Czech University of Life Sciences Prague
Faculty of Economics and Management

Department of information engineering

Bachelor Thesis

Web Application Solution for communication application

Vait Ameti

© 2023 CULS Prague

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE

Faculty of Economics and Management

BACHELOR THESIS ASSIGNMENT

Vait Ameti

Informatics

Thesis title

Web Application Solution for communication application

Objectives of thesis

The objective of the thesis is to create a backend side for web application to maintain security and
reliability. Server and client will communicate effectively and securely throughout internet. The
application will offer to Log in, create and edit features for users. User can communicate with other users
with messaging each others. Each user will have own attributes such as password, username, Photo. The
application will include the frontend which has developed according to human-computer-interaction
design specifics. The design was delivered to end users as efficient as possible and the API will serve
between the frontend and backend. The front end will have basic user interface for the application where
the most used components will be placed to the most frequently used areas in web browser, which will
help the end users easily reach what they need.

Methodology

The aim of the work was to create a web application using the object-oriented approach. The C# program-
ming language with ASP.NET core framework is used to create this web application. MVC(model-view-
controller) template was used to keep my files organized. Angular framework for typeScript has been used
for the solution for the frontend, alongside with bootstrap framework for CSS to maintain styling. All of
the components was connected at the beginning using walking skeleton model. Microsoft entity frame-
work was used to handle with the data and database. JSON web tokens was used to transmit data between
parties. After that the Application will gradually developed.

Official document * Czech University of Life Sciences Prague * Kamyckda 129, 165 00 Praha - Suchdol

The proposed extent of the thesis
30-40 pages

Keywords
ASP.NET, C#,00P, MVC, Web application, Encapsulation, Inheritance

Recommended information sources

CONERY, Rob. Professional ASP.NET MVC 1.0. Indianapolis: Wiley, c2009. Wrox programmer to
programmer. ISBN 978-0-470-38461-9.

DORRANS, Barry. Beginning ASP.NET security. Chichester: Wiley, c2010. Wrox programmer to
programmer. ISBN 978-0-470-74365-2.

FARRELL, Joyce. Microsoft Visual C# 2017: an introduction to object-oriented programming. Seventh
edition. Australia: Cengage, [2018]. ISBN 978-1-337-10210-0.

PRICE, Mark J. C# 9 and .NET 5 — modern cross-platform development: build intelligent apps, websites,
and services with Blazor, ASP.NET Core, and Entity Framework Core using Visual Studio Code. Fifth
edition. Birmingham: Packt, 2020. ISBN 978-1-80056-810-5.

Expected date of thesis defence
2022/23 SS - FEM

The Bachelor Thesis Supervisor
Ing. Marek Picka, Ph.D.

Supervising department
Department of Information Engineering

Electronic approval: 31. 10. 2022 Electronic approval: 30. 11. 2022
Ing. Martin Pelikan, Ph.D. doc. Ing. Tomas Subrt, Ph.D.
Head of department Dean

Prague on 09. 03. 2023

Official document * Czech University of Life Sciences Prague * Kamyckda 129, 165 00 Praha - Suchdol

Declaration

I declare that | have worked on my bachelor thesis titled "Web application solution
for communication application” by myself and | have used only the sources mentioned at the
end of the thesis. As the author of the bachelor thesis, | declare that the thesis does not break
copyrights of any their person.

In Prague on 15" of March, 2023

Acknowledgement

I would like to thank to my supervisor Ing. Marek Picka for his time, instructions,

and advice that was very helpful and essential during the writing of this thesis.

Web Application Solution for communication
application

Abstract

This thesis was formed on technical development standards for C# programming
language of a communication application. The author was capable of building an MVC
model web application using ASP.NET framework as backend configuration for the
application, in order to test and have a user interface Angular framework for TypeScript has
implemented. The database was implemented with SQLite for better development
environment. The Data was handled by Microsoft’s entity framework core in order to make
the database management easier. SignalR was implemented for better user experience. MVC
model has successfully implemented separating model, view, and controller according to
MVC standards. Bootstrap design classes have been used according to development
standards. Cloudinary platform has been used for photo management which provides free
cloud storage and makes easier to do API requests. The security has maintained by JWT for

safe server client communication.

The theoretical part was devoted to give basic knowledge for developing any web
application and focused mainly on communication type of application. Theory part creates

an understanding of general concepts in developing web applications.

The practical part was devoted to create a working and running a secure web

application where users can message instantly, provide their photo, and socialize.

Keywords: MVC, ASP.NET, C#, entity framework, Bootstrap, Angular, TypeScript,
SignalR, SQL.ite, API

Res$eni webové aplikace pro komunikaéni
aplikaci

Abstrakt

Tato prace byla vytvofena na standardech technického vyvoje pro programovaci
jazyk C# a komunika¢ni aplikace.. Autor byl schopen vytvofit webovou aplikaci s modelem
MVC vyuzivajici framework ASP.NET jako backendovou konfiguraci pro aplikaci, aby
bylo mozné otestovat a mit implementované uzivatelské rozhrani Angular framework pro
TypeScript. Databaze byla implementovana s SQLite pro lepsi vyvojové prostiedi. Data byla
zpracovana jadrem entity framework spolecnosti Microsoft, aby se usnadnila sprava
databaze. SignalR byl implementovén pro lepsi uzivatelsky zazitek. MVC model uspésné
implementoval oddéleni modelu, pohledu a regulatoru podle standardd MVC. Ttidy designu
bootstrapu byly pouzity podle vyvojovych standardii. Pro spravu fotografii byla pouzita
platforma Cloudinary, kterd poskytuje bezplatné cloudové lozisté a usnadiiuje provadéni
pozadavkl API. Zabezpeceni zajistuje JWT pro bezpecnou komunikaci se serverem a

klientem.

Teoretickd Cast byla vénovana zakladnim znalostem pro vyvoj libovolné webové
aplikace a zaméfila se predevS$im na komunikacéni typ aplikace. Teoretickd Cast vytvari

pochopeni obecnych pojmil pii vyvoji webovych aplikaci.

Prakticka ¢éast byla vénovéna vytvofeni fungujici a provozované zabezpecené
webové aplikace, kde mohou uZivatelé okamzité posilat zpravy, poskytovat svou fotografii,

a socializovat se.

Kli¢ova slova: MVC, ASP.NET, C#, entity framework, Bootstrap, Angular, TypeScript,
SignalR, SQL.ite, API

Table of content

1 INEFOTUCTION ...ttt bbbt 10
2 Objectives and Methodologycccueveiiiiiiiiie e 11
2 R O | o =T £ =TSSR 11
2.2 MEthOUOIOQY ..o e 11

3 LITEIrature REVIEW.coiviiei ettt sttt sttt te e sneenreas 12
3.1 What is communication application?ccocevvririeieienese s 12
3.2 Object oriented Programmingccccoceeerererenenienieee e 12
3.3 Middleware for security and reliabilitycccoooeeieiiiie i 14
3.4 The .NET FrameWOIKccoiiieiiiieiiesie et sae e e 15
3.4.1 C#programming langUagE.........cceveiueiieiieiieiie e 16
3.4.2 DatatypeS Of CH ..oooeiiiieece e 18
3.4.3 ASP.INET frameWOIK........cocveiiiierieiie e 19
3.4.4 Entity framework COTe ... 21
345 SIGNAIR ..o 22
3.4.6 JSON WED TOKEN ..ot 24
347 WeD API (REST AP .ot 25

3.5 MOodel-VIeW-CoNtrollerccooii e 26
3.6 REPOSITONY PALEINeveeiicie sttt beebe e sre s 28
N A Y/ o1 1ol o | S SRROPOSURRN 29
BT L ANQUIAE i 31

N O = 10T 1511 - o PSSP 34
3.7.3 Walking skeleton model ..o 34

4 PraCtiCal PArt........ccoooi ittt 36
A1 ANAIYSIS ..t 36
4.2 DEBSIGN .ottt bbb 38
4.3 IMPIEMENTALIONeeiviiiicce e 41
4.3.1 Setting up the environment and applicationcccccevenerniiininieennn, 41
B.3.2 CL it 42
4.3.3 Dependent teChNOlOgIEScooiiiiiiiieieccce e 42
4.3.4 Initial Set-Up OF PrOJECT......coiiiiiiieee e 42
4.3.5 Walking skeleton model for backendcccoovviiieiiiiiiiic e, 43
4.3.6 Walking skeleton model for frontendc.ccooeviiiiineniiniceeee, 46
4.3.7 Authentication and JSON web token Securityccccevvevieiieesiecnnnnnn, 47
4.3.8 Registering and logincccoiiiiiiiic i 48

4.3.9 PhOto ManagemeNt..........ccoueiieiiiiiesie e ee e see e re e st re e 49

4.3.10 RepOoSitory Management........ccccveueeeeieerieieeseesiesee e esee e e sae e e e e 50
4.3.11 MeSSaging DEIWEEN USEIS.......cceiieieieieiesie sttt 51
4.3.12 Custom Middleware for error Checkccocovvviinininieienseee 52

4.4 Client Implementation ..o 54
441 HOME AN FEOISTEN ..ottt 54
A.4.2 USEIS PAQE . .iiiiiiiiiiii ettt ettt e e 57
4.4.3 USErs detail PAGEcoveiviiiiriiiiiieeieieee s 58
4.4.4 USers edit Profile.......ccccviviiiiiiee e 59
445 USEISMESSAGE ...c.evieureeieeeieesireeree st e neesie e e s s e sme e s e sne e e neennee e e nneeas 60
A.4.6 IMIBSSAGESveevienrieieesiee ettt 62

5 ReSUITS @Nd DISCUSSIONcviiiiiiiiiiiiiiieieieie ettt st 64
GO0 o] 11] o] o SR 65
T RETEIEINCES ..ottt st sttt ne e 66

List of pictures

Figure 1. Middleware in ASP.NET COre [7] ..ccoooviiiieieiene e 15
Figure 2. NET Framework architecture [10]ccooeiiieiiiicsecce e 16
Figure 3. ASP.NET on IIS server architecture [15]........cccccviiiiiniiiiniieiee e 21
Figure 4. object relational mapping [17].....ccccoveiiiieiiese e 22
Figure 5. JWT STrUCLUE [20].....coueeeeieieiieiie st 25
Figure 6. ASP.NET Core MVC architeCture [24].......c.cccvoveieeii i 28
Figure 7. RepoSitory pattern [26]ccooooiiiiiiiiiiieiee e 29
Figure 8. Angular ArchiteCture [29]cov e 34
Figure 9. The architecture of appliCAtIONcooiiiiieiei e 39
Figure 10.UML Class diagram...........cccueiiiieieeiesie ettt sra et sve e e 40
Figure 11. Entity relationship diagram ... 41
Figure 12. .csproj file after we installed packages.........ccooveveeiiiie i e 43
Figure 13. Connection sStrings CONfIGUIAtiON...........ccoiieiiieneneie e 43
Figure 14. user table after firSt Creationcocveiii e 44
Figure 15. DataConteXt.CS FIlEcooiiiiiiii i 44
Figure 16. Injecting DataConteXt @S SEIVICEcc.ccvuieiuieiiiieiie st 45
Figure 17. APTUSEISCONIIOIIET ... 45
Figure 18. HTTP request for getting all the USerS..........ccoveiieiiiiiie i 45
Figure 19. Importing HTTP CHENT.......ooiiiiiiiie e 46
Figure 20 CORS CONFIGUIALIONoiiiieiie et 46
FIQUIe 21, TOKEN CIASScveieiiiiiiieee e bbb 47
Figure 22. AUthOrIZe attriDULEccveiie e e 48
Figure 23. REGISIEI TEAUESTeeueeieieieite ittt bbb 48
Figure 24. 10gin CONIOIIEToiiieiiecec e aae e 49

