
T
B R N O U N I V E R S I T Y O F T E C H N O L O G Y
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

A U T O M A T E D G E N E R A T I O N O F T E S T S F O R G N O M E
G U I A P P L I C A T I O N S U S I N G A T - S P I M E T A D A T A
AUTOMATICKÉ GENEROVÁNÍ TESTŮ PRO G N O M E GUI APLIKACE Z METADAT AT-SPI

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. MARTIN KRAJŇÁK
A U T O R PRÁCE

SUPERVISOR prof. Ing. TOMÁŠ VOJNAR, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2020

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2019/2020

M a s t e r ' s T h e s i s S p e c i f i c a t i o n |||||||||||||||||||||||||
23191

Student: Krajnak Martin, Be.
Programme: Information Technology Field of study: Information Technology Security
Title: Automated Generation of Tests for GNOME GUI Applications Using AT-

SPI Metadata
Category: Software analysis and testing
Assignment:

1. Get acquainted with assistive technologies providing accessibility for applications, in
particular with AT-SPI.

2. Study methods for automatic test generation.
3. Design a method for analysing metadata produced by the AT-SPI framework and

a method for automatic test generation based on this analysis.
4. Implement the proposed technique in a tool that will be able to generate tests for GNOME

applications.
5. Test the created tool on at least 5 open-source GNOME applications.
6. Analyse the obtained results, compare the obtained test coverage with existing test

suites, and discuss possible improvements of your tool for the future.
Recommended literature:

• Dadeau, F., Peureux, F., Legeard, B., Tissot, P>., Julliand, J., Masson, P.-A., Bouquet, F.:
Test Generation Using Symbolic Animation of Models. Model-Based Testing for
Embedded Systems. CRC Press, 2011.

• Zander, J., Schieferdecker, I., Mosterman, P.J.: Model-Based Testing for Embedded
Systems. CRC Press, 2017.

• Alexander, V., Benson, O, Cameron, B., Haneman, B., O'Briain, P., Snider, S.: GNOME
Accessibility Developers Guide. GNOME Documentation Project, 2008.

• Laws, O, Haneman, B.: Accessible Document Navigation Using AT-SPI. Open A11y.org
Accessibility Group, 2008.

Requirements for the semestral defence:
• The first two items and at least some work on the third item.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Vojnar Tomas, prof. Ing., Ph.D.
Consultant: Pelka Tomas, Ing., RedHatCZ
Head of Department: Hanacek Petr, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: May 20, 2020
Approval date: October 31, 2019

Master's Thesis Specification/23191/2019/xkrajn02 Strana 1 z 1

http://1y.org
https://www.fit.vut.cz/study/theses/

Abstract
The goal of this work is the development of a tool capable of automatic test generation
for G U I applications i n the G N O M E desktop environment. The tests are generated using
metadata provided by the assistive technologies, specifically the A T - S P I . The proposed
test generator utilizes the given metadata to create a model of a tested applicat ion. The
model maps the event sequences that are applied on the tested applicat ion during the test
generation process. The generation process involves the detection of severe bugs i n the
tested applicat ion. The results of the test generation process are automated test cases
suitable for regression testing. The functionality of the implemented test generator was
successfully verified by testing 5 open-source applications. The testing of applications
performed by the proposed tool has proven the abi l i ty to reveal new bugs.

Abstrakt
Cieľom tejto p ráce je vývoj n á s t r o j a na a u t o m a t i c k é generovanie testov pre ap l ikác ie s
graf ickým už íva teľským r o z h r a n í m v p r o s t r e d í G N Ó M E . N a generovanie testov sú použ i t é
m e t a d á t a a s i s t enčných technológi í , k o n r é t n e A T - S P I . N a v r h n u t ý g e n e r á t o r testov využ íva
d a n é m e t a d á t a na vytvorenie modelu testovanej apl ikác ie . M o d e l mapuje sekvencie uda los t í ,
k to r é g e n e r á t o r v y k o n á na testovanej apl ikáci i p o č a s generovania testov. Súčasťou pro
cesu generovania je zá roveň detekcia závažných chýb v t e s tovaných ap l ikác iách . V ý s t u p o m
procesu generovania sú a u t o m a t i z o v a n é testy, k t o r é sú v h o d n é na regresně testovanie.
Funkčnosť i m p l e m e n t o v a n é h o g e n e r á t o r a testov bola ú s p e š n e overená t e s t o v a n í m 5 apl iká
cií s o t v o r e n ý m z d r o j o v ý m k ó d o m . P o č a s testovania apl ikáci í n a v r h n u t ý m n á s t r o j o m sa
p r e u k á z a l a schopnosť detekovat nové chyby.

Keywords
G U I testing, G N O M E , A T - S P I , M B T , open-source applicat ion testing, test generation,
accessibility technologies, model based testing, black-box testing

Kľúčové slová
testovanie grafických už iva te l ských rozh ran í , testovanie G U I , G N O M E , A T - S P I , M B T ,
testovanie apl ikáci í s o tvorených zd ro jovým k ó d o m , generovanie testov, a s i s t enčné tech
nológie, testovanie na zák l ade modelu, black-box testovanie

Reference
K R A J N Ä K , M a r t i n . Automated Generation of Tests for GNOME GUI Applications Using
AT-SPI Metadata. Brno , 2020. Master 's thesis. Brno Universi ty of Technology, Facul ty of
Information Technology. Supervisor prof. Ing. Tomas Vojnar, P h . D .

Rozšírený abstrakt
V dnešne j dobe väčš ina sofvérových apl ikáci í využ íva grafické užívateľské rozhranie (G U I) .
Rozhranie využ íva v ý h o d y grafického akce l e r á to ra v poč í t ač i na z jednodušen ie použ ívan ia
softvéru. G U I apl ikác ie sú vyvý jané pomocou okien a ov ládac ích prvkov. O v l á d a c í prvok
reprezentuje grafický element popisu júc i u r č i t é sp rávan ie alebo funkcionalitu. Interakcia
používa teľa s ov ládac ími p rvkami generuje rôzne udalosti u m o ž ň u j ú c e vykonávať ú lohy
v iace rými spôsobmi .

A j napriek tomu, že grafické užívateľské rozhrania zlepšujú použiteľnosť a f lexibil i tu,
takisto p r e d s t a v u j ú v ý z v u v t e s tovan í softvéru, keďže t es te ř i musia rozhodnúť , či skont ro lu jú
v š e t k y sekvencie uda los t í , alebo len ich časť. Úsilie vyna ložené na testovanie G U I apl ikáci í
môže byť zmie rnené a u t o m a t i z o v a n ý m t e s t o v a n í m softvéru. A j ked sa za pos l ednú d e k á d u
nás t ro j e na a u t o m a t i z o v n é testovanie zlepšili, m a n u á l n e testovanie je s tá le na jpouž ívane j šou
technikou v praxi . A u t o m a t i z o v a n ý proces testovania G U I apl ikáci í zabezpeč í , že apl ikácie
b u d ú t e s t o v a n é pravidelne a zrýchly sa ná jden ie m o ž n ý c h chýb . A u t o m a t i z á c i a a C I - C D
sys t émy h r a j ú kľúčovú ro lu v regresnom tes tovan í a to hlavne p o č a s fázy vývoja , keď sa
softvér m e n í častejšie .

Testovanie G U I sofvéru z a h ŕ ň a vykonanie uda los t í patr iacich j e d n o t l i v ý m komponen
t á m G U I a monitorovanie zmien stavu programu. Testy n a v r h n u t é pre G U I sa sk lada jú
zo sekvenci í uda lo s t í na vstupe a kontroly zmien stavu programu. Kontro lovať je m o ž n é
niekoľko i nd iká to rov ako stav G U I , stav p a m ä t e , chybové h lásenia , v ý s t u p y apl ikácie , alebo
akýkoľvek iný i n d i k á t o r stavu behu programu. G U I testy kon t ro lu jú oveľa viac ako len
zdro jový kód súvisiaci len s G U I , keďže v y k o n a n é udalosti t e s t u j ú aj časť zdro jových kódov
patriacich mimo G U I . V p r í p a d o c h kedy ap l ikác ia nedisponuje i n ý m ako G U I r o z h r a n í m je
testovanie pomocou G U I rozhrania jedinou m o ž n o u formou testovania apl ikác ie . Z t ý c h t o
dôvodov je testovanie G U I kr i t ickou súčasťou pre vývoj akéhokoľvek sofvéru s G U I .

Veľkosť a zložitosť m o d e r n ý c h grafických užívateľských r o z h r a n í v p o č t e komponent a
uda los t í , k t o r é na nich m ô ž u byť v y k o n a n é , p r e sahu jú p rak t i cké l imi ty ana ly t i ckých pr ís
tupov k testovaniu. P o č e t m o ž n ý c h testov pre G U I sa zvyšuje exponenc iá lne s p o č t o m
uda los t í a komponent v G U I apl ikáci i .

V tejto p rác i prezentujeme naše r iešenie n a v r h n u t é pre a u t o m a t i c k é generovanie testov
pre G U I apl ikác ie v p r o s t r e d í G N Ó M E . G e n e r á t o r využ íva m e t a d á t a a s i s t enčných tech
nológií na vytvorenie modelu, z k t o r é h o sú testy o d v o d e n é . G e n e r á t o r extrahuje z v y t v o r e n é h o
modelu sekvencie uda los t í , k t o r é je m o ž n é na testovanej apl ikáci i vykonať . Generovanie
testov prebieha s ekvenčným ap l ikovan ím uda los t í na t e s t o v a n ú ap l ikác iu . Udalos t i sú
v y k o n á v a n é pomocou as i s t enčných technológi í , k t o r é sú t ak t i e ž použ ívané na monitorovanie
stavu apl ikácie , ako aj rozš i rovanie modelu o novoná jdené stavy v apl ikáci i p o č a s testovania.
P o č a s generovania testov je zároveň ap l ikác ia m o n i t o r o v a n á kvôli detekcii závažných chýb ,
k to ré je g e n e r á t o r schopný identifikovať. N a v r h n u t ý n á s t r o j t ak t i e ž integruje t echnológ iu
O C R , k t o r á umožňu je č í t an ie textu z obrázkov . T á t o technológia umožňu je d o d a t o č n ú
kontrolu stavu testovanej apl ikácie .

I m p l e m e n t o v a n ý m n á s t r o j o m sme otestovali 5 apl ikáci í . P o č a s testovania sme dokáza l i
overiť funkcionalitu nami n a v r h n u t é h o g e n e r á t o r a testov, k t o r ý bo l schopný odhal iť niekoľko
nových chýb v t e s tovaných ap l ikác iách . P r á c a zároveň dokumentuje aj obmedzenia a ne
dostatky, k t o r é sa objavi l i p r i t e s tovan í pomocou n a v r h n u t é h o n á s t r o j a . Testy vygenerované
n a š i m n á s t r o j o m sú v h o d n é na a u t o m a t i z o v a n é testovanie a bol i n a s a d e n é v p r o s t r e d í
Desktop-CI p o u ž í v a n ý m firmou R e d Hat .

A u t o m a t e d G e n e r a t i o n o f T e s t s f o r G N O M E G U I

A p p l i c a t i o n s U s i n g A T - S P I M e t a d a t a

Declaration
I hereby declare that this thesis project was prepared as an original work by the author
under the supervision of M r . prof. Ing. Tomas Vojnar, P h . D . I have listed a l l the l i terary
sources, publications and other sources, which were used during the preparation of this
thesis.

M a r t i n Kra jhak
June 3, 2020

Acknowledgements
I would like to thank prof. Ing. Tomas Vojnar for the guidance provided dur ing the wr i t ing
of this thesis. M y thanks also belongs to Ing. Tomas Pe lka and the D e s k t o p Q E team from
R e d Hat for helpful discussions and feedback dedicated to the implementat ion of this work.
A t last, I would like to thank my friends and my family for their support dur ing my studies.

