
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

OCCUPANCY ESTIMATION OF A PARKING LOT FROM
IMAGES
URČENÍ OBSAZENOSTI PARKOVIŠTĚ Z OBRAZU

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR RAUL AGHAYEV
AUTOR PRÁCE

SUPERVISOR prof. Ing. ADAM HEROUT, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2021

Vysoké učení technické v Brně
Fakulta informačních technologií

Ústav počítačové grafiky a multimédií (UPGM) Akademický rok 2020/2021

Zadání bakalářské práce |||||||||||||||||||||||||
23263

Student: Aghayev Raul
Program: Informační technologie
Název: Určení obsazenosti parkoviště z obrazu

Occupancy Estimation of a Parking Lot from Images
Kategorie: Zpracování obrazu
Zadání:

1. Seznamte se s problematikou počítačového vidění v dopravě. Prostudujte a popište existující
přístupy k počítání automobilů v obraze.

2. Vyhledejte a popište dostupné datové sady pro učení a vyhodnocování řešených algoritmů.
3. Pořizujte vlastní data z realistických scén pro vyhodnocování, případně učení algoritmů.
4. Experimentujte s vybranými algoritmy, zhodnoťte jejich praktickou použitelnost v různých

scénářích.
5. Vyviňte vlastní řešení zadaného problému. Zhodnoťte jeho použitelnost na vhodných datech.
6. Vytvořte demonstrátor svého řešení; diskutujte jeho použitelnost v praxi.
7. Iterativně vylepšujte své řešení směrem "k dokonalosti".
8. Zhodnoťte dosažené výsledky a navrhněte možnosti pokračování projektu; vytvořte plakátek

a krátké video pro prezentování projektu.
Literatura:

• X. Jiang et al., "Density-Aware Multi-Task Learning for Crowd Counting," in IEEE
Transactions on Multimedia, doi: 10.1109/TMM.2020.2980945.

• Dobeš et al., Density-Based Vehicle Counting with UnsupervisedScale Selection, DICTA
2020

• Bharath Ramsundar, Reza Bosagh Zadeh: TensorFlow for Deep Learning: From Linear
Regression to Reinforcement Learning, O'Reily Media, 2018

• Gary Bradski, Adrian Kaehler: Learning OpenCV; Computer Vision with the OpenCV Library,
O'Reilly Media, 2008

• Richard Szeliski: Computer Vision: Algorithms and Applications, Springer, 2011
Pro udělení zápočtu za první semestr je požadováno:

• Body 1 a 2, značné rozpracování bodů 3 až 5.
Podrobné závazné pokyny pro vypracování práce viz https://www.fit.vut.cz/study/theses/
Vedoucí práce: Herout Adam, prof. Ing., Ph.D.
Vedoucí ústavu: Černocký Jan, doc. Dr. Ing.
Datum zadání: 1. listopadu 2020
Datum odevzdání: 12. května 2021
Datum schválení: 30. října 2020

Zadání bakalářské práce/23263/2020/xaghay00 Strana 1 z 1

https://www.fit.vut.cz/study/theses/

Abstract
The aim of a diploma is to create an application that wil l work detect vehicles on a video
from parking areas and determine the occupancy of parking area, by detecting the cars,
saving data about them and count the number of busy slots. This kind of application can
substitute sensors in a future whereas the cost of it is much cheaper and it detects the
new coming cars in a real-time, in addition with some statistics such as the most popular
parking slots or total amount of cars on a parking today.

Abstrakt
Cílem diplomové práce je vytvořit aplikaci, která bude pracovat s detekcí vozidel na videu z
parkovišť a určením obsazeností těch samých parkovišť, ukládáním dat o nich a počítáním
počtu obsažených slotů. Tento druh aplikace může v budoucnu nahradit senzory, zatímco
jeho cena je mnohem levnější a aplikace detekuje nová přicházející auta v reálném čase,
navíc s některými statistikami, jako jsou nejoblíbenější parkovací sloty nebo celkový počet
automobilů na parkoviště dnes.

Keywords
Vehicle, detection, Mask R - C N N , parking, real-time, openCV, self-detecting

Klíčová slova
Vozidlo, detekce, Mask R - C N N , parkování, real-time, openCV, samodetekce

Reference
A G H A Y E V , Raul. Occupancy estimation of a parking lot from images. Brno, 2021. Bache­
lor's thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
prof. Ing. Adam Herout, Ph.D.

Extended Abstract
V moderním věku počet aut roste a roste každý den. Takový počet aut určitě vyžaduje
místa kde tě auta je možné nechávat (například přes noc nebo na dobu dovoleny). Ty místa
jsou garáže nebo parkovací místa vedle nějakých objektů.

Každý den se nastává situace když přes miliony lidé chtějí zajít někam do restaurace,
obchodního domu nebo musejí jet do práce. Půlka z tich lidé využije auto k tomu abych
dostaly do města kam chtějí dostat. Parkovišti v těch místech (a jich okolí) byly postavení
kvůli tomu aby lidé mohli někde nechávat své auta.

Pokud před několika dekády parkoviště nebyly tak populární a velké (kvůli populace
země a počtu aut), teď parkoviště můžou být obrovské 9-patrové budovy, které jsou shony
umístit 1000 aut na jednom patře. Postavení takových budov potřebují hodně investice a
vyžaduje rok (případně 2) času. A když už jsou postaveny, tak je zapotřebí ještě hodně
peněz na to aby v těch parkovištích se dalo dobře orientovat a pochybovat. Markery které
ukazují směr jízdy, sensory, výtahy...

Skoro ve všech parkovištích jsou instalovány senzory. Ty bývají elektromagnetické nebo
ultrazvukové. Sensory slouží k tomu aby detekovat auto na parkovacím místě a signalizovat
že je obsazeno, nebo volně pokud auto tam nestojí. Toto všechno pomůže jinému autu,
které přijelo na parkoviště schopno najít pro sebe volné místo. Instalování senzory je drahé
"potěšení", mnohem levněji bude navrhnout nějaké programovací řešení. Toto programovací
řešení bude muset skenovat auta z kamery na parkoviště a z toho vytvářet kompletní mapu
parkovišti, navíc s nějaké dodatečné informace.

Prvním krokem při vytvářeny aplikace které umožňuje detekovat auta bylo vyhledat
a prostudovat literaturu a časopisy o počítačovém vidění. Najít existující nebo podobné
řešení. Pochopit jak funguje detekování aut z obrazy, najít pro toto vhodný nástroje a
programy které lze snadno pro té to ucelí využít. Přečíst ještě víc nauční literatury.

Následujícím krokem bylo najít vhodné data sety pro testování a taky vytvoření nebo
sbíráni své vlastně testovací datové sady. Datové sady pak museli být otestovánu s různý
detektory a nástroje.

Jakmile bylo nalezeno vyhovující nástroje, došlo k vytvoření návrhu aplikace. Aplikace
musela fungovat autonomně. Nová auta musejí být nalezený samy (nalezený aplikací) .
Existuje vhodné řešení kde parkovací sloty musejí být označení uživatele, ale této aplikace
musí detekovat auta sama. Omyly a programové chyby které byli nalezený během de­
tekce taky musejí být opraveni aplikací. Navíc aplikace by musela představovat statistiky.
Takové statistiky jak celkový počet aut anebo nejpopulárnější místa byly by vhodné k im­
plementaci. Aplikace by měla být spustitelná na vhodných počtů data setů a taky pracovat
s video přímo z kamery v režimu živého přenosu. Taky aplikace by neměla havarovat a mít
nedeterministické chování.

Hlavním cílem aplikace je být nástrojem které pomůže se dobře zorientovat na parkovišti,
kvůli tomu jednotlivé parkovací sloty by museli být vyznačení čísly.

Všechny této požadavky a znalosti které byly získne z knih a časopisu dovolili vytvořit
aplikace která dobře analyzuje parkovišti.