Figure 25. Adding new Photo eNdPOINT.........ccoiiiiiiiieieee s 50

FIQUIE 26. USET FEPOSITONY ...euvieiiiiieiieeie ettt ettt te et e e st te et e ba e te e e e sneenns 51
Figure 27. Message With SIgNalR..........cooiiiiiiiie e 52
Figure 28. Error MeSSage ClaSSccuviieiieieiie ettt 52
Figure 29. Custom error MIAdAIBWAIEooiuiiieiieieeie e 53
FIgure 30. AUINGUAITcoieieiicceee ettt e et ente e sneenns 54
FIQUIE 3L, FOULEI PP . ettt bbb bbbt 54
FIGUIE 32, 10QIN SEIVICEeiitieie ittt sttt sttt e st te et s te e te e e sneenns 55
Figure 33. 10giN COMPONENT........c.oiiieiiiie ittt re e be e e eas 55
Figure 34. 10gin tEMPIALEccveiiiieee e 55
FIQUIE 35. HOME PAGE........eiiiieiiiieiiei ettt 56
FIQUIE 36. FEQISIEE SEIVICE......ieiiiiieiieeie ettt ettt et e e s ta et e e s be e te e e e sneennas 56
Figure 37. regiSter COMPONENTcviiiiiiiieite sttt 56
Figure 38. regiSter TOIMoooiiiee e e 57
FIQUIE 39.TEQISTEI PAGEeeveeiitieiietiee ettt bbbt b e bbb 57
FIQUIE 40. GBE USEIS ...ttt bbbttt bbbttt 58
FIGUIE 41, USEIS PAGE ...vveveeveeieeiie it ete st e steete et e steete s e staesteasaesbaesteanaesbaesseennesteenteaneeaneenns 58
Figure 42. Getting USer detailcooovoiiiiiiiiie s 58
Figure 43.USer detail PAJEccvecveiieeie ettt sttt re e ns 59
Figure 44. Updating USEr PrOPEITIESccveivirvertiriiriisiieiieiesie ettt 59
Figure 45. Uploading PROtOcoiieiiiic i 59
FIQUIE 46. USEI EUIT PAJEveiueiteeiieiieeeee ettt bbb 60
Figure 47. Message teMPIALEccveiiiiiiiiece et 61
FIQure 48.USEr Chat TaD..........ooiiiiiiicee s 62
Figure 49.0uthoX SECtiON Of MESSAGESccvveiveiriiiieeie et 63
Figure 50.User outhoX MESSAGES PAGE.....c..ervertirtirririieieeieie ettt 63

List of abbreviations
MV C- Model view controller

VB- Visual Basic

VS- Visual studio

Ul- User interface

API- Application programming interface
CLR- Common language runtime

IM- Instant messaging

E2EE- end to end encryption

CSS- Cascading styles sheet

HTML- Hypertext markup language
OS- Operating system

IDE- Integrated development environment
OOP- Object oriented programming
I1S- Internet information service
ASP- Active server pages

GUI- Graphical user interface

EF- Entity Framework

SQL- Structured query language
ORM- Object relational mapper
GPS- Global position system

CORS- Cross origin resource sharing
JSON- JavaScript Object notation
JWT- JSON web token

REST- Representational web transfer
URI- Uniform resource identifier
URL- Uniform resource locator
WWW- World wide web

SPA- Single-page application

CLI- Command line interface

UTC- Coordinated universal time
HTTPS-Hypertext Transfer Protocol Secure
ASP- Active Server Pages

SOAP - Simple Object Access Protocol
XML - Extensible Markup Language

IANA -Internet Assigned Numbers Authority

1 Introduction

Messaging and socializing between other people from distinct locations has been hard
until 21 century. One of the best things that technology has brought to humankind which
are social beings is socializing through internet with your family, friends and even people
you have never met that are thousands of kilometres away from you, instantly. (Damjan,
2022) [1]. This number can prove that communication over online services is in remarkably
high demand especially usually those applications are usually free such as: WhatsApp,

Viber, Messenger, etc.

In today’s world, communicating through Online services has replaced usual offline
services. The reasons for that are that it is free to communicate online, all you need is
internet. Also, the complexity of building online services is easier, there are a lot of sources
about how to build communication applications, even that you can do it for free. As of 2021
there are 5.3 billion downloads of WhatsApp globally.[2] There are more applications that
are globally famous and have millions of downloads.

Developing communication application has many aspects which means you can
always upgrade and bring new features to end users. Some of the aspects are:

l.instancy: which can be improved by faster implementations

2.compatibility: helps the file and text transfer to be in minimum bytes

3.security: there are many approaches you can use and always put on more, one of
such is E2EE (end-to-end encryption) which makes messages only be read by the sender and
recipient.

4.User Interface (Ul): client side of application can be improved with many
innovative designs which will help end users to use the application more effectively and

enjoy their time they spend in application.

Communication applications can be always revamped that is why it is worth to learn
and know how to develop, they have had effects in our lives in 21% century. Every big
communication application has getting updates almost every year with new features and it

will grow even more.

10

2 Objectives and Methodology

2.1

2.2

Objectives

The objective of the thesis is to create a backend and frontend side for a messaging
web application to maintain security and reliability. Server and client will
communicate effectively and securely throughout internet. The application will offer
to Log in, create and edit features for users. User can communicate with other users
with messaging each other. Each user will have own attributes such as password,
username, Photo. The application will include the frontend which has developed
according to human-computer-interaction design specifics. The design was delivered
to end users as efficient as possible, and the API will serve between the frontend and
backend. The front end will have basic user interface for the application where the
most used components will be placed to the most frequently used areas in web browser,

which will help the end users easily reach what they need.

Methodology

The aim of the work was to create a web application using the object-oriented
approach. The C# programming language with ASP.NET core framework is used to
create this web application. MVC (model-view-controller) template was used to keep
my files organized. Angular framework for TypeScript has been used for the solution
for the frontend, alongside with bootstrap framework for CSS to maintain styling. All
the components were connected at the beginning using walking skeleton model.
Microsoft entity framework was used to handle with the data and database. JSON web
tokens were used to transmit data between parties. After that the Application will

gradually be developed.

11

3 Literature Review

3.1 What is communication application?

Instant messaging (IM) refers to an application that allows two or more individuals to
interact with one other using two distinct devices running the same program, or through a
website or application accessed by an internet-connected browser. [3]

IM is different than public chats because the communication that has been happening
IS not seen by many users, it can be seen only by the sender and receiver. [3] There are no
multiple users that can see and reply to the messages that are being sent between devices, it
is only between the users that are interacting with each other.

The simplest goal of instant messaging is two achieve: keep a track of when users are
online or offline to send notifications or give a hint that users are being online. [3] The
actions that are happening are seen in real-time without a need for refreshing the page. Both
users that are sending and receiving the messages will have accordingly different changes
on their devices such as when a sender sends one message then the sender’s phone will imply
that the message is sent, and the receiver user will get a notification at the same time saying
that user has an unread message.

Usually, this kind of software relies on centralized servers where it can track the
presence of users, and their actions by sending real-time data to the server and back to the
user in form of notification or information or an icon symbolizing the presence, unread

message, etc. [3]

3.2 Object oriented programming

Obiject oriented programming (OOP) is a software principle which models the data as
a class. OOP is a concept that was founded in the 1967 software crisis as an answer, and it
has been developed since. [4] OOP is a way of implementing the code according to some set
of practices. [4] OOP can be referred as reusable code, meaning everything is an object
which we can use the objects many times, this is what makes OOP flexible software that is
satisfying the needs for a dynamic application at runtime. [4] There are different ways how
to implement OOP but not just one. We can see real examples, for example, JAVA and C++

have been developed according to OOP standards, but they are implementing OOP in their

12

own way. There are mainly two approaches when it comes to OOP, class-based and
prototype-based languages. Class-based programming languages are C#, C++, and Java. The
class-based means common properties of objects with the template written in a class. The
objects are manipulated inside the software after it is initiated. During runtime objects are
initiated but not the classes.

The prototype-based applications you do not initiate but you clone objects and that is
the biggest difference between class-based and prototype-based approach inside OOP. [4]

Obiject oriented programming has been around for a while but yet it is such a big
concept and have different approaches it is hard to say what it is exactly, although most of
the developers believe that there are set of properties that constructs OOP [4]:

-encapsulation,

-dynamic Binding,

-polymorphism,

-Reusability.

Those 4 pillars are believed what is constructing the OOP. Between programming languages
because most of them are using class-based OOP, we can say that the object is an
independent entity which can be used with every data type even arrays, every object is unique
and they can be called inside a method or used as a parameter. [4]

Encapsulation means hiding data. We can create objects that holds some data, but we
don’t want the data inside an object to be manipulated directly by external view. External
view can only see the interface for the object but not the actual data. This security feature is
what makes encapsulation one of the features. It is always recommended to use
encapsulation while writing your code which can grant a high security to your applications.
[4]

Dynamic binding is a mechanism in object-oriented programming (OOP) where the
method to be executed is determined at runtime, based on the type of the object. In dynamic
binding, the method call is resolved at runtime, rather than at compile time. This allows for
a more flexible and reusable code, as objects can be used interchangeably without having to
modify the code that uses them. [4]

Polymorphism can be long to learn and implement as inside itself has many kinds of
ways how to implement it, but for the beginning, we can say that polymorphism by its name

from translation means “having many forms. Usually, in C#, Java, or C++ we can define

13

polymorphism as a procedure that allows properties to accept and return values more than
of one type. We can also say that polymorphism gets help from inheritance as we can have
different objects of the same type and vice versa. [4]

The abstraction layer is the process of defining objects and their behaviours in a way
that only the essential details are shown and the rest is hidden. [4]

In conclusion, many major programming languages have been evolving around the
principles of OOP since it solves many software problems. [4]. OOP is used to make a

software more secure, reliable, and reusable. [4]

3.3 Middleware for security and reliability

Middleware is a software component that is handling request and responses. [5] It is a
type of pipeline that determines whether the request will be continued to the next components
pipeline. Middleware is used as an intermediate that provides security and reliability to a
software. In ASP.NET core is composed of many request delegates that is executed one after
another. As it is a security fundamental in ASP.NET core MV C after a request is made the
middleware is processed in an order as: exception handler, Hypertext Transfer Protocol
Secure(HTTPs) Redirection, routing, Cross-origin resource sharing (CORS), authentication,
authorization, endpoint and back to response. We can also have a custom middleware that
can create extra security. All these steps are fundamental for a secure web application that
has a middleware [5] ASP.NET provides a built-in middleware that if a request wouldn’t go
through all the specified steps within middleware, it terminates that request. [5]

The middleware inside ASP.NET core is an encapsulation within a class that is an
extension function. [6] Middleware is called inside program.cs file where we use ASP.NET
core for building a web application. Middleware class consists of a constructor and a method
which returns a task and has a parameter type of HTTPContext. Middleware is a singleton
class that runs at the time when it is constructed only. [6] Inside ASP.NET core framework
middleware follows dependency injection structure which is an object-oriented approach.

[6]

14

ASP .NET Core Web App

Middleware Pipeline

Request :
——

Exception HSTS HTTPS Static Cookie
Handling Protocol Redirect Files Policy

—
Response —

Session MVC

Figure 1. Middleware in ASP.NET Core [7]
3.4 The .NET Framework

NET Framework is one of the many platforms that has been developed by Microsoft,
and its main purpose is used to build and run applications. [8] The .NET framework itself
consists of many other programming languages such as F#, C#, VB, C++, etc., and many

libraries for building web and desktop applications. [8]

The .NET framework has its own runtime and a library designed to implement object-
oriented programming features such as polymorphism, abstraction, encapsulation, and
inheritance. [9] These fundamentals of the .NET framework make itself cover all areas of
web programming and desktop application programming. Alongside that C# programming
language is also specifically designed for .NET technology. [9]

The run-time environment developed for the .NET framework is one of the main parts
that makes .NET to lead. Its run-time environment is called Common Language Runtime
(CLR) which comes along with implementations such as garbage collector, security, and

operability. [9]

15

Common Language Infrastructure (CLI)
VB.NET c# f_’;‘:\;’u'%ig
Common Language Specification (CLS)
Common Type System (CTS)
.NET Framework Class Library (FCL)

ASP.NET WinForms Console

ADO.NET .NET Remoting
Common Language Runtime

(JIT, GC, security manager and other features)

Figure 2. NET Framework architecture [10]
3.4.1 C# programming language

C# is a programming language developed by Microsoft. [11] Its syntax is between C
and C++, but many believe that C# has been introduced as an opposition to Java
programming language. Java is a similar programming language to C#, they both are
modern, object-oriented, high-level programming language. C# is highly customizable still
there are areas which doesn’t need to be configured by developer and yet is configured by
C# itself for example with garbage collector where you are not handling memory as in C or
C++ where the developer must specifically take care of memory. C# consists of many several
files with a .cs extension meaning source code files of a C# program and those files are
containing definitions of classes and other types. [11]. Those cs files, which are written in the
C# programming language, are processed by the csc compiler to produce executable code
that can be run on a computer. The csc compiler is part of the .NET framework and is used
to convert the human-readable C# code into machine-readable code that can be executed. By

compiling we will have assemblies created for us and we will get the output of executed. cs

16

file with an extension of .exe or .dll. If we have a file to compile for example named
“HelloWorld.cs” we will have the file name “HelloWorld.exe” created by C#’s compiler and
we can run this .exe file on any computer by just double clicking on it just like a usual
software if we try to run this .exe program on a computer which doesn’t have .NET installed,

we will have an error. [11]

By the means of object-oriented pillars, C# supports inheritance and multiple
inheritance interfaces. [9] C# helps developers develop programs also provides delegates,
properties, and events. Usually, the delegates and events work together. Every type in C#
and the other .NET programming languages uniforms a type system that treats even primitive
types such as integers and characters as objects. [9] Reference types and other objects in C#
is stored on method stack rather than heap stack which helps the garbage collector not to
look after every little change and creates an efficient friendly environment for the software.
C# is one of the first languages which might be extended by attributes. [9] Attributes are
metadata that can be used in classes, fields, and methods. [9] For example, it creates an
environment for making an API (application programming interface) request, we can give
attributes directly to an HTTP request, we can set a return type in an attribute and give

authorization through an attribute, etc. [9]

