parameters of can­
didate programs can be optimized, such as the number of used instructions, execution time 
or power consumption of the processor. 

2.4.3 Evolution of Hash Functions 

Hash functions were successfully designed by evolutionary algorithms in recent years. The 
main advantage of EAs is that they are capable of producing high-quality hash functions 
optimized for a given application domain. Hash functions were evolved with genetic algo­
rithms [76], tree G P [ ], grammatical evolution [ ] and Cartesian G P [91]. Both scenarios 
- application-specific hash functions (see, e.g., [42, 47, 51]) and general-purpose hash func­
tions (see, e.g., [24, 39]) - were addressed in the literature. Relevant details are given in 
papers II, III, IV and V . 

The fitness functions used in EAs developed for hash function design have been mostly 
focused only on the quality of hashing, usually expressed in terms of the collisions resistance, 
avalanche effect and distribution of outputs. The execution time of hash functions were not 
addressed by the G P literature before my research has been initiated. 

2.5 Multi-Objective E A s 

Previous chapters have dealt with single-objective EAs that produce solutions with respect 
to only one objective [18]. In many real-world problems such as the hash function design 
problem discussed in chapter 2.4.3, there are two or more optimization objectives that are 
conflicting. A simple approach is to combine several objectives into one (scaled) fitness 
function. Modern EAs, however, provide many useful techniques for truly multi-objective 
optimization [23, 16, 49]. 

A general multi-objective optimization problem is defined as follows: 
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Table 2.3: Solution relations in a multi-objective approach [23]. 
relation notation interpretation 
strictly dominates x y fn(x) > /n(y)Vn 
dominates x ~< y fn{x) > /„(y)Vn A 3i : fi(x) > fi{y) 
weakly dominates x -< y fn(x) > /n(y)Vn 
incomparable x (I y -.(x if! y) A -.(y ^ x) 
indifferent 

x ~ y = /n(y)Vn 

minimize/maximize = / 2(a;),/ 3(a;), .../„(a;)) 
subject to > 0, i = 1 , m , (2-1) 

where /$ is the objective (fitness) function, n is the number of objectives and x is an 
individual, gi and /ij are inequity and equity constraints, where m and p is the number 
of constrains. Various multi-objective algorithms have been proposed. These algorithms 
use different approaches to combine the optimization criteria and select new candidate 
solutions. A straightforward approach is to assign a weight for each fitness function. The 
final fitness function is the sum of the weighted fitness values: 

n 

fitness = y]wjfi(x), (2.2) 
i=i 

where Wi is the weight for i-th fitness function. Another approach is based on lexicograph­
ical sorting, in which individuals are gradually sorted by fitness values according to user 
preference. For example, V E G A algorithm [' '] randomly divides the population into n 
subsets, where n is the number of objectives. Each subset is evaluated by one fitness func­
tion. The new population is formed by individuals from all subsets selected by a selection 
algorithm based on the fitness value. 

The most successful multi-objective algorithms are based on the principle of Pareto dom­
inance. We say that solution x Pareto dominates solution y if the following two conditions 
are fulfilled: 

1. Solution x is better than solution y in at least one objective. 

2. Solution x is no worse than solution y in all objectives (a; -< y). 

This is formally captured by relation (the objective is to maximize Fi): 

x^y: Vnf„(x) > fn(y) A 3i : fox) > fi{y) (2.3) 

Table 2.3 summarizes all important relations between two solutions. 
The set of solutions (out of all solutions) that are not dominated by any other solution 

forms Pareto-optimal front or Pareto-optimal set. Pareto front can also be constructed using 
solutions from a given population, i.e. using a subset of all possible solutions. Fig. 2.12 
shows Pareto front (black) containing solutions which dominate the other solutions (white) 
in the population. The ultimate goal of the multi-objective algorithm is to find the Pareto-
optimal set of solutions. 

Evaluation algorithms utilizing the Pareto dominance employ different strategies to se­
lect individuals to the offspring population. Their main purpose is to maintain the diversity 
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Figure 2.12: Individuals on the Pareto front (black points) dominate the remaining indi­
viduals (white points) in the population. fa and fa have to be minimized. 

of the population. Selected multi-objective algorithms are described in detail in the next 
paragraphs. 

Strength Pareto Evolutionary Algorithm 2 

The Strength Pareto Evolutionary Algorithm 2 (SPEA2) was proposed by Zitzler et al. in 
2001 [98, 48]. SPEA2 uses two sets of individuals (population and archive). The archive 
includes all non-dominated individuals from populations. If the archive is oversized, the 
number of individuals in the archive is reduced by the truncation operation; otherwise, if 
the archive is undersized, it is filled by the best dominated individual(s) from the popula­
tion. The truncation operation performs the nearest neighbor algorithm on the individuals 
included in the archive. The individual with a minimal distance to another individual is 
chosen to be removed from the archive. The truncation operation removes individuals from 
the archive until the required size of the archive is reached. 

SPEA2 uses a binary tournament selection with replacement, recombination and muta­
tion for creating the offspring population. 

Pareto Envelope-based Selection Algorithm II 

Pareto Envelope-based Selection Algorithm II (PESA-II) [14, 28] employs a region-based 
selection, which enables to reduce the computational time for creating Pareto fronts. The 
search space is divided into hyper-boxes. Fitness functions assign every individual to a 
hyper-box. Using a standard selection method, a hyper-box is selected. Parents are ran­
domly chosen from a given hyper-box and using standard genetic operators (crossover and 
mutation) offspring individuals are created. The selection algorithm operates with hyper-
boxes instead of individuals. 
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Figure 2.13: A cuboid used to determine the crowding distance of individual i. 
Non-dominated Sorting Genetic Algorithm 

One of the most popular multi-objective algorithms is Non-dominated Sorting Genetic 
Algorithm II (NSGA-II) proposed by Deb et al. in 2002 [17, 20, 37]. The algorithm is 
based on partitioning individuals from population P to non-dominated fronts. First front 
F\ contains all non-dominated solutions. Every next front Fi is constructed as Pareto front 
for the population but individuals already included in i , F^ 2 - - are not considered. Each 
solution is assigned with a rank, which corresponds to the front (prank = i for Fi). A naive 
approach to create the non-dominated fronts requires 0 ( M i V 3 ) operations, where M is the 
number of objectives and iV is the population size. 

The NSGA-II proposes a fast-non-dominated sort, see Algorithm 2, which requires 
0(MN2) operations. In this algorithm, the set Sp contains individuals from the popu­
lation that are dominated by individual p. The number of individuals which dominate p is 
stored in np. Each individual p in the first front has np = 0. Creating next fronts is based 
on knowledge of Sp and np. For each solution in Fi, we visit each member q from Sp and 

R, r> 

Rejected Recombination 
Mutation 

Figure 2.14: NSGA-II main algorithm step scheme. 
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Algorithm 2: Fast-Non-Dominated-Sort(P) 
Input: P - a population 
Output: F - a set of fronts of individuals 

i F i = «; 
2 forall p e P d o 

/ * Initialize a l l individuals in population */ 

3 
4 
5 

6 
7 

8 
9 

10 
11 
12 

S p = 0; 
n p = 0; 
forall q € P do 

/ * Compare a l l individuals */ 
if p -< q then 

L 5 p = 5pU{(jf}; 

else if p y q then 

P np + 1; 

/ * Create f irs t front from non-dominated individuals */ 
if np = 0 then 

Prank 1 j 
F i = F i U {p}\ 

13 i = 1; 
/ * Create fronts of individuals. 

14 while F 7̂  0 do 
*/ 

15 
16 

17 
18 
19 
20 
21 

Q = 0; 
forall p € Fi do 

/ * Remove individuals in front Fj from population and construct 
front from non-dominated individuals */ 

forall q G Sp do 
nq = n q - 1; 
if n g = 0 then 

Qrank i + 1, 
Q = Q u { g } ; 

i = i + 1; 
F = Q; 

/ * Return constructed fronts of individuals * / 
24 F = ( F i , F 2 . . . ) ; 
25 return F ; 
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Algorithm 3: Crowdmg-Distance-Assignment^ 
Input: Fi - a set of individuals 
Output: / - individuals with their crowding distance value 

1 l = \Fi\ ; 
2 forall i G Fi do 

[_ ^distance 0. 3 
4 forall m G M do 

/ = sort(Fi, m): 

I[^-]distance — I\P\distance — CO; 
for i = 2 to (I - 1) do 

1[i] distance I [i] distance H ' f m o x j f m i n ^ 3 fmax 1 J m J J 5 

9 return /: 

decrement the domination value nq = nq — 1. If any member gets n 9 = 0, we put it to the 
next front Fi+\. This process continues until all fronts are identified. 

The crowding distance assignment algorithm (Algorithm 3), differentiates individuals 
inside a front. The algorithm estimates the perimeter of the cuboid formed by the nearest 
neighbors to determine the crowding distance ^distance: see F i gure 2.13. The value ^distance 
is the average side length of the cuboid. The algorithm requires to sort individuals for each 
objective value. The boundary solutions are assigned with an infinite distance value. Other 
solutions are represented by a normalized distance of two nearby individuals. The crowding 
distance is the sum of these values for each objective. The normalization is computed using 
/ ™ m and f^ax values, which are the minimum and maximum values of m-th objective 
function. 

The main steps of NSGA-II algorithm are shown on Figure 2.14. Parent population Pi 
and offspring population Qt, both of size N, are combined to auxiliary population Rt and 
sorted using the fast non-dominated sorting algorithm (Alg. 2). Each solution is assigned to 
a front. New parent population Pt+i is composed by adding individuals from fronts F\,Fi... 
until the number of individuals in the population is N. When the number of individuals 
in Pt+i exceeds N, the crowding distance algorithm (Alg. 3) is used to select additional 
individuals according to the distance of the parent population Pt+i- A n offspring population 
Qt+i is created from Pt+i using standard genetic operation: selection, recombination and 
mutation. 

Non-dominated Sorting Genetic Algorithm III (NSGA-III) is a new version of NSGA-II 
intended for many-objective problems [19, 35]. A many-objective problem has more ob­
jectives than a multi-objective problem, typically more than five. The main difference is 
in the selection algorithm, where it is important to maintain the diversity of the popula­
tion. NSGA-III employs a different strategy for including candidate individuals to the new 
population. 
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Chapter 3 

Research Summary 

This chapter summarizes the research process conducted in order to write this thesis. Chap­
ter 3.1 introduces the methodology adopted to fulfill the objectives specified in Chapter 1. 
Chapter 3.2 presents selected papers of the author, their abstracts and contributions. Chap­
ter 3.3 lists other papers of the author that are not included in this thesis. 

3.1 Methodology 

The overall objective addressed in this thesis is to improve key parameters of selected compo­
nents of high-speed network monitoring systems. Based on our survey of the state-of-the-art 
approaches to network monitoring reported in Chapter 2, S D M and its hardware/software 
implementation developed in [ ] has been chosen as a framework suitable for arranging 
and performing our experiments. 

3.1.1 The Use of Evolutionary Computation Methods 

The proposed approach is based on employing well-known G P algorithms; L G P for program 
design and C G P for circuit design and optimization. As it is necessary to optimize not only 
one parameter of the components (for example, the quality of processing), the proposed 
design/optimization approach has to consider more design objectives. In the thesis, two 
approaches have been developed: 

• a single-objective approach based on constraining one of the objectives (e.g. by spec­
ifying the maximum acceptable latency) and optimizing the other objective (e.g. the 
quality) and 

• a truly multi-objective method optimizing all design objectives together. 

In order to accelerate the design process, a parallel L G P implementation has been 
developed and evaluated. Moreover, as computing the exact values of some component's 
parameters (e.g. the exact program execution time) is relatively time consuming, we had to 
cheaply estimate these values to obtain the appropriate fitness value. Because evolutionary 
algorithms are non-deterministic heuristics, their outcomes have to be statistically analyzed 
and interpreted. It has systematically been done in all the case studies reported in the 
papers constituting this thesis. 
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3.1.2 Selection of Target Components 

In order to evaluate the proposed EA-based design and optimization approach, we selected 
two components - a circuit implementing a simplified application protocol classifier and a 
software hash function. We believe that these two components provide many properties 
and features that characterize the type of design problems that have to be addressed in 
systems such as S D M . The most interesting features are: 

• We do not usually know a "perfect implementation" of these components in terms of 
functionality. The design of these components is usually based on experimental work 
whose objective is to minimize an error metric on various data sets. 

• In both cases, performance (in other words, delay) has to be optimized in addition to 
the functionality. 

• One of the components (the classifier) is implemented as a digital circuit; the second 
component (the hash function) is primarily implemented as a software routine. There 
is thus an opportunity to investigate if, in principle, the same methodology can be 
applied for their design and what are the differences. 

• Hash functions are developed as either application-specific or general-purpose func­
tions. There is an opportunity to investigate if one evolutionary design method can 
lead to acceptable results for both the scenarios. 

3.1.3 Validation of Evolved Implementations 

EAs require some training data sets in order to establish a fitness value. Other data sets 
are needed to validate the evolved solutions. In both our case studies, we used real network 
data collected by co-authors of our papers to evaluate and validate the evolved solutions. 
We also used additional real world data and synthetic data to evolve general-purpose hash 
functions. We implemented state-of-the-art classifiers and hash functions to compare the 
results they produce with evolved solutions. In the case of circuit implementations we 
employed industrial design tools for F P G A s to obtain the area and delay of evolved circuits. 
In the case of hash functions, the execution time was measured on common processors. 

3.2 Papers 

This chapter presents the papers included in this thesis. For each paper, we present an 
abstract, a brief description with motivation and a summary of the main contributions. 
Full texts of all the papers are given in section Related Papers. 

3.2.1 Paper I 

G R O C H O L David, S E K A N I N A Lukas, K O R E N E K Jan, Z A D N I K Martin and K O S A R 
Vlastimil. Evolutionary Circuit Design for Fast FPGA-Based Classification of Network 
Application Protocols. Applied Soft Computing. Amsterdam: Elsevier Science, 2016, vol. 
38, no. 1, pp. 933-941. ISSN 1568-4946. 

Author participation: 40% 
Journal Impact Factor (IF): 3.541 
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Abstract 

The evolutionary design can produce fast and efficient implementations of digital circuits. It 
is shown in this paper how evolved circuits, optimized for the latency and area, can increase 
the throughput of a manually designed classifier of application protocols. The classifier is 
intended for high-speed networks operating at lOOGbps. Because a very low latency is the 
main design constraint, the classifier is constructed as a combinational circuit in a field 
programmable gate array ( F P G A ) . The classification is performed using the first packet 
carrying the application payload. The improvements in latency (and area) obtained by 
Cartesian genetic programming are validated using a professional F P G A design tool. The 
quality of classification is evaluated by means of real network data. A l l results are com­
pared with commonly used classifiers based on regular expressions describing application 
protocols. 

Contribution 

In order to identify the application (or the application protocol) which the network traffic 
belongs to, one has to inspect one or several packets with a payload. The main difficulty is 
that the time to process one packet is less than 7ns in the case of modern lOOGbps links. 
This work is the extension of our initial work on the classifier design [30]. The main goal of 
the work is to show that these circuit classifiers can be optimized by means of Cartesian G P 
in order to reduce their latency and resources requirements. The improvements in latency 
and area obtained by C G P are validated by professional F P G A design tools. A l l results 
are compared with commonly used classifiers on several data sets. 

This work introduces a new concept of the hardware classifier which is constructed as 
a fast-combinational circuit performing pattern matching over application protocols to be 
classified. We proposed accurate and relaxed versions of the classifier. Their circuit opti­
mization by means of Cartesian GP led to 48-2% improvement in the area in FPGA (LUTs) 
and 19.8% improvement in latency with respect to an accurate human-designed classifier. 
Table 6 in Paper I shows results of synthesis for proposed classifiers. In order to compare 
the proposed solutions with the state-of-the-art classifiers from the literature, parameters of 
Yamagaki/Clark and AMTH circuit classifiers were included to this table. The classifiers 
were evaluated on real-network data. 

3.2.2 Paper II 

G R O C H O L David and S E K A N I N A Lukas. Evolutionary Design of Fast High-quality Hash 
Functions for Network Applications. In: G E C C O '16 Proceedings of the 2016 on Genetic 
and Evolutionary Computation Conference. New York, N Y : Association for Computing 
Machinery, 2016, pp. 901-908. ISBN 978-1-4503-4206-3. 

Author participation: 60% 
Conference rank: A (Core) 

Abstract 

High-speed networks operating at lOOGbps pose many challenges for hardware and soft­
ware involved in the packet processing. As the time to process one packet is very short the 
corresponding operations have to be optimized in terms of the execution time. One of them 
is non-cryptographic hashing implemented in order to accelerate traffic flow identification. 
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In this paper, a method based on linear genetic programming is presented, which is capable 
of evolving high-quality hash functions primarily optimized for speed. Evolved hash func­
tions are compared with conventional hash functions in terms of accuracy and execution 
time using real network data. 

Contribution 

One of the most frequently called functions in the flow processing is the hash function, 
which determines a memory address where the data of packet (flow) are stored. The goal 
of this work is to propose and evaluate a special hash function for flow hashing which has 
a good quality and is faster than the state-of-the-art hash functions. The hash function 
is constructed as a sequence of instructions for a C P U by means of a parallel linear G P 
exploiting the island model. In order to minimize the execution time, the hash function 
is constructed using a limited number of simple instructions. The evolved hash functions 
were compared with the hash functions available in the literature on real network datasets. 

The paper shows that parallel single-objective LGP is capable of producing special hash 
functions for flow hashing. The program size is restricted to 12 instructions which was 
determined experimentally. Only simple instructions are used to minimize the execution 
time. The fitness function is based on the number of collisions and penalizing a solution 
generating many collisions on a given training data set. The evolved hash functions were 
compared with 11 hash functions available in the literature on real network data sets. The 
quality of hash functions is compared in Tab. 2 in Paper II. The best-evolved hash function 
has almost identical quality of hashing as the other hash functions but provides 3% improve­
ment to the special network hash function (XORhash). Table 3 in Paper II compares the 
execution time of the hash functions on the CPU. The best-evolved hash function provides 
26.9% improvement with the respect to the Murmur hash 3, which is typically used in SDM 
and which, on the other hand, provides a slightly lower number of collisions. 

3.2.3 Paper III 

G R O C H O L David and S E K A N I N A Lukas. Multiobjective Evolution of Hash Functions 
for High Speed Networks. In: Proceedings of the 2017 I E E E Congress on Evolutionary 
Computation. San Sebastian: I E E E Computer Society, 2017, pp. 1533-1540. ISBN 978-1-
5090-4600-3. 

Author participation: 70% 
Conference rank: B (Core) 

Abstract 

Hashing is a critical function in capturing and in an analysis of the network flows as its 
quality and execution time influences the maximum throughput of network monitoring 
devices. In this paper, we propose a multi-objective linear genetic programming approach 
to evolve fast and high-quality hash functions for common processors. The search algorithm 
simultaneously optimizes the quality of hashing and the execution time. As it is very 
time consuming to obtain the real execution time for a candidate solution on a particular 
processor, the execution time is estimated in the fitness function. In order to demonstrate 
the superiority of the proposed approach, evolved hash functions are compared with hash 
functions available in the literature using real-world network data. 
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Contribution 

This work extends Paper II by including a multi-objective approach to the evolution pro­
cess. The approach is based on the NSGA-II algorithm and linear GP. The multi-objective 
algorithm uses two fitness functions. The quality fitness function is taken from the previous 
work. The second fitness function estimates the execution time. Another contribution of 
this work is a new approach developed to quickly estimate the execution time of a can­
didate program. The execution time is estimated as a weighted number of instructions, 
where different weights are assigned to different types of instructions, based on their com­
plexity. The estimation algorithm takes into account some features of modern CPUs, such 
as SIMD (Single Instruction Multiple Data) executions. The evolved hash functions were 
compared with hash functions available in the literature and hash functions obtained from 
our previous work. 

This work resulted in an extension of LGP algorithm with a multi-objective approach. 
The quality of the execution time estimation is evaluated using randomly generated pro­
grams. The multi-objective method provided many non-dominated hash functions. Some of 
them are better than the commonly used hash functions and the specialized hash functions 
obtained by using the single-objective LGP with respect to chosen objective. 

3.2.4 Paper I V 

G R O C H O L David and S E K A N I N A Lukas. Multi-Objective Evolution of Ultra-Fast General-
Purpose Hash Functions. In: European Conference on Genetic Programming 2018. Berlin: 
Springer International Publishing, L N C S 10781, 2018, pp. 187-202. ISBN 978-3-319-77553-
1. 

Author participation: 70% 
Conference rank: B (Core) 

Abstract 

Hashing is an important function in many applications such as hash tables, caches and 
Bloom filters. In the past, genetic programming was applied to evolve application-specific 
as well as general-purpose hash functions, where the main design target was the quality 
of hashing. As hash functions are frequently called in various time-critical applications, 
it is important to optimize their implementation with respect to the execution time. In 
this paper, linear genetic programming is combined with NSGA-II algorithm in order to 
obtain general-purpose, ultra-fast and high-quality hash functions. Evolved hash functions 
show a highly competitive quality of hashing but significantly reduced execution time in 
comparison with the state-of-the-art hash functions available in the literature. 

Contribution 

Paper II and Paper III have dealt with application-specific hash functions. This paper is 
focused on general-purpose hash functions that accept variable-length inputs, instead of 
a fixed-length input, which we considered in network hash functions. This change in the 
specification of hash functions led to the modification of the execution time estimation 
algorithm. Hence, the candidate (hash) program has to be wrapped to a loop, in which the 
input stream is processed block by block. 

The evolved hash functions were compared with hash functions available in the literature 
on randomly generated data sets and real-world data sets (user passwords, network data, 
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Twitter and Facebook posts). The evolved hash functions produce a very similar number 
of collisions as other good hash functions from the literature on all data sets. However, 
evolved hash functions exhibit the shortest execution time in almost all cases on randomly 
generated and real-world data sets. They are slower than the special network hash functions, 
but faster than the general purpose hash functions when evaluated on the specific network 
datasets. 

3.2.5 Paper V 

G R O C H O L David and S E K A N I N A Lukas. Fast Reconfigurable Hash Functions for Net­
work Flow Hashing in F P G A s . In: Proceedings of the 2018 N A S A / E S A Conference on 
Adaptive Hardware and Systems. Edinburgh: Institute of Electrical and Electronics Engi­
neers, 2018, pp. 257-263. ISBN 978-1-5386-7753-7. 

Author participation: 67% 
Conference rank: unknown 

Abstract 

Efficient monitoring of high-speed computer networks operating with a lOOGbps data 
throughput requires a suitable hardware acceleration of its key components. We present 
a platform capable of automated design of hash functions suitable for network flow hash­
ing. The platform employs a multi-objective linear genetic programming developed for the 
hash function design. We evolved high-quality hash functions and implemented them in a 
F P G A . Several evolved hash functions were combined together in order to form the new 
reconfigurable hash function. The proposed reconfigurable design significantly reduces the 
area on a chip while the maximum operation frequency remains very close to the fastest 
hash functions. The characteristics of evolved hash functions were compared with the state-
of-the-art hash functions in terms of the quality of hashing, chip area and the operation 
frequency in the F P G A . 

Contribution 

Using the methodology developed in Paper II and Paper III, we evolved hash functions 
suitable for F P G A implementations. We also introduced reconfigurable hash functions. 

The evolved hash functions were translated to VHDL. In order to maximize their through­
put, we added synchronization registers to enable pipelined processing. One of the recon­
figurable hash functions was constructed using three evolved hash functions. These hash 
functions employ similar basic components that can be shared in the FPGA. The proposed 
reconfigurable hash function thus needs less than 50 % resources in comparison with the sum 
of resources needed to independently implement the three original hash functions. 

3.3 List of Other Papers 

• G R O C H O L David, S E K A N I N A Lukas, ŽÁDNÍK Martin and KOŘENEK Jan. A 
Fast FPGA-Based Classification of Application Protocols Optimized Using Cartesian 
GP. In: Applications of Evolutionary Computation. Berlin: Springer International 
Publishing, L N C S 9028 , 2015, pp. 67-78. ISBN 978-3-319-16548-6. 

