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Abstract 

Solar panels are one of the popular energy convertors. This thesis focuses on the achievement of 

optimized output from the solar panel by controlling its position with regard to the position of 

sun in the sky, with the use of smart hardware and photoresistors.  

For this purpose a prototype is designed and built that consists of the housing structure for the 

solar panel providing the possibility for the solar panel to track the sun and rotate accordingly by 

stepper motors, a microcontroller board and necessary commands and instructions in form of a 

program code usable by the microcontroller board. 

The prototype was tested versus a fixed solar panel and proved the efficiency of output voltage in 

dual-axis tracker, and the results proved theoretical background to be right.  
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Abstrakt 

Solární panely jsou jedním z oblíbených konvertorů energie. Tato kvalifikační práce se zaměřuje 

na dosažení optimalizovaného výstupu ze solárního panelu ovládáním jeho polohy s ohledem na 

postavení slunce na obloze, při použití chytrého hardware a fotorezistorů. 

K tomuto účelu byl navržen a postaven prototyp, který sestává ze stojanu poskytujího oporu pro 

solární panel tak, aby mohl sledovat pohyb slunce a otáčet se odpovídajícím způsobem pomocí 

krokových elektromotorů, desky mikrořadiče a nezbytných příkazů a instrukcí ve formě kódu 

programu použitého pro desku mikrořadiče. 

Prototyp byl testován na pevném solárním panelu a byla dokázána efektivnost výstupního napětí 

v dvouosém sledovači a výsledky dokázaly správnost teoretického pozadí. 
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1. Introduction 

Energy is one of the major concerns all over the world today. Due to the problems and threats 

that concern non-renewable sources of energy such as coal, crude oil and uranium as fuel for 

nuclear power plants, a migration toward clean sources of energy has already started. This 

movement has resulted in more studies and attempts toward improvements of clean energy 

production technologies including solar panels. 

Solar energy is free and available for many areas on the earth almost all through the year. These 

properties make it one of the most popular and affordable clean energy. However, since the 

position of the sun in the sky is constantly changing, especially for areas where receive fewer 

amounts of sun rays on the surface, it is important that solar panels receive the solar energy as 

much as possible throughout the time that the sun is in the sky. One way to achieve this goal is 

for the solar panel to track the location of the sun in the sky.  

This method can become feasible with the help of smart hardware. This research consists of three 

parts. The first part concerns the theoretical knowledge regarding solar energy, methods of its 

collection and optimization, and DC and stepper motors.  

In the second part the method of solar energy collection and based on that the designed smart 

hardware are introduced and explained. Lastly, in the third part the collected data from two solar 

panels’ output and based on that a computation is done to determine the profitability of the dual-

axis tracking over fixed method. One of the solar panels is capable of tracking the sun with the 

use of the designed smart hardware and the other solar panel has simply a fixed horizontal 

position. The observation and collection of data from two solar panels are done under the same 

environmental conditions.  
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2. Literature review 

In this part the current information regarding photovoltaic systems in general, the regarding 

principles, different manner of collecting and motors, more precisely DC motors are briefly 

reviewed. 

2.1 Photovoltaic System 

Photovoltaic systems are power systems that react to light by transforming part of it into 

electricity. Photovoltaic systems have properties that make them novel and unique including 

having no moving parts wear out, containing no fluid or thermal gases (except in hybrid systems) 

that can leak out, having rapid response, being able to operate at moderate temperatures and so 

many other, producing no pollution while operating and being able to be made from silicon, the 

second most abundant element in the earth's crust. (Solar Energy Research Institute, 1982) 

2.1.1 Sun and Nature of Light Energy 

It is important to know properties of sunlight since optimization of the performance of 

photovoltaic and other systems that convert sunlight into other useful forms of energy is based 

on this knowledge. (Messenger & Ventre, 2004) 

The sun, while producing X-Ray and other energies, releases 95% of its output energy as light, 

some of which cannot be seen by the human eye. (Solar Energy Research Institute, 1982) 

When sunlight enters the Earth’s atmosphere some of it is absorbed to the atmosphere while 

some is scattered and some other passes through atmosphere unaffected by the molecules there 

or finally get absorbed or reflected by objects on the surface of earth. (Messenger & Ventre, 

2004) 

It is important to consider the relation between the amount of sunlight at the Earth’s surface and 

the quantity, or air mass (AM), of atmosphere through which the light must pass. Radiation 

arriving at the surface of the earth is measured against the radiation that reaching the borders of 

the atmosphere where there is no air, and therefore, the air mass is zero (AM0). (Solar Energy 

Research Institute, 1982) 
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The atmosphere is a powerful sunlight energy absorber and can cut the sun's energy reaching the 

earth by 50% and more. As a result, the intensity of the sunlight reaching the ground weakens for 

sun angles approaching the horizon, or for the air mass that it has to penetrate. (Dunlop, 2009) 

 

Figure 1 – The earth's atmosphere and clouds affect the way in which the sun's light reaches the 

surface of the earth. Source: (Solar Energy Research Institute, 1982) 

The power density of sunlight is measured as Irradiance in W/m2. Therefore, Irradiance is an 

instantaneous quantity. The irradiance which is received by the Earth from the sun at the top of 

the atmosphere (at AM0) is the solar constant for Earth which is equal to 1367  
    . 

(Messenger & Ventre, 2004) 

The energy density of sunlight is meaured as  Irradiation in kWh/m2. As expected Irradiation is 

the integral of irradiance Since energy is power that is integrated over time. Usually he time 

frame for integration is one day which means during daylight hours. (Sukhatme & Sukhatme, 

1996) 
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2.1.2 Solar Radiation on Sloped Surface 

Designing a mounting for a system that collects sunlight is important for it can influnce the 

outcome of the system considerably. It may appear that the easiest manner of mounting of most 

systems is to mount them horizontally. However, this direction does not optimize collection. 

According to Messenger & Ventre (2004) that is because the beam radiation component 

collected is proportional to the cosine of the angle between the incident beam and the normal to 

the plane of the collector, as shown in figure 2.  

 

Figure 2 – Two-dimensional illustration of effect of collector tilt on effective area 

presented to beam component of radiation. Source: (Messenger & Ventre, 2004) 

 

Depending on the ratio of diffuse to beam irradiance components, the portion of available energy 

that is received will be between cos ɣ, and unity. Equation 1 shows that if a collector is mounted 

with its plane perpendicular to zenith angle (  ) at solar noon, it will be perpendicular to the sun 

at solar noon. This is the point at which the sun is highest in the sky that results in its minimum 

path through the atmosphere and corresponding lowest air mass for the day. (Messenger & 

Ventre, 2004) 

 

The zenith is a line perpendicular to the Earth that is straight up. The zenith angle (  ) is defined 

as the angle between the sun and the zenith. The tendency can be related to the zenith angle at 

solar noon by noting that the sun is at its highest point in the sky at solar noon. Since the sun 

travels through an angle of     per hour, it will be close to perpendicular to the collector for a 
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period of approximately two hours. Beyond this time, the intensity of the sunlight decreases due 

to the increase in air mass, and the angle between incident sunlight and the normal to the 

collector increases. These two factors cause the energy collected by the collector to decrease 

comparatively rapidly during the hours before 10 a.m. and after 2 p.m. (Sukhatme & Sukhatme, 

1996) 

 
Figure 3 – Relationships among   ,   and   at solar noon in winter and summer. Source: 

(Messenger & Ventre, 2004) 

Equation 1:          

Figure 4 show the approximate cumulative irradiation received by a south-facing collector sloped 

at the latitude angle in a region where the beam radiation component is significantly stronger 

than either the diffuse or the albedo components. If the collector is mounted in a way that allows 

it to track the sun, then the incident irradiance is affected only by the increasing air mass as the 

sun approaches the horizon. The figure also shows the additional cumulative irradiation under 

direct beam condition received by a tracking collector. Approximately 50% more energy can be 

collected in the summer in a dry climate (such as that found in Phoenix in Arizona) by using a 

tracking collector. During winter months, however, only about 20% more energy is collected 

using a tracker. (Dunlop, 2009) 
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Figure 4 – Cumulative daily irradiation received by fixed and tracking collectors for different 

seasons, direct beam contribution only. Source: (Messenger & Ventre, 2004) 

For mounting selection, a single-axis tracker can be considered which rotates about an axis fixed 

with respect to     . It can then be also considered mountings that can be adjusted manually 

several times per day or, perhaps, several times per year. Each of these options will enable the 

collection of an amount of energy that lies somewhere between the optimized fixed collector and 

the dual-axis tracking collector results. (Messenger & Ventre, 2004) 

 

Collector orientation may also depend on the season. For example, a remote cabin that is used 

only during summer months will require its collector oriented for optimal summer collection. 