The advantages of the C# programming language are a lot. The popularity of C# comes
also from its creator company which is Microsoft. Microsoft is constantly bringing new
features to C# every year, being one of the biggest companies in the world, it gives people
trust that the programming language will continue maintained and further developed. [12]
There are a lot of C# developers around the world which also is a huge community to help
each other. You can find many issues that you are facing and find solutions easier without a
need to spend time. Another aspect of C# is being a statically typed language. Statically
typed languages are way easier to debug, we might have found a bug way easier relatively
to dynamically typed languages. In conclusion, C# is a highly secure, easy, maintainable,
maintained language with a huge number of users and a helpful community. [12]

The disadvantages of C# also give us thoughts about whether we would like to learn
it. Every programming language has its own disadvantages but when it comes to C#, its own

disadvantage is that it might be slower due to memory management. Sometimes the

17

developers prefer to use their own memory management styles rather than relying on C#’s
own garbage collector. [12] In the one of the disadvantage of C# used to be that it was serving
only in windows, and you couldn’t code on Linux or macOS because C# was closed source
and you didn’t have an Integrated development environment (IDE) or editor which were
supporting C# but today you can create applications on any operating system without any
problem. [12]

3.4.2 Data types of C#

The data types in C# can be divided into two simple categories as reference types and
value types. [13] From its name we can understand that there is a very simple difference
between the reference types and value types. Value types stores their data inside that value
but reference types of stores only the reference which points to the actual data. [13] Another
difference is that value type stores its value inside the stack memory, but reference type
stores its referenced value inside a heap memory, in this way we can have two or more
reference type variables that reference exactly same value. [13]

The value types can be grouped as structs and enumerations in to two categories. [13]
The structs has different kinds of built-in types. For logical operations we can use Boolean
types, key word as bool, we can store inside only two values either true or false which is
really handful when we do operations such as loops, logical algorithms etc. [13] For bytes
like values we can use integer types, for storing integer values we have many options
depending on whether how we want to manage the memory because we can use different
kind of integer types that ranges of number of bytes it can hold inside for example we can
have a byte, byte, Int16, Int32 keywords and from left to right they expand in range of how
many bytes we can hold inside, for single use, we can use char keyword which is a type of
integer value and it stores only one-byte value. [13] For storing numbers, we can use a
floating-point which can further divide if we want monetary calculations using decimal type
using keyword int or if we need precise calculations, we can use float or double types where
there comes a number after the decimal point. [13] Apart from structs, Enumeration type is
where we can make our coding more maintainable and easier just by creating constant values
for a set of numbers or words, for example, we can create an enumeration by the keyword
enum with the name “weekDays” and assign to it all seven days of a week and we wouldn’t

need to remember every day’s name but only the variable name “weekDays”. [13]

18

The second group is reference types for data types in C#. There are three built-in and
three declarable types. [13] String type is to store text values with the keyword string which
is a built-in type. The Object, built-in type, type is the base entity for every other data type
both value and reference type, the base entity means that we can have an Object type and set
its value to a string, int, float, etc. [13] Dynamic, built-in type, data type allows us to check
the type during run-time rather than during compilation, it is most useful when we deal with
APIs. [13] A class data type is a template for creating our objects where developers can
declare them using the class keyword. [13] Interfaces are the template for class meaning we
must implement every property and method inside the interface to a class also with the
keyword interface. [13] The delegate data type is mostly used to encapsulate a method that

applies the object-oriented principle, and we can do that with the keyword delegate. [13]

3.4.3 ASP.NET framework

Before the version of ASP.NET core came ASP.NET and it was not as popular as
today because it was not open source and you couldn’t develop in Linux and macOS rather
you had to develop your web applications in windows operating system(OS) because the
IDE’s and editors supporting C# was way more in windows OS, for other operating systems
you had to have some third party editor which was not as better and efficient as the ones in
windows such as Visual Studio, notepad with C# and etc. ASP.NET core framework, on the
other hand, is open source and highly maintained and used in cross platforms. [14] It doesn’t
matter where you develop because you can use visual studio code in every major operating
system, and it has maintainability and security. There is no more need for third-party
applications for developing web applications with C# in Linux and macOS. [14] Today
ASP.NET core is more secure, faster, ready to cloud hosting and there is no longer needed
to host only on Internet Information Services(11S), but you can also host your applications

on Kestrel web server. [14]

One of the fundamental parts that is inside .NET technology is ASP.NET. ASP.NET
is specifically designed framework to handle web applications through the internet.
ASP.NET used to be called only active server pages (ASP). [9] The old version and the new
version have in common is the core idea behind ASP.NET which is providing creation of

assemblies directly on run-time when we need the assemblies. [9] This has an impact for

19

efficient application. We can ask for data from server only when we need, and it makes our
application way faster than usual ways. ASP.NET has been getting constant updates from
Microsoft and it has a lot of users with a helpful community, meaning ASP.NET is going to
be around for a long time. ASP.NET is essentially different than ASP in its architecture such
as [9]:

Object orientation: ASP.NET pages compiles into classes which gets features from
NET framework as it inherits from system.class. ASP.NET also is very compatible for front
end graphical user interface (GUI) elements such as buttons, text fields etc. because they
also are compiled into classes.

Web Controls: ASP.NET has a huge library for web controls which exceeds even
Hypertext markup language (HTML) web controls, every web control ASP.NET offers is
compatible with browsers. All the web controls offered by ASP.NET is treated as object
which makes for us easier to implement and understand. By working with web controls
offered by ASP.NET we can create many events for any web control we use and in this way
thanks to object oriented way we can have control of our application and build any web
control according to our needs.

Separation of layout and logic: since ASP.NET we have a clearly separated layout
and logic as the layout is narrated in aspx file and the logic written in any .NET specific
language such as visual basic (VB) or C# or F# is existing as a clean solid code without any
HTML. With this way it is way easier for backend developers and frontend designers to
create their own work without the need of interruption one and another. In the ASP version
there was no clear distinction between the layout and logic.

Interactive design of web pages: With the ASP.NET version we can create web
pages and by only dragging the components we would like to appear in the web page without
any need of coding we can achieve interactive design. This way we can save a lot of time
rather than just coding one by one for minor changes.

Compilation instead of interpretation: During the ASP version the code created in
ASP was interpreted into JavaScript or VBScript but since ASP.NET the code is directly
compiled without the need of interpreting it into a different script language and this way we
get to have a faster application by just compiling the application with its original language

that has written usually it is C# or visual basic. Before we also couldn’t access to .NET

20

library since we were interpreting, now we have access to all .NET libraries which is a plus
for ASP.NET.

Rendering of application: In the old version of ASP developers after changing the
GUI, they had to manually stop and start the application or restart it so they would see the
new rendered page as they changed something. Now, with ASP.NET developers don’t have
to restart their application as it is rendered every time there is a new change in the frontend

components. [9]

Client 1
Browser HTTP Protocol
Internet hd Web
Application
Clientn
Browser

Figure 3. ASP.NET on IIS server architecture [15]
3.4.4 Entity framework core

Entity framework core (EF core) is a library developed by Microsoft for helping
developers access databases way easier than usual ways. [16] Entity framework (EF) is an
object-relational mapper meaning it connects the software written in an object-oriented way
with a relational database with its own API and it makes it easier for developers to access
the database. Before entity framework core it was called entity framework, but it was
accessible only on windows OS today with entity framework core we can use it on Linux
and Apple also. Another part of EF core is that you can do anything that you do with SQL
(structured query language) but you don’t have to know SQL in order to use EF core because
you get to write it for example if you are a C# developer, which is most developers using
with EF core, you can write your code as C# syntax rather than SQL syntax. [16] There are
of course some downsides of EF core mainly being object relational mapper because the
software code and server code has different architectures. For example, if you create a class
in C# by the name convention it is always going to be unique but when you need to create a

table in database server you have to create a primary key for every table. After you get use

21

to EF core, developers sometimes seems to forget that they are actually doing also SQL in
the background which bring another issue for developers for example if you want to set a
name and surname together in C# class you can do it easily by combining two name and
surname property in one other property with expression body which is working in C# without
any flaws and developer can do that if they don’t work with a server, but this would not work
in SQL server. [16] These points are the biggest problems of EF core yet what it offers is far
more than its downsides. EF core can work both with relational and nonrelational databases,
it can do both SQL and NOSQL operations, but this is going to change with EF 6 which is
already in production. Since there are many differences between relational and non-
relational databases, also usage of relational databases with EF exceeds the non-relational
usage, Microsoft has decided with EF 6 and further they will solely develop EF according
to relational databases. [16]

For installing EF library, you are going to need to use either visual studio or visual
studio code, with NuGett packet manager you can download the library into your application
and start using it, of course for testing or run your application you can choose any database

server you want. [16]

Relational

Libject Database

Figure 4. object relational mapping [17]
345 SignalR

SignalR is an interactive library which was built individually by two ASP.NET
developers and later integrated in Microsoft library family. [18] SignalR is using
asynchronous techniques to achieve multiuser real time web applications. It can be used even

with other technologies rather than only web applications. Library is open source on GitHub,

22

and anyone can contribute to the source code. The library has been getting updates from
Microsoft since the start of it.

SignalR is isolating the developers from low-level programming and itself deals with
what is the best way to make the server and client use which can be long polling,
WebSockets, etc. [18] Those ways are called components and they communicate through
each other. With SignalR we can have a continuously running server dedicated to real-time
usage. The connection is constantly running so it can capture every real-time data needed.
The library is most known for its usage in messaging, presence tracking, uber like real-time
global positioning system (GPS) tracking. [18] The connection is running through end users
and servers via hubs rather than HTTP requests. Every server that can install ASP.NET 4
and later is also capable of executing SignalR on their side. [18] The connection is running
most smoothly on the IS server. SignalR creates every user one special Connectionld which
keeps track of every user individually, the Connectionld usually is used for messaging
features of applications as every sender and receiver has a special Connectionld which
thanks to SignalR we can keep track of it. [18] Because SignalR is focused not only on
messaging functions between two users, but anything related to real-time, we have the
Groups property where we can create connections between many users as a group. When it
comes to the client side, we can use SignalR based on JavaScript and even pure HTML, there
is loads of client application supporting the implementation of SignalR and that makes the
usage very efficient as we don’t need third-party providers. [18] We can even run SignalR
outside of the server where the original script is running, by having the ability to adjust
CORS. All these specifications make SignalR a persistent real-time data transmitter. [18]
The library also offers authorization, client authentication, dependency injection, etc. where
we can create our real-time data transmission in a secure, reliable, and fast way. [18] There
are many programs that are using SignalR, especially Microsoft is insisting on this
technology as it is doing a great job with the office365 applications, where most of them use
SignalR. These give us a basic understanding of what, how, and where we can use SignalR
or any real-time data transmitter technology as it is one of the fundamental technologies
needed for creating social and communicative applications. [18] This library has been
around since 2013 and it is getting much attention from the ASP.NET community, it seems
that this technology will grow each year. [18]

23

3.4.6 JSON Web Token

JavaScript object notation (JSON) web token is a standard for passing claims between
servers and users. [19] It is supported by every major programming language and even
frameworks such as Angular and React. The architecture of JSON web token (JWT) is what
makes it compact and simple. JWT architecture is using claims which send data in a
gibberish-looking way but, it its claims are representing data that is a compact signature for
authentication. The main job of JWT is authentication. [19] Claims are definitions of server-
side or client-side objects. There are many standardized claims such as signatures. In JWT
every server and client have its own unique token created and when we send data from a
client to the server or vice versa only the machines with tokens can decode the encrypted
JWT. It is a very important standard as it is compact and standard, sending and receiving
claims between different machines is one of the fundamentals of why JWT. [19] We can use
JWT not only to send claims between objects but also for authentication, authorization,
client-side secrets, etc. [19] which means it is a revolution for backend development. Every
JWT is established of three main components which are always in JSON objects except the
signature[19]:

Header: The header is containing information about which algorithm has been used
in that claim, depending on claim it may contain more than one field. But this section is only
relevant to the encrypted tokens, if the JWT is not encrypted the header must be settled as
null. The encryption usually is a HMAC-SHA256 encryption method.

Payload: This JSON object usually carries out information that we set for extra data,
it can be used for Data transfer objects such as when we need an API call that is returning
us only name and surname even though we have more than those properties in the object
itself. Payloads can include some specific data called registered claims where we can give
an expiration time, set an issuer of JWT etc. The payloads can be also public or private if
they are not a registered claim. Private is where user defines the exact keywords according
to their need and public ones are claims that are registered in Internet Assigned Numbers
Authority (IANA) registry, which is official registry for JWT.