Author participation: 50% 
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Conference rank: unknown 

• G R O C H O L David. Evoluční hardware v síťových aplikacích. In: Počítačové ar­
chitektury a diagnostika P A D 2016. Bořetice: Faculty of Information Technology 
B U T , 2016, pp. 57-60. ISBN 978-80-214-5376-0. 

Author participation: 100% 

Conference rank: unknown 

• G R O C H O L David and S E K A N I N A Lukas. Comparison of Parallel Linear Genetic 
Programming Implementations. In: Recent Advances in Soft Computing: Proceed­
ings of the 22nd International Conference on Soft Computing ( M E N D E L 2016) held in 
Brno, Czech Republic, at June 8-10, 2016. Cham: Springer International Publishing, 
2017, pp. 64-76. ISBN 978-3-319-58088-3. 

Author participation: 60% 

Conference rank: unknown 
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Chapter 4 

Discussion and Conclusions 

This chapter summarizes the results presented in this thesis and outlines some possibilities 
for a future research. 

The research presented in this thesis was directed toward the optimization of selected 
components of network applications intended for high-speed network monitoring systems. 
The work started with a study of current network monitoring systems. As an experimental 
platform, the S D M system was chosen. Because the traffic processing is an important part 
of all monitoring systems, it was analyzed in a greater detail. For detailed studies conducted 
in this thesis two applications were selected: the classifier of application protocols and the 
hash functions for flow processing. The evolutionary computing techniques were surveyed 
with the aim to optimize not only the quality of processing, but also the execution time. The 
single-objective and multi-objective versions of evolution algorithms were considered. The 
gained knowledge was summarized in Chapter 2 and used as background for the following 
research. 

The research started with the design and optimization of the application protocol clas­
sifier. As the S D M required an accurate classification of application protocols, the classifier 
was based on deep packet inspection (by means of the application data). The proposed 
application protocol classification is based on a pattern matching algorithm, which is a 
time-consuming operation, emphasizing the need for a hardware acceleration. The current 
approaches require a lot of resources in hardware. A new approach was proposed to clas­
sify a small set of protocols in the F P G A (denoted CL-acc in Paper I). The classifier was 
synthesized by a professional design tool to an F P G A , see Table 4.1. The final circuit of 
the classifier was optimized using C G P (in Table 4.1 denoted as + C G P ) , reducing thus 
the amount of resources and latency. We also proposed relaxed implementations of the 
classifier. CL-cmp is a compromised version of the classifier (showing an additional area 
reduction for a small error in classification) and CL-lat is a minimal version of the classifier. 
Both relaxed classifiers were optimized by C G P . which enabled us to achieve a significant 
reduction of resources and latency. Table 4.1 also shows parameters of the state-of-the-art 
classifiers based on finite state machines (Yamagaki/Clark and A M T H ) . It can be seen 
that the proposed classifiers exhibit significantly better parameters. The accuracy of the 
classifiers was verified on real network data. On the other hand, FSM-based classifiers are 
more flexible and scalable. 

The research continued with the hash function design using L G P . The first special­
ized network hash functions (evaluated for flow hashing) were optimized for the quality 
of hashing and constructed using a limited number of simple instructions. Single-objective 
and multi-objective L P G implementations were proposed for this purpose. Using the multi-
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Table 4.1: Results of classifiers synthesis for the Xil inx Virtex-7 XC7VH580T F P G A (taken 
from Paper I, Table 6). 

Classifier LUTs Flip Flop Latency [ns] 
CL-acc 2352 0 6.410 
CL-acc+CGP 1909 0 6.113 
CL-cmp 1549 0 6.093 
CL-cmp+CGP 1073 0 5.604 
CL-lat 1625 0 5.943 
CL- la t+CGP 1217 0 5.139 
Yamagaki / Clark 10431 2326 77.504 (16 x 4.844) 
A M T H 10547 2190 71.536 (16 x 4.671) 

Table 4.2: The average execution time on C P U for network data sets and real-world data 
sets (taken from Paper V , Table 7 and 8). 

Hash function 
Time Im.sl 

Hash function Hash function 
NetSetl NetSet2 NetSet3 Passwords Facebook Twitter 

DJBHash 1.861 5.134 12.724 5438.594 17.331 16.726 
DEKHash 1.221 4.373 10.407 5067.882 13.240 13.119 
FVNHash 1.301 4.721 9.633 5499.328 14.174 12.767 
One At Time 1.769 5.290 12.352 6072.904 15.410 13.955 
lookup3 0.925 2.891 7.435 4543.399 12.009 10.919 
Murmur2 1.034 3.095 7.925 4464.339 11.723 10.774 
Murmur3 1.193 3.215 8.727 4573.453 11.955 10.966 
CityHash 0.960 2.625 7.407 4385.625 11.149 10.355 
XORHash 0.838 2.318 6.652 
GPHash 1.865 4.671 12.558 6389.323 17.966 16.167 
EFHash 2.472 13.527 49.495 5101.523 14.304 13.746 
NSGAHash l 0.529 2.804 8.507 
NSGAHash2 0.527 2.072 6.564 
NSGAHash3 0.514 2.779 8.492 
NSGAHash4 0.530 2.073 6.219 
NSGAHash5 0.534 2.081 6.288 
NSGAHash6 0.527 2.083 6.249 
NSGAHash7 0.547 2.175 6.449 
EvoHashl 0.802 2.569 7.455 4268.402 10.895 9.996 
EvoHash2 0.830 2.825 7.835 4277.341 10.832 9.954 

objective approach, hash functions (NSGAHashl , NSGAHash2, NSGAHash3, NSGAHash4, 
NSGAHash5, NSGAHash6, NSGAHash7) were evolved, showing a better trade-off between 
the quality of hashing and the execution time than the state-of-the-art hash functions. 
The pipelined versions of network hash functions were implemented for F P G A . A n adap­
tive configurable hash function was also created from three evolved hash functions. Several 
high-quality general-purpose hash functions (EvoHashl, EvoHash2) were also evolved using 
the proposed method. 

A l l evolved hash functions were evaluated on real-world network data sets (see NetSetl, 
NetSet2, NetSet3 in Paper V) and common real-world data sets (Passwords, Facebook, 
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Twitter), see Table 4.3. The general-purpose hash functions were further evaluated on 
social network and randomly generated data sets. The evolved hash functions exhibit the 
same or better quality of hashing, but provide shorter execution time than the state-of-the-
art hash functions. 

4.1 Contributions 

The section summarizes main contributions presented in this thesis, with respect to the 
research objectives formulated in Chapter 1.1: 

Classification of application protocols: 

• A new approach to the application protocol classifier design was proposed. Accurate 
and relaxed versions of the classifier were optimized by means of C G P . A significant 
reduction in F P G A resources and latency was reported in Paper I. A possible disad­
vantages of the proposed approach is that common classifiers are more flexible and 
scalable. 

Hash Functions: 

• Specialized, highly optimized network hash functions were evolved by parallel L G P . 
These hash functions provide better functionality (in terms of quality of hashing and 
execution time) than the state-of-the-art hash functions (Paper II). 

Table 4.3: The number of collisions for network data sets and real-world data sets (taken 
from Paper V , Table 4 and 5). 

Hash function 
The number of collisions 

Hash function Hash function 
NetSetl NetSet2 NetSet3 Passwords Facebook Twitter 

DJBHash 2835 15113 48925 11663 247 137 
DEKHash 2926 15247 49017 14114 357 153 
FVNHash 2756 14957 48780 11845 115 115 
One At Time 2821 14988 48636 11590 105 138 
lookup3 2742 15009 48737 11567 119 107 
Murmur2 2800 15050 48749 11637 112 123 
Murmur3 2744 14911 48763 11589 103 89 
CityHash 2807 14990 48647 11530 122 122 
XORHash 2864 15011 48575 
GPHash 2777 15052 48750 11634 117 113 
EFHash 5317 25266 63175 983806 873270 824153 
NSGAHash l 2923 15677 49336 
NSGAHash2 2746 15170 48835 
NSGAHash3 2689 15575 49292 
NSGAHash4 2692 15010 48715 
NSGAHash5 2759 14975 48749 
NSGAHash6 2650 14839 48680 
NSGAHash7 2639 14975 48650 
EvoHashl 2849 15185 48652 11871 23 98 
EvoHash2 2821 14982 48695 11469 10 1 
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• Using the multi-objective L G P , we evolved a set of non-dominated hash functions 
showing better trade-offs between the quality of network flow hashing and the execu­
tion time in comparison with the state-of-the-art hash functions (Paper III). 

• Parallel pipelined hash functions were implemented in an F P G A and evaluated for 
purposes network flow hashing. A new reconfigurable hash function was developed as 
a combination of selected evolved hash functions (Paper V) . 

• Very competitive general-purpose hash functions were evolved by means of the multi-
objective L G P and evaluated using representative data sets (Paper IV). 

We also confirmed that common L G P a C G P implementations can be used for auto­
mated design and optimization of selected components; however, it is important to: 

• properly handle the multi-objective nature of the problem and 

• accelerate time-critical operations (particularly the fitness calculation). 

Based on these results, it can be concluded that the initial hypothesis of this research 
has been confirmed. The proposed EAs can design and optimize selected components 
of network applications of high-speed network monitoring systems and improve their key 
parameters. 

4.2 Future Work 

Based on our experience gained during this research the following future research directions 
were identified: 

• Network monitoring systems are large and complex systems composed of many com­
ponents. It is not a straightforward task to identify the critical components that 
should be optimized. Automated identification of such components for evolutionary 
re-design/optimization would be of high importance. 

• A n automated runtime optimization of components would be useful because the mon­
itoring system could be adapted to the actual state of the system. If the optimization 
is fast, the component can be optimized for a specific situation or an important subset 
of input data. 

• If the automated identification of components in network monitoring systems is con­
nected to the runtime optimization, the system could adapt different components in 
runtime in a variable environment. 

• Modern CPUs utilize many complex instructions, including application-specific in­
structions, such as hash function (for example Intel C P U : SHA1RNDS4 or A E S D E -
C L A S T ) , special floating-point instructions or SIMD instructions ( M M X and SSE). 
A future research could be focused on identifying a suitable subset of instructions 
that can be utilized by L G P ; considering all possible instructions in L G P seems to be 
intractable. 

• Other H W parts of monitoring systems those implemented in F P G A can be optimized 
using a multi-objective C G P . Contrasted to our work based on gate-level circuit op­
timization, a future work could deal with LUT-based circuit optimization in order to 
obtain more efficient F P G A implementations. 
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A B S T R A C T 

The evolutionary design can produce fast and efficient implementations of digital circuits. It is shown 
in this paper how evolved circuits, optimized for the latency and area, can increase the throughput of a 
manually designed classifier of application protocols. The classifier is intended for high speed networks 
operating at lOOGbps. Because a very low latency is the main design constraint, the classifier is con­
structed as a combinational circuit in a field programmable gate array (FPGA). The classification is 
performed using the first packet carrying the application payload. The improvements in latency (and 
area) obtained by Cartesian genetic programming are validated using a professional FPGA design tool. 
The quality of classification is evaluated by means of real network data. All results are compared with 
commonly used classifiers based on regular expressions describing application protocols. 

© 2015 Elsevier B.V. All rights reserved. 

1. Introduction 

Evolutionary algorithms (EAs) are traditionally used in the cir­
cuit design community mainly as efficient optimization techniques. 
In recent years, significant developments and progress in evolu­
tionary circuit design have been witnessed. In many cases these 
techniques were capable of delivering efficient circuit designs 
in terms of an on-chip area minimization (e.g. [1]), adaptation 
(e.g. [2]), fabrication variability compensation (e.g. [3]), and many 
other properties (see, for example, many requirements on syn­
thetic benchmark circuits in [4]). In this paper, it is exploited 
that the evolutionary design can produce fast and efficient circuit 
implementations. One of the targets is the circuit latency which 
is a crucial parameter in high performance computing and other 
applications such as security monitoring of high speed computer 
networks or high frequency trading. The objective of this work is 
to minimize the latency and area of key circuits needed in a hard­
ware accelerator intended for classification of application protocols 

* This paper is an extended, improved version of the paper A Fast FPGA-Based 
Classification of Application Protocols Optimized Using Cartesian GP presented 
at EvoComNet2015 and published in: Applications of Evolutionary Computing, 
Proceedings of 18th European Conference, EvoApplications 2015, Copenhagen, 
Denmark, April 8-10,2015, LNCS 9028, pp. 67-78, Springer, 2015. 

* Corresponding author. Tel.: +420 541141215. 
E-mail addresses: igrochol@fit.vutbr.cz (D. Grochol), sekanina@fit.vutbr.cz 

(L. Sekanina), izadnik@fit.vutbr.cz (M. Zadnik), korenek@fit.vutbr.cz (J. Korenek), 
ikosar@fit.vutbr.cz (V. Kosar). 

in high speed networks. The classifier is embedded into a software 
defined monitoring (SDM) platform (see details in Section 2) which 
is accelerated in a field programmable gate array (FPGA) [5]. 

In order to identify the application (or the application protocol) 
the network traffic belongs to, one has to inspect one or several 
packets with a payload. The main difficulty is that the time to pro­
cess one packet is less than 7 ns in the case of modern lOOGbps 
link. Hence this task has to be performed by specialized hard­
ware. In previous work of the authors [6], key circuit components 
were developed for an FPGA-based application protocol classifier in 
which the area and latency were optimized by means of Cartesian 
genetic programming (CGP). The resulting circuit enabled to clas­
sify three application protocols (HTTP, SMTP, SSH) using the first 
packet carrying the application payload. This circuit, in fact, imple­
mented a deterministic parallel combinational signature matching 
algorithm in the FPGA. 

A more significant latency and area reduction, which will be 
crucial for classifiers supporting throughputs beyond lOOGbps, is 
possible either by using advanced (faster) hardware or changing 
the packet processing scenario. In this paper, a new approach is 
proposed with respect to [6] in which small errors in the hardware 
protocol classification are tolerated assuming that latency and area 
of the classifier are significantly reduced. This concept is supported 
by SDM because the traffic unclassified in the hardware can be sent 
to the software for detailed processing. 

Within this scope, the proposed work focuses on a design and 
optimization of three proprietary circuits, operating as applica­
tion protocol classifiers, which differ in the quality of classification, 

http://dx.doi.org/10.1016/j.asoc.2015.09.046 
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latency and area. Classifier CL-acc (accuracy) is implemented 
according to [6] with the goal to minimize the classification error. 
While classifier CL-cmp (compromise) provides a moderate com­
promise between the latency, area and classification accuracy, 
classifier CL-lat (latency) is highly optimized for a low latency. Each 
classifier is evaluated in the task of classification of four protocols 
(HTTP, SMTP, SSH, and SIP) we deem most crucial from the per­
spective of network monitoring. It should be noted that SIP has not 
been considered in the initial study [6]. 

The main contribution of this paper is to show that these cir­
cuit classifiers can be optimized by CGP in order to significantly 
reduce their latency and resources requirements. The classification 
algorithm is not optimized by CGP. The improvements in latency 
(and area) obtained by CGP are validated using a professional FPGA 
design tool. The quality of classification is evaluated by means of 
real network data. All results are compared with commonly used 
classifiers based on regular expressions describing application pro­
tocols. Contrasted to [6], in which only key components of one 
classifier were implemented and optimized, complete FPGA imple­
mentations of three classifiers are evaluated. 

The rest of the paper is organized as follows. Section 2 briefly 
surveys the field of traffic analysis in high speed networks, accel­
erated network technologies using FPGAs and evolutionary circuit 
design. Section 3 provides a specification of the classifier and net­
work data used for the evaluation. In Section 4, the proposed 
hardware classifier and its approximations are introduced. Carte­
sian genetic programming is presented as a digital circuit design 
and optimization method in Section 5. Section 6 describes the 
implementation steps taken and the results in terms of area and 
latency in the FPGA. Finally, the quality of classification is assessed 
in terms of precision and recall. Conclusions are given in Section 7. 

2. Relevant work 

This paper deals with several different research areas - network 
traffic analysis in high speed networks, FPGA technology, fast pat­
tern matching and evolutionary circuit design. The purpose of this 
section is to provide an appropriate introduction to them and to 
their intersections which are relevant for the target application. 

2.2. Traffic analysis in high speed networks 

An abstract yet detailed network traffic visibility is a key pre­
requisite to network management, including tasks such as traffic 
engineering, application performance monitoring and network 
security monitoring. In recent years the diversity and complexity 
of network applications and network threats have grown sig­
nificantly. This trend has rendered monitoring of network and 
transport layer insufficient and it has become important to extend 
the visibility into the application layer, primarily to identify the 
application (or the application protocol) the traffic belongs to. The 
port numbers are no longer reliable application differentiators due 
to new emerging applications utilizing ports dynamicaly or to 
applications evading the firewalls by hiding behind well-known 
port numbers or utilizing port numbers defined by users [7]. 

The research in the area of application identification has come 
up with distinct approaches to identify applications carried in the 
traffic. These approaches differ in the level of detail that is utilized 
in the identification method. The most abstract one is behavioral 
analysis [8,9], Its idea is to observe only the port number and des­
tination of the connections per each host and then to deduce the 
application running on the host by its typical connection signature. 
If more details per connection are available, statistical fingerprint­
ing [10] comes into play. In this case, a feature set is collected per 
each flow and the assumption is that the values of the feature set 

vary across applications and hence they leave a unique fingerprint. 
Behavioral and statistical fingerprinting generally classifies traffic 
to application classes rather than to particular applications. The rea­
son is that different applications performing the same task exhibit 
similar behavior. For instance, application protocols such as Oscar 
(ICQ), MSN, XMPP (Jabber) transport interactive chat communica­
tions and hence exhibit a similar behavior, which makes it very 
hard to differentiate between them. The inability to distinguish 
applications within the same class is seen as a drawback in some 
situations when, for example, it is necessary to block a particular 
application while allowing others in the same class. The approach 
utilizing the greatest level of detail is a deep packet inspection. It 
identifies applications based on the packet payload. The payload 
is matched with known patterns (defined, for example, by regular 
expressions) derived for each application [11]. 

The application identification poses several on-going chal­
lenges. The identification process is bound to keep pace with ever 
increasing link speeds (for example, the time to process each packet 
is less than 7 ns in the case of a lOOGbps link). Another challenge 
is represented by the growing number of protocols (i.e., the appli­
cation identification must address trends such as new emerging 
mobile applications or applications moving into the network cloud 
[12]). Some deployments of application identification also require 
prompt (near real-time) identification to enable implementation of 
traffic engineering or application blocking [13]. 

Hardware acceleration (e.g. utilizing an FPGA) is often employed 
to speed up network processing [14,15], including the application 
identification directly on the network card. An FPGA renders it 
possible to utilize various pattern matching algorithms to iden­
tify applications. However, pattern matching may exhibit several 
constraints, that is, the high cost to process wide data inputs 
(which is the case for high throughput buses in FPGA) and the high 
complexity and overhead of a pattern matching algorithm which 
consumes valuable hardware resources or constrains the achiev­
able frequency. 

These drawbacks are addressed by alternative methods which 
look for constants and fixed-length strings (for brevity they are 
called the signatures in the paper) rather than regular expressions 
(e.g. [16]). This paper builds upon this strategy and envisions a 
hardware-software codesign approach in which a simple circuit 
labels the traffic belonging to applications of interest with some 
probability of false positives while software can subsequently han­
dle and check the labeled traffic with a more complex algorithm 
effectively. This approach is supported by the software defined 
monitoring concept [5]. Software defined monitoring employs 
sophisticated processes running in the software to subsequently 
install rules in the hardware (network card). While it is not pos­
sible (or at a very high cost) to process all traffic in the software, 
the application identification is offloaded into the hardware. The 
offload not only reduces the host memory and processor load but it 
also increases the expressive strength of the SDM rules. The target 
applications range from application-specific forwarding and traffic 
shaping to traffic monitoring and blocking. 

2.2. FPGAs in network applications 

Performance requirements are growing due to the increasing 
volume and rates of network traffic. Paxson et al. [17] argue that 
these performance requirements should be met by leveraging a 
high degree of possible parallelism that is inherent to network 
traffic monitoring. FPGAs as well as ASICs may deliver such a vast 
support of parallelism. However, only FPGAs render it possible to 
prototype and implement critical application components for vari­
ous network applications at the highest speeds while the optimized 
ASICs follow after broad deployment a few years later on. FPGAs 
are thus extensively used in the so-called hardware-accelerated 
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network cards to implement the first line of network traffic process­
ing, such as monitoring, forwarding and other applications [18,19], 

FPGAs include a high spectrum of components, but the fol­
lowing components are crucial for the purposes of this paper. 
FPGAs consist of routing network and basic building blocks such 
as look-up tables (LUTs), registers and block memories. The par­
ticular setup of the routing network defines the interconnection of 
these components (i.e. the layout of the circuit). The LUTs serve to 
implement combinational logic while registers and block memo­
ries serve to keep the stateful information. Modern FPGAs contain 
millions of LUTs and registers and thousands of block memories. 
All these components may, in theory, work in parallel independet 
of each other providing enormous computation power with a low 
energy consumption in tens of Watts. Moreover, FPGAs targeting 
the network market include more than a hundred of high-speed 
transceivers allowing for connection to high speed network links 
(e.g. high-end Virtex UltraScale+ FPGA offers up to 4Tbps of aggre­
gated transceiver throughput [20]). The crucial task is to transform 
a high-level description of the circuit (for example, written in VHDL 
or SystemC) into an effective implementation in FPGA from the 
perspective of meeting the timing and resource constraints. 

2.3. Fast pattern matching 

The L7 filter [21 ] is a popular program for application protocol 
identification, which utilizes regular expressions to describe appli­
cation protocols. It performs pattern matching in network flows. 
If a known pattern is matched in the payload, the corresponding 
application protocol is assigned to the network flow. Current pro­
cessors are not powerful enough to achieve lOOGbps throughput 
for regular expression matching. The throughput of L7 decoder is 
less than 1 Gbps per one CPU core even for the latest Xeon process­
ors. In order to achieve 100 Gbps throughput, it is necessary to use 
highly optimized hardware architectures. 

In recent years, many researchers have proposed high-speed 
pattern matching hardware architectures, which utilize the fine 
grained parallelism of FPGA technology. Mapping of regular expres­
sions matching to an FPGA was first explored by Floyd and Ullman 
[22], who showed that a Nondeterministic Finite Automaton (NFA) 
can be implemented using a programmable logic array. Sindhu et al. 
[23] proposed efficient mapping of NFAs to FPGA and Clark et al. 
improved the mapping by a shared decoder [24,25] which signifi­
cantly reduced the amount of consumed logic resources. The AMTH 
(At Most Two-Hot encoding) [26] architecture improves NFA map­
ping to the FPGA. The combination of one-hot and binary encoding 
reduces the amount flip-flops, which represent NFA states. 

Several papers introduced optimized mapping of Perl Compati­
ble Regular Expressions (PCRE), which are widely used in Intrusion 
Detection Systems (IDS). Sourdis et al. published in [27] an archi­
tecture that allows for the sharing of character classes, static 
subpatterns and introduced components for efficient mapping of 
constrained repetitions to the FPGA. Lin et al. created an archi­
tecture for sharing infixes and suffixes [28]. Nevertheless, these 
optimizations are relevant only for large sets of PCRE in IDS systems. 
In this work, a small set of regular expressions without counting 
constraints and other advance PCRE constructions is only used. 
Therefore, these optimizations are not considered in the evaluation 
of proposed architectures. 

The throughput of pattern matching is determined by the 
amount of bytes processed within one clock cycle and frequency 
of the hardware matching unit. The FPGA technology limits the 
maximum frequency to several hundreds of MHz. To increase the 
processing speed, the NFA can be modified to process multiple bytes 
per one clock cycle [29]. Unfortunately, with the increasing size of 
the NFA input, the amount of NFA transitions grows exponentially. 