Po každé implementace nějaké nové funkce nebo zvláštní byly provádění testy, které
ukázali na defekty nebo nedostatky. Konečně řešení bylo otestování na 4 hlavních data
setech a výsledky byly vyhovující. Navíc testování na data setech objevovalo více chyb
které by museli být opraveny a právě toto zlepšilo konečnou verzi aplikace. Testování bylo
provádění na různých výškách kamer, v noci. Všechny výsledek byly analyzovány.

Konec koncem je to aplikace které dokáže detekovat auta z přesnosti 93.3%, analyzuje
informace o nich a poskytuje statistiky.

Occupancy estimation of a parking lot from im­
ages

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of prof. Ing. AdamHerout, Ph.D. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

Raul Aghayev
May 8, 2021

Acknowledgements
I would like to thank my supervisor without whom I would not have had enough motivation,
knowledge and strength to complete this thesis.

Contents

1 Introduction 2

2 Relevant Computer Vision Approaches 4
2.1 Computer Vision and Image Processing by Neural Networks 4
2.2 Existing Solutions for Vehicles Detecting and Counting 4
2.3 Object Detection: Mask R - C N N 5
2.4 Mask R - C N N C O C O data set 6
2.5 Object Detection: Y O L O 7
2.6 Object Detection: Darknet 8

3 Relevant Tools for Image Processing and Computer Vision 9
3.1 OpenCV Library 9
3.2 Development in the Python Language 10
3.3 Tensor Flow 11

4 Proposals for Application Creation 12
4.1 Selection of The Eligible Tools 12
4.2 Languages of Implementation Selection 13
4.3 My Proposal 14

5 Implementation 19
5.1 Implementation Details 19
5.2 Implementation of the Vehicle Detection Algorithm 21
5.3 Implementation of the Parking Data Saving Algorithm 22

6 Testing & Evaluation of Achieved Results 23
6.1 Testing the Vehicles Detection and Counting 23
6.2 Bugs and their Solutions 24
6.3 Overall Evaluation & Success Rate 27

7 Conclusion 32
7.1 Possible Extensions 32

Bibliography 34

1

Chapter 1

Introduction

Due to the fact that vehicles become more and more popular every day, the building of
parking is vital to the society. Wherever there is a need to park a car somewhere, parking
should be close. Especially in a big cities or cities that attract tourists a lot. What is
there standing in front of any parking building or any mall? - exactly, the scoreboard with
information about free parking slots in parking

A l l of these constructions (that provides the parking's statistics) are created using the
big computers and sensors that are placed on top of each parking slot and indicate whether
the parking slot is free or not by collecting data from sensors and communicating with the
main computer. Additionally, all of these technologies are expensive, even without fee for
installation. The application that will be described in this diploma could possibly change
the world of parking detection from head to feet.

The idea is in installing cameras in front of parking areas (blocks), these cameras will
use the program which will obtain the „parking-map" from cameras in a few days after
launching. Afterwards, all of these cameras (number of which will be much more smaller
than amount of sensors) and the program will have data about the free parking slots, along
with the geolocation of that slots. This information will be used to display information on
a scoreboard outside. The inside part will be solved by placing a table with the actual map
in the beginning of each row, they can be placed on the top of sideways.

Exactly these kinds of ideas made me choose this topic and encouraged me to implement
a program that, with the use of neural networks, will be capable of finding, detecting and
counting the amount of parking slot and then the number of free parking places. In addition
I wanted that application to be self-correcting and auto-detecting. Self-correcting means
that program will fix the bugs or errors that it has created itself. Auto-detecting means
that there is no operator needed to exploit the application. Once you run it, it will do
everything on its own. Chapters below will explain and describe the program more deeply,
along with creation process, bugs and difficulties that were faced during the creation of an
application.

The aim of my diploma was to get acquainted with the computer vision in transport,
objects detecting and analyses. Understanding the basic and advanced principles of detec­
tion, experimenting with different tools and techniques and finding the one proper way of
implementation of the project.

More precisely, the responsibilities of the project are to detect the vehicles on a video
or images data sets. Further inspection, which allows the program to collect the complete
vision of a parking with information of a parking occupancy rate.

2

The thesis's task mainly focuses on understanding of computer vision and vehicles de­
tection. However contains a lot of other targets to achieve. These targets are:

1. It was vital to get acquainted with the issues of computer vision in transport.

2. Exploring and understanding existing vehicle counting approaches [9].

3. Finding available data sets for testing.

4. Acquiring my own data from realistic scenes for evaluation or learning of the algo­
rithm.

5. Planning and developing my own solution to the problem. Testing and testing and of
course iterative improvement of solution towards „perfection.

6. Implementation of features such as statistics and etc.

At the end, good-working free-parking slot auto-detecting application was created, it
shows over 90.9% accuracy in detecting of free parking areas. Based on those results it is
possible to bring that kind of application to live and change the world of parking.

3

Chapter 2

Relevant Computer Vision
Approaches

2.1 Computer Vis ion and Image Processing by Neural Net­
works

Computer vision 1 is a theory and technology of creating machines that can detect, track
and classify objects. As a scientific discipline, computer vision refers to the theory and
technology of creating artificial systems that acquire information out of images (frames).
These images could be parts of videos, data sets or for instance collected from the medical
scanner. Next chapters will describe the detectors, their advantages and disadvantages in
terms of a thesis.

2.2 Exist ing Solutions for Vehicles Detecting and Counting

The world of parking now mainly uses the sensors on top or bottom of each parking slots,
these techniques could be found in almost any parking. Those sensors could be Electro­
magnetic or Ultrasonic, other methods such as counting the number of cars in entrances
and exists could be also used, but that exact method don't provide enough data. Drivers
will know that there is one empty lot, but nothing about its geolocation.

Ultrasonic sensors [6] - uses sound waves to detect objects. By sending sounds in a
high-frequency that reflects off objects, a sensor can catch the reflected waves and compare
it to referential value which will state that the lot is busy or not.

Electromagnetic sensors [12] - creates an electromagnetic field which detects any­
thing that entrances that field. As a result, when a vehicle is entering a parking lot it will
be detected.

In addition there are a lot of existing programming solutions both for detecting or data
(statistics) collecting. A l l of them could be divided in several groups.

The first division is language of implementation. The most popular are Python and C
language. Python language is used more than C due to the simplicity. The second division
criteria is made by the detector. The most popular are Mask R - C N N and Y O L O . The final
division is the way that parking slots are detected (created).

x

https: //en.wikipedia.org/wiki/Computer_vision

4

http://wikipedia.org/wiki/Computer_vis

More precisely about last group. There are a lot of solutions that requires the user to
circle the parking lots with mouse2, whereas there is only one solution that detects the cars
on a first frame and then makes parking slots from them 3, however that solution doesn't
handle the new coming cars.

My solution should be an auto-detective, that means that new parking lots should be
detected by application automatically. I couldn't find any solutions that works in that way.
So in my solution, any place on a video becomes a parking slot in case if a car stands there
for a few minutes. Furthermore the statistics such as most popular places, the total number
of cars and the run-time parking occupancy should also be implemented.

A l l of these 4 methods have one aim, detect the cars and provide the data. In comparison
it is obvious that the sensor will be the most expensive out of this list. Ultrasonic sensors
price is 2500 to 3000 USD per each lot 4 . Electromagnetic sensor will cost cheaper, from 300
to 1000 U S D 5 . The reliability is high. Counting cars in the entrances and exists will cost
much less, the only required thing is sensor that will count every car entering and exiting
the parking. The price for this varies up to 1000USD including installation and setting per
one gate, the best price for that is 500USD 6 however the one big minus as it was mentioned
before is lack of geolocation.