Signature: This is one of the important part of a JWT because this is where we create
authenticated JSON web tokens, signature is the actual algorithm combined with the data

from payload and header and the algorithms inside a signature. The token’s signature is what

24

helps the validation process. Even if third party users can see the token, they will not have a
validator by JWT which is the way to decode a token and see the data inside. This way the
data with encryption is meant to be decoded between parties that have their own validators
and can see what the actual data is and because of this reason, JWT is a tool for authenticity.
If we choose to send data that is not really needed to be encrypted, we can directly send JWT

without a signature and create so-called unsecured JWT.

JWT Token
Header E : Payload s Signature

{ {

“"typ": "JWT", "iss": [issuer], Hash(header.payload,

“alg": [sign -algorithm] “exp": [expired] secret)
} }
{ { HMACSHA256(

"typ™: "JWT", "iss": "apisecurity.com”, he::enbase“.payload-ba

"alg": "HS256" "exp": 1640988000 ,s,fnys'wemeyﬂs,,
} }

)
ez | =8 —
Header (base64) 3 Payload (base64) . Signature (base64)

Figure 5. JWT structure [20]

3.4.7 Web API (REST API)

Web API or Representational state transfer (REST) API is a set of control unit
architecture for transferring data over the architecture of the world wide web. [21] REST
architecture is built mainly as the interface for world wide web (WWW) that is based on
HTTP. [21] The REST API should be designed in such a way the Uniform Resource
Identifier (URI) would be efficient. Every resource over a web page can be identified with
URIs, and that is why the logical implementation in the backend can be designed in such
different ways there are templates like Restful or Simple Object Access Protocol (SOAP).
The good part of web APIs is that they are reusable and there is no need for creating new
APIs for every resource. The job of API is to retrieve or create a resource in the database.
This process is one of important processes in software development as we might have big

resources to retrieve, and it might be inefficient but by developing API in an efficient way

25

we can have way faster applications with the abstraction-free process. For retrieving
resources over web HTTP there is four simple keywords such as [21]:

GET: By the name we can understand that the GET keyword is used as retrieving the
data in a cacheable way thanks to WWW. With the GET keyword, we give a command to
API through HTTP, and it retrieves the data from the database accordingly.

Post: Post keyword creates a new resource in the database the same way the GET
keyword acted out.

PUT: This keyword is very similar to POST but it is used for updating the database
resource so we can use PUT method N-times and yet have the same result N-times unlike
POST method.

Delete: the last method for HTTP is delete where it deletes a resource through API.
The web API can be returned in many ways such as Extensible Markup Language (XML),
XHTML, RSS/Atom but today what usually is used is JSON media type as it is text-based
media format, it is very compatible with browsers, and it is compact ways of transferring
data. Usually, API is understandable from host extension for example if we have a GET
method that retrieves users we can understand that “www.WebAPIExample.com“will have a
suffix as “www.WebAPIExample.com/Users”. We can understand from the example that

URI has changed in suffix and there was a GET method used as retrieved all the users.

3.5 Model-view-Controller

Model-View-Controller (MVC) is a design pattern architecture used to create
interfaces and keep applications organized. [22] With MVC we are separating application
into three layers that relate to each other. This design pattern is related with client end to end
meaning client uses a request, after that data is manipulated and after that in third layer data
is again shown to the client. Because of that separation of layers MVC is a design pattern
because every layer is connected yet independent meaning when we need a small change,
we can just change it on one layer and the application would still be running, developers use
this approach as it is simple to use and it helps developer build their applications faster. The
three way process is:

Model: This layer is the purest form of data as it not manipulated, in the model the
application rules are defined, and data is not manipulated. [22]

26

View: The View process is to take the data from model layer accordingly what user
has asked, basically it is accessing the model. It can be used as a graph, chart or diagram,
any data visualizer can be built in View section. [22]

Controller: The controller layer is interconnecting the model and view layers.
Controller is manipulating data according to what the client has asked, and it is sending the
manipulated data to the model to be modelled and then the view is triggered to retrieve data
from the model. So, the controller is what takes information and turns it into something that
the client asked for. [22]

ASP.NET has its own template for MVC and it is a framework that helps developers
build web apps and APIs with the MV C design pattern. Microsoft has provided this template
according to ASP.NET core standards and it is a pattern constructed design that is helpful
for dynamic website development. With ASP.NET core MVC we are provided routing for a
very efficient URL mapping within the controller. [23] We can do it by just adding attributes
over every HTTP request we do. The HTTP request is a type of IActionResult interface inside
a controller and we can collect every endpoint under one routing. With ASP.NET core MVC
we get to have model validation which gives us power on how to arrange our model. We can
identify with basic attributes that our model’s property can be null or with [required]
attribute it must be fulfilled before it is sent to API. If we need a property of type email, we
can directly access it from ComponentModel.DataAnnotations attribute called
[EmailAdress] and the client will have to send the API a text that is written as an email
standard name. We can see that Microsoft has made ASP.NET core MV C framework widely
usable by providing routing, dependency injection, filter, and web APIs that help developers
build a web application with MVC design patterns. [23]

One of the primary advantages of using the MV C design pattern is its ability to enable
parallel development. As the layers are separated and independent, multiple developers can
work on different layers simultaneously without affecting each other's work. This makes the
development process faster and more efficient. Additionally, as each layer has a specific
responsibility, the code becomes more maintainable, and changes to one layer do not affect
the other layers. This makes it easier to debug and fix issues in the code, as the responsibility

is localized to a specific layer.

27

Client side Sarver side

Invokes

Regquest
Controller ,

Selects

Access/Modifies I

Returns

Rasponse
.‘. -

Figure 6. ASP.NET Core MVC architecture [24]

3.6 Repository pattern

Repository pattern is an abstract layer between the controller and database that
separates the data logic from create, read, update, and delete (CRUD) operations. [25]
Repository pattern is injecting data from the database by the call coming from controller.
[25] Entity framework is also supporting the repository pattern. Main logic to separate the
data logic is that we would have a cleaner code and we wouldn’t have to have such large
amounts of code inside the controller. C# is supporting the repository pattern using LINQ
operations. By using Language Integrated Query (LINQ) in the repository pattern, we can
write queries that are compatible with almost every database and that saves us a lot of time
during migrations. That is why it is important to use repository pattern while developing
such large applications. [25]

Another advantage of the Repository pattern is that it promotes code reusability. By
abstracting the data access layer in the Repository, we can use the same repository across
multiple controllers or even multiple applications. This can save development time and
reduce code duplication, as we can reuse the same code instead of writing similar code for
different controllers or applications.

28

Request

Entity Framework
DbContext

Maps Model

Database

Figure 7. Repository pattern [26]
3.7 TypeScript

TypeScript is a superset for one of the most used scripting languages called JavaScript.
[27] TypeScript has been using every component from JavaScript and for extra it adds to
language more features. There are many supersets for JavaScript as but none of them has
been like typescript because usually the supersets were not supporting every JavaScript
feature, or they had to disable some of the features so they could add what they needed. All
the JavaScript written code can be executed in TypeScript. [27] That means every JavaScript
developer can also develop and understand TypeScript applications. The biggest feature of
TypeScript is that it is a statically written programming language as every type is checked
before it has assigned invalid value for a type. The variables are declared same way in
TypeScript as it is in JavaScript. [27] TypeScript is a language for object-oriented
developers, there are interfaces, classes, enumerations etc. TypeScript is transpiled back to

29

JavaScript and that is why TypeScript can be hosted over any browser as they are designed
around JavaScript. [27] Behind TypeScript lies the Type theory where each term has a type
and they are restricted based on their type, this way we get to have a more understandable
code and less errors within an application. With this theory TypeScript allows us inferring
and specifying types meaning we can have a variable that is unassigned in type, but
TypeScript will assign a type to a variable as it will infer the type from its content. [27]
TypeScript allows us both dynamic and static variable creation which is a huge plus to
JavaScript’s power. TypeScript also uses structural typing, which is a contrast to most C-
like languages as they are using nominal type system, for example in most C-like languages
for a class to implement an interface the developer has specifically state that the class is
implementing the interface which in structural system you don’t have to explicitly state that
as long as structure matches specified type. [27]

Object orientation of TypeScript creates a template especially if you are using a
different backend such as C# or C++ and you want to keep your code in order than
TypeScript is the way to go. TypeScript implements all the tools that are relevant for object
orientation such as [27]:

-Classes

-Inheritance

-Encapsulation

-Delegation

-polymorphism.

All these fundamentals show that TypeScript can be used as an object-oriented
programming, thanks to Microsoft we can be sure that TypeScript is going to be developed
and maintained for a long time. [27]

Once the code written in TypeScript is translated into plain JavaScript, it can be run
on any browser or server, but the developers must think about how JavaScript has different
features while running on a server or browser. The developer must make sure whether they
are going to use the browser approach or not. [27] It has a built-in garbage collector such as
C# and it is doing the job of handling memory which makes our applications more efficient.
The APIs we are experiencing in TypeScript are usually followed asynchronous architecture
but if we need to use an API with a synchronous pattern then we must manage the resources.

[27] TypeScript offers the exception handling where we can handle problems occurring in

30

our application, basically, every object can implement the throw keyword which throws an
error, but the best practice is to create our middleware or use a try-catch statement exactly
like in C#. [27]

Since there is a huge community for JavaScript, there are many frameworks, libraries,
and functions created and shared among other developers. This is a huge plus also for
TypeScript as almost every framework, library, and code sample created for JavaScript will
work with TypeScript also. During the runtime, both the TypeScript and framework will
become JavaScript code. [27] With TypeScript, you are going to need to create type
definitions for libraries because the frameworks or libraries are not converted to JavaScript
as they already are. Type definitions are stored inside .d.ts files. Since JavaScript is a wholly
dynamic language when you are going to convert your code to TypeScript you might face
many errors that you wouldn’t find in JavaScript as easily. [27]

Testing with TypeScript is also another aspect of the language as there are many
testing frameworks such as Jasmine, Mocha, Qunit, etc. As it is a product of Microsoft, there
is a huge community supporting TypeScript because it is obvious that the language offers a
lot and has been backed up by a huge corporate. [27]

The biggest downside of TypeScript is that it is not very suitable for small-scale
applications rather the big ones, so it wouldn’t be optimal to start as the first language with

it. Although, TypeScript is a widely used programming language. [27]

3.7.1 Angular

Angular framework has first started to be around as AngularJS which was a
JavaScript framework, but it seemed that the web applications has been moving to a direction
where the complexity was growing exponentially as it the applications were doing many
tasks. Angular is a programming language built by Google and it is one of the first frontend
technology that was providing solutions for SPAs (Single-Page Applications). [28] SPA has
been a solution for many web applications to optimize their efficient applications because
the web applications has become really complex it was getting slower but since SPA era
came along it was a solution for many development problems. [28] Angular has implemented
SPA to its architecture. After AngularJS, Angular has completely written from ground for

the new age of web applications, it is a solution for complex web applications. [28]

31

Angular has become a successful framework as it is providing developers custom
components, two-way data binding, dependency injection and many more features. For
setting up the environment of Angular application, the machine needs to have Node.js
installed as it is used as a base for build environment. Of course, we need TypeScript as it is
base programming language for Angular. For best practice developers should also use
angular CLI, which is one of the features of Angular unlike AngularJS. Angular’s structure
when we serve our code separates to four [28]:

1. Root HTML: Root HTML is index.html file created within angular, the code inside
the index.html is a neat code without any dependency and holds the code for what is
needed to be rendered in the browser.

2. Entry point: This piece of code is created as main.ts file and it holds the code
responsible for which file to be loaded when the project is started. It activates the rest
of the application from this point.

3. Main module: This particular module is where the projects actual source code starts
in an angular project and the applications components are declared in this module.
We can say that the Main module is the core part of the project configuration. At
creation the file is called app.module.ts.

4. Root component: The component inside an Angular project is where developers
create their logic and functionality inside their code. A component in Angular consist
of three files which are a .HTML, .TS and .CSS. The HTML is a template for a
TypeScript file and cascading style sheets (CSS) is the local style for a component.
They are connected within components inside the .TS file. We can say that
components are Typescript classes that are decorated with different metadata and
attributes.