However, if the cabin is used in the winter as a ski lodge, or in the fall as a hunting base, then the 

collector may need to be optimized for one of these seasons. (Sukhatme & Sukhatme, 1996) 

 

According to Messenger and Ventre (2004) for optimal performance on any given day, a fixed 

collector should be mounted with its plane at an angle of       with regard to the horizontal, as 

it is demonstarted in figure 5. This will cause the plane of the collector to be perpendicular to the 

sun at solar noon. 
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Figure 5 – Optimizing the mounting angle of a fixed collector. Source: (Messenger & Ventre, 

2004) 

For optimal seasonal performance, then, one simply chooses the average value of   for the 

season. Knowing   variations for summer in northern hemisphere for each month, and also 

knowing that the average value of half a sine wave having amplitude   , is    
  ; it is then 

possible to calculate average declination for each month. Therefore, it can be driven that the 

average declination between March 21 and September 21 is         . In a similar manner, the 

average declination for the period from September 21 to March 21 is          . Hence, for best 

average summer performance, a collector should be mounted at approximately          , and 

for best average winter performance, it should be mounted at          . Lastly, for optimum 

spring or fall performance or optimum annual performance, the collector should be mounted at 

about        . (Messenger & Ventre, 2004) 

 

Since normally it is acceptable to orient a collector for optimal seasonal or, perhaps, annual 

performance, many tables of irradiation on collectors are available for collector slopes of either  

  ,         or          at various locations on the globe. (Dunlop, 2009) 

  

Stanciu & Stanciu (2014) estimated solar radiation density based on three analysis models in 

order to find optimum slope angle for flat plate collectors at different geographical locations and 

different time moments over a year. The absorbed solar radiation density was computed and the 

optimum tilt angle was found for different geographical locations (covering the Globe latitudes). 
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The optimum value for the slope angle was researched for maximum incident solar radiation and 

also for maximum absorbed one. 

 

The three analysis models used in the study were as follows: Hottel and Woertz model (the 

simplest), Isotropic diffuse model (Liu & Jordan model) and HDKR model (Hay–Davis–

Klucker–Reindl), with the later being the most complex one. The results detected that the same 

angle is obtained when looking for maximum incident and for maximum absorbed solar 

radiation. (Stanciu & Stanciu, 2014) 

 

The results also indicated that when using the Hottel & Woertz model for estimating the incident 

solar radiation, the optimum tilt angle for a flat plate collector should be computed as simplest as 

                   function on the latitude and solar declination. However, when either isotropic or 

anisotropic diffuse models are applied, the previous values should be changed by       . 

(Stanciu & Stanciu, 2014) 

 

2.1.3 One-Axis Tracking Flat-Plate Collectors with Axis Oriented 

North-South 

Data are presented for four different axis slope angles from the horizontal:    , latitude minus 

    , latitude, and latitude plus     . These trackers pivot on their single axis to track the sun 

facing east in the morning and west in the afternoon. Large collectors can use an axis slope angle 

of     to minimize collector height and wind force. Small collectors can have their axis sloped up 

to increase the solar radiation on the collector. Just as for the flat-plate fixed tilt collector, the 

yearly and seasonal solar radiation can be optimized by the choice of tilt angle. The data 

presented assume continuous tracking of the sun throughout the day. (Marion & Wilcox, 1994) 
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Figure 6 – One-axis tracking flat-plate collector with axis oriented north-south. Source: (Marion 

& Wilcox, 1994) 

 

2.1.4 Dual-Axis Tracking Flat-Plate Collectors 

Data for dual-axis trackers demonstrates the maximum solar radiation at a site available to a 

collector. Tracking the sun in both azimuth and elevation, these collectors keep the sun's rays 

normal to the collector surface. (Marion & Wilcox, 1994) 

 

Figure 7 – Dual-axis tracking flat-plate collector. Source: (Marion & Wilcox, 1994) 
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2.1.5 Effective Heat Collection Concept 

Available or effective heat received by the collector within a certain period is the energy 

difference between the captured solar energy and the energy lost to ambient environment, in 

which absorbed solar energy is the solar energy reaching the collector surface subtracted by 

thermal loss due to collector radiation. (Sukhatme & Sukhatme, 1996) 

 

 

Figure 8 – Energy balance schematic drawing of a solar collector. Source: (Lv, et al., 2016)  

 

The following equation is applicable for most collectors: 

 

Equation 2:                                            

 

Lv, et al., (2016) explains that where   is the efficiency of the solar collector;    is the output 

energy from the collector, in Watt;   is the solar collector surface, in   ;    is the solar 

irradiance received per collector area, in     ;    is the collector efficiency factor;       is 

the effective transmittance-absorptance product at normal incidence;    is the overall heat loss 
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coefficient, in            ;    is the mean fluid temperature through solar field, in    ;    is the 

ambient air temperature, in    . 

 

When solar collector efficiency                    is defined as critical normalization 

temperature at which the absorbed solar energy equals to heat loss. In case of       

                         ,       the collector could obtain effective heat when the solar 

radiation energy absorbed by the collector is greater than the collector energy lost to ambient 

environment. Contrariwise, the collector would dissipate heat to the ambient environment. 

Therefore, the effective heat collection of solar collector system can be defined as the energy 

difference between the absorbed solar irradiance and the collector energy radiated to ambient 

environment when the normalization temperature at time   is lower than the critical 

normalization temperature. (Lv, et al., 2016) 

2.1.6 Studies related to Output Optimization Relating to Slope 

Despite of practicality and popularity of the method mentioned above, research is still going on 

to find improved means and optimized models and methods of collecting.  

 

As an example, in the developed model that was applied in a case study of the Lhasa district, the 

concept of effective heat collection was proposed and an optimized mathematical model was 

further developed to define the optimum slope angle and orientation for the solar collector. In the 

research it was concluded that the optimum installation of solar thermal collector based on 

effective heat collecting capacity can eliminate the ineffective solar radiation falling on the solar 

collector, which could determine the optimum azimuth angle and tilt angle of solar collector 

more accurately, to be beneficial for improving the solar thermal system efficiency. (Lv, et al., 

2016) 

 

According to Lv, et al., (2016) the case study in Lhasa showed that there is about    deviation 

between the optimum results acquired according to effective heat collecting capacity and the 

optimum results obtained according to maximum total solar radiation falling on the solar 

collector. 
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In another study by Ertekin, et al., (2008) optimal slope angles were measured for solar 

collectors based on the monthly global and diffuse solar radiation on a horizontal surface across 

Turkey. During this study, the dataset of monthly average daily global solar radiation was 

obtained from 158 places, and monthly diffuse radiation data were estimated using an empirical 

model by Tasdemiroglu and Sever. 