Data fc 
Pattern Result 1 ^ 

512/N MiT Match 1 

•ala fc 
Pattern Result 2 ^ 

Splitter 
512/N bits Match 2 

Binder Splitter Binder 

Data fc Pattern Result IN 
51 2/N bits Match N ^ — ^ 

F i g . 1. Increasing the throughput by multiple pattern matching units. 

As a result, the hardware matching unit consumes much more FPGA 
resources and the frequency decreases rapidly. 

The throughput can be increased by multiple parallel matching 
units. These units need additional logic resources and buffers to 
distribute network data to the matching units and join the results. 
The overhead of parallel processing is shown in Fig. 1. First, the 
splitter has to assign the sequence number into every packet and 
store the packet to the buffer. The packet data are then sent with 
a lower rate to parallel matching units. The units perform pattern 
matching and provide the results to the binder, which needs buffers 
to order the results in the right sequence order. 

It can be seen that the parallel matching units can scale the 
matching speed up to 100 Gbps throughput, but only at the cost of 
significant overhead in terms of latency, FPGA logic resources and 
memory buffers. This overhead is avoided by focusing on highly 
optimised hardware architectures with high throughput and low 
latency. 

2.4. Evolutionary circuit design 

The idea of evolvable hardware and automated circuit design 
by means of artificial evolution was introduced by Higuchi et al. 
in 1993 [30]. A recent survey of the field covering key subfields 
(evolutionary hardware design and adaptive hardware) is avail­
able in [31 ]. Significant progress in the evolution of digital circuits 
is connected with Cartesian genetic programming which has been 
developed by Miller since 1999 and utilized in many applications 
as documented in the recent monograph [32]. Since only combina­
tional circuits will be evolved in this work, CGP is a natural choice. 

CGP is a form of genetic programming in which candidate 
designs are represented using directed oriented graphs (see a 
detailed description in Section 5). In the standard CGP used for 
combinational circuit evolution, each candidate circuit is directly 
mapped into a chromosome consisting of a string of integers and 
evaluated by applying all possible input vectors. Although var­
ious new designs have been discovered using CGP, the method 
is not directly applicable for the design of large combinational 
circuits because the fitness evaluation time grows exponentially 
with the number of primary inputs. Moreover, the number of 
evaluations can easily go into the millions, even for small (but non-
trivial) circuits such as multipliers. This problem has partially been 
eliminated by introducing circuit decomposition techniques at the 
representation level [33,34] and formal verification methods in the 
fitness function [1 ]. Other successful applications of CGP have been 
proposed in domains in which candidate circuits are not evaluated 
using all possible input combinations (see e.g. hash functions [35], 
image operators [36] or classifiers [2]). 

In order to accelerate the fitness function evaluation on a 
common processor, a bit-level parallel simulation of candidate 
combinational circuits is employed. Contrasted to a naive simula­
tion, in which 2k vectors are sequentially submitted for evaluation 
(where k is the number of primary inputs), the bit-level parallel 
simulation exploits the fact that current processors enable per­
forming bitwise operations over two w-bit operands in parallel. 
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The flows corresponding to the application protocols in data sets. 

Data set CESACO CESPIO DATASET SIP 

Protocol Count flows Count flows [%] Count flows Count flows [%] Count flows Count flows [%] 

HTTP 1914 38.12 15060 52.29 134 2.41 
SMTP 4 0.08 34 0.12 10 0.18 
SSH 1 0.02 0 0.00 14 0.25 
SIP 0 0 0 0 5204 93.42 
Others 3102 61.78 13705 47.59 208 3.74 
All 5021 100.00 28799 100.00 5570 100.00 

Hence the input vectors are grouped into w-bit words and simu­
lated in parallel. The obtained speedup is w on a w-bit processor, for 
example, 64 on a common personal computer. Even if this approach 
is taken, a typical CGP run could take tens of minutes for a circuit 
with 8 inputs and 8 outputs. 

There are only a few papers dealing with evolutionary circuit 
design at the level of 4-input LUTs [35,37] and no paper dealing 
with 6-input LUTs. Unfortunately, the bit-level parallel simula­
tion is inefficient for circuits consisting of LUTs because their logic 
function has to be emulated using a sequence of binary logic oper­
ations. Moreover, employing CGP with 6-input LUTs (each of them 
encoded using 64 bits in the chromosome) would lead to long 
chromosomes, complex search spaces and very inefficient search 
procedures. Hence two-input gates represent the dominant option 
when CGP is applied to the evolution of complex circuits. 

3. Requirements and network data 

In order to design, implement and evaluate an FPGA-based 
application protocol classifier, its basic parameters and an envi­
ronment in which it will be operated have to be specified. 

3.1. Specification of the classifier 

The classifier has to distinguish among four application pro­
tocols (HTTP, SMTP, SSH and SIP) which represent an important 
portion of the network traffic and play an important role in traf­
fic monitoring. Remaining protocols will be classified as unknown. 
Because the primary goal is achieving a very low latency, only sig­
natures of the first packet carrying the application payload will be 
defined and utilized in the classifier architecture. The classifier will 
operate in an FPGAon a 512 bit bus to meet the lOOGbps through­
put. The application payload may start at nearly arbitrary offset 
(byte of a word) on the bus and the application (protocol) must 
be identified each clock cycle to keep pace even with the shortest 
incoming packets of 64 bytes. 

The classifier will be constructed manually - as a combinational 
circuit with a low latency. CGP will be applied to optimize its key 
subcircuits to reduce the latency and area. An observation is uti­
lized that a circuit which is well optimized by a commercial FPGA 
synthesis tool can further be re-synthesized and re-optimized by 
CGP to improve its parameters (see example circuits created by 
this approach in [36]). Such a classifier will be considered as a fully 
functional solution (CL-acc). 

Further area and latency improvement are obtained if the 
requirement of full functionality can be relaxed. Hence we will 
also propose and evaluate classifiers (CL-cmp and CL-lat) showing 
a shorter latency and smaller area. Providing such approximations 
is currently a hot topic in computer engineering. The approach is 
called approximate computing and its goal is to investigate how 
computer systems can be made better - more energy efficient, 
faster, and less complex by relaxing the requirement that they are 
exactly correct [38], 

3.2. Network data 

The data which has to be classified are common network data 
(available in the pcap format). In our case, complete network 
data sets with anonymized IP addresses are utilized, collected on 
CESACO link (connecting CESNET and ACONET networks) and CES­
PIO link (connecting CESNET and PIONIER networks), see Table 1. 
Because SIP and SSH are not adequately present in these data sets, 
another, dedicated data set (DATASET SIP) with a high presence of 
SIP records was employed. 

For example, the available record from CESPIO contains 43 M 
packets, where percentages are 78.72% for TCP, 20.58% for UDP, 
0.18% for ICMP and 0.53% others. One can observe that only TCP and 
UDP are relevant for our purposes. The packet traces were analyzed 
using Scapy. In the case of HTTP, SMTP and SSH, which operate over 
TCP, the third or the fourth packet of the TCP connection is usually 
considered as the first packet containing the application payload. 
The L7 filter [21 ] was utilized as a reference classifier to annotate 
each connection in the data set. 

The resulting data sets, which can be used for evaluation pur­
poses, are available in the JSON format. Each record contains the 
source IP and port, the destination IP and port, the transport proto­
col number, and the whole packet encoded using base64 (see Fig. 2). 
Table 1 gives the mix of considered protocols in our data sets. 

4. Proposed classifiers 

This section describes the analytical approach taken in order to 
construct the proposed classifiers. Detailed hardware architecture 
of the classifiers is then presented. 

4. 1. Deterministic classification 

Because the classification utilizes only the start of the payload, 
several initial bytes of considered application protocols were ana­
lyzed and characters were identified which are unique in these 
protocols. Table 2 shows the unique signatures that were identi­
fied for considered protocols. The longest signature of the CL-acc 
contains 10 characters (bytes). Signatures of classifier CL-cmp are 
constructed from those used in CL-acc in such a way that they are 
reduced to the first 4 characters, which leads to less complex hard­
ware. Further area and latency reduction is expected in classifier CL-
lat which operates with signatures containing at least 3 characters, 
but each of them has to exist in at least two signatures of CL-acc. 

{ 
"dIP": "192.168.0.2", 
"dPort": 80, 
" data": " R0VUIC9zaXRlcy9kZWZhdWx0L3RoZWllcy9mcmFtZWR5bmFtaWMv... 
"id": "(' 192.168.0.1', '192.168.0.2', 52217, 80)", 
"trProto": 6, 
"protocol": "HTTP", 
"sIP": " 192.168.0.1", 
"sPort": 52217 

}, 

F i g . 2 . Example of record in the data set. 
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Unique signatures in considered application protocols. 

Protocol CL-acc CL-cmp CL-lat 

"GET /" "GET " "*ET /" 
"PUT /" "PUT" "*UT /" 
"POST /" "POST" "*0S* /" 

HTTP "HEAD /" "HEAD" "*EA* /" 
"TRACE /" "TRAC" "T*ACE**" 
"DELETE /" "DELE" "*E**TE**" 
"OPTIONS /" "OPTI" "**TI*NS"" 

"INVITE " "INVI" "*N*ITE" 
"REGISTER " "REGI" "*E*IS*E*" 

SIP 
"CANCEL " "CANC" "C**CE*" 

SIP "MESSAGE " "MESS" "*ESS"E" 
"SUBSCRIBE " "SUBS" "SU*SC***E*" 
"NOTIFY " "NOTI" "*OTI**" 

SSH "SSH-" "SSH-" "SS*-" 

SMTP "220 " 
"220-" 

"220 " 
"220-" 

"220 " 
"220-" 

T a b l e 3 

CL-acc: mapping functions in the coders. The * symbol means: "not utilized in a 
particular coder". a> stands for "otherwise". 

Coder 1 Coder 2 Coder 3 Coder 4 Output 

Space Space Space Space 00000011 
/ / / / 00000101 
2 2 0 - 00000110 
A A A B 00001001 
C E B c 00001010 
D G E D 00001100 
E L G E 00010001 
F N H 1 00010010 
G 0 1 R 00010100 
H P L S 00011000 
1 R N T 00100001 
M S S * 00100010 
N T T * 00100100 
0 U V * 00101000 
P Y * * 00110000 
R * * * 01000001 
S * * * 01000010 
T * * * 01000100 
(0 (0 (0 (0 00000000 

These classifiers can be constructed as combinational circuits 
by means of a decoder. However, they have to correctly manage 
the cases in which the signatures appear at various offsets within 
the frame due to preceding protocol headers, which is a natural 
situation in real network traffic data. 

4.2. Classifiers in hardware 

The hardware architecture utilizes a 512 bit bus to transfer 
protocol frames. Each frame starts with the headers of low-level 
protocols such as Ethernet, IPv4 or IPv6, TCP or UDP. As a result, the 
start of the application payload may appear with certain offsets on 
the bus, namely 2 bytes from the position 0 or with 2 + 4/c bytes, 
where k = 1 16. 

All three versions of the classifier are constructed according to 
Fig. 3 which also shows that the circuit classifier consists of three 
levels of combinational logic. 

In the first level, one coder is connected to each byte of the word 
(64 coders, in total). There are four types of the coders (cl, c2, c3, 
c4) because of the 4-byte offsets. Each coder implements a mapping 
from the set of characters allowed for the given position to a set of 8-
bit values in which just 2 bits are not zeros. The mapping functions 
of the coders in CL-acc, CL-cmp and CL-lat are given in Tables 3-5. 

This remapping implemented by coders allows for a fast signa­
ture detection in the subsequent level of comparators. All possible 
occurrences of the application data within the input word are thus 
processed in parallel. 

The second level consists of comparators. In the case of CL-acc, 
each of them compares the outputs of ten coders (note that the 
longest signature contains 10 characters) with the unique patterns 
identified for the considered application protocols. If a particular 
application protocol is detected then its 4-bit code is visible at the 
output of the comparators (0001 - HTTP, 0010 - SMTP, 0100 - SSH, 

Input buffer 

512b 

r 
/b /'& /'b / ' s / ' s y's /b /b /'b ,'b / fB /b I's / ' s ,'b / 'b /fB ,fB / ' a /'b ,'b j's 

C3 C4 c l C2 C3 C4 c l C2 C3 C4 c l C2 C3 C4 c l C2 C3 C4 c l C2 C3 C4 
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Comparator 
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F i g . 3 . Classifier CL-acc as a combinational circuit. 
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CL-cmp: mapping functions in the coders. 

Coder 1 Coder 2 Coder 3 Coder 4 Output 

2 2 0 Space 00000011 
C A A - 00000101 
D E B C 00000110 
G N G D 00001001 
H 0 H E 00001010 
I P L I 00001100 
M R N S 00010001 
N S S T 00010010 
0 U T * 00010100 
P * V * 00011000 
R * * * 00100001 
S * * * 00100010 
T * * * 00100100 
(O (0 (0 CO 00000000 

T a b l e 5 

CL-lat: mapping functions in the coders. 

Coder 1 Coder 2 Coder 3 Coder 4 Output 

Space / Space Space 00000011 
/ 2 0 - 00000101 
2 E A C 00000110 
C N Ľ I 00001001 
E S S s 00001010 
S 0 T * 00001100 
T U * * 00010001 
(0 (0 (0 (0 00000000 

1000 - SIP, 0000 - unknown). In the case of CL-cmp (CL-lat, respec­
tively) the circuit is simplified as only 4 (9, respectively) coders 
are employed. Finally, at the third level, all 4-bit codes are fed to 
an OR gate which indicates a presence of the detected application 
protocols or unknown protocol (0000). 

5. Coder evolution using CCP 

Based on our previous experience, it is assumed that parameters 
of a circuit optimized by a professional FPGA design software can 
be improved if CGP is employed [36], As the whole classifier is a 
relatively complex circuit to be optimized, it is proposed to evolve 
its components - 64 (combinational) coders. Each of the coder types 
cl, c2, c3 and c4 will be evolved by CGP separately. The standard 
CGP is used as defined in [32], 

In CGP, a candidate circuit is modeled as a directed acyclic graph 
and represented in a 2D array of nc x nr processing nodes. Each 
node is capable of performing one of the nQ-input functions speci­
fied in r set. The setting of nc, nr and T significantly influences the 
performance of CGP [39,40], Current FPGAs utilize 6-input LUTs 
as building blocks of all circuits. However, employing CGP with 
6-input nodes (each of them encoded using 2 6 = 64 bits in the chro­
mosome) would lead to long chromosomes, complex search spaces 
and so inefficient search procedures. It is proposed to optimize the 
coders at the level of 2-input nodes (encoded using up to 4 bits) 
and let the professional circuit synthesis software implement the 
resulting optimized circuits using 6-input LUTs in the FPGA. 

The remaining parameters of CGP are the number of primary 
inputs (n,), the number of primary outputs (n0), and the level-back 
parameter (L) specifying which nodes can be used as inputs for a 
given gate. The primary inputs and the outputs of nodes are labeled 
0... n c • n r + rij - 1 and considered as addresses which connections 
can be fed to. In the chromosome, each two-input node is then 
encoded using three integers (an address for the first input; an 
address for the second input; a node function). Finally, for each pri­
mary output, the chromosome contains one integer specifying the 

F i g . 4 . Example of a combinational circuit in CGP with parameters: iii = 5, n 0 = 2, 
L=4, nc =4, n, = 2, T = {AND (0), OR (1), XOR (2)}. Gates 8,11 and 12 are not utilized. 
Chromosome: 2,3,0; 4,3,2; 5,4,1; 2,0,1; 5,7,0; 5,6,1; 0,6,2; 7,6,2; 9, 10. The last two 
integers indicate the outputs of the circuit. 

connection address. Fig. 4 shows an example and a corresponding 
chromosome. 

The chromosome size is (na + \)nrnc + n0 genes (integers). The 
main feature of this encoding is that the size of the chromosome is 
constant for a given n,, n0,na, nr and nc. However, the size of circuits 
represented by such chromosomes is variable as some nodes can 
remain disconnected. The nodes which are included into the circuit 
after reading the chromosome are called the active nodes. 

The search is performed using a simple search strategy (1 + A.), 
where X. is the number of offspring circuits created by mutation 
from one parent [32]. The initial population is randomly generated. 
A new population consisting of k individuals is generated by apply­
ing the mutation operator on the best individual of the previous 
population. The mutation operator randomly modifies h integers 
of the chromosome. The evolution is terminated after producing a 
given number of generations. 

In the case of combinational circuits, the fitness value of a can­
didate circuit is defined as [31] 

{ b when b < n02n>, 

(1) 
b + (ncnr - z) otherwise, 

where b is the number of correct output bits obtained as response 
for all possible assignments to the inputs, z denotes the number of 
gates utilized in a particular candidate circuit and ncnr is the total 
number of available gates. It can be seen that the last term ncnr - z is 
considered only if the circuit behavior is perfect, 
The second term can be modified to optimize other circuit param­
eters. 

Latency is one of the key parameters of classification. After per­
forming numerous experiments which are reported in Section 6.2 
as well as in [6], it was recognized that the minimum latency is 12 A 
(where A is delay of a two-input gate) if fully functional coders 
are requested. Hence latency is not explicitly optimized in our 
approach; however, its maximum value is implicitly determined 
by n c = 12. 

6. Results 

The experimental evaluation consists of the following steps: 
(1) conventional implementation of the proposed classifiers; (2) 
CGP-based optimization of selected subcomponents (coders); (3) 
resynthesis of the classifiers with optimized subcomponents; (4) 
verification of the quality of classification. 

6.1. Conventional implementation 

Three circuits corresponding to classifiers CL-acc, CL-cmp and 
CL-lat were behaviorally described in VHDL and synthesized into 
the Xilinx Virtex-7 XC7VH580T FPGA using Xilinx ISE Project nav­
igator 14.4 tool. The target FPGA contains 6-input LUTs whose 
latency is 0.043 ns. The circuit latency was set as the main optimiza­
tion target for the synthesis tool. Parameters of the resulting circuits 
which are considered as reference conventional implementations 
in the context of this paper are given in Table 6. One can observe 
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Results of synthesis for the Xilinx Virtex-7 XC7VH580T FPGA. 

Classifier LUTs Flip flop Latency [ns] 

CL-acc 2352 0 6.410 
CL-acc+CGP 1909 0 6.113 
CL-cmp 1549 0 6.093 
CL-cmp + CGP 1073 0 5.604 
CL-lat 1625 0 5.943 
CL-lat + CGP 1217 0 5.139 

Yamagaki/Clark 10,431 2326 77.504 (16 x 4.844) 
AMTH 10,547 2190 71.536 (16 x 4.671) 

that CL-lat is less complex and faster than CL-cmp and CL-cmp is 
less complex and faster than CL-acc. 

6.2. Optimization by CGP 

There are four types of coders in each of the three classifier cir­
cuits (Fig. 3). These 8-input/8-output coders are optimized by CGP 
operating at the gate level. The setting of CGP parameters is forced 
by the specification or it can be considered as typical for CGP. The 
reasons for the chosen parameter values are as follows: n, = 8 and 
n 0 = 8 directly follows from the specification; n c = 12 reflects our 
strategy to restrict the maximum delay to 12A; nr = 50 is used to 
provide a sufficient redundancy at the level of genotype assuming 
that evolved circuits will contain about 30-50 active gates [39]; I 
is restricted to one logic level in order to generate compact circuits 
and enable the deep pipeline processing in future implementations; 
k = 4 is a recommended value for CGP [39,32]; and h = 5 corresponds 
with the mutation probability 5/(12-50) = 0.00833, i.e. with the 
typical values 0.001 - 0.01 used for the mutation across almost all 
other studies [32]. In the case of determining the function set, we 
compared CGP utilizing all logic functions over two inputs except 
logic constants (which will be denoted T) against a reduced func­
tion set containing logic functions {a, b, -> a, -> b, a v b, a a b, a© b}. 
In addition to the completeness of the reduced function set (i.e. - \ 
v and a are included), the xor function (©) is supported to enable 
the xor decomposition which is very useful for optimizing the xor 
intensive logic functions. The initial population is seeded using ran­
domly generated circuits. 

In total, circuits for 24 specifications (3 classifiers x 4 coders 
x 2 versions of function set) were evolved. In order to obtain basic 
statistics, each run consisting of 5 million generations was repeated 
20 times. The number of gates, obtained at the end of CGP runs 
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cl cl-reduce c2 c2-reduce c3 c3-reduce c4 c4-reduce 

F i g . 6 . The number of gates obtained at the end of 20 CGP runs for four coders of 
classifier CL-cmp. 'Reduce' stands for 'reduced set of gates'. 

devoted to a particular specification, are presented in form of box-
plots in Fig. 5 (CL-acc), Fig. 6 (CL-cmp) and Fig. 7 (CL-lat). Boxplots 
used in these figures contain the minimum, first quartile, median, 
third quartile and maximum. 

The experiments confirmed our assumption that the optimized 
coders of CL-lat are less complex than those optimized for CL-cmp 
and CL-acc. It can also be seen that the usage of the complete func­
tion set consistently gives more compact coders than the reduced 
function set despite the fact that the search space is more complex. 

In order to determine the impact of the CGP optimization to sub­
sequent circuit synthesis and optimization conducted by means 
of a professional FPGA design tool, VHDL implementations of all 
coders evolved by CGP for CL-acc were developed and synthetized 
for the FPGA. The number of LUTs is presented in form of boxplots 
in Fig. 8. The most important observation is that the most com­
pact FPGA implementations of coders are obtained if the circuit 
description entering the FPGA synthesis process contains the gates 
from reduced function set. It is quite unintuitive with respect to 
boxplots shown in Fig. 5-7. This interesting result deserves further 
investigations which are beyond the scope of this paper. 

An analysis of optimized circuits is presented for c2 which is 
a middle-size coder. When optimized for the accurate CL-acc, the 

cl-reduce c2 c2-recu:e c3 c3-"educe c4 c4-redu:e 

F i g . 5. The number of gates obtained at the end of 20 CGP runs for four coders (cl, 
c2, c3 and c4) of classifier CL-acc. 'Reduce' stands for 'reduced set of gates'. 

F i g . 7 . The number of gates obtained at the end of 20 CGP runs for four coders of 
classifier CL-lat. 'Reduce' stands for 'reduced set of gates'. 



940 D. Grochol et al. /Applied Soft Computing 38 (2016) 933-941 

Quartdes c 

F i g . 8 . The number of LUTs obtained for four coders of classifier CL-acc. 'Reduce' 
stands for 'reduced set of gates'. 

most compact implementation of c2 consists of 59 gates (62 gates in 
the case of the reduced set of gates). When it is approximated for CL-
lat, the most compact implementation requires only 29 gates (35 
gates in the case of the reduced set of gates), which is an important 
reduction. At the level of LUTs, the reduction provided for CL-lat is 
not so remarkable because only one LUT was saved (7 versus 6 LUTs) 
if the FPGA synthesis starts with circuits evolved using the full gate 
set (T). However, if the FPGA synthesis starts with circuits evolved 
for the reduced gate set, the resulting implementation contains 3 
LUTs (for CL-acc) and 2 LUTs for the most relaxed case (CL-lat). 
Considering the fact that 64 coders have to be implemented into 
the FPGA, the obtained resources reduction is significant. 

6.3. Classifier resynthesis using optimized coders 

The most compact implementations of coders were translated 
to VHDL and utilized in the VHDL code of classifiers CL-acc, CL-cmp 

and CL-lat. These modified classifiers were synthesized with the 
same setting as reported in Section 6.1. 

The results of synthesis are labeled using '+CGP" and given in 
Table 6. Both crucial circuit parameters (latency and area expressed 
as the number of LUTs) were significantly improved by CGP for all 
classifiers. 

Enabling approximate classification (CL-lat and CL-cmp) whose 
implementation is further optimized by CGP led to 48.2% improve­
ment in area (LUTs) and 19.8% improvement in latency with respect 
to a solution (CL-acc) which would be produced by a conventional 
signature-based approach. 

In order to compare the proposed solution with the state of the 
art classifiers from the literature, parameters of Yamagaki/Clark 
and AMTH circuit classifiers were included to Table 6. These classi­
fiers accurately implement the L7-filter (for considered protocols) 
by means of optimized finite state machines. The main conclusion 
is that CL-lat optimized by CGP exhibits the area (LUTs) and latency 
one order of magnitude lower than Yamagaki/Clark and AMTH. 