Another feature that comes with angular is life cycle hooks, they are pre-defined
interfaces that we can use inside our components. [28] We can hook our needs according to
life cycle hooks. For example, if we place a function inside an onlnit interface it means we
are going to initiate that function when the component will be rendered. We can also have a
life cycle onDestroy, inside this interface we can specify to unsubscribe to an event only
when the component is destroyed meaning closed. There are eight different life cycle hooks
in total. [28]

32

Directives is another feature that Angular is offering to developers. It allows
developers to create their own functionalities for elements. [28] There are two different
directives which are Attribute directives and structural directives. Attribute directives are
usually used to change the appearance and style of an element for example we can add to an
element NgStyle directive in which developer can add CSS styles. Structural directives are a
bit different as they add or remove elements from the Document Object Model (DOM), for
example, developers can add Nglf directive which according to logic that element will be
entered into DOM or removed from DOM. [28]

The object-orientated applications can be created easily with the angular framework
as it has built-in functionalities for supporting dependency injection, routing, parent-child
relations, etc. Angular has special injectors called services and inside usually API calls are
placed. Property and event binding is also built-in functionalities inside Angular. [28] It is
very easy to create a full object-oriented program with Angular or we can use it also only
for the client-side frontend. We can basically do authentication the same as we do on the
server side, we can do it also on the client side. All these powerful built-in mechanisms make
Angular a framework to develop object-oriented web applications. [28]

Angular also provides routing functionalities with so-called Angular route guards.
We can create custom route guards when we don’t want users to be able to access a Uniform
Resource Locators (URL) without permission. There can be a scenario where a component
inside a project is only needed to be seen by admins. Imagine we have a website called
“www.angularRoute.com” and there is no button or link to access a route called
“angularRoute.com/admins”, the button or the link would be needed to be accessible only to
admins. Any user can custom type the URL and access inside the route but if we use
canActivate route which is used for client-side protection where it knows which users can
activate that specific route. If a user is not an admin that means that they will not be able to
access that specific route. [28]

All these features and there are way more than these is what makes angular a

framework that provides solutions for complex web applications. [28]

33

Maodule Madule Metadata

component service
Template Directive
Module Module e —
Value 3.14 Fn < > { }
Property Event binding

Injector binding Metadata

Service

{} ~ Components
" {}
Je o
o o0
Qg

Figure 8. Angular Architecture [29]

3.7.2 Bootstrap

Bootstrap is a framework that is open source and developed for styling responsive
web pages and since it is providing dynamic development it can be used on different screen
sizes also. [30] Bootstrap is a framework designed to be able to work with HTML, CSS, and
JavaScript. Bootstrap is providing developers fast integration on styling good frontend
applications. There are many templates and components which can be used within bootstrap
that is pre-defined, this way it helps developers build their applications way faster than usual.
[30]

Usually, developers do the grid design on how the application would look on phones,
tablets, laptops, desktops and design their application according to those grids, this way
developers get a very good responsive design that can be used on different platforms and
different sizes of screens no matter what. As of 2022 bootstrap has the 5™ version and it is a
responsive and dynamic version since its creation. That is why in last year’s bootstrap has
added more on itself and there are millions of developers developing their application with

bootstrap as it is framework for most used styling cascade. [30]

3.7.3 Walking skeleton model

A "walking skeleton” in software development refers to a basic version of the
application’s structure that has the essential components connected together. [31] The goal

is to have a functional system with a basic framework, but it does not have all the features

34

and functionality of the final product. It is essentially a starting point to build upon, with
incomplete subsystems that are still connected to each other.

A walking skeleton must be able to perform the core functions that are expected of the
final system. This includes tasks such as retrieving data, making requests, and performing
functions. Additionally, necessary automation tools like exception handling and continuous
integration should already be implemented and functional. The essential components of the
system should be tested to verify they are working properly, such as checking that data is
returned when making a query. After the essential components have been successfully
demonstrated, the development process can start, and both the architecture and functionality
of the application can be built and improved simultaneously. [31]

There are several benefits to finishing a walking skeleton before the start of the first
sprint in software development [32]:

1. It showcases the structure and patterns of the architecture.

2. It verifies that the essential technologies are functioning correctly.

3. It sets the foundation for continuous integration and automated deployment.

4

It provides a shared framework for the development team to work with.

The main advantage of creating a walking skeleton is that it enables the development
team to quickly concentrate on developing new product features.[32] By completing the
walking skeleton before the first sprint starts, you have already confirmed that the skeleton
can run in a production-like environment and have set up the necessary automation for
ongoing development. This saves time and resources and helps to ensure a smooth and
efficient development process.[32]

35

4 Practical Part

Practical part is devoted to design a web application for communication, and it is a
real-life application example designed with principles and technologies described in

literature review.

4.1 Analysis

The Analysis section of this thesis presents a comprehensive examination of the
technical and functional requirements for a web-based messaging application. The purpose
of this analysis is to evaluate the feasibility of the proposed solution, identify any potential
challenges, and make recommendations for the development of the application. The
methodology used in this analysis is based on a review of relevant literature, technical
specifications, and user requirements The Analysis section of this thesis will first outline the
technical requirements for the messaging application, including the software tools and
technologies that will be used. The system design, including the class diagram and entity-
relationship diagram will be described. Finally, a feasibility study will be conducted to assess
the technical, economic, and schedule considerations for the development of the messaging
application.

As a messaging application developed using ASP.NET, SignalR and Angular, the
application leverages the power of these modern technologies to provide a seamless and
intuitive user experience. With ASP.NET as the backbone, our application is able to handle
large amounts of data and traffic, ensuring that messages are delivered quickly and
efficiently with a secure API. The application is designed to meet the needs of today's digital
communication landscape.

As the backbone of the messaging application, ASP.NET provides robust and scalable
infrastructure for handling data, processing requests, and serving dynamic content to users.
With its built-in security features, the application can handle sensitive information with
confidence, ensuring that all user data is protected from unauthorized access. The use of
SignalR in conjunction with ASP.NET allows for real-time communication between users,
providing a seamless and responsive experience for sending and receiving messages.
Additionally, the ASP.NET framework provides powerful tools for managing and

maintaining the application, including its powerful routing capabilities and support for a

36

variety of data access technologies. Overall, ASP.NET offers a robust and reliable
foundation for the messaging application, providing the stability and scalability needed to
meet the demands of today's fast-paced digital landscape.

The goal of the application is creating an end to end application where the users can
chat between other users, be able to see their real time presence inside the application. Each
user can send many messages to other users. Every user can have multiple photos and they
can choose which of their photo they want to have as main. Users will be displayed in
different page than messages and the users page will be default home page. Users can have
their profiles edited so they can change information about their self’s. Users can both sign
up and log in depending on whether they are already a user or not. For security reasons the
application will have its own exception middleware. Application will be developed in neat,
documented way following the Model-view-controller design pattern standards.
Requirements of project:

- Use walking-skeleton model for designing the application

- Use OOP standards while creating application

- Users can have many pictures

- Users can select their main picture

- Users can edit their profile

- Create login and registering

- Users can see other users’ presence

- Users can send a message to one user and see when they have sent

- the message receiver will see the message in Inbox or unread if they haven’t read

the message

- Adjust date time to be in UTC

- Users can delete their own messages

- Users are able to see whether their message has been read by the receiver

- Users can log out

- Users can see other users’ profiles

- Users are able to see the unread messages, inbox and outbox

- Users will have notification when they try to close the page without saving their

edits.

- Real time chat

37

All these requirements are fundamental for a communication application because
it a social application users must have a profile and photo for the identification. Real
time presence is also important for this kind of application. Having date time
adjustment is another core part since users might be from different time zones even
the different browsers have wide variety of date and time implementation, and it is
important to create a global date and time implementation. Users must have an

editable profile as they might change their location or interest etc.

4.2 Design

The proposed system is a messaging application that is developed using ASP.NET as
the server-side framework and Angular as the client-side framework. This messaging
application is designed to allow users to communicate with each other in real-time,
exchange messages, and provide photo management.

The messaging application has a three-tier architecture, consisting of the client-side,
server-side, and the database. The client-side is developed using Angular, which is a front-
end framework that provides a rich user interface and interactive features. The server-side
is developed using ASP.NET, which is a server-side framework that provides a secure and
scalable platform to build web applications. The database is used to store user information,
messages, and files.

The data flow in the messaging application starts from the client-side, where the user
inputs information, such as messages and photos. The Angular framework then sends the
data to the server-side, where it is processed and stored in the database. The ASP.NET
framework is responsible for handling the data transfer between the client-side and the
server-side and ensuring that the data is secure and protected. The server-side then
retrieves the data from the database and sends it back to the client-side, where it is

displayed to the user. The architecture of the application is as it follows:

38

— Angular (— Bootstrap H TvpeScript —
Client
client 1 client 2 client M
.‘—

: A :

F : ' !
HTTP v ! ¥ HTTP

f SignalR Token
Cloudinary

AP ASP.NET middleware 3

Entity Framewaork Core Q

SQLite database

Figure 9. The architecture of application

The application has developed around five classes which are User, Photos, Messages,
SignalRGroup, UsersSignalR.

The User class is used for authentication and information for users. The Hash and salt
properties are used for encrypting the password, when user is registered the password entered
is hashed and then the hashed is salted which 2 of them are encrypting algorithms. When
user logs in the password sent to backend is hashed and the salt password from database is
being decrypted back to hash which creates extra layer of security. The User class has
ICollection properties of Photo and Message for holding the collection Photos and messages
of user. The other properties are username, sex. DoB stands for (Date of birth), hobbies, city,
and country in order to store users’ information.

The Photo class has Adress property for the main photo of user and the main photo
can be changed with property leading. Public address is used to store the photo addresses

from Cloudinary API. The Userld property is used as identifying the owner of the photo.

39

The message class has properties such as Issuerld and IssuerUsername for identifying
who is the sender of the photo and Targetld and TargetUsername is the receiver of the
message. TextRead property is used for showing the user when the user read their text and
TextSent is used to show the user when message was sent. Text property stores the actual
message.

SignalRGroup and UserSignalR classes are used to create a group between two users

so they will have real time chatting feature.

1 +*

User Fhoto
FPhoto
Id: int Id: int
UserName: string Adress: string
Hash: byte Leading: boolean
Salt: byte PublicAdress: string
Sex: string Userld: int

About: string
WasActive: Date

Cob: Date 1 Message
. Sent *
Hobbies: string Id- int
City- Stfi.ﬂg _ 1 Received . | Issuerld: int
Country: string Issuerlsername: string
_ Targetld: int
SignalRGroup TargetUsername: string
GroupName: string _ Text string
+SignalRGroup() 1 UsersSignalR TextRead: Date
™ TextSent: Date

*

UserSignalR

UserSignalRId: string
Name: string

+UserSignalR()

Figure 10.UML Class diagram

40

(User N 4 Photo A
PK[Id int NotNull PK]ld int NotNull
FK|Photold int H---=------=----- FK |[Userld int NotNull
FK]Issuerld int Adress string NotNull
FK|Targetld int Leading bit NotNull
Username string NotNul PublicAdress string NotNull
Hash blob NotNull
Salt blob NotNull
About string NotNull H- -~ - - 4 Message ~N
Sex string NotNull el PK |Id int NotNull
\gj;pg:t\;eNEgLeuwotNu” "~ -O<] FK |Issuerld int NotNull
. . IssuerUsername string NotNull
Fobbies string Nothull FK | Targetld int NotNull
Cguntry string NotNul TargetUsername string NotNull
_|City string NotNull)

Text string NotNull
TextRead Date
TextSent Date NotNull

- _/
4 SignalRGroup A
PK | GroupName string NotNull b 4 UserSignalR N
FK | UsersSignalRId int NotNull o

PK| UserSignalRId int NotNull
Name string NotNull

Figure 11. Entity relationship diagram

Diagram visualized as a One-to-Many relation between User and Photo, User and
Message and One-to-One relation between UsersSignalR and SignalRGroup.

Entity framework core has been used for generating the code needed implementing
this UML diagram into Data definition Language. These Entities has been used all around
the application, the User class is the fundamental class as it gives our application a
functionality needed in almost every web application. Messages and photos class has been
implemented as a fundamental part for a social communication application. The
UserSignalR and SignalRGroup classes has been specifically designed to implement

functionality for real time communication between the users.

4.3 Implementation

4.3.1 Setting up the environment and application

The web application has been built using C# programming language 10.0 version and
NET version 6.0.400 for backend purposes. For the front end, the Angular 14" version has
been used with bootstrap 5.1.3 as styling. NodeJS 16.13 is used for package management for

Angular. Git 2.35.1, version control has been used for keeping track of codes and

41

maintaining applications without a need to change the original source code. Visual studio
code used as editor for the application development.

432 CLI

.NET CLI is included with the .NET framework SDK installer, and Angular CLI,
which can be installed using the npm installer which we have used 14.2.5 version, has been
used to maximize efficiency while developing the application. Another useful CLI is EF CLI
which is used to make entity framework transactions, we can install it using the "dotnet tool

install --global dotnet-ef” shell command.

4.3.3 Dependent technologies

Entity framework core, JSON web tokens and SignalR has been used as external
frameworks and libraries for development.

The NuGet Gallery is a public repository of packages for .NET. It provides a central
location to discover and download packages, which includes libraries, tools, and frameworks
that can be used to .NET applications. NuGet gallery is used to include libraries and the
references for files are stored in .csproj file.