The programming technique is obviously the cheapest methods out of all. This applica­
tion could be written for 2 weeks of hard-work when the price for that will be no more than
500 USD. Despite application could sometimes lie in the dark, it is still a good choice. In
addition there is no perfect detector and all of the detectors will sometimes fail, the percent
of failure is small. A l l facts mentioned before illustrates why programs could replace sensors
on a parking.

In summary the programming method should replace the sensors at parking due to the
price and simplicity, however this could happen only when the detectors will work better
than they are doing now. The programmers from all over the world are working on im­
provements of computer vision, that's why the detectors' capabilities will rice dramatically
next decades and the sensors will be changed by applications.

2.3 Object Detection: Mask R - C N N

Mask R - C N N 7 is a neural network that is used to detect objects on a video or image, those
objects could be almost everything, starting from car's plate, finishing with animals. On of
the main features of Mask R - C N N is capability to illustrate the objects, even if there are
many same object that are corresponding to each other. This detector is capable to differ
all of them. Mask R - C N N works in a following steps [4]:

1. Prepare the image for the next step.
2

https: //github.com/olgarose/ParkingLot
3

https: //medium.com/@ageitgey/snagging-parking-spaces-with-mask-r-cnn-and-Python-

955f2231c400
4

https://www.alibaba. com/product-detail/Parking-Ultrasonic-Sensor-Intelligent-Guidance-

System_62088969902.html?spm=a2700.7724857.normal_off er.d_title.48fdld80kEwSKq&s=p
5

https: //connectedthings.store/gb/lorawan-sensors/bosch-parking-lot-

sensors.html?gclid=Cj0KCQjwsqmEBhDiARIsANV8H3YEle-3261gWqYVTElcGd_o5-

CZWKXCC4yuY511S0TJyT2ixtpU46oaAmKREALw_wcB
6

https: //www.optex.co. jp/e/products/vehicle-detection/f mcw/ovs-01gt.html
T

https: //github.com/matterport/Mask_RCNN

5

https://www.alibaba
http://www.optex.co

2. Region Proposal Network - predicts if there are any objects are presented in particular
regions of an image.

3. Resizing all of the object obtained from previous step to a same size and passing all
of the regions to another neural network.

4. That neural network takes proposed regions and will assign them to several specific
of a feature map level.

5. Scans these areas, generates objects. These objects will contain masks, boxes, object's
names (labels) and classes (see figure 2.1).

I decided to chose Mask R - C N N as a detector due to the good detection, simplicity and
big variety of additional options, in addition it seemed to me that connecting my application
with that detector in Python language will be easy.

1 S t a t j d

A l i g n

A
L'nuiy 1 1 BBOJ

1 V

mrcnn

a • •Stage2

Figure 2.1: Mask R - C N N structure1

2.4 Mask R - C N N C O C O data set

Mask R - C N N C O C O data set is a data set for object detection [7], segmentation and
captioning. Coco models should be used in the application due to the two main features,
one of them is recognition in the context, the second one is big variety of object instances

8

https: //alittlepain833.medium.com/simple-understanding-of -mask-rcnn-134b5b330e95

G

http://lepain833.medium.com/

Figure 2.2: Mask R - C N N object detection demonstration9

and the labels. The application uses C O C O model pre-trained data set that could be found
on the Mask R - C N N official GitHub and are marked there as "easy to start,, weight, the
training of new data set was unreasonable due tot the fact that C O C O model already exists
and perfectly suits for the task.

Image 2.2 demonstrates the capabilities of Mask-RCNN detection, using C O C O pre-
trained weights. As it could be seen all visible cars are detected.

2.5 Object Detection: Y O L O

Y O L O ("You Only Look Once") 1 0 is a object detector, that is capable of detecting almost
every objects in the world, staring from animals finishing by car's plates. It gives the same
output like any other detector, good at detecting same objects that are corresponding.
Y O L O uses different approach 1 1. For instance Object prediction is processed in one run of
the algorithm,in addition Y O L O processes whole image (see figure 2.3). Y O L O works in
the following steps [8]:

1. Dividing frame into a cells using a (usually) 19x19 grid.

2. Each cell is responsible for predicting several bounding boxes.

3. Find probability of that the object exists in that boxes.

4. Delete boxes with small probability, bound boxes with big probability.

Y O L O detector is fast and accurate, with big amount of options and high real-time
accuracy. However, Mask-RCNN suited more for the purposes of the thesis.

9

https: //towardsdatascience.com/parking-spot-detection-using-mask-rcnn-cb2db74a0f f 5
1 0

https: //pjreddie.com/darknet/yolo/
l x

https: //appsilon.com/object-detection-yolo-algorithm/

7

http://owardsdatascience.com/parking-

mm

S X S grid on input

Bounding boxes + confidence 'ID
Final Detections

Class probability map

Figure 2.3: Y O L O object detection demonstration 1 2

2.6 Object Detection: Darknet

Darknet 1 3 is an open source neural network written on C languagefll] and CUDAtechnol-
ogy, the darknet detector is one of the most accurate and fast detector that was tested by
me. It suits really well for real-time predictions. However, due to the fact that darknet is
using C language, I decided to not to use it due to compatibility problems.

https: //www.r esearchgate.net/figure/YOLO-model-detect ion-as-a-r egression-problem-17-

Thus-the-input-image-is-divided-into-a_fig5_337146307
1 3

https: //github.com/pjreddie/darknet

8

http://www.r
http://esearchgate.net/figure/YOLO-model-detect

Chapter 3

Relevant Tools for Image
Processing and Computer Vision

3.1 O p e n C V Library

OpenCV (Open Source Computer Vision Library) [3] is an open-source library for computer
vision, image processing and general purpose numerical algorithms. Implemented in C /
C++, developed for Python, Java and other languages. In addition, that library is widely
used in the world, documentation is heavy and the internet is full of tutorials. Moreover to
computer vision, OpenCV library is handling the frames processing in the application, and
is also handling drawing of rectangles and ellipses.

Figure 3.1: Open C V capabilities demonstration

x

https: //www. slideshare.net/ embeddedvi sion/the-opencv-open-source-computer-vis ion-

library-what s-new-and-what s-coming-a-present at ion-from-the-opencv-foundat ion

9

http://slideshare.net/

In addition OpenCV has a features with mouse handling. On the left bottom corner of
the figure 3.2 some information could be found. While processing a video, user can hover
a mouse over a screen and OpenCV will display the coordinates of a mouse and color of a
pixel that was hovered over. The color will be expressed as an R G B values.

Figure 3.2: Open C V capabilities demonstration2

3.2 Development in the Python Language

In the world of big varieties of programming languages, Python 3 is widely used and is
reasonably in the tops. Python 4 is interpreted language, which is a big plus comparing to
other languages, in addition Python is really simple, object oriented language to learn, with
enormous amount of libraries, almost all libraries in the world were developed for Python
also. Additionally Python is widely used for computer vision purposes [10].The amount

2

https: //scipython.com/blog/cropping-a-square-region-f rom-an-image/
3

https: //existek.com/blog/ai-programming-and-ai-programming-languages/
4

https: //www.sam-solutions.com/blog/image-recognition-programming-language/

10

http://scipython.com/blog/
http://ek.com/blog/ai-programming-and-ai-programming-languages/
http://www.sam-solutions.com/blog/image-recognition-programming-language/

of code that should be written in Python to perform some action is much more less in
comparison to other languages.

3.3 TensorFlow

TensorFlow 5 is an open-source machine learning software library developed by Google for
solving problems of building and training a neural network in order to automatically find
and classify patterns. The main A P I for working with the library is implemented for
Python, there are also implementations for C# , C+-1-, Java and etc. More information
about TensorFlow could be found in the book. [13]

5

https: //www.tensorflow.org/

11

http://www.tensorflow.org/

Chapter 4

Proposals for Application Creation

4.1 Selection of The Eligible Tools

The experiments with tools were wide [2].
The first choice was the Darknet detector. "Darknet is an open source neural network

framework written in C and C U D A . It is fast, easy to install, and supports C P U and
G P U computation.,/ That detector showed perfect accuracy, however that detector wasn't
suitable for me due to the language of implementation which was C language. In addition it
had long "run command,, (command user enters to run the program). Due to the fact that
I decided to write the program on Python language, connecting two languages or changing
the language of implementation could be unreasonable.However, in spite of long loading
and processing time darknet showed perfect accuracy in detecting all kind of vehicles.