6.4. Quality of classification 

The quality of classification was evaluated offline, utilizing 
a software model that has been developed for the proposed 
classifiers. The evaluation was performed using all three data sets 
in which we considered traces containing first payload packets. 
The output of our classifiers was verified against the L7 filter which 
provides 100% correct results for considered protocols. Precision 
and Recall metrics were calculated: 

Precision 

Recall 

TruePositive 
TruePositive + FalsePositive 

TruePositive 
TruePositive + FalseNegative 

(2) 

(3) 

Precision informs us how many packets assigned to a given class 
are truly correctly assigned. Fig. 9 shows the quality of classification 
for the worst case - classifier CL-lat. It can be seen that HTTP, whose 
representation is rich in our data sets, is classified perfectly. The 
reason for lower percentages of Precision in the case of SMTP is the 

HTTP SIP 

• accurancy 
recall 

SSH S M T P 

CESftCO (ESP JO 

F i g . 9 . Precision and Recall percentages for four classified protocols on three data sets obtained using CL-lat. 
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fact that considered signatures are relatively short and can easily 
appear inside of other protocol packets. As the subsequent packet 
processing is done in software precisely the incorrectly classified 
protocols will be recognized anyway. The software task is simpler 
than that of the original one. The software must only verify the 
labelled traffic and dismiss false positives. 

Considering the whole SDM, which the proposed classifiers are 
targeted for, the Recall is even a more important metrics. High 
Recall values indicate that if a given application protocol is present 
in the traffic data, it is detected with almost 100% probability and 
thus no information is lost. Fig. 9 does not give any data for SSH in 
CESACO and SIP in CESACO and CESPIO. The reason is that there are 
no relevant records in these data sets. 

7. Conclusions 

It was shown how evolved circuits, optimized for the latency 
and area, can significantly increase the throughput of a manually 
designed classifier of application protocols. This paper introduced 
a new concept of hardware classifier which is composed as a fast 
combinational circuit performing signature matching where the 
signatures are designed according to the protocols to be classi­
fied. Its accurate implementation (CL-acc) was then relaxed and 
approximate classifiers CL-cmp and CL-lat were proposed with 
reduced area and latency. Key components of all classifiers were 
optimized by CGP with the aim of further area and latency reduc­
tion. This led to 48.2% improvement in area (LUTs) and 19.8% 
improvement in latency with respect to CL-acc. Finally, the pro­
posed classifiers were compared with state of the art circuits 
accurately implementing the L7-filter and reported improvement 
in area and latency by one order of magnitude. The proposed solu­
tion is capable of a fast detection of key application protocols using 
a single packet only. It exhibits excellent Recall values (no moni­
tored application protocols are missed). The proposed classifier will 
be used in the SDM framework, which will handle detailed packet 
processing to improve the precision parameter of the hardware 
classifier. 
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ABSTRACT 
High speed networks operating at 100 Gbps pose many chal­
lenges for hardware and software involved in the packet pro­
cessing. As the time to process one packet is very short 
the corresponding operations have to be optimized in terms 
of the execution time. One of them is non-cryptographic 
hashing implemented in order to accelerate traffic flow iden­
tification. In this paper, a method based on linear genetic 
programming is presented, which is capable of evolving high-
quality hash functions primarily optimized for speed. Evolved 
hash functions are compared with conventional hash func­
tions in terms of accuracy and execution time using real 
network data. 

CCS Concepts 
•Networks —> Network monitoring; •Computing method­
ologies —> Search methodologies; Genetic programming; 

Keywords 
Linear Genetic Programming, Network applications, Hash 
function 

1. INTRODUCTION 
We are witnessing a significant progress in the develop­

ment of high speed computer networks. Data centers are 
running at 10 gigabit-per-second (Gbps) speeds and mov­
ing to 40 Gbps. Solutions for 100 Gbps are already avail­
able. New network applications, new security threats and 
the growing communication speeds are major current chal­
lenges for precise and accurate network monitoring. As it 
turns out that networks have to be monitored at the appli­
cation layer, it is crucial to identify the application (or the 
application protocol) which the traffic belongs to [24]. The 
current practice in the area of network monitoring is based 
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on flow measurements, where the flow is uniquely identi­
fied by five parameters within a certain time period: source 
and destination IP address, source and destination port and 
transport protocol. This means that each packet has to be 
processed. In order to identify the application (or the ap­
plication protocol) the network traffic belongs to, one has 
to inspect one or several packets with a payload. The main 
difficulty is that the time to process one packet is less than 
7 ns in the case of modern 100 Gbps links. 

The most promising approach capable of solving this prob­
lem is software defined monitoring (SDM) [16]. The idea of 
S D M is that most traffic can be processed in hardware using 
relatively simple (ad so fast) logic circuits whose function­
ality (i.e. the rules of operation) can be controlled from 
software. Unrecognized traffic, which in practice represents 
only a fraction of the whole traffic, is then analyzed by so­
phisticated algorithms in software. According to [16], about 
80% of flows can be processed in hardware after a learning 
phase of the S D M system is finished. However, during the 
learning phase, the software has to handle most of the flows. 

One of the most frequently called functions from the soft­
ware implementation is a hash function, which assigns a 
memory address (slot) where the data of a given flow are 
stored to the input flow. A good hash function should ex­
hibit some properties (see more in Section 2.1), in particular, 
the number of collisions have to be minimal for the data of 
a given target domain. In the case of S D M , there is another 
important requirement—obtaining of the hash (i.e. the out­
put of the hash function) has to be very fast. The reason is 
that even if most of traffic is processed in hardware, a rela­
tively intensive data stream (about 20 Gbps) has still to be 
processed in software. Moreover, the hash function is typi­
cally called several times in order to obtain desired address 
because the memory addressing system is designed as hi­
erarchical, for example, in the cuckoo hashing scheme [22]. 
Hence it is important to optimize not only the quality of 
hashing, but also the execution time. 

The goal of the paper is to propose and evaluate a method 
capable of providing high quality and easy-to-compute hash 
functions for S D M . As hash functions are sequences of in­
structions, it is natural to utilize linear genetic programming 
(LGP) for their design. In order to minimize the execution 
time, candidate hash functions are constructed using simple 
instructions such as addition and logic operations. L G P is 
implemented as a parallel evolutionary algorithm exploiting 
the island model, i.e. there are several independent popu-
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lations evolved separately that are exchanging some genetic 
material according to a predefined pattern. Evolved hash 
functions are analyzed in terms of the quality and execution 
time. They are also compared with 11 hash functions avail­
able in the literature using the real network data collected 
in our computer network. 

The rest of the paper is organized as follows. Section 2 
briefly surveys the principles of hash functions, L G P and 
evolutionary design of hash functions. The proposed ap­
proach to the evolutionary design of hash functions using 
L G P is introduced in Section 3. Section 4 presents the ob­
tained results in terms of properties of evolved hash func­
tions, their quality and execution time. Conclusions are 
given is Section 5. 

2. R E L A T E D W O R K 
This section covers relevant research conducted in the area 

of hash function design and evolutionary design using L G P . 

2.1 Hash functions 
A hash function is a mathematical function h that maps 

an input binary string (of length D) to a binary string of 
fixed length (R), h : 2D -> 2R, where D » R. The output 
value is called hash value or simply hash [17]. 

Hash functions have many applications, for example, hash 
tables, caches and cryptography primitives employ them. 
Hash functions are primarily used in hash tables to quickly 
locate a data record if its search key is given. The hash func­
tion is then used to map the search key to an index which 
gives the place in the hash table where the corresponding 
record is located. 

The quality of the hash function primarily determines 
the access time to data and table load factor that can be 
achieved for a given memory size. A n important require­
ment on hash functions is that a small change in the input 
should generate a large change in the output. This is called 
the avalanche effect. The definition of hash function implies 
the existence of collisions, i.e. h(x) = h(y), where x, y are 
two input messages such that x ^ y. The optimization of 
hash functions usually involves both criteria - maximizing 
the avalanche effect and minimizing the collision rate. 

There are two types of hash functions, cryptographic and 
non-cryptographic hash functions. Cryptographic hash func­
tions are used in security applications. Their basic property 
is that they are considered practically impossible to invert, 
that is, to recreate the input data from their hash values 

h(Kl) . 

K l K3 K l K3 

h(K3) 1 

h(K2) 

Figure 1: Hash table with separate chaining. 

double L G P (double x ){ 

m = X 

r[2] = r[0] * r[0] 
r[l] = r[2] + r[0] 
r[3] = r[l] + r[0] 
r[3] = r[3] + r[2] 
r[0] = r[2] * r[l] 
r[l] = r[l] + r[4] 
r[0] = r[0] + r[3] 
r[0] = r[l] * r[0] 
return rO 

} 

Figure 2: Example of L G P individual. 

alone. Cryptographic hash functions have to fulfill addi­
tional requirements, for example, first preimage resistance 
and collision resistance [19]. These requirements lead to a 
more complicated construction procedure and the hash func­
tion needs more time to compute the hash value. 

Non-cryptographic hash functions, which this paper deals 
with, are typically used for fast lookup in hash tables [17] 
and they are much easier to design [20]. Various approaches 
have been developed to handle the collisions. For example, 
a separate chaining method manages a list of records having 
the same hash, see Fig . 1. Each slot in the table refers to 
a linear list where the data are stored. The hash value is 
computed for a given key and the data are stored to the first 
empty slot in the list addressed by the hash. This method 
is widely used, because it needs only elementary data struc­
tures and simple operations on lists. Other methods resolv­
ing the collisions are, for example, open addressing, linear 
probing, and cuckoo hashing. 

Many (non-cryptographic) hash functions have been pro­
posed, for example, DJBHash [4], D E K H a s h [17], F V N 
(Fowler-Noll-Vo) [12], One A t Time and Lookup3 [13]. Mur-
murHash2 and MurmurHash3, which are utilized in many 
open source projects, are hash functions suitable for gen­
eral hash-based lookup [1]. City Hash is a family of non-
cryptographic hash functions designed for fast hashing of 
strings [23]. For hashing of the network flows, the so-called 
X O R folding has been proposed [6]. 

2.2 Linear Genetic Programming 
Linear genetic programming [5, 21, 27] uses a linear rep­

resentation of computer programs. Every program is com­
posed of operations called instructions and operands stored 
in registers. Example of a candidate program is given in Fig­
ure 2. There are essentially two types of linear G P : machine 
code GP, where each instruction is directly executable by 
the C P U , and interpreted linear GP, where each instruction 
is executable by a virtual machine (simulator) implemented 
for a given processor. 

A n instruction is typically represented by the instruction 
code, destination register and two source registers, for exam­
ple, [+, rO, r l , r2] is representing the operation rO = rl + r2. 
The input data are stored in predefined registers or in an 
external memory. The result is returned in a predefined 
register. The number of instructions in a candidate pro­
gram is variable, but the minimal and maximal values are 
defined. The number of registers available in a register ma-
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chine is constant. The function set known from G P corre­
sponds with the set of available instructions. The instruc­
tions are general-purpose (e.g. addition and multiplication) 
or domain-specific (e.g. read sensor 1). Conditional and 
branch instructions are important for solving general prob­
lems. Protected versions of instructions (e.g. a division 
returning a predefined value even if the divisor is zero) are 
employed in order to execute all programs without invoking 
exceptions such as division by zero. 

New candidate programs are created using standard ge­
netic operators such as crossover and mutation operating 
over lists of instructions. Advanced genetic operators have 
been proposed for L G P , for example [7, 9]. 

The most computationally expensive part of L G P is the 
fitness function evaluation. In order to obtain program's 
quality, the candidate program is executed with a set of 
training inputs, program's outputs are collected and com­
pared with desired values. In a multi-objective scenario, 
non-functional program parameters such as the number of 
instructions can be optimized together with the functional­
ity. We will employ a specific approach, see Section 3.3. 

A n individual can contain unused code parts, called bloat, 
which do not affect the fitness value. However, the bloat 
slows down the program execution. If bloat is detected and 
deleted, the evaluation time can significantly be reduced. 

Parallel implementations of E A s are very popular because 
it is not usually difficult to parallelize the E A and obtained 
speedup can be significant. Parallel processing can be in­
troduced at different levels of L G P : a parallel evaluation of 
candidate solutions, a parallel evaluation of training vectors 
or a parallel search in separate subpopulations. 

A parallel L G P based on the island model operates with 
several subpopulations (the so-called islands) in which the 
evolution is conducted separately, but occasional exchange 
of the genetic material is permitted. The communication 
between islands can be either synchronous or asynchronous. 
As the evaluation of population(s) on different islands may 
consume different time, the asynchronous approach enables 
the islands to exchange genetic material when it is ready, i.e. 
the faster islands do not have to wait for the slower islands 
as in the case of synchronous communication. 

2.3 Evolution of hash functions 
In order to evaluate a hash function, a data set has to 

be applied and its key characteristics such as the number of 
collisions and the output distribution have to be computed. 
The quality of hashing on a particular data set then serves 
as the fitness score. 

In papers [11, 10], G P employed the avalanche effect as 
the fitness criterion. In another work, the number of colli­
sions was the main optimization target [14]. Cryptographic 
hash functions were evolved by means of gene expression 
programming in [25]. Hash functions tailored for a hard­
ware implementations were obtained in [26]. Recently, non-
cryptographic hash functions based on linear and non-linear 
feedback shift registers were evolved with the aim of effi­
cient hardware implementation in F P G A s . It was shown 
that evolved solutions can achieve better table load factor 
in comparison with human-created solutions [8]. Finally, 
cache mapping functions, which can be considered as special 
instances of hash functions were evolved to optimize param­
eters of processor cache for a particular application [15]. 

3. HASH FUNCTION DESIGN 
The main goal of this paper is to evolve using L G P a 

special hash function for hashing of network flows by means 
of a hash table with separate chaining. 

3.1 Towards fast hashing 
Each network flow is uniquely identified in IPv4 by a 

5-tuple (source IP address (32 b), destination IP address 
(32 b), source port (16 b), destination port (16 b) and trans­
port protocol (8 b)). In S D M , the network flow identifier has 
a constant length of 104 bits. As the target hash function 
has to accept only the 104 bit input, there is an opportunity 
to create a simple specialized hash function with good pa­
rameters. Universal hash functions consume the input data 
'block by block' and the blocks are sequentially processed 
in a loop. Restricting the input to 104 bits enables to pro­
cess the whole input string in one step, without any loops, 
which would significantly contribute to our key objective— 
shortening the execution time. 

The second factor influencing the execution time is the in­
struction (function) set. Universal hash functions typically 
contain instructions such as logical X O R , addition, multipli­
cation and rotation. The most computationally expensive 
operation is multiplication. Hence our objective wil l be to 
evolve multiplication less hash functions. 

Finally, the number of instructions to be executed influ­
ences the execution time. After many experiments with 
L G P , we learned that sufficiently good hash functions re­
quire less than 12 instructions. Rather than applying a mul-
tiobjective L G P searching for a good compromise between 
the execution time and quality of hash functions, we pro­
pose to use a single-objective L G P in which the goal is to 
maximize the quality of hashing assuming that the program 
size is restricted. The validity of this approach is discussed 
in Section 4.3. 

3.2 Parallel L G P and its parameters 
The proposed implementation utilizes the island-based asyn­

chronous parallel L G P model with a ring topology. Af­
ter a predefined number of generations, every island sends 
the best individuals to its neighbors. A l l islands try to re­
ceive new individuals from other islands in every generation. 
Newly incoming individuals replace randomly chosen indi­
viduals of the population. However, the best individual of a 
given subpopulation is never replaced. The individuals are 
sent as integer array messages. In our case, the implemen­
tation is based on M P I [18]. L G P is employed in the style 
of [5]. 

The program size is restricted to contain up to 12 instruc­
tions. The set of constants consists of prime numbers that 
are commonly used in cryptographic hash function SHA-2 
[2]. The function set includes the addition, logical X O R and 
right rotation. Note that right rotation and left rotation are 
interchangeable [11]. A l l L G P parameters are summarized 
in Table 1. They were chosen carefully on the basis of many 
experiments. The impact of some of them on the process of 
evolution will be discussed in Section 4. 

3.3 Initialization and fitness function 
The initial population is randomly generated. In order to 

calculate the fitness score, the responses have to be calcu­
lated for all training vectors. In this process, every training 
vector is used to initialize the registers of a candidate hash 
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Table 1: L G P parameters 
Parameter Value 
Population size 200 
Crossover probability 90% 
Mutation probability 15% 
Program length 12 
Registers count/type 8/32 b - int 
Constants {0x6a09e667, 0xbb67ae85, 

0x3c6ef372, 0xa54ff53a, 
0x510e527f, 0x9b05688c, 
0xlf83d9ab, 0x5be0cdl9, 
0x428a2f98, 0x71374491} 

Instruction set {RightRotation, X O R , +} 
Tournament size 4 
Maximum number 1000 
of generations 
Crossover type One-point 
Migration period 40 generations 

function. A l l registers are 32 bit. The dimension of a train­
ing vector is reduced before starting the evolution to 3 x 32 
bits in such a way that the source and destination IP ad­
dresses remain in the original format and a new 32 bit vector 
is created from the source and destination port (sp, dp) and 
transport protocol (tp) according to formula 

((sp « 16) V dp) ©tp. 

As real traffic contains especially two types of transport pro­
tocol ( T C P and U D P ) there is not a significant loss of infor­
mation using this reduction of input vector. As this modi­
fication reduces the input space, it makes the hash function 
evolution easier. 

The fitness function is based on counting the number of 
collisions. Let Ki inputs (keys) be mapped into i-th memory 
slot by a candidate hash function h. Then the fitness f(h) 
is defined as 

s 

f{h) = J^ffi, where (1) 
i=i 
r o if Ki < i 

9 1 = 1 H%f i f * i > 2 ( 2 ) 

and s is the number of memory slots. This function penal­
izes candidate individuals showing many collisions and long 
lists in the hash table with separate chaining. Shorter lists 
in the table wil l lead to faster lookup. Lower fitness values 
mean better solutions. Example: Consider that two inputs 
are assigned to slot i = 5, three inputs are assigned to slot 
i = 12 and 0 or 1 inputs are assigned to the remaining slots. 
Then f(h) = 2 2 + (2 2 + 3 2) = 17. 

4. EXPERIMENTS AND RESULTS 
This section introduces the network data used for the eval­

uation and a set of hash functions that will be compared 
with evolved hash functions. The experimental evaluation 
is focused on a basic statistical evaluation of L G P . Then, the 
quality and time of execution of evolved non-cryptographic 
hash functions intended for a hash table with separate chain­
ing are analyzed. 

4.1 Network Data 
Experiments will be performed with three data sets con­

taining 20,000 (DataSetl), 50,000 (DataSet2) and 100,000 
(DataSet3) identifiers of network flows. These sets were col­
lected using a network monitoring device installed in our 
computer network in different days and are considered as 
the representative data for our network. There are no du­
plicate records in these data sets. DataSetl is used as a 
training set for L G P . IP addresses and transport protocol 
are converted to the decimal format which is used in our 
data sets (Figure 3). 

4.2 Hash functions used for comparison 
Evolved hash functions wil l be compared with human-

created hash function DJBHash, D E K H a s h , One A t Time, 
Lookup3, F V N H a s h , Murmur2, Murmur3, CityHash, a spe­
cial hash function X O R H a s h optimized for network flows [6] 
and evolved hash functions available in the literature GPHash 
[10, 11] and EFHash [14]. A 16 bit hash table with separate 
chaining is employed for testing all functions. As conven­
tional hash functions typically produce a 32-bit hash value, 
we created a 16-bit output using X O R folding [6]. 

4.3 Analysis of L G P Setting 
The evolution has been carried out using 1, 2, 4, 8 and 

16 independent islands (i.e. cores) on a 16-core processor 
enabling the parallel processing and communication using 
M P I . 

In order to obtain basic statistics, 20 independent L G P 
runs were performed, each taking 1000 generations (on each 
island). In other words, the total time allocated for the 
evolution is almost identical independently of the number 
of islands, but the number of generated individuals is lin­
early depending on the number of islands. The objective 
is to investigate how the quality of results is depending on 
available cores. The progress of evolution can be seen as 
the median value (out of 20 runs) in Figure 4. While the 
individuals were significantly improving for 100 generations, 
only small improvements are visible after 200 generations. 
Hence enabling 1000 generations for these experiments was 
more than sufficient. 

The boxplots shown in Fig. 5 give the fitness value after 
1000 generations spent by L G P executed with a different 
number of islands. Boxplots used in this figure represent 
the minimum, first quartile, median, third quartile and max­
imum. The experiments confirmed our assumption that if 
more islands are involved a better solution can be obtained, 
because more individuals are generated (in total) and ex­
changed among the islands. It has to be emphasized that 
we are not interested in an analysis of the speedup obtained 
by a parallel implementation in this case. 

Fig. 6 shows the number of instructions that were really 

192.79.52.199,192.229.91.12,80,4236,TCP 

i 
3226416327,3236256524,80,4236,6 

Figure 3: Example of conversion between a real net­
work record and training vector. 
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Figure 4: The progress of the best fitness score as median out of 20 independent runs on a different number 
of islands. 

utilized in the programs created randomly for the initial pop­
ulation and in the programs of the final population. Please 
note that the instructions which did not contribute to the 
fitness (i.e. bloat) were removed. Even if the maximum pro­
gram size is limited to 20 instructions, the median number 
of used instructions is less than 12. This analysis justifies 
our initial choice to limit the number of instructions to 12. 

4.4 Evolved hash functions 
From evolved solutions, two interesting hash functions 

were chosen for a detailed analysis. L G P H a s h l (see the 
C code in Fig . 7) is the best scored hash function from all 

the runs. The second hash function selected is LGPHash2 
(see the C code in Fig . 8) which is very simple. It ranked 
in the first quartile for 16 islands. It has to be noted that 
we removed all instructions not contributing to the fitness 
from evolved genotypes before creating the source codes in 
C which are presented in the paper. 

In order to evaluate the impact of multiplication in the in­
struction set and the impact of increasing the number of in­
structions, we repeated our experiments (i) with a modified 
function set in which the multiplication was permitted and 
(ii) with up to 20 instructions allowed in the hash function. 

Island count 

Figure 5: The best fitness values obtained from 20 
independent runs on 1, 2, 4 , 8 and 16 islands. 

Final Fina 
populat ion populat ion 

{12 inst) {20 Inst) 

Figure 6: The number of instructions that were uti­
lized in the initial population and final population if 
the program size is limited to 12 and 20 instructions. 
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unsigned int L G P H a s h l (unsigned int * input ){ 
r[0] = input [0] 
r[l] = input [1] 
r[2] = input [2] 

r[l] = r[l] + r[2] 
r[2] = r[l] + r[2] 
r[4] = r[0] + r[2] 
r[0] = r[l] + r[4] 
r[3] = 0x5BE0CD19 
r[2] = rotr(r[3], r[4]) 
r[0] = r[0] + r[2] 
r[0] = 0xA54FF53A + r 
return rO © (rO >> 16) 

} 
Figure 7: Evolved hash function L G P H a s h l . 

unsigned int LGPHash2 (unsigned int * input ){ 
r[0] = input [0] 
r[l] = input [1] 
r[2] = input [2] 

r[0] = r[0] © r[l] 
r[0] = r[2] + r[0] 
return rO © (rO >> 16) 

} 
Figure 8: Evolved hash function LGPHash2. 

Evolved hash functions showing the best fitness value out of 
all runs—LGPhashMult (Fig. 9) for (i) and LGPhash20inst 
(Fig. 10) for (ii)—will be reported for comparison. 

4.5 Collision test 
Evolved hash functions as well as the hash functions ob­

tained from the literature have been implemented in C pro­
gramming language and compiled with the identical com­
piler setting. A l l tests were then preformed using these im­
plementations. 