SQL.ite is a serverless database, which means that there is no separate server process
that needs to be started, configured, or managed. Instead, the database is stored as a file on
disk, and can be read and written to directly by the application. SQLIite has used as database
provider for the application.

Cloudinary is a cloud-based platform that provides an APl for managing and
transforming media assets such as images, videos, and audio files. The Cloudinary API
allows developers to programmatically upload, store, manage, and deliver these assets in the
cloud, reducing the burden of infrastructure management. Cloudinary is used to retrieve and
store the photos for users.

4.3.4 Initial set-up of project

The initiation of project can be done using any command line with CLI for .NET
Framework. The template short name for ASP.NET framework MVC is ‘mvc" keyword. To
initiate an MV C template we can adjust our directory in the command line and type "dotnet
new mvc’, this way the files needed for ASP.NET MVC will be created which includes
program.cs, a .csproj file, folder for controllers, models, and views. We can modify the
names of the files and one of the most important would be the program.cs file as it is
including the code which starts our ASP.NET application.

42

For setting up the visual studio code C# by omni sharp, Angular language service by
Angular and angular snippets package created by John Papa, and since vs code doesn’t come
with packet manager for C#, NuGett gallery extensions has been installed into vs code. For

developing the application in vs code these extensions are needed.

4.3.5 Walking skeleton model for backend

The application has used the walking skeleton model for building the application by
connecting and installing all the parts needed for backend without all the functionalities set.

At first a class for user entity has created which holds only two properties since we are
developing using walking skeleton model. After that, from NuGett gallery we can add
packages to our application. All the packages used in an application is stored under .csproj.
For example, because the application needs entity framework design and entity framework
for SQLite you can see that from NuGett gallery after we installed those packages they

appeared in .csproj file:
<Project Sdk="Microsoft.NET.5dk.Web"»
<PropertyGroup>

<TargetFramzwork>nets.8</TargetFramework>
<ImplicitUsings>enable</ImplicitUsings>

</PropartyGroup>

<ItemGroup:>
<PackageReference Include="Microsoft.EntityFrameworkCore" Version="6.8.8" />
<PackageReference Include="Microsoft.EntityFrameworkCore.Design"” Version="6.8.8">»

<IncludelAssets>runtime; build; native; contentfiles; analyzers; buildtransitive</Includefssets>
<Privateissets>»all</Privatefssets>
</PackageReferance>
<PackageReference Include="Microsoft.EntityFrameworkCore.S5qlite” Version="6.8.8" />
</Itemaroup>

L]

</Project»
Figure 12. .csproj file after we installed packages

First of all before we do the initial migration inside the
appsettings.Development.json file connection string has been configured and database
assigned a name as follows:

"ConnectionStrings":
"DefaultConnaction” : "Data source= messagingipp.db”

»

Figure 13. Connection strings configuration

43

After the project’s connection string has configured, the first initial migration has
been created with the terminal using “dotnet ef migrations add InitialCreate™ which creates
our entity as a table and assigns a primary key. For initiating the database with SQL.ite
“dotnet ef database update’ command has been executed in the terminal. After that, for
testing reasons three records as a user has been created using SQL.ite and this is the reason
why the user class wasn’t implemented fully at first as we didn’t need to spend time on

creating table. Now, we can see the table in our application as:

ID |UserName
1 Vait

2| Ameti

3 Jan

Figure 14. user table after first creation

DataContext.cs class for deriving from DbContext was developed as it is a class

that helps us to do basic transactions with entity framework and needs to be injected.

public class DataContext : DbContext

public DataContext(DbContextOptions options) : base(options

public DbSet<User» Users [get; set;
Figure 15. DataContext.cs file

The DbSet of user type also has added as a property inside the DataContext class. For
injecting this class everywhere in our application, we need to do it from program.cs using
builder.Services which is a predefined code written in ASP.NET applications since .NET 6
as we don’t have stratup.cs file anymore. By injecting this class, the application was
connected to the database and made sure that entity framework understand that the class
Users is an entity and can be configured within application and this way the repository

pattern also configured.

44

builder.Services.AddDbContext¢<DataContext» options =>{options.
UseSgqlite/builder.Configuration.GetConnectionString "DefaultConnection”

i}

Figure 16. Injecting DataContext as Service

Last thing that was configured in walking skeleton model for backend was the user’s
controller. The controllers derive from ControllerBase class which gives extra attributes to
be used. ApiController attribute is always on top of the class and under it the route is defined.
Inside the controller the constructor injects DataContext to access database. Initially only
two HTTP requests were made to return all users and only one user by id in the controller as
follows:

ApiController
Route("api/[controller]”

public class APIUsersController : ControllerBase

private readonly DataContext _datalontext;

public APIUsersController(DataContext dataContext

_dataContext = dataContext;

HttpGet

public async Task<ActionResult<IEnumerable<User»>>» GetAllUsers
return await dataContext.Users.TolListAsync! ;

HttpGet("{id}"

public async Task<ActionResult<User»> GetOneUser(int id

return await _dataContext.Users.FindAsync id ;

Figure 17. APIUsersController

After the controller configuration, when we hit the GetAllUsers end point inside the
route with the localhost port 7209 the result is:

<~ —>» (ﬂ localhost:7209/api/APIUsers

[{"id":1,"username":"Vait"},{"id":2,"userName:"Ameti"},"id":3,"userName":"Jan"}]

Figure 18. HTTP request for getting all the users

45

4.3.6 Walking skeleton model for frontend

To add the angular CLI, the installment has been done through terminal using the
command ‘npm install -g @angular/cli’. After that we for including angular client into our
project ‘'ng new" command has been used. This command creates all the necessary files in
our application to be able to use Angular.

After that we need to include HTTP module to be imported as we need to make API
calls. When Angular has installed, a file called app.module was created where we can import
any module available. Below you can see how we imported HTTP module:

@NgModule
declaraticons:
AppComponent,

imports:
BrowserModule,
BrowserAnimationsModule,
AppRoutingModule,
HttpClientModule,

providers: 3
bootstrap: [AppComponent

export class AppModule
Figure 19. importing HTTP client

To be able to inject API calls from .NET, CORS policy has been added in
programs.cs file according to Angular’s Live development server which is

“http://localhost:4200/":

app.UseCors policy =» policy.AllowAnyHeader().AllowAnyMethod
.AllowCredentials().WithOrigins("http://localhost:4288") ;

Figure 20 CORS configuration

Lastly, to finish walking skeleton model bootstrap 5 was added using 'ng add ngx-
bootstrap” command and to use ready-made icons ‘npm install material-icons@latest’
command was used. Finally, everything related to connecting application and setting up was

developed with walking skeleton model.

46

4.3.7 Authentication and JSON web token security

The authentication to be able to communicate with frontend and backend the JWT token
has been implemented. The claims have been assigned to every user with the expiration date
and signing key so it can be authenticated in server. The Token class has a method to create
a token which takes a parameter which is the User type. In the constructor we are generating
the security key that is needed to be assigned. Inside the method first a new claim was
registered with the username which is unique and used as a login parameter. The signing
credentials has been settled with the security key that assigned in constructor and given an
encryption algorithm. The description of token has assigned its subject, the expiry date and
the Signing credentials which is used as a sign to communicate with the server. For creating
the token the JwtSecurityTokenHandler class has been used as it has a method written
CreateToken() which creates our token according to the parameters assigned. In the end the
method has returning the token by using WriteToken() method which is also another
JwtSecurityTokenHandler class method. The implementation of token is in the figure below:
private readonly SymmetricSecurityKey securityKey;

public Token(IConfiguration configuration

securitykKey = new SymmetricSecurityKey Encoding.UTF8.GetBytes(configuration|"TokenKey" 1))

public string NewToken(User user

var claims = new List<Claim>»
new Claim(JwtRegisteredClaimNames.NameId, user.UserMame

var credentials = new SigningCredentials securityKey, SecurityaAlgorithms.HmacSha512Signature’;
var description = new SecurityTokenDescriptor
Subject = new ClaimsIdentityiclaims),
Expires = DateTime.Now.AddDays(5),
SigningCredentials = credentials
var handler = new JwtSecurityTokenHandler();
var token = handler.CreateToken description ;
return handler.WriteToksn token ;

Figure 21. Token class

The application has used "[Authorize] attribute on top of a controller and made it

accessible to only users who has send a token to server. The controllers are always deriving

47

from controllerBase class using inheritance and the authorize attribute has been added on
top of every controller that needs authentication. For example:

Authorize
ApiController
Route("api/[controller]

public class MessageController: ControllerBase
Figure 22. Authorize attribute
4.3.8 Registering and login

The registering in application has implemented has been setup in using action result in
controller that returns a user view item. The method had been designed to accept the
parameter of object RegisterUser which includes properties that are needed for registering
such as username, password, Date of birth, hobbies, about, country, city, and sex. The
uniqueness of user has been ensured first in the application and then the registerUser object
has been mapped to the user entity through autoMapper which does the mapping of objects
automatically. Then the token has created and returned to user as they register.

HttpPost "register”
public async Task<ActionResult<ReturnUser>> RegisterUser(RegisterUser registerUser
if await Existance(registerUser.UserMame
return BadRequest "Username exists, please choose a differnst username” ;
var mappedUser = Mapper.Map<User> registerUser ;

using var encryptedPassword = new HMACSHAS12 | ;

mappedUser.UserName = registerUser.Userlame.Tolpper @ ;

mappedUser.Hash = encryptedPassword.ComputeHash Encoding

UTF&.GetBytes(registerUsar.Password) | ;
mappedUser.5alt = encryptedPassword.Key;

UsersDatacontext.Users.Add mappedUser ;

await UsersDatacontext.SaveChangesisync | ;
return new ReturnUser

Usarname = mappedUser.Userhame,
Token = Token.NewToken(mappedUser

private async Task<bool» Existance(string username

return await UsersDatacontext.Users
JAnyAsync user =»> user.Userlame == username.Tolpper() ;

Figure 23. Register request

48

The login has implemented as it accepts the LoginUser object as a parameter which has
properties of username and password. To see whether user is in database entity frameworks
SingleOrDefaultsAsync() method has been used to get the user from database by the
username as it is unique for every user. For authenticating the password HMACSHA512
algorithm has used to compute the salt password and we hash the password sent from user
which will be decrypted version of salt password and we are going to return the username
and token back to user so they will be authenticated. For small scale applications the author
made sure that the authorization and authentication of users are scalable.

HttpPost("login”

public async Task<ActionResult<ReturnUser»» Login(LoginUser loginUser

var user = awalt UsersDatacontext.Users.SingleOrDefaultfsync user =»
user.Userflame == loginUser.Username.Tollpper() ;

if (user == null, return Unauthorized "The username doesnt exist!™);
using var encryptedPassword = new HMACSHAS12 user.S5alt ;

var decryptedPassword = encryptedPassword.ComputeHash Encoding.UTF8.GetBytes(loginlser.Password

for int a2 = @; a < decryptedPassword.Length; a++
if (decryptedPassword[al != user.Hash[a]) return Unauthorized("wrong password”);
return new ReturnUser

Username = user.UserName,
Token = Token.NewToken(user

LI]

Figure 24. login controller
4.3.9 Photo management

Photo management has been setup using Cloudinary API. Through this API the users
photos had been uploaded to their database and the photos fetched through http using
cloudinary API. The service for Cloudinary had used a Task of ImageUploadResult type
which is a cloduinary API and as a parameter it developed to access IFormFlile object. In
this method it is made sure that the photo is transformed and uploaded to Cloudinary.
Configuration for Cloudinary has set up in appsettings.json file and made sure it will not be
uploaded to github as it is a private information according to Cloudinaty account. To actually
send the files from Cloudinary, ng2-file-upload library has been used in frontend which
accepts the input as a photo and made sure that it sends the file to backend. Using Cloduinary

49

»

photo management the project has achieved its goal to add a photo, delete a photo and choose

a main photo for the user object.
HttpPost! "newPhoto”
public async Task<ActionResult<PhotoReturn>> AddPhoto(IFormFile file
var values = await UserDataRepository.GetByUsername User.FindFirst(ClaimTypes.NameIdentifier)?.Value ;
var response = awalt PhotoService.PuthewPhoto file ;
var image = new Photo
Adress = response.Securelrl.AbsoluteUri,
PublicAdress = response.PublicId,
if values.Photo.Count == @

image.Leading = trus;

values.Photo.Add image ;
if await UserDataRepository.SaveChanges

return CreatedAtRoute("GetUser”, new | username = values.UserMName |, Mapper.Map<PhotoReturn> image);

return BadRequest "cannot add this photo!” ;

