
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

A HASKELL PLATFORM FOR CREATING PROGRESSIVE
WEB APPLICATIONS
NÄSTROJ PRO TVORBU PROGRESSIVE WEB APPLICATIONS V HASKELLU

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR JAKUB ZÁRYBNICKY
AUTOR PRÁCE

SUPERVISOR Ing. ONDŘEJ LENGÁL, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2019

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2018/2019

Bachelor's Thesis Specification I lllllllllll 111
21548

Student: Zärybnicky Jakub
Programme: Information Technology
Title: A Haskell Platform for Creating Progressive Web Applications
Category: Web
Assignment:

1. Study the current state of the Haskell ecosystem for creating web applications.
2. Find suitable libraries as a starting point for creating Progressive Web Applications (PWAs), i.e., web

applications that can offer the user functionality such as working offline or push notifications.
3. Implement a framework for PWAs. Focus, in particular, on the implementation of components for offline

storage, push notifications, and also support tools.
4. Create a set of example PWAs that utilise the created framework.
5. Compare the created framework with existing (e.g. JavaScript) frameworks for PWAs.
6. Summarise the obtained results and discuss the future work.

Recommended literature:
• State of the Haskell Ecosystem https://github.com/Gabriel439/post-rfc/blob/master/sotu.md
• the Reflex-DOM library: https://github.com/reflex-frp/reflex-dom
• Bryan O'Sullivan, Don Stewart, and John Goerzen. Real World Haskell. O'Reilly Media, 2008.

Requirements for the first semester:
• First two items of the assignment.

Detailed formal requirements can be found at http://www.fit.vutbr.cz/info/szz/
Supervisor: Lengäl Ondrej, Ing., Ph.D.
Head of Department: Hanäcek Petr, doc. Dr. Ing.
Beginning of work: November 1, 2018
Submission deadline: May 15, 2019
Approval date: November 1, 2018

Bachelor's Thesis Specification/21548/2018/xzaryb00 Strana 1 z 1

https://github.com/Gabriel439/post-rfc/blob/master/sotu.md
https://github.com/reflex-frp/reflex-dom
http://www.fit.vutbr.cz/info/szz/

Abstract
This work attempts to ease developing browser applications i n the Haskel l programming
language by creating a set of components that its l ibrary ecosystem so far lacks, especially
focusing on the components required for development of Progressive Web Appl ica t ions ,
i.e. applications that use new technologies like Service Workers.

The thesis compares which components are commonly expected from a web framework
and which are available i n Haskell ; describes the implementat ion of three such components
(router, storage, and Service Worker libraries); and implements three applications that
demonstrate use of these components.

Abstrakt
Tato p r á c e se snaž í usnadnit vývoj webových ap l ikac í p s a n ý c h v p r o g r a m o v a c í m jazyce
Haskell v y t v o ř e n í m sady komponent, k t e r é z a t í m chybí v jeho ekosys t ému knihoven, se
z a m ě ř e n í m na komponenty n u t n é pro tvorbu Progressive Web Appl ica t ions , t . j . aplikace,
k t e r é používa j í nové technologie jako n a p ř . Service Workers.

Tato p r á c e po rovnává , k t e r é komponenty se očekávaj í od webových platforem a k te ré
jsou d o s t u p n é pro Haskell ; popisuje implementaci t ř í komponent (knihovny pro rou tován í ,
ú ložiš tě a Service Workery) ; a implementuje t ř i aplikace, k t e r é d e m o n s t r u j í použ i t í t ě c h t o
komponent.

Keywords
Haskell , G H C J S , Web Pla t form, Progressive Web Appl i ca t ion , open source, l ibrary design

Klíčová slova
Haskell , G H C J S , Web Pla t form, Progressive Web Appl ica t ion , open source, n á v r h knihoven

Reference
Z Á R Y B N I C K Ý , Jakub. A Haskell Platform for Creating Progressive
Web Applications. Brno , 2019. Bachelor's thesis. Brno Universi ty of Technology, Facul ty
of Information Technology. Supervisor Ing. O n d ř e j Lengá l , P h . D .

Rozšířený abstrakt
W e b o v é aplikace se už dnes svou velikostí a komplexi tou blíží n a t i v n í m a je m o ž n é je p s á t v
mnoha jazyc ích . V t é t o p rác i se zaměřu j i na tvorbu apl ikac í pro prohl ížeče v jazyce Haskell ,
k t e r ý ale disponuje omezenou n a b í d k o u d o s t u p n ý c h knihoven v t é t o oblasti . Zaměřu j i se
obzvlášť na tzv. Progressive Web Appl ica t ions , což jsou aplikace, k t e r é používaj í sadu
re l a t ivně nových technologi í jako n a p ř . Service Workers, aby poskyt ly funkce, k t e r é byly
dř íve d o s t u p n é jen v n a t i v n í c h apl ikac ích . Takové aplikace jsou schopné n a p ř . pracovat
offline, nebo použ íva t tzv. push notifikace, u p o z o r n ě n í gene rovaná serverem.

V t é t o p rác i ne jdř íve p o r o v n á v á m funkce d o s t u p n é v nej rozšířenějších webových platfor­
m á c h , tj. funkce, k t e r é očekávaj í i vývojář i , k t e ř í Haskel l používaj í nebo chtěj í použ íva t , s
funkcemi a k t u á l n ě d o s t u p n ý m i v jazyce Haskell . N a zák ladě t é t o a n a l ý z y pak implemen­
tuji t ř i komponenty, k t e r é jsou podle m é h o uvážen í nejvíce p o t ř e b a pro vývoj Progressive
Web Appl ica t ions a k t e r é se n a v z á j e m doplňuj í : knihovny pro rou tován í , ú ložiš tě a Service
Workers (jejich generování a interakci s n imi) .

K n i h o v n a pro r o u t o v á n í umožňu je definici m a p o v á n í U R L na G U I komponenty a p ř e c h o d y
mezi U R L a s t r á n k a m i p řevážně p o m o c í p r o g r a m o v á n í na ú rovn i t y p ů {type-level program-
ming). K n i h o v n a t a k é obsahuje prototyp komponenty pro s t a t i cké generování s t r á n e k
(static site generation). K n i h o v n a pro úložiš tě obsahuje j e d n o d u c h é úložiš tě typu klíč-
hodnota (key-value storage), s podporou offline ú ložiš tě a m o ž n o s t í rozší ření pro p ř í m ý
p ř í s t u p k d a t a b á z i p ř i s t a t i c k é m generování s t r á n e k . Komponenta pro podporu Service
Workers m á dvě čás t i , generování Service Worker jako kód p s a n ý jazykem JavaScript a
k l ien tská knihovna pro interakci s n í m . Komponenta podporuje použ i t í Service Workers
jako p r o g r a m o v a t e l n é H T T P proxy (fetch control) a pro podporu u p o z o r n ě n í generovaných
serverem (push notifications).

Použ i t í t ě ch to knihoven pak demonstruji na t ř e ch apl ikacích: T o d o M V C , H N P W A , Real -
Wor ld , k t e r é jsou v y t v o ř e n é podle specifikací b ě ž n ě použ ívaných pro p o r o v n á n í webových
platforem. T o d o M V C je aplikace pro s p r á v u seznamu úkolů , H N P W A je klient zp ravoda j ské
s lužby Hacker News a Rea lWor ld je v íceuž iva te l ská platforma pro č ten í a p s a n í č lánků .

P r á c e p ř idává do open-source ekosys t ému Haskel lu t ř i nové komponenty, k t e r é v n ě m do­
posud chyběly. T y t o komponenty vyplňuj í z á k l a d n í nedostatky v ekosys t ému a dohro­
mady funkčnos t í odpov ída j í m i n i m a l i s t i c k ý m f r a m e w o r k ů m v jazyce JavaScript , ale p o ř á d
v Haskel lu zůs t ává mnoho n e d o s t a t k ů v p o r o v n á n í s e k o s y s t é m e m JavaScriptu. T y t o kom­
ponenty jsou již použ i t e lné pro tvorbu Progressive Web Appl ica t ions , zá roveň ale slouží
jako výchozí bod pro dalš í p rác i , jejich dalš í vývoj a tvorbu p ř í b u z n ý c h komponent.

A Haskell Platform for Creating Progressive
Web Applications

Declaration
Hereby I declare that this bachelor thesis was prepared as an original author's work under
the supervision of Ing. Ondfej Lengal , P h . D . A l l the relevant information sources used
during preparation of this thesis are properly cited and included i n the list of references.

Jakub Z ä r y b n i c k y
M a y 15, 2019

Contents

1 Introduction 5

2 W h a t is a P W A ? 6
2.1 Web development trends 6
2.2 Progressive Web Appl ica t ions 7

3 W e b frameworks today 9
3.1 Features of Web frameworks 9

3.1.1 Support ing tools 11
3.2 Web frameworks in JavaScript 12

4 Haskell and the W e b 13
4.1 Haskell 13
4.2 Haskell ecosystem for the Web 14

4.2.1 Support ing tools 17

5 Creat ing the framework 19
5.1 Implementation plan 19
5.2 Rou t ing 20

5.2.1 Previous work 20
5.2.2 Servant 21
5.2.3 Reflex 23
5.2.4 Implementation 24
5.2.5 Possible extensions 27

5.3 Service workers 28
5.3.1 Requirements 28
5.3.2 J M a c r o 29
5.3.3 Implementation 29
5.3.4 Possible extensions 34

5.4 Storage 35
5.4.1 Possible extensions 36

5.5 Web A p p Manifest 36

6 Appl icat ion development 38
6.1 Design 38
6.2 Tools 39
6.3 Deployment 41

1

7 Case studies 43
7.1 T o d o M V C 4 3

7.2 H N P W A 46
7.3 Rea l W o r l d 4 8

8 Conclusion 50
8.1 Evalua t ion 50

8.2 Future work 50

Bibl iography 52

Appendices 56

A Contents of the attached data storage 57

2

List of Figures

7.1 The T o d o M V C applicat ion 46
7.2 The H N P W A applicat ion 47
7.3 The Rea lWor ld appl icat ion 49

3

List of Listings

1 A n example of a web server in Haskell 13
2 A n example of a counter in Reflex 15
3 A n example of a counter in Miso 15
4 A n example of a counter in Concur 16
5 Router: the intended A P I 20
6 A n example of a Servant A P I 22
7 A n example of a Servant Generic A P I 22
8 Router: types of appl icat ion code using MonadRoute r 24
9 Router: transformation of a Servant A P I into a client router 25
10 Router: the top-level route dispatcher 26
11 Router: in-applicat ion l inks 27
12 Service Worker: the intended A P I 28
13 A n example of J M a c r o code 29
14 Service Worker: generating prefetch JavaScript 30
15 Service Worker: cache strategies type and generation 30
16 Service Worker: request matching types 31
17 Service Worker: request matching code generation 32
18 Service Worker: implemented push behaviors 33
19 Service Worker: client monad transformer 33
20 Service Worker: applicat ion code demonstration 34
21 Service Worker: alternative style using a JavaScript D S L 34
22 Storage: the implemented A P I 35
23 Storage: monad transformer definition and usage 36
24 Web A p p Manifest: main data type 37
25 N i x O p s deployment 42
26 T o d o M V C : applicat ion entities 44
27 T o d o M V C : component for creating a new task 44
28 T o d o M V C : base monad transformer 45

1

Chapter 1

Introduction

Imagine you are bui ld ing an applicat ion for an event your company is organizing. There
w i l l not be reliable internet connection i n the area of the event, so it needs to work offline.
Y o u are on a tight budget, so implementing one version for each platform is not feasible,
but it needs to work reliably across a l l mobile platforms and ideally i n the browser as well.
W h a t is the easiest way to accomplish that?

This si tuation is exactly where a rather new concept of a Progressive Web App l i ca t i on
(P W A) is the best solution. General ly said, a P W A is website capable of running offline,
using mobile notifications, or synchronizing data in the background, things previously spe­
cific to native mobile applications.

Moreover, consider that the appl icat ion server is wri t ten in Haskell , a statically typed,
purely functional programming language. We want to reuse the business logic already
wri t ten there to avoid dupl icat ing code, so we search for a way to write a Web applicat ion
in Haskel l . We find many resources and a quickly growing community but while creating
the application, we soon step into the unknown. A medium-scale appl icat ion needs a large
number of capabilities, but the ecosystem of frontend Haskel l is not yet big enough to
support many of them, and many libraries in the cirest sire either exploratory or one-off
projects. In this work, we w i l l t ry to fi l l i n many such gaps, w i th the goal of creating a
framework for creating Progressive Web Appl ica t ions in Haskell .

We w i l l first go through the details of what a Progressive Web App l i ca t i on is (Chapter 2)
and what features are common i n today's Web frameworks (Chapter 3), followed by a
quick introduct ion to Haskel l and an evaluation of the Haskel l ecosystem i n the area of
Web development (Chapter 4). After seeing what is missing, we w i l l walk through the
implementation of several libraries in the area (Chapter 5), have a look at how to create
an applicat ion using these components (Chapter 6), and conclude wi th four separate case
studies (Chapter 7).

The source code for this work is available online h t t p s : / / g i t h u b . c o m / z a r y b n i c k y / t h e s i s ,
and also at h t t p s : / / t apaw.dev , where the live versions of the applications created here are
also available.

5

Chapter 2

What is a P W A ?

2.1 Web development trends

Today, web pages are more than just static H T M L markup. We have moved from the Web
without JavaScript where any interactions needed to be processed by the server, through
using JavaScript just for animations and smal l ease-of-use features, to bui lding entire ap­
plications in JavaScript that only talk to servers i n the background.

W h e n JavaScript received the abi l i ty to execute H T T P requests and get or save data i n the
background, a technology then called A J A X , it was only used for smal l pieces of functional­
ity. O n l y later came the concept of Single Page Appl ica t ions (S P A) , where the applicat ion
was only loaded once at the beginning and only communicated i n J S O N or X M L afterwards.
This brought new challenges to JavaScript developers, challenges like rendering templates
in the browser, managing applicat ion state or routing (the mapping between applicat ion
state and the U R L displayed i n the address bar of a browser).

Not only was the Web developing, but also mobile devices and their applications, also called
native applications today (as opposed to web applications). These applications had access
to the full capabilities of the devices they were running on and could, at the start, do a lot
more than a web application.

This meant that a company that wanted to reach as many users as possible had to develop
many versions of the same applicat ion: for the web, desktop, and also for several varieties
of mobile devices. Later came projects like Cordova and Elec t ron that made it possible to
use JavaScript and other web technologies not only i n the browser but also in native mobile
and desktop applications, but the ambi t ion of making the web the universal applicat ion
platform stayed there.

Under the umbrel la of the Web P la t fo rm project, many new JavaScript extensions were
developed, interfaces that gave JavaScript access to many facets of the device on which the
browser runs. Some examples are the Loca t ion A P I that gives access to the G P S location
of a device, or the Screen Capture A P I that enables a website to capture the screen of the
browser or another application.

Given that the device type most often for browsing the Web is a mobile device and has
been for a few years already [39], the effort to equalize the capabilities of web and mobile

G

applications is s t i l l ongoing, and a large step towards this goal is the concept of a Progressive
Web Appl i ca t ion .