 

 It was concluded that the optimum slope angles exhibit a strong seasonal trend with respect to 

the amount of maximum daily insulation incident on the collector surface. Monthly average 

optimum slope angles were reasonably well estimated as a sinusoidal function of latitude and the 

day of the year over Turkey. Finally, it was realized that the spatially interpolated surfaces may 

guide the choice of annually optimal tilt angles for the fixed south-facing solar collectors, 

especially where there is no information about solar radiation across Turkey. (Ertekin, et al., 

2008) 

2.1.7 Shading 

It is important to avoid any shade on the PV module since it can significantly reduce the module 

output current. Therefore, it is advisable to select a site for a PV system where the PV array will 

remain unshaded for as much of the day as possible. (Dunlop, 2009) 

 2.1.8 PV Cell 

Photovoltaic systems are designed based on the photovoltaic cell. Since a typical photovoltaic 

cell produces less than 3 watts at approximately 0.5 volt dc, cells ought to be connected in series-

parallel configurations to produce enough power for high-power applications. (Messenger & 

Ventre, 2004) 
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Figure 9 – Cells, modules and arrays. Source: (Messenger & Ventre, 2004) 

 

2.2 Motors 

Nearly every mechanical movement that is seen in machines is accomplished by an electric 

motor. Motors receive electrical energy and produce mechanical energy. Electric motors are in 

general classified into two different categories: DC (Direct Current) and AC (Alternating 

Current). Within these categories there are numerous types, each offering special abilities that 

suit them well for specific applications. DC motors are differentiated by their ability to operate 

from direct current. (Chen, n.d.) 

2.2.1 External Structure 

The externals of an electrical motor include:  

 Case or shell - The external casing that envelopes the motor 

 Shaft - The metal cylinder that outstreches from the motor’s center 
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 Wires or leads - The conductors that trasports electricity to the motor 

The electrical input is delivered to the motor through the leads. As the motor function, it rotates 

the shaft. This shaft is usually connected to a load. (Kirtley & Beaty, 1998) 

 

 

Figure 10 – A simple electric motor. Source: (Scarpino, 2015) 

 

2.2.2 Internal Structure 

According to Scarpino (2015) motor’s structure can be perceived in two ways, mechanically and 

electrically. From a mechanical point of view, the motor consists of two parts; the rotor, that is 

the part that moves; and the stator, which is the part that stays in place. The hollow space 

separating the rotor and stator is called the air gap. 

From electrical point of view, a motor’s structure can be divided into other two parts; the 

armature, the part that receives current; the other part responsible for generating the magnetic 

field. Figure 11 displays a cross-section of a rotary motor, as current enters the motor, the central 

element rotates inside the case. (Scarpino, 2015) 
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Figure 11 – Internal structure of an electric motor. Source: (Scarpino, 2015) 

 

2.2.3 Choosing the Right Motor 

Nowadays there are a wide range of categories and subcategories for electric motors, to choose 

from. 

Figure 12 displays a basic decision-making process that can be used to select a appropriate motor 

for a particular task. The diagram can help making an initial evaluation; however, it is not a 

thorough breakdown of the many categories of electric motors. Not to mention, some motors do 

not fit into the decision-making method in the diagram. (Scarpino, 2015) 
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Figure 12 – Motor selection flowchart. Source: (Scarpino, 2015) 

 

2.2.4 DC Motors Fundamentals 

Despite of different internal structures and different methods of control in brushed and brushless 

DC motors, they share four characteristics in common: (Kirtley & Beaty, 1998) 

 Torque is nearly proportional to current. 

 Speed is nearly proportional to voltage. 

 Control circuitry use electrical switches to deliver power to the motor. 

 A controller can control the motor’s operation using PWM (pulse width modulation) 

signals. 

Scarpino (2015) explains that for DC motors, the relationship between torque and current can be 

approximated with a straight line. This means that the ratio between torque and current is 

generally constant. This constant is referred to as     . Therefore, with the current entering the 

armature of a motor increases, the motor’s torque increases as well.   

According to Scarpino (2015) when a motor’s shaft rotates but exerts no torque, it is in the no-

load condition. The current absorbed by a motor in its no-load condition is called the no-load 
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current, denoted as   .    is the minimum amount of current required to put the motor in motion. 

Therefore, if the motor’s armature receives a current of   , the torque produced by the motor 

equals          . If the torque denoted as   is given in N-m and    is given in oz-in, the 

equation is as follows:  

Equation 3:                        

As soon as a motor’s torque increases with current, its rotational speed rises with voltage. This 

angular speed, defined as   , is given in rotations per minute, or     . The voltage-speed 

relation closely resembles a straight line. The constant that determines a motor’s speed/voltage 

ratio is called    , and this is usually given in units of       (revolutions per minute per volt). 

(Kirtley & Beaty, 1998) 

Every motor’s armature has resistance     . Some of the voltage entering the motor will drop 

across    , and this voltage loss is referred to as     . If   is the total voltage applied, the motor’s 

speed equals          . Knowing the motor’s current is      , the following equation will be 

achieved: (Scarpino, 2015) 

Equation 4:                 

Finally, Scarpino (2015) argues that motors convert input voltage        and input current 

       to torque ( ) and speed ( ). This relationship can be expressed by equating the input 

electrical power to the output mechanical power, which results in the following equation:  

Equation 5:                    

2.2.5 Stepper Motors 

The primary concern in stepper motors is motion control meaning that the motor is to turn with a 

specific angle and/or speed. To be more specific the main objective of stepper motors is to rotate 

through a precise angle and then halt. Therefore, the speed and torque of the rotation become the 

secondary importance. It is necessary to know that one of the significant advantages of stepper 

motors is that the controller doesn’t have to read the stepper’s position to define its orientation. 

(Chen, n.d.) 
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Stepper motors in practice nowadays can be divided into three categories:  

 Permanent motor (PM)  

 Variable reluctance (VR)  

 Hybrid (HY) - combination of PM and VR steppers’ structures 

Furthermore, PM and HY stepper motors can be categorized according to their motor windings 

that affect their control (VR stepper motors are omitted from this categorization in this paper due 

to their scarcity): (Scarpino, 2015) 

 Bipolar stepper control 

 Unipolar stepper control 

2.2.6 Permanent Magnet (PM) Steppers 

Permanent magnet (PM) steppers are popular in embedded devices such as disk drives and 

computer printers, due to their small size and reliability. PM steppers are known to have high 

torque yet poor angular resolution. Figure 13 depicts the ST-PM35 stepper from Mercury Motor. 

(Scarpino, 2015) 

 

Figure 13 – A permanent magnet (PM) stepper motor. Source: (Scarpino, 2015) 

 

In PM motors permanent magnets are added to the structure of the motor. The rotor no longer 

has teeth (unlike VR motor), instead the rotor is magnetized with alternating north and south 

poles that are located in a straight line parallel to the rotor shaft. These magnetized rotor poles 

provide an increased magnetic flux intensity and because of this the PM motor shows improved 

torque characteristics when compared with the VR motors. (Ericsson, n.d.) 
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Figure 14 – Principle of a PM or tin-can stepper motor. Source: (Ericsson, n.d.) 

 

2.2.7 Variable-reluctance (VR) 

This type of motor is compromised of a soft iron multi-toothed rotor and a wound stator. When 

the stator windings are energized with DC current the poles become magnetized. Rotation 

happens when the rotor teeth are attracted to the energized stator poles. Figure 15 shows a cross 

section of a typical VR stepper motor. (Ericsson, n.d.) 
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Figure 15 – Cross-section of a variable-reluctance (VR) motor. Source: (Ericsson, n.d.) 