Second choice was Y O L O detector tool were tested. It showed a perfect accuracy. The
detection of the bounds were satisfying, all of the objects appeared in a different colors
which of course helps with differing objects on a screen. However, while testing I came up
to a problem with visualizing masks of detected objects. Masks of the object are useful for
debugging purposes and overall computer vision understanding. Reading deeper I couldn't
found out information about Y O L O ' s masks, however I found out that masks virtualization
is easily accessible in Mask-RCNN, I decided to test that detector.

M A S K R - C N N , as any other detector showed a perfect detection. In addition, it
is incredibly simple to manipulate with that tool in Python language. Using all of its
functional and features. Mask R - C N N is easy customizable tool which allows to set the
minimal percentages of detection, which hardware it should use and all of the data is easily
accessible right from Python code. Accessing the masks or any other information from code
was extremely comfortable. One more big plus is that 90% of the detecting parked cars
program were written using Mask-RCNN. That's why, after careful considerations I decided
to use Mask R - C N N .

Obviously that all of the detectors were good but have some differences, the table of
comparison is placed below (see table 4.1), all of the data was generated by me using the
4 main data sets (videos).

x

https: //pjreddie.com/darknet/

12

Table 4.1: Basic comparison of detectors
Y O L O M A S K R - C N N Darknet

Detected vehicles (data set N21) 100% 100% 100%
Detected vehicles (data set N22) 100% 100% 100%
Detected vehicles (data set N23) 96.9% 93.9% 93.9%
Detected vehicles (data set N24) 88.5% 82% 88.5%
Initializing time 10 seconds 23 seconds 29 seconds

4.2 Languages of Implementation Selection

From the big variety of programming languages C++, C, Java and Python languages are
the most recommend for purposes of computer vision. 2

C / CH—h3 are widely used to create artificial intelligence applications. The built in
libraries in that languages such as OpenGL or OpenCV already have features and tools
which are helping in fast pictures or frames processing. A l l of this in combination could
help to write a fast working application or program. Regarding disadvantages of C + + or C
languages could be low-levelness and speed of execution in comparison to other languages
which will be described below. I decided not to use the C or C++ due to the amount of
code that should be written in comparison with more high-level languages and of course the
compatibility with Mask R - C N N which is also implemented better in high-level languages.

Java 3 is also widely used language in which simple applications could be created along
with complex artificial intelligence applications. The advantages of Java language is native
detection libraries, compatibility with OpenCV and OpenGL, simplicity in comparisons
with C or C + + and portability. From the disadvantages, the speed of execution which is
slower, in comparison to all other languages that were mentioned and of course the rawness
among all of the other languages in terms of artificial intelligence. Personally I decided not
to choose Java due to the "incompleteness,, in that field.

Python 3 is one of the best languages for artificial intelligence in the world by the
opinion of many programmers, it has enormous amount of libraries, almost every library in
the world is also implemented for Python language. Python is fast language and due to the
high-levelness, it is much more easier to learn Python than C / C++ or Java. In addition,
Python is fast and interpreted language.I decided to choose Python language because it
suited me the best in terms of artificial intelligence and compatibility with Mask R - C N N ,
the overall connection between that tool and this language is good, which definitely let me
to flexibly set every desired option.

The overall comparison of the main aspects of the programming languages are demon­
strated in the table 4.2.

Table 4.2: Basic comparison of programming languages in terms of computer vision 4

Java C++ C Python
Run time in milliseconds <1.89 <1.56 <1.00 <71.90
OpenCV support Yes Yes Yes Yes
OpenGL support Yes (without API) Yes (without API) Yes (APIs) Yes

2

https://reubenrochesingh.medium.com/comparison-of-10-programming-languages-f43b0ac337a4
3

https: //www.sam-solutions.com/blog/image-recognition-programming-language/

13

https://reubenrochesingh.medium.com/comparison-of-10-programming-languages-f43b0ac337a4
http://www.sam-solutions.com/blog/image-recognition-programming-language/

4.3 M y Proposal

Application was implemented in Python language with usage of Mask R - C N N and OpenCV,
the proposal of application execution process is next:

1. When application is launched, the input data set processing will start. Processing
will be done frame by frame.

2. Initial frame is processed in a different manner. The program detects all cars on initial
frame and instantly marks them as parking lots, already busy parking lots. A l l of the
parking lots are marked as a yellow ones in that moment.

3. Further processing is taking place now, each frame is processed, statistics collection
is taking place starting from that moment. Information, such as amount of cars on
the parking and current busyness of a parking will be shown on top left corner of a
video.

4. Application now waits for new cars to detect, detects empty places and provides the
user with all sufficient information. The application can run forever in case of a live
streaming, however it will need time, real time to collect data and start working on a
full potential.

The application should be self-correcting. If car detection has failed in one frame,
program should re-detect that car in a next frame. Detection should be set on detecting of
cars or trucks only, not any other objects.

The statistic of total busyness of a parking will be collected by finding the number of
busy parking lots. The popularity of a parking lot will be determined by getting the ratio
of the time exact parking lot is busy to the total application run-time. The application run­
time will be increasing each frame, the parking lot's busyness time only when the parking
lot is busy. The popular place is a place which is busy for more that 90% of time.

The detection of a cars should be repeated in every frame, as it was mentioned before I
could not find any solution of that kind. That's why I had to create it myself. M y proposal
for that was auto-detecting the cars on each frame.

One if the most interesting solutions that I have created for the problem of auto-
detecting is going to be described now. As it was mentioned before all cars will be an­
alyzed and marked as a parking lots on a first frame, on every further frame the detector
should be called. The detector will scan each next frame. While scanning, it will remember
all of the new cars it found (that means the boxes around the new coming cars). Then
it should compare new arrived boxes to already existing boxes. These will be done by
comparing the array that represent the parking lots to a new arrived car. On listing 4.1
existing parking lots represents the parking lots that already exist. The following lines
in same listing are responsible for finding the distance to the closest parking lot. The max­
imum distance between different parking lot's same coordinates (top left, top right,bottom
left or bottom right, more information of figure 4.1) could be no more than relative value
for that data set (the relative value will be described 2 paragraphs below). By summing
up the value, the program will understand if the new parking lot has already been detected
before. In case if it is not overlapping with any other lot, the new parking lot will be added
to candidates for existing parking lots.

4

https://jaxenter.com/energy-efficient-programming-languages-137264.html

14

https://jaxenter.com/energy-efficient-programming-languages-137264.html

Looping through the existing parking lots
for existing_parking_lot in existing_parking_lots:

Subtract numpy array's element to find difference between parking lots
result = abs(coordinates_subtract(new_parking_lot, existing_parking_lot))
sum up the differences
[total += total + x for x in result]
return true i f there is any difference, otherwise return none
return True i f total <= relative_size else None

Listing 4.1: Comparing the overlapping pseudo-code

The candidate will become full-fledged lot in case if the new box is not corresponding with
any of the existing boxes and stays one the same places for 5 or more frames. This spot
in that case will be marked as a parking lot and added to a list of a parking lots. The
technique of 5 or more frames was used by me due to the accuracy, if parking lots will be
created for less amount of frames, program will have a parking lots on a cars that are in
move. The implementation of that solution is expressed in pseudo-code 4.2.

for new_car in all_cars:
i f (
new_car not in already_detected_cars
&&
new_car.same_place_value >= 5
):
parking_boxes.append(new_car)

Listing 4.2: New parking box adding pseudo-code

15

The relativity of a data set that was mentioned before will be described now. To find the
maximum allowed distance between boxes, the total size (height and widths) of all of the
found parking boxes should be summed up and divided to their total amount. This effect
will give the program an effect of a size recognition. For instance, 200-300 pixels boxes could
possibly mean that cars are located really close to camera, and the corresponding between
them could possibly be in a wider range. Same idea for extra small 7 pixels boxes, where
distance could be in range of 1-2 pixels. That's why this exact technique will perfectly suit
all data sets and help program to become more effective.