Figure 25. Adding new Photo endpoint
4.3.10 Repository management

To separate the database access of application the repository design pattern has
implemented and made sure that the database queries have been separated from controllers.
For example, userDataRepository has created Task of types related which Gets all the users,
get user by Id, get user by username, profile update and save changes. Entity framework
methods to fetch data from DataContext has been used for all individual tasks. “Include’
method has used to make sure when users are returned also their collection of photos will be
returned. “FindAsync™ method was used to get an int value of id and return it, since the id
has configured to be unique only one user would be returned. "SingleOrDefaultAsync
method was used to either get one user with username or return null if no user with that
username exists, this method used because the username also configured to be unique
throughout the development. EntryState class was used to be able to update the users as it
tracks whether the object provided has been modified or not. "SaveChangesAsync™ method

was used to return a true or false according if the dataContext had been saved different values

50

and this was ensured by using the grater than operator and setting the left side to zero as if
any change has made or not.

private readonly DataContext DataContext;
public UserDataRepository(DataContext dataContext

DataContext = dataContext;

public async Task<IEnumerable<User:>»> GetAllUsers

return await DataContext.Users.Include e => e.Photo) .ToListaAsync! @ ;

public async Task<User:> GetByUsername(string username

return awalit DataContext.Users.Include e =»> e.Photo
.Single0OrDefaultfsync| e => e.UserMName == username.TolUpper H

public void ProfileUpdate(User user

DataContext.Entry user) .State = EntityState.Modified;

public async Task<bool> SaveChanges

return await DataContext.SaveChangesfsync = 8;

Figure 26. user repository
4.3.11 Messaging between users

The messaging of users has been implemented using SignalR library for making sure
the real presence and real time message send and receive. For SignalR instead of controllers,
hubs were created as it is not using Http but web sockets and since it is a singleton it has
implemented as a service inside the program.cs file On connected async methods were used
to make sure when users are online and when they send a message update the message
component without re-rendering whole application. The groups has created according to
SignalR standards to make conversation between users. The method’s called inside
onConnected async has been developed in same class. The method for new message
designed to accept a parameter which is NewMessageViewltem type which is a Message
entity type. The method developed to get the sender username and the receiver username to
save it in database as a new message. For the convention of signalR, the group names has
created which has to have unique for each user talking between that is why it is constructed
as the name of issuer username and target user name. The messages has sent to the repository

in order to be added to database.

o1

public async Task MessageWithUser(NewMessageViewItem newMessageViewItem

var name = Context.User.FindFirst ClaimTypes.NameIdentifier ?.Value;

if name == newMessageViewItem.TargetUsername throw new HubException "Cant message to yourself" ;
var issuer = await UserDataRepository.GetByUsername name ;

var target = await UserDataRepository.GetBylUsername newMessageViewItem.TargetUsername ;
if(target == null throw new HubException "Target user couldn't found";

var newMessage = new Message

Issuer = issuer,

Target = target,

IssuerlUsername = issuer.UserName,

TargetUsername = target.UserName,

Text = newMessageViewltem.Text
var chatName = ChatName issuer.UserName, target.UserName ;
var chat = await MessageDataRepository.AddNewSignalRGroup chatName
if chat.UserssignalR.Any(p =» p.Name == target.UserNams)

newMessage.TextRead = DateTime.UtcNow;

MessageDataRepository.newlessage newtessage ;
if await MessageDataRepository.Save()
await Clients.Group(chatMame).SendAsync("NewChat”, Mapper.Map<MeszageViewItem> newMassage));

Figure 27. Message with signalR
4.3.12 Custom Middleware for error check

For error handling, a class has been created to give detailed view for an error such as

httpCode, error and detailed message of error.

public class 4ApiErrors

I
L

public ApiErrors int httpCede, string error = null, string detailedMessage = null
HttpCode = hittpCode;
Error = error;
DetailedMessage = detailedMessage;

public int Httplode | get; set;

public string Error | get; set;

public string DetailedMessage | get; set;

Figure 28. Error message class

52

The Custom middleware designed to check every http request to make sure if there is
an error, print it to console. The class Custom middleware in its constructor has implemented
RequestDelegate to access the http calls and ILogger has implemented to be able to log error
to the console. The InvokeAsync() method used as convention for middleware and the
method’s parameter designed to accept HttpContext object. Try catch statement used to catch
all the errors. Inside try block the Requestdelegate was called, and the parameter passed
inside. Inside catch block the logger was used to log the exception and http context was
configured to get detailed view of the possible errors.

After logging the error, the middleware sets the HTTP response content type to
"application/json" and the status code to 500 (Internal Server Error). It then creates an
instance of the ApiErrors class, which is a custom class used to format error messages in a
standardized way. The ApiErrors constructor takes two parameters: the HTTP status code
and a message string. The middleware then serializes the ApiErrors instance to JSON using
the JsonSerializer.Serialize method, and writes the resulting JSON string to the HTTP
response stream using the httpContext.Response.WriteAsync method.

private readonly RequestDelegate RequestDelegate;
private readonly IlLogger<CustomMiddleware> Logger;

public CustomMiddleware(ReguestDelegate reguestDelegate
» Ilogger<CustomMiddleware> logger

Logger = logger;
RequestDelegate = requestDslegate;
public async Task InvokeAsync(HttpContext httpContext

-t n-:'_r
await RequestDelegate(httpContext);

catch(Exception exception
Logger.lLogError(exception, exception.Message);
httpContext.Response.ContentType = "application/json”;
httpContext.Response.StatusCode = (int) HttpStatusCode.InternalServerError;
var resp = new ApiErrors(httpContext.Respeonse.StatusCode,"internal server error”);
var serialization =

new JsonSerializerOptions{PropertyNamingPolicy = JscnNamingPolicy.CamelCase};

var result = JsonSerializer.Serialize(resp, serialization);
await httpContext.Response.Writefsynciresult);

Figure 29. Custom error middleware

53

The middleware was added to program.cs as "app.UseMiddlware to let the application

handle the class as a middleware.

4.4 Client Implementation

This part is going to show an overview of the end product with the summary of code.
The images are from working application.

4.4.1 Home and register

The frontend implementation of authentication the angular application has been
made using the AuthGuard canActivate router helper which only lets a user view certain
page if they have the token and username sent from backend. The loginService of angular
has the route for the API that will fetch the username and Bearer token to the client. The
userValues observable will pipe and then map the properties. This way it is made sure that
users that are not authenticated are not authorized to change URL and proceed to the
section that needs authentication. The authentication guard has setup to check the
authentication as follows:

canActivate(): Observable<boolean:

return this.loginService.userValues$.pipe(map u =»{if(u) return true});

Figure 30. AuthGuard

To make use of this guard the application has implemented it in the router class of

angular as follows to see the users only authenticated users can activate that path:

path: "users', component: AllUsersComponent, canActivate: [AuthenticatedGuard]},
Figure 31. router.app

The navbar component has used as an input area for login and password which gets
values from template with angular form and double binds the values which are used in
component to connect the service. Local storage has been used to keep the user values for

authorization throughout the lifetime of application until the user logouts.

54

loginUser(logUser: ClientUser){

return this.httpRequest.post(this.URL + 'register/login’ , logUser).pips map (
serverResponse: any) =» |
const response = serverResponse;
ifiresponse
localStorage.setItem 'user_access', JSON.stringify(response)
this.userValues.next response ;
this.onlineService.onlineConnection! response ;

.
}
1 reference
setUserValues(clientUser: ClientUser){

localstorage.setItem| 'user_access', 150N.stringify clientUser

this.userValues.next clisntlUser
.
}

Figure 32. login Service

loginUser(){
this.loginService.loginUser this.loginValues
.subscribe(next: r =» {this.router.navigateByUrl('fusers');
this.userlogged = trus}, error: err =»
this.teastr.error(err.error)

-I.
J
Figure 33. login component

<form *nglf="!userLogged" #logUser="ngForm"
ngsubmit ="loginUser("
class="navbar-form navbar-left d-flex me-4"»
<input name="username" [ngModel]="loginValues.username"
class="form-control me-1 border-warning” type="text"
placeholder="username">
<input name="password” [ngModel]="loginValues.password"
class="form-control me-sm-2 border-warning"
type="password"” placeholder="password">
<button class="btn btn-outline-warning my-2 my-sm-8"
type="submit">Login</button>
</form>

Figure 34. login template

55

MessageMe CEEE G

Welcome to MessageMe

MessageMe is an application focusing on bringing people together for free, making
online socialization even easier.

Sign-Up

Get in touch with your friends Socialize with strangers Have fun using our free services
MessageMe is a great place to have a free chat with your friends. MessageMe offers a platform for end users 1o socialize by MessageMe is a free platform for users and it will always stay
Without any data tracking and everything free service model we messaging with strangers without any conatraints. As soon as free for users.

can offer you great time. user register's they are able to message all the users registered.

Figure 35. Home page

Angular services have been used to communicate with controller from backend as
the services in angular makes the http requests to backend. The components have been
used to access the angular services. To register a user angular form has been used inside
the template of the angular component. Angular form has designed to have the inputs
needed for the object for the controller to effectively communicate with the backend.
Inside the component the attributes for template have given and made sure that the angular
service is called which will communicate with the controller. This functionality of

application from frontend has been achieved as follows:

register{clientUser: any
return this.httpRequest.post this.URL+ 'register/register', clientUser

pipeimap (u:ClientUser)=»>{if(u){localStorage.setItem 'user_access’',
JSON.stringify(u) ;

this.userValues.next u ;

this.onlineService.onlineConnectioniu);

Figure 36. register service

signUp(registerForm: NgForm
this.loginService.register | registerForm?.value).subscribe(next: r =»
this.router.navigateByUrl(" fusers’;
console.logir
, error: err =» console.log{err

Figure 37. register component

56

<div class="form-group">»
¢label class="control-label col-sm-2" for="userMamz">Username:</labal>
<div class="col-sm-1& w-25">»
<input #usertame="ngModel"” id="username" required type="text"

class="form-control” placeholder="Enter username” name="userMams"
[ngModel]="formValues.username" >
<div #nglf="userName.invalid && userName.dirty || userMame.touched "

class="glert zlert-danger ">
<div *ngIlf="userName.errors?.['required’]">»
Must have a username!
<fdiv>
<fdiv>
<fdiv>
</fdiv>

Figure 38. register form

MessageMe B username password | Login ‘

Register Form

Username:
klara

Password:

About:
example
Haobbies:
example
Date of birth:
dd/mm/yyyy m|
City:
prague
Country:
Czechia
Sex:

female

Figure 39.register page
4.4.2 Users Page

The users page displays all the users registered within application. Users can see how
their own user card looks and they can directly edit their page from the button. The online
users are displaying an icon in green, and the offline users are displaying their icon in black.
Every other user has two buttons attached and they can either go to their detail page or they
can directly take you into messaging section for the user. This page comes right after a user
register or logs in as they are redirected here and the login button disappears. The navbar

57

displays and greets the user where they can also edit their profile or log out from their profile
and three tabs are displayed. The components retrieve data from backend using a HTTP

request as an observable through angular service.

getMappedUser(username : string) : Observable<MappedUsers:»
return this.httpRequest.get<MappadUsers> this.URL + "APIUsers/' + username ;

Figure 40. Get users

MessageMe] Home . Messages

Edit user

logout

URSULA MIA FRANCIS LUELLA

JANNA
(] (] (] e

female
City: Belmont female female female female female
Country: Kazakhstan City: Kerby City: Caspar City: Aguila City: Vincent City: Escondida

Country: Bulgaria Country: Senegal Country: Niue Country: US Minor Outlying Country: Taiwan

Edit your profile Islands
Details Message Details Message Details Message Details Message

Details Message

AR A . S N e (B g

Figure 41. Users page

4.4.3 Users detail page

Users detail page gives a detailed view about the user selected and indicates a small
icon whether they are online or offline. The users photo gallery can have more than one
photo and they can swipe to other photos. The chat tab is where user can send message to
the user they are viewing. The components get specific user according to their username
and subscribes to the returned user and retrieves the user photos and messages if there are

any and creates a group using signal R.

getlUser
1 reference
this.mappedUsersService.getMappadUser this.activatedRoute.snapshot.paramMap.get "username’ | .subscribe e =»
this.user = g}
if (this.user
this.userPhotos();
this.messagesBetweenUsers | |

this.textService.onlineConnection(this.clientUser, this.user.userName);

Figure 42. Getting user detail

58

MessageMe =) Home . Messages

Hobbies Photos Chat

Dolore aliquip labore duis tempor sit elit veniam veniam non elit
mollit enim qui. Voluptate aliqua commodo excepteur aute. In et
aliquip aliqua do duis. Eiusmod dolor aute commeodo consectetur
velit labore reprehenderit ut consequat culpa incididunt.
Consectetur consequat cupidatat amet do enim ullamco irure.