In a variable reluctance (VR) stepper, the rotor turns at a particular angle to minimize the 

reluctance between opposite windings in the stator. Reluctance determines the flow of magnetic 

flux in a similar way as resistance determining the flow of electric current. The primary 

advantage of VR steppers is their excellent angular resolution, as their major disadvantage is low 

torque. (Scarpino, 2015) 

2.2.8 Hybrid (HY) Steppers 

A hybrid (HY) stepper provides the best properties of VR and PM motors due to its structure. 

Similar to a PM stepper structure, the rotor has magnets that provide torque. Furthermore, Like a 

VR stepper, the rotor has teeth which results in angular resolution improvement. Figure 16 shows 

the JK42HW34 hybrid stepper from RioRand. (Kirtley & Beaty, 1998) 



21 

 

Figure 16 – A hybrid (HY) stepper. Source: (Scarpino, 2015) 

 

2.2.9 Bipolar Stepper Control 

The terms bipolar and unipolar point out how the wires are connected to the motor’s windings. A 

two-phase bipolar stepper has four wires. Figure 17 shows how the wires are connected inside 

the stepper. (Hughes, 2006) 

 

Figure 17 – Connections of a bipolar stepper motor. Source: (Scarpino, 2015) 

In figure 17 electromagnets and their corresponding phases are indicated by:      and      . 

According to Scarpino (2015) the electromagnet’s poles are resolved by the nature of the current 

flow. If current flows from the black wire to the green wire,    will be the north pole and    will 

be the south pole. If current flows from green to black,   will be the south pole and    will be 

the north pole. 
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Scarpino (2015) explains further that by providing means of reversing current in the wires it is 

possible to design a circuit that drives a bipolar stepper.  A common method of accomplishing 

this is by using H bridges. An H bridge is an electronic circuit that includes of four switches that, 

when opened and closed properly, make it possible to deliver current in the forward and reverse 

directions. 

Figure18 displays how an H-bridge can be connected to control one phase (    ) of a bipolar 

motor. This uses four MOSFETs to serve as the switches. The current’s direction is controlled by 

setting voltages on the MOSFET gates which are insulated and their voltage determines the 

conductivity of the H-bridge. When    and    are set high and    and    are low, current travels 

from   to    , turning   to the north pole and    to the south pole. When    and    are set high 

and    and      are low, current travels from    to   , changing    to the north pole and   to the 

south pole. When    and    are let low, the winding is unenergized. (Scarpino, 2015) 

 

Figure 18 – Controlling one phase of a bipolar stepper with an H bridge. Source: (Scarpino, 

2015) 

 

2.2.10 Unipolar Stepper Control 

Scarpino (2015) asserts that he wiring of a unipolar stepper motor is more complicated than that 

of a bipolar motor, however, both pursue the same goal: to energize  ,   ,  , and    and to set 
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their north and south poles accordingly. In figure 19 an example of electromagnet circuits used in 

unipolar stepper motor structure is displayed.  

 

Figure 19 – Electromagnet circuits with a center tap. Source: (Scarpino, 2015) 

In both parts a) and b),        is connected to the center of the electromagnet’s winding. This 

type of connection is called a center tap. In part a), the bottom of the winding is connected to 

ground. Therefore, current flows from center to the ground, energizing the electromagnet and 

making the bottom of the winding (labelled as    ) the south pole. The north pole is set at the 

center. (Scarpino, 2015) 

While no current flows from the top of the winding to the center, the entire iron core is 

magnetized by the current in the lower wire, which results in top of the winding behaving as the 

electromagnet’s north pole as well. Therefore, in part a),   is north and    is south. (Hughes, 

2006) 

In figure 19 part b) displays the reverse situation. The top of the winding is connected to the 

ground, therefore, current flows from the winding’s center to the top which causes the top of the 

winding ( ) and the center of the winding become the north pole. Because the entire iron core is 

magnetized, the bottom of the winding (  ) also acts as the north pole. (Scarpino, 2015) 

According to Scarpino (2015) in regards to circuit design, controlling a two-phase unipolar 

stepper requires three steps:  

1. Providing         to the       and the      windings. 

2. Connecting one wire to ground for each winding in order to set the magnetic poles. 
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3. Leaving the other wires unconnected. 

 

Figure 20 – Connections of a unipolar stepper. Source: (Scarpino, 2015) 

Figure 20 displays the six wires entering the unipolar stepper: two wires carry power (         

and         ) and the other four are connected to  ,   ,  , or   . Each of the latter four wires is 

connected to a MOSFET. When the MOSFET’s gate voltage overpasses its threshold, the wire is 

connected to ground; otherwise, the wire is left unconnected. When the MOSFET switches on, 

the corresponding end of the winding becomes the south pole and the opposite end of the 

winding becomes the north pole. (Scarpino, 2015) 

In unipolar stepper motors that have five wires instead of six, the two supply wires,          

and          , are connected together; and the other four wires remain unchanged. Figure 21 

displays a sample diagram for a bipolar stepper and a unipolar stepper motor. (Kirtley & Beaty, 

1998) 
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Figure 21 – Sample wiring diagrams in a stepper datasheet. Source: (Kirtley & Beaty, 1998) 

 

2.2.11 Servo Motors 

Servo Motor or servo is the second type of motor intended for motion control. Whereas stepper 

motors rotate by an angle and pause, many servos rotate continuously. The main advantage of 

servos over steppers is that when properly controlled, a servo can perform every task a stepper 

can and more. In addition to setting the rotation angle, the controller can configure the servo’s 

rotational speed and acceleration. The main disadvantage, however, is that designing a servo 

controller can be a difficult process. (Drury & Hughes, 2013) 

The term servomotor cannot indicate any particular properties about the motor’s structure. A 

servo may be brushed or brushless, AC or DC. The fundamental difference between servomotors 

and other electric motors is the availability of position feedback. A servo sends a signal to the 

controller that identifies its rotation angle and/or rotation speed. The controller uses this feedback 

to resolve what control signals to send. (Scarpino, 2015) 
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Figure 22 – The FS5106B servomotor from Fitec. Source: (Scarpino, 2015) 

Although there is no keen dividing line between servo motors and ordinary motors, the servo 

type will be intended for use in applications which require rapid acceleration and deceleration. 

The design of the motor will reflect this by providing intermittent currents (and hence torques) of 

many times the continuously rate value. (Kirtley & Beaty, 1998) 

Many servo motors are utilized in closed-loop position control applications. In figure 23 the 

angular position of the output shaft is intended to follow the reference voltage, however, if the 

motor drives a toothed belt, linear outputs can also be acquired. The potentiometer installed on 

the output shaft provides a feedback voltage proportional to the actual position of the output 

shaft. The voltage from this potentiometer must be a linear function of angle, and must not vary 

with temperature; otherwise the accuracy of the system will be affected. (Hughes, 2006) 

 

Figure 23 – Closed-loop angular position control using DC motor and angle feedback from a 

servo-type potentiometer. Source: (Scarpino, 2015) 
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Hughes (2006) explains that the feedback voltage (standing for the actual angle of the shaft) is 

subtracted from the reference voltage (standing for the desired position) and the resulting 

position error signal is amplified and is used to drive the motor in order to rotate the output shaft 

in the desired direction. Hughes (2006) adds that when the output shaft reaches the target 

position, the position error becomes zero; therefore, no voltage is applied to the motor, and the 

output shaft remains at rest. Any attempt to physically move the output shaft from its target 

position immediately creates a position error and a restoring torque is performed by the motor. 

 

The example mentioned above dealt with an analogue scheme in for the sake of simplicity, but 

digital position control schemes take priority. Digital implementations have replaced analogue 

circuitry in many electric drive systems. Digital controllers offer freedom from drift, added 

flexibility (e.g. programmable ramp-up, ramp-down, maximum and minimum speeds etc.), and 

simplicity of interfacing and linking to other drives and host computers and controllers, and self-

tuning. (Hughes, 2006) 

 

User-friendly diagnostics provides another benefit, providing the local or remote user with 

current and historical data on the state of all the key drive variables. Many of these advantages 

are also offered with drives that continue to use analogue control in the power electronic stages. 