The next achievement is drawing the boundaries around the parking lots. Drawing
with different colors will depend mainly on intersections and popularity of a parking lot.
Intersections or overlaps will be counted by finding the ratio between the area of a parking
lot and a new coming car. In case if a new coming car is overlapping the existing parking lot
for more than 45% that place is now counted as busy. Additionally if a place is popular, the
program will find that out. Bounds of the lot will be yellow, in case if place is not popular,
the box is red. If the place is empty, it will be green colored, if place is also popular the
bounding will be blue.

One of the features of a program that to my of thinking, should be implemented is
numbering the parking lots. As it could be seen from the picture below, the lots are
numbered. The problem that were faced while creating this, is that the numbering of lots
is chaining every frame. I decided to solve that in a way of creating a dictionary, key of
that dictionary will be the coordinates of a parking box, whereas the value would be the
assigned value. Initially the value wil l be 1 and each new detected parking lot will increase
that value on one. This allows to number all of the vehicles on a first frame, in case of a
new coming vehicle the number will be incremented, assigned and saved in that dictionary.
From the benefits there is no need to delete elements form the dictionary due to the fact that
the parking lot cannot disappear. That's why this solution should be the best. Marking of
the lot is beneficial for orientation on a parking and can be also used for a lot of further
features.

As you could notice there are some statistics information placed on the left top corner of
some figures (see figure 4.2). Due to some conclusions, I decided to place all of the statistics
to the left top corner. Colors of statistics' font should be changeable by button click, for
that case the keyboard's ' f button was chosen. Application will get the user's input and
change the colors in order to make the statistic data display well in all backgrounds. Colors
of the statistics should be: green, red and blue. The combination of these colors will show
a good output according to my experiments. Experiments were conducted by finding the
range of colors that will fit the background. The output was that at least one of that three
colors (that were chosen) perfectly suited the data set.

On figure 4.2 the statistic states that the parking is filled by 100% however there are
a lot of free spaces, these are caused due to the fact that parking is filled by 100% only
according to the parking lots program already knows. In case if there were not vehicles on
a parking lot yet, it won't be counted as a parking lot.

The next milestone is optimization. The first step of optimization should be optimizing
the redundant code, which should be processed straight after implementation finishing.
Additionally in a data set of images or videos, there is no need to scan every frame. That's
why I made a decision to skip the frames and take frames on a distance 1.5 seconds from each
other, this value could be bigger on less, the point is that after that kind of manipulations

5

https://www.skoda-storyboard.com/cs/0209_005-2/

16

https://www.skoda-storyboard.com/cs/0209_005-2/

Figure 4.2: One of the variants of the final look of an application

program will definitely work faster. Additionally usage the good programming practices
and clean code will also optimize the program.

One of the most useful features of an application is a dynamical bounding changing,
firstly I decided to bound the car in a boxes, due to the fact that it is obvious and simple (see
figure 2.1). However, at the end of the proposal, it was noticed that rectangle boundings are
not always the best choice, see figure 4.4 the cars are lying perpendicular to cars. This was
solved by changing the squares boundings to ellipse boundings. The boundings boxes are
looking good in that case, and their main functions are visual effects (make user to differ
the cars more easily). The figure below illustrates how good the ellipses are used exactly
on that moment. However the ellipses are not always useful, these can be seen in the right
side of figure 4.3.

Figure 4.3: Two types of boundaries switching (squares and ellipses).

17

The most correct solution for that could be the possibility of chaining the boundaries
view while program is running, that should be realised by button clicking. In case if the
appropriate button is clicked, the squares will change to ellipses and vice versa. That button
is keyboard's't ' button. This feature in addition with the statistic's color changing will be
good visual addition. The figure 4.3 is perfectly demonstrating the effect of button clicking.

The application in a long perspective could be extended to a desktop application with
complete information about the parking lots, in addition with beautiful GUI, optimization
and a lot additional visual features that will make the application user-friendly, otherwise
the program could focus on collecting statistics and become parking analyzer.

One of the possible final views of the application should look as it shown in figure 4.2.

Figure 4.4: Squared boundaries around the parking lots

18

Chapter 5

Implementation

5.1 Implementation Details

This section describes the implementation details. A l l of the proposals were described in
the section 4, this section will mainly focus on the implementation details. The input video
is parsed and divided into the frames using OpenCV library.

The implementation is also using the C O C O (see section 2.4) pre-trained models that
were loaded into the Mask R - C N N detector. The detector itself is set on the desired options.
The minimal confidence detection is set to 0.1 along with model name, amount of C O C O
classes and etc.

Mask R - C N N returns a big array which contains data such as the top left and bottom
right coordinates of a detected car, identification of each car, also called as a label (car or
truck), then the detection confidence rate and the object masks, for better understanding
object masks and boxes with everything that was mentioned above are illustrated in figure
5.1. That means that when detection is process the Mask R - C N N detects only vehicles and
cars.

Closer to the detection one of the most interesting solutions that were implemented in
the project are boxes intersection. The function that finds whether the boxes are somehow
crossing with each other or not (even partially). These were implemented in the next way.

As it was mentioned before the Mask R - C N N returns top left and right bottom coordi­
nates of a detected car. Using those coordinates, it is possible to obtain all the coordinates
of a car. The finding of intersections is executed in every frame. After getting and collecting
the parking boxes (all parking boxes) they are sent to the function that gets every parking
box and compares coordinates of it to coordinates of all other parking boxes. Comparison
is completed by integers comparing. If the intersections length is less than the average
distance between boxes on whole data set, the first box going to be deleted. This tech­
nique is similar to the one that is used to detect new coming cars. However, the boxes
could have duplicity, top semi-duplicity, bottom semi-duplicity, right semi-duplicity and
left semi-duplicity. Due to those reasons the implementation is a bit different (see chapter
6.2).

The next interesting feature of implementation is the numbering of parking lots. These
were implemented by creating the dictionary, keys of that dictionary are represented as
tuples of coordinates, these tuples are containing coordinates of a parking lot. The parking
lot numbering function is called every frame, if there is no dictionary yet, it will be created
with initial value of the first parking lot (initial value will be 1 due to the fact that the first
slot should be marked as 1). When the program wants to get car's parking lot number, it

19

Figure 5.1: The Mask R-CNN objects detection

calls the function. Function checks if that parking lot was already numbered. Due to the
fact that detection is changing every frame, the parking lot's border could slightly differ.
That's why numbering is searched in range of 15 pixels from every corner(15 pixels is an
optimal length). In case if the program already knows the parking lot that is placed not so
far away from the parking lot that wants to be marked, it will return it. Otherwise it will
crate a new key with the value that is not used in a dictionary. It could be new variable,
that will be new generated value (value will be equal to total amount of parking lots), or
the value of mistaken parking lot that was deleted from dictionary, but will be used again.
These technique optimizes the program, it allows to not to crate excessive variables.

One more feature is handling the user's input. The OpenCV's waitKeyQ function is
helping the program with that1. In particular case of an application, 3 buttons are handled.
These are 'q', 't', 'P. The 'q' button serves as a quit button. It destroys the windows, stops
the application processing. The 'P button changes the font of a statistic's. These are made
using simple switch that changes the color from blue to green to red and then again to blue.
The statistics is printed every frame, using the predefined color, button pressing changes
that predefined color. The't' button changes the representation, these are done by chaining
the flag that is responsible for drawing ellipses or squares.