Table 2 gives the number of collisions for all hash functions 
on three data sets. The best values are typed with bold font. 
It can be seen that the number of collisions is very similar for 

unsigned int LGPhashMult (unsigned int * input ){ 
r[0] = input [0] 
r[l] = input [1] 
r[2] = input [2] 

r[6] = r[2] + r[0] 
r[7] = 0xA54FF53A 
r[5] = rotr(r[l], r[6]) 
r[6] = r[l] © r[5] 
r[4] = r[6] * r[0] 
r[7] = rotr(r[l], r[7]) 
r[6] = rotr(r[7], r[4]) 
r[3] = r[6] + r[2] 
r[0] = r[3] + r[0] 
return rO © (rO >> 16) 

} 
Figure 9: Evolved hash function LGPhashMult . 

unsigned int LGPhash20inst (unsigned int * input ){ 
r[0] = input [0] 
r[l] = input[l] 
r[2] = input [2] 

r[6] = rotr(r[l], r[2]) 
r[l] = r[l] © r[0] 
r[7] = r[l] + r[4] 
r[7] = r[7] + r[6] 
r[l] = rotr(r[7], r[6]) 
r[0] = r[4] + r[6] 
r[5] = r[l] + r[0] 
r[7] = r[5] + r[2] 
r[4] = rotr(r[l], r[l]) 
r[4] = r[7] © r[4] 
r[0] = r[0] © r[4] 
return rO © (rO >> 16) 

} 
Figure 10: Evolved hash function LGPhash20inst. 

Table 2: The number of collisions. 

Hash function The number of collisions Hash function 
DataSetl DataSet2 DataSet3 

DJBHash 2835 15113 48925 
D E K H a s h 2926 15247 49017 
F V N H a s h 2756 14957 48780 
One A t Time 2821 14988 48636 
lookup3 2742 15009 48737 
Murmur2 2800 15050 48749 
Murmur3 2744 14911 48763 
City Hash 2807 14990 48647 
X O R H a s h 2864 15011 48575 
GPHash 2777 15052 48750 
EFHash 5317 25266 63175 
LGPhashl 2667 15031 48680 
LGPhashS 2746 15170 48835 
LGPhashMul t 2769 14975 48715 
LGPhash20inst 2761 14980 48755 

all the hash functions except EFHash. It can be concluded 
that evolved hash functions that are composed of simple 
instructions exhibit the quality almost identical with other 
hash functions. Neither enabling multiplication (LGPhash­
Mult) nor more instructions (LGPhash20inst) have led to a 
considerable reduction in the number of collisions. 

4.6 The execution time 
The execution time of hash functions (i.e. their imple­

mentations in C) was measured on the Intel X E O N E5-2630 
processor. Table 3 gives the average execution time obtained 
from 20 independent runs for all vectors of a given data 
set. Differences between the run times on the same data 
sets are very small which can be documented on detailed 
boxplots depicted in Fig. 11, where we compared the best 
evolved hash functions and the fastest conventional function 
XORHash . 

The proposed special construction of loop-less and multipli­
cation-less hash functions produced the faster solution. En­
abling the multiplication definitely increases the execution 
time, but as the number of instructions is limited to length 
12, evolved hash function containing the multiplication is 
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Table 3: The average execution time. 

Hash function 
DataSetl 

Time [ms] 
DataSet2 DataSet3 

DJBHash 1.783 5.036 13.254 
D E K H a s h 1.592 4.591 12.199 
F V N H a s h 1.678 4.647 12.373 
One A t Time 2.365 6.269 15.763 
lookup3 1.275 3.736 9.931 
Murmur2 1.314 3.820 10.153 
Murmur3 1.590 4.434 11.568 
City Hash 3.089 7.883 19.237 
X O R H a s h 0.913 3.174 8.708 
GPHash 1.936 6.229 15.813 
EFHash 2.323 16.282 56.921 
LGPhashl 0.818 3.039 8.446 
LGPhashS 0.756 2.852 8.057 
LGPhashMul t 0.912 3.349 9.096 
LGPhash20inst 0.916 3.242 8.954 

Table 4: Overall quality of hash functions 

Hash function 
DataSetl 

Quality (Q) 
DataSet2 DataSet3 

DJBHash 1.005 1.004 1.006 
D E K H a s h 1.012 1.012 1.012 
F V N H a s h 0.999 0.998 1.001 
One A t Time 1.003 1.001 1.000 
lookup3 0.999 1.000 0.999 
Murmur2 1.001 1.001 1.000 
Murmur3 0.999 0.998 1.001 
City Hash 1.003 0.999 0.998 
X O R H a s h 1.007 0.999 0.997 
GPHash 1.001 1.003 1.000 
EFHash 1.338 4.045 6.312 
LGPhashl 0.996 1.002 0.999 
LGPhash2 0.999 1.003 1.001 
LGPhashMul t 1.000 0.998 1.000 
LGPhash20inst 0.998 0.998 1.000 

still faster than other hash functions. If 20 instructions can 
be used, the execution time is prolonged proportionally to 
the number of instructions in the candidate program. 

4.7 Overall quality of hash functions 
The Compilers, Principles, Techniques book [3] proposes 

the following formula for evaluating the hash function qual­
ity: 

E 
3=0 

M * » j + l ) / 2 
(n/2m)(n + 2m - 1)' (3) 

where bj is the number of items assigned to j '-th slot, m 
is the number of slots, and n is the total number of items. 
The numerator estimates the number of slots a hash function 
should visit to find the required value. The denominator is 
the number of visited slots for an ideal function that puts 
each item into a random slot. A n ideal function produces 
the outputs with almost random distribution probability. If 
the hash function is ideal the formula should return 1, and a 
good quality is between 0.95 and 1.05. If Q is greater than 

XORHash L G P h a s h l LGPhash2 LGPhashMul t LGPhash20inst 

Hash function 

Figure 11: The execution time of selected hash func­
tions on DataSet3 calculated from 20 runs. 

1, there are more collisions. If the number is smaller, there 
are less collisions than randomly distributing function. 

From Table 4 it can be seen that evolved hash functions, 
despite the fact that they are composed of simple instruc­
tions, show very good quality according to the Q function [3]. 
This measurement indicated that enabling the multiplica­
tion and more instructions in programs has only a very small 
impact on the quality of hashing. 

5. CONCLUSIONS 
A method based on L G P was proposed which is capable 

of evolving high-quality and fast hash functions intended for 
network applications. In order to evolve desired hash func­
tions, the function set was composed of simple instructions 
and the program size was restricted to 12 instructions. The 
fitness function was based on counting the number of col­
lisions and penalizing candidate hash functions generating 
many collisions. 

The best evolved hash functions were compared with 11 
hash functions available in the literature. In order to provide 
a fair comparison, all hash functions were implemented in C, 
compiled for the same processor and executed several times 
to obtain the average execution time and quality. 

In terms of the execution time, the best evolved hash func­
tion L G P h a s h l provides 10.4%, 4.2% and 3.0% improvement 
on DataSets 1, 2 and 3 against the fastest available hash 
function XORHash [6] while the number of collisions was re­
duced by 6.8% for DataSetl and slightly increased by 0.1% 
and 0.2% for DataSets 2 and 3. L G P h a s h l and XORHash 
perform almost identically according to the Q quality func­
tion. The obtained speedup seems to be small, but one has 
to consider that the hash function is called many times and 
total savings are very valuable. Moreover, L G P h a s h l re­
duced the execution time by 48.5%, 31.4% and 26.9% for 
DataSets 1, 2 and 3 with respect to Murmur3 hash func­
tion, which is typically used in S D M and which, on the other 
hand, provides a slightly lower number of collisions. 

We observed that by enabling the multiplication or by 
increasing the program size, the number of collisions can 
be improved only insignificantly, but the execution time in­
creased by 5-10%. 

In our future work, we plan to analyze the impact of 
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pipeline processing and instruction scheduling which could 
influence the execution time on a particular processor. We 
wil l also test evolved hash functions in a S D M system. 
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Abstract—Hashing is a critical function in capturing and 
analysis of network flows as its quality and execution time 
influences the maximum throughput of network monitoring 
devices. In this paper, we propose a multi-objective linear 
genetic programming approach to evolve fast and high-quality 
hash functions for common processors. The search algorithm 
simultaneously optimizes the quality of hashing and the execution 
time. As it is very time consuming to ohtain the real execution 
time for a candidate solution on a particular processor, the 
execution time is estimated in the fitness function. In order to 
demonstrate the superiority of the proposed approach, evolved 
hash functions are compared with hash functions available in the 
literature using real-world network data. 

I. I N T R O D U C T I O N 

Many hardware providers have announced support for 100 
gigabit-per-sec on d (Gb/s) networks to overcome current 10-
40 Gb/s solutions. Commercial companies, data and super­
computer centers, and other entities around the world are 
now working towards launching 100 Gb/s networks in order 
to benefit from faster communication and wider bandwidth 
for high-throughput requesting applications such as high-
performance computing or high-quality video streaming. Man­
aging 100 Gb/s networks, however, requires more precise per­
formance monitoring (involving bandwidth monitoring, traffic 
analytics and anomaly detection) than in the previous era. 

In order to effectively monitor and analyze high speed 
networks til the level of packet contents, software defined 
monitoring ( S D M ) concept has been developed []]. Having 
less than 7 ns to process one packed in a 100 Gb/s network, 
S D M performs the analysis using relatively simple (and so 
fast) hardware whose functionality (i.e. rules of operation) arc 
defined in software. Unrecognized traffic is then processed by 
sophisticated algorithms in software. The analysis is performed 
at the level of flows, where one flow is defined by five 
parameters within a certain lime period: source and destination 
IP address, source and destination port and transport protocol. 
A memory address (slot) where the data of a given flow are 
stored is computed with a suitable hash function. 

In our previous work, we employed linear genetic pro­
gramming ( L G P ) to evolve high-quality hash functions for 
the software part of S D M [2]. In a s ingle-objective design 
scenario and using real-world network traffic data, we obtained 
hash functions comparable in terms of quality of hashing, but 
faster than the state of the art hash functions. The objective 
for L G P was to minimize the number of collisions a given 

candidate hash function produces. A s the hash function is 
called very often, it has to be very fast. However, the execution 
time of hash functions was not optimized. We just imposed 
an indirect constraint on the execution time requesting that the 
genotype must contain fewer than 12 instructions. Only simple 
elementary instructions such as addition and logic operations 
were allowed in the chromosome to minimize the execution 
time. 

The goal of this paper is to show that if the execution time of 
a candidate hash function is formulated as a design objective 
together with the quality of hashing and the evolutionary de­
sign is performed with a multi-objective L G P , even better hash 
functions than those reported in paper [2] can be obtained. 
We propose and analyze an approach capable of estimating 
the execution time of a candidate hash function in the fitness 
function. The total execution time is estimated as the number 
of utilized instructions, where different weights are assigned 
to different types of instructions to reflect their different 
complexity. Scheduling and parallel execution of instructions 
on modern pipelined processors are also considered, 

The estimated execution time and the number of collisions 
are then used as fitness functions in a muIti-objective design 
algorithm based on L G P and N S G A - I L Evolved hash functions 
from the final Pareto front are compared with 11 hash func­
tions available in the literature and 2 hash functions evolved 
in [2] using real-world network data. 

The rest of the paper is organized as follows. Section 11 
introduces the concept of hashing and hash function design. 
L G P and its utilization for hash function design in our pre­
vious approach is presented in Section III. Drawbacks of the 
previous approach are analyzed in Section III-C, The proposed 
multi-objective method is introduced in Section IV. Section V 
summarizes the experiments performed in order to evaluate the 
proposed method and compare resulting hash functions with 
existing solutions. Conclusions are given in Section VI , 

II. H A S H F U N C T I O N D E S I G N 

This section surveys the principles of hash function de­
sign and their utilization in S D M . A s this paper is devoted 
to software implementations of hash functions on common 
processors, circuit implementations of hash functions created 
for hardware parts of S D M (such as [3|) wi l l not further be 
discussed. Moreover, we wi l l not consider cryptographic hash 
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functions that have to exhibit additional properties [4]. They 
are thus irrelevant for S D M . 

A hash function is a mathematical function h that maps an 
input binary string (of length D) to a binary siring of fixed 
length (R), h : 1D - J - 2R, where D » B,. The output value 
is called hash value or simply hash |5]. 

The main purpose of hash functions is to locate (in constant 
time) a data record for a given search key, avoiding thus a 
sequential or log-time search in data records [5]. The quality 
of hash function is given in terms of the access time to data and 
table load factor (for a given memory size). The definition of 
hash function implies the existence of collisions, i.e. h{x) = 

h(y), where x, y are two input messages such that x ^ y. 

Good hash functions generate a big change in the output for a 
small change in the input. This is called the avalanche effect. 

The hash function is typically called several times in order 
to obtain desired address because the memory addressing 
system can be designed as hierarchical, for example, in the 
cuckoo hashing scheme [6]. Hence, it is important to optimize 
not only the quality of hashing, but also the execution time, 
which is crucial for S D M as the hash function is called very 
often. Note that the worst case packet processing time is 7 ns 
for 100 Gb/s networks. 

rig. 1. Hash table with separate chaining. 

Collisions introduced by a hash function can be managed in 
different ways in hash tables [7]. The most popular approach 
is a separate chaining method which operates a list of records 
having the same hash, see Fig . 1. Each slot in the table is 
pointing to a linear list where the data are stored. The hash 
value is computed for a given key and the data are stored 
to the first empty slot in the list addressed by the hash. The 
advantage is that the meihod requires only basic data structures 
and simple operations on lists. 

The literature provides us with various implementations 
of hash functions including DJBHash [8], D E K H a s h [5], 
F V N (Fowler-Noll-Vo) [9], One At Time, Lookup3 [10], 
MurmurHash2, MurmurHash3 111] and CityHash [12J, For 
hashing of the network flows, the so-called X O R folding has 
been proposed [13]. 

III. P R E V I O U S W O R K O N E V O L U T I O N O F H A S H F U N C T I O N S 

Genetic programming (GP) has been used to provide various 
hash functions. The fitness function reflecting the quality 

double L G P (double x ){ 
r[0] = x 

r[2] = r[0] * r[0] 
r [ l ] = r[2] + r[0] 
r[3] = r [ l ] + r[0] 
r[4] = r [ l ] + r[2] 
r[0] = r[4] + r[3] 
return r[0] 

Fig. 2, Example of L G P individual. 

of hashing is usually based on measuring the avalanche ef­
fect [14], [15] or the number of collisions [16]. Cryptographic 
hash functions were designed with gene expression program­
ming in [17]. Circuit-based hash functions were obtained 
in 118]. Hash functions are also employed in cache memories. 
An example of GP-based optimization of hash functions for 
particular applications is given in [19]. 

This section briefly presents L G P and our previous single-
objective LGP-based approach for the design of fast hash 
functions in S D M [2], In particular, it analyzes weaknesses 
of the method that motivated the research presented in this 
paper. 

A. Linear Genetic Programming 

Linear genetic programming (LGP) [20], [21], [22] is a 
form of genetic programming in which candidate programs 
are encoded as sequences of instructions and executed on a 
register machine. Example of a candidate program is given in 
Figure 2. 

In L G P , every instruction typically includes an operation 
(instruction code), one or two source registers and a destination 
register. One-register instructions operate with one register as 
the destination register (e.g. 7-0 = read sensor(); load constant 
to register r l etc.). Two-register instructions operate with 
one source and one destination register (e.g. rO = $in(rl); 

rO = bitwise_rotation(rl)). Three-register instructions op-
crate with two source registers and one destination register 
(e.g. rO = r l + r2) . The number of instructions in a candidate 
program is variable, but the minimal and maximal values 
are usually defined. The number of registers available in a 
register machine is constant. The result is returned in a se­
lected register. The function (instruction) set contains general-
purpose {e.g. addition and multiplication) and domain-specific 
(e.g. read sensor) instructions. L G P is usually used with basic 
genetic operators (tournament selection, crossover, mutation). 
However, advanced genetic operators were also proposed, for 
example [23], [24]. 

B. LGP for Hash Function Design 

In our previous work [2], L G P was used to deliver a special 
hash function for hashing of network flows by means of a 
hash table with separate chaining. Each network flow can be 
uniquely identified by a 5-tuple. For IPv4, the 5-tuple contains 
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source and destinations IP address (2 x 32 bits), source and 
destination ports (2 x 16 bits) and transport protocol (8 bits). 
As the network flow identifier has a constant length of 104 
bits in S D M , the hash function evolved by L G P accepts only 
104 bits. Restricting the input lo 104 bits enabled to process 
the whole input string in one step, without sequential reading 
the input data and multiple executions of the hash function, 
shortening thus the execution time. 

In order to even simplify the problem, the 104 bit input 
vector was reduced to 3 x 32 bits in such a way that the source 
and destination IP addresses remain in the original format and 
a new 32 bit vector is created from the source and destination 
port (sp, dp) and transport protocol (tp) according to formula 

((sp« 16) V dp) 

N o significant loss of information was reported after applying 
this simple approach. 

L G P operated with a 32 bit register machine. Universal hash 
functions typically contain instructions such as logical X O R , 
addition, multiplication and rotation. Hence, we included these 
operations lo our instruction set. Randomly created programs 
composed of these instructions constituted the initial popula­
tion. We used standard genetic operators such as tournament 
selection, one-point crossover and mutation. 

A single objective search was guided by the fitness function 
reflecting the quality of hashing. Let Ki inputs (keys) be 
mapped into i-th memory slot by a candidate hash function h. 

Then the fitness f(h) was defined as the weighted number of 
collisions: 

f(h) y ^ f f i , where 
i=] 
f 0 if Ki < 1 

(I) 

(.2) 

where s is the number of memory slots. This function clearly 
penalized candidate hash functions showing many collisions 
and thus long lists in the hash table with separate chaining. 
The objective was to minimize f{h). 

The execution time was controlled indirectly, by formulat­
ing a constraint that the maximum chromosome size is 12 
instructions. 

C. Lessons Learned 

Experiments reported in [2] confirmed that L G P can evolve 
hash functions for S D M (i) that show at least the same quality 
of hashing as common hash functions and (ii) that are faster 
than these common functions. In order to perform a fair 
comparison with conventional hash functions that arc available 
at the level of C code, evolved hash functions as well as 11 
common hash functions were implemented in C , compiled 
(with the code optimization parameter -03) for the same 
processor and executed many limes to obtain the average exe­
cution time and quality on three data sets. One of the evolved 
hash functions, LGPhash 1. reduced the execution time by 
35% on average with respect to Murmur3 hash function [11], 

which is typically used in S D M . These results were obtained 
with the instruction set consisting of addition, X O R and 
shift operations. Enabling the multiplication operator in the 
instruction set improved the quality of hashing insignificantly, 
but ihe execution time increased by 5-10%. N o improved was 
obtained by increasing the maximum chromosome size to 20 
instructions. 

Although we evolved good hash functions, we revealed the 
following drawbacks after detailed examination of the results: 
(1) As the chromosome could contain up to 12 instructions, 
we generated short and fast programs, but we did not optimize 
the execution time. Resulting hash functions were selected 
manually, on the basis of their functionality solely, i.e. we 
potentially overlooked faster hash functions showing good 
quality. Figure 3 reports the number of evolved hash functions 
(y-axis) with a particular execution time (x-axis) in a 200 
member L G P population. The execution time is the average 
time from 20 independent runs of a particular hash function 
compiled for a target processor (Intel X E O N E5-2620v3) and 
executed using a test set. The execution time of most hash 
functions is concentrated in the 1 ins - 2 ms interval, where 
we were looking for the best-performing hash functions for our 
comparisons. However, (here exist much faster hash functions 
as seen around and below 1 ms on the x-axis. 

10' 

£ 1 0 ' 

10° •I I 
to0 

10' 
Time [ms| 

Fig. 3. The number of hash functions with a particular execution time in a 
200 member L G P population. 

(2) Counting the number of instructions in the fitness 
funeiion can only indirectly reflect ihe execution time. The 
reason is that particular instructions have different execution 
times that have to be reflected in the correct estimate of the 
total execution time of the hash function. We measured the 
execution lime of randomly generated 1 million instruction 
programs consisting of just one type of instructions and 
observed that multiplication is 3 times more expensive than 
other instructions used in hash functions. This observation is 
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consistent with cloek cycles performed for given instructions 
by our processor. 

(3) As modern processors introduce parallel processing at 
the level of instruction execution, real exceuiion time depends 
on how (he instructions are seheduled for parallel hardware 
pipelines. Kor example, if there are no dependencies between 
the instructions they can be executed in parallel, reducing thus 
significantly the total execution time of the hash function. 

(4) The total execution time elearly depends on the quality 
of the hash function because fast but weak hash functions wi l l 
generate many collisions and additional sequential processing 
of items in the hash table. Hence, a multi-objective optimiza­
tion approach is needed. 

IV. M U L T I - O B J E C T I V E E V O L U T I O N O F H A S H F U N C T I O N S 

In order to eliminate the drawbacks reported in the previous 
section and evolve hash functions showing good tradeoffs 
between the execution lime and quality of hashing, we wi l l 
construet the search algorithm as a multi-objective L G P mini­
mizing two objectives: (i) the number of collisions (according 
to eq. 1) and (ii) the execution time. As it is very time 
consuming to obtain the real exeeution time for a candidate 
solution on a partieular processor, the execution time wi l l be 
estimated. 

A. Execution Time Estimation 

At the level of chromosome, the number of instructions 
can be restricted as recommended in [2]. However, a candi­
date fixed-size program can still contain unused code parts, 
called bloat, which do not affect the fitness value (result). 
There are two types of unused instructions. In the first case, 
there are instructions whose result is not used by any other 
instruction (structural redundancy). In the second case, there 
are instructions whose execution does not affect contents 
of registers (semantic redundancy). The proposed algorithm 
estimates the execution time as the number of instructions that 
wil l be executed when the candidate program is compiled and 
redundant instructions are removed. Note that multiplication 
is counted with weight 3, but this is omitted in the pseudo 
codes to keep them more readable. It is assumed that there is 
one register containing the output value. 

Algorithm 1 removes structurally redundant instructions. In 
a candidate program p, last instruction i which modifies the 

Algorithm 1: Execution lime estimation (simple) 
Input: Candidate program p 
Output: The number of used instructions 

1 used-instructions = 0; 
2 used-registers <— Insert(output-register); 
3 while { i <r- getLastlnstruction(p) ) do 
4 if DestinationRegister(i) 6 used-registers then 
5 used-registers « - Insert(source-registers(i)); 

6 Increment(used-instructions); 

remove instruction i from p; 

return used-instructions; 

output register is detected. Then, destination and source reg­
isters of instruction ? are inserted to a set of used registers. In 
the next step, the algorithm moves backward in the candidate 
program and checks i f a given instruction uses some registers 
from the set of used registers as the destination register. If 
so, source registers of such instruction are inserted to the set 
of used instructions. Every instruction affecting content of the 
output register thus increases the number of used instructions. 
Weights are assigned to some instructions to reflect their 
higher complexity. 

Algorithm 2 performs a basic semantic analysis of a can­
didate program. It also captures the instruction level paral­
lelism [25| known as S I M D (Single instruction multiple data). 
S I M D processing refers to a mechanism that enables to process 
multiple data with a single instruction. Modern C P U s can 
typically process 256 bits at once which means thai eight 32-
bit operations can be executed in one instruction instead of 
executing 8 instructions sequentially. 