2.2 Progressive Web Applications

The term Progressive Web App l i ca t i on (P W A) is an umbrella term for several relatively
new, closely related technologies. W h i l e many of them are useful on a l l devices, the main
target audience are mobile Web browsers.

The goal of the P W A project is to enable developers to create Web applications that are
equal in functionality to native ones i n many domains like shopping or productivi ty. The
technologies that comprise the term P W A allow applications to be installable direct ly from
a web browser to the device, to become capable of working offline, to use some background
services of the device, a l l features formerly only available to mobile applications. To use
the marketing terms, converting a web applicat ion into a P W A improves user experience
and brings higher user engagement and retention.

The te rm P W A has an exact specification in a checklist created by Google [15], which
describes two levels of P W A s , a Baseline P W A and an Exempla ry P W A . The defining
characteristics of a Baseline P W A £1X6 5 ctS quoted directly from the checklist:

• Pages are responsive on tablets and mobile devices.

• A l l applicat ion U R L s load while offline.

• Site uses cache-first networking.

• Page transitions do not feel like they block on the network.

• Pages use the His tory A P I .

• Each page has a U R L .

• Metada ta provided for " A d d to Home screen".

• Site appropriately informs the user when they are offline.

• P u s h notifications (which consist of several related requirements).

W h i l e there are several more requirements for an Exempla ry P W A , we w i l l focus mostly on
the Baseline P W A ones. The technologies used to fulfill these requirements are relatively
recent developments, but they are supported in a l l major Web browsers. The technologies
are the following:

• Service Workers

• Web A p p Manifest

• IndexedDB

. Web Pla t form A P I s

7

A service worker is a JavaScript program that an applicat ion can request to instal l . It is
functionally a configurable network proxy [)] that can intercept outgoing requests from
the browser and that has access to a browser cache, which, among other things, enables
applications to become available offline. The service worker may also handle push notifica­
tions and background synchronization, two new features that were t radi t ional ly available
only to native applications.

Push notifications are short messages sent by the applicat ion server to any client using
browser-specific channels (e.g. Firebase C l o u d Messaging for Chrome and A n d r o i d browsers,
App le P u s h Notif icat ion for A p p l e browsers), that are shown to the user as a popup or a
notification regardless of whether the appl icat ion is open or closed on the device.

The Background Sync A P I enables the service worker to retry requests made while the
applicat ion was offline as soon as the device goes online, even when the applicat ion is not
open at that moment, which also enables some degree of offline capabilities, as any data
updates can be queued and eventually executed i n batch at some point i n the future.

The Web A p p Manifest is a W3C-s tandard ized J S O N file [47] that contains the metadata
that describe an applicat ion: its name, icons, splash screen, or locale. If a page contains a
l ink to a manifest, it indicates to the browser that the page is a part of an applicat ion and
that the applicat ion can be installed on a device locally. For the user, this means that the
application can request to be installed v ia a dialog window asking them to " A d d to Home
Screen".

IndexedDB is the only browser storage that is accessible to both the browser and the service
worker. It is a document store that supports transactions, schema versioning, and indices.
Us ing IndexedDB, the applicat ion is able to synchronize its state w i th the server even when
it is closed, using the Background Sync A P I of the service worker.

The Web Pla t form is a set of A P I s that expose capabilities of the underlying system.
Examples include geolocation or audio/video capture [1]. O f the many A P I s that comprise
the Web Pla t form, it is the His tory A P I and Network Information A P I that are necessary for
a P W A . The His tory A P I is the feature that enables the so-called single page applications,
where the applicat ion is loaded only once despite the user being able to navigate between
different U R L s . This is achieved v i a artificial navigation actions and intercepting user
navigation actions like " G o to previous page". The Network Information A P I is what enables
the applicat ion to find out whether the it can currently access the Internet. Other A P I s
mentioned in the Exemplary PWA requirements are the Web Share A P I and Credentials
A P I that expose more of the underlying device capabilities, sharing v ia other applications
and the device credential storage.

8

Chapter 3

Web frameworks today

A s frontend applications grow more complex, so do the frameworks in which they are bui ld .
Today's frontend framework is no less complex than a desktop or a server framework, w i th
a large number of capabilities. In this section, we w i l l look into what is expected of a
frontend framework, which features they usually support and what we w i l l need to look for
in Haskel l libraries.

3.1 Features of Web frameworks

The basis of a web framework is the UI toolkit, which defines the structure, architecture, and
paradigm of the rest of the applicat ion. I am intentionally using the now-uncommon term
toolki t , as the U I frameworks we w i l l see vary i n their scope, e.g. React is just a l ibrary wi th
a smal l A P I , whereas Angu la r provides a quite opinionated platform. Indiv idual frameworks
are quite disparate, w i th large differences in the size of their community, maturity, developer
friendliness, and the breadth of features or available libraries.

Frameworks usually have one defining feature they are buil t around (vir tual D O M for
React or event streams for Angular) , but there are many other concerns that a framework
needs to take care of. Templating is one of the essential ones. It is a way of composing
the H T M L that makes up an application, which also usually includes some "view logic"
and variable interpolation. In some frameworks the whole program is a template (purely
functional React) , some have templates i n separate files and pre-compile them during the
bu i ld process or even i n the browser (Angular) . Templates may also contain C S S as well
as in the recent CSS- in - JS trend [18].

The second defining feature of frameworks is state management. This rather vague concept
may include receiving input from the user, displaying the state back to the user, communi­
cating wi th A P I s and caching their responses, etc. W h i l e state management is simple at a
small scale, there are many problems that appear only i n larger applications wi th several
developers. Some approaches include: a "single source of the t ru th" and immutable data
(Redux), local state in hierarchical components (Angular) , or unidirect ional data flow wi th
several entity stores (F lux) .

Another must-have feature of a framework is routing, which means manipula t ing the dis­
played U R L using the His tory A P I , and changing it to reflect the applicat ion state and

9

vice-versa. It also includes switching the applicat ion to the correct state on start-up. Whi l e
the router is usually a rather smal l component, it is as fundamental to the appl icat ion in
the same way as the previous two items.

A component where frameworks differ a lot is a forms system. There are a few layers of
abstraction at which a framework can decide to implement forms, start ing at raw D O M
manipulat ion, going on to data containers w i t h val idat ion but manual rendering, a l l the way
up to form builders using domain-specific languages. The topic of forms includes rendering
a form and its data, accepting data from the user and val idat ing i t , and sometimes even
submit t ing it to an A P I .

There are other features that a framework can provide, like authentication or standard­
ized U I components, but frameworks usually leave these to third-party libraries. There
is one more topic I would like to mention that is usually too broad to cover in the core
of a framework, but important to consider when developing an applicat ion. Accessibility
is an area concerned wi th removing barriers that would prevent any user from using a
website. There are many parts to i t , and while the focus is making websites accessible to
screen-readers, it also includes support ing other modes of interaction, like keyboard-only
interaction. Shortening load times on slow connections also makes a website accessible in
parts of the world w i th slower Internet connections, and support ing internationalization
removes language barriers.

Accessibil i ty is something that requires framework support on several levels. M a k i n g a
site accessible requires considerations dur ing both design (e.g. high color contrast) and
implementation (semantic elements and A R I A attributes), and that is usually left to appli­
cation code and accessibility checklists, w i th the exception of some specialized components
like keyboard focus managers. There are, however, tools like aXe-core, which check how
accessible a finished framework is, and these can be integrated into the bu i ld process.

Internationalization is somewhat easier to support in a framework, as it includes so many
cross-cutting concerns. A t the most basic level, it means simple str ing translations, perhaps
wi th plural izat ion and word order. Go ing further, it may also mean support ing right-to-left
scripts, different date/ t ime formats, currency, or t ime zones.

A s for load times, there are many techniques frameworks use to speed up the in i t i a l load
of an applicat ion. We can talk about the first load, which can be sped up by compressing
assets (CSS, fonts, scripts) and removing redundant ones, or by preparing some H T M L
that can be displayed to the user while the rest of the applicat ion is loading to increase
the perceived speed. After the first load, the browser has some of the application's assets
cached, so loading w i l l be faster. One of the requirements of a P W A is using the Service
Worker for instantaneous loading after the first load.

There are two patterns of preparing the H T M L that is shown while the rest of the appli­
cation is loading, so called prerendering. One is called app shell, which is a simple static
H T M L file that contains the basic structure of the application's layout. The other is server-
side rendering, and it is a somewhat more advanced technique where the entire contents of
the requested U R I is rendered on the server including the data of the first page, and the
browser part of the applicat ion takes over only afterwards, without the need to fetch any
more data. There is another variant of server-side rendering called the " J A M stack" pattern
("JavaScript, A P I s , M a r k u p " []), where after applicat ion state changes, the H T M L of the
entire applicat ion, of a l l applicat ion U R L s is rendered a l l at once and saved so that the

10

server does not need to render the H T M L for every request. These techniques are usually
part of a framework's supporting tools, about which we w i l l talk next.

3 . 1 . 1 S u p p o r t i n g too l s

Developers from different ecosystems have wi ld ly varying expectations on their tools. A P y t h o n
developer might expect just a text editor and an interpreter, whereas a J V M or . N E T de­
veloper might not be satisfied wi th anything less than a full-featured I D E . We w i l l start
w i th the essentials, w i t h build tools. Nowadays, even the simplest JavaScript applicat ion
usually uses a bu i ld step that packages a l l its source code and styles into a single bundle
for faster loading. A framework's tool-chain may range from a set of conventions on how
to use the compiler that might get formalized i n a Makefile, through a C L I too l that takes
care of bui lding, testing, and perhaps even deploying the applicat ion, to the way of the
I D E , where any bu i ld variant is just a few clicks away.

Debugging tools are the next area. After bui lding an applicat ion, t ry ing it out, and discov­
ering faulty behavior, these tools help to pinpoint and fix the underlying error. There are
generic tools, a stepping debugger is a typica l example, and there are also framework-specific
tools, like an explorer of the component hierarchy (React) or a t ime-traveling debugger that
can navigate through applicat ion state backward or forward (Redux) . In the web world, a l l
modern browsers provide basic debugging tools inside the "DevTools" : a stepping debug­
ger and a profiler. Some frameworks bu i ld on that and provide an extension to DevTools
that interacts w i th the applicat ion in the current window, some provide debugging tools
integrated into the appl icat ion itself.

W h e n bui ld ing or maintaining a large applicat ion wi th several developers, it is necessary
to ensure good practices in a l l steps of the development process. There are two general
categories i n quality assurance tools: testing (dynamic analysis) tools and static analysis
tools. In the commonly used variants, tests are used either as an aid while wr i t ing code
(test-driven development), or to prevent regressions i n functionality (continuous integration
using unit tests and end-to-end tests). Static analysis tools are, i n the general practice,
used to ensure a consistent code style and prevent some categories of errors ("linters").
Frameworks commonly provide pre-configured sets of tools of both types. If necessary,
e.g. i n integration testing, where the burden of setup is bigger, they also provide u t i l i ty
libraries to ease the in i t i a l setup. Some frameworks also use uncommon types of tests like
marble tests used i n functional reactive programming systems.

Editor integration is also important in some ecosystems. This includes common features of
Integrated Development Environments like auto-completion or refactoring tools. Recently
the Language Server Pro toco l (L S P) [26] project played a big role i n al lowing editors to
support a wide variety of languages by implementing just an L S P client and being able
to communicate w i t h any language-specific language server. There are some parts of edi­
tor support that can be framework-specific, like supporting an embedded domain-specific
language or integrating framework-specific debugging tools.

W h i l e we were ta lk ing about Web frameworks so far, some of them support not only running
inside the browser but also being packaged as a mobile app for A n d r o i d or i O S , or as
a /nat ive desktop applicat ion. For mobile support, frameworks often provide wrappers
around Apache Cordova, which is a th in wrapper around a regular website exposing some
extra capabilities of the device. Some, however, go even further and support fully native

11

mobile interfaces controlled by JavaScript, like React Nat ive . The si tuat ion is similar for
desktop support, just w i t h Elec t ron used as the base instead of Cordova. The main benefits
of packaging a Web applicat ion instead of just running it inside a browser are performance
(they are usually faster to load and to use), access to device-specific capabilities (direct
access to the file system), or branding.

The last point to mention is code generation, of which there are two variants: project
skeleton generators, which create a l l files necessary for a project to compile and run and
which are provided i n a large majori ty of frameworks. Then there are component generators,
which may include generating a template, a U R L route and its corresponding controller,
or an entire subchapter of a website. W h i l e they are less common, they are indispensable
especially in frameworks that require large amounts of boilerplate code.

3.2 Web frameworks in JavaScript

The features we just went through are features that are widely available i n JavaScript
and its frameworks. We w i l l now go through some of them to see how they approach the
implementation of these features.

The most popular JavaScript frameworks of today are React and Angu la r [2]. Vue.js is
close behind them, a relatively new framework that is quickly gaining popularity.

Angula r is an integrated framework that covers many common use cases w i t h many sup­
ported features i n the base framework. O n the other hand, React and Vue are both rather
small libraries, and most of the features described in the previous section are implemented
only as third-party libraries or tools. W h i l e React and Vue are sometimes called frameworks
as well , they mostly serve as the central l ibrary of an ecosystem buil t around them.

A s for the topics mentioned i n the previous chapter like routing, forms, or bu i ld tools: most
of them are buil t into Angular , while React and Vue do not include them and thus users
need to use third-party libraries instead. This ties into the most common complaint about
the JavaScript ecosystem: there are dozens of smal l libraries that accomplish similar things,
many are, however, incomplete or unmaintained, and there is no good way to decide between
them. There are several projects that attempt to alleviate this problem by combining a set
of libraries into a more cohesive framework closer i n scope to Angular .

12

Chapter 4

Haskell and the Web

4.1 Haskell

Haskell is described as a "stat ically typed, purely functional programming language wi th
type inference and lazy evaluation" [21]. It is originally a research language, developed as a
vehicle for new research i n the area of programming languages since 1990 [7]. It has served
as such, and i n fact it s t i l l is the target of active research. Some larger ongoing research
projects are Dependent Haskel l [13] and Linear Haskel l [6].

On ly recently has it been used in commercial work, as exemplified by Facebook's Haskell
spam filter [25]. W h i l e there are many benefits to using a strongly typed functional language
(it eliminates entire classes of programming errors [c], anecdotally shown by the common
saying that "If it compiles, it works") it is conceptually different from languages commonly
taught at universities. A n example of Haskel l code is included i n L i s t ing 1, which contains
a web server whose A P I is completely defined by the type HackageAPI, from which the
types of the server and client functions are determined using type-level functions.

type HackageAPI =
"users" :> Get ' [JSQN] [User] :<|>
"user" :> Capture "login" Login :> Get 1 [JSON] User

getUsers :: Handler [User]
getUser :: Login -> Handler User

server :: Server HackageApi
server = getUsers :<|> getUser

getUsersClient :<|> getUserClient =
client ©HackageApi "http://hackage.haskell.org"

Lis t ing 1: A n example of a web server in Haskell

13

http://hackage.haskell.org

A s for using Haskel l in the browser, it may seem strange at a first glance to want such a
th ing when JavaScript is the only language supported by Web browsers. There is, however,
a growing number of languages that compile to JavaScript , which use it as their compile
target instead of Assembly or L L V M , that can be done either by translating the logic of
the program into JavaScript as is (transpiling), or by implementing an alternative run­
time environment i n JavaScript , which then interprets the byte- or source-code. Another
technology that enables languages to run in the browser is WebAssembly, an alternative
assembly language and a runtime designed specifically for the Web.