Contents

1 Introduction 3

2 Testing Graphica l User Interfaces 5
2.1 R a n d o m Input Testing 5
2.2 M a n u a l Testing 5
2.3 Test Au tomat ion and C I / C D 5
2.4 Black B o x Testing 6
2.5 W h i t e B o x Testing 6
2.6 Explora tory testing 7
2.7 Record /Rep lay and Scr ipt ing Tools 7
2.8 Random-Walk Tools 8
2.9 Solutions Based on Image Recognit ion 8
2.10 Model -Based Testing 8

2.10.1 Ex i s t ing Solutions 8

3 A T - S P I Architecture 10
3.1 G N O M E Accessibi l i ty Implementation L i b r a r y (G A I L) 10
3.2 Libraries and Tools 11

3.2.1 L ib ra ry Pya t sp i 12
3.2.2 Dogta i l 12
3.2.3 Accerciser 14

3.3 Covering Limi ta t ions of Accessibi l i ty and Verification 16
3.3.1 O p e n C V and Image Match ing Techniques 16
3.3.2 Opt i ca l Character Recognit ion 17

3.4 Conclusion 19

4 Design of the Proposed Test Generator 20
4.1 M o d e l Ex t rac t ion 21
4.2 Test Environment 22

4.2.1 Test Environment Setup 23
4.2.2 Test Generator Configurat ion 24
4.2.3 F la tpak Appl ica t ions Setup 25
4.2.4 Execut ion and Moni to r ing of an App l i ca t ion 28

4.3 Generating an Environment for the Test Execut ion 28
4.4 Test Case Generat ion 30

4.4.1 Der ivat ion of Event Sequences 30
4.4.2 Execut ion of Event Sequences 32
4.4.3 M o d e l Expans ion 33

1

4.5 O C R Integration 34
4.5.1 Screenshot Preprocessing and Opt imizat ions 34
4.5.2 Implemented Steps 36

4.6 Generated Test Cases 36

5 Testing and Results 38
5.1 Coverage Evalua t ion 38
5.2 G N O M E Terminal 40
5.3 G N O M E Help 41
5.4 LibreOffice StartCenter 44
5.5 Evince 46
5.6 Gedi t 48

6 Evaluation and Future W o r k 49
6.1 Code Coverage Evalua t ion 49
6.2 Compar ison w i t h Ex i s t ing Solutions and Test Suites 50

6.3 Recommended Usage and Future Work 51

7 Conclusion 52

Bibl iography 53

A Abbreviat ions 56

B Setup Instructions and User M a n u a l 57

C Test Generator B u g Report 59

D Examples of Generated Test Cases 60

E Example of a Generated Project Environment Fi le 62

F Event Flow Graphs 63

G Contents of the Attached M e d i u m 67

2

Chapter 1

Introduction

Nowadays, the majority of software applications feature a graphical user interface (G U I) .
The interface takes advantage of the computers' graphics capabilities to make software easier
to use [25]. Graph ica l applications are developed using sets of windows and widgets. A
widget represents a graphical element describing certain behavior and functionality. User
interaction wi th widgets is generating various events al lowing them to perform tasks in
different ways while achieving the same goal.

Despite the fact that G U I s improve usabil i ty and flexibility, they also represent a chal
lenge for software testing as testers have to decide whether to check a l l sequences of events
or only a subset. The effort required to test the G U I s can be reduced wi th automated
software testing. E v e n though there was significant progress made in automated testing
tools over the last decade, manual testing is s t i l l the most common technique in practice.
However, w i t h a proper automated G U I testing process, more test cases can be executed
regularly and more faults can be found wi th in less t ime [13]. Au tomat ion and C I - C D sys
tems play an essential role i n regression testing, especially in the test development phase,
when software changes are more frequent. Generally, bui ld ing G U I test cases involves se
lecting sequences of events and describing the expected state of the program after the event
execution. A n indicator of expected state can be a state of G U I , memory state, error log,
output log, etc.

The test cases designed for G U I s test much more than the code associated only wi th
G U I , as the events also execute underlying n o n - G U I code. In cases where an applicat ion
has only a G U I interface, the G U I testing is the only possible form of testing. The size and
complexity of modern G U I s , in terms of components and events that may be executed on
them, exceed the pract ical l imits of analyt ical approaches to testing. The number of possible
test cases for G U I increases exponentially w i th the number of events and components in
G U I [14].

In this thesis, we present our solution designed to generate test cases for G U I appli
cations in the G N O M E environment. The implemented generator utilizes the metadata
provided by the assistive technologies to create a model of a G U I applicat ion from which
test cases are derived. Further, we discuss the results achieved by testing applications wi th
the implemented tool , the l imitat ions discovered during the development, and the plans for
future work as well.

Structure of this thesis continues as follows. Chapter 2 describes G U I testing techniques
ut i l ized by this work. Chapter 3 introduces the reader to the architecture of the accessibility
technology (A T - S P I) in the G N O M E environment, followed by the description of available
tools and libraries. We also discuss the l imitat ions that can occur when the A T - S P I is

3

used for testing as well as the technologies that might be used to cover those l imitat ions,
namely the OpenCV l ibrary and the opt ical character recognition (O C R) engine Tesseract.
In chapter 4, we present the implementat ion of our test generator. Chapter 5 summarises
the results we achieved during the testing wi th our test generator. Chapter 6 contains the
evaluation of test coverage and offers the workflow recommendations for our tool . Chapter 7
concludes this thesis.

4

Chapter 2

Testing Graphical User Interfaces

Next several sections are dedicated to various testing techniques used to test G U I s . V a r i
ations of both manual and automated testing are discussed, followed by examples of tools
using them. Throughout this thesis, a tested applicat ion w i l l be referred to as a system
under test (S U T) .

2.1 Random Input Testing

The R a n d o m input testing technique is also referred to as stochastic testing or monkey
testing. The term monkey is mentioned in any form of automated testing performed without
any user bias. This method distinguishes 3 types of monkeys who are testing the applicat ion
by generating random sequences of events from both a keyboard and a mouse. D u m b
monkeys do not have any knowledge about the system, nor its state. They are not aware
which actions are legal or il legal. The downside is that they cannot recognize a failure
when they encounter one. The i r only goal is to crash the S U T . Another group, referred to
as semi-smart monkeys, can recognize a bug when they see one. The last group are smart
monkeys, who have certain knowledge about the appl icat ion they are testing, obtained from
a state table, or a model of S U T . O n the other hand, smart monkeys are the most expensive
to develop. Despite the fact that a random testing tool has a weak coverage, Microsoft has
reported that 10-20 % bugs i n their software were discovered by this method [16].

2.2 Manual Testing

High-level G U I and acceptance tests are often being performed manually. Those practices
are often inefficient, error-prone, and tedious. Test development tends to be delayed and
executed in a hurry during late development stages. M a n u a l tests are pre-defined sets of
steps performed on a high level of system abstraction to validate the system against the
required specification. However, software is prone to changes, and therefore it needs to
be tested regularly against regressions. This leads to excessive costs, since testers have to
continuously re-execute test plans throughout development stages [4].

2.3 Test Automation and C I / C D

Automated testing solves the major weaknesses of manual testing. The process of automat
ing software testing is s imilar to a software development process. The goal is to reduce the

5

need for human involvement in repetitive or redundant tasks. A list of tests that can be
automated include [1]:

• functional - testing that operations perform as expected,

• regression - testing that the behavior of the system has not changed,

• exception or negative - forcing error conditions on the system,

• stress - determining the absolute capacities of the applicat ion and operational infras
tructure.

Implementation of test automation leads to practices like continuous integration (CI)
and continuous delivery (C D) . Continuous testing goes beyond test automation and brings
testing as close to software development as possible.

Continuous integration is a coding philosophy and a set of practices that drives develop
ment teams to implement smal l changes and check version control repositories frequently.
The majori ty of modern applications require code development using different platforms
and tools, thus the team needs a mechanism to integrate and validate changes. The goal
of the C I is to establish a consistent and automated way to bu i ld , package, and test ap
plications. W i t h consistency i n the integration process i n place, teams are more l ikely to
commit code and changes more frequently. Th is leads to better collaboration and software
quality.

Continuous delivery starts where continuous integration ends. C D automates the deliv
ery of applications to selected infrastructure environments. Therefore it performs necessary
calls to predefined sets of services to ensure that applications are deployed.

The common goal for C I / C D is to deliver quali ty software and code to users. Continuous
testing is often implemented as a set of automated regression, performance, and other tests
that are executed in C I / C D pipelines. Automated testing frameworks help quali ty assurance
engineers to define, execute and automate various types of tests that can help development
teams know whether a software bu i ld passes or fails. Mos t C I / C D tools let developers kick
off a bu i ld on-demand, triggered by code commit i n the version control repository, or on a
defined schedule.

Regression tests are an essential part of the C I / C D pipeline that directly informs de
velopers about the effects of their changes on previously tested and stable functions of the
application [23].

2.4 Black Box Testing

The technique handles the software as a black box. A tester has no knowledge about
the implementat ion of the software. The design of the test cases is only based on the
specifications and requirements. Tests usually involve a set of both val id and inval id inputs
w i th predictable outputs. Black box testing plays a significant role i n testing as it is
evaluating the overall functionality of the software [15].

2.5 Whi te Box Testing

The design of test cases depends on the implementat ion of the software entity. W h i t e box
testing is focused on internal logic and structure of the code, testing the software from the

G

developer's perspective. The design of test cases requires full knowledge about softwares'
sources, thus allowing one to possibly test every branch i n the code. Test cases are usually
wri t ten as unit tests, system tests or integration tests. W h i t e box tests are suitable for
execution during the development and also when testing the finished product [15].

2.6 Exploratory testing

Explora tory testing is an approach to software testing that is often described as simultane
ous learning, test design, and execution. It focuses on discovery and relies on the experience
of the tester to find defects that are not i n the scope of other tests. The goal is to comple
ment t radi t ional testing to find mil l ion-dollar defects that are generally hidden behind the
defined workflow [20].

2.7 Record/Replay and Scripting Tools

To mitigate the mentioned concerns and increase the quali ty of software, automated test
ing has been proposed as a solution. A considerable amount of work has been devoted to
high-level test automation, resulting in Record and Replay techniques. Tools are contin
uously recording the coordinates and properties of G U I components dur ing manual user
interaction. Obta ined recordings can be played back to emulate user interaction and vali
date the correct state of the system during regression testing. These techniques have also
certain l imitat ions, which is typical ly sensitivity to G U I layout changes and code changes.
Those changes are forcing testers to repeat the recording processes, and therefore they cause
addi t ional costs by maintaining automated tests [4].

A n example of this category of tools is the open-source project G N U X n e e 1 . The project
consists of a l ibrary and two applications. Test automation is one of the several use cases
for this project. However, the project is l imi ted to X l l display environments [10].

A similar approach for testing is presented by script-based frameworks. These frame
works provide script ing languages to control the G U I . Instead of performing tests manually,
testers are wr i t ing scripts to automatical ly interact w i t h the G U I . Scripts contain some
assertions to check whether the applicat ion executed a sequence of events correctly. A vio
lat ion of assertions during the test results i n a test case failure. These tools are widely used
across the industry. J F C U n i t 2 is a tool for testing Java Swing applications. Se len ium 3 is
a project w i th a range of tools and libraries that enables automation of web applications.
R o b o t i u m 4 test automation framework allows to write automatic black-box tests for the U I
of A n d r o i d applications. A n d finally, S O A t e s t 5 that supports integration testing for web
applications by capturing user interactions direct ly in the browser without requiring any
scripting [14].

x h t t p s : //xnee.wordpress.com/
2 h t t p : / / j f cunit.sourceforge.net/
3 h t t p s : //www.selenium.dev/documentation/en/
4 h t t p s : //github.com/RobotiumTech/robotium
5 h t t p s : //www.parasof t. com/soat est/web-ui-testing

7

http://wordpress.com/
http://cunit.sourceforge.net/
http://www.selenium.dev/documentation/en/
http://www.parasof

2.8 Random-Walk Tools

Unlike the previously mentioned script-based and capture/replay tools, random-walk tools
do not generate test cases. They just randomly walk through the G U I and randomly
execute a l l events they encounter. These tools are easy to use and may find bugs by
using unexpected combinations of events. O n the contrary, they can reveal only specific
tool-supported error events (e.g., crashes, timeouts, permission errors). Tools using this
technique are A n d r o i d M o n k e y 6 and GUIdancer .

2.9 Solutions Based on Image Recognition

This category of solutions is often being referred to as V i s u a l G U I Testing. It is an emerging
technique combining scripting languages wi th image recognition. The image recognition
allows us to test various systems regardless of their implementation, operating systems, or
even platforms. Tools are providing support for emulating user interaction wi th the bi tmap
components (images, buttons) shown to a user on the screen. The biggest l imi ta t ion of
solutions based on image recognition is that they are not suitable for highly animated
G U I s [4]. There is also a considerable amount of work required for test maintenance,
mostly caused by design changes of widgets throughout the development.

There are several examples of tools that use image recognition for testing, including
open-source tools Xpresser 8 and S i k u l i 9 . Xpresser is a python module that works wi th
a directory of images containing cropped images of widgets. Once the image matching
algori thm identifies a locat ion of a cropped image on the screen, an intended action can be
performed on the given coordinates [11]. Xpresser is mostly used for bui lding automated
test cases for the L i n u x dis t r ibut ion Ubuntu .

2.10 Model-Based Testing

Model-based testing (M B T) is a software testing technique where test cases are generated
from a model that describes functional aspects of the S U T . It allows one to check the
conformity between the implementat ion and the model of the S U T , wi th a more system
atic and automatic approach i n the testing process. The test generation phase is based
on an a lgor i thm that traverses the model and produces test cases suitable for automatic
execution [26].