First, Algorithm 2 employs Algorithm 1 to remove struc­
turally redundant instructions. In the next step, it is determined 
for all instructions when they can be executed. The A S A P (As 
Soon As Possible) routine checks if some source registers of 

Algorithm 2: Execution time cslimalion (advanced) 
Input: Candidate program p 
Output: The number of used instructions 

1 used-instructions = 0; 
2 r <- remove structurally redundant instructions from p 

using A l g . l ; 
3 M create matrix for instructions; 
4 fur i in r d« 
5 M using A S A P and A L A P routines to determine 

when i can be executed; 

(, while ( Some instructions) exist in M) do 
I <- find in M all instructions of the same type 
which can be executed together; 

s remove I from M ; 
<> i ncre men t(u sed- i n s true ti o n s); 

to return used-instructions; 

Step of program 

/ l \ A A 4 h\ 
Instruction 1 

Instruction 2 

Instruction 3 

Instruction 4 

Instruction 5 

t t t t 
Execute instructions 

Fig, 4. Example of scheduling for a program given in K g . 2. Instructions 3 
and 4 can be executed together. 
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Number of instructions 

XT 2ft 29 99 91 9Z 99 94 95 95 97 

Fig. 5. The number of instructions in assembly code for 400 randomly generated programs containing 1 - 39 instructions, where the number of instructions 
was calculated according to Algorithm I (the median shown in green) and Algorithm 2 (the median is shown in blue). The size of non-optimizable programs 
is shown using the black line. 

instruction i are modified by some previous instructions. These 
dependences are marked in matrix M. A l l instructions from 
the beginning up to this modification can be executed together 
with instruction i. If the destination register of instruction i 

is used in some previous instruction j as destination register, 
instruction j is deleted from M, because insiruciion i modifies 
the dcsiination register without using iis value. The A L A P (As 
Late As Possible) routine checks if the destination register of 
instruction i is used in some following instructions as a source 
register. If so, it is marked in M. If it is used as a destination 
register, instruction i is removed from M, because its value 
is not used. A l l instructions up to this modification can be 
executed together with instruction i. A S A P and A L A P identify 
all instructions thai can be executed together. 

In the next step, the algorithm identifies those instructions 
(of the same type) that can be executed together using one 
S I M D instruction on the C P U . It sequentially determines the 
largest overlaps of instructions, removes them from M and 
increases the number of used instructions. The routine is 
repeated until some instruction(s) exist in matrix M. Example 
of scheduling for the program given in F ig . 2 is shown in 
Fig . 4. In this case, only instructions 3 and 4 can be executed 
together. The last instruction has to be executed independently. 
The total number of instructions estimated by Algorithm 2 is 

4. Algorithm 1 outputted 5 instructions (the weights reflecting 
the different complexity of instructions are not considered in 
our example). 

In order to validate the proposed method, we compared 
the number of instructions produced by the C compiler for 
programs whose size was estimated by Algorithm 1 and 
Algorithm 2. We randomly generated 400 programs containing 
exactly k instructions according to Algorithm 1. Wc repealed 
the experiment, but the program size was assigned by Algo­
rithm 2. The idea behind this experiment is that programs 
containing exactly k instructions according to Algorithm 1 
have to be on average shorter in tenns of assembly code 
generated by the C compiler than programs containing exactly 
k instructions according to Algorithm 2. The reason is that 
Algorithm 2 can eliminate semantic redundancy and parallel 
operations and hence "more instructions" arc needed to reach k 
instructions in the random program generator. Fig. 5 compares 
Algorithm 1 and Algorithm 2 for k = 1 . . . 39 instructions. 
F ig . 5 also contains the size of assembly code for manually 
created programs that are known to be non-optimizable by the 
compiler {black line). As the compiler adds some additional 
instructions, the assembly code size (y-axis) is slightly greater 
than estimated numbers (x-axis). 
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unsigned inl N S G A H a s h l f'inpuO-j 
r[0], r[l], r[2] = input; 

r[01 = r[0] + r[2]: 
return rO © (rO >> 16); 

} 

unsigned in t NSGAHash2 (*inpm)-j 
r[0), rtU, r[2] = input; 

r[4] = r[1] © rfO]; 
rl0| = rl41 + r|2); 
return rO ••• (rf) >> In); 

unsigned int NSGAHash3 (sinptit){ 
r[0], r[l], r[2] = input; 

r[l] = rutr<r[0], 12); 
rl3] = r[4]+r[2]; 
r[0] = r[l] + r[3]; 
return rO © (rO >> 16); 

} 

unsigned inl NSGAHash7 (*input){ 
r[0], r[l], r[2] = input; 

r[3] = rotr(r[2), 3); 
r[51 = rotr(r[t]. 3); 
r[4] = r[u] * r|5]; 
r[5] = rotr<r[4], 11); 
r[0] = rl5J e rl3J; 
rLUJ = r[4J + rLUJ; 
return rO © (rf) >> 16); 

} 

unsigned inl NSGAHash4 (*inpul){ 
r[0], t i l] , r[2] = input; 

t[l] = rotrfrf 11, 22); 
r[6] = r[0] * r[6]; 
r[3] = r[2J + r[6]; 
r[0] = rfl] + r[31; 
return rO © (rO » 16); 

} 
NSliAHilsIri 

unsigned int NSGAHashS (*inpul){ 
r[0J, r[l], r[2J = input: 

unsigned inl NSGAHashfi (*inpul){ 
r|0], r l l ] , r[2| = input: 

r[4] = r[l] © r[0J: 
r[l] = rotrtr[4], 22); 
r[6] = r[0] + i[6]; 
r[3] = r[2]+r[6j: 
r[0J = r[l] + r[31; 
return rO © (rO >> 16): 

r[7] = rotr{r[0], 7); 
r|4] = r | l ] © r [ 0 ] ; 
r[t] = rotr(r[4], 22); 
r|6] = r|7] © r|6|; 
r[3] = r[2] + r[6J; 
r[0] = rl l] + r[31; 
return rO ® (rO >> 16): 

Fig. 6. Evolved hash functions from the non-dominated set in Fig. 7. 

T A B L Ľ I 
L G P P A R A M E T E R S 

Parameter Value 
Population size 2ÜÜ 
Crossover probability 90% 
Mutation probability 1.Ť '•'< 
Program length 20 
Registers eount/type 8/32 b - int 
Constants {0x6a09e667, 0xbb67ae8_S, 

0x3e6ef372, 0xa54ffi3a, 
Ox5IOe527f, 0x91)0 568 8c. 
0xlf83d9ab, OxSbeOol 19, 
0x428a2f98. 0x71374491} 

Instruction set {RigtilRotation (1), X O R (1), + (1), * (3)} 
(weight) 
Tournament size 4 
Maximum number 1000 
of generations 
Crossover type One-point 

B. LGP and NSGA-ll 

The proposed implementation is based on L G P as used in 
paper [2], but the search is conducted by means of N S G A -
II [26]. The maximum program size is 20 instructions in order 
to provide more opportunities to find good tradeoffs. The func­
tion set includes typical instructions for hash function design 
(addition, multiplication, logical X O R and right rotation). The 
set of constants consists of the values that arc used in the 
initial phase ol cryptographic hash function S H A - 2 [27|. 

The initial population is randomly generated. Two fitness 
functions are employed lo measure (i) the collisions (according 
to eq. 1) and (ii) the execution time (according to Algorithm 2). 
A l l training vectors have to be evaluated to obtain the fitness 
score. 

V. E X P E R I M E N T S A N D R E S U L T S 

The experimental evaluation deals with evolved hash func­
tions and their analysis in terms of quality of hashing and 
execution lime. Results wi l l be compared with conventional 
hash functions and hash functions evolved in |2J. 

A. Network Data 

The network data used in our experiments were collected 
with a network monitoring device installed in our research 
computer network. Network data were divided into three data 
sets containing 20,000 (DataSetl), 50,000 (DataSct2) and 
100,000 (DataSet3) identifiers of network flows. Note that the 
identifiers of network flows are unique. DataSetl is used as a 
training set for L G P . 

B. Hash Functions Used for Comparison 

The comparison is intended for the hash table with separate 
chaining. Evolved hash functions wi l l be compared with 
human-created hash function D.IBHash, D E K H a s h , One At 
Time, Lookup3, EVNHash , Murmur2, Murmur3, CityHash, 
a special hash function X O R H a s h optimized for network 
(lows [13], evolved hash functions available in the literature 
(GPHash [15], [14] and EFHash [16]) and the best hash 
functions L G P H a s h l and LGPHash2 evolved for network 
flows by L G P in [2]. A 16 bit hash table with separate chaining 
is employed for testing all functions. A s conventional hash 
functions typically produce a 32-bit hash value, we created a 
16-bit output using X O R folding [13]. 

C. Resulting Pareto fronts 

In order to obtain the best setup of the algorithm, many 
independent runs with different parameters of the algorithm 
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were performed. Considering the obtained results and param­
eters given in paper [2|, we used for final experiments the 
setting which is summarized in Tab. I. Note that all L G P runs 
reported in [2] stagnated after about 200 generations. 

Fig . 7 shows Pare to fronts obtained from 30 independent 
runs of L G P . Results of one of the runs, which contains the 
best obtained solutions according to particular objectives (i.e. 
a solution showing minimum collisions and a solution showing 
the minimum number of instructions) were chosen for a 
detailed inspection. The corresponding Pareto front containing 
7 unique hash functions is given in F ig . 7 (blue squares). 
For example, N S G A H a s h l (see the C code in Fig . 6) is the 
hash function consisting of just one instruction. Its quality of 
hashing is not acceptable. On the other hand, N S G A H a s h 7 
(see the C code in Fig . 6) provides the best quality of hashing 
(in the selected run), but its execution time is the longest one. 

D, The Number of Collisions 

The hash functions obtained from literature and evolved 
hash functions were implemented in C programming language 
and compiled with the identical compiler settings. A l l tests 
were then performed with these implementations to ensure 
fair comparisons. 

Table II gives the number of collisions for all hash functions 
on all data sets for 16 bit hash table. The best values are typed 
in bold. It can be seen ihat the multi-objective L G P provides 
hash functions with a very similar number of collisions as 
other hash functions, but there are solutions (NSGAHash6 and 
NSGAHash7) which excel over all available hash functions. 

E. The Execution Time 

Table III reports the average execution time obtained from 
20 independent runs over all data sets. Note that hash functions 
having low number of instructions {such as N S G A H a s h l , 
NSGAHash2) do not show the shortest execution time. The 
reason is that the number of collisions produced by these hash 

T A B L E it 
T H E N U M B E R O F C O L L I S I O N S . 

Hash function 
The number of collisions 

Hash function 
DataSetl DataSet2 DataSet3 

DJBHash 2835 15113 48925 
DEKHash 2926 15247 49017 
FVNHash 2756 14957 48780 
One At Time 2821 14988 48636 
lookups 2742 15009 48737 
Murmur2 2800 15050 48749 
Murmur3 2744 14911 48763 
CilyHash 2807 14990 48647 
XORHash 2864 15011 48575 
GPHash 2777 15052 48750 
EFHash 5317 25266 63175 
LGPhashl 2667 15031 48680 
LGPhash2 2746 15170 48835 
NSGAHash 1 2923 15677 49336 
NSGAHash 2 2746 15170 48835 
NSGAHash3 2689 15575 49292 
NSGAHash4 2692 15010 48715 
NSGAHash5 2759 14975 48749 
NSGAHash6 2650 14839 48680 
NSGAHash7 2f,39 14975 48650 

T A B L E 111 
T H E A V E R A G E E X E C U T I O N T I M E . 

Hash function 
DataSetl 

Time [ms\ 
DataSet2 DataSet3 

DJBHash 1.069 3.608 9.690 
DEKHash 0.890 3.210 8.647 
FVNHash 1.021 3.546 9.556 
One At Time 1.361 4,568 12.024 
lookup3 0.721 2,670 7.473 
Mumiur2 0.787 2.868 7.871 
Murmur3 0.929 3.304 8.892 
CilyHash 0.760 2.736 7.603 
XORHash 0.649 2.390 6.774 
GPHash 1.448 4.749 12.406 
EFHash 1.871 13,560 48.132 
LGPhash 1 0.591 2.913 6.588 
LGPhash2 0.561 2.182 6.336 
NSGAHashl 0.568 2.871 8.642 
NSGAHash2 0.560 2.182 6.334 
NSGAHashS 0.541 2,871 8.500 
NSGAHash4 0.561 2.168 6.267 
NSGAHash5 0.564 2.191 6.394 
NSGAHash6 0.559 2.192 6.369 
NSGAHash7 0.593 2.295 6.883 

3600 3800 4000 4200 
Weighted number of collisions (1) 

functions is higher which means that more time is needed 
to accommodate incoming items in the table. NSGAHash4 
provides the shortest execution lime because a good tradeoff 
between the number of collisions and the complexity of the 
hash function was discovered. N S G A H a s h 4 is even better than 
hash functions LGPhash l and LGPhash2 discovered by means 
of a single-objective L G P in [2]. 

E Overall Quality of Hash Functions 

The quality of hashing can be expressed according to [28] 
as: 

Q 

m — 1 

i=0 

bj{bj+ l)/2 

[n/2m)(n + 2m - 1)' 
(3) 

Fig. 7. Pareto fronts obtained from 30 independent runs. Selected hash where b} is the number of items assigned to j - t h slot, m is 
functions (blue squares) are given in Fig. 6. the number of slots, and n is the total number of items. The 
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T A B L E [ V 

O V E R A L L Q U A L I T Y O F H A S H F U N C T I O N S . 

Ha;,h function 
DataSctl 

Quality (Q) 
DataSct2 DataSct3 

DJBHash 1.005 1.004 1.006 
DEKHash 1.012 1.012 1.012 
FVNHash 0,999 0.998 1.001 
One At Time 1.003 1.001 1,000 
lookup3 0.999 1.000 0,999 
Murmur2 1.001 I.O01 1.000 
Murmur3 0.999 0.998 1.001 
CityHash 1.003 0.999 0.998 
XORHash 1.007 0.999 0,997 
GPHash 1.001 1.003 1.000 
EFHash 1.338 4.045 6.312 
LGPhashl 0.996 1.O02 0.999 
LGPhash2 0.999 1.003 1.001 
NSGAHashl 1.010 1.476 1.566 
NSGAHash2 0.999 1.003 1.001 
NSGAHashl 0.996 1.470 1.560 
NSGAHash4 0.996 0.999 1.998 
NSGAHash5 0.998 0.998 1,000 
NSGAHash6 0,992 0.995 0.999 
NSGAHash7 0.993 0.999 1.001 

numerator estimates the number of slots a hash function should 

visit to rind the require value. The denominator is the number 

of visited slots for an ideal function that puts each item into 

a random slot. A n ideal function produces the outputs with a 

nearly random distribution probability. If the hash function is 

ideal, the formula should return 1, a good quality is between 

0.95 and 1.05. 

According to this criterion, evolved hash functions as well 

as conventional hash functions were evaluated. The Q score 

follows the trend of the quality indicator used in L G P (the 

number of collisions) as we travel along the Pareto front. 

V I . C O N C L U S I O N S 

We proposed a multi-objective linear genetic programming 

approach to evolve fast and high-quality hash functions for 

common processors programmed as network flow monitoring 

devices. It was shown using real world network data that 

the proposed method provides better compromise solutions 

(in terms of execution time and quality of hashing) than 

commonly used hash functions and specialized hash functions 

evolved with a single-objective L G P . Our future work wi l l be 

devoted to integrating the evolved hash functions to the S D M 

concept, 
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Abstract. Hashing is an important function in many applications such 
as hash tables, caches and Bloom filters. In past, genetic programming 
was applied to evolve application-specific as well as general-purpose hash 
functions, where the main design target was the quality of hashing. As 
hash functions are frequently called in various time-critical applications, 
it is important to optimize their implementation wi th respect to the exe­
cution time. In this paper, linear genetic programming is combined with 
N S G A - I I algorithm in order to obtain general-purpose, ultra-fast and 
high-quality hash functions. Evolved hash functions show highly com­
petitive quality of hashing, but significantly reduced execution time in 
comparison with the state of the art hash functions available in literature. 

1 Introduct ion 

Hash functions are highly nonlinear functions assigning a relatively short numer­
ical representation to an arbitrary data record of a predefined structure and size. 
Hash functions are frequently used in many applications of computer science and 
engineering such as hash tables, caches and Bloom filters. Hash functions are eval­
uated with respect to two fundamental properties: (i) quality of hashing - which 
can be defined in different ways (see Sect. 2.1) and (ii) complexity, which is highly 
correlated with the execution time. Some additional properties are crucial for 
the so-called cryptographic hash functions, but this paper only deals with non-
cryptographic hash functions. As the design of a good hash function is tricky and 
requires a lot of insight and experience, evolutionary algorithms (genetic program­
ming (GP) in particular) have been employed to accomplish this task. 

The existing body of literature dealing with evolutionary design of hash func­
tions is relatively rich; however, except paper [1] none of them is explicitly ori­
ented to the optimization of the time of execution (latency or delay in other 
words) which becomes crucial in contemporary high end applications such as 
high speed network monitoring, big data indexing and finding duplicate records. 

In the literature, the latency is usually considered as a constraint and the 
optimization goal is to maximize the quality of hashing. The hash function design 
problem is then formulated as a single objective design problem. 

© Springer Internat ional P u b l i s h i n g A G , part of Springer Nature 2018 
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In some cases, hash functions are evolved as application-specific functions 
and evaluated in a very specific environment [1-4], providing thus much bet­
ter solutions in particular applications than the so called general-purpose hash 
functions. For example, a multi-objective evolutionary design approach focusing 
not only on the quality of hashing, but also on the execution time has been 
proposed for network flow hashing [1]. In this case, evolved hash functions had a 
fixed-size input (96 bits) and consisted of a linear sequence of instructions which 
is executed just once to obtain the hash. 

The goal of this paper is to present and evaluate a multi-objective evolu­
tionary approach for the design of high-quality and ultra-fast general-purpose 
hash functions. The main difference with respect to [1] is that the resulting hash 
functions are capable of accepting multiple fc-bit inputs (in order to be general-
purpose ones) and the evaluation is performed on various principally different 
test sets such as randomly generated data, network flow records, passwords and 
Facebook and Twitter data. The proposed approach is based on linear genetic 
programming (LGP) combined with a multi-objective NSGA-II algorithm, where 
the objectives are the number of collisions (after embedding the hash function 
to a hash table) and the execution time. As measuring the real execution time 
on a particular machine is time consuming (during the evolution), the execu­
tion time is estimated according to the number and type of instructions used by 
a particular candidate hash function. In order to estimate this value for mod­
ern processors, a specialized procedure is developed which considers not only 
the complexity of instructions, but also their scheduling on SIMD architectures. 
Evolved hash functions are compared in terms of quality of hashing and execu­
tion time with 8 human-designed and 2 evolved general-purpose hash functions 
available in the literature. 

The rest of the paper is organized as follows. Section 2 briefly introduces the 
principles of hash functions and previous work on evolving hash functions. The 
proposed multi-objective method is introduced in Sect. 3. Section 4 describes our 
results from the experiments performed in order to evaluate the proposed method 
and compare resulting hash functions with existing solutions. Conclusions are 
given in Sect. 5. 

2 Related W o r k 

In this section, the principles of hash functions are presented and evolutionary 
approaches developed to the design of hash functions are briefly surveyed. 

2 . 1 H a s h Funct ions 

A hash function is a mathematical function h that maps an input binary string 
(of length k) to a binary string of fixed length (/), h : 2fc —>• 2l, where k » I. 
The output value is called hash value or simply hash [5]. The definition of hash 
function implies the existence of collisions, i.e. h(x) = h(y), where x, y are two 
input messages such that x / t/. One of desirable properties of hash functions 
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is that similar input vectors produce completely different outputs. This is called 
the avalanche effect. 

The most important application of hash functions is the hash table [6]. Based 
on the key (the input to the hash function) a particular row (index) of the table 
is activated and data are read/stored from/to a memory slot with that index. In 
order to handle collisions (different data mapped to the same index), a separate 
chaining method, cuckoo hashing, coalesced hashing and other techniques have 
been developed. In the case of the separate chaining method, a list of records 
having the same hash is operated for each index of the table. A newly entered 
data record is then stored to the first empty item of the list connected to the 
particular index. If there is at most one occupied record at index i then the time 
complexity of lookup is 0(1); if n records exist then the complexity is 0(n) for 
the i-th index. 

The quality of non-cryptographic hash functions is given in terms of the col­
lision resistance (good hash functions generate a minimum number of collisions), 
avalanche effect, distribution of outputs, execution time and table load factor 
(for a given memory size). The hash function is typically called several times in 
order to obtain desired address because the memory addressing system can be 
designed as hierarchical, for example, in the cuckoo hashing scheme [7]. 

2.2 H a s h F u n c t i o n Des ign 

Non-cryptographic hash functions are mostly used in hash tables [6]. Other 
important applications are Bloom filters [8], geometric hashing [9], coherency 
sensitive hashing [10,11] etc. A common approach to the automatic hash function 
design is to apply a general construction procedure such as the Merkle-Damgard 
construction. The literature provides us with various implementations of general-
purpose human-created hash functions including DJBHash [12], D E K H a s h [5], 
F V N (Fowler-Noll-Vo) [13], One At Time, Lookup3 [14], MurmurHash2, Mur­
mur Hash3 [15] and CityHash [16]. 

Evolutionary approaches have been primarily focused on the non-cryptograp­
hic hash function design and evolved with genetic algorithms [17], tree G P [18], 
linear G P [1], grammar evolution [19] and Cartesian G P [20]. They can further 
be divided according to the purpose, i.e. either application-specific hash func­
tions [1,21] or general-purpose hash functions [18,22]. The difference lies in the 
input data size and the evaluation approach. The fitness function is usually based 
on measuring the avalanche effect [23,24] or the number of collisions [1,22]. 

3 Mul t i -objec t ive Linear G P in Hash Funct ion Design 

As target hash functions are optimized with respect to the execution time, it 
is natural to represent them at the level of machine instructions. Hence, linear 
genetic programming in which candidate programs are represented as sequences 
of instructions for a register machine [25-27] is employed to evolve hash functions. 
In order to ensure a multi-objective design, L G P is connected with NSGA-II as 
introduced in [1]. This section deals with proposed representation and evaluation 
of candidate hash functions. 
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3.1 C a n d i d a t e P r o g r a m Process ing 

General-purpose hash functions are typically constructed using instructions such 
as logical functions (e.g. X O R , A N D , OR) , addition, multiplication and rotation. 
These instructions then define the instruction set for L G P . The initial popula­
tion is generated randomly using these instructions. As the size of the input is 
arbitrary in the case of general-purpose hashing, it is necessary to partition the 
input stream into several blocks and process them sequentially. Since the loop 
responsible for reading the input is always present, it makes no sense to evolve 
it. We will evolve just the body of the loop. Figure 1 shows that a candidate 
hash function is called in each iteration to read a new block and combine it with 
intermediate results obtained from processing the previous blocks. Particularly 
in this case, 32 bits are copied from the input stream to register r[l] in each 
iteration. The resulting hash is produced to register r[0]. 

Fig . 1. Framework for candidate program evaluation. In this case, £i 32 bit data input 
is read in each iteration. 

3.2 Qua l i ty of H a s h i n g 

Inspired in [1], the quality of hashing is measured in terms of the number of 
collisions. Let Ki inputs (keys) be mapped into i-th memory slot by a candidate 
hash function h. Then the fitness f(h) is defined as the weighted number of 
collisions: 

unsigned int candidateProgram (*input){ 
r[0] = input [0]; 

F O R (i = 1; i < length(input); i++){ 
r[l] = input [i]; 

<Candidate program> 

} 
return r[0] © (r[0] » 3 2 ) ; 

} 

s 

(1) 
i=l 

where s is the number of memory slots. This function clearly penalizes can­
didate hash functions showing many collisions at one slot. The objective is to 
minimize f(h). 
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A l g o r i t h m 1. Execution time estimation 
Input: Candidate program p 
Output: The number of used instructions 

c RotateCodeOutputRegisterLast(p); 
used-instructions = 0; 
previous-used-instructions = 0; 
used-registers <— Insert (output-register); 
while previous-used-instructions == used-instructions do 

previous-used-instructions = used-instructions; 
used-instructions = 0; 

1 

2 

3 

4 
5 
6 

7 
8 

9 

10 

11 

12 

13 

while ( i getLastlnstruction(cp) ) do 
if DestinationRegister(i) G used-registers then 

used-registers <— Insert(source-registers(i)); 
Increment (used-instructions); 

remove instruction i from c p ; 

14 return RotateBack(used-instructions); 

3.3 E x e c u t i o n T i m e E s t i m a t i o n 

As hash functions are very frequently called in some applications, it is important 
to optimize them with respect to the execution time. In order to capture features 
of modern processors supporting the Single Instruction Multiple Data (SIMD) 
paradigm, a method performing the execution time estimate takes into account 
not only the number of instructions and their type, but also their eventual par­
allel processing (which in principle reduces the execution time). In L G P , not 
all instructions of a candidate program contribute to the result. There are two 
types of redundant instructions. Firstly, the genotype may contain instructions 
whose output is not consumed by any other instruction (the so-called structural 
redundancy). Secondly, there could be instructions used in the phenotype, but 
not contributing to the resulting value. For example, if the code contains r[5] = 
r[l] + r[0]; r[5] = r[2] + r[0], the first instruction can be removed. The algorithm 
developed to estimate the execution time removes unused instructions in the first 
step and, in the second step, it identifies those instructions that can be executed 
in parallel. 