Web developers have been using JavaScript compilers for a long time. CoffeeScript is rather
popular language announced i n 2010 []. Also the new E C M A S c r i p t 6 or 7 features have only
been usable v i a compilat ion unt i l browsers implemented them natively. There are other,
more advanced languages buil t w i th compilat ion to JavaScript i n mind , e.g. TypeScr ip t ,
a superset of E C M A S c r i p t 6 [], or E l m , a framework w i t h its own language based on
Haskell [10]. The need to compile your code before running it is now quite accepted i n the
world of Web development.

The currently accepted way of running Haskel l i n the browser is v ia G H C J S , a Haskell-
to-JavaScript compiler, al though there are two active projects i n the process of creating a
Haskell- to-WebAssembly compiler: W e b G H C [] and Asterius [].

4.2 Haskell ecosystem for the Web

We w i l l now go through Haskel l libraries for Web development, using the same structure
as we d id i n the chapter describing general Web framework features.

The volume of work in the area of frontend Haskel l is not large, as the Haskell-to-JavaScript
compiler G H C J S is only available since 2013, and also due to the fact that Haskel l in
general is only recently becoming a mainstream language and used i n commercial projects.
Academic work i n this area is sparse, but there are several mature projects under active
development, usually commercial ly sponsored. Reflex and Obelisk are two projects from
Obsidian Systems [33], a U I framework and a deployment tool respectively. Tweag [44] is
working on a Haskell- to-WebAssembly compiler, Asterius, and Q F P L [] has created many
learning materials for frontend Haskell .

There is a significant focus on the semantics of libraries i n the Haskel l community, e.g. writ­
ing down mathematical laws for the foundational types of a l ibrary and using them to prove
correctness of the code, so U I libraries have mostly used Funct ional Reactive Programming
(F R P) or s imilar approaches like the Elm architecture [24] as their basis, as t radi t ional
imperative event-based programming does not fit those cri teria well.

There are five production-ready UI toolkits for the Web that I have found. O f these five,
React-flux and Transient are unmaintained, and Reflex, Miso , and Concur are under active
development and ready for product ion use. E a c h one uses a conceptually different approach
to the problem of browser user interfaces, and they differ in their matur i ty and the size of
their community as well .

Reflex [35] (and R e f l e x - D O M [36], its D O M bindings) looks like the most actively main­
tained and developed one. Reflex is also sponsored by Obsid ian Systems [I !] and is the
most popular frontend framework in the Haskel l community, so its future seems promising.

14

main :: 10 ()
main = mainWidget $ do

eClick :: Event t () <- button "Click me"
dCount :: Dynamic t Int <- count eClick
display dCount

Lis t ing 2: A n example of a counter i n Reflex

Reflex follows the t radi t ional F R P approach wi th events and behaviors, adding dynamics,
and bui lding a r ich combinator l ibrary on top of them. There is an example of Reflex code
in L i s t ing 2, where eClick is an event of unit values and dCount is a value containing a
dynamical ly changing integer.

Miso [20] is described as a re-implementation of the Elm architecture i n Haskel l . Tha t means
that it uses a s t r ic t ly uni-directional data-flow in which the entire state of the applicat ion
is stored as a single value, the model, which is passed to a view function that renders the
application and produces a stream of action values, which are i n tu rn interpreted by a
reducer function to update the appl icat ion state, where each action causes re-rendering of
the entire applicat ion. The ecosystem of Miso is not as wel l developed as Reflex's, and the
overall architecture is quite l imi t ing , which I consider to be a large disadvantage. Y o u can
see an example of Miso code in L i s t i ng 3, i n which a l l local variables from the where clause
are bound i n the expression App {..}-. In particular, you can see the Action, the model (a
simple integer), the update function, and the view, which together form the basis of the
application.

data Action = AddOne
deriving Eq

main :: 10 ()
main = JSaddle.run 8080 $ startApp App {..}

where
i n i t i a l A c t i o n = AddOne
model = 0
subs = []
events = defaultEvents
mountPoint = Nothing

update AddOne m = noEff (m + 1)

view x = div_ []
[text (ms x)
, button_ [onClick AddOne
]

] [text "Click Me"]

Lis t ing 3: A n example of a counter i n Miso

15

main :: 10 ()
main = do

initConcur
void $ runWidgetlnBody $ void $ f l i p execStateT (0 :: Int) $

forever $ increment 1 < > displayCount
where

increment 1 = l i f t (el_ E.div [] $ button "Click Me") » modify (+10)
displayCount = do

count <- get
l i f t $ e l _ E.div [] i > text $ show count ++ " c l i c k s "

Lis t ing 4: A n example of a counter i n Concur

Concur [19] tries to explore a different paradigm by combining the best of the previous two
approaches. The developers have so far been focusing on exploring how this paradigm fits
into browser, desktop or terminal applications, so it has a quite smal l range of features. It
is a technology I intend to explore i n the future when it is more mature, which, however,
does not seem suitable for a large applicat ion so far, at least compared to its competitors.
A n example is included in L i s t i ng 4, where you can see the operator < I > used for combining
widgets inside main and » for sequencing i n increment 1.

In a l l of these frameworks, templating is a feature that has been side-stepped by creating a
domain-specific language for H T M L mixed wi th control flow. There have been attempts at
creating a more H T M L - l i k e language embedded into Haskel l or external templates, though
there is no such project that is bo th feature-complete and actively maintained. It is, how­
ever, possible to reuse existing JavaScript components using the foreign function interface
(FFI) between Haskel l and JavaScript , and that it exactly what one of the unmaintained
frameworks d id to use React as its backend (react-flux).

State management is where the frameworks differ the most. Miso follows the E l m architec­
ture s t r ic t ly w i t h a central data store that can be only changed by messages from the view,
whereas Reflex and Concur are more flexible, al lowing both centralized and component-local
state. A common complaint regarding Reflex is that there is no recommended applicat ion
architecture. It errs on the other side of the flexibility vs. best practices spectrum.

Regarding routing, M i s o has routing buil t into its base library. There are several attempts
at a rout ing l ibrary i n Reflex, though the si tuat ion is the same as w i th templat ing libraries.
Concur w i th its smal l ecosystem does not have routing at a l l , it would be necessary to
implement from scratch for a production-ready applicat ion.

In forms and U I components in general, the selection is not good. There are several
component collections for Reflex that use popular C S S frameworks (Bootstrap, Semantic
UI) , though each has many missing pieces and they lack components that need to be re-
implemented anew i n each application, forms i n particular. Miso and Concur do not have
any publ ic ly available U I component libraries, or at least none that I was able to find.

Accessibility as a whole has not been a focus of Web development i n Haskel l . It is possible
to reuse JavaScript accessibility testing tools, though I have not seen any sort of automated
testing done on any publ ic ly available Haskel l applicat ion. The only area w i t h continued

16

developer focus is loading speed, as the size of bu i ld artifacts was a problem for a long time.
The bui ld artifact size has been improved to the level of a common JavaScript applicat ion,
however, so that is not a cr i t ica l concern. Prerendering is also supported by Miso and
Reflex, which helps to speed up load times as well .

4.2 .1 S u p p o r t i n g too l s

M o v i n g on to the topic of build tools: there are three main options i n Haskell : C a b a l v2
[7], Stack [9], and N i x . C a b a l is the original bu i ld tool for Haskell , which gained a bad
reputation for some of its design decisions (the so-called " C a b a l hell"), al though most of
them were fixed i n "Caba l v2" which puts it on par w i th its main competitor, Stack. Stack
tr ied to br ing Haskel l closer to other mainstream programming languages by introducing
several new features like automatic download of the correct version of the G H C compiler
or having a curated set of Haskel l packages guaranteed to work together, called Stackage.
It succeeded i n that, becoming the tool of choice for a large part of the Haskel l community
in the process. N i x , i n contrast, is a general-purpose bu i ld tool and not a Haskell-specific
one, which is used in Haskel l development mainly for its cross-compilation capabilities and
reproducibil i ty guarantees.

Glasgow Haskel l Compi le r (G H C) is the main Haskel l compiler used for the creation of
native binaries. Compi la t ion to JavaScript , as required for frontend development, is sup­
ported by a separate compiler, G H C J S , which uses G H C as a library. Sett ing up a G H C J S
development environment w i th C a b a l is not a t r i v i a l process and Stack does not support
G H C J S at a l l in recent versions, so the commonly recommended bu i ld tool for frontend
development is N i x . W h e n set up correctly, it offers almost a one-click setup, downloading
the compiler and a l l dependencies from a binary cache or compil ing them if unavailable.
Especial ly Reflex, in the reflex-platform project [37], uses the cross-compilation capabilities
of N i x to compile applications for A n d r o i d , i O S , desktop, or the web simultaneously.

The ma in problem of G H C J S has been the speed and the size of the produced JavaScript.
The latter has been gradually improving and is now mostly on par w i th modern JavaScript
frameworks, the former is harder to improve though, and the speed of G H C J S applications
is s t i l l w i th in a factor of 3 of native JavaScript ones [30]. Th is should, however, be improved
soon by compil ing to WebAssembly instead of JavaScript . There are two projects t ry ing
to create a Haskell- to-WebAssembly compiler i n parallel: Asterius [15] and W e b G H C [].
These are s t i l l under active development, but I expect them to be production-ready by the
end of 2019.

M o v i n g on to the topic of debugging tools, this is where Haskel l on the frontend is lacking
the most. W h i l e it is possible to use the browser's bu i l t - in DevTools and their debugger
and profiler, the compiled output of G H C J S does not correspond to the original Haskell
code too much, which makes using the debugger quite hard. There are no other debugging
tools, though i n my experience I d id not ever feel the need to use anything else than wri t ing
debugging output to the browser console.

In contrast, there are many quality assurance tools available for Haskel l in general, of
which almost a l l are available for use i n frontend development. Star t ing wi th static quali ty
assurance, Hl in t is the standard code quali ty analyzer for Haskell , well-supported and ma­
ture. There are several code formatters, Hindent is the most widely used one; it enforces
a single style of code as is common i n other contemporary languages (e.g. gofmt for Go) .

17

A s for test frameworks, there are many options. HSpec or H U n i t are examples of unit-
or integration-testing frameworks, property-based testing is also common in Haskell , w i th
QuickCheck [8] being the most well-known example. For end-to-end testing in the browser,
there are libraries that integrate w i th Selenium.

Haskell has a quite bad reputation for the lack of editor integration. The si tuat ion is
better w i th the recent Language Server Pro toco l project, where haskell-ide-engine, Haskell 's
language server, enables users to write Haskel l i n contemporary editors like A t o m easily.
The language server supports type-checking, l int ing, formatting, and also common I D E
features like " G o to definition" or "Type at point".

Compi l ing applications as mobile or desktop apps is well-supported i n Reflex, though not
in Miso or Concur . Us ing the scaffolding of reflex-platform makes support ing different
platforms almost automatic, as N i x takes care of switching between compilers: G H C J S
for the Web, regular G H C for the desktop, and cross-compiling G H C for i O S or A n d r o i d .
Bund l ing the compiled applications for dis t r ibut ion for each platform is a bit more involved,
though there are efforts to automate even that.

Code generators are quite l imi ted i n Haskel l . Stack has a templat ing system for new project
ini t ia l izat ion, though there are no templates for frontend development so far. C a b a l comes
wi th a single standard template for a blank project but lacks customization options for
creating framework-specific templates. A n d N i x does not do code generation at a l l . The
common practice so far is to use a copy of a repository as the base for a new project, which
contains a l l necessary files for a working min ima l project. I have not found any attempts
at component generation i n Haskell .

In summary, while there are several U I toolkits available for browser applications i n Haskell ,
ind iv idua l components that are required for easy applicat ion development are either not
available at a l l or not too well developed.

18

Chapter 5

Creating the framework

5.1 Implementation plan

In the previous chapter, I presented my research into Haskel l and its l ibrary ecosystem for
browser applications. Now it is t ime to select which components need to be created to
fulfill the goal of this thesis, i.e. creating a framework for development of Progressive Web
Appl ica t ions . Here are the requirements for a Basic P W A reiterated:

• Pages are responsive on tablets and mobile devices.

• A l l applicat ion U R L s load while offline.

• Site uses cache-first networking.

• Page transitions do not feel like they block on the network.

• Pages use the His tory A P I .

• Each page has a U R L .

• Metada ta provided for " A d d to Home screen".

• Site appropriately informs the user when they are offline.

• P u s h notifications (which consist of several related requirements).

We w i l l go through them one by one to see which components already exist and which are
left to be implemented.

Responsiveness, the abi l i ty of an applicat ion to fit any screen size, is usually accomplished
only v i a C S S and is therefore out of scope, we are focusing on the JavaScript part only. The
next two requirements (offline, cache-first networking) need to be implemented i n a service
worker, which is not covered by any existing library. Non-blocking page transitions and the
use of His tory A P I are s imilar requirements that can today be implemented manually, but
a routing component is desirable to remove the large amounts of boilerplate code necessary
and to fulfill the next requirement of each page having a U R L . The metadata for " A d d
to Home screen" need to be specified i n the Web A p p Manifest, which is currently not

19

supported by any existing library, but can be created manual ly as well . Indicat ion of
online/offline status is supported by the basic D O M interaction library. P u s h notifications
require three components: in the browser, i n the service worker, and on the server. O n l y
the server-side component is currently available i n Haskell .

There are some features that are beneficial for a P W A but not included i n the explicit list of
requirements, one of them is being able to provide at least basic functionality even offline.
Doing that requires either A P I caching (using a service worker) or offline storage, neither
are supported by any existing library, however.

I have selected the components that would, in my opinion, provide a solid basis for further
expansion while fulfilling our requirements. Implementing a framework that covers a l l fea­
tures missing in frontend Haskel l is a topic for a multi-year project for a team of developers,
so the scope of my work is l imi ted by the available resources, bo th i n t ime and i n human
resources. The selected components are:

• a full-featured browser rout ing library,

• a service worker generator and push notification support for the client and the server,

• Web A p p Manifest generator, and

• a basic key-value storage l ibrary wi th backends for both the browser and server (to
support prerendering).

These components w i l l be usable bo th on their own and i n combination, as a framework.
W h i l e I developed these components incrementally, extracting common patterns from ap­
plications wri t ten without them, I w i l l not describe the ind iv idua l iterations but instead
walk through the design choices made i n the process and some interesting parts of the im­
plementations, as I believe that w i l l make for a more concise and informative presentation.

5.2 Routing

A router is one of the basic components of a modern web applicat ion. There are several
features a router is concerned wi th : parsing the in i t i a l U R L on applicat ion start-up, chang­
ing it according to user navigation actions, storing the navigation state for the rest of the
applicat ion. In types, this might be expressed as shown in L i s t ing 5.