2.10.1 E x i s t i n g Solut ions

The T E M A toolset is an M B T framework developed for smartphone applications. Testers
have to manual ly create a two-tier model consisting of two state machines, called the action
and keyword machines. Those machines represent the G U I at design and implementat ion
levels. The method generates design-level test cases by traversing the act ion machine.
Afterward the keyword machine is used to transform design test cases into executable
ones [12].

6 h t t p s : //developer.android.com/studio/test/monkey
7 h t t p s : //testing.bredex.de/
8 h t t p s : //wiki.ubuntu.com/Xpresser
9 h t t p : //www.sikulix.com/#homel

8

http://android.com/studio/test
http://www.sikulix.com/%23homel

Another approach was introduced i n the G U I T A R [14] framework for automated G U I
testing. G U I T A R can be divided into the following steps:

1. G U I reverse engineering,

2. automated test case generation,

3. automated execution of test cases,

4. support for platform-specific customization,

5. support for addi t ion of new algorithms as plugins,

6. support for integration into other test harnesses and quali ty assurance workflows.

The first step contains a reverse engineering process. A structural G U I model of an
application under test is extracted from the run-time state of the applicat ion. This process
involves automatic execution of an application, where the tool called R ipper is used to
discover as much as possible about the applicat ion. The application's window and widgets
are discovered i n a depth-first manner. The Ripper extracts properties of widgets such as
posit ion, color, size, and enabled status, followed by information about events and results
of event execution. The depth-first traversal terminates when a l l G U I windows are covered.
The problem wi th this heuristic is that it would hypothetical ly contain an infinite number
of ways to interact w i th non- t r iv ia l G U I applications. A t the end of the process, R ipper
stores the extracted structural information about the G U I to a data structure called G U I
Tree, i n an X M L format.

To complete the reverse engineering process, the tool called G r a p h Converter provides a
platform-independent framework to convert the G U I Tree model into a graph, representing
relationships between events i n the G U I of the applicat ion. The result is an Event-flow
Graph (E F G) used for test case generation. A n E F G is a directed graph representing a l l
possible event interactions on a G U I . E a c h node represents a G U I event. A n edge from
a node v to a node w represents a follows relationship between v and w, indicat ing that
the event w can be performed immediately after the event v. A n E F G is analogous to
a control-flow graph, i n which vertices represent program statements and edges represent
execution flows between the statements.

In the th i rd step, test cases are automatical ly generated based on the E F G . Therefore,
the G U I test generation problem is reduced to a problem of graph traversal, thus any graph
traversal a lgori thm can be used for test generation.

9

Chapter 3

AT-SPI Architecture

A n accessibility is a technology that helps people wi th disabilities to participate i n essential
life activities. A n accessibility as a part of the G N O M E desktop includes libraries and
development tools al lowing users wi th disabilities to use other options of interaction wi th
the G N O M E desktop environment. Those options include voice interfaces, screen readers,
and other alternative input devices [3].

Assistive technologies are receiving information from the Accessibi l i ty toolki t (A T K) ,
which offers bui l t - in A P I s for a l l G N O M E widgets. A T K provides a set of interfaces that
are required to be implemented by G U I components. Therefore, assistive technologies
can automatical ly read most of the labels on screen without any extra efforts made by
developers. The interfaces are toolkit-independent, meaning that their implementat ion
could be wri t ten for many widgets, including widgets from frameworks such as G T K 3 1 and
Q t 2 .

3.1 G N O M E Accessibility Implementation Library (G A I L)

Nowadays, the majori ty of G N O M E applications are wri t ten in the G T K 3 framework. The
framework provides a dynamical ly loadable module named G A I L that implements the A T K
interfaces for a l l G T K 3 widgets. Once the module is loaded at runtime, the applicat ion
is fully capable to cooperate wi th A T K without any further modifications. The G N O M E
desktop does not load accessibility support libraries by default. They have to be enabled
by setting a special gsettings key, which can be achieved either by the dconf 3 editor or
v i a the gsettings command-line u t i l i ty using a terminal appl icat ion (Lis t ing 3.1).

gsettings set org.gnome.desktop.interface t o o l k i t - a c c e s s i b i l i t y true
Lis t ing 3.1: Enab l ing accessibility v i a a gsettings command

Add i t iona l configurations may be required for applications wri t ten in other frameworks
such as Q T or Java. Compared to the A T - S P I , implementations of other assistive technolo
gies might be too application-specific or use various techniques like O S event snooping, etc.
In the G N O M E Desktop, a l l information required by assistive technologies (A T) is passed
from the G N O M E Accessibi l i ty Framework to a toolkit-independent Service Provider In-

x h t t p s : //www.gtk.org/
2 h t t p s : //www.qt.io/
3 h t t p s : //wiki.gnome.org/Projects/dconf

10

http://www.gtk.org/
http://www.qt.io/
http://gnome.org/Projects/dconf

terface (SPI) . The S P I is a key component for providing a stable and consistent A P I for
screen readers, magnifiers, etc. The accessibility support is relying on a per-toolkit imple
mentation (G T K 3 , Q T , Java) and its A P I s exported through relevant bridges to unified
A T - S P I interface as described i n Figure 3.1.

Opp
layer

GNOME desktop
(special <jTK+ app)

Mozilla
(gecko only)

GNOME Apps
(GTK+) via API

Java apps
via J A API Open Off ice ore

platform loyer AT SPI (ORB) Modified
Window Mgr.

AT layer

AT building blocks

Figure 3.1: G N O M E Accessibi l i ty Archi tecture overview[3]

A widget is accessible, i f a developer uses any G T K 3 / G N O M E widget and follows the
general accessibility guidelines 1 w i t h properly implemented A T K interfaces. A developer
can also create a custom widget. A custom widget is accessible when its implementat ion
is based on one of the stock G T K 3 / G N O M E toolkit widgets. The default implementat ion
of the A T K interfaces might be altered by applications. Therefore, a developer can enrich
descriptions of widgets and improve the overall user experience i n special cases, e.g. when
a widget is used for some less expected purposes or the default description is too general.
The A T K provides a set of functions to achieve this along wi th the abi l i ty to make any
custom component accessible 5 [9].

3.2 Libraries and Tools

Currently, there are several tools available for exploration and debugging accessibility fea
tures not only on the G N O M E desktop.

4https://developer.gnome.org/accessibility-devel-guide/stable/gad-coding-
guidelines.html, en

5 h t t p s : //developer.gnome.org/accessibility-devel-guide/stable/gad-custom.html.en

11

https://developer.gnome.org/accessibility-devel-guide/stable/gad-coding-
http://gnome.org/accessibility-devel-guide/

3.2.1 L i b r a r y P y a t s p i

The package pyatspi is a P y t h o n wrapper around the A T - S P I ' s C implementation, which
loads the Accessibi l i ty typel ib and imports the classes implementing A T - S P I interfaces [19].

A T - S P I exposes applications as a tree of widgets that are also accessible i n P y t h o n
through pyatspi. O n the top, the root element represents the whole G N O M E desktop.
Every sub-element represents one running applicat ion on the G N O M E desktop. E a c h ap
plicat ion has zero or more chi ld elements, each chi ld is distinguishable by its posi t ion in
the tree and several object properties. Some of these properties are encapsulated inside
the accessible object and their values must be obtained through corresponding methods,
so-called getters.

The l ibrary pyatspi is an open-source project available for most L i n u x distr ibutions v i a
distro specific packaging services (package named python3-atspi) or is available to be
buil t from its sources 6 .

3.2.2 D o g t a i l

Dogta i l is an open-source G U I test framework wri t ten i n P y t h o n and implemented as a
l ibrary around the pyatspi. Several modules implement a higher level of A P I to simplify
work and interaction wi th the accessible objects dur ing test development. Dogta i l utilizes
attributes provided by pyatspi that are required for testing. A smal l set of attributes is
described i n the following list:

• name - a s tr ing value, for most widgets contains a text identical w i th the text label
visible on the widget,

• role - a string value, specifies the widget type,

• childCount - an integer value, represents a number of sub-elements,

• actions - a dict ionary that contains available actions which can be performed on a
widget by the A T K ,

• visible - a boolean value, indicates that a widget is visible to the user,

• showing - a boolean value, a widget is rendered,

• text - a string value, mostly used i n input fields or widgets containing plenty of text,

• description - a string value, contains a special widget description for users,

• position - an integer tuple, x, y coordinates on the screen (might be related to other,
component)

• size - an integer tuple, shows the height and wid th of the widget.

Addi t ional ly , the elements can be l inked together i n other useful ways (except the parent-
child relationship), where the input widgets (e.g.: text field, check box, combo box, etc.)
are l inked wi th the elements that serve as their labels. These labels are making the input
widgets easier to identify or interact wi th . Other advantageous element properties e.g.
showing or visible are used to decide whether the element is hidden from the active screen

6 h t t p s : //gitlab.gnome.org/GN0ME/pyatspi2

12

http://gnome.org/GN0ME/pyatspi2

area, thus it is not available for interaction. The roleName at tr ibute allows a categorization
of widgets that is useful for identification of category-specific methods, e.g. selecting a radio
but ton value, selecting an option i n combo boxes, or a click method performed on push
buttons.

The l ibrary contains methods that can generate user input events. The implementat ion
is focused in a module named rawinput that provides methods for generating mouse or
keyboard events.

The package dogtail also includes a G U I tool Sniff (AT-SPIBrowser in Figure 3.2), sim
ilar to the Accerciser applicat ion described i n the next section. The too l offers less complex
functionality, containing a tree view of accessible objects w i t h their basic attributes [7].

AT-SPI Browser

Sniff Actions Help

Name

L ,

L - I Content View

r
J

Desktop

Documents

Downloads

Music

Pictures

Projects

Public

Templates

Videos

Basics Text

Name: Icon View

Role Name: Layered pane

Description:

Actions: activate menL

Gs Home JL=JI *

5

Projects

Templates

Figure 3.2: The Sniff u t i l i ty (AT-SPI Browser), highlighting the Icon View area i n the
Nautilus file manager

The module tree contains the most important class Node, instances of the class repre
sent elements of the desktop user interface. A l l elements are gathered to the tree structure,
representing a l l applications starting wi th the root element (desktop). The class is imple
mented as a m i x i n for Accessible and various Accessible interfaces and is an important unit
for its subclasses, namely Application, Root and Window. The Node class also implements
methods used for search of nodes in the tree based on certain criteria. A lambda expression
can be passed to methods f i n d C h i l d and f indChildren as an argument named pred. The
lambda expression can contain any properties that uniquely identify nodes, including name,
roleName, showing and v i s i b l e . The class also contains action methods that can be per
formed on nodes without impor t ing other action modules. Verification and identification
of shown nodes is easier thanks to the method named blink. Once the method is called
on a certain element, the element is highlighted on the screen for several seconds. This

13

functionality is also part of the Sniff tool where an element is highlighted after it is selected
in the displayed tree.

The module dump contains only one method wi th the same name. The method returns
a string describing the tree of nodes which is useful for py thon/ ipy thon console debugging.

Final ly , the module rawinput contains the implementat ion required for generating
events from both a keyboard and a mouse. More complex events simulat ing keyboard
shortcuts, mouse gestures, and drag and drop operations are implemented as well.

Testing dogtai l has proven its availabil i ty for many L i n u x distributions through their
package repositories, specifically Fedora 32, R e d Hat Enterprise L i n u x 8.2 and Manjaro
18 wi th G N O M E 3.34 (Archl inux) . It is also available as a Pypi P y t h o n package and
according to information i n it 's official G i t l a b repository, it should work not only for G T K 3
applications but also for applications wri t ten i n Q T and K D E .

Dur ing the testing of dogtail , we revealed some minor problems which might occur w i th
test development. There are known cases in which the coordinates of a node were not
reported correctly. Most of the elements w i th the roleName value panel and list box are
missing their name values. Elements without the name value are much harder to identify,
although they might not be important for users, as they do not contain any visible text, nor
do they offer a way of interaction. The purpose of those elements is to serve as a wrapper
that groups other elements together i n a tree.

However, there are elements that are available for user interaction but they are not
named (e.g. a refresh but ton i n the Disk User Ana lyzer appl ica t ion ') . Once an action
needs to be dispatched on such an element, the identification has to be done either through
a parent element or a sibling element. Addi t ional ly , the execution of a mouse event w i l l
require an offset calculat ion to specify the correct element posit ion on the screen.

Another discovered issue is a non-accessible menu which is included i n the majority of
the G N O M E applications. Th is issue is quite severe, therefore it was reported and resolved
by developers.