(Drury & Hughes, 2013) 
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3. Main Chapters 

Theoretically it is understood that a solar panel that has the possibility to track the sun has an 

improved output in comparison to a solar panel that is fixed horizontally. The objective that is 

perused in this thesis is to design and built a dual-axis tracker that would prove to be 

economically fruitful as well.   

An analysis will be done in order to display that the prototype can also prove economically 

beneficial.  

In order to test this idea a prototype of the solar panel supporting structure and the method for 

enabling the solar panel to track the sun is designed and constructed.  

3.1 Practical Approach 

In the practical part an agile prototype was designed and built with the objective of functioning 

properly well enough, so that the output voltage of the tracking solar panel could be measured 

and its optimality over fixed method could be tested.  

3.1.1 Solar Panel Supporting Structure  

First of all, for solar panel to be able to have motion, it is required to have a supporting structure 

that will allow rotating motions both in north-south and east-west directions. Building the 

structure was realized by using a “Merkur Five Layer Classic Large Kit” from Merkur Company. 

For rotating the solar panel in two directions, two motors are required. One motor cannot rotate 

the solar panel in both directions. The reason is due to the design of the structure.  

The body of the structure can be mainly classified into three parts. The first part holds the solar 

panel. The second part holds the motor that rotates the solar panel in one direction, for example 

north-south. The first part and the second part are connected to each other by the first axis over 

which the solar panel rotates in one direction. It is clear that the force of the first motor should be 

delivered to this axis.  

The third part is the base of the structure on which the structure stands on. It also has the second 

motor attached to it. The second motor rotates the solar panel in the other direction, following the 
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example above, west-east. The third part and the second part are connected to each other via the 

second axis. Once again, it is obvious that the second motor force should be fulfilled to the 

second axis. Therefore, there will be some sort of connection between each axis and their 

corresponding motor shafts. 

It was obvious from the beginning that with this design it is not possible to use only one motor 

for rotations in both directions. The reasons are that; firstly, a model based on solely one motor 

requires a certain level of proficiency for sophisticated designs; and secondly, the limitation of 

accessible materials which had to be used in this thesis for building the structure affects the 

design of the structure as well. 

Another important matter to consider in the design of this structure is the way motors should be 

attached to the structure. It is not possible to attach the solar panel holder to both axes at the 

same time, because the movement of the solar panel will become restricted to only the rotation 

around one axis, and when two axes are attached to the solar panel holder at the same time the 

solar panel cannot move at all.  

That is why the structure consists of three parts and the first motor is attached to the second part 

and when the second motor in the third part rotates the axis, both the first and second part of the 

structure rotate around the second axis.  

After the construction was built from Merkur kit, it was realized that the first part of the structure 

is too heavy for the first motor to rotate, and the sum of weight of the first and the second part of 

the structure is too heavy for the second motor to rotate. Therefore, to solve this problem the first 

and second parts were printed by a 3D printer in order to decrease the load for both motors. 

Figure 25 displays the final state of the prototype structure. 

Another important detail that is worthy of mentioning here is the way the motors’ shafts’ forces 

are transmitted to the axes. Because the solar panel has to maintain its position fixed after 

finishing tracking, a mechanism should be used in order to prevent the motor’s shaft from 

rotating due to excessive heaviness of the load. This problem is solved by adding worm and 

wheel gears. Figure 24 displays a pair of worm and wheel gears. The other possibility is to 

provide constant power to motors; however, it contradicts energy efficiency. 
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Figure 24 – Worm and wheel gears. Source: (Black, n.d.) 

 

Figure 25 – On the left: Solar panel’s supporting structure before final adjustments and 

improvements. On the right: The final state of the solar panel’s supporting structure. 

Source:Author 
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3.1.2 Motors 

For choosing the right motors it is important to know that the motors will be able to rotate to a 

specific angle in a specific direction and then stop, when programmed. For this purpose it is 

possible to use a servo motor as well as a stepper motor. For the purpose of this prototype 

stepper motors were chosen over servo motors. That is because stepper motors can be 

programmed to rotate the shaft in a mode that is called “full step”, in which the motor is able to 

transmit the most possible force to the shaft that is going to rotate the upper parts of the structure.  

For the same reason a unipolar motor was used to rotate the first part of the structure and a 

bipolar motor was used to rotate the first and second part of the structure. The unipolar motor 

that is used is smaller and lighter than the bipolar motor. As a result it imposes lesser amount of 

load for the bipolar motor. Therefore the load which the unipolar motor has to rotate, is also 

lesser than the load which bipolar motor has to rotate. The bipolar motor can transmit larger 

force to the motor shaft in full step mode and therefore it is heavier and is attached to the base of 

the structure.  

The unipolar stepper motor is a 28BYJ-48 Stepper Motor with ULN2003 Driver. The bipolar 

stepper motor is a NEMA-17-SIZE. The datasheets for the motors and the driver can be found in 

the appendix. 

The shafts’ diameter of the motors had to be reduced manually in order to fit the size of the 

pieces from Merkur kit. That is because it was necessary to secure and transmit the shafts’ force 

to the axes.  

3.1.3 Tracking System 

For the solar panel to be capable of tracking the sun, a guiding system must be designed. In order 

to realize such guiding system, an electronic device sensitive to sunlight should be used to trigger 

the tracking. Therefore, four photoresistors were used, one pair for north-south direction and obe 

pair for west-east direction, with each of the photoresistors being placed beside one side of the 

solar panel.  
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To receive and analyze the output of these photoresistors, and to give commands to the motors to 

rotate the axes in order to set the solar panel in the proper position (where solar panel will have 

the most possible output voltage with regard to the position of sun in the sky) based on the result 

of the analyzed output of the photo resistors, Arduino Uno microcontroller board was used. 

Arduino Uno microcontroller board is based on ATmega328, a high-performance microchip 

according to Geeetech (2014). It consists of 14 digital input/output, 6 analogue inputs, a USB 

connection, a power jack, oscillator and a reset button. Additionally, it can be programmed with 

the Arduino software (IDE) provided for all the Arduino series, with the programming language 

based on C/C++. (Arduino , 2017) 

Arduino platform allows receiving data from analogue pins and sending data to an electronic 

device such as motor through digital pins. Based on these properties an electronic circuit was 

designed in order to allow the motors to change the solar panel position according to the data that 

is received by the photoresistors while the output voltage of the solar panel is being saved into a 

text document with related time and date. Figure 26 and 27 display the breadboard view and 

schematic view of the designed circuit that were made using Fritzing application, and open-

source electronic design automation tool. 
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Figure 26 – Breadboard view of the designed prototype circuit. Source: Author. 
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Figure 27 – Schematic view of the designed prototype circuit. Source: Author. 
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The prototype code that was developed for Arduino Uno can be accessed in appendix – 4. For 

controlling stepper motors, driver boards can be used because unlike servo motors stepper 

motors don’t have “rest position” or “target position”, and for applications where a stepper motor 

may need this sense of direction, it would be easier to control them with driver boards.  

In the case of this thesis since there was no access to such driver boards for the motors, another 

method had to be used to limit the rotation of the motor shafts. Because from some point it is not 

possible for the solar panel holder to move more forward or backward, it will be necessary for 

the solar panel to rotate only 90° forward or backward from the zenith line. In the method that 

was used to solve this problem, the rotations of the motor shafts are saved into variables, and 

boundaries for the value of these variables are declared to prevent the solar panel holder moving 

more than 90° in both directions. 