5.2 .1 P r e v i o u s w o r k

There are several widely used options for a server-side router, which has the same respon­
sibilities as a client-side one, and a very similar interface, for the most part. These options

parseRoute :: URL -> Route app
dispatchRoute :: Route app -> m ()
renderRoute : : Route app -> URL

L i s t i m ; 5: Router: the intended A P I

20

differ i n several ways, the most fundamental one being the representation of a route, which
i n t u rn defines the basis of the client A P I .

We w i l l go through the routers of Yesod, Happstack, and Snap, a l l of them popular Haskell
frameworks for server-rendered web applications, and then move on to Servant, a general-
purpose routing solution for web services.

Yesod uses a special D S L (Domain Specific Language) for its router, which is implemented
v ia quasi-quoting, a specific flavor of meta-programming where an arbi trary str ing is parsed
into a Haskel l expression. In this way Yesod generates several type-class instances, imple­
mentations of the above-mentioned functions, and a sum type containing a l l possible routes
in an applicat ion. The route itself is then just a p la in data constructor of this sum type.

Happstack and Snap both offer a choice between using non-typed routes based on strings,
or type-safe routes similar to Yesod's approach above. For type-safe routing, they both use
the same library, web-routes. To use this library, the user defines a sum type containing a l l
possible routes in an applicat ion and then uses l ibrary combinators to define a parser/en­
coder manually. The parser/encoder is represented as a so-called boomerang, a composable
object containing both directions of the transformation.

Servant is newer than the above options, and it is the most popular solution for creating web
A P I s in Haskel l at the moment. In Servant, an A P I is described using a single large type
i n its entirety, created by composit ion using type-level operators (:<l>, :>). Th is type is
then processed using type-classes to create specific types suitable for implementing a server
or for creating type-safe l inks. Th is type can also be interpreted using other libraries to
generate A P I documentat ion or clients i n a variety of libraries.

Of these options, Servant's approach seems to be the most flexible one as is also demon­
strated by the large number of libraries that bu i ld on the Servant core, although the com­
plexity of using type operators and type interpreters may be in t imidat ing to developers
looking beneath the user-facing A P I , at least compared to the s implic i ty of the other two
approaches which use p la in functions and simple sum types at their core.

5.2.2 Se rvan t

Servant is a general type-level D S L (Domain-Specific Language) i n the domain of web
routing. A n A P I defined using Servant is merely a type, a tree of type-level terms composed
using type operators. This A P I type is then interpreted using type-level functions into
value-level functions, e.g. routers.

In L i s t ing 6, we can see that a single Servant endpoint GetUsers is a composit ion of type-
level strings and so-called combinators like QueryParam and Get, which are usually defined
as data types without any constructors as shown in the first part of the l ist ing. These
endpoints are then composed together using type-level operators "then", :>, and "and",
: < I >, as shown in the first part of the l ist ing.

A server implementing such an A P I is defined i n a very similar way, the handlers for indi­
v idua l endpoints are composed together using the value-level operator : < I > (a constructor
of the type :<l>), as can be seen i n the definition of server. A client for the A P I is not
created by composit ion but by decomposition of the : < I > constructor as shown i n the last
part of the l ist ing.

21

data (:>) (a :: Type) (b :: k)
data (:<|>) (a :: Type) (b :: Type)

= (:<|» a b
data QueryParam (name :: Symbol) (a :: Type)

type GetUsers = "users" :> QueryParam "sortby" SortBy :> Get 1 [JSON] [User;
type CreateUser = "users" :> ReqBody '[JSON] User :> Post '[JSON] Userld
type UserAPI = GetUsers :<|> CreateUser

server :: Server UserAPI
server = (\sortBy -> return [users]) :<|> (\user -> saveUser user)

getUsers :: SortBy -> ClientM [User]
getUsers = f
where

(f :<|> _) = cli e n t (Proxy OUserAPI)

Lis t ing 6: A n example of a Servant A P I

A n alternative approach to defining an A P I is using records. This approach uses Haskell 's
support for datatype-generic programming to convert between a record into a tree that uses
: < I > on both the type- and value-level. It is easier to work wi th larger A P I s i n this way and
it makes for easier-to-read type errors. It is also possible to refer to ind iv idua l endpoints
using record accessors, instead of (de)composition of the entire server or client. The code
in L i s t i ng 7 is functionally equivalent to the previous l ist ing.

The interpretation of an A P I type into values is done v ia type classes, a language feature
that is often compared to interfaces i n object-oriented languages, but i n this case its use

data UserAPI = UserAPI
{ _getUsers :: "users" :> QueryParam "sort" SortBy :> Get '[JSON] [User]
, _createUser :: "users" :> ReqBody '[JSON] User :> Post ' [JSON] Userld
} deriving (Generic)

server :: Server (ToServant UserAPI)
server = toServant $ UserAPI
{ _getUsers = \sortBy -> return [users]
, _createUser = \user -> saveUser user
>

getUsers :: SortBy -> ClientM [User]
getUsers = _getUsers apiClient

where
apiClient = genericClient ©UserAPI

Lis t ing 7: A n example of a Servant Generic A P I

22

file:///sortBy
file:///user
file:///sortBy
file:///user

is a bit more involved. The A P I tree is traversed recursively from the top along the : < I >
and :> operators, one combinator at a t ime starting from the outermost :< |>. In the case
of a server, the A P I type of each endpoint is also translated into the type of the handler
function using an associated type family. Despite its name, a type family defines a type-level
function: "given a type of an endpoint, find the type of a handler" i n this case.

We w i l l see this process in more detai l i n a later chapter, when defining an entirely new
interpretation of an A P I type i n the creation of a client router, and when extending an
existing interpretation to support prerendering of applications on the server.

5.2.3 R e f l e x

Before we dive into the implementation of the router, we also need to go through the basics
of Reflex, as its philosophy and bui ld ing blocks constrain the shape of any function we
design.

A s mentioned i n the introductory chapters, Reflex is a general Functional Reactive Pro­
gramming (F R P) library. F R P in general is a way of programming where the program
consists of a network of t ime-varying values and functions combining such values.

The basic bui ld ing blocks of F R P are events, objects which have a value only on a specific
moment, and behaviors, which have a value at any point. Reflex adds a th i rd pr imit ive,
a dynamic, which is a pair of a behavior and an event which fires whenever the behavior
changes.

Reflex is a general F R P library, to interact w i th the external world it needs bindings to
read external values and translate Reflex events into external actions. There are several
such bindings: ref lex-dom for the browser, ref lex-backend-wai for the W A I web server
interface, diagrams-reflex for S V G animations, and several others. The one we w i l l use
in the rest of this work is ref lex-dom, which contains the necessary bui ld ing blocks for web
applications: functions to create and animate H T M L elements, listen on browser events, or
perform H T T P requests.

Reflex and R e f l e x - D O M provide the basic bui lding blocks for creating applications, but they
do not fall to a natural structure for bigger applications the way object-oriented frameworks
do as i n M V C and its variations. In fact, one of the most common complaints of developers
exploring Reflex is the lack of a developed applicat ion architecture.

It is possible to recreate patterns like the E l m architecture in Reflex, as well as more
fine-grained architectures that use smaller stateful components communicat ing each other
using top-level appl icat ion logic. Several patterns have emerged so far, but none has been
generally accepted so far, and the most accepted one (Gonimo architecture [22]) requires a
large amount of t r i v i a l "p lumbing" code.

There are, however, several smaller s tructural patterns that have slowly emerged as "rules
of thumb". "Dynamics as component inputs, events as outputs" is one such, which has been
somewhat formalized as a combination of monad transformers (ReaderT and EventWriterT)
in Reflex itself.

Reflex is composed of several fine-grained typeclasses. These are abstract, and they are
translated into a series of monad transformers and their interpreters on the top level.

23

userView ::
(MonadReader AppState m, MonadRouter AppRoute m, MonadWidget t m)

=> Dynamic t User
-> m (Event t UserEdit)

runAppM :: MonadWidget t m => RouterT AppRoute (ReaderT State m) a -> m a

Lis t ing 8: Router: types of applicat ion code using MonadRoute r

There are several common methods of formalizing applicat ion architecture in Haskel l . Each
method tries to abstract implementat ion details from applicat ion logic by identifying a l l
side-effects that a program requires and decomposing them into ind iv idua l effects. The
methods are:

• monad transformers and M T L - l i k e typeclasses,

• ReaderT w i t h a top-level applicat ion state, and

• effect interpreters like free or freer monads.

Each one has its advantages and disadvantages, and while they can be mostly arbi t rar i ly
intermixed, each applicat ion or l ibrary usually chooses one. The most popular in the
Haskell community and used by the majority of libraries is monad transformers and M T L -
like classes, which is also the method that Reflex uses.

A signature of a component i n a program structured i n this way would look something
like L i s t i ng 8, where first two constraints of userView would be executed using the func­
t ion runApp, w i th the remaining MonadWidget being executed by the top-level rendering
function.

5.2.4 I m p l e m e n t a t i o n

I have decided to use Servant's approach i n my work, as it seems to be the most flexible
and extendable one. M y contributions in this client-side router using Reflex's F R P
types composed of a dispatch component and in-applicat ion l inks.

I have also created a proof-of-concept of a static site generator using these components, as
well as a combinator that allows easier manipulat ion wi th record-based Servant types that
I w i l l contribute to the main Servant repository.

We w i l l start w i th the client-side router, defining the routes type and the handlers. Th is is
where we w i l l see how to create a new interpretation of a Servant A P I type.

A regular Servant type has endpoints that end wi th the terminator Verb, which represents
a H T T P verb like G E T or P O S T and the return type of the handler. G iven that a Reflex
application does not have a value that it can return, we w i l l define a new terminator App.
A n A P I type containing an App w i l l then be interpreted by a type class HasApp, as we can
see i n L i s t ing 9.

24

data App :: Type

class HasApp api where
type MkApp api (m :: Type -> Type) :: Type
route :: Proxy api -> MkApp api m -> Loc -> Either Err (m ())

instance (HasApp a, HasApp b) => HasApp (a :<|> b) where
type MkApp (a :<|> b) m = MkApp am :<|> MkApp b m
route _ (a :<|> b) = route (Proxy @a) a <> route (Proxy @b) b

instance (FromHttpApiData a, HasApp s) => HasApp (Capture sym a :> s) wher<
type MkApp (Capture s a :> sub) m = a -> MkApp s m
route _ f loc = case locPath loc of

[] -> Left Err404
x:xs -> case parseUrlPiece x of

Right p -> route (Proxy @sub) (f p) (loc { locPath = xs })
Left _ ->

le t s = T.pack $ symbolVal (Proxy @sym)
in Left Err400

instance HasApp App where
type MkApp App m = m ()
route _ f loc = case locPath loc of

[] -> Right f
[""] -> Right f
-> Left Err404

Lis t ing 9: Router: transformation of a Servant A P I into a client router

There, we can see what it looks like to interpret a Servant type. The type family MkApp w i l l
produce the type of a route handler when evaluated. The result of the MkApp of a single
endpoint is a function, whereas applying MkApp to the A P I type w i l l result in a tree of route
handlers, which can then be converted to / f rom a record of handlers.

The function route is the actual function used for choosing a handler based on the current
location: a recursive function that w i l l either produce an error or the handler to run when
given a tree of handlers and the current location.

The first instance, a :<|> b, is the branch instance. The route function uses the monoid
instance of the type Either, effectively running the left branch and running the right branch
only if it fails.

The next instance, Capture sym a, is an example of a decision instance, where the route
function processes a single segment of the U R L , parses it , passes the parsed value to the
handler function, and recurses. The MkApp instance declares this explici t ly: the handler for
a Capture needs to accept a value of type a.

The App instance is the end of the recursion chain, where neither MkApp nor route recurse
anymore. The MkApp type declares the handler of an App to be an action, and the route

25

runRouter ::
f o r a l l t m api.

=> Proxy api
-> MkApp api (EventWriterT t Loc m)
-> (Event t Loc -> m (Dynamic t Loc))
-> (Err -> EventWriterT t Loc m ())
-> m ()

runRouter api handlers u r l showError = mdo
dUrl <- u r l eUrl
l e t widget = case route api handlers <$> dUrl of

Left err -> showError err
Right f -> f

((), eUrl) <- runEventWriterT (dyn widget)
pure ()

Lis t ing 10: Router: the top-level route dispatcher

function only checks that we have parsed the entire U R L , and returning the final handler.
This , i n summary, is what it looks like to interpret a Servant type.

W h i l e we have a route function that w i l l return either an error or a widget, we need to
connect it to the browser i n some way. To do that, we need a component for manipulat ing
the U R L , either using the Loca t ion A P I or hash fragment changes, and when we have it ,
we can write the router itself.

In L i s t ing 10, we have a simplified version of the l ibrary router. In there, we have a
function that takes a tree of handlers, a U R L manipulat ion component, and an act ion to
show possible routing errors, and produces a piece of dynamical ly changing content. The
function uses recursive do to make it possible to refer to variable before they are defined
(the mdo keyword). Reading from the top, we obtain a dynamic containing the current
location, use it to run our route function defined above, rendering any errors, and finally
run this dynamical ly changing piece of content to get the event that changes the current
U R L .

The second part of the router are links from one part of the applicat ion to another. To do
that, we need another interpretation of the A P I type, as we need to process a dynamical ly
changing input into a l ink, and not produce an action given a static list of parameters.

The types here are slightly more complex as I wanted to achieve an easy-to-use user interface
that can be seen in the first part of L i s t ing 11, which just needs an event w i th a tuple of
al l required parameters of the route. To achieve that, we first need to collect a l l route
parameters, collecting them to a type-level list using the GatherLinkArgs type family,
convert it to a tuple using the TupleProduct type family, and only then can we use i t . The
toAppLink function is again recursive, and it builds up a U R L from the endpoint type and
from the provided arguments, start ing from an empty U R L .

The other part of this work, the static site generator and the Servant record combinator,
are included only i n the attached source files, as they are only t r iv ia l extensions of the ideas
presented above.

26

viewUserltemsLink :: Event t (Userld, ItemType) -> m ()
viewUserltemsLink = appLink viewUserltemsRoute

appLink ::
f o r a l l t e rs m.

=> (rs AsApi -> e)
-> Event t (TupleProduct (GatherLinkArgs e))
-> m ()

appLink _ args =
tellEvent $
safeAppLink (genericApi (Proxy @rs)) (Proxy @e) (Loc [] []) <$> args

class HasAppLink api where
type GatherLinkArgs api :: [*]
toAppLink :: Proxy api -> Loc -> TupleProduct (GatherLinkArgs api) -> Loc

instance (KnownSymbol sym, HasAppLink sub) => HasAppLink (sym :> sub) wher<
type GatherLinkArgs (sym :> sub) = GatherLinkArgs sub
toAppLink 1 = toAppLink (Proxy @sub) $ 1
{ locPath = locPath 1 ++ [toUrlPiece . symbolVal $ Proxy @sym]
}

instance HasAppLink App where
type GatherLinkArgs App = 1[]
toAppLink 1 _ = 1

Lis t ing 11: Router: in-applicat ion links

5.2.5 P o s s i b l e ex tens ions

There are several possible directions in which to expand this router. One idea available
in server-side A P I routes is encoding authentication constraints i n the endpoint type it­
self using a combinator like AuthProtect User. I would like to be able to encode not
only authentication checks but authorizat ion checks i n the endpoint type as well, perhaps
AuthProtectRole User 'RoleAdmin.