The last feature is a most popular parking lots detection algorithm. Implementation
uses the dictionary. Coordinates are passed to a function; the coordinates are changed to a
string and concatenated. In case if some coordinate is not in the dictionary yet, it will be
saved with initial value of 1, otherwise if that coordinate is already in, the amount of value
will be increased on 1 (on 1 each frame), them program will return the flag depending on
how much of the total time that parking lot is busy. The total time amount increases every
frame. I decided to count place as popular in case if it is busy for 90 % of the time. The

x

https: //docs.opencv.org/master/d7/df c/group highgui.html

20

http://opencv.org/

box's color will be changed to red if place is busy for less than 90% of total application
run-time, otherwise it will be yellow.

Application is supporting 2 input arguments. These arguments are responsible for
providing a manual and choosing the data set. The help argument is called by —help or
-h and will show the wide manual in command prompt. The —dataset data set or -d
data set will specify the data set for the application. The data sets are more precisely
described in section 6.3. These argument could be combined.

The handling of the application starts in the main file (parking_analyzer.py). A l l of
the functions are called from that file. Additionally file for Mask R - C N N configuration was
created. The variables were also created in a different file, this allows to use the variables
comfortably in all files. A l l of the main debugging functions are handled by the functions.
The same as statistics placing and parking lots' coloring.

5.2 Implementation of the Vehicle Detection Algori thm

More precisely about vehicle detection. First of all the video is parsed by OpenCV. Each
frame is converted to B G R (Blue Green Red) 5.2 from R G B (Rad Green Blue). Afterwards
that frame is sent to Mask-RCNN detection model. The Mask R - C N N assumes that appli­
cation wants t i recognize objects in many frames, however the program sent only 1. That's
why the program extract only first element of a returned values (detections on the first
frame). The time distance between frames are set shortly after that moment. The final
step is sending all detected objects to a function which will return only vehicles including
their boxes, masks, labels and confidence rate. This is exactly how OpenCV and Mask
R - C N N detect objects.

Figure 5.2: The frame converted from R G B to B R G color model

21

5.3 Implementation of the Parking Data Saving Algori thm

The algorithm of saving the information in described in the next steps. The detecting
is processed every frame. In case of detection of a new car, the boxes are not created
straight after. First of all the checks for duplicity and overlapping are processed, using the
same algorithm that were described in section 4. Afterwards, values are inserted into the
dictionary.

The key of the dictionary is a sting representation of a coordinates (left top and right
bottom coordinates of a boxes). The value (of a dictionary) is an integer (default 0), it
increases every time in case of one exact car is detected on the same coordinates. In case if
car is moving car, the coordinates will be different, this helps the application not to make
a parking lot from any detected car.

The dictionary is looped through every frame and in case if any key doesn't have any
updates, the value of that key will be decreased. As soon as they reach -1 they will be
deleted from the dictionary. The coordinates in the dictionary needs to be detected on the
same place for 5 frames, otherwise they won't be appended to a parking boxes list. In one
word this algorithm work life tachometer, in case if the rate of detection is the same for
5 frames it is a parking box, otherwise it is not. One more evidence for that the program
should run for a few days until the full efficiency The key with decreased values will be
saved in the dictionary for the future purposes, they can be useful in the future.

22

Chapter 6

Testing & Evaluation of Achieved
Results

This section will describe the testing and the methods of evaluation.

6.1 Testing the Vehicles Detection and Counting

The testing of the code was done in a simple way. In one word each new feature, bug
fixing or just any code formatting caused the testing. That method of testing was called
by me "right-away,, testing. The meaning of that is just to run the application every time
something is added of fixed. This is the most sufficient way of testing for that kind of
application.

Testing of detection of vehicles were made on 4 main data sets (are included in diploma
files).The data set number 4 was collected by me. Data set number 3 was provided to me
by supervisor. First data set were taken from internet1, as same as the second one 2. In
addition the detection was tested on the random pictures taken from parking, and other
data sets. Outcome of testings caused the change of the code. For instance the first testing
caused the change of Mask R - C N N configuration, confidence rate and showed that the
solving of the duplicity is necessary. More precise information about testing will be found
below.

Testing of counting the vehicles and marking them as a parking slot were more deep.
These were made mainly by printing out while implementing and comparing to values that
was counted by me on the screen and values that were provided by OpenCV (see figure 3.2.
As it was mentioned in the capital with implementation (see chapter 5), the dictionaries
and bugs solving functions were printed and called respectively to achieve a higher result.

Additionally application was tested at night (data set number 3). The application
detection of cars started to partially fail, according to observations the application rate of
failure increases with the darkness, in case if there is at least little souse of light application
will detect normally. More information could be found in section 6.3.

The detecting in the light changing (sun from different angles) was also tested, in that
case no changes occurred.

x

https: //github.com/eladj /detectParking/blob/master/datasets/parkinglot_l_480p.mp4
2

https: //github.com/olgarose/ParkingLot

23

6.2 Bugs and their Solutions

These section will describe the appeared bugs and the way they were solved. The most
popular appeared bugs are:

1. Duplicity of parking boxes - Comparing the corners coordinates, delete corre­
sponding.

2. Top semi-duplicity of parking boxes - Comparing two X coordinates (left and
right) and top Y coordinates, delete corresponding.

3. Bottom semi-duplicity of parking boxes - Comparing two X coordinates (left
and right) and bottom Y coordinate, delete corresponding.

4. Right semi-duplicity of parking boxes - Comparing two right Y coordinates (top
and bottom) and right X coordinate, delete corresponding.

5. Left semi-duplicity of parking boxes - Comparing two left Y coordinates (top
and bottom) and left X coordinate, delete corresponding.

6. Unreasonable enormous detection of nothing - Finding the middle height of a
parking boxes, delete all boxes that are distinctively bigger than mean.

7. Wrong detection marked as empty parking slot on the first frame - Delete
all parking slots that appeared empty on the first frame.

One of the most common problems during the creation of the program was the vehicles
detection problems. First issue was faced straight after the Mask R - C N N execution. Figure
6.1 illustrate huge problems with detecting.

Figure 6.1: Mask R - C N N initial detection problems

24

Image demonstrates that in that period of time Mask R - C N N could detect only about
40% of a vehicles it should detect. These issues were solved by setting the correct options
to the Mask R - C N N . First of all lower the percentage of confidence of showing. When
confidence of detection is 60% Mask R - C N N won't detect a vehicle that he is not 60%
(or more) sure is a vehicle. That's why by lowering the confidence to 10% and tell Mask
R - C N N to detect all kind of vehicles the situation changed dramatically as it shown in a
figure below. The other option for that would be retraining or additional training of the
Mask R - C N N detector which I didn't find relevant due to the simplicity of the way the
problem was solved.

Figure 6.2: M A S K R - C N N detection after correcting the setting

As it is seen, after the detection become wider, some bigger bugs started to appear.
On a figure 6.2 it seems that there is small red rectangle positioned close to number 5. In
addition vehicle number 1 is detected two times, it could be understood from the width of a
bounding. The first two bugs were called by me as duplicity and semi-duplicity respectively,
the proposals for solving that problems were wide, starting from changing the detector or
as it was mentioned before retraining the model. But almost all of the detectors will have
the same issues, that's why I decided to solve this problem manually.

Finding all the boundings on a frame, get the coordinates of the boundings, and then
compare each bounding with each other bounding in a frame. In case if some boundings are
corresponding, or are located unreasonably close to each other(one in another), for instance
from 1 to 5 pixels, one of the boundings is now counted as a mistaken and will be deleted
from the parking lots. Furthermore while in the begging of an implementation these values
were strict (up to 5 pixels) now it is changed to mean distance between all parking lots
corners. These should allow the program to show same effectiveness on all kinds, height,
width and resolution of a video.