Because we evolve the body of a loop and the evolved code is executed 
multiple times, we cannot use the same approach as [1] (i.e. analyzing the algo­
rithm from the last to the first instruction and removing unused instructions) 
to estimate the execution time. The reason is that unused instructions of one 
iteration can be important in the next iteration. Hence, Algorithm 1, removing 
the unused instructions, has more steps. Firstly, the instructions of the candi­
date program have to be rotated to a state in which the output register of the 
hash function is at the last position of the program. The program is analyzed in 
rounds, until all used instructions are not marked. Then unused instructions can 
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be removed. Finally, the resulting code has to be rotated back, because the next 
step performs instruction scheduling and the order of instructions is important 
(see Algorithm 1). Example is presented in Fig. 2. 

We exploit the instruction level parallelism [28] enabling to process multiple 
data with a single instruction. Modern C P U s can typically process 256 bits at 
once which means that eight 64-bit operations can be executed in one instruction 
instead of executing 4 instructions sequentially. As introduced in [1], instruction 

Candidate program 

Rotate 
= rO + r 6 ; 

c2 - E-7 + r 2 ; 
r » =• r 4 r 4 ; 
r 3 - r 4 r O ; 
r S = r 9 - r 6 ; 
i " = E 2 - E 8 ; 
i-1 • t i • E 2 ; 

5 - r4 + E 5 ; 

rt = i2 + EO; 
: Z CS * E 2 ; 
ca ZD - E 3 ; 

= rO r l ; 
:• : - r 5 + r 3 ; 
i : : - r 7 - r O ; 

= r l - r 4 ; 
E 9 = r 2 * i ! ; 

If 

r 3 = r 4 + E 5 ; 

1-9 • 12 + r O ; 
r 2 « r 9 - r 2 ; 
r 8 = l- 1 t 5 ; 
E 3 = EO eli 
E 3 = i 5 - i :•; 
E 3 » E7 - r O ; 
E 2 - E l + r 4 ; 
E 9 = C2 E 5 ; 

-rO = I ] : • i 
r 2 = E7 - C2l 
c9 = E 4 r 4 ; 
r 3 - E 4 r O ; 
r S - E 9 ; 

= r 2 + : : ; 

EO = i 3 - i 2 ; 

Mark 
= C4 - r 5 ; c3 = r 4 • r 5 ; 

r 9 r2 + r O ; Mark r 9 = r2 + EO; 
r2 - r 9 r 2 ; Mark r 2 = r 9 * 12; 
E 8 = rO + r S ; (next run) re = rO + E 5 ; 

' r 3 = i 0 ell • r 3 = [: ' ell 
i a = i '. - rl: E - E 5 * E 3 ; 
E3 E7 - r O ; E3 - E l 

+ EO; 
x 2 = r l + r 4 ; r2 - r l + I*; 
:• 9 = /„": E 5 ; E9 = E2 ' E 3 ; 
r O = rO + r £ ; rO = rO + r i ; 
t 2 = n + r 2 ; r2 = r7 + E 2 ; 
E9 = E4 r 4 j r& - z4 * et; 
r 3 • r 4 r O j c3 r4 ' r O ; 
r 5 :• 9 r 6 ; r 5 - r 9 * E 6 ; 
r 7 = I-.. + r B ; * 7 = r2 

+ EB; 
rO = r8 r 2 ; rO = r a - r 2 ; 

r 2 = r7 * r 2 ; D r t m r t W r t rO = EO + Ctl Rotate 
r 9 - r< - : :4; r ^ t ! l ' I U V B r 2 = r 7 + r 2 j 
r 2 + r 2 ; 
r 9 r4 r 4 ; 
r S = L' 9 - r 6 ; 
E 7 = i 2 + E 8 ; 

: ; = E G * E 2 ; 

: 9 = i 2 - EO; 
i a - t : + E 5 ; 

: 2 = r : E 4 ; 

r 9 = r 4 
r5 = r 9 
r l = r 2 
rO = r 8 
r 9 • r 2 
E 2 = E 9 
rG = rO 
E2 - r l 

r 4 ; 
r ö ; 
E 8 ; 

c 2 ; . 
EO; 
r 2 ; 
E 5 ; 
E 4 ; 

A S A P / A L A P 

- <-- r 2 ; 

r f l r 4 ; 

f - r S * r 6 ; 

= i : : J T 8 ; 

cC = r S ft r 2 ; 

CS = r 2 t r O ; 

t - = r O r 5 ; 

CS = E l + 

AA A A A 

W V V V 

- r 2 r O ; 

•j 2 r » * r2,-

t i = r f l r S ; 
E 2 = E l + r 4 ; 

EO = E0 - r 6 ; " 
E 2 = E7 E 2 ; 
l 1 - E 4 * E 4 ; 
ES = E 9 - r 6 ; 
E 7 = E 2 + : -• r 
(•:: = r l r 2 ; 

Find 

r2 = r7 + r2 ; 
r9 - ri A. r4 ; 
r5 = r9 r6; rO = r8 r2; 
rl - r2 + r8; r9 = r2 + rO; 
r8 - rO rb; r2 = r l + r4; 

Fig . 2. Removal of unused instructions consists of rotating the candidate program to a 
configuration in which output register rO is at position of the last instruction, identifying 
used instructions (in bold), removing unused instructions and rotating the code back. 
The optimized code is then scheduled for parallel execution. The final program consists 
of 5 steps in which 1, 1, 2, 2 and 2 instructions are executed in parallel. 
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unsigned hit EvoHashl (*input){ 
r[0] = input[0]; 

F O R (i = 1; i < length(input); i++){ 
r[l] = input[i]; 
r[8] - r[3] © r[l]; 
r[5] - 0xA54FF53A; 
r[2] - r[5] + r[8]; 
r[4] = r[l] * r[6]i 
r[0] = r[2] I r[2]; 
r[3]=r[4] | r[2]; 

} 
return rO © (rO >> 32); 

} 

unsigned int EvoHash2 (*input){ 
r[0] = input [0]; 

F O R (i = I; i < length(input); i++){ 
r[l] = input [i]; 
r[4] = r[2] © r[5]; 
r[2] = r[l] + r[4]; 
r[0] = r[0] + r[4]; 

} 
return rO © (rO >> 32); 

} 

Fig . 3. Evolved hash functions that were selected from Pareto front in Fig. 4. 

scheduling lies in determining when the instructions can be executed based on 
analyzing dependences among them. The A S A P (As Soon As Possible) and 
A L A P (As Late As Possible) routines are employed for this purpose. Figure 2 
shows that in our example, the optimized 8-instruction program is finally exe­
cuted in 5 steps in which 1, 1, 2, 2 and 2 instructions are executed in parallel. 

3.4 Search A l g o r i t h m 

A common version of L G P (with tournament selection, single-point crossover 
and mutation) is combined with NSGA-II [29]. According to [1], the maximum 

Table 1. LGP parameters. 

Parameter Value 
Population size 100 
Crossover probability 90% 
Mutation probability 15% 
Program length 12 
Registers count/type 8/64 b - int 
Constants {0x6a09e667, 0xbb67ae85, 0x3c6ef372, 

0xa54ff53a, 0x510e527f, 0x9b05688c, 
0xlf83d9ab, 0x5be0cdl9, 0x428a2f98, 
0x71374491} 

Instruction set 
(weight) 

{ADD (1), MUL (3), XOR (1), OR (1)} 

Tournament size 4 
Maximum number 
of generations 

100 

Crossover type One-point 



194 D . Grochol and L . Sekanina 

program size is limited to 12 instructions. The function set contains those oper­
ations that are typical for the hash function design (XOR, A N D , OR, addition, 
multiplication and right rotation). As multiplication is more complex than the 
remaining instructions, its execution time is counted with weight 3 in the pro­
grams. Common hash functions contain various "magic" constants. We extracted 
those appearing in the initial phase of hash function SHA-2 [30] and included 
them to the set of constants available in L G P . The setup for L G P is summarized 
in Table 1. NSGA-II is employed to find the best trade-offs between the number 
of collisions (according to Eq . 2) and estimated execution time for a training set 
(see Sect. 4). 

4 Experiments and Results 

This section describes the data sets used for evaluation, experiments and their 
analysis in terms of quality of hashing and execution time. Results will be com­
pared with hash functions from the literature. 

4.1 D a t a Sets 

In order to evaluate candidate hash functions on different types of problems, we 
used (i) randomly generated data and (ii) real-world data coming from network 
flows, user passwords, and Facebook and Twitter posts. 

We randomly generated the training data set (using a random text generator) 
in such a way that it contains 200,000 vectors with a random size ranging from 16 
to 1024 characters. The best-evolved hash functions and the hash functions taken 
from the literature were then compared using 9 different randomly generated test 
data sets (Datasetl-9) whose parameters are summarized in Table 2. 

In the case of real-world data, data sets Net set 1-3 are formed from identifiers 
of network flows (source and destination IP addresses, source and destination 
ports and transport protocol). The size of each input vector is 96 bits (see details 
in [1]). The Passwords data set contains 10 million user passwords. Every pass­
words consists of 5 to 16 characters. Finally, Facebook and Twitter data sets 
contain 1 million posts from selected social network groups. These posts are in 
English, German, Hungarian, Czech and Slovak languages. 

4.2 H a s h Funct ions U s e d for C o m p a r i s o n 

Evolved hash functions will be compared with human-created hash function 
DJBHash, D E K H a s h , One At Time, Lookup3, FVNHash , Murmur2, Mur-
mur3, CityHash and evolved hash functions available in the literature (GPHash 
[23,24] and EFHash [22]). A 32-bit hash table is used for testing all func­
tions. A direct comparison with [1] is possible only for the specific data sets 
used in [1]. Application-specific hash functions (XORhash, N S G A H a s h l , N S G A -
Hash2, NSGAHash3, NSGAHash4, NSGAHash5, NSGAHash6, NSGAHash7 [1]) 
operate with a 96-bit input and produce a 16 bit hash value. Evolved hash func­
tions produce a 32 bit hash value. The X O R folding is used for reduction from 
32 to 16 bits. 
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Table 2. Da ta sets. 

Name Number of vectors Length [bytes] 

Dataset l 100,000 64 

Dataset2 100,000 128 

Dataset3 100,000 256 

Dataset4 100,000 512 

Dataset5 100,000 1024 

Dataset6 100,000 2048 

Dataset7 1,000,000 16 - 4096 

Dataset8 1,000,000 16 - 4096 

Netset l 20,000 12 

Netset2 50,000 12 

Netset3 100,000 12 

Passwords 10,000,000 5 - 1 6 

Facebook 1,000,000 3 - 280 

Twit ter 1,000,000 3 - 5000 

Q 1 1 — i — I - ) 1 1 1—i—| 1 1 — i — r - | 1 1 1—|—| 1 1—i—r—| 1 1 — i — i — | 1 1 — i — r - | 1 1—i—I— 

0 10° 101 102 102 104 105 105 107 

Number of collisions 

Fig . 4. Pareto fronts obtained from 100 independent runs of L G P . The size of the circle 
represents the number of identical solutions with the same properties. Selected hash 
functions (blue squares) are given in F ig . 3. (Color figure online) 
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4.3 Resu l t ing Pareto Fronts 

As we used the same parameters of L G P as [1], we do not report the impact of 
L G P parameters on the equality of evolution. The main focus is on a comparison 
of key parameters of evolved hash functions with existing hash functions. 

We performed 100 independent runs of our multi-objective L G P and plotted 
in Fig. 4 parameters of all solutions appearing on the (100) final Pareto fronts. 
As many identical trade-offs were discovered in several (independent) runs, we 
plotted them using a circle whose diameter depends on the number of such cases. 
From all these designs, we selected two the most frequently occurring candidates 
(blue squares) and analyzed their properties in greater detail. EvoHashl (see the 
C code in Fig. 3) produces zero collisions on the training data set, but includes 
relative many instructions. EvoHash2 (see the C code in Fig. 3) shows the best 
trade-off between the number of instructions and the number of collisions. 

Since there are no clear outliers on Pareto fronts and the designs showing 
desired trade-offs are represented by larger circles (i.e. there are many good solu­
tions), we can conclude that the proposed algorithm produces stable solutions. 
It can be seen in Fig. 4 that there are almost no solutions showing 101 — 104 

collisions. Our explanation for this behavior is that there are only a few discrete 
points for the second objective (the number of instructions) and these points are 
already covered by good solutions. 

4.4 T h e N u m b e r of Coll is ions 

The hash functions from the literature introduced in Sect. 4.2 were implemented 
in C programming language and compiled with the same compiler setting as 
evolved hash functions. Al l tests were then carried out with these implementa­
tions to ensure fair comparisons. The evaluation of all these hash functions was 
performed on an Intel Xeon E5-2620v3 processor running at 2.4 GHz. 

Table 3. The number of collisions for randomly generated data sets. 

Hash funct ion The number of coll isions 

D a t a S e t l DataSet2 DataSet3 DataSet4 DataSe t5 DataSet6 DataSe t7 DataSet8 

D J B H a s h 0 3 0 1 1 3 132 116 

D E K H a s h 60004 90000 90000 90000 90000 90000 122 118 

F V N H a s h 0 4 1 1 1 0 115 122 

One A t T i m e 1 2 2 2 1 1 108 115 

lookup3 1 0 0 2 1 2 122 111 

M u r m u r 2 1 1 1 0 3 3 125 126 

M u r m u r 3 2 0 2 1 1 3 114 111 

C i t y H a s h 3 1 1 1 1 0 125 111 

G P H a s h 1 1 1 1 0 0 115 102 

E F H a s h 38137 53488 63353 64983 65119 65209 799933 799825 

E v o H a s h l 2 2 2 1 1 1 133 116 

EvoHash2 1 1 0 3 3 1 119 108 
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Table 3 gives the number of collisions for all randomly generated datasets for 
a 32 bit hash table. The best values are typed in bold; the second best values in 
bold-italic. It can be seen that hash functions evolved by L G P produce a very 
similar number of collisions as other hash functions from the literature; except 
DEKHash and EFHash where many collisions are visible. From the point of view 
of the number of collisions, evolved hash functions are as good as the other hash 
functions. The same phenomenon can be observed for real-world data sets (see 
Tables 4 and 5). 

4.5 T h e E x e c u t i o n T i m e a n d Performance 

Tables 6, 7, 8 show the average execution time obtained from 50 independent 
runs of all hash functions on all data sets. The task is to compute a hash value 
for each vector of a given dataset. The evolved hash functions exhibit the shortest 
execution time in almost all cases. Similar parameters show Google's CityHash. 

Table 4. The number of collisions for network data from [1]. 

Hash function The number of collisions 

Net Set 1 NetSet2 NetSet3 

D J B H a s h 2835 15113 48925 

D E K H a s h 2926 15247 49017 

F V N H a s h 2756 14957 48780 

One A t Time 2821 14988 48636 

lookup3 2742 15009 48737 

Murmur 2 2800 15050 48749 

Murmur 3 2744 14911 48763 

Ci tyHash 2807 14990 48647 
X O R H a s h 2864 15011 48575 

G P H a s h 2777 15052 48750 

E F H a s h 5317 25266 63175 

N S G A H a s h l 2923 15677 49336 

N S G A H a s h 2 2746 15170 48835 

N S G A H a s h 3 2689 15575 49292 

N S G A H a s h 4 2692 15010 48715 

N S G A H a s h 5 2759 14975 48749 

N S G A H a s h 6 2650 14839 48680 

N S G A H a s h 7 2639 14975 48650 

EvoHash l 2849 15185 48652 

EvoHash2 2821 14982 48695 
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Table 5. The number of collisions for real-world data sets. 

Hash function The number of collisions 

Passwords Facebook Twit ter 

D J B H a s h 11663 247 137 

D E K H a s h 14114 357 153 

F V N H a s h 11845 115 115 

One A t Time 11590 105 138 

lookup3 11567 119 107 

Murmur 2 11637 112 123 

Murmur 3 11589 103 89 
CityHash 11530 122 122 

G P H a s h 11634 117 113 

E F H a s h 9983806 873270 824153 

EvoHash l 11871 23 98 

EvoHash2 11469 10 1 

Evolved EvoHash2 is slightly faster (4%) than CityHash, but significantly faster 
(2x) than very popular Murmur hash 3. 

Table 7 shows that the application-specific hash functions have a shorter exe­
cution time for the network data sets. But evolved hash functions are faster than 
the best conventional hash functions (CityHash, lookup3). 

Finally, we compared all hash functions in terms of throughput that can be 
obtained by SMHasher [31]. This is a test suite designed to test performance 
properties of non-cryptographic hash functions. In the Bulk speed test (with 

Table 6. The average execution time for randomly generated data sets. 

Hash funct ion E x e c u t i o n t ime [ms] 

D a t a S e t l DataSet2 DataSet3 DataSet4 DataSet5 DataSet6 DataSe t7 DataSet8 

D J B H a s h 19.56 32.914 45.311 72.31 126.081 231.675 2556.226 2554.123 

D E K H a s h 12.907 19.352 28.141 46.975 81.419 156.839 1875.878 1872.019 

F V N H a s h 17.354 31.694 48.371 83.761 155.702 294.259 3223.727 3220.844 

One A t T i m e 20.208 36.895 57.667 100.993 189.24 360.009 3918.302 3916.603 

lookup3 12.867 22.685 28.403 42.581 72.585 125.851 1437.492 1433.961 

M u r m u r 2 12.06 20.332 25.718 36.065 60.202 102.426 1195.029 1190.402 

M u r m u r 3 12.863 21.622 27.796 40.367 68.557 119.167 1368.135 1363.745 

C i t y H a s h 10.906 18.591 20.344 24.807 36.806 54.535 683.363 679.325 

G P H a s h 25.497 47.418 80.294 147.286 283.533 550.774 5949.786 5948.746 

E F H a s h 24.394 41.66 69.332 127.822 246.387 479.26 5237.982 5237.599 

E v o H a s h l 10.383 17.084 19.056 23.897 35.508 55.838 685.604 681.327 

EvoHash2 1 0 . 3 8 5 1 7 . 4 1 1 1 9 . 0 2 2 2 3 . 8 2 5 5 3 . 1 3 2 3 7 . 3 3 4 6 5 9 . 1 8 5 6 5 6 . 6 4 7 



Multi-objective Evolution of Ultra-Fast General-Purpose Hash Functions 199 

Table 7. The average execution time for network data from [1]. 

H a s h function T i m e [ms] 

N e t S e t l NetSet2 NetSet3 

D J B H a s h 1.861 5.134 12.724 

D E K H a s h 1.221 4.373 10.407 

F V N H a s h 1.301 4.721 9.633 

One A t T i m e 1.769 5.290 12.352 

lookup3 0.925 2.891 7.435 

M u r m u r 2 1.034 3.095 7.925 

M u r m u r 3 1.193 3.215 8.727 

C i t y H a s h 0.960 2.625 7.407 

X O R H a s h 0.838 2.318 6.652 

G P H a s h 1.865 4.671 12.558 

E F H a s h 2.472 13.527 49.495 

N S G A H a s h l 0.529 2.804 8.507 

N S G A H a s h 2 0.527 2 . 0 7 2 6.564 

N S G A H a s h 3 0 . 5 1 4 2.779 8.492 

N S G A H a s h 4 0.530 2.073 6.219 

N S G A H a s h 5 0.534 2.081 6.288 

N S G A H a s h 6 0.527 2.083 6.249 

N S G A H a s h 7 0.547 2.175 6.449 

E v o H a s h l 0.802 2.569 7.455 

E v o H a s h 2 0.830 2.825 7.835 

262144 byte keys), evolved hash functions EvoHashl and EvoHash2 outper­
formed the remaining hash functions (Table 9). 

Table 8. The average execution time for real-world data sets. 

Hash function Time [ms] 
Passwords Facebook Twitter 

DJBHash 5438.594 17.331 16.726 
DEKHash 5067.882 13.240 13.119 
FVNHash 5499.328 14.174 12.767 
One At Time 6072.904 15.410 13.955 
lookup3 4543.399 12.009 10.919 
Murmur2 4464.339 11.723 10.774 
Murmur3 4573.453 11.955 10.966 
CityHash 4385.625 11.149 10.355 
GPHash 6389.323 17.966 16.167 
EFHash 5101.523 14.304 13.746 
EvoHashl 4268.402 10.895 9.996 
EvoHash2 4277.341 10.832 9.954 
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Table 9. Speed test according to SMHasher [31]. 

B u l k speed test - 262144-byte keys - M i B / s e c 

Hash funct ion Al ignmen t 

0 1 2 3 4 5 6 7 

D J B H a s h 1268.27 1271.40 1271.40 1271.40 1271.40 1271.40 1271.40 1271.40 

D E K H a s h 1906.95 1907.01 1907.02 1907.01 1907.00 1907.06 1907.06 1907.05 

F V N H a s h 953.63 953.63 953.63 953.63 953.63 953.63 953.63 953.63 

O n e A t T i m e 634.20 634.12 634.12 634.15 634.14 634.12 634.15 634.14 

lookup3 2750.08 2735.18 2735.27 2735.29 2749.80 2735.26 2735.20 2735.14 

M u r m u r 2 3813.36 3780.15 3780.15 3780.15 3813.46 3780.25 3780.25 3780.25 

M u r m u r 3 7476.99 7332.31 7335.21 7332.47 7333.44 7334.75 7332.51 7334.79 

C i t y H a s h 15450.42 14386.41 14370.53 14389.85 14390.17 14372.77 14385.49 14400.47 

G P H a s h 475.67 475.68 475.68 475.69 475.69 475.68 475.68 475.69 

E F H a s h 543.60 543.59 543.59 543.58 543.60 543.58 543.59 543.59 

E v o H a s h l 15121.84 14661.90 14662.12 14663.13 14662.58 14662.96 14662.41 14662.68 

EvoHash2 1 7 5 7 8 . 2 9 1 6 7 2 6 . 2 1 1 6 7 2 6 . 4 4 1 6 7 2 5 . 2 7 1 6 7 3 0 . 3 3 1 6 7 2 6 . 5 0 1 6 7 2 7 . 0 8 1 6 7 2 8 . 0 4 

5 Conclusions 

In this paper, we proposed and evaluated a multi-objective evolutionary design 
approach in which L G P is combined with NSGA-II algorithm in order to 
obtain general-purpose, ultra-fast and high-quality hash functions. This pro­
posal addressed current needs of IT industry which seeks for high quality, but 
ultra fast hash functions. The fitness function was based on (i) the number of col­
lisions with penalization for candidate hash functions producing many collisions 
and (ii) the execution time. 

The best evolved hash functions were compared with 10 hash functions from 
literature. In terms of quality, evolved hash functions produce almost the same 
number of collisions as other good hash functions. In terms of the execution 
time and performance, a hash function improving parameters of a high quality 
conventional solution (CityHash) was discovered. 

Our future work will be devoted to improving the design framework (in terms 
of supporting other objectives and accelerating the design process) and detailed 
testing of evolved hash functions in other real-world applications. 
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Abstract—Efficient monitoring of high speed computer net­
works operating with a 100 Gigabit per second (Gbps) data 
throughput requires a suitable hardware acceleration of its key 
components. We present a platform capable of automated de­
signing of hash functions suitable for network flow hashing. The 
platform employs a multi-objective linear genetic programming 
developed for the hash function design. We evolved high-quality 
hash functions and implemented them in a field programmable 
gate array (FPGA). Several evolved hash functions were com­
bined together in order to form a new reconfigurable hash func­
tion. The proposed reconfigurable design significantly reduces the 
area on a chip while the maximum operation frequency remains 
very close to the fastest hash functions. Properties of evolved hash 
functions were compared with the state-of-the-art hash functions 
in terms of the quality of hashing, area and operation frequency 
in the FPGA. 