So to conclude this subsection, dogtai l is a powerful tool for the development of auto
mated test cases i n the G N O M E 3 environment. O n the other hand, it contains discussed
l imitat ions and flaws. Those l imitat ions do not need to come from dogtai l itself, they are
either accessibility bugs or bugs i n the G T K 3 framework (non-accessible menu).

3.2.3 Accerc i s er

Accerciser is an interactive accessibility explorer developed i n Py thon . It provides a well-
arranged graphical frontend for the A T - S P I library, hence it can inspect, examine and
interact w i th widgets. It also serves as a verification tool for developers, to check that
their applications are providing correct information to assistive technologies and automated
testing frameworks. Compared to Sniff, Accerciser's interface (Figure 3.3) offers extended
features and functions. The default interface has three sections, a tree view w i t h the
entire hierarchy of accessible objects and two optional p lugin areas. The Accerciser has an
extensible, plugin-based architecture. Most of the features available by default are provided
by plugins discussed in the next several paragraphs.

The Interface Viewer p lugin is an explorer of the A T - S P I interfaces provided by each
accessible widget of a target applicat ion. W h e n a tree element is selected, its interfaces are
shown wi th a list of sensitive methods. The majority of methods are executable. The list

7https://wiki.gnome.org/Apps/DiskUsageAnalyzer
8https://bugzilla.redhat. com/1723836

14

https://wiki.gnome.org/Apps/DiskUsageAnalyzer
https://bugzilla.redhat

contains methods for interaction wi th an object and various methods for obtaining more
information about the object. Accerciser offers an exploration of the following interfaces:

• Accessible - shows the number of chi ld widgets, description, states, relations, and
other attributes,

• Application - i f implemented (not mandatory) , it shows the applicat ion I D , toolkit
and version,

• Component - shows the element's absolute posit ion wi th respect to the desktop co
ordinate system, the relative posit ion wi th respect to the window coordinate system,
size, layer type, MDI-Z-o rde r indicat ing the stacking order of the component and
alpha,

• Document - shows document attributes and locale information,

• Hypertext - shows a list w i t h a l l element's hypertext l inks, including name, U R I , start
index and end index,

• Image - shows the element's description, size, posi t ion and locale,

• Selection - shows a l l selectable chi ld items of the selected i tem,

• Streamable Content - shows the selected element's content type and its corresponding
U R I s ,

• Table - shows the element's caption, rows, columns, number of selected rows, number
of selected columns, and for the selected cell , it shows it 's row's and column's header
extents,

• Text - shows the selected element's text content, that can be editable w i th attributes
including the offset, justification and possibil i ty to show C S S formatting as well ,

• Value - shows the element's value, m i n i m u m value, m a x i m u m value, m in ima l incre
ment for a value.

The AT-SPI Validator p lugin applies tests to verify the availabil i ty of accessibility for
a target applicat ion. The validator w i l l generate a report of the selected i tem and a l l its
descendant widgets i n the tree hierarchy.

The next plugin is the Event Monitor, which displays A T - S P I emitted events including
a filter for several different A T - S P I event classes. The plugin has the abi l i ty to monitor
only events originating from the selected applicat ion or a selected accessible (widget). Each
event record contains the source and the applicat ion.

The Quick Select p lugin provides global hotkeys for quickly selecting accessible widgets
in the Accerciser's App l i ca t ion Tree V i e w , the selected widget is highlighted i n the target
application.

The API Browser p lugin shows interfaces, methods and attributes available on each
accessible widgets of a target applicat ion. B y default, it shows only public methods and
properties. Pr ivate methods and properties are hidden unt i l the checkbox Hide Private
Attributes is unchecked.

Final ly , the plugin IPython Console provides a full, interactive P y t h o n shell. The console
has an immediate access to any selected accessible widgets of a target applicat ion. The
currently selected object i n the tree view is available i n the IPy thon Console under the
symbol acc. The plugin provides an easy way to test and debug code used in test cases.

15

Accerciser Accessibility Explorer

File Edit Bookmarks View

Name

• gnome-shell

* • gnome-terminal-server

qnome-control-center

Settings

Help

API Browser

frame: Settings
Accessible
Child count 3

Description
(no description)

ID

States

enabled

resizable

sensitive
Relations

Interface Viewer Event Monitor

Attributes

toolkit gtk

window-type normal

In [1]:

Path: 0

Figure 3.3: Accerciser's default configuration

3.3 Covering Limitations of Accessibility and Verification

A s discussed in the aforementioned sections, the information provided by the A T - S P I is not
flawless. Therefore, the next couple of sections is dedicated to an exploration of technologies
that might be used to support the accessibility i n such cases.

3.3.1 O p e n C V a n d Image M a t c h i n g Techniques

O p e n C V or Open Source Computer V i s i o n L ib ra ry is a software l ibrary that provides
optimized algorithms for computer vision and machine learning. Accord ing to the official
O p e n C V webpage [18], the l ibrary contains more than 2,500 algorithms and it is being
developed by a vast community of contributors around the world. The l ibrary is used
extensively by government institutions, research groups, and companies including Microsoft,
Google, I B M , etc. One of the biggest advantages is its native C + + implementat ion wi th
bindings making the l ibrary available in Py thon , Java, and Ma t l ab , and the fact that
supports L i n u x , A n d r o i d , M a c O S X , and Windows . S imi lar ly to dogtail , O p e n C V can be
installed easily v i a the Py thon3 package manager (pip), regardless of the L i n u x dis tr ibut ion.

O p e n C V offers many algorithms, including image recognition that can be used to either
locate or verify the presence of an element on the screen. T h i s approach would require to
have a set of images containing elements prepared in advance, then it can be used to find
the image location on the screenshot taken dur ing a test run. Compared to verification of
the node v i a the A T - S P I only, this approach would also verify that the element is properly
rendered on the screen. A n addi t ional benefit is a possibil i ty of verification of text format-

16

t ing and colors. O n the contrary, this process requires addi t ional manual work where one
would need to capture images, label them, and associate them wi th certain test scenarios.
The number of elements displayed on the screen mult iple times creates another parameter
that would require manual maintenance. The most common example of such cases are
buttons labeled either OK or Cancel as they are used in many applications.

Another possible approach is to use the shape recognition a lgor i thm which can locate
shapes like circles, rectangles, and many other common shapes. F r o m the development
perspective this would be easier to maintain, as there is no requirement for images prepared
in advance. Frequent appl icat ion changes during the software development may also cause
that tests based on image matching can be easily outdated. This factor forces testers to
revisit test suites, therefore the efficiency of automated tests deteriorates. It can also help
wi th the widget location in cases where accessibility is report ing wrong coordinates. O n
the other hand, locating the right widget i n cases when several s imilar ly shaped ones are
located on the screen at the same t ime w i l l yield very inconsistent results.

3.3.2 O p t i c a l C h a r a c t e r R e c o g n i t i o n

The Op t i ca l Character Recognit ion (O C R) is a method of extracting text from images.
One of the available open-source tools is a tool called Tesseract.

Initially, Tesseract development started in 1985 at Hewlett Packard Laboratories but the
major breakthrough was achieved i n 2006 when the project was open-sourced i n cooperation
wi th the Univers i ty of Nevada i n Las Vegas. Since then, the project has been developed
under the sponsorship of Google [24].

Usabi l i ty of Tesseract was increased in version 3.x, support ing a wide range of image
formats and gaining the abi l i ty to be used i n a larger number of script ing languages. Whi l e
Tesseract 3.x is based on t radi t ional computer vision algorithms; i n the past few years,
methods based on Deep Learning have surpassed t radi t ional machine learning techniques
by a vast margin, especially in terms of accuracy in several areas of Computer V i s ion .
Remarkable results were achieved i n handwri t ing recognition. Tesseract has implemented a
recognition engine based on L o n g Short Term Memory (L T S M) which is a k ind of Recurrent
Neura l Network (R N N) . W h i l e this k ind of R N N is used to recognize texts of random length,
a Convolut ional Neura l Network is used just for recognition of a single character. Version 4
provides both a legacy O C R engine and a new L S T M engine which is enabled by default [8].

Tesseract can be used as a command-line tool , and its integration into software being
developed is possible v i a the Tesseract's A P I available in Py thon3 or C + + . Sett ing Tesser
act up on L i n u x or other platforms may differ, but the process is accurately described in
the Tesseract's w i k i 9 , w i th the last resort solution - bui ld ing it from its sources. The setup
process includes instal lat ion of the tesseract-ocr package itself, pytesseract Py thon3
bindings installable v i a the package manager pip, and the Tesseract's language pack wi th
trained data for the Engl i sh language (version 4.x supports 130 languages 1 0) .

The Tesseract's O C R engine works best when used wi th images containing black text
on a white background i n a common font. The text should be approximately horizontal
w i th the height of at least 20 pixels. W i t h possibilities of image processing provided by
O p e n C V , the image quali ty i n some cases needs to be improved before applying text detec-

9 h t t p s : //github.com/tesseract-ocr/tesseract/wiki
1 0 h t t p s : //github. com/tes s e r a c t - o c r / t e s s e r a c t / w i k i / D a t a - F i l e s # d a t a - i i l e s - f or- vers ion-400-

november-29-2016

17

t ion methods. The most common image preprocessing methods include inverting images,
rescaling, binarisation, noise removal, rotat ion, border removal, and page segmentat ion 1 1 .

The Tesseract's A P I for Py thon3 is bundled i n a module named pytesseract. The
module provides several methods, the most important ones for the purpose of this work be
ing image_to_string and image_to_data. B o t h methods have one compulsory parameter
which is an image intended for text extraction. The image has to be in a certain format,
one of the options is to load the image through O p e n C V ' s imread method. Add i t i ona l
parameters may be applied including the language, timeout, and engine conf igura t ion 1 2 .
The image_to_string method returns a l l recognized strings including a l l whitespaces and
other special characters. The image_to_data method provides addi t ional metadata about
al l recognized strings in a form of dictionary-like object. The returned dict ionary contains
the following lists of properties:

• text - string value, may contain a string, special character, one word or line of text,

• left - integer value, specifies the number of pixels from the left side of the image,

• top - integer value, specifies the number of pixels from the top of the image,

• w id th - integer value, specifies the wid th of the recognized string,

• height - integer value, specifies the height of the recognized string,

• the rest are less important values for this work: l e v e l , page_num, block_num
par_num, line_num, word_num, conf.

< > 4 Gr Home • ^ J L ü J L i J •

0 Recent

it Starred

Pictures

Videos

Documents

Projects

Downloads

Public

Music

Templates

Figure 3.4: Demonstrat ion of the O C R engine detection for the string Documents i n the
Naut i lus F i l e Manager window

Figure 3.4 contains a demonstration of the Tesseract engine capabilities. The task was
to locate the str ing Documents i n the Screenshot of the G N O M E file manager applicat ion

n h t t p s : //github.com/tes seract-ocr/tesseract/wiki/ImproveQuality
1 2 h t t p s : //pypi.org/proj ect/pytesseract/

18

Nautilus. The engine successfully found both strings located in the image and provided
coordinates and dimensions that were used by O p e n C V to highlight the strings i n the
image.

The demonstration has proven that the Tesseract's O C R engine can be used as an
alternative tool for location or verification of widgets that contain text. Th is method also
verifies that the text content was properly rendered and is readable for the user. O C R
systems have l imitat ions and work wi th a certain margin of error which is a fact that
also applies to Tesseract. Various applications can use different color schemes including
background colors and font colors, input fields, and labels. Highl ight ing elements to perform
actions on them can also lead to changes i n color conditions. Image preprocessing methods
provided by O p e n C V can a id in avoiding problems associated wi th those cases, namely
color inversion and binarisation. Those methods would supply the Tesseract's engine wi th
an image containing black text and a white background for the evaluation.

3.4 Conclusion

This chapter has been dedicated to the accessibility technologies i n the G N O M E desktop
wi th a deeper look at implementation, libraries, and tools for debugging. Furthermore,
technologies that may be able to cover l imitat ions and bugs i n accessibility have been
evaluated as well . B o t h O p e n C V and Tesseract may help w i t h identification, location,
and verification of non-accessible elements i n applications. A possible disadvantage is a
delay caused by taking and processing screenshots of applications that have to be taken at
the right t ime. The O p e n C V ' s image matching algori thm can reliably locate prearranged
images of icons, labels, or whole appl icat ion windows on the screen. Considering a stable
application environment w i th a black text on a white background i n most applications,
Tesseract can detect and reliably locate most of the text content on the screen. Other
cases can be covered by image preprocessing done again i n O p e n C V . B o t h technologies
are working wi th the actual applicat ion content rendered to users, possibly bringing an
addi t ional level of verification. However, the goal of this work is to generate test cases
dynamical ly and preparation of a set of screenshots to verify a proper rendering of icons
would violate this effort. A solution for such a situation, would be to take screenshots
during the test generation process. However, an icon would need to be cropped out from
the screenshot, thus relying on the posit ion of the icon reported by the A T - S P I . Therefore,
an integration of the Tesseract's O C R is more beneficial for this project.