It would be possible to expand the proof-of-concept of a static site generator that uses
the routing component created here into a fully fledged library, and it would also be a
continuation of the theme "Reflex everywhere" that seems to pervade the Reflex ecosystem,
not only Reflex in interactive browser applications and on the server, but also static sites
generated using Reflex.

A harder problem but possible more beneficial: instead of using a special App combinator
to render Reflex applications, it might be possible accomplish the same using a special
content type. Th i s would allow one endpoint to return e.g. J S O N data or a H T M L file on
the same endpoint, depending on the request headers. I t r ied this approach at the start
but d id not succeed, so I moved on to other approaches, but I expect that a more skilled
Servant developer would find a way.

27

5.3 Service workers

To reiterate the description of a service worker from the introductory chapters: it is a
JavaScript script that can, among other things, intercept requests ini t ia ted by the applica­
t ion that installed it and respond to them from cache, redirect them to another domain,
or modify their response. The worker can also listen for incoming push notifications and
display them to the user, or save requests that the applicat ion made while offline and retry
them whenever the device goes online, regardless of whether the appl icat ion is running or
not (Background Sync A P I) .

5.3 .1 R e q u i r e m e n t s

The Service Worker features that we a i m to support are: precaching, fetch control, and
push notifications, keeping Background Sync for a possible extension of this library.

Precaching means storing the files essential for the applicat ion into cache as soon as the Ser­
vice Worker starts. This way, the appl icat ion prepares to run offline. These files usually in ­
clude index.html, the applicat ion entry point; bundle, j s (or similar) , the JavaScript bun­
dle containing the entire applicat ion, and bundle. ess, a file w i th a l l applicat ion stylesheets.
App l i ca t ion icons and fonts are usually included as well, as are analytics libraries for usage
tracking.

Fetch control in this context means intercepting a l l outgoing requests from the applicat ion,
and deciding what to do wi th them based on the U R L or method. This feature has many
use-cases, e.g. using the precached applicat ion files when offline, checking for a new version
of the appl icat ion and notifying the user; storing external fetched resources into cache to
save data, or storing outgoing analytics requests into a queue when offline and only sending
them when the user later connects to the Internet.

Push notifications are the feature for which service workers are most well known. They
allow the server of a web applicat ion to send notifications to any of its clients, where the
application can choose to arbi t rar i ly process the notification.

The basis of the implementat ion is a single dependently typed record that contains the
entire configuration of the worker. Th is record is then used i n three different contexts: to
generate the worker JavaScript and serve it over H T T P , in the client for any interactions
wi th the worker (e.g. to subscribe to push notifications), and on the server for sending the
notifications, as i l lustrated by L i s t ing 12.

W h i l e I had originally intended to write the service worker directly i n Haskel l and compile
it using G H C J S , there is an obstacle that prevents that: service workers do not run in

generateWorker :: ServiceWorker push -> ByteString
runServiceWorkerClientT ::

ServiceWorker push -> ServiceWorkerClientT push m a -> m a
runPushServerT :: ServiceWorker push -> PushT push m a -> m a

Lis t ing 12: Service Worker: the intended A P I

28

handleFetch :: JExpr -> JStat

handleFetch fn = [jmacro|self.addEventListener('fetch', ~(fn)~);|]

sw :: JStat
sw = handleFetch [jmacroEl
function(evt) {

console.log("The service worker i s serving the asset.");
evt.respondWith(fromNetwork(evt.request, 400).then(null, function () {

return fromCache(~(cacheName)", evt.request);
})) ;

} |]

L i s t ing 13: A n example of J Macro code

the same way that a regular browser applicat ion does. A browser can terminate a service
worker at any t ime to save computing resources, and restarts it when it is needed to process
incoming events, as a service worker is expected to contain mostly just event handlers.

Th is is, however, at odds wi th the G H C J S execution model which relies on setTimeout or
requestAnimationFrame to support mult iple threads, asynchronous execution, and other
features needed to run the entirety of Haskel l i n the browser. That means that we cannot
use G H C J S to create Service Workers and need to generate p la in JavaScript code instead.

5.3.2 J M a c r o

Of the options available for generation of JavaScript in Haskel l , only the l ibrary J M a c r o is
suitable for this task, as it is the only l ibrary intended for this purpose, none of the other
libraries are very user-friendly.

J M a c r o allows the user to write p la in JavaScript code embedded i n Haskel l v i a quasi-
quotation, which is a method of meta-programming that makes it possible to transform ar­
bi t rary strings into Haskel l expressions. The l ibrary supports the entirety of E C M A S c r i p t 3,
so most existing JavaScript code can be copy-pasted without the need for changes, as long
as it does not use the features of newer E C M A S c r i p t versions. J M a c r o is untyped, it recog­
nizes two forms of JavaScript code, expressions and statements. It also supports injection
of Haskel l variables using anti-quotation. A n example of J M a c r o code can be seen in L i s t ing
13.

5.3.3 I m p l e m e n t a t i o n

Of the three features of service workers that we want to support (prefetch, fetch control,
push notifications), prefetch is the simplest. It only requires adding a bit of code to the
i n s t a l l event listener i n which we add the required files into cache, as can be seen in
L i s t ing 14.

Support ing fetch control is a bit more involved. In the onFetch event handler, we need to
find out i f the outgoing request matches any of the configured filters, so we go through the

29

generatePrefetch :: Text -> [Text] -> JExpr
generatePrefetch cacheName ur l s = [jmacroEl

caches.open(~(cacheName)~).then(function (cache) {
return cache.addAll(~(urls)");

});
I]

Lis t ing 14: Service Worker: generating prefetch JavaScript

filters i n order and execute the selected cache strategy it i f matches. There are, however,
many possible behaviors w i th regards to caching and network access. We cannot cover
al l possible cases, but we can cover the most common ones, namely the ones available in
Workbox [], a suite of util i t ies for service workers from Google.

These cache strategies are encoded as a pla in sum type i n L i s t i ng 15. O f these, CacheOnly
and NetworkOnly fetch a resource only from a cache or the network respectively, whereas in
CacheFirst and NetworkFirst, a cache or the network is only the first locat ion attempted,
w i th the other location being the fallback. StaleWhileRevalidate serves the currently
cached version of a resource and simultaneously attempts to fetch a newer one, which w i l l
then be stored into cache for later requests.

A s for generating the JavaScript code from these strategies, the code for one of these five
strategies is included in the second part of the l ist ing. We need to respondWith a response
to the fetch event, first looking it up in the specified cache and cal l ing fetch to get it from
the network i f it is not there.

The other part of support ing fetch control is matching incoming fetch requests to the
strategies. I chose a straightforward encoding of a matcher that can match on the request
method, path, and query string. The relevant types can be seen i n L i s t ing 16. The method

data CacheStrategy
= CacheOnly Text
I NetworkOnly
I CacheFirst Text
I NetworkFirst Text
I StaleWhileRevalidate Text

renderCacheStrategy :: JExpr -> JExpr -> CacheStrategy -> JStat
renderCacheStrategy evt req (CacheFirst cacheName) = [jmacrol

return "evt~.respondWith(caches.openOcacheName^).then(function (cache) {.
return cache.match(~req~).then(function (res) {

return res I I fetch(~req~);
}) ;

})) ;
I]

Lis t ing 15: Service Worker: cache strategies type and generation

30

data RequestMatcher = RequestMatcher
{ rmMethod :: MethodMatcher
, rmQuery :: QueryMatcher
, rmPath :: PathMatcher
}

data MethodMatcher
= MethodAny
I MethodList [Method]

newtype QueryMatcher
= QueryMatcher [(Text, ValueMatcher)]

data PathMatcher
= PathComponentMatcher PathComponentMatcher
I PathRegexMatcher Text

data PathComponentMatcher
= PathMatchAny
I PathMatchEnd
I PathComponent ValueMatcher PathComponentMatcher

Lis t ing 16: Service Worker: request matching types

matcher accepts either any method or one of a list of accepted ones. There are two types
of pa th matchers: one for matching the entire path against a regular expression and one
for matching ind iv idua l pa th segments. The query string matcher is a list of key-value
matchers. W h i l e this is not the most expressive or fluent encoding of a request matcher,
it suffices for common use-cases of fetch control, s imilar to the l imi ted palette of cache
strategies.

Generating the JavaScript code corresponding to such a structure is then only a mat­
ter of following the types, deconstructing large types into smaller ones and piecing to­
gether the overall functionality. Par t of this code is included i n L i s t ing 17, where in
renderFetchMatchers we can see the topmost function generating a single branch of a
request handler.

M o v i n g on to push notifications, an onPush event handler i n the service worker is called
wi th an incoming notification object, and there are several things that can be done wi th
it. Aga in , we only encode the most common use-cases i n types, as can be seen in L i s t ing
18. This time, we need to use a GADT (Generic Algebraic D a t a Type) , an extension of
Haskell data types that allows us to specialize the type of a data constructor, which is here
used to encode the type of the push notification pay load. Th is type parameter is used in
client and server code, i n the functions that send and receive notifications.

Pushlgnore has the type Void as its parameter, which means that it is impossible to
send a notification wi th such a type, as Void is an empty type that can have no valid
values (excluding undefined), and so Pushlgnore does not generate any handler code

31

renderFet chMat cher s
:: JExpr -> JExpr -> [(RequestMatcher, CacheStrategy)] -> JStat

renderFetchMatchers evt req = (mconcat .) . fmap $
\(matcher, strategy) -> [jmacro I

i f (~ (renderMethodMatcher req (rmMethod matcher))"" &&
-(renderQueryMatcher req (rmQuery matcher))~ &&
-(renderPathMatcher req (rmPath matcher))~) {

"(renderCacheStrategy evt req strategy)"
}

I]

renderMethodMatcher :: JExpr -> MethodMatcher -> JExpr
renderMethodMatcher req = \case
MethodAny -> jsv "true"
MethodList ms -> [jmacroEl ~req~ .method, some(\y -> y == ~method"")|]

Lis t ing 17: Service Worker: request matching code generation

in the service worker. PushViewOnly displays a notification without any further handling.
PushViewAndOpen displays a notification as well, and it also adds another event handler that
listens for the user cl icking on the notification and opens the applicat ion i f closed or switches
to the applicat ion window if it is open. PushViewAndProcess and PushProcessOnly w i l l
send the payload of the message to the appl icat ion for further processing v i a postMessage.

A part of the JavaScript generation code is also included i n L i s t ing 18, demonstrating the
simplest PushViewOnly variant.

The browser part of a service worker l ibrary does not need much. The applicat ion needs
to only register a service worker, point ing the browser at the U R L of the worker source
file, and only needs to do more i f it wants to use push notifications. In that case, it is
necessary to ask the user for permission and send the notification subscription details to
the server. To achieve this, we can combine an EventWriter and a MonadReader into a
separate monad transformer ServiceWorkerClientT, as i n L i s t ing 19. There are several
pieces of state that we need to keep track of, the service worker registration object, the
push notification subscription, and the notification permission state, which we combine
into ServiceWorkerState. There are only two functions that can change this state though,
subscribe and unsubscribe, which is where the EventWriter comes into play. The class
MonadServiceWorker contains several methods that expose these values and capabilities,
which we can then interpret in terms of our monad transformer, as can be seen i n the
second part of the l is t ing.

To use these capabilities and subscribe to push notifications, we need to cal l the interpreter
of ServiceWorkerT, runServiceWorkerT, which calls the corresponding browser methods
and manages its internal state, and then ca l l subscribe somewhere i n the appl icat ion code.
We then need to send the details of the subscription to the server so that it can generate
push notifications, which we can do by listening to updates to the notification subscription,
as can be seen in L i s t ing 20.

32

file:///case

data PushBehavior a where
Pushlgnore :: PushConfig Void
PushViewOnly :: PushConfig ()
PushViewAndOpen :: PushConfig ()
PushViewAndProcess :: FromJSON a => PushConfig a
PushProcessOnly :: FromJSON a => PushConfig a

data PushNotification a = PushNotification
{ t i t l e :: Text
, body :: Maybe Text
, payload :: a
}

renderPushBehavior :: PushBehavior a -> JStat
renderPushBehavior PushViewOnly = [jmacro I

self.addEventListener('push', function (evt) {
var x = evt.data.json();
evt.waitUntil(self.registration.showNotification(x.title, x));

}) ;
I]

Lis t ing 18: Service Worker: implemented push behaviors

newtype ServiceWorkerT t n m a = ServiceWorkerT
{ unServiceWorkerT :: ReaderT (ServiceWorkerState t)

(EventWriterT t (Maybe PushSubscriptionOptions) m) a
}

class MonadServiceWorker t a r n | m -> a t where
getSWRegistration :: m (Dynamic t (Maybe ServiceWorkerRegistration))
getPushSubscription :: m (Dynamic t (Maybe PushSubscription))
getPushPermissionState :: m (Dynamic t PermissionState)
pushSubscribe :: Event t PushSubscriptionOptions -> m ()
pushUunsubscribe :: Event t () -> m ()
showNotification :: Event t (Text, Maybe NotificationOptions) -> m ()
onPushNotification :: m (Event t a)

Lis t ing 19: Service Worker: client monad transformer

33

app :: MonadWidget t m => m ()
app = runServiceWorkerT "/sw.js" serviceWorkerOptions $ do

eSubscribe <- button "Subscribe"
pushSubscribe eSubscribe

eNotify <- onPushNotification
dAHNotifications <- foldDyn (:) [] eNotify
e l " u l " $ simpleList dAHNotifications $ \ n o t i f i c a t i o n ->

el " l i " (display notification)

Lis t ing 20: Service Worker: applicat ion code demonstration

5.3.4 P o s s i b l e ex tens ions

The obvious follow-up work is support ing more features of service workers: fine-grained
cache control w i th resource expirat ion based on its age or available storage space; or Back­
ground Sync, an API for retrying requests made when the device was offline whenever it
goes online again, whether the applicat ion is open or closed.

Support ing more exotic use-cases is also possible next work, use-cases like communicat ion
between mult iple instances of an applicat ion using the service worker as a relay, or using
fetch control as a load balancer to dynamical ly switch between servers from which the
application downloads data.