The semi-duplicity (number 5) was solved in a bit different way, as it is visible from
the figure 6.2 the duplicates here are most likely to be solved by processing the top two

25

coordinates. That means the left top X axes and right top X axes. The height for both
of these coordinates will be the same. In general if the height and the X coordinates are
corresponding to any other box, it will be counted as wrong, and will be deleted. The same
idea of solving but with different coordinates will be used in case of semi-duplicity that is
located at the bottom, right or left of the box. The only difference is using the bottom Y
axis. For now it is already 3 functions that are used to solve the bugs, all of these function
will be further combined with the car auto-detect function that will be described below.

Continue on programming, some further bugs appeared. As it could be seen from figure
6.2 two big green rectangles appeared on the right and left sides of the frame (number 4 and
3). It is obvious that there is nothing to detect in that positions, doing debugging I found
out that detector identifies that elements as trucks. The thing that I have noticed while
debugging that these spots are marked green straight from the first frame, I understood
that it couldn't be possible due to the fact of that detector finds cars on a first frame, and
makes a parking lot from every place that car is standing on, so it is an error of a detector.
These were solved by checking all of the lots busyness on a first frame. If any lot that
should be busy is marked as empty, program understands that this could not be possible
and deletes that slot from parking lots, that kind of solution helped at all tested data sets.

One the most interesting bug could be found is placed in the center of figure 6.2, the
parking lot (number 5) marked as an empty lot, whereas that exact place is not even a
parking lot. Thanks to debugging I have found out that this exact bug is a detector's
imperfectness. There are two ways this bug can be generated. First of it is an initial green
parking lot marking, as it was mentioned above these bug's sub-type is solved by deleting
the lot that are marked green straight on the first frame. The second way of generating is
not always coming from initial detection, this could be also generated on a run time. This
is solved by using the methods for solving duplicity and semi-duplicity, in combination both
of these function are solving the out-coming issue.

The last issue is located next to number 6. As it could be seen, the big truck is detected
two times. These are caused by the tree that is standing right in the middle of that car.
This is the imperfectness of a detector, this kind of mistakes will be taken in account while
creating the to overall evaluation statistics.

Regarding the corresponding boxes, program chooses which boxes to delete using special
technique, the program is sorting the boxes from top to bottom that means that all the
boundaries will be sorted from the smallest Y to biggest (from sky to floor at this data
set). At the moment the program will compare boundaries it will take the top boundaries
and delete the bottom ones. More precisely in case of duplicity number 5 (Figure 6.2) the
program will first of all compare the small box with every other. When it will found that
smaller box is corresponding with big one it will delete itself, not the bigger box.

These decisions are made after a huge research. A l l of the data sets proved that the top
boundary is always (100 %) mistaken or wrong. Even on the figure 6.2 all the mistaken
(duplicity) boundaries are located on top. In case of boxes next to number 2. The program
will delete the middle box due to the fact that middle and bottom boxes are located ex­
tremely close to each other, according the overall ratio mentioned above. Top and middle
boxes are located far enough from each other, that's why top box won't be deleted.

The figures below illustrate how application should detect new cars. There are four cars
on the right side of the figure that have just arrived.

On the left side of the figure 6.3 the new arriving truck could be noticed. The truck will
take his place in a few frames. Additionally, there is only one box around two vehicles on
the right side of the left figure. This is caused by the red tree that stands next to the red

26

auto and confuses the detector. The tree is overlapping almost whole surface of the car.
This bug is an imperfectness of a detector, it will be added to overall evaluation (see 6.3).

Figure 6.3: Detection of new arriving cars starting

In the figure 6.4 the vehicles are already marked as a parking places. These cars arrived
and stopped at their places for 5 or more frames. Besides that application is perfectly
detecting and processing other vehicles on the data sets. As it could be derived from
image, the ideas described in the previous steps are now brought to life.

Figure 6.4: Mask R-CNN's new cars detection

6.3 Overall Evaluation &; Success Rate

Overall evaluation will proceed on 4 data sets

1. Data set JV»1 - C C T V on moll parking

2. Data set N°-2 - C C T V on street (4 meters height)

3. Data set N°-3 - C C T V on street (14 meters height)

4. Data set N24 - C C T V on busy street (4 meters height)

27

Table 6.1: Overall Evaluation of an Application
Dataset 1 Dataset 2 Dataset 3 Dataset 4

Total amount of cars (initial) 37 22 31 26
Actually detected cars (initial) 37 17 23 23
Accuracy of detecting 97.4% 88.2% 82.2% 88.4%
Percentage of actually detected cars 100% 77.2% 74.1% 88.4%
One frame processing time 3-4sec 4-5sec 3-4sec 3-4sec
Font color change (seconds) 5 10 8 5
Video's resolution 850x478 960x720 1920x1080 1280x720
Parking lot boundings change 10-15sec 12-15sec 13-15sec 13-15sec
Incorrect detections (initial) 6 cars 5 cars 8 cars 10 cars
Incorrect detections (bugs fixed) 1 cars 10 cars 8 cars 2 cars
Detection of a new arriving cars 100% 100% 100% 100%
Busyness detection 100% 100% 100% 100%
Night detection N A N A 50-70% N A
Overall detection success rate 89.0%
Overall accuracy rate 84.9%

Initial amount of cars is the number of cars on the first frame, as it could be seen not
all of the cars are detected initially, and some won't be detected at all.

On data frame N 2 1 (see figure 6.5) only one car which is located on bottom left is
undetected. This is caused by the fact that only one third of a car is visible. Processing
that parking lot is not logically correct due to the fact that parking lot area will be already
divided by three (it also could be divided by 2,4 or more). As it was described in imple­
mentation section, the parking lot is counted as busy if overlapping with the car is more
than 45 percent. However in that cases if auto is standing at 25% on initial parking slot, it
will be marked as busy, exactly that's why the detection of that cars won't be reasonable.

Figure 6.5: Undetected cars on first data set

On data frame N22 (see figure 6.6) the cars in the background are not detected. Obvi­
ously it is hard to detect the cars even by the human's eyes. Collecting information about
that parking lot is not logically correct. That's why the detection of the cars here is 77.2%.
(see table 6.1).

28

Figure 6.6: Problems with cars detection on second data set

On the data frame N23 (see figure 6.7) 4 cars are not detected. One car on the left side
and three cars on the right side. Two cars on the right side are standing next to the lamp
post, that is laying over them on the video. That's the reason why the detector couldn't
detect that two vehicles. The vehicle on the top right is no detected due to the fact that
car is visible only by 25 %. The vehicle on the left is not recognizes due to the angle of
camera, detector recognize that two vehicles as one big lot, that's why there are only 3
parking boxes.

Figure 6.7: Undetected cars on third data set

On the last data N23 (see figure 6.8) 3 cars are undetected. The error of 2 cars in the
middle is caused due to the error of detecting. The angle of the camera makes detector
count these 2 cars as one, in the future iterations these cars will be counted as one too. The
problem is that the size of the concatenated cars is bigger than mean, that's why it will be
deleted. These issues were added to output evaluation. The car on the right bottom is not
detected due to the fact that it is overlapped by a road sign, which confuses the detector.

29

Figure 6.8: Undetected cars on fourth data set

In addition the same detection failures appeared exactly in this third set, as it could be
seen from figure 6.9 the 2 cars are detected as one car. This is caused by the angle of the
camera. The detector count these two cars as one. Moreover the car in the corner is marked
wrong (as a little circle). That's make totally 3 cars with wrong detection. In addition the
colors of that pairs of cars looks alike(4 cars in corner). In that particular cases detection
fails. That's why that data set has the lowest detection rate. This will be added to overall
evaluation (see 6.3).