19

Chapter 4

Design of the Proposed Test
Generator

In this chapter, we present the design of our test generator. Section 4.1 explains reasons
behind the implementat ion of a custom representation of an applicat ion model . In Section
4.2, we discuss a setup and a configuration of the test environment required for the tested
applications. Section 4.3 describes the structure of the generated test cases. Then in Section
4.4, we describe the a lgori thm for test case generation. F ina l ly , Section 4.5 addresses the
integration of the Tesseract's O C R engine in our test generator.

A goal of this work is to develop a tool capable of generating automated test cases for
G U I applications. The proposed test generator works w i th A T - S P I metadata provided by
applications and converts them to test cases. The required metadata should be available
for a lot of applications, assuming they are developed in one of the common frameworks
(G T K 3 , Q T) . However, this tool is focused on testing of G U I applications developed for
the G N O M E desktop 1 . A tool is developed i n Py thon3 , version 3.6.

Early Testing/Development Phase Test Generation

c >
New Application / Major Application

Release
^ j

r >
AT-SPI

metadata
v. j

*~
(Automated Testing

Metadata Extraction —W +
Test Case Generation

c >
New Application / Major Application

Release
^ j

w

r >
AT-SPI

metadata
v. j

(Automated Testing
Metadata Extraction —W +

Test Case Generation

J

Test Case Review

Test Case <n> Review and Adjustments Test Case <n> Review and Adjustments Test Case <n> Tester Review and Adjustments Test Case <n> Review and Adjustments Automated
Testing

Figure 4.1: A workflow overview when testing wi th the proposed test generator

The G N O M E applications are open source, and they are being developed by community
of enthusiasts around the G N O M E project. Anyone from the community can fix bugs in
applications by sending a merge request w i th fixes, request a new feature, or propose newly
developed features. This development model does not contain a planning phase or a phase
where one can design an abstract model of an applicat ion, from which the test cases could
be derived. Therefore, our solution is based on deriving the model of a G U I applicat ion

x h t t p s : //wiki.gnome.org/Apps

20

http://gnome.org/Apps

from the A T - S P I metadata. The extracted data about widgets and relationships between
them provide the foundation which gives the test generator the abi l i ty to interact w i th an
applicat ion. Therefore, the test generator can use the extracted information to perform
exploratory testing. The testing includes execution of scenarios (so-called event sequences),
monitor ing the behavior of the S U T , and detection of certain errors and crashes of the S U T .
Test cases are generated as a by-product of this process.

Figure 4.1 describes an overview of the workflow when testing wi th the proposed test
generator. The beginning of the scenario starts w i th either a newly developed applicat ion
or a version of an applicat ion that contains major changes. The tool performs an in i t i a l
exploratory testing of the applicat ion based on the extracted model and exports those
scenarios in the form of behave test scenarios.

F rom the testing perspective, the proposed tool combines several testing techniques. The
extracted A T - S P I metadata create a foundation for a simplified model of the appl icat ion by
part ia l ly adapting the model-based testing technique. Since the test cases are derived from
the model without any knowledge about the implementat ion of the tested applicat ion, the
tool resides i n the category of black-box testing. The knowledge about the S U T provided
by the model allows the tool to benefit from the approaches described i n the random input
testing and random walk tools in a more deterministic way. The tool can be characterized
as a semi-smart tool as it can detect certain crashes of the S U T during the test generation
and immediately report them wi th a reproducer. The results of the test generation process
are test cases that may be adjusted and executed again. The tests are executable i n the
C I / C D pipeline that can be triggered at any stage of the appl icat ion development and
reports the results without manual retesting.

4.1 Mode l Extraction

In this section, we justify and present the implementat ion of a custom accessibility tree
that serves as a model of a tested applicat ion for our test generator.

C u s t o m M o d e l Justification The model extraction process relies on the A T - S P I meta
data that is provided after the start of an applicat ion. A s mentioned i n Section 3.2.1, once
the applicat ion is running, a tree of widgets is exposed and available for interaction. The
provided representation of the tree itself is not suitable to be directly used as a model of
an applicat ion because the implementation contains several restrictions for the purposes of
this work.

The first restriction stems from nodes/widgets w i th no functionality nor a way of inter
action for the user, e.g.: filler, separator, panel, etc. Theoretically, a copy of the tree could
be created wi th those nodes filtered out, al though in that case the parent-child relation
ship i n the tree needs to be restored accordingly. However, this is not possible, since the
attributes c h i l d r e n and parent in Atspi.Accessible object instances are read-only.

The accessibility tree also contains references to properties and methods which are
available only during the applicat ion runtime. If the applicat ion crashes or it is terminated,
the aforementioned methods and properties can not be accessed. Furthermore, the test
generator must start the execution of every test scenario (event sequence) from the default
state which is achieved by obtaining a fresh instance of a tested application.

Addi t ional ly , the custom implementat ion of the model allows us to track the progress of
the test generation process. The model consists of objects gathered i n event sequences, each

21

object has its unique identity that lasts throughout the test generation process. Th is im
plementation allows us to measure the event coverage and ensures that an already executed
event sequence is never repeated.

M o d e l Implementation A solution for previously mentioned restrictions is a custom
implementation of the accessibility tree that also serves as a model of applications for
our test generator. Test case generation requires that a custom tree is derived from the
accessibility tree provided by the dogtail. The unusable nodes are filtered out, while the
parent-child relationships of the nodes are preserved. The custom tree can be used as a
model, that w i l l map the possibilities of interactions available for users working w i t h an
applicat ion. The model includes every node from the original tree wi th available actions
that are also executable by the A T - S P I .

Our development revealed that not a l l rendered widgets are properly labeled wi th actions
by A T - S P I . The affected nodes are the ones w i t h role names page tab and l i s t item.
The former has to be clicked to gain access to addi t ional nodes, the latter can be placed
on the same level as a push but ton. Therefore, our generator relies on records in the file
roleNames.py where the role names of actionless nodes are enumerated. If a node is not
associated wi th any action, the default action for the node is c l i c k .

However, the model does not allow to execute the associated actions directly, as the
generation process requires one to run several instances of an applicat ion. The instances of
accessible objects and some of their properties are val id only for one applicat ion runtime.
Therefore, several important values are extracted i n the process, making them available
even after the terminat ion of an applicat ion instance. The properties name, roleName,
parent_name, parent_roleName are used as the unique identifier because some nodes
might share the same name and roleName (e.g. O K , push button). The properties give the
test generator the abi l i ty to match each node from the model to the current applicat ion
instance exposed by the accessibility layer. The implementat ion of the model is presented
in the class diagram in Figure 4.2.

Start ing from the lowest level, an instance of the class GNode represents one node from
the tree. Several attributes are copied from the original d o g t a i l .tree .Node instance,
including attributes storing the pieces of information about the parent node, the data
describing the state of the node, the list of children, and i f available, the name of the
action method. The list of children is also composed of instances of the GNode class, so the
tree is recreated recursively. Therefore, the model can hold a l l information about tested
applications, without relying on their state. A n instance of the CTree can represent either a
whole appl icat ion or a smaller part of the applicat ion e.g.: a dialog or a menu. A s discussed
previously, this offline model of the applicat ion tree also contains a lot of nodes without
the abi l i ty of interaction, which needs to be filtered out. Those nodes are identified by
the list of RoleNames that are gathered i n the separate file rolenames .py. F ina l ly , the
class TestTree serves as a wrapper that filters those nodes and preserves the parent-child
relationship. The result of this process is an instance of the TestTree object and it contains
only nodes required to generate test cases.

4.2 Test Environment

This section describes conditions that need to be achieved in the G N O M E environment for
our test generator. Subsection 4.2.1 addresses phenomenons that can occur i n the G N O M E

22

GTree

• app: Atspi.Accessible

• root: GNode

• dump_tree():

• get_node_list(): list

TestTree

• test_sequencest(): list

o

GNode

+ parent: GNode

+ anode: Atspi.Acessible

+ name: string

+ roleName: string

+ parent_name: string

+ parent_roleName: string

+ showing: bool

1 1..* + visible: bool

+ sensitive: bool

+ action: string

+ action_method: function

+ next: list

+ get_nodes_as_list(): list

+ get_children(): list

+ perfom_action():

+ dump_node(indent): string

0..*

Figure 4.2: The class diagram of the custom applicat ion tree that serves as an applicat ion
model for our test generator

Shell environment and need to be suppressed dur ing the test generation. It also introduces
the qecore l ibrary designed to handle this k ind of issues. Subsection 4.2.2 describes a method
and parameters used to configure our test generator for various applications. Subsection
4.2.3 offers a brief int roduct ion to Flatpak applications, then explains why our test generator
needs to acquire support to test such applications as well as contributions to the qecore
l ibrary that were submit ted and approved. Subsection 4.2.4 concludes this section w i t h a
description of how applications are executed and monitored during the test generation.

4.2.1 Test E n v i r o n m e n t Se tup

Our test generator is designed to test G U I applications that are developed to work i n the
G N O M E Shell environment. The environment contains various features" like workspaces,
notifications, the appl icat ion grid, the activities overview and menus. Some of these features
may change a state of the environment, and therefore negatively affect tested applications
during the test generation process. Execut ion of an action that brings the environment to
some of those states steals the focus from the tested applicat ion back to G N O M E Shell , thus
blocking any further interaction. A notification might collide w i th the user interface of the
tested applicat ion and blocks the execution of an action during the test case. These factors
need to be avoided to ensure stabil i ty during the test generation and the test execution

2 h t t p s : //help.gnome.org/users/gnome-help/stable/shell-introduction.html.en

23

as well . The setup must also be able to recover the environment from potential test case
failures and w i l l not influence the execution of the subsequent test cases.

The required setup for the test execution is implemented in the module qecore. The
module is designed for test automation of G N O M E desktop applications and contains vari
ous measures designed to avoid occurrences of unintentional environment events and focus
on a tested applicat ion. The module is bound to dogtail and it is intended to be used
wi th behave framework [17]. The module is actively developed by quali ty engineers from
R e d Hat .

The test generation process relies on the environment setup provided by the qecore
module. However, the module is designed for the test execution and our test generator
utilizes different approaches for execution and monitor ing of tested applications. For this
reason, we developed a custom subclass App based on the qecore's A p p l i c a t i o n class. The
relationship between classes is shown i n Figure 4.3.

Dur ing the development of our test generator, we also contributed to the implementat ion
of the qecore module. We introduced a desktop_f i l e _ p a t h property for the A p p l i c a t i o n
class to solve the problems w i t h locat ion of .desktop files required to test LibreOfnce
applications. We also submit ted a couple of smaller fixes3'1. The mentioned proposals were
approved and merged.

1 l i b r e o f f i c e - s t a r t c e n t e r :
2 ally_app_name: s o f f i c e
3 app_process_name: s o f f i c e . b i n
4 desktop_file_path: / u s r / s h a r e / a p p l i c a t i o n s / l i b r e o f f i c e - s t a r t c e n t e r . d e s k t o p
5 kill_command: " p k i l l s o f f i c e "
6 params: "— n o r e s t o r e " # required to avoid unwanted f i l e restore dialogs
7 cleamip_cmds:
8 - " p k i l l s o f f i c e " # LO required a custom k i l l cmd
9 - "rm - r f . c o n f i g / l i b r e o f f i c e / * "

10 packages:
11 - l i b r e o f f i c e
12 f l a t p a k : False

Lis t ing 4.1: A n example of the apps.yaml entry for LibreOfnce StartCenter

4.2.2 Test G e n e r a t o r C o n f i g u r a t i o n

Assurance of compat ibi l i ty w i t h various applications across the G N O M E ecosystem requires
that some metadata describing the tested applicat ion has to be provided before the test
generation process.

The metadata is gathered in a configuration file wr i t ten i n the Y A M L 5 language. The
reasons behind choosing Y A M L is syntax s implic i ty and human readabili ty in comparison
wi th J S O N 6 or X M L 7 , followed by the reliable support i n P y t h o n provided by the l ibrary
pyyaml [22].

3 h t t p s : //gitlab.com/dogtail/qecore/-/merge_requests/24
4 h t t p s : //gitlab.com/dogtail/qecore/-/merge_requests/26
5 h t t p s : //yaml.org/
6 h t t p s : //www. j son.org/j son-en.html
7 h t t p s : //www.w3.org/XML/

24

http://www.w3.org/XML/

Our generator uses the configuration file apps. yaml where we store records about a l l
tested applications. A n example for an applicat ion record can be seen i n L i s t i ng 4.1.