However, there is another approach that would obsolete most of the work on this compo­
nent: after creating this component, I have discovered a project t ry ing to create a typed
D S L (Domain-Specific Language) for generating JavaScript , jshark cure:jshark. W h i l e I
originally disregarded the approach of making a typed D S L instead of a l ibrary wi th a fixed
selection of options, as the D S L would need to be able to represent arbi trary JavaScript
logic, using this l ibrary (or a s imilar one) would allow bui ld ing a hierarchy of functions
hiding more and more of the underlying logic. However, as of the t ime of wri t ing, this
l ibrary is s t i l l unfinished, so wr i t ing a service worker builder using a typed D S L stays a
project for the future.

sw :: WorkerM ()
sw = self ~on~ fetch $ \event -> do

dest <- event ~. request . destination
switch dest $ do

case_ "font" $
respondWith event cacheOnly

cases_ ["style", "s c r i p t " , "document", "image"] $
respondWith event networkFirst

default_ $
respondWith event networkOnly

Lis t ing 21: Service Worker: alternative style using a JavaScript D S L

34

file:///notif
file:///event

A hypothet ical example of such approach can be seen in L i s t ing 21, which demonstrates
more complex usage of fetch control, dispatching requests based on their destination (the
originator of a request, e.g. "style" corresponds to a <style> tag or a C S S include).

Th is approach may also be combined w i t h code generation from W e b l D L , an interface
definition language for the Web [48] used e.g. in the C h r o m i u m browser, to produce an
A P I that exactly corresponds to the underlying JavaScript one, only wi th strong types.
Generating an A P I from W e b l D L has a precedent i n the l ibrary ghc j s-dom, a l ibrary that
provides a strongly-typed interface to most browser A P I s , which generates most of its code
in this way.

5.4 Storage

A storage l ibrary can be implemented i n many ways, from the simplest variations that store
single values or key-value maps, a l l the way to a full-fledged database and query engine.

O n this scale, we are a iming to create only the most basic storage l ibrary that is able to
work wi th a map of key-value pairs of a single type, merely a bui ld ing block for further
expansion. This storage can then implement mult iple backends: a simple in-memory map,
a LocalStorage-backed store, or a set of bindings to a database.

The A P I of this storage is simple, as shown by L i s t i ng 22, but it can serve several purposes:
as a cache, as an offline storage, or as a way to directly access a database when rendering
a Reflex applicat ion on the server.

Implementing an instance for such a type is not complicated. To b ind to a database backend
on the server, we can run arbi t rary code i n the underlying monad, so i f we have a function
to execute database queries available e.g. using a ReaderT monad, we can sequentially
construct the query, run it and wait for the result, and then return a Dynamic w i th the
query's result.

O n the frontend, we can use a combination of a ReaderT, to make the underlying map
available for reading anywhere, and an EventWriterT, to collect the put events. The
implementation is short enough to include here in its entirety: i n the L i s t ing 23, we can see
both the definition of the monad transformer KVStoreT and its instance of MonadKVStore,
and also how it can be interpreted using an in-memory map and how it can be used in
application code.

class MonadKVStore e t m | m -> t where
get :: Dynamic t (StoreKey e) -> m (Dynamic t (Maybe e))
getAll :: m (Dynamic t (Map (StoreKey e) e))
put :: Event t (StoreKey e, Maybe e) -> m ()
putAll :: Event t (Map (StoreKey e) e) -> m ()

Lis t ing 22: Storage: the implemented A P I

35

newtype KVStoreT t k m a = KVStoreT
{ unKVStoreT :: ReaderT (Dynamic t (Map (StoreKey k) k))

(EventWriterT t [KVStoreRequest k] m) a
} deriving (...)

data KVStoreRequest e
= KVUpdateOne (StoreKey e, Maybe e)
I KVUpdateAll (Map (StoreKey e) e)

runKVStoreTPure :: _ => Map (StoreKey k) k -> KVStoreT t k m a - > m a
runKVStoreTPure i f = mdo
dMap <- foldDyn (foldr ((.) . runReq) id) i eReq
(a, eReq) <- runEventWriterT (runReaderT (unKVStoreT f) dMap)
pure a
where

runReq (KVUpdateOne (k, mv)) = Map.alter (const mv) k
runReq (KVUpdateAll m) = const m

app :: MonadWidget t m => m ()
app = runKVStoreTPure Map.empty $ do

elns <- button "Insert"
eDel <- button "Delete"
putKV ((Userld 5 , Just User) <$ elns)
putKV ((Userld 5 , Nothing) <$ eDel)
display = « getKVAll OUser

Lis t ing 23: Storage: monad transformer definition and usage

5.4.1 P o s s i b l e ex tens ions

There are several ways to extend this storage library. The first one is s imply adding more
backends, e.g. to support IndexedDB in the browser or other database engines on the
backend.

The storage can also be specialized to work as a cache, which would mean extending the
A P I e.g. w i th expiration, automatic or manual , so that it can support other use-cases like
a function getCachedOrFetch.

Another option would be to expand the A P I to support more complicated S Q L - l i k e queries,
so that it can better serve as a client-side database.

5.5 Web A p p Manifest

A Web A p p Manifest is a special file containing J S O N data l inked from the H T M L of an
applicat ion. Its structure is defined in the official manifest specification [47]. There is not
much code to write in this component, it suffices to transcribe the data types from the
specification and write the functions to serialize the data types to and from J S O N , together

36

data WebManifest = WebManifest
{ d i r :: Maybe TextDirectionType
, lang :: Maybe Text
, name :: Maybe Text
, short_name :: Maybe Text
, description :: Maybe Text
, icons :: [ImageResource]
, screenshots :: [ImageResource]
, categories :: [Text]
, oarc_rating_id :: Maybe Text
, s t a r t _ u r l :: Maybe AppURI
, display :: Maybe DisplayModeType
, orientation :: Maybe OrientationLockType
, theme_color :: Maybe AppURI
, background_color :: Maybe Text
, scope :: Maybe AppURI
, serviceworker :: Maybe ServiceWorkerRegistrationObject
, related_applications :: [ExternalApplicationResource]
, prefer_related_applications :: Maybe Bool
} deriving (Generic, FromJSON, ToJSON)

Lis t ing 24: Web A p p Manifest: main data type

wi th a few helper functions to simplify the manifest definition. The main type WebManifest
is included in L i s t i ng 24.

A s w i th the "Possible extensions" section i n the chapter on service workers, however, it is
possible to mostly obsolete this component by generating a l l its data types from W e b l D L ,
the Web interface definition language, which should remove the need to write any code
manually while guaranteeing correctness. However, I have only discovered the possibil i ty
of this approach only in the final stages of wr i t ing this thesis, which means that it is left as
a potential follow-up project.

37

Chapter 6

Application development

In this chapter we w i l l go through some principles and techniques that I used while creating
the case studies described i n the next chapter, of which most can be applied to developing
Reflex applications i n general.

6.1 Design

W h i l e there are not yet many patterns specific to F R P or frontend applications, one common
way to structure a Haskel l applicat ion i n general is the so-called three layer cake [38], which
is as applicable to Reflex applications as to any other Haskel l applicat ion. This architectural
pattern describes three layers of code, where each one uses a different approach and different
sort of types.

The innermost layer contains only pla in data types and pure functions, it is the core of an
applicat ion. This layer should be designed i n such as way as to be easily testable using
property-based tests or unit tests, so it should not interact w i th the outer world at a l l .

The intermediate layer consists of domain-specific effects, often wri t ten using a domain-
specific language. In the specific case of a Reflex appl icat ion it means extending the base
monad using monad transformers, bo th l ibrary-provided and application-specific ones. Each
function should list out only the effects it uses and not specialize the underlying monad
transformer stack, so that it is possible to test such functions using other interpretations of
the effects, ones that do not need the full environment of an applicat ion.

F i n a l l y the outermost, top-level layer contains the interpreters for the effects, connecting
the applicat ion to the rest of the world . Testing this layer is usually done v i a end-to-end
tests, running the full applicat ion.

There are as many approaches to designing a Haskel l appl icat ion as there are for any other
language. One axis along which it is possible to describe possible approaches is bot tom-
up/ top-down, where bottom-up development starts at the innermost layer, designing the
entities used i n an applicat ion and basic operations on them, and top-down, which starts
from the simplest possible working solution (the outermost layer), slowly formalizing the
effects and domain of an application.

38

W h i l e I used the top-down approach when in i t ia l ly creating the applications described in
Chapter 7, we w i l l walk through them the other way around, as top-down development
is often iterative i n nature and describing the ind iv idua l iterations I went through would
make for an unnecessarily long text.

6.2 Tools

Haskell developer tool ing is often said to be one of its weakest points, and that is also true in
Haskell on the frontend. W h i l e the si tuation is improving, the tooling is s t i l l not on par w i th
more mainstream languages. Despite that, my personal developer experience wi th Haskell
has been rather more pleasant than my experience wi th wr i t ing React.js applications in
JavaScript.

W h a t follows is a description of the specific tooling used in the creation of this thesis, bo th
the libraries and applications described here. W h i l e a l l of this information is s t i l l valid
as of the t ime of wr i t ing , there are some tools created after I started creating this thesis:
Obelisk [34], a command-line tool that wraps nix-build, nix-shell, and ghcid for easier
onboarding experience, or L o r r i [] which wraps n i x - s h e l l and direnv. I d id not take
the t ime to incorporate these tools into my workflow, but both are mostly a formalization
of best practices, and so would not l ikely change much.

The central tool of this workflow is N i x [11], described as a purely functional package man­
ager w i th a focus on reproducibi l i ty and isolation. Packages buil t using N i x are compiled
in a sandbox and immutable afterwards. Dependencies are tracked per-package, multiple
versions of a shared l ibrary can be safely used i n parallel . There are other tools buil t on top
of N i x : N i x O S , a declarative operating system, and N i x O p s , a cloud deployment tool [12],
but the ma in reason we w i l l use N i x is the ease of setting up a cross-compiling toolchain,
for compil ing to JavaScript or A n d r o i d / i O S .

N i x contains several command-line tools, of which two are interesting to us. The tool
nix-build evaluates the recipe for a package (called a derivation) and executes it , i n our
case producing a Haskel l binary or a JavaScript bundle. The second tool , nix-shell, eval­
uates a recipe for a package, builds a l l dependencies and bu i ld tools, and starts a terminal
session wi th specially crafted environment variables that has a l l tools and dependencies
available.

N i x has a large repository of package definitions called nixpkgs [], which among other
contains the definitions of several versions the G H C compiler including G H C J S and of
most Haskel l packages. It is possible, among other things, to bu i ld a single packages
using mult iple versions of the compiler by s imply varying a nix-build command, or to
add arbi t rary bu i ld logic like "use this set of flags for G H C J S and add an extra native
dependency when cross-compiling to Andro id" .

Reflex-platform is a set of extensions to nixpkgs, which includes a set of overrides that work
together well for bui ld ing a single package for the Web and mobile (Andro id and i O S) , as
well as a set of N i x functions for working wi th multi-package projects (project .nix). These
functions also make it easy to start a nix-she 11 w i t h addi t ional bu i ld tools. One notable
example is Hoogle, an A P I search engine for Haskel l that indexes a l l dependencies used in
a project.

39

To be more specific, a project w i l l contain one file default .nix that calls the project .nix
function of reflex-platform wi th a l l Haskel l packages i n the project and any possible package
overrides, like using a code from a remote G i t repository or using an older version of a
package. This file default .nix is then used by a l l N i x commands invoked i n the directory
that contains it.

A command like nix-build -A ghcjs .my-project w i l l then produce a directory r e s u l t /
wi th the result of the N i x bu i ld recipe, a set of JavaScript files and a file index.html in
the case of G H C J S . Ca l l i ng nix-build, however, runs many steps by default: compil ing
object code and profiled object code, generating A P I documentation, and l ink ing any exe-
cutables into binary files or JavaScript bundles, together w i th any other user-specified post­
processing steps like compressing the generated JavaScript code using closure-compiler.
Running a l l of these steps is quite slow though, so we use different tools for compilat ion
during development.

Inside a nix-shell, we have tools like ghci or cabal repl, interactive Haskel l interpreters
that can quickly load source code. We can use these tools to s imply reload any changed
files while skipping unchanged ones, which is a lot faster than compil ing the entire package
from scratch.

We can go a step further and set up a background process that watches the source code
for a project for any changes and reloads them whenever any file changes, and optionally
calls a function if the files load without any compile errors. Th is means we can have
e.g. a development web server that is always running the latest code. This functionality is
implemented in a tool called ghcid ([28], " G H C i daemon"), and it is now so common in
the Haskel l community that some developers report that V i m and ghcid are the only two
tools they need.

Such a setup makes developing a lot faster, especially given that it is possible to run browser
applications in the same way using the l ibrary j saddle-warp. It works around the slow
compile times of G H C J S by using the G H C interpreter and using a specific execution model
in which as much code as possible is executed natively in G H C i , and only the necessary parts
are executed i n a browser which is connected to the server running i n G H C i by WebSockets.

A tool that makes working wi th N i x shells easier is direnv [1], which is a general tool that
changes the environment variables i n a terminal according to the directory into which a
user navigates. In a N i x project specifically, is the file .envrc w i th the contents use nix
exists at the root of the project, a n i x - s h e l l is loaded whenever a developer navigates into
the project directory or any of its subdirectories.

The editor I use, Emacs , uses a l l of the components described above to provide a full-
fledged Haskel l development environment. Us ing direnv-mode and dante-mode, two Emacs
extensions, the editor loads the nix-shell immediately after opening a file in a project, and
starts a ghci process in the background to check the file for any errors or warnings, which
are then reported on the relevant lines. Other editors like V i s u a l Studio Code or A t o m
are also supported using the Language Server Pro toco l and its Haskel l server Haskel l I D E
Engine.

The interested reader can t ry edit ing Haskel l in a preconfigured instance of the Emacs editor
using the N i x expressions i n the directory src-snippets/editor-emacs/ on the attached
data storage. A l so included is a skeleton for a fresh project i n src-snippets/skeleton/,

40

which contains a l l necessary files for a browser applicat ion. The instructions for using the
editor and running the skeleton are also included i n those directories.

6.3 Deployment

The options for deploying a Haskel l program are generally the same as deploying programs
in any other compiled language that does not use intermediate object code like Java. The
two most popular options i n the Haskel l community, not including N i x , are: deploying a
statically l inked executable file, and using Docker containers.

A s we use N i x as our bu i ld tool , there are a few other options. If we have N i x available
at the target machine, we can s imply run nix-build and copy the package and a l l its
dependencies to that machine using nix-copy-closure.

If N i x is not available at the target machine, we can bu i ld a static executable or produce
a container. We can also bu i ld t ru ly static executables that do not depend on the target
machine's glibc standard l ibrary by using the musl overlay of nixpkgs, s imply by replacing
pkgs w i th pkgsMusl i n the project's N i x files. To bu i ld a Docker image, we can use the
nixpkgs function pkgs.dockerTools.buildlmage.

Also , using N i x to bu i ld packages gives us the opt ion to use N i x O p s as an orchestration tool ,
which is a way of managing N i x O S systems across a variety of different cloud providers,
from A m a z o n Web Services to Google Compute Engine. A n example of an expression that
deploys a simple web server can be seen i n L i s t ing 25.

W h e n deploying a web server, there is also the need to deploy static files as well , assets
like applicat ion style sheets or icons. A n important question here is whether the assets
w i l l be served by the same server as the applicat ion. If no, we need to produce two or
more packages i n the bu i ld process, which w i l l be deployed separately. If yes, we can again
produce assets as a separate package, but we can also bundle them into the same package
using an addi t ional N i x bu i ld recipe.