Sex: female

Was Active: 2/11/23, 7:50 PM
Age: 38
City: Kerby

Country: Bulgaria
Figure 43.User detail page
4.4.4 Users edit profile
Users can edit their profile and update their country, city, hobbies and about
properties using angular form. When user has more than one photo, they are able to change

it as main photo or delete the photo that is not the main photo. The photo is sent to backend
with the user’s token over the APl URL.

updateMember
this.mappedUserService.updateMappedUser this.mappedMember .subscribe(| =»
this.editForm.reset(this.mappedMember);
this.isForm = true;

Figure 44. Updating user properties

Upload
this.uploadConfig = new FileUploader

url: this.URL + "APIUszrs/newPhoto’,
authToken: 'Bearer ' + this.clientUser.token,
isHTMLS: true,
allowedFileType: ['image'],
removeAfterUpload: true,
autoUpload: false,
maxFileSize: 18 * 1824 * 1824

Figure 45. Uploading photo

59

MessageMe 2 Home users Messages

Choose Files | No file chosen

Name

Upload all

Figure 46. user edit page
445 Users message

The SignalR library was installed for the frontend with ‘install @microsoft/signalr’.
On connected async methods were used to make sure when users are online and when they
send a message update the message component without re-rendering whole application. In
the message detail section users can send new message and the messages has different styles
according to whom written the message. Users can see the date and time the message has
sent or received. If the message belongs to the user, it indicates whether the message they
sent has been read or not. The order of the messages is handled by using angular structural
directives which shows the messages on correct sides whether it is sent or received. The
online connection has been setup and target the HubConnectionBuilder() method to access
the method on figure 31. The query parameters have sent with the name of the user to
message with between individual users. The SignalR used as a fundamental technology for
a communicating social application instead of HTTP because, if HTTP had been used then

it would be impossible to get messages without rendering the webpage. To access the

60

websocket user token has sent from the frontend. Angular structural directives were
implemented inside the template to show every message in an order and separated from
which message is from sender and which is from receiver. "NgFor" directive has used to
iterate all messages and "Nglf" directive used to separate design of how the message will
look. The bootstrap classes were used to design the structure of messages to be separated
from sender and receiver. The messages had made sure that includes the time it has been
sent and designed to show as "M/d/yy, h:mm a" format with angular datePipe property which
configured to be short and gave the format wanted. Read and unread properties have added
only to the messages that are on the other side of user than the current user since those two
properties are essential for a messaging application and angular structural directives was
used to handle this function. Inside the component it is ensured that the signalR websocket
will run if the component is not destroyed. This way it is ensured that the messages send
from one user it to other user they will see the messages in real time as long as they are

running the component.

<div *ngFor="let item of | textService.clientText$ | async ">

<div *ngIf="item.targetUsername === user?.userlame" class="d-flex flex-row justify-content-end">
<div>
<p class="medium p-2 ms-3 mb-1 rounded-3 bg-warning”> {item.text} </p>
<p class="small ms-3 mb-3 rounded-3 text-muted"> [item.textSent | date: 'short'
*Read
<span class="text-danger" *nglf="I!item.textRead"»*Unread
<fp»
</dive
<fdivey
<div *nglf="1item.lissuerUsername === user?.userfame” class="d-flex flex-row justify-content-start”>
<div>
<p class="medium p-2 me-3 mb-1 text-white rounded-3 bg-dark"» [item.text} </p>
¢p clazs="small me-3 mb-2 rounded-3 text-muted d-flex justify-content-end"> [item.textSent |
date: ‘short'} </p»
</div>
</div>»
</divs

Figure 47. Message template

61

About Hobbies Photos

ILA

Hi

Hello Janna

1 35 AM

Sex: female

Was Active: 2/12/23,10:35 AM
Age: 38
City: Kerby

Country: Bulgaria

Type message
Figure 48.user chat tab
4.4.6 Messages

In the message section users can cruise through Unread, Inbox and Outbox with
information related to the message. The user can click the row of any message and they are
redirected to the actual user messages. The user can unsend their message by pressing the
delete button on their outbox. The Unread, Inbox and outbox messages are sorted out by
using QueryParameters. When user selects the outbox messages for example, the angular
will do an API call with query parameters which then the data from backend will send only
outbox messages. By default the unread messages will be displayed when the component
has stars and once user clicks on the message it will take them to user detail component
where user can see its chat history and the message will be displayed inside the inbox.

62

<div *ngIf="container === "Outbox'

"y

<table class="table table-warning table-striped mt-4" style="cursor: pointer;"»

<thead>
<tre
<th style="width:
<th style="width:
<th style="width:
<th style="width:
<th»</th>
{ftr>
</thead>
<thody>

S@k; "»Message</th
28%; " »To</ths
20%;">Time</the
18%;"»States/ths

<tr *ngFor="let item of texts" routerlLink="/users/ [item.targetUsername

<td» [item?.text

</td»

<tdy [item?.targetUsername | lowercase)l </td>
<td» [item?.textSent | date:'short'} </td>

<td»Sent</td>

" [queryParams]=

tah:3

<tdr<button click ="deleteText item?.id " class="btn btn-danger me-4":Delete</button»></td>

<ftre
</thody>
</table»
<fdiv>

Figure 49.0utbox section of messages

MessageMe B

Unread Inbox Outbox

Message

Hi

Figure 50.User outbox messages page

Home users -

To Time

ila 2/12/23,10:34 AM

63

Sent

‘ Hello janna ~ ‘

>

5 Results and Discussion

A functional messaging web application with a secure and reliable backend that
effectively communicates with the frontend through the API was created. Users are able to
create their profiles, edit their attributes, and communicate with other users through
messaging. The frontend designed in a way that provides an efficient and user-friendly
experience. The basic user interface was designed with frequently used components placed
in the accessible areas of the web browser, allowing users to easily find what they need.
Furthermore, the use of the MVC template and the object-oriented approach allowed us to
keep our code organized and easy to maintain. This made it easier to add new features and
fix any issues that arose during development. The use of Microsoft Entity Framework also
made it easier to handle the data and database, reducing the amount of manual coding
required. Additionally, the use of JSON Web Tokens provided a secure and efficient way to
transmit data between the backend and the frontend. Overall, the combination of these
technologies and approaches helped us create a robust and reliable web application that
meets the requirements of modern web users. The final product can be seen in client
implementation section, see figure 34, figure 35 , figure 40, figure 42, figure 45, figure 47,

figure 49.
However, there are also some limitations and areas for improvement in the

development of this messaging web application. The application could benefit from more
advanced features such as video chat and file sharing. In addition, the security of the
application could be further improved by implementing more advanced authentication and
authorization methods. Overall, this thesis provides a foundation for the development of a
messaging web application with a secure and reliable backend and an efficient and user-
friendly frontend. Further improvements and enhancements can be made based on the

specific needs of the application and its users.

64

6 Conclusion

The objective of this thesis was to create a messaging web application that allows
users to log in, create and edit their profiles, communicate with other users, and share
their attributes such as password, username, and photo. Another objective of the thesis
was to create a web application with a secure and maintainable backend. The frontend
used also to have usability between users. The application provides real time messaging
and photo management. The application created is the initial creation for a web
application and can be improved in many ways which is every web application need.
Every web application created are having updates almost one or two time a year at least
but providing the initial code that can be usable is the hard part.

C# programming language with its features used to provide a secure backend,
Angular framework used to provide usability for users and entity framework used to
create functionality for the application to easily migrate to another database provider as
well as to communicate with the SQLite database. The MVC design pattern has
provided the application to be developed in less abstract way and created an easy folder
management. The repository design pattern used to keep the actual logic for application
different than the data fetching from database. SignalR was used to create the real-time
text messaging feature. It also provided the functionality to be able to see the user’s real-
time presence. The Cloudinary API was used for storing, retrieving, and deleting the
photos for users and their profile photos.

In conclusion, the messaging web application was developed with ASP.NET and
SQLlIite as backend and Angular framework was used to create the client side of the

application.

65

7 References

[1] Damjan (2022, March 29). messaging apps statistics for 2022. Statista. [online]
https://kommandotech.com/statistics/messaging-apps-statistics

[2] Igbal, M (2022, August 31). WhatsApp revenue and usage statistics (2022) [online]

https://www.businessofapps.com/data/whatsapp-statistics/

[3] Larson, G. W. (2016, July 14). instant messaging. Encyclopedia Britannica. [online]

https://www.britannica.com/topic/instant-messaging

[4] CRAIG, lain D. and SpringerLink (ONLINE). Object-Oriented Programming
Languages: Interpretation. London: Springer London, 2007. ISBN
9781846287749;184628774X;1846287731;9781846287732;

[5] Anderson R. and Smith S.(2022, August 19) ASP.NET Core Middleware [online]
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/middleware/?view=aspnetcore-
6.0

[6] Anderson R. and Smith and Hasan F. (2022, June 03) Write custom ASP.NET core
middleware [online]
https://learn.microsoft.com/en-

us/aspnet/core/fundamentals/middleware/write?view=aspnetcore-6.0

[7] Middleware in ASP.NET Core [online]

https://wakeupandcode.com/middleware-in-asp-net-core/

[8] Thompson, B (2022, August 25). What is .NET Framework? [online]

https://www.guru99.com/net-framework.html

[9] MOSSENBOCK, Hanspeter. NET application development: with C #, ASP.NET,
ADO.NET and web services. Harlow: Addison-Wesley, 2004.

66

[10] A diagram of .NET Framework Architecture with ASP.NET displayed. [online]
https://www.researchgate.net/figure/A-diagram-of-NET-Framework-Architecture-with-
ASPNET-displayed_fig2_325534947

[11] NAKOV, Svetlin and KOLEV, Veselin. Fundamentals of Computer Programming
with c#: Programming Principles, Object-Oriented Programming, Data Structures. Faber
Publishing ,2014.

[12] Payne, J (2021, May 5). Benefits of C#. [online]

https://www.codeguru.com/csharp/benefits-of-c/

[13] JAMRO, Marcin. C# Data Structures and Algorithms: Explore the possibilities of C#
for developing a variety of efficient applications. Birmingham: Packt Publishing, Limited,
2018.

[14] POLAT, Engin and Stephane BELKHERAZ. ASP.NET Core MVC 2.0 cookbook:
effective ways to build modern, interactive web applications with ASP.NET Core MVVC

2.0. 1st. ed. PACKT Publishing, 2018. 10.

[15] Introduction to ASP.NET. [online]
https://www.geeksforgeeks.org/introduction-to-asp-net/

[16] SMITH, Jon P. and Julia LERMAN. Entity Framework Core in action. Second. ed.
Shelter Island: Manning, 2021. ISBN 9781617298363;1617298360;

[17] object relational mapper. [online]

https://softuni.org/dev-concepts/object-relational-mapping-orm/

[18] Aguilar M. Jose. SignalR Programming in Microsoft ASP.NET. Microsoft Press,
2014. ISBN: 978-0-7356-8388-4

67

[19] Peyrott S. The JWT Handbook. AuthO Inc. 2016-2018 [online]
https://auth0.com/resources/ebooks/jwt-handbook

[20] JWT structure. [online]
https://medium.com/batc/jwt-for-dummies-ok-not-100-dummies-1f08d3279a0b

[21] FLANDERS, Jon. RESTful.NET. Sebastopol: O'Reilly, 2009. ISBN
0596519206;9780596519209;

[22] Pedamkar, P (2021) What is MVVC Design Pattern. [online]

https://www.educba.com/what-is-mvc-design-pattern/

[23] Smith, S (26, June 2022) Overview of ASP.NET Core MVC. [online]
https://learn.microsoft.com/en-us/aspnet/core/mvc/overview?WT.mc_id=dotnet-35129-

website&view=aspnetcore-6.0

[24] MVC Architecture. [online]
https://code-maze.com/asp-net-core-mvc-series/

[25] Shekhawat. S (2020, December 2) CRUD using the Repository Pattern in MVC.
[online]
https://www.c-sharpcorner.com/UploadFile/3d39b4/crud-using-the-repository-pattern-in-

mvc/

[26] Overview of Entity Framework[online]
https://www.c-sharpcorner.com/UploadFile/3d39b4/crud-using-the-repository-pattern-in-
mvc/

[27] Fenton, S., 2018. Pro TypeScript. Berkeley, CA: Apress.

[28] Seshadri, S . Angular Up and Running. O'Reilly Media, 2018. ISBN 9781491999837

68

[29] Angular Architecture. [online]

https://www.simplilearn.com/tutorials/angular-tutorial/what-is-angular

[30] Zola A (30, August 2022) Bootstrap. [online]

https://www.techtarget.com/whatis/definition/bootstrap

[31] TechTarget Contributor (17, October 2016) Walking skeleton. [online]

https://www.techtarget.com/whatis/definition/walking-skeleton

[32] Dave Todaro(2, January 2020) Using A 'Walking Skeleton' To Reduce Risk In
Software Innovation. [online]
https://www.forbes.com/sites/forbestechcouncil/2020/01/02/using-a-walking-skeleton-to-

reduce-risk-in-software-innovation/?sh=5c09cd003b1c

69