A n applicat ion record starts w i th a name of applicat ion on the top level. The applicat ion
name should be unique, as the name is used as a folder name of the generated project.
The metadata are stored as values w i th keys. A large group of keys matches the names
of App/Application class properties. Some of the items are not necessary for the test
generation, al though they are required for the test execution. Required keys/values may
vary per tested applicat ion. The list of keys/values that can be defined for each applicat ion
includes:

• ally_app_name - Th is is the only compulsory i tem. It defines a name of the applica
t ion i n the accessibility tree. The value can be found in G U I tools Sniff or Accerciser
as previously discussed in Section 3.2.2. The value can match wi th the name of the
application.

• app_process_name - The value is required i f the name of the appl icat ion process
differs from the applicat ion name. The value is used during the cleanup in between
the executions to make sure that an instance of the applicat ion has been ki l led and a
next test w i l l use a new one.

• desktop_file_path - This is required if default qecore's method fails to find the
desktop file of an applicat ion. The desktop file contains useful data about applications,
including a command required to run an applicat ion from the command line.

• params - The value is required i f the applicat ion needs to be run wi th custom com
mand line parameters. A l l parameters should be entered i n one string, separated wi th
a space. This also allow us to run an applicat ion wi th a test file.

• cleanup_cmds - The value may contain a list of commands that w i l l be executed
after the generation of each test case. Executed commands should always restore an
application to its default settings. The commands are used during the execution of
generated test cases, at the end of every test case.

• packages - The value is required for execution i n the C I environment, contains a list
of r p m 8 packages required to be installed to both generate and execute tests.

• f latpak - The key/value is required if a tested applicat ion is a flatpak.

4.2.3 F l a t p a k A p p l i c a t i o n s Se tup

This subsection is dedicated to a brief introduct ion to F la tpak applications, followed by
explanation why Fla tpaks needed to be integrated i n our test generator. Further, we discuss
an effort that has been done to support F la tpak applications in our test generator.

Flatpak Desktop applications on L i n u x are being distr ibuted through various dis tr ibut ion-
specific package managers. F l a t p a k 9 is a technology for bui lding and dis t r ibut ing desktop
applications on L i n u x that aims to solve the problem w i t h a cross-platform dis t r ibut ion of

8 h t t p s : //rpm.org/
9 h t t p s : I It latpak.org/

25

http://latpak.org/

TestGen

+ test: list

+ test_number: list

+ tests: list

+ explorecLpaths: list

+ failecLscenarios: list

+ flatpak: bool

+ OCR: bool

+ shallow: bool

+ asser_app_contains_unique_nodes(): None

+ generate_project(cfg): None

+ export_node_graph(tests): None

+ init_tests(tests): None

+ generate_tests(tests): None

+ test_sequences(anode, parent): TestTree

+ get_tree_diff(before, after): list

+ filter_string(string): string

+ print_sequences(tests): None

+ retag(line, node): string

+ add_step(step_name, node): None

+ get_app_nodes(): list

+ focus_node(anode): None

+ execute_action(node, action_sleep): None

+ handleJast_nodes(node): None

+ handle_new_nodes(app_before, test): None

+ handle_new_apps(apps): None

+ generate_steps(scenario, test): None

+ generate_scenario(start): None

+ save_tests(filename, tests): None

+ load_tests(filename, tests): None

o -

o -

Q E C O R E

Flatpak Application

FlatpakApp

+ a p p j a m e : string

+ proc: subprocess.Popen

+ main_window_name: string

+ log: Jo.TextlOWrapper

+ cleanup_cmds: list

+ start(): None

+ stop(): None

+ cleanup(): None

+ checkJog(test_number): None

TestTree

>
+ test_sequencest(): list

App

+ a p p j a m e : string

+ a11y_app_name: string

+ app_process_name: string

+ desktop_file_path: string

+ params: string

+ exec: string

+ proc: subprocess.Popen

+ log: Jo.TextlOWrapper

+ main_window_name: string

+ start(): None

+ stop(): None

+ cleanup(): None

+ checkJog(test_number): None

+ get_current_window(): None

Figure 4.3: A class diagram providing an overview over the implemented test generator

packages on L i n u x . Appl ica t ions , or so-called flatpaks, are delivered to users regardless of
the lifecycle of the underlying L i n u x dis t r ibut ion. The system implements a set of sand-
boxing technologies, to isolate Fla tpaks from each other and the system, thus providing
security benefits to users [2].

The majority of G N O M E applications are also available through flatpak. A dedi
cated flatpak repository Nightly GNOME Apps contains the latest development versions
of G N O M E applications. W i t h flatpak, those applications are installed alongside their sta
ble versions. Th i s gives us the potential to test the appl icat ion much sooner before it is
released to distributions. Th is is a benefit behind the integration of flatpak support to this

26

work. The ma in repository for flatpak applications called F la thub contains hundreds of
applications developed in various frameworks and programming languages. However, the
effort done by this work only supports applications developed in G T K 3 as they obtain the
accessibility support by design.

Flatpak Integration There are several differences in the execution process between flat-
paks and non-flatpak applications. Every flatpak applicat ion has a unique name, e.g.:
org.gnome.gedit. A unique name is required for every operation executable through the
f l a t p a k command-line ut i l i ty. The u t i l i ty not only serves as a package manager able to
install , remove, downgrade and update flatpaks, it also provides a sandbox to run flatpaks.
Those differences demand certain changes i n the runtime used for the test execution and
the test generation.

Considering the test execution, the approach used i n the qecore's A p p l i c a t i o n class
should be suitable for testing flatpaks. However, the in i t i a l testing emphasized the previ
ously mentioned differences, and therefore we developed the subclass Flatpak that inherits
the methods from the A p p l i c a t i o n class and reimplements some of them do address those
differences. The most important changes are:

• i n i t - the constructor performs a val idi ty check on inserted flatpak ID , the
format requires two dots, e.g. org.gnome.gedit,

• start_via_command - runs a flatpak v i a only v i a command and wi th the flatpak
command-line uti l i ty, e.g. f l a t p a k run <id>,

• k i l l _ a p p l i c a t i o n - terminates a flatpak v ia command e.g. f l a t p a k k i l l <id>,

• get_desktop_file_path - performs a recursive search for flatpak's .desktop file in
two possible locations:

— -/.local/share/flatpak/app/ - flatpak installed per-user

— / v a r / l i b / f latpak/app/ - flatpak installed system-wide

• is_running - performs a check i f a flatpak is running, this is again done wi th the
flatpak command-line u t i l i ty (e.g. f l a t p a k ps <id>) and the presence of an instance
in the accessibility tree

Addi t ional ly , the invocation of some of the inherited methods does not make sense for
flatpak applications. The invocation of those methods wi th an instance of the Flatpak
class raises an exception. The exception contains a message wi th an explanation that
the methods are not available for F la tpak objects. We proposed the developed module
Flatpak.py to the qecore project, the module was accepted 1 1 .

A s discussed i n Section 4.2.1, the qecore l ibrary is designed to handle the test execution.
Addi t ional ly , there are other requirements to handle Fla tpaks during the test generation.
Therefore, we developed the subclass FlatpakApp that works on the test generator level
to fullfil those requirements. A s described i n the class diagram shown i n Figure 4.3, the
FlatpakApp serves as a wrapper for the Flatpak class i n the same manner as the App class
wraps the A p p l i c a t i o n class. FlatpakApp and App are customized classes for the test
generator, while Flatpak and A p p l i c a t i o n are used during the text execution.

1 0 h t t p s : 111lathub.org/home
n h t t p s : //gitlab.com/dogtail/qecore/-/blob/master/qecore/f latpak.py

27

http://lathub.org/home

4.2.4 E x e c u t i o n a n d M o n i t o r i n g of a n A p p l i c a t i o n

This subsection describes the method used by our test generator to execute and monitor
tested applications. The implementat ion for the non-flatpak applications is encapsulated in
the class App. The class FlatpakApp achieves the same goals for the flatpak applications.

Execut ion The test generation process performs various actions available i n an appli
cation that might change settings or layout of the applicat ion. Therefore, every test case
must start from the same state which should satisfy the following conditions:

1. an applicat ion is not running, if so, force the applicat ion to stop:

2. reset the applications' settings to the default state by performing a predefined custom
cleanup:

3. start a new instance of the applicat ion w i t h the default settings:

4. make sure that applicat ion is ready for an interaction.

Moni tor ing Several indicators can be monitored while the appl icat ion is being tested.
The most essential one is to be able to safely determine if the applicat ion is running at the
moment or not. This can be done either by examination of the pid (process id) belonging
to the appl icat ion process or by relying on A T - S P I . If the applicat ion tree is not available,
it can be certainly assumed that the applicat ion instance is not running. This statement
also applies vice versa, so an assertion that an applicat ion has started is achievable i n the
same way. The implementat ion takes advantage of dogtail's Tree.Node.Applications()
cal l , returning a list of applications currently exposed to the accessibility bus.

Furthermore, it is also necessary to perform certain checks during the t ime an applicat ion
is being interacted wi th . Therefore, every tested applicat ion w i l l be run as a sub-process,
which enables us to capture the output generated by tested applications to standard streams
(stdout, stderr). Once an applicat ion has been terminated, it also allows us to check the
return codes. The implementat ion relies on the Python ' s standard l ibrary subprocess.

The output generated to the standard stream is checked for errors defined i n the des
ignated configuration file. In case of error throughout the generation process, an error
message is printed immediately to warn about the possible bug i n tested applications. The
warning contains the number identifying the test in which the error occurred, a full error
message, and a return code. A l l other captured messages, e.g., warnings or deprecation
messages from the G T K framework are saved to one log file, i n a folder where the tests
are generated. The messages are being appended, so the log file can be checked at any
t ime during the generation process. Every line contains the test number, so it can be easily
determined when the message occurred and match it w i th the reproducer from the given
test case.

4.3 Generating an Environment for the Test Execution

This section describes an output of our test generator along wi th description of ind iv idua l
files that are required for execution of generated test cases. The input of the test generator
is provided by the applicat ion metadata located in apps.yaml. The output is a project
structure containing generated test cases and other files required for the test execution.

28

Initially, the test generator checks the availabil i ty of the entry for a tested applicat ion
in the configuration file apps.yaml. Subsequently, it creates a sub-folder w i th the name
of the appl icat ion where generated content w i l l be placed. Predefined source files w i th
the implementat ion of steps (used by behave framework) are copied to the folder structure
along wi th scripts and other files that are necessary for the test execution. Figure 4.4
demonstrates the structure generated for the appl icat ion GNOME Terminal.

gnome-t erminal
features

generated.feature
environment.py

1 steps
ocr_steps.py

1 steps.py
gnome-terminal.log
mapper.yaml
requirements.txt
runtesh.sh
cleanup.sh

Figure 4.4: The generated project structure for the applicat ion GNOME Terminal

The sub-folder named features contains files w i th the behave test cases. Test cases
generated by the test generator are in the file generated.feature. The file contains a
single so-called Feature that contains a l l generated test cases. Test cases are composed of
a tag, a brief description of the test case, and so-called steps. The tag is a unique identifier
of the test case and thus allows single test case execution, i f required. The description
should briefly define what should be done wi th the S U T , when the test case is executed.
The steps are one-line statements, each of them describes either an execution of an action
or an assertion described in a human-readable language. Successful execution of a l l steps
evaluates the test CctS6 ctS passed. Otherwise, the result of the test case is a fail.

The file environment. py contains the setup required for the test execution (see A p
pendix E) . It contains 3 functions used by the behave framework to set up or restore the
required environment during the test execution.

The bef o r e _ a l l function is run once before the execution of the test cases. It initiates
the G N O M E environment setup from the qecore l ibrary and creates an instance of either
the Flatpak or the A p p l i c a t i o n class. The type of the applicat ion and the parameters for
the class instance are extracted from the entry in the configuration file apps.yaml.

The bef ore_scenario function is executed before every test case (scenario). It contains
an invocation of the method from the qecore that should set the testing environment to
the default state and other preparations for the testing. Addi t ional ly , it executes the
cleanup.sh script w i th a custom per-application cleanup defined in apps.yaml (discussed
in Section 4.2.2).

The af ter_scenario function is called after the execution of every test case, regardless
of its results. The result is then submit ted to the generated test report.

The folder steps contains source files w i t h the implementat ion of the steps used in
the behave scenarios. The implementat ion of steps is d ivided into two files. The module
ocr_steps.py contains only one behave step which encapsulates the implementat ion and
opt imizat ion used for the verification of the string on the screen. The module steps.py

29

contains general implementat ion of steps. The steps are functions implemented i n P y t h o n
wi th the step decorator from the behave framework. The decorators serve as a wrapper to
cal l the P y t h o n functions from the .feature files. So i n the case of this project, the steps
wri t ten i n the test cases are function calls, the functions are defined in these modules. The
definition of the ©step decorator (Lis t ing 1.2) contains variables, thus allowing us to keep
the code base as min ima l as possible.