For a G H C JS application, such a post-processing step is nearly mandatory, as the JavaScript
files produced by the compiler are rather large (over 5.9 M B for a simple Reflex application),
but processing them wi th a minif icat ion tool like closure-compiler and further shrinking
them wi th a G Z I P compressor reduces the size to a reasonable size (1.9 M B minified and
350 k B compressed for the same application).

41

{ webserver = { config, pkgs, ... }: {
networking.firewall.allowedTCPPorts = [80];
services.nginx.enable = true;
services.nginx.virtualHosts.default.locations."/" = {

proxyPass = "http://localhost:3000";
};

systemd.services.app-server = {
wantedBy = ["multi-user.target"];
serviceConfig.ExecStart =

"${(import ./release.nix { inherit pkgs; }).server]-/bin/server";
};
deployment.targetEnv = "virtualbox";

};

Lis t ing 25: N i x O p s deployment

42

http://localhost:3000

Chapter 7

Case studies

In this chapter we w i l l go through three Reflex applicat ion in the order of increasing com­
plexity, applications that use the components created i n previous chapters. I have selected
applications w i th publ ic ly available specifications that are intended to help developers com­
pare frontend web frameworks. The interested reader can compare the implementations
created here and the implementations available for comparison side-by-side, but i n this
chapter, we w i l l only go through the basics of each case study, the overall structure and
interesting parts of each applicat ion.

The applications chosen are:

• T o d o M V C , a to-do list applicat ion (storage and routing components),

• H N P W A , a reading applicat ion for the news platform Hacker News (routing and
service worker components), and

• Rea lWor ld , a simplified version of the publishing platform M e d i u m (storage, routing,
and service worker components).

7.1 T o d o M V C

There is an abundance of web frameworks, and there are several projects that a i m to give
developers a side-by-side comparison of them. Out of these, the original and most well-
known one is T o d o M V C [], which is aimed at " M V * frontend frameworks". There are
currently 64 implementations of their specification, although some frameworks are repre­
sented mult iple times.

We w i l l start w i th T o d o M V C as it is the simplest of the three. T o d o M V C is, as the name
suggests, a web applicat ion for managing a to-do list. It is not a complex project but it is
intended to exercise the fundamental features of a framework: D O M manipulat ion, forms
and validation, state management (in LocalStorage), and routing.

Going from the bo t tom up, the definition of a task is simple: a task consists of a title, a
binary value indicat ing whether it is complete, and according to the specification, a task
saved i n persistent storage also needs a unique identifier. One possible representation is

43

data Task = Task
{ t i t l e :: Text
, completed :: Bool
} deriving (Eq, Ord)

type DB = Map Int Task

Lis t ing 26: T o d o M V C : applicat ion entities

having a task be a two-member record and the applicat ion state a mapping from an integer
to a task, as shown i n L i s t i ng 26.

If the tasks were to be also transferred to and from a server and saved in a database,
the record would look quite different: the identifier might be a U U I D (Universal ly Unique
Identifier), the entity would l ikely contain information about when and who created or
modified it , but considering this is a client-only applicat ion that does not need this k ind of
complexity, we can use the simplest possible solution.

Further describing the applicat ion domain, we can now define the operations on these
entities. They follow the acronym C R U D (Create, Read, Update , and Delete): create a
task, read the task list, update the task t i t le or completion status, and delete a task. There
are also several more specific operation required by the applicat ion specification: read a
subset of tasks (all, active, or completed), toggle a l l tasks' completed status, and delete a l l
completed tasks.

These operations can a l l be implemented using p la in functions over a task or a map of tasks,
which w i l l then be t ied into the storage component implemented i n the previous chapter.
The implementat ion of the operations is not par t icular ly interesting, the interested reader
can look them up in the attached files.

The H T M L structure of the applicat ion is given by the specification, and contains three
natural sections: an input for creating new tasks at the top, a task list for edit ing or deleting
existing tasks, and a navigation bar at the bot tom.

newTaskBox :: MonadWidget t m => m (Event t Text)
newTaskBox = elClass "header" "header" $ do

el " h i " (text "todos")
rec

textbox <- inputElement $ def
& elementConfig . i n i t i a l A t t r i b u t e s .~

("class" =: "new-todo" <> "autofocus" =: "autofocus" <>
"placeholder" =: "What needs to be done?")

& setValue .~ ("" <$ keypress Enter textbox)
return . f f i l t e r T.null $

T.strip <$> current (value textbox) <@ keypress Enter textbox

Lis t ing 27: T o d o M V C : component for creating a new task

44

A s this the first appl icat ion we are going through, we can look at a single component in
more detail: the component newTaskBox is included i n L i s t i ng 27, where we can see what a
simple G U I component in Reflex might look like. This component contains a header and a
simple text input box that emits an event when we press Enter i n it , so it is not a complex
component, al though the abundance of custom operators (&, $, <$, <$>, <@, =:, . ~, <>)
may make reading the code a bit difficult.

The functions e l and elClass generate static H T M L elements, the inputElement function
generates an <input>, and the last line prepares the return value of the function, an event
containing the current value of the text box whenever the Enter key is pressed i n i t . The
rec mark the beginning of a recursive-do block where it is possible to use variables before
they are bound, which is translated into a fixpoint computat ion by the compiler (in the
form of f i x (\out -> do ...; return out'). Th is is necessary as the text box needs to
be emptied when we press Enter i n it , as can be seen on the last but one line of the l ist ing.

M o v i n g on to the large-scale structure of the applicat ion: it uses two global pieces of
state, the task list, persisted to LocalStorage on each change, and the router. B o t h can be
represented using a monad transformer each, i n our case the KVStoreT and RoutedT created
in the previous chapters. W h i l e the order of the monad transformers may matter i n some
special cases like ExceptT or ContT, the exception and continuation transformers, neither
of the transformers we want to use affect program flow, they s imply add new capabilities to
the base monad. Also , neither transformer uses the capabilities of the other, which means
we can nest them i n an arbi t rary order. The newtype of the resulting monad can be seen
in L i s t i ng 28, as is the type synonym that contains most constraints needed i n applicat ion
code.

newtype AppT t m a = AppT
{ unAppT :: RoutedT t AppRoute (KVStoreT t Task m) a
} deriving (Functor

, Applicative
, Monad
, MonadRouted t AppRoute
, MonadStorage t Task
)

type AppM t m =
(MonadRouted t AppRoute
, MonadKVStore t Task
, DomBuilder t m
, PostBuild t m
)

runAppT :: _ => AppT t m a -> m a
runAppT = runKVStoreTStorage . runRoutedTHash . unAppT

Lis t ing 28: T o d o M V C : base monad transformer

45

Read a book

@ Submit thic thocis

l i tem left [All | Active Completed Clear completed

Figure 7.1: The T o d o M V C applicat ion

The top-level interpreter of the monad is also included. A s we can see, we unwrap the AppT
from the outside, start ing from the newtype wrapper, running the router, and running
the storage last. The router is not interpreted wi th the default interpreter that uses the
Loca t ion A P I as, according to the specification, we need to route using the hash fragment
only (the part after # i n e.g. the ! /active i n http://localhost/#! /active). The storage
needs to be persisted from and to LocalStorage, so we do not use the simple in-memory
interpreter, but runLocalStorageT instead.

This concludes the T o d o M V C application, which can be seen i n Figure 7.1, implemented
according to its specification. If compiled using G H C J S , we get a bundle of JavaScript files
and an index.html which is the entry point. A s described i n Chapter 6.3, we can add
a post-compile step that compresses these files and adds any necessary assets like C S S or
icons. It is possible to go a step further and include a service worker using the service worker
component implemented i n this work, but that is what we do i n the next applicat ion.

7.2 H N P W A

H N P W A [] is a client for Hacker News, a technological news site. Unl ike T o d o M V C ,
H N P W A does not provide a r ig id specification and consists only of a rough guideline of
what to implement. The task is to create a Progressive Web App l i ca t ion that displays
information from a given A P I . Th is applicat ion has 42 implementations, a smaller number
than the number of implementations of T o d o M V C but it s t i l l provides a good comparison
for a frontend framework for P W A s .

To describe the functionality of the applicat ion more, we w i l l be fetching data from the
official Hacker News A P I and displaying it . We need to display article lists, article details
w i th comments, and user details.

The specification of the appl icat ion is not as well defined, it only consists of a text document
describing the desired functionality. In particular, it does not include the H T M L structure

46

http://localhost/%23

and C S S styles of the applicat ion unlike T o d o M V C , so I have used the H T M L and C S S
from one existing implementat ion of H N P W A , P r e a c t H N [5].

M o v i n g on to the actual implementat ion of the applicat ion, we w i l l again start w i t h the
entities and operations on them. The official A P I from which we w i l l be fetching data has a
textual description of the entities, which describes only two entities, a user, and an " i tem"
that can represent either a top-level post or a comment. The items form a tree that we w i l l
need to traverse and recursively fetch.

Some implementations of the H N P W A assignment have included their own server prepro-
cessed the data from the official A P I , as it is not too suitable for direct consumption: we
need to fetch an i tem before we know what are its children. W h i l e that would be unusable
in a product ion applicat ion, it is not such a big problem i n a demonstration application.

We w i l l put only a single layer between the applicat ion and the A P I , and that is the service
worker cache. We can cache a l l responses to the A P I requests and return the previously
fetched response on repeated requests. The service worker w i l l also be used for prefetching
and caching the core applicat ion files, so that it fulfills the assignment requirements and is
available offline.

A s for the other components, we w i l l use mult iple stores again (for i tem lists, items, and
users), and also the web app manifest generator and the router, this t ime the Loca t ion
API-based interpreter.

There is not much else to write about the application's component structure as it is very
similar to the structure i n T o d o M V C , there are again larger components that work wi th
the top-level appl icat ion state and smal l components w i t h dynamics as their inputs and
events as outputs.

The resulting applicat ion is a val id P W A that works offline, showing cached data. W h a t
it looks like can be seen in Figure 7.2. Its only major deficiency is that it uses the official
hierarchical A P I and therefore it loads content gradually and not as fast as it could if it
had a dedicated server that preprocessed the data into a more suitable format.

|v~| Top N e w S h o w Ask Jobs Built with Reflex

Twilio Super SIM [www.twilio.com]
by qalfarraaem 3 days ago 1175 comments

Adults learn language to fluency nearly as wel l as children: study {medium.coml
by bluff room 3 days ago | 3-2 :•: -

Show H N : Python Machine L e a r n i n g - A Crash Course (github.com!

by irsina 3 days- ago 119 comments

Why CRDT didn't w o r k o u t as welLf or collaborative editing xi -editor (github.com)
by Super mighty 3 days ago I 81 comments

Boeing altered key switches in 737 M A X cockpit limiting ability to shut off MCAS(www,seattletime5.co-m)
by erentz 3 days ago | 325 comments

What I gained, lost and learned while working for Microsoft (medium.com)

by newncobpl 3 days ago I 233 comments

They Were Promised Coding Jobs in Appalachia (www.nytimes.com)

Figure 7.2: The H N P W A applicat ion

47

http://www.twilio.com
http://github.com
http://github.com
http://medium.com
http://www.nytimes.com

If we had a server, we could also implement another feature, prerendering. B y using the
server instance of the storage component, we would be able to generate fully filled-out
H T M L in such a way that even browsers without JavaScript support would be able to
interact w i th the applicat ion without obstacle.

7.3 RealWorld

Rea lWor ld [13] is the most complex of the comparison projects. It is a clone of M e d i u m ,
an online publishing platform, so it requires everything a "real wor ld" applicat ion would.
This comparison project also contains a server component, it is not a comparison of only
frontend web frameworks. The numbers of implementations are: 18 frontends, 34 back-
ends, and 3 full-stack implementations. The three full-stack implementations include both
frontend and backend components, and are usually wri t ten in frameworks that have special
communicat ion channels between them and thus cannot use other backend implementations.

The task is split into a backend component that is defined by an A P I specification, and a
frontend component defined by a number of tasks that it needs to support and a H T M L
structure. There is a number of features that the appl icat ion must have: J W T (J S O N Web
Token) authentication wi th registration and user management, the abi l i ty to post articles
and comments, and to follow users and favorite articles.

One implementation note: while the specification includes an A P I specification in the form
of an O p e n A P I file, I d id not find a server that fulfills it exactly so I chose the Scotty server
wri t ten i n Haskel l and adapted the frontend to its inaccuracies.

A large benefit of having a machine-readable A P I specification is that we can use it to
generate the client for i t . Us ing the tool swagger-generator, we can get the definitions of
al l entities and A P I endpoints, In this applicat ion we do not need to change any entities,
so this suffices for out purposes.

M o v i n g on to the capabilities the appl icat ion requires, we need to persist the user access
token i f the user is currently logged in . W h i l e the storage component is a key-value storage
not really meant for single values, we can use a map wi th text keys and text values instead.
If we wanted to, we could use two more stores for articles and comments, but considering
the scale of the applicat ion, using only the service worker cache is an easier approach.

The routing and service worker components are the same as i n the H N P W A applicat ion,
routing using Loca t ion A P I and caching requests to the A P I .

The created applicat ion, i l lustrated in Figure 7.3, fulfills a l l requirements of the specification
and of the P W A checklist. A s wi th H N P W A , it would be possible to improve the applicat ion
by using a custom server for prerendering and for unifying the Servant types of the A P I
and the applicat ion into a single large type.

18

conduit Home 2i New Post OSi @Test

My Articles Favorited Articles

An Article
Lorem ipsum dolor sit arnet, con sectetur adipiscingelit. Etiarn non vehicula libera Maecenas metusdiam, irnperdiet
nan odio in, pellentesque dictum ex.

conduit •om Thinksler Cod

Figure 7.3: The Rea l W o r l d appl icat ion

49

Chapter 8

Conclusion

In this work, I have led the reader from a general introduct ion to modern Web technologies,
through an overview of the capabilities of contemporary Web frameworks, to an analysis
of the capabilities of Haskel l on the frontend and specifically the state of available features
in its l ibrary ecosystem. In the second half of this work, I have designed and implemented
three components, a router, a service worker generator w i th supporting libraries, and a
key-value browser storage library.

8.1 Evaluation

W h i l e these components do not comprise a framework equivalent to the most popular
JavaScript frameworks, they together give developers a set of functionality that is mostly
equivalent to minimalis t frameworks in JavaScript , and they make a significant contr ibution
to the ecosystem of Haskel l on the frontend. They enable creating Progressive Web A p p l i ­
cations in Haskell , which was the set goal of this work, and they also set the groundwork
for further work in this area. I also believe that the analysis done i n the first part of this
work is a significant contr ibut ion itself, identifying the deficiencies i n the Haskel l ecosystem,
possibly guiding future projects.

8.2 Future work

The work that needs to immediately follow the submission of this thesis is publishing the
components created here and seeking feedback from the Haskel l community. This includes
fulfilling a l l the formal requirements necessary for publishing the ind iv idua l packages to
Hackage, the package repository for Haskell , and wr i t ing up their documentation i n two
tiers: A P I documentation and user manuals. For the manuals and showcases, I w i l l l ikely
reuse some of the case studies presented i n the previous chapter.