When the Arduino starts to run the code, the solar panel surface should be parallel to the ground, 

meaning that the solar panel holder should maintain a 90° position to the horizon and at this 

position the value of these two variables are set to zero, and the rotations are added or subtracted 

from changes to this position. 

However, if the Arduino is shut down or unplugged the value of these variables will be erased as 

well from the volatile memory. To avoid this situation and to make sure that the rotations that 

were counted are not lost the next time that Arduino is turned on; these two variables are saved 

into EEPROM memory. The data in this memory are kept there when the Arduino is turned off. 

Another matter to consider is the output voltage of the solar panels. In order to measure them it is 

possible to connect the positive wires to Arduino’s analogue pins. However, voltages more than 

the amount, of which that Arduino board can withstand through analogue pins, can harm 

Arduino. To prevent that from happening, the output voltage of the solar panels is reduced with  

    and        resistors. After Arduino receives the reduced voltage, it is increased to its 

primary value by particular commands in the code and then is saved to a text file. 

Because it is not practical to save all the voltages received from the solar panel into EEPROM 

memory due to its size, it is required to use another application to transmit and save data from 

Arduino to a text file. In order to do that Gobetwino free and to-be open source program was 

used.  



36 

Again resistors were used with photoresistors on the board, in order to record the changes in 

voltage instead of resistance. That is because the analogue to digital convertor in the Arduino 

read the voltage and coverts it into integers.  

It can be noticed in the schematics that for controlling the Bipolar motor an H-bridge IC was 

used. 

From a systematic view, the design and construction of the prototype structure was done at the 

same time when the prototype programming code was designed. However, changes in the design 

of the structure sometimes required changes in the design of the code during and after the 

structure was being complete.  

3.2 Testing 

In order to check the efficiency of the prototype, a test was designed and realized. During the test 

the output of two identical 6 volts solar panels were recorded in the same environmental 

condition meaning that they were both tested at the same time and at the same location, with this 

difference that one of the solar panels was housed by the prototype and the other one was in a 

fixed horizontal state throughout the testing.  

Since the testing required to be done outdoors with no shading casted on the solar panels, and the 

devices used for testing including a notebook had to use battery power due to lack of access to 

other power sources, each test had to be done during one hour each time. 

In order to include approximately all the possible times during the daylight, the test was done ten 

times during daytime, starting from 8 am to 6 pm each test being carried out in one separate day. 

Rainy days and cloudy days (due to rain possibility), were avoided due to the possible damage to 

the equipments.  

The average output voltage of each solar panel for every minute was recorded into a text file. 

Then after exportation of data in Microsoft Excel, the mean output voltage for each solar panel 

was calculated. 

The final results of output voltage for each test are as following: 
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Days 1 2 3 4 5 6 7 8 9 10 

Hours 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 

Fixed 1.3 2.7 4 5.3 5.7 5.8 5.4 5.1 4 2.8 

Tracker 4.2 4.7 5.3 5.7 5.8 5.9 5.7 5.4 5.1 4.7 

Table 1 – Mean output voltage of prototype’solar panel and the fixed solar panel in volts. 

Source: Author. 

 

3.3 Economical Approach 

Another matter to consider is to determine approximately, if it is economical to use this 

prototype in larger scale. This possibility is tested as an instance depending on the result 

achieved previously by Gay, et al. (1982) and King, et al. (2002) indicating that in overall, single 

axis tracker increases annual output by     and dual axis tracker by additional   , which 

results in     in total. The economical effect of this difference will be examined in the 

following approximate calculation.  

In this calculation it is assumed that solar energy is collected and preserved by two methods at 

the same time and under the same conditions, with this difference that: in the first method solar 

panels are horizontally fixed and in the second method the solar panels track the sun by dual-axis 

using similar technique as the prototype in this paper. It is assumed that this computation is done 

for Hradec Králové region in Czech Republic.   

Firstly, it is assumed that the solar panels used in the model are 300W Prepaid off Grid Outdoor 

Stand Alone Solar Panels that are purchased from Zhejiang Yuanzhong Solar Co., Ltd.. The 

considered properties of the solar panels are as following: 
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Price: approx. 145$/Piece Application: Industrial 

Minimum order:  200 Pieces Wight per piece: 18.6 Kg 

Waranty: 25 Years Size of panel: 1650 × 992 × 35 mm 

Peak power watts-

PMAX(WP) 

300 W Operational Temperature:     ~       

 

Table 2 – Selected properties of 300W Prepaid off Grid Outdoor Stand Alone Solar Panel. 

Source: (Zhejiang Yuanzhong Solar Co., Ltd., 2017). 

According to TZB-info.cz (2017), average yearly sunshine collected in Hradec Králové is 1521 

hour per year. Knowing that it is possile to calculate the average yearly watts collected by one 

solar panel, that is the Peak power watts- PMAX(WP) for each solar panel multiplied by average 

yearly sunshine collected. (Zientara, 2017) 

For the dual-axis tracker method it is required to use two stepper mottors that could rotate and 

withstand the wieght of each solar panel. For this purpose it is assumed that for each solar panel 

two 57BYGH gear reducer stepper motor engine Nema 23 from          and one High-

precision 2H845 Hybrid 2-phase stepper motor driver for high torque 1.4-5.6A nema 23 stepper 

motor from        are purchased.  

The price of each stepper mottor is approximately 13 dollars and minimum order is 100 pieces. 

(Maintex ® , 2017) The price of each driver is approximately 8 dollars. (Casun ® , 2017) 

Assuming in each method 200 solar panels are purchased. In dual-axis tracker method 400 

stepper motors and 400 drivers are purchased additionally. The rest of the costs such as 

maintenace and installation costs are considred approximately equal in both methods, therefore, 

they are ommited from the calculation. 

Therefore, in ten years, the total solar energy recived and total costs for each method will be as 

following: 
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Dual-axis Tracking Method Fixed Panel Method 

300 × 200 × 1521 × 10 = 

912,600,000 kilowatt hour 

300 × 200 × 1521 × 10 × 64/100 = 

584,064,000 kilowatt hour 

(145 × 200) + (13 × 400) + (8 × 400) = 

39,400 $ = approx. 895,744 czk 

145 × 200 = 

31,000 $ = approx. 704,772 czk 

 

Table 3 – Total solar energy recieved and total costs for dual-axis tracking and fixed solar panel 

methods. Source: Author. 

Knowing that electiricy in Czech Republic costs 10.47 cents or approximately 2.38 czk per 

kilowatt hour according to WorldAtlas.com (2017); in dual-axis tracking method 912,600,000 × 

2.38 = 2,171,988,000 czk was saved in electricuty consumption and in fixed panel method 

548,064,000 × 2.38 = 1,304,392,320 czk was saved. Therefore, subtracting the total costs; 

2,171,092,256 czk is saved in total in electricity consumption in dual-axis tracking method, and 

1,303,687,548 czk in fixed panel method.  

 

Another matter that was not mentioned during the calculations was the current the motors use to 

rotate the solar panels. That is because these motors make limited number of rotations per day in 

sunny days in normal situation and also, calculating the amount of current each of these motors 

approximatly use per year is out of the scope of this paper. However, one possible way to 

conpensate for the current used by the motors could be by adding more solar panels that 

contribute to the energy used by the motors. 

 

Comparing the results, it is concluded that dual-axis tracking method proves to be more 

econolical method of producing energy compared to the fixed panel method. In this calculation it 

was observed that it is possible to reduced electricity costs  by using dual-axis solar panel 

trackers almost two times more than when using fixed solar panels in large sacle.  
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4. Results 

Despite of the problems encountered while designing and building the prototype, the prototype 

could succeed to function successfully. Due to the limits in resources, minor flaws in the 

structure remained unsolved. For instance, the solar panel housing could not reach the exact 

vertical position, yet it could reach an enough close position to the vertical position, in order to 

be suitable and efficient for testing. The code for the Arduino Uno can be further improved, so 

that the prototype can operate more swiftly. 