1 @step('State: "{roleName}" "{name}" "{prop}" i s "{state}'")
2 def asse r t _ s t a t e (c t x , name, roleName, prop, s t a t e) :
3 node =ctx.app.instance.child(name, roleName)
4 focus_node(node)
5 assert hasattr(node, prop), f'Obj: {node} i s missing a t t r i b u t e {prop}'
6 prop_value = f {getattr(node, prop)}'
7 assert state ==prop_value, f'Expected: {state}, Got: {prop_value}'

Lis t ing 4.2: The implementat ion of the step that is used to perform an assertion on any of
the properties belonging to an accessible node

The file gnome-terminal. log aggregates log messages produced by a tested applicat ion
throughout the test generation process. The log file name is derived from the applicat ion
name defined in the apps. yaml file. The mapper. yaml file contains a list of test cases wi th
other data required for the C I execution. The file requirements .py contains a l l P y t h o n
dependencies that need to be installed to execute the test cases. F ina l ly , the runtest. sh
is a wrapper script for execution of test cases.

4.4 Test Case Generation

In this section, we describe the test generation process. The Subsection 4.4.1 describes the
extraction of event sequences from the model of an applicat ion. Subsection 4.4.2 describes
the execution of the extracted event sequences. In Subsection 4.4.3, we discuss the node
expansion process performed by the test generator during the test generation.

The implementat ion of the test generator is encapsulated i n the class TestGen (class
diagram i n Figure 4.3). The behavior of the generator can be also influenced by several
command-line arguments that w i l l be described later in this work. Based on the parameters
(f latpak i tem i n apps .yaml), the instance of either the App or the FlatpakApp is created.

The generator then creates a copy of the default project structure and injects the files
inside the project structure wi th values that correspond to the appl icat ion that is going to
be tested (Figure 4.4). Namely, the files environment .py, mapper, yaml, and cleanup, sh
contain special placeholders (tags) that are replaced by values defined i n apps.yaml. Just
note that no P y t h o n code is being generated during the process. The default project already
contains a l l the predefined behave steps required to execute generated test cases. The next
sections are dedicated to the details of the generation algori thm. A l g o r i t h m 4.1 contains a
shorter version wri t ten i n a pseudocode.

4.4.1 D e r i v a t i o n of E v e n t Sequences

This subsection describes how our test generator extracts event sequences and explains lines
1-4 from A l g o r i t h m 4.1.

The generator begins w i t h a first start of a tested applicat ion and extracts the A T - S P I
tree of the applicat ion instance through the d o g t a i l . Then , a writable copy of the tree is

30

A l g o r i t h m 4.1: Test generation algori thm pseudocode
Data: Runn ing applicat ion exposed to the accessibility bus, apps.yaml
Result: Test Cases

1 start the application:
2 scan the applicat ion tree, generate the test tree;
3 derive the event sequences:
4 terminate the application:
5 foreach event_sequence in event_sequences do
6 applicat ion cleanup, if required:
7 start the application:
8 foreach action in event_sequence do
9 save the state before the action is executed:

10 execute the action:
11 add the action step to the test case:
12 if application is not running then
13 check return code and the logs:
14 if application crashed then
15 print reproducer and log:
16 else
17 add the quit assertion to the test case:
18 end
19 else
20 evaluate the tree changes through the symmetric difference
21 if action started new application then
22 generate the assertion:
23 else if action generated new window/s then
24 foreach window in windows do
25 append new event sequences for the window.
26 end
27 else
28 append new event sequences for the remaining nodes:
29 end
30 end
31 end
32 end

created through the GTree instance. The action-less nodes are then removed by creating a
new instance of the TestTree class.

Event Sequence The core of our test cases is derived from the TestTree through the
class method named test_sequences. The method returns a l i s t 1 2 of event sequences. A n
event sequence contains a list of nodes associated w i t h actions that w i l l be executed for
every test case. L i s t ing 4.4.1 shows an output produced by the print_sequences method
used for debugging. For each GNode instance, we print a name, a roleName and an action
separated by =>.

1 2 h t t p s : //docs.python.org/3/tutorial/datastructures.html

31

1 LibreOffice:frame: => File:menu:click => New:menu:click => Text
Document:menu i t e m : c l i c k

Lis t ing 4.3: A n example of the event sequence extracted from LibreOmce StartCenter.

The test_sequences method iterates through the list of leaves and calculates the path
from a leaf to the root of the tree. The result is a list of paths or as mentioned earlier a
list of event sequences.

A n event sequence does not represent a whole test case. The whole test case is created
by applying the event sequence on the live instance of the applicat ion. W h i l e applying
the event sequence, the generator appends assertions steps and O C R checks. The checks
are generated either before or after the execution of actions and they w i l l be used as a
verification i n a generated test case to confirm that the appl icat ion reached the intended
state. A n event sequence can be used mult iple times or it can be extended, if the generator
discovers that the applied sequence led to a discovery of new nodes. Those new nodes are
evaluated and the generator creates new event sequences, each of those sequences start w i th
a sequence that led to their discovery.

4.4.2 E x e c u t i o n of E v e n t Sequences

In this subsection, we describe how we used the extracted event sequence to create a test
case. F r o m this point the generator works wi th 3 instances of the tree: the currently running
application instance obtained through dogtail, the instance of the class Gtree, the instance
of the class TestTree or so-called model used to derive the tests.

The test generator then starts to iterate over the extracted event sequences, monitors
the applicat ion, executes actions, and generates steps and assertions that are then put
together i n behave scenarios. The implementat ion of the steps used i n generated test cases
is discussed i n Section 4.2.

Every i teration of the event sequences (see line 5 in A l g o r i t h m 4.1) works wi th a newly
started instance of the application, so every scenario begins wi th a step that starts the
applicat ion. The step internally contains an assertion to make sure that the applicat ion
has started and is ready for the interaction. The generator stores a shallow copy of the
list containing the applications that are currently available through A T - S P I . It also saves
a copy of the currently available nodes i n the tested applicat ion.

The generator selects the first node from the sequence and locates the node wi th in the
currently running instance of the applicat ion. In case that appl icat ion contains too many
nodes (widgets), some of them might be hidden. The generator tries to avoid that by using
grabFocus method on the node. The method does not work for menus, where the select
method has to be used instead. Addi t ional ly , the node. s e n s i t i v e property is checked. If
the value of the property is False, the generator prints a warning as the value indicates
that the action might not be executable i n the current state. Then the action associated
wi th the node is executed. If the execution of the action was successful, the event coverage
is increased and a step wi th the description of the node and executed action is added to
the test scenario. The execution of the action is followed by several checks performed on
the current instance.

Initially, the generator checks whether the appl icat ion is s t i l l running by retrieving the
application instance from the accessibility tree. If the applicat ion instance is no longer
present, there are two possibilities. The applicat ion was intentionally terminated by the
executed action or the applicat ion crashed. The decision is made by the examination of

32

the generated logs (stderr, stdout) and the value of the return code retrieved after the
termination.

If the applicat ion was terminated w i t h the return code value of 0, the test generator
appends a new step to the test case. The step contains an assertion that the applicat ion is
no longer running (Q u i t / E x i t button).

If the return code does not contain the value 0, the generator raises the error, prints
the reproducer, the return code value, and the content of the obtained logs. The generator
proceeds to the next test case.

In some cases, the occurrence of an error does not mean that the appl icat ion crashes.
Therefore, the generator checks the log for known errors after every executed act ion re
gardless of the state of the applicat ion. The list of the messages that are being checked is
stored i n the file errors .py. A new error message can be appended to the list at any time.
The list currently contains messages that previously occurred i n bugs related to GNOME
applications.

4.4.3 M o d e l E x p a n s i o n

This subsection provides a description of the model expansion during the test generation
process. The description contains an explanation how our test generator scans an appli
cation for new nodes (widgets) as well as creation of test cases for these nodes. We also
explain the remaining part of the A l g o r i t h m 4.1 that starts from line 20.

Successful execution of the action, followed by no errors detected i n the log and ap
plicat ion s t i l l being run, indicates that the action could have changed the state of the
application.

Initially, the generator checks whether the action triggered the execution of a new
applicat ion. The detection is achieved through the symmetr ical difference computed on
two sets. The first one contains the list nodes representing running applications before
the action was executed, the second one holds the list of applications available after the
execution. B o t h lists are shallow copies, so the generator does not need to compare an entire
tree for each applicat ion. If that is a case, the generator appends the assertion imply ing
that the applied sequence led to the start of a new applicat ion. The test generator does
not expand the nodes of a newly spawned applicat ion to the current test tree as they do
not belong to the appl icat ion that is currently being tested. This solution has l imitat ions,
an appl icat ion that is not exposed to the accessibility bus w i l l not be detected.

If the previously described effort failed, the generator proceeds to search for the changes
wi th in the tree of the tested applicat ion. The implementat ion takes advantage of the method
get_node_list from the class GTree. The method returns a l l nodes from the tree instance
in one list. The list is converted to a set, and s imilar ly to the process of detection of a new
application, it calculates the symmetric difference between sets captured before and after
the executed action.

The generator distinguishes between several roles of the discovered nodes. The appear
ance of a new window or a dialog causes the generation of an assertion to the current test
case. Regardless of a role, the generator creates a TestTree instance wi th new nodes (a
subtree) and retrieves event sequences derived from the subtree. The new event sequences
are prepended w i t h the sequence that led to their discovery and then added to the list of
the event sequences that w i l l be executed in the next iterations.

The expansion during the test case generation can significantly increase the execution
time. The test generator implements an option — s h a l l o w that disables the expansion and

33

generates test cases only from the model obtained after the start of the applicat ion. The
option gives testers the abi l i ty to obtain fundamental test cases that can be reviewed and
updated i n a shorter t ime.

4.5 O C R Integration

In this section, we present the integration of Tesseract's O C R engine i n our work. Subsec
t ion 4.5.1 is dedicated to the implementat ion of image preprocessing methods in our test
generator. Subsection 4.5.2 described integration of the O C R in executable test cases.

The main goal of the O C R integration in this work is to provide an addi t ional level of
verification of str ing values presented by applications and thus not rely purely on A T - S P I .
However, the integration of O C R into the generated test cases has to be reliable to avoid
false-positive test results. For the reasons mentioned in Section 3.4, the implementat ion has
to contain image preprocessing optimizations and configuration to achieve stable results.
Tesseract offers several options that allow to optimize string detection and text analysis.
One of them is the definition of the recognized language. It is assumed that most of the
tested applications w i l l use the Engl i sh language and therefore, the dataset trained for the
Engl i sh language is used.

4.5.1 Screenshot P r e p r o c e s s i n g a n d O p t i m i z a t i o n s

In this subsection, we discuss the implemented optimizations that were required to achieve
reliable results w i th the Tesseract's O C R engine in our test generator.

A s discussed i n 3.3.2, Tesseract is less prone to errors when operating w i t h images
containing black text on a white background. Therefore, we used a thresholding method
to convert screenshots to binary colors (black and white). However, some applications
use darker color themes or contain parts w i th different color schemes. If we used the
thresholding method wi th such applicat ion it would provide us w i t h an opposite result.
Therefore, our solution always extracts strings from two images. The first one is a binarized
copy of the original image, the second one is a copy of the binarized image wi th inverted
colors. This ensures that the Tesseract's O C R engine has the best possible conditions to
obtain the string from the screen. G iven that the string is present on the screen, it should be
found regardless of a theme set i n an applicat ion. A demonstration of the image conversions

1 Activities Q Terminal • May 27 16:13:56» A <4 <!> " 1

Activities 0 Terminal » May 27 16:13:56»

test@localhost:«

A « . Ü -

X
File Edit View Search Terminal Help

[testcalocalhost -] $ Hel lo W o r l d l |
Activities 0 Terminal *- May 27 16:13:56«

test@localhost:~

A <« Ü -

X

File Edit View Search Terminal Help
[test@localhost -] $ Hel lo World |

Figure 4.5: Steps of image preprocessing for the O C R , from the top: the original image,
the binarized image, the inverted binarized image

34

is shown in Figure 4.5, containing 3 images, ordered from the top: the original image, the
binarized image, and the inverted binarized image.