I expect to spend some time adapting my work according to any feedback from the com­
munity: expanding documentation, creating adapters to other libraries, implementing more
requested functionality, and other necessary work.

50

W i t h the libraries implemented i n this work, there is, however, s t i l l a number of capabilities
that Haskel l lacks, compared to developing browser applications in JavaScript:

• a palette of pre-built G U I components,

• internationalization,

• a unified command-line interface to bu i ld tools,

• code generation, and

• debugging tools for the frontend, e.g. variable watching, inspecting applicat ion state

There is also a number of other ideas w i t h various usefulness that would make bui lding
web applications i n Haskel l easier. Some are natural extensions of the implemented com­
ponents, others are independent projects that implement other functionality that would
make bui ld ing web applications in Haskel l easier. W h a t follows is an incomplete list of such
project topics:

• CSS- in-Haskel l (similar to CSS- in - JS) ,

• crash reports (traceback, appl icat ion state) for the browser,

• end-to-end tests that can run assertions on both the client and server,

• dynamic user-provided content, i.e. H T M L - l i k e markup that can use preregistered
named components, a user-friendly editor,

• typed components that use assets, like or <link>,

• forms: a set of components, validation, automatic derivation from a datatype,

• a query language for browser storage, using IndexedDB,

• automatic synchronization for browser storage,

• authentication i n the router: "user is logged-in", "user has role X " , "user can perform
action Y " ,

• H T T P / 2 P u s h support on the server: sending a l l necessary assets together w i th the
first request,

• W e b l D L and a JavaScript-generating D S L for service workers,

• effect system for Reflex, as a more flexible extension mechanism, and

• serializable effects that can be interpreted both i n the browser or on the server i f the
client is missing required data.

To summarize this work, I have studied the current state of Haskel l on the frontend, ex­
panded the l ibrary ecosystem wi th three new additions, implemented a number of example
applications, and suggested follow-up projects to remedy the remaining deficiencies com­
pared to the features available in JavaScript.

51

Bibliography

[1] direnv/direnv: Unclut ter your .profile. Accessed on 06.05.2019.
Retrieved from: h t t p s : / / g i t h u b . c o m / d i r e n v / d i r e n v

[2] The State of JavaScript 2018: Front-end Frameworks - Overview. Accessed on
06.05.2019.
Retrieved from: h t t p s : / / 2 0 1 8 . s t a t e o f j s . c o m / f r o n t - e n d - f r a m e w o r k s / o v e r v i e w /

[3] Ashkenas, J . : CoffeeScript hits 1.0 - Happy Holidays, H N . Accessed on 09.03.2019.
Retrieved from: h t t p s : / / n e w s . y c o m b i n a t o r . c o m / i t e m ? i d = 2 0 3 7 8 0 1

[4] Bar , A . : W h a t Web C a n D o Today. Accessed on 09.03.2019.
Retrieved from: h t t p s : / / w h a t w e b c a n d o . t o d a y /

[5] Baxter , K . : P r e a c t H N . Accessed on 06.05.2019.
Retrieved from: h t t p s : / / g i t h u b . c o m / k r i s t o f e r b a x t e r / p r e a c t - h n

[6] Bernardy, J.-P.; Boespflug, M . ; Newton, R . R . ; et a l . : Linear Haskell : pract ical
l inearity in a higher-order polymorphic language. arXiv preprint arXiv:1710.09756.
2017.

[7] C a b a l Team: The Haskel l Caba l . Accessed on 09.03.2019.
Retrieved from: h t t p s : / / w w w . h a s k e l l . o r g / c a b a l /

[8] Claessen, K . ; Hughes, J . : QuickCheck: a lightweight tool for random testing of
Haskel l programs. Acm sigplan notices, vol . 46, no. 4. 2011: pp. 53-64.

[9] Commerc ia l Haskell : The Haskel l Too l Stack. Accessed on 09.03.2019.
Retrieved from: h t t p s : / / d o c s . h a s k e l l s t a c k . o r g /

[10] Czap l i ck i , E . : E l m : Concurrent F R P for Funct ional G U I s . 2012.

[11] Dols t ra , E . : The purely functional software deployment model. Utrecht University.
2006.

[12] Dols t ra , E . ; L o h , A . : N i x O S : A purely functional L i n u x dis tr ibut ion. In ACM Sigplan
Notices, vol . 43. A C M . 2008. pp. 367-378.

[13] Eisenberg, R . A . : Dependent types i n haskell: Theory and practice. arXiv preprint
arXiv:1610.07978. 2016.

[14] Fancher, W . : W e b G H C . Accessed on 09.03.2019.
Retrieved from: h t t p s : / / w e b g h c . g i t h u b . i o / b l o g

52

https://github.com/direnv/direnv
https://news.ycombinator.com/item?id=2037801
https://whatwebcando.today/
https://github.com/kristoferbaxter/preact-hn
https://www.haskell.org/cabal/
https://docs.haskellstack.org/
https://webghc.github.io/blog

[15] Google: Progressive Web A p p Checklist . Accessed on 09.03.2019.
Retrieved from:
h t t p s : / / d e v e l o p e r s . g o o g l e . c o m / w e b / p r o g r e s s i v e - w e b - a p p s / c h e c k l i s t

[16] Google: Workbox: JavaScript libraries for Progressive Web A p p s . Accessed on
06.05.2019.
Retrieved from: h t t p s : / / g i t hub . com/Goog leChrome/workbox

[17] Hudak, P.; Hughes, J . ; Peyton Jones, S.; et a l . : A His tory of Haskell : Being L a z y
w i t h Class. H O P L III. New York , N Y , U S A . 2007. I S B N 978-1-59593-766-7. pp.
12-1-12-55. doi:10.1145/1238844.1238856.

[18] Isonen, O. : W h a t actually is CSS- in - JS?
Retrieved from:
h t t p s : / /medium, c o m / d a i l y j s / w h a t - i s - a c t u a l l y - e s s - i n - j s - f 2f 529a2757

[19] Ja in , A . : ajnsit /concur: A n unusual Web U I Framework for Haskel l . Accessed on
09.03.2019.
Retrieved from: h t t p s : / / g i t h u b . c o m / a j n s i t / c o n c u r /

[20] Johnson, D . : dmjio/miso: A tasty Haskel l front-end framework. Accessed on
09.03.2019.
Retrieved from: h t t p s : / / g i t h u b . c o m / d m j i o / m i s o /

[21] Jones, S. P.: Haskell 98 language and libraries: the revised report. Cambridge
Univers i ty Press. 2003.

[22] Klo tzner , R . : Gon imo Architecture. Accessed on 06.05.2019.
Retrieved from: h t t p s :
/ / g i t h u b . c o m / g o n i m o / g o n i m o / b l o b / m a s t e r / f r o n t / d o c / G o n i m o - A r c h i t e c t u r e , md

[23] L a b , Q . F . : Queensland F P L a b - Home. Accessed on 09.03.2019.
Retrieved from: h t t p s : / / q f p l . i o /

[24] Loder , W . : Web Applications with Elm: Functional Programming for the Web.
Apress. 2018. I S B N 9781484226100.

Retrieved from: h t t p s : / / b o o k s . g o o g l e . c z / b o o k s ? i d = K n h q D w A A Q B A J

[25] Mar low, S.: F igh t ing spam wi th Haskell . 2015.

[26] Microsoft: Language Server Pro toco l Specification. Accessed on 09.03.2019.
Retrieved from:
h t t p s : / / m i c r o s o f t . g i t h u b . i o / l a n g u a g e - s e r v e r - p r o t o c o l / s p e c i f i c a t i o n

[27] Microsoft: TypeScr ip t - JavaScript that scales. Accessed on 09.03.2019.
Retrieved from: h t t p s : / / w w w . t y p e s c r i p t l a n g . o r g /

[28] Mi tche l l , N . : ndmitchel l /ghcid : Very low feature G H C i based I D E . Accessed on
06.05.2019.
Retrieved from: h t t p s : / / g i t h u b . c o m / n d m i t c h e l l / g h c i d

[29] M o z i l l a : Us ing Service Workers - Web A P I s . Accessed on 09.03.2019.
Retrieved from: h t t p s : / / d e v e l o p e r . m o z i l l a . o r g / e n - U S / d o c s / W e b / A P I /
S e r v i c e _ W o r k e r _ A P I / U s i n g _ S e r v i c e _ W o r k e r s

53

https://developers.google.com/web/progressive-web-apps/checklist
http://github.com/
https://github.com/ajnsit/concur/
https://github.com/dmjio/miso/
http://github.com/
https://qfpl.io/
https://books.google.cz/books?id=KnhqDwAAQBAJ
https://microsoft.github.io/language-server-protocol/specification
https://www.typescriptlang.org/
https://github.com/ndmitchell/ghcid
http://developer.mozilla.org/

[30] Nanda , S.: Benchmarks: G H C J S (Reflex, Miso) and Purescript (Pux, Thermite ,
Halogen). Accessed on 09.03.2019.
Retrieved from: h t t p s : / /medium.com/@saurabhnanda/benchmarks- fp- languages-
l i b r a r i e s - f o r - f r o n t - e n d - d e v e l o p m e n t - a l l a f 0 5 4 2 f 7 e

[31] Nanz , S.; Fur ia , C . A . : A Comparat ive Study of Programming Languages i n Rosetta
Code. 2015 IEEE/ACM 31th IEEE International Conference on Software
Engineering. M a y 2015. doi:10.1109/icse.2015.90.

[32] N i x community: N i x O S / n i x p k g s : N i x Packages collection. Accessed on 06.05.2019.
Retrieved from: h t t p s : / / g i t h u b . c o m / N i x O S / n i x p k g s /

[33] Obsid ian Systems: Obsid ian Systems | C u t t i n g edge software solutions. Accessed on
09.03.2019.
Retrieved from: h t t p s : / / o b s i d i a n . s y s t e m s /

[34] Obsid ian Systems: obsidiansystems/obelisk. Accessed on 06.05.2019.
Retrieved from: h t t p s : / / g i t h u b . c o m / o b s i d i a n s y s t e m s / o b e l i s k /

[35] Obsid ian Systems: reflex-frp/reflex. Accessed on 09.03.2019.
Retrieved from: h t t p s : / / g i t h u b . c o m / r e f l e x - f r p / r e f l e x /

[36] Obsid ian Systems: reflex-frp/reflex-dom. Accessed on 09.03.2019.
Retrieved from: h t t p s : / / g i t h u b . c o m / r e f l e x - f r p / r e f l e x - d o m /

[37] Obsid ian Systems: reflex-frp/reflex-platform. Accessed on 09.03.2019.
Retrieved from: h t t p s : / / g i t h u b . c o m / r e f l e x - f r p / r e f l e x - p l a t f o r m /

[38] Parsons, M . : Three Layer Haskel l Cake. Accessed on 06.05.2019.
Retrieved from:
h t t p s : //www.par s o n s m a t t . o r g / 2 0 1 8 / 0 3 / 2 2 / t h r e e _ l a y e r _ h a s k e l l _ c a k e . h t m l

[39] StatCounter: Desktop vs Mobi le vs Tablet Market Share Worldwide. Accessed on
06.05.2019.
Retrieved from:
h t t p : / / g s . s t a t c o u n t e r . c o m / p l a t f o r m - m a r k e t - s h a r e / d e s k t o p - m o b i l e - t a b l e t

[40] TasteJS: H N P W A . Accessed on 09.03.2019.
Retrieved from: h t t p s : / / h n p w a . c o m /

[41] TasteJS: T o d o M V C . Accessed on 09.03.2019.
Retrieved from: h t t p : / / t o d o m v c . c o m /

[42] The J A M s t a c k team: J A M s t a c k - JavaScript , A P I s , and M a r k u p . Accessed on
09.03.2019.
Retrieved from: h t t p s : / / j a m s t a c k . o r g /

[43] Thinkster : gothinkster/realworld: "The mother of a l l demo apps". Accessed on
09.03.2019.
Retrieved from: h t t p s : / / g i t h u b . c o m / g o t h i n k s t e r / r e a l w o r l d

[44] Tweag: Tweag I / O - software innovation lab. Accessed on 14.03.2019.
Retrieved from: h t t p s : / / t w e a g . i o /

54

https://github.com/NixOS/nixpkgs/
https://obsidian.systems/
https://github.com/obsidiansystems/obelisk/
https://github.com/reflex-frp/reflex/
https://github.com/reflex-frp/reflex-dom/
https://github.com/reflex-frp/reflex-platform/
http://www.par
http://sonsmatt.org/2018/03/22/three_layer
http://statcounter.com/platform-market-share/desktop-mobile-tablet
https://hnpwa.com/
http://todomvc.com/
https://jamstack.org/
https://github.com/gothinkster/realworld
https://tweag.io/

[45] Tweag: tweag/asterius: A Haskell to WebAssembly compiler. Accessed on 09.03.2019.
Retr ieved from: h t t p s : / / g i t h u b . c o m/tweag / a s t e r i u s

[46] Tweag.io: Introducing L o r r i , your project's nix-env. Accessed on 06.05.2019.
Retrieved from:
https: //www.tweag.io/posts/2019-03-28-introducing-lorri.html

[47] W 3 C : Web A p p Manifest - L i v i n g Document. Accessed on 06.05.2019.
Retrieved from: https:/ /www.w3 .org/TR /appmanifest/

[48] W 3 C : W e b l D L Level 1 - W 3 C Recommendat ion. Accessed on 06.05.2019.
Retr ieved from: https://www.w3.org/TR/WebIDL-l/

55

https://github.com/tweag/asterius
http://www.tweag.io/posts/2019-03-28-introducing-lorri.html
https://www.w3.org/TR/appmanifest/
https://www.w3.org/TR/WebIDL-l/

Appendices

56

Appendix A

Contents of the attached data
storage

• doc-f inal-thesis/, the source files for this thesis and its rendered P D F version,

• doc-midterm-report/, the source files and rendered P D F version of the mid te rm
report of this work,

• doc-midterm-presentation/, the source files and rendered P D F version of the midterm
presentation of this work,

• README.md, the usage instructions for the following source files,

• src/tapaw-route/, the rout ing l ibrary created i n this work,

• src/tapaw-serviceworker/, the service worker l ibrary created i n this work,

• src/tapaw-storage/, the storage l ibrary created i n this work,

• src/tapaw-webmanif est/, the Web A p p Manifest l ibrary created in this work,

• src-demo/tapaw-7guis/, a simple set of G U I components originally intended as an­
other demonstration applicat ion,

• src-demo/tapaw-todomvc/, the T o d o M V C demonstration applicat ion,

• src-demo/tapaw-hnpwa/, the H N P W A demonstration applicat ion,

• src-demo/tapaw-realworld/, the Rea lWor ld demonstration applicat ion,

• src-snippets/, a set of code snippets wri t ten during the process of wr i t ing this
thesis, especially:

— deployment-nixops/, an example of appl icat ion deployment using N i x O p s ,

— skeleton/, a m in ima l project skeleton for a browser application,

— storage-tagged/, an alternate version of the storage library, and

— editor-emacs/, a pre-configured instance of the Emacs editor usable for explor­
ing the packages i n this work

57