Therefore, even though the prototype could not operate ideally, it could operate well enough to 

be tested. Testing results of the prototype indicate that the prototype increased the output voltage 

by     in comparison with a fixed solar panel.  

The same calculation that was done in the “Economical Approach” in order to prove the 

profitability of prototype based on the research result from Gay, et al. (1982) and King, et al. 

(2002) , was done again; this time, based on the result obtained from the testing of the prototype 

that indicates the increase in the output voltage by    . The outcome is as following: 

Dual-axis Tracking Method Fixed Panel Method 

300 × 200 × 1521 × 10 = 

912,600,000 kilowatt hour 

300 × 200 × 1521 × 10 × 87/100 = 

793,962,000 kilowatt hour 

 

Table 4 – Total solar energy recieved for dual-axis tracking and fixed panel methods based on 

the testing result of the prototype. Source: Author. 

Thus, the prototype proved successfully economically more profitable as well in large scale, 

compare to the horizontally fixed solar panel method of collecting solar energy even based on 

the results from the prototype test. 
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5. Conclusions and Recommendations 

Although storing energy seems to be more costly with dual axis solar tracker compare to a fixed 

solar panel in short term, it is proven to be more beneficial economically in long term according 

to the analysis and experiments in this paper. This difference appears greater especially when the 

solar panels are used in a large scale.  

It is important to use enough sturdy, yet as light materials as possible for the designing of the 

part of the structure to which solar panel and one of the motors are attached. The gears that 

transmit power from motors to the axis should have complete and sturdy engagement in order for 

motors to be able to rotate the solar panel when needed efficiently.  

It may prove beneficial to use Bluetooth technology for the sake of controlling and monitoring 

the solar tracker performance and output. For instance, turning on and off the tracking system; or 

receiving an instant message in case of system failure. 

Another alternative suggested is Sigfox technology, an IoT wireless network system. Through 

this technology it is possible to connect low energy objects and therefore the tracker can become 

part of an IoT ecosystem. 

Finally, the tracking system can be equipped by LoRa wireless technology for instance in 

domestic domain of IoT. 
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Appendix 

Appendix 1 – Unipolar motor’s datasheet. Source: (Kiatronics, 2017) 
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Appendix 2 – Unipolar motor’s driver datasheet. Source: (kiatronics, 2017) 
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Appendix 3 – Bipolar motor’s datasheet. Source: (Adafruit, 2017) 
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Appendix 4 – Prototype code developed for Arduino Uno. Source: Author. 

 

#include <Stepper.h> 

#include <avr/interrupt.h> 

#include <avr/eeprom.h> 

 

  #define uniMotorPin1 8 

  #define uniMotorPin2 9 

  #define uniMotorPin3 10 

  #define uniMotorPin4 11 

 

  #define biMotorPin1 4 

  #define biMotorPin2 5 

  #define biMotorPin3 6 

  #define biMotorPin4 7 

 

  #define stepFLimitUniPM 576 

  #define stepBLimitUniPM -576 

  #define stepFLimitBiPM 882 

  #define stepBLimitBiPM -882 

 

  #define phr1UniPMPin A1 

  #define phr2UniPMPin A2 

  #define phr1BiPMPin A3 

  #define phr2BiPMPin A4 

 

  #define solarPanelPin A0 

  float solarPanelOutput = 0.0; 

  float prevSolarPanelOutput = 0.0; 

 

  int sumPhr1BiPM = 0; 

  int sumPhr2BiPM = 0; 

  int sumPhr1UniPM = 0; 

  int sumPhr2UniPM = 0; 

 

  int phr1UniPMValue = 0; 

  int phr2UniPMValue = 0; 

  int phr1BiPMValue = 0; 

  int phr2BiPMValue = 0; 

 

  int prevPhr1UniPMValue = 0; 

  int prevPhr2UniPMValue = 0; 

  int prevPhr1BiPMValue = 0; 

  int prevPhr2BiPMValue = 0; 

 

  #define numSamples 6 

  int sum = 0;                    // sum of samples taken 

  unsigned char sampleCount = 0; 

  int count = 0; 

 

  int shortDelay = 10; 

  int Steps = 0; 
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  int stepCountUniPM = 0; 

  int stepCountBiPM = 0; 

 

  int addressUniPM = 0; 

  int addressBiPM = 1; 

  int readValue = 0; 

 

  int i = 0; 

 

  boolean ClockwiseMotion = true; 

 

void setup() { 

 

  pinMode(uniMotorPin1, OUTPUT); 

  pinMode(uniMotorPin2, OUTPUT); 

  pinMode(uniMotorPin3, OUTPUT); 

  pinMode(uniMotorPin4, OUTPUT); 

 

  pinMode(biMotorPin1, OUTPUT); 

  pinMode(biMotorPin2, OUTPUT); 

  pinMode(biMotorPin3, OUTPUT); 

  pinMode(biMotorPin4, OUTPUT); 

 

  pinMode(solarPanelPin, INPUT); 

 

  while (!Serial); 

  Serial.begin(9600); 

  Serial.print("#S|LOGDATA|[]#"); 

  Serial.print("#S|T|[]#"); 

  Serial.print("#S|D|[]#"); 

 

  while (!eeprom_is_ready()); // Waiting for EEPROM to be ready 

  cli(); 

  eeprom_write_word((uint16_t*)addressUniPM, stepCountUniPM); //  

initialize step value into EEPROM 

  sei(); 

  eeprom_write_word((uint16_t*)addressBiPM, stepCountBiPM); 

  sei(); 

} 

 

void loop() { 

 

 

  while (sampleCount < numSamples) { 

 

      sumPhr1UniPM += analogRead(phr1UniPMPin); 

      sumPhr2UniPM += analogRead(phr2UniPMPin); 

      sumPhr1BiPM += analogRead(phr1BiPMPin); 

      sumPhr2BiPM += analogRead(phr2BiPMPin); 

      sampleCount++; 

      delay(shortDelay); 

  } 
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  phr1UniPMValue = sumPhr1UniPM/10; 

  phr2UniPMValue = sumPhr2UniPM/10; 

  phr1BiPMValue = sumPhr1BiPM/10; 

  phr2BiPMValue = sumPhr2BiPM/10; 

 

  Serial.println(" "); 

  Serial.print("resistor 1 for UniPolarMotor: "); 

  Serial.print(phr1UniPMValue); 

  Serial.print(" /resistor2 for UniPolarMotor: "); 

  Serial.println(phr2UniPMValue); 

 

  Serial.print("resistor 1 for BiPolarMotorr: "); 

  Serial.print(phr1BiPMValue); 

  Serial.print(" /resistor2 for BiPolarMotorr: "); 

  Serial.println(phr2BiPMValue); 

  delay(shortDelay); 

 

  while (sampleCount < numSamples) { 

      sum += analogRead(solarPanelPin); 

      sampleCount++; 

      delay(10000); 

  } 

      solarPanelOutput = ((float)sum / (float)numSamples * 5) / 1024; 

      Serial.print(solarPanelOutput * 11); 

      Serial.println (" V"); 

      sampleCount = 0; 

      sum = 0; 

 

 

  Serial.print("#S|LOGDATA|["); 

  Serial.print(" "); 

  Serial.print(float(solarPanelOutput * 11) , 2); 

  Serial.print(" ; "); 

  Serial.print(float(solarPanelOutput * 11) , 2); 

  Serial.println("]#"); 

 

  if ( abs(solarPanelOutput - prevSolarPanelOutput) > 3 ) sweep(); 