1 s
2 ALY
3 0 BTEE T
4 ERM
5 test@localhost:
6 8
7 Edit View Search Terminal Help
8 [testOlocalhost -1$ Hello world![]

Lis t ing 4.4: Text extracted from the original image in Figure 4.5 without optimizations

Lis t ing 4.4 demonstrates the results obtained from the original image without any opti
mizations. The Tesseract's O C R engine manages to extract certain strings from the screen,
although the results are not reliable and thus may lead to false-positive reports during the
test execution. Further experiments have shown addi t ional issues wi th text formatt ing as
well as difficulties w i th recognition of s imilar ly looking letters. A n example can be seen on
line 8 (see L i s t ing 4.4), where character] was misinterpreted as character 1. These issues
were suppressed by upscaling the resolution of the original image from 1,024 x 768 pixels
to 3,200 x 2,400 pixels.

1 A c t i v i t i e s
2 Terminal ~
3 a4
4 v
5 May 27 16:13:56 <§
6 testOlocalhost:~
7 F i l e Edit View Search Terminal Help
8 [testOlocalhost ~]$ Hello World![}

Lis t ing 4.5: Text extracted from Figure 4.5 w i t h a l l implemented optimizations

Lis t ing 4.5 shows results achieved wi th image preprocessing methods. W h e n compared
to the results shown on L i s t i ng 4.4, it proves an increase of the efficiency achieved wi th the
implemented opt imizat ion. The result contains a l l important strings shown on the screen.
Addi t ional ly , the O C R engine reports some random characters which are probably caused
by a misinterpretation of a group of smaller icons i n the picture. The image upscaling
is achieved through the Pillow1'^ l ibrary, the image conversions are implemented through
methods from the OpenCV l ibrary.

The t ime consumed by taking screenshots during the generation process is significant.
Therefore, the developed tool has the abi l i ty to disable the generation of the O C R steps
during the generation of test cases through the command line parameter —disable-OCR. If
the generated test cases already contain steps performing O C R checks and are intended to
be executed without them, the tests can be executed wi th the shell variable 0CR=False. The
defined variable w i l l cause skipping of the O C R checks, al though they w i l l s t i l l be shown
in the test logs as executed. This is caused by the l imi ta t ion of the behave framework as

1 3 h t t p s : //pypi.org/proj ect/Pillow/

35

1 @l_Spreadsheet
2 Scenario: l i b r e o f f i c e - s t a r t c e n t e r : Spreadsheet
3 * St a r t : " l i b r e o f f i c e - s t a r t c e n t e r " v i a command " l i b r e o f f i c e — n o r e s t o r e "

i n session
4 * Action: " c l i c k " " F i l e " "menu"
5 * Action: " c l i c k " "New" "menu"
6 * State: "menu item" "Spreadsheet" "showing" i s "True"
7 * OCR: "Spreadsheet" i s shown on the screen
8 * Action: " c l i c k " "Spreadsheet" "menu item"
9 * State: "frame" " U n t i t l e d 1 - L i b r e O f f i c e Calc" i s shown

10 * OCR: " U n t i t l e d 1 - L i b r e O f f i c e Calc" i s shown on the screen

Lis t ing 4.6: A test case demonstrating the integration of O C R into test cases

it only allows one to skip whole test scenarios. Tests executed w i t h the variable set to skip
the O C R steps w i l l contain a warning message.

4.5.2 I m p l e m e n t e d Steps

This subsection demonstrates a behave step that was implemented to achieve the O C R
integration i n our tests.

The results obtained from experiments w i th the O C R were implemented to a single
behave step. The step contains a string variable that should be found on the screen at a
specific moment during the test execution. The process involves taking a screenshot v i a the
gnome-screenshot ut i l i ty. It continues w i t h the aforementioned image preprocessing and
extraction of the text from two variants of images. F ina l ly , an assertion is made to confirm
the presence of the str ing on the screen.

L is t ing 4.6 contains a test case generated for LibreOffice StartCenter w i th two O C R
steps. Dur ing the test, the O C R engine confirms the presence of the str ing Spreadsheet
on line 7. Another O C R step is on line 10, where the O C R confirms a presence of the
window ti t le U n t i t l e d 1 - L i b r e O f f i c e Calc on the screen.

O C R steps are not added to test cases automatically. Our test generator may encounter
strings that contain various characters and have various length. A n O C R step is generated
to a test case only i f the test generator performs a successful O C R check on a given string.
Failed O C R checks are reported immediately dur ing the test generation process. The
O C R check performed i n advance by the test generator and the optimizations discussed in
Subsection 4.5.1 should prevent an occurence of false-positive results in test cases caused
by the O C R .

4.6 Generated Test Cases

In this section, we describe the behave test cases that are generated by our test generator
as well as logs that are generated during the test runs.

The result of the generation process is available i n a folder structure named after a test
applicat ion and contains generated test cases, configuration files, and scripts for execution
in the C I environment. Generated behave test scenarios are located i n the file named
generated.feature. The file contains a l l the test cases divided into so-called scenarios.

36

Each scenario (see L i s t ing 4.6) has a unique name start ing wi th character @ that allows
single test execution i f required. A l l tests are executable by issuing a command behave in
the generated project folder. The tests are also respecting the cleanup commands which are
set i n apps.yaml. The cleanup is always executed after the finish of the test, regardless of
the result of the executed tests. Execut ion of behave either prints steps from a test scenario
to standard output or can generate an H T M L log for every scenario (see Figure 4.6). This
log format is more suitable for examination of the results executed i n the C I environment
accessible through the web interface. Furthermore, the qecore l ibrary embeds data collected
during the test runs to the behave reports of failed test cases. Therefore, the reports contains
videos captured during the test runs, screenshots taken in a moment when a test case failed
and addi t ional logs. The addi t ional data helps wi th identification of potential flaws i n tests
and false-positive results.

B e h a v e T e s t R e p o r t
Features: passed: 1

Scenarios: skipped: 95, passed: 1
Steps: skipped: 598, passed: 7

Finished in 15.2 seconds

Fea tu re : l ib reof f ice -s ta r tcen te r t e s t s

@10 MasterDocument

Scenario: libreoffice-startcenter: Master Document

" Start:" libreoffice-startcenter" via command " libreoffice -norestore" in session (4.767s)

features/generated.feature:11C

features/steps/steps.py:49

' Action:" click"" File "" menu " (i.513S) features/steps/steps.py:21

' Action: " click "" New " " menu " (1.506s) features/steps/steps.py:21

' State:" menu item " " Master Document"" showing " is " True " (0519s) features/steps/steps.py:39

' Action: " click "" Master Document"" menu item " (2.022s) features/steps/steps.py:21

' State:" frame "" Navigator" is shown (1.413s) features/steps/steps.py:33

' OCR : " Navigator" is shown on the screen (3.422s) featu res/steps/ocr_steps. py:43

Figure 4.6: A n example of the test report generated by the behave framework during the
execution of the tests generated for LibreOffice StartCenter

37

Chapter 5

Testing and Results

In this chapter, we discuss the results of our test generator. Section 5.1 describes the cov
erage measurement techniques we obtained for the test cases created by our test generator.
In Sections 5.2 - 5.6 we present 5 open-source G U I applications as wel l as the results that
were achieved when we tested them wi th our test generator.

A l l performed testing was done on v i r tua l machines preloaded wi th distributions Red
Hat Enterprise Linux 8.2/8.3. V i r t u a l machines were assigned wi th 4 G i B of R A M and
two logical C P U cores (Intel(R) Core(TM) i5-9600K CPU @ 3.70GHz). The execution of
the test generator on product ion workstations should be avoided as the performed actions
may potential ly lead to alteration of the system or a data loss. The same approach applies
to the generated test cases.

5.1 Coverage Evaluation

This section is dedicated to the coverage measuring techniques that were implemented
wi th in our test generator, namely a model coverage and an event coverage. Further, we
discuss the code coverage analysis performed wi th the gcov tool .

Event Coverage The event coverage measures the number of executed events on a tested
application during the test generation. It is a common technique used in G U I testing [14].
A n execution of an event is counted as successful one, if the event was executed by the
accessibility layer without any errors. The event coverage approach implemented by our test
generator also has a disadvantage. The event coverage report contains only events reported
by the accessibility technology, other events like drag and drop, keyboard shortcuts and
mouse scrolling are not included.

M o d e l Coverage Another coverage measurement performed by our test generator is the
model coverage. The coverage is measured as the number of nodes (widgets) involved in
test cases from the overall number of nodes included i n the model.

A s discussed in Section 4.1, the model contains only nodes that offer an action that
can be executed by users. It is expected that this coverage w i l l always cover 100 % of the
nodes. However, w i th applications that contain a richer G U I , some of the nodes might be
hidden or the generator w i l l not be able to derive an event sequence that w i l l be able to
access those nodes. Th is especially applies to cases when the generator w i l l be used on a
new applicat ion that contains some special layout or an act ion on the given node which

38

could not be executed by the accessibility technology. In such cases, our generator skips
the whole test case, generates an error message, and proceeds to the next test case.

Nodes that are not covered by tests, along wi th event sequences that are involved, are
printed in a report after the test generator finishes. The nodes or event sequences reported
as failed must be evaluated manual ly wi th several possible outcomes:

1. a node is not available for interaction

2. a bug i n a tested application,

3. a bug i n the accessibility technology (e.g. incorrectly reported coordinates),

4. an imperfection or a bug i n the test generator,

5. the tested applicat ion is affected by the previous test case (change i n the settings/lay-
out), and addi t ional cleanup must be added to apps.yaml.

B o t h the event coverage and the model coverage are evaluated in the end of the test
generation process. The measurements are a part of a final test generator report. The
report also contains a list of unexecuted event sequences. The list can be used to retest
test cases that were not sucessfully tested by our test generator.

Code Coverage We also obtained code coverage measurements from tests runs generated
by our test generator. The code coverage measurements were obtained wi th the gcov tool
that comes as a part of the G N U development tools. The purpose of the tool is to perform
the code coverage analysis and to find dead or unexecuted code. Coverage-driven testing
can be characterized by the following steps:

1. F i n d the of a program not exercised by test suite.

2. Create addi t ional test cases to exercise so far not exercised code, thereby increasing
code coverage.

3. Determine a quantitative measure of code coverage, which is an indirect measure of
quality.

To obtain a measurement of the code coverage, it is required to compile the applicat ion
wi th gcc/g++ and two extra parameters - f p r o f i l e - a r c s and -ftestcoverage. Runn ing
the compiled binary wi th the gcov tool yields a percentage of the executed code located in
source files. Measurements can be obtained for any software wri t ten i n C / C + + [6].

To obtain measurements, tests must be executed wi th a custom binary, compiled wi th
the mentioned parameters. Once the custom binary is executed, files w i th extensions .gcda
and .gcno should appear in the directory where the binary is located. Measurements
are aggregated throughout the test execution and the code coverage is reported to the
special files w i th the mentioned extensions. Then , the lcov tool is used to aggregate the
measurements and generate a report in two steps (Lis t ing 5.1). The first command takes
the .gcda and .gcno files and generates a . i n f o file w i th coverage information. The second
command takes the i n f o file and generates a detailed H T M L report. The report contains
every source file (. c file) along wi th the percentage of covered functions and lines.

39

$ lcov -c -d . -o app.info
$ genhtml -o lcov_report -s — l e g e n d app.info — i g n o r e - e r r o r s

Lis t ing 5.1: Shell commands used to generate an H T M L report w i t h the lcov tool

5.2 G N O M E Terminal

G N O M E Terminal (Figure 5.1) is one of the most important applications from the G N O M E
application stack. The applicat ion serves as a terminal emulator for accessing a U N I X shell
environment. The appl icat ion can be used to run programs available on the sys tem 1 .

test@localhost:~

FiLe Edit View Search Terminal. HeLp
[testtalocalhost ~]$ neofetch

.NHH..:HHHHNMM
MMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMM.
MMMMMMMMMMMMMMMMMMMMMM
,MMMMMMMMMMMMMMMMMMMMMM:
MMMMMMMMMMMMMMMMMMMMMMMM

. MHMH" MMMMMMMMMMMMMMMMMMMMMM
MMMMMM 'MMMMMMMMMMMMMMMMMMMM .
MMMMMMMM MMMMMMMMMMMMMMMMMM .
HHHHHHHHH. 'MMMMMMMMMMMMM1 MM.
MMMMMMMMMMM. MMMM
'MMMMMMMMMMMMM. ,MMMMM.
'MMMMMMMMMMMMMMMMM. ,MMMMMMMM.

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM:

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
'MMMMMMMMMMMMMMMMMMMMMMMM:

''MMMMMMMMMMMMMMMMM1

t e s t t a l o c a l h o s t . l o c a l d o m a i n

: Red Hat E n t e r p r i s e Linux 8.3 Beta (Ootpa) xB6
Host: KVM/QEMU (Standard PC (Q35 + ICH9, 2009) pc
K e r n e l : 4.IB.B-202.elB.x86 64
Uptime: 7 hours, 18 mins
Packages: 2187 (rptn), 3 (f l a t p a k)
S h e l l : bash 4.4.19
R e s o l u t i o n : 1