Figure 6.9: Wrong detection of cars on third data set

The output of analyzing all four data sets showed that some cars should not be detected,
taking than in account might change the overall detection success rate of all four data sets.

30

In that case the first data set will have 97.4% detection rate. Second data set's rate could
be increased to 90.9% due to the two cars that still could be detected. The third data set's
rate could be increased by 4 cars, that means that the rate now will be 87%. The last data
set will not change it's value (see table 6.2).

"?able 6.2: Overall Evaluation of an Application without cars that should not be detected
Dataset 1 Dataset 2 Dataset 3 Dataset 4

Percentage of actually detected cars 97.4% 90.9% 87% 88.4%
Overall detection success rate 90. 9%

Overall success rate will be 90.9% in that case.
One more interesting thing two notice is a speed of font color changing and parking

lot representation. The font color change is faster on the data set with smaller resolution.
The first data set has smaller resolution than the third one, and both of them have smaller
resolution than the second one. That's why time is significantly different. In case of
representation change, all of the timing are in the gap from 10 to 15 seconds. The outcome
from this is that the representation change depends only on the computer power.

Regarding the other features, the detection of actual parking busyness and all other
statistics in general works on 100% according to the tests (counting manually and comparing
information on the screen).

The final point is evaluating the night detection. The detection at night could be
possible with at least little souse of light. In case of full darkness, not even a person, can
detect a thing. Figure 6.10 perfectly illustrates that if any light source persist in that area
the detection success rate will remain the same. The source of light are headlights of a car.

•
I •1

Figure 6.10: Night detection without light source and with light source.

31

Chapter 7

Conclusion

The aim of this diploma were first of all to get acquainted with computer vision, afterwards
to learn how to detect objects on the videos, gather information about them, understand
the principles, analyze already existing solutions, find helpful tools and decide how the
application should work and behave. The detection then should have been performed on
the parking lots and only vehicles should be detected. The information about the vehicles
should be saved and analyzed, all of these informations and work that was done at the
end gave the application that estimates the occupancy of a parking lots. The application
works in the night, corrects itself, detects new vehicles automatically, does not crush, have
statistics, font that is changing its colors and finally the capability to change representation
of parking lots. Application is adaptable to any data set.The studies regarding computer
vision took long time, a lot of time spent, a lot of articles and books were read and analyzed,
a lot of implementation were tried, a lot of time were spent on coding. A l l of these at the
end gave a good application with overall success rate 90.9%. The additional literature that
were read during the implementation process could be found in bibliography [1] [5]. A l l of
that book will give the read the complete understating of computer vision and are advised
to read.

7.1 Possible Extensions

There are two main ways to extend the application. First idea is to focus on statistics and
collect the bigger number of statistics. The possible ideas are:

1. The amount of cars for last 24 hours.

2. The most popular brand (color) of a vehicles in the parking.

3. The mean time of parking slot occupancy.

4. Amount of cars per month.

5. Busyness of parking by hours. (Most popular hour)

6. Total amount of hours that all cars spend on parking for 1 day.

A l l of these and many other statistics can be collected for the purposes of redesigning
and optimizing the space on the parking all over the world. Implementation of all of these
extensions will be using the same technologies for detecting the car's brands or colors. Also
cameras in a good quality and some storage to save the information.

32

Second option is creating of a web application. Wi th graphical interface, even faster
optimization and other features that for example is saving or downloading data. This
application will be bounded to some parking and can be accessed from any part of the
world using Internet connection. The possible mock-up is illustrated on figure7.1.

Parking some other websites
Parking

Parking camera 1 1 Parking camera 2 H Parking camera 3 H Parking camera 4 H Parking camera 5

pafkTng t t A I M by 100%

numbar of e o n today? 44

The mrjsl popular
brand (color) of a

vehicles in the
parking.

The mean t ime of
parking slot
occupancy.

Amount of cars per
month.

Busyness of parking
by hours. [Most

popular hour)

Figure 7.1: Possible design of a web application (Possible extensions).

The "Settings,, button will (for instance) allow to change the theme or colors of boxes.
Switching between several cameras and obtaining information about them by pressing the
buttons. That kind of application will be useful in the parking all over the world. The
buttons on right sides will provide the detailed statistics about every parking. In addition
application will be really fast and could be run on host.

33

Bibliography

[1] D O B E S , P., S P A N H E L , J . , B A R T L , V . , J U R A N E K , R. and H E R O U T , A . Density-Based
Vehicle Counting with Unsupervised Scale Selection. In: S P E C I F I E D not, ed. Digital
Image Computing: Techniques and Applications 2020. Institute of Electrical and
Electronics Engineers, 2020, p. 1-8. ISBN not specified. Available at:
https: //www.fit.vut.cz/research/publicat ion/12360.

[2] D O R R E R , M . G . and T O L M A C H E V A , A . E . Comparison of the Y O L O v 3 and Mask
R - C N N architectures' efficiency in the smart refrigerator's computer vision. Journal
of Physics: Conference Series, not specifiedth ed. IOP Publishing, nov 2020,
vol. 1679, not specified, p. 042022. DOI: 10.1088/1742-6596/1679/4/042022.
Available at: https://doi.org/10.1088/1742-6596/1679/4/042022.

[3] G A R Y B R A D S K I , A . K . Learning OpenCV. Not specifiedth ed. O'Reilly Media, Inc,
2008. ISBN 9780596516130.

[4] H E , K . , G K I O X A R I , G . , D O L L A R , P. and G I R S H I C K , R. B . Mask R - C N N . CoRR. not
specifiedth ed. 2017, abs/1703.06870, not specified. Available at:
http: //arxiv.org/abs/1703.06870.

[5] J I A N G I , X . Density-Aware Multi-Task Learning for Crowd Counting. In: S P E C I F I E D
not, ed. Not specified. I E E E , 2020. DOI: 10.1109/TMM.2020.2980945. ISBN not
specified.

[6] J O S T , D . What is an Ultrasonic Sensor? [online]. 2019-10-7 [cit. 2021-14-04]. Available
at: https : //www.f ierceelectronics.com/sensors/what-ultrasonic-sensor*: - : text=

An7.20ultrasonic7,20sensor7.20is7.20an,sound7.20that7.20humans7.20can7.20hear).

[7] L I N , T., M A I R E , M . , B E L O N G I E , S. J . , B O U R D E V , L . D., G I R S H I C K , R. B . et al.
Microsoft C O C O : Common Objects in Context. CoRR. not specifiedth ed. 2014,
abs/1405.0312, not specified. Available at: http://arxiv.org/abs/1405.0312.

[8] R E D M O N , J . , D I V V A L A , S., G I R S H I C K , R. and F A R H A D I , A . You Only Look Once:
Unified, Real-Time Object Detection. 2016.

[9] S Z E L I S K I , R. Computer Vision, Algorithms and Applications. In: S P E C I F I E D not,
ed. Not specified. Springer-Verlag London, 2011. ISBN 9781848829350.

[10] T H O R N E , B . Introduction to Computer Vision in Python. The Python Papers
Monograph, not specifiedth ed. January 2009, vol. 1, not specified.

[11] W A N G , C . -Y. , B O C H K O V S K I Y , A . and L i A O , H . - Y . M . Scaled-YOLOv^: Scaling Cross
Stage Partial Network. 2021.

34

http://www.fit.vut.cz/research/publicat
https://doi.org/10
http://www.f
http://ierceelectronics.com/
http://arxiv.org/abs/1405.0312

[12] W I K I P E D I A . Parking sensor [online]. Not specified [cit. 2021-14-04]. Available at:
https: //en.wikipedia.org/wiki/Parking_sensor.

[13] Z A D E H , B . R. R. B . TensorFlow for deep learning : from linear regression to
reinforcement learning. Not specifiedth ed. O'Reilly Media, Inc, 2018. ISBN
9781491980422 .

35