 

  if (phr2UniPMValue < phr1UniPMValue) unipolarMoveForward(); 

  else if (phr2UniPMValue > phr1UniPMValue) unipolarMoveBackward(); 

  else uniPStepper(0); 

 

  if (phr2BiPMValue < phr1BiPMValue) bipolarMoveForward(); 

  else if (phr2BiPMValue > phr1BiPMValue) bipolarMoveBackward(); 

  else biPStepper(0); 

 

  prevSolarPanelOutput = solarPanelOutput; 

 

  while (!eeprom_is_ready()); 

  cli(); 

  if(eeprom_read_word((uint16_t*)addressUniPM) != stepCountUniPM) { 

   eeprom_write_word((uint16_t*)addressUniPM, stepCountUniPM); 

  } 

  sei(); 



52 

 

  while (!eeprom_is_ready()); 

  cli(); 

  if(eeprom_read_word((uint16_t*)addressBiPM) != stepCountBiPM) { 

   eeprom_write_word((uint16_t*)addressBiPM, stepCountBiPM); 

  } 

  sei(); 

} 

 

void setDirection(){ 

  if (ClockwiseMotion) { 

  Steps++; 

  } else { 

  Steps--; 

  } 

  if(Steps>3){ 

  Steps=0; 

  } else if(Steps<0){ 

  Steps=3; 

  } 

} 

 

void uniPStepper(int num){ 

  for (int i=0; i<num; i++){ 

    switch(Steps){ 

       case 1: 

         digitalWrite(uniMotorPin1, HIGH); 

         digitalWrite(uniMotorPin2, LOW); 

         digitalWrite(uniMotorPin3, LOW); 

         digitalWrite(uniMotorPin4, HIGH); 

       break; 

       case 2: 

         digitalWrite(uniMotorPin1, HIGH); 

         digitalWrite(uniMotorPin2, HIGH); 

         digitalWrite(uniMotorPin3, LOW); 

         digitalWrite(uniMotorPin4, LOW); 

       break; 

       case 3: 

         digitalWrite(uniMotorPin1, LOW); 

         digitalWrite(uniMotorPin2, HIGH); 

         digitalWrite(uniMotorPin3, HIGH); 

         digitalWrite(uniMotorPin4, LOW); 

       break; 

       case 4: 

         digitalWrite(uniMotorPin1, LOW); 

         digitalWrite(uniMotorPin2, LOW); 

         digitalWrite(uniMotorPin3, HIGH); 

         digitalWrite(uniMotorPin4, HIGH); 

       break; 

       default: 

         digitalWrite(uniMotorPin1, LOW); 

         digitalWrite(uniMotorPin2, LOW); 

         digitalWrite(uniMotorPin3, LOW); 

         digitalWrite(uniMotorPin4, LOW); 
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       break; 

       } 

       setDirection(); 

     } 

   } 

 

   void biPStepper(int num){ 

     for (int i=0; i<num; i++){ 

       switch(Steps){ 

          case 1: 

            digitalWrite(biMotorPin1, HIGH); 

            digitalWrite(biMotorPin2, LOW); 

            digitalWrite(biMotorPin3, HIGH); 

            digitalWrite(biMotorPin4, LOW); 

          break; 

          case 2: 

            digitalWrite(biMotorPin1, LOW); 

            digitalWrite(biMotorPin2, HIGH); 

            digitalWrite(biMotorPin3, HIGH); 

            digitalWrite(biMotorPin4, LOW); 

          break; 

          case 3: 

            digitalWrite(biMotorPin1, LOW); 

            digitalWrite(biMotorPin2, HIGH); 

            digitalWrite(biMotorPin3, LOW); 

            digitalWrite(biMotorPin4, HIGH); 

          break; 

          case 4: 

            digitalWrite(biMotorPin1, HIGH); 

            digitalWrite(biMotorPin2, LOW); 

            digitalWrite(biMotorPin3, LOW); 

            digitalWrite(biMotorPin4, HIGH); 

          break; 

          default: 

            digitalWrite(biMotorPin1, LOW); 

            digitalWrite(biMotorPin2, LOW); 

            digitalWrite(biMotorPin3, LOW); 

            digitalWrite(biMotorPin4, LOW); 

          break; 

          } 

          setDirection(); 

        } 

      } 

 

      void unipolarMoveBackward() { 

       while (phr2UniPMValue > phr1UniPMValue & stepCountUniPM < 

stepFLimitUniPM){ 

        uniPStepper(32); 

        stepCountUniPM = stepCountUniPM + 32; 

        delay(shortDelay); 

        } 

 

        while (sampleCount < numSamples) { 
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            sumPhr1UniPM += analogRead(phr1UniPMPin); 

            sumPhr2UniPM += analogRead(phr2UniPMPin); 

            sampleCount++; 

            delay(shortDelay); 

        } 

        phr1UniPMValue = sumPhr1UniPM/10; 

        phr2UniPMValue = sumPhr2UniPM/10; 

       delay(shortDelay); 

     } 

 

      void unipolarMoveForward() { 

        while (phr2UniPMValue < phr1UniPMValue & stepCountUniPM > 

stepBLimitUniPM){ 

         uniPStepper(-32); 

         stepCountUniPM = stepCountUniPM - 32; 

         delay(shortDelay); 

         } 

         while (sampleCount < numSamples) { 

 

             sumPhr1UniPM += analogRead(phr1UniPMPin); 

             sumPhr2UniPM += analogRead(phr2UniPMPin); 

             sampleCount++; 

             delay(shortDelay); 

         } 

         phr1UniPMValue = sumPhr1UniPM/10; 

         phr2UniPMValue = sumPhr2UniPM/10; 

         delay(shortDelay); 

      } 

 

      void bipolarMoveForward() { 

       while (phr2BiPMValue > phr1BiPMValue & stepCountBiPM < 

stepFLimitBiPM) { 

        biPStepper(49); 

        stepCountBiPM = stepCountBiPM + 49; 

        delay(shortDelay); 

        } 

 

        while (sampleCount < numSamples) { 

            sumPhr1BiPM += analogRead(phr1BiPMPin); 

            sumPhr2BiPM += analogRead(phr2BiPMPin); 

            sampleCount++; 

            delay(shortDelay); 

        } 

 

       phr1BiPMValue = analogRead(phr1BiPMPin); 

       phr2BiPMValue = analogRead(phr2BiPMPin); 

        delay(shortDelay); 

      } 

 

      void bipolarMoveBackward() { 

        while (phr2BiPMValue < phr1BiPMValue & stepCountBiPM > 

stepBLimitBiPM){ 

         biPStepper(-49); 

         stepCountBiPM = stepCountBiPM - 49; 
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         delay(shortDelay); 

         } 

 

         while (sampleCount < numSamples) { 

             sumPhr1BiPM += analogRead(phr1BiPMPin); 

             sumPhr2BiPM += analogRead(phr2BiPMPin); 

             sampleCount++; 

             delay(shortDelay); 

         } 

 

        phr1BiPMValue = analogRead(phr1BiPMPin); 

        phr2BiPMValue = analogRead(phr2BiPMPin); 

        delay(shortDelay); 

      } 

 

void sweep(){ 

if (stepCountUniPM >= 0 ){ 

  for (i = 0; i < stepCountUniPM; i++) { 

    if (stepCountUniPM > stepBLimitUniPM){ 

    uniPStepper(-32); 

    stepCountUniPM = stepCountUniPM - 32; 

    delay(shortDelay); 

    } 

  } 

} 

else { 

  for (i = 0; i > stepCountUniPM; i++) { 

    if (stepCountUniPM < stepFLimitUniPM){ 

    uniPStepper(32); 

    stepCountUniPM = stepCountUniPM + 32; 

    delay(shortDelay); 

    } 

  } 

 

 } 

} 
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