I. I N T R O D U C T I O N 

Current high-speed computer networks can achieve a 100 
Gigabit per second (Gbps) throughput and even 400 Gbps 
links w i l l be available in the near future. A t these speeds, 
detailed packet processing becomes a challenging problem. 
Fast packet processing is especially important in network 
security and monitoring systems, where any packet unseen 
by the monitoring system because of the system's insufficient 
performance can affect the quality of monitoring or disallow 
the detection of security threats. In order to achieve a 100 
Gbps throughput, every packet has to be processed in less than 
7 ns. It means that a single C P U core can only execute a few 
instructions to perform this job, which is far from needed. 
Hence, application-specific hardware accelerators have been 
developed to provide sufficient performance. 

This paper deals with an automated design of ultra-fast 
hash functions that are crucial in these accelerators. In par­
ticular, hash functions wi l l be developed for the software 
defined monitoring ( S D M ) platform. S D M performs network 
monitoring and analysis using relatively simple (and so fast) 
configurable circuits implemented in a field programmable 
gate array ( FPGA) . These circuits are configured by means of 
a software application whose purpose is to offload all time-
critical packet processing tasks to hardware and perform only 
sophisticated analysis and other tasks that are not suitable for 
the hardware acceleration. 

In S D M , the network traffic is analyzed at the level of 
network flows. A network flow is a sequence of packets from a 
source device to a destination, for example, a network flow can 

978-l-5386-7753-7/18/$31.00 © 2018 I E E E 

contain a specific transport connection or a media stream. One 
flow is defined by five parameters within a certain time period: 
source and destination IP address, source and destination port 
and transport protocol. These parameters w i l l be referred to 
as a. flow identifier. The role of hashing is to assign a memory 
slot (containing the data of a given flow) to the flow identifier 
extracted from network traffic. 

The objective of this work is to develop and evaluate 
new hash functions suitable for network flow hashing in 
the F P G A . We wi l l also explore possibilities of developing 
the reconfigurable hash functions whose implementation is 
motivated by recent attacks on traffic monitoring systems 
that use a hash function to distribute the network traffic (i.e. 
flow processing) on several cores. If the attacker can reveal 
how the network traffic is distributed, (s)he can generate a 
specific traffic from some IP addresses (and so flows) in such 
a way that (almost) all traffic is intentionally directed by 
the hash function to one core, the core becomes overloaded, 
some flows are dropped and thus remain invisible for security 
monitoring. However, i f a reconfigurable hash function is 
supported, another configuration of the hash function can 
quickly be activated when one core becomes overloaded. This 
w i l l change the unwanted workload distribution to the original 
status and keep the monitoring system working. In order to 
minimize the time spent in the less secure configuration, the 
system has to be adapted at the hardware level. 

The proposed solution wi l l be developed in the following 
steps, (i) We wi l l introduce a genetic programming (GP) based 
system implemented for the evolutionary design of desired 
hash functions, (ii) Hash functions evolved with this system 
w i l l be implemented in an F P G A , evaluated on several data 
sets and compared with conventional hash functions in terms 
of the quality of hashing, the area used in the F P G A and the 
maximal operation frequency, (iii) Finally, we wi l l propose 
and evaluate a new reconfigurable hash function that combines 
selected parts of evolved hash functions in order to reduce the 
implementation cost. 

The rest of the paper is organized as follows. Section II in­
troduces the area of hash functions and their design, including 
the evolutionary hash function design. Section III presents a 
platform capable of automated evolutionary designing of hash 
functions suitable for network flow hashing. The approach uti­
lized for the F P G A implementation of hash functions that were 
evolved by means of the platform is presented in Section IV . 
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This section also deals with the development and experimental 
evaluation of a reconfigurable hash function. Conclusions are 
given in Section V . 

II. H A S H F U N C T I O N S 

A hash function is a mathematical function h that maps an 
input binary string (of length k) to a binary string of fixed 
length (I), h : 2 f c —> 2l, where k » I. The output value is 
called hash value or simply hash [1]. If h(x) = h(y), where 
x and y are two inputs and x ^ y, the so-called collision 
is reported. Next section w i l l describe one of the collision-
handling methods that we employ in our application. 

We wi l l only deal with non-cryptographic hash functions 
in this paper. In the case of cryptographic hash functions, 
additional requirements (such as a pre-image resistance) are 
imposed on them, but these requirements are not relevant in 
our context. 

A. Hash table 

Fig . 1 shows how hash function h is used in a hash table, 
which is a data structure implementing an associative array [2]. 
Based on the input data (a key), the hash function computes 
a hash, i.e. an index into the array of slots, where the desired 
data can be found. Ideally, the hash function w i l l address a 
unique slot, but collisions have to be handled in real-world 
applications. For this purpose, the separate chaining method, 
cuckoo hashing, coalesced hashing and other techniques have 
been developed. In the case of the separate chaining method, 
a linear list of records having the same hash is constructed 
and managed for each index of the table. If there is at most 
one occupied record at index i then the time complexity of 
lookup is constant; otherwise, it is linear with respect to the 
number of records at a given index. 

hiei -
h(K2) >. 

B. Design techniques 

If a hash function is needed for a given application, the de­
signer can either choose one of general-purpose hash functions 
available in the literature (such as DJBHash [3], D E K H a s h [1], 
F V N (Fowler-Noll-Vo) [4], One A t Time, Lookup3 [5], Mur-
murHash2, MurmurHash3 [6] and CityHash [7]) or develop a 
new application-specific hash function. 

Hash functions are usually designed by applying a general 
construction procedure such as the Merkle-Damgard con­
struction [8]. However, a lot of approaches based on the 
evolutionary design principles have been introduced in re­
cent years. Their main advantage is that they are capable 
of producing high-quality hash functions optimized for a 
given application domain. Hash functions were evolved with 
genetic algorithms [9], tree G P [10], linear G P [11], [12], 
grammar evolution [13] and Cartesian G P [14]. Both scenarios 
- application-specific hash functions (see, e.g., [15], [12], [16], 
[17]) and general-purpose hash functions (see, e.g., [10], [18]) 
- were addressed in the literature. 

The fitness function is usually based on measuring the 
avalanche effect [19], [20] or the number of collisions [12], 
[18]. The execution time optimization has been explicitly 
addressed in [11], [12], where the hash function design was 
formulated as a multi-objective design problem. 

C. Hashing in FPGAs 

F P G A implementations of adaptive hash functions were 
developed for various network applications such as network 
routing [21], caching [22] and IP filtering [23]. For example, 
the hash function for IP filtering computes 12-bit hashes in 43 
clock cycles for 32-bit inputs. Because of pipelined processing, 
one hash can be produced in each clock cycle, which gives 
260 mil l ion hashes per second, i.e. 3.8 ns per hash [23]. This 
is more than sufficient for 400 Gbps links. 

For comparative purposes of this paper, we implemented 
in F P G A two hash functions: X O R H a s h and SipHash. The 
X O R H a s h was developed for hashing of the network flows. It 
is based on the so-called xor folding, in which the components 
of the flow identifier are shifted by a predetermined number 
of bits and then summed by means of the xor function [24]. 
These implementations lead to high-speed pipelined structures. 
SipHash is a family of pseudorandom functions optimized 
for short inputs. Target applications include network traffic 
authentication and hash-table lookups [25]. A V H D L imple­
mentation is available at https://131002.net/siphash 

Fig. 1. Hash table with separate chaining. 
H I . P L A T F O R M F O R H A S H F U N C T I O N D E S I G N 

The quality of non-cryptographic hash functions is evaluated 
based on their collision resistance (good hash functions should 
generate a minimum number of collisions), the avalanche ef­
fect (similar input vectors should produce completely different 
outputs), the distribution of outputs, the execution time and the 
table load factor (for a given memory size). 

In our previous work, we developed a platform for evolu­
tionary design of hash functions that are suitable for network 
flow hashing within the S D M concept [12]. The objective 
was not only to evolve high quality hash functions for this 
application, but also to optimize the execution time as the 
hash function is called very often. 
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A. Network flow hashing 

The hash function is constructed for the hash table in which 
the collisions are handled with the separate chaining method. 
In IPv4, a network flow is defined using 104 bits representing 
the source IP address (32 b), the destination IP address (32 b), 
the source port (16 b), the destination port (16 b) and the 
transport protocol (8 b). In order to reduce the execution time, 
these inputs are processed in parallel, i.e. the hash function 
would consume 104 input bits. We proposed to reduce the 
dimension of the input vector to 3 x 3 2 = 96 bits in such 
a way that the source and destination IP addresses remain in 
the original format and a new 32 bit vector is created from 
the source and destination port (sp, dp) and transport protocol 
(tp) according to formula [11] 

((sp « 16) V dp) © tp. 

As the real traffic especially contains two types of transport 
protocol (TCP and U D P ) , there is not a significant loss 
of information using this reduction of the input vector. In 
addition, the input vector fits into three 32 bit registers which 
makes its processing straightforward on a common 32 bit 
processor. Finally, the resulting hash is represented on 16 bits. 

B. Linear genetic programming 

Linear genetic programming (LGP) [26], [27], [28] evolves 
computer programs that are represented as sequences of in­
structions for a register machine. The input and output program 
values are stored in the registers or in an external data memory. 
In our case, no external memory is needed because the 96 bit 
input can be stored in three registers (rO, r l and r2) and the 
resulting hash is in the register rO. The remaining registers are 
initialized to 0. The number of registers available in the register 
machine is constant. Each instruction is typically represented 
by the instruction code, destination register and two source 
registers, for example, [xor, r4, r l , r2] is representing the 
operation r4 = r l xor r2. Based on many experiments, a 
very restricted instruction set containing the addition, mul­
tiplication, logical X O R and right rotation was employed in 
our experiments. In some experiments, multiplication is even 
avoided to reduce the execution time of the resulting hash 
function. The impact of (not)supporting the multiplication 
on the execution time and quality of hashing was analyzed 
in [11]. The program size is restricted to contain only several 
instructions (usually less than 20) in order to force L G P to 
create short programs. 

L G P typically operates with 200 individuals in the popula­
tion, one-point crossover with probability 90 %, mutation prob­
ability 15% and tournament selection [11], [12]. The register 
machine contains eight 32 bit registers. In our experiments, 
1000 generations are produced in each L G P run. 

C. Fitness functions 

Two objectives can be optimized by the proposed platform: 
the quality of hashing and the execution time of a hash 
function. 

In order to evaluate a candidate hash function, it is executed 
with a set of flow identifiers. Executing the hash function leads 
to inserting the flow identifiers to the hash table and creating 
appropriate lists for al l slots showing a collision. Let Ki inputs 
(keys) be mapped into i-th memory slot by a candidate hash 
function h. Then the fitness f(h) is defined as the weighted 
number of collisions: 

.S' 

j=i 

f 0 i f Ki < 1 
5 1 = \ E f 4 i 2 i f ^ > 2 ( 2 ) 

and s is the number of memory slots. This function clearly 
penalizes candidate hash functions showing many collisions 
and thus long lists in the hash table with separate chaining. 
The following example demonstrates the fitness evaluation: 
Consider that two flow identifiers are assigned to slot i = 3, 
three input identifiers are assigned to slot i = 10 and 0 or 
1 input is assigned to the remaining slots (s = 20). Then 
f(h) = 2 2 + (2 2 + 3 2 ) = 17. The objective is to minimize 
f(h). 

Candidate programs usually contain redundant instructions. 
For example, they could contain instructions whose result is 
not used by any other instruction or whose execution does 
not affect contents of the registers. These instructions can 
be removed. As modern processors support S I M D (Single 
Instruction Multiple Data) processing via the S S E and A V X 
extensions, we re-arrange the candidate programs to fit this 
scheme [12]. For example, modern C P U s can typically process 
256 bits at once which means that eight 32-bit operations 
can be executed in one instruction instead of executing eight 
instructions sequentially. The execution time of a candidate 
program then corresponds to the number of blocks of instruc­
tions, where one block contains all instructions that can be 
executed in parallel. 

In a multi-objective scenario implemented by means of 
the N S G A - I I algorithm [29], L G P thus tries to minimize 
the number of collisions and the number of instructions (or 
instruction blocks) [12]. 

D. Results 

The network data used in experiments were collected with a 
network monitoring device installed in our research computer 
network. The network data were divided into three data sets 
containing 20,000 (DataSetl), 50,000 (DataSet2) and 100,000 
(DataSet3) identifiers of network flows. Note that the iden­
tifiers of network flows are unique. DataSetl is used as a 
training set for L G P . 

F ig . 2 shows all Pareto fronts (the weighted number of 
collisions vs. the number of instructions in C code) obtained 
from 30 independent runs of L G P . We identified seven hash 
functions N S G A H a s h l - NSGAHash7 covering the Pareto 
front for a further analysis. 

Evolved hash functions and selected conventional hash 
functions were implemented in C and compiled with the 
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T A B L E I 

T H E N U M B E R O F C O L L I S I O N S . IV. H A S H F U N C T I O N S IN F P G A 

The number of coll isions 
Hash function DataSet l DataSet2 DataSet3 
D J B H a s h 2835 15113 48925 
D E K H a s h 2926 15247 49017 
F V N H a s h 2756 14957 48780 
One A t T i m e 2821 14988 48636 
lookup3 2742 15009 48737 
M u r m u r 2 2800 15050 48749 
Murmur3 2744 14911 48763 
C i t y H a s h 2807 14990 48647 
G P H a s h 2777 15052 48750 
E F H a s h 5317 25266 63175 
X O R H a s h 2864 15011 48575 
SipHash 2835 14934 48622 
N S G A H a s h l 2923 15677 49336 
N S G A H a s h 2 2746 15170 48835 
N S G A H a s h 3 2689 15575 49292 
N S G A H a s h 4 2692 15010 48715 
N S G A H a s h 5 2759 14975 48749 
N S G A H a s h 6 2650 14839 48680 
N S G A H a s h 7 2639 14975 48650 
m i x H a s h 2716 15006 48716 

T A B L E I I 

T H E A V E R A G E E X E C U T I O N T I M E O N I N T E L X E O N E 5 - 2 6 2 0 V 3 

Hash function 
DataSet l 

T i m e [ms] 
DataSet2 DataSet3 

D J B H a s h 1.069 3.608 9.690 
D E K H a s h 0.890 3.210 8.647 
F V N H a s h 1.021 3.546 9.556 
One A t T i m e 1.361 4.568 12.024 
lookup3 0.721 2.670 7.473 
M u r m u r 2 0.787 2.868 7.871 
Murmur3 0.929 3.304 8.892 
C i t y H a s h 0.760 2.736 7.603 
G P H a s h 1.448 4.749 12.406 
E F H a s h 1.871 13.560 48.132 
X O R H a s h 0.649 2.390 6.774 
S ipHash 4.061 10.147 23.442 
N S G A H a s h l 0.568 2.871 8.642 
N S G A H a s h 2 0.560 2.182 6.334 
N S G A H a s h 3 0.541 2.871 8.500 
N S G A H a s h 4 0.561 2.168 6.267 
N S G A H a s h 5 0.564 2.191 6.394 
N S G A H a s h 6 0.559 2.192 6.369 
N S G A H a s h 7 0.593 2.295 6.883 
m i x H a s h 0.566 2.178 6.352 

identical compiler settings. These implementations were then 
used to evaluate the number of collisions (Table I) and C P U 
execution time (Table II) on test data sets. 

Table II gives the average execution time needed to process 
all data sets 20 times. NSGAHash4 provides the shortest 
execution time because a good tradeoff between the number 
of collisions and the complexity of the hash function was 
discovered by L G P . 

In summary, it was shown using real world network data that 
the proposed platform can provide high-quality compromise 
solutions (in terms of the execution time and the quality of 
hashing) in comparison with commonly used hash functions 
and specialized hash functions available in the literature. 

The hash functions evolved by L G P were optimized with 
respect to the number of collisions and the execution time on 
a C P U . L G P also tried to maximize the number instructions 
that can be executed in parallel. This property is useful from 
the hardware perspective as the evolved functions contain 
arithmetic operations that can be executed in parallel and the 
execution time can thus be minimized. 

A. FPGA implementation 

We analyzed evolved hash functions N S G A H a s h l - N S -
GAHash7 and created their V H D L structural implementations 
according to evolved programs. In order to maximize the 
operation frequency, we inserted synchronization registers to 
enable the pipelined processing. Examples of resulting im­
plementations are shown for NSGAHash4 , NSGAHash5 and 
N S G A H a s h 6 in Fig . 3, 4 and 5. The network flow description 
is provided in 32 bit registers iO, i l and i2. Each stage of 
the pipeline contains a 32 bit function (such as addition, 
logic operation, rotation or no operation) followed by a 32 
bit register R. Rotation is implemented by reconnecting the 
input signals according to a given bit count, i.e. no special 
function such as a barrel shifter is needed. The resulting 16 
bit hash value is obtained from a 16 bit X O R function. 

N S G A H a s h l - NSGAHash7 were synthesized using X i l l i n x 
ISE 14.4 tool for three different X i l i n x F P G A s , namely 
Spartan-6 (xc6slxl50), Virtex-6 (xc6vlx550t) and Virtex-7 
(xc7vx550t). Table III summarizes all important parameters: 
the latency, the number of look-up tables (LUTs) , the number 
of flip-flops (FFs), delay and maximum operation frequency. 
In order to provide examples of conventional hash functions, 
we also implemented X O R H a s h [24] and SipHash [25] and 
listed their parameters in Table III. It has to be noted that 
other conventional hash functions are more complex than the 
selected functions and their hardware implementation would 
not bring any advantages to our target application. One can 
observe that evolved hash functions are more compact than 
conventional hash functions (the number of L U T s and FFs 
was significantly reduced) and exhibit a small initial latency 
of 2^1 clock cycles. The execution time is comparable with 
X O R H a s h , but SipHash is much slower than evolved hash 
functions. 

B. Re configurable hash function 

In order to design a reconfigurable hash function that could 
be used in the security use-case sketched in Section I, a 
natural solution would be to implement desired hash func­
tions on the F P G A and select one of them by means of a 
multiplexer. Detailed analysis of NSGAHash4 , NSGAHash5 
and N S G A H a s h 6 shown in Fig . 3, 4 and 5, however, revealed 
that these hash functions are structurally very similar. We took 
into account this fact and designed a new reconfigurable hash 
function (RecoHash) that contains all these hash functions. The 
multiplexers are carefully placed and used to switch among 
subcircuits of these hash functions rather than the whole 
hash functions. RecoHash has four different configurations, 
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Fig. 2. Resulting Pareto fronts created from 30 independent runs of LGP. 
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Fig. 3. Pipelined implementation of NSGAHash4. 
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Fig. 4. Pipelined implementation of NSGAHash5. 

implementing NSGAHash4 (mode 00), NSGAHash5 (mode 
01), N S G A H a s h 6 (mode 10) and mixHash (mode 11), where 
mixHash is a mixture of the former functions. 

The synthesis results given in Table III clearly show the 
main benefits of RecoHash. For example, in the case of the 
implementation in Virtex-7, its size (144 L U T s ) is significantly 
smaller than the sum of the L U T s needed to implement its core 
hash functions (80 + 112 + 112 = 304 LU Ts) . The same also 
holds for FFs (144 < 3 x 122). The max. operation frequency 
of RecoHash is very close to the fastest hash functions. 

Figure 7 shows all key parameters (LUTs , delay and 
the number of collisions) for all evolved hash functions, 
conventional hash functions and RecoHash. The number of 
collisions is given for the most challenging DataSet3. Because 
of the pipeline structure, evolved hash functions exhibit a very 
similar delay. The only exception is NSGAHash7 which is 
more complex due to multipliers that were implemented by 
D S P blocks available in the F P G A . 

Finally, by means of 1 mil l ion input vectors we analyzed 
how many flows are hashed by RecoHash to the same index 
by means of its different configurations. As these numbers are 
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T A B L E III 

S Y N T H E S I S R E S U L T S F O R D I F F E R E N T T Y P E S O F X I L L I N X F P G A S . * N S G A H A S H 7 U S E S 3 D S P B L O C K S F O R M U L T I P L I C A T I O N 

Hash function 
F P G A Type Latency 

Number 
of L U T s 

Number 
of FFs 

Delay 
[ns] 

max. frequency 
[ M H z ] 

Spartan-6 4 989 521 10.501 95.23 
S ipHash Virtex-6 4 1061 521 6.449 155.06 

Virtex-7 4 1061 521 5.469 182.84 
Spartan-6 7 291 228 2.395 417.54 

X O R H a s h Virtex-6 7 291 228 1.771 564.65 
Virtex-7 7 291 228 1.594 627.35 
Spartan-6 2 48 48 3.133 319.18 

N S G A H a s h l Virtex-6 2 48 48 1.452 688.71 
Virtex-7 2 48 48 1.353 739.10 
Spartan-6 3 80 112 2.358 424.09 

N S G A H a s h 2 Virtex-6 3 80 112 1.766 566.25 
Virtex-7 3 80 112 1.589 629.33 
Spartan-6 2 48 48 3.133 319.18 

N S G A H a s h 3 Virtex-6 2 48 48 1.452 688.71 
Virtex-7 2 48 48 1.353 739.10 
Spartan-6 3 80 112 3.133 319.18 

N S G A H a s h 4 Virtex-6 3 80 112 1.766 566.25 
Virtex-7 3 80 112 1.589 629.33 
Spartan-6 3 112 112 3.170 315.46 

N S G A H a s h 5 Virtex-6 3 112 112 1.766 566.25 
Virtex-7 3 112 112 1.589 629.33 
Spartan-6 3 112 112 3.170 315.46 

N S G A H a s h 6 Virtex-6 3 112 112 1.766 566.25 
Virtex-7 3 112 112 1.589 629.33 
Spartan-6 4 80* 161 11.541 86.65 

N S G A H a s h 7 Virtex-6 4 80* 161 6.208 161.08 
Virtex-7 4 80* 161 5.432 184.09 
Spartan-6 4 144 240 3.049 327.98 

RecoHash Virtex-6 4 144 240 1.766 566.25 
Virtex-7 4 144 240 1.589 629.33 

Bit 
A D D R Rat 

(22) 

' 11* -31] 1 1 lit/ . I 
/ " | 

V 
Out 

1 / * 
Out 

1 18b/ . 1 
1 ' ' 10-L3) 1 
I | 

Output 
reduction 1 1 

F i g . 5. Pipel ined implementation o f N S G A H a s h 6 . 

very low (e.g., 0.0021% for NSGAHash4 and NSGAHash5 ; 
0.0017% for NSGAHash4 and NSGAHash6 ; and 0.0008% for 
NSGAHash5 and NSGAHash6) , we concluded that RecoHash 
provides significantly different hash values in its operation 
modes. 

V. C O N C L U S I O N S 

Motivated by the recent need for the high-speed network 
flow processing in F P G A s , we proposed efficient hardware 
implementations of hash functions for an F P G A , including a 
reconfigurable hash function. The proposed solution exploits a 
multi-objective L G P capable of designing and optimizing not 

r , "X 

F i g . 6. Reconfigurable hash function RecoHash. 

only the quality of hashing, but also the execution time of hash 
functions. Because of these properties, evolved hash functions 
(i.e. sequences of instructions) could directly be translated 
to a V H D L structural description, synthesized and evaluated 
on several F P G A s . Compared with conventional solutions, 
evolved implementations require less area in the F P G A while 
the maximum operation frequency is slightly higher. 

We exploited the structural similarity of several hash func­
tions and combined them together to create a reconfigurable 
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F i g . 7. Parameters of implementations of hash functions in Vir tex-7. The 
number of coll isions is given for DataSet3. 

hash function RecoHash. RecoHash requires less area in the 
F P G A than any solution based on multiplexing of the available 
hash functions. RecoHash can also be used as a building block 
of more complex hashing schemes. 

The quality of hashing was evaluated with the data coming 
from real network flows. In our future work, we plan to 
integrate selected hardware implementations of hash functions 
into S D M system and evaluate them in the real online scenario. 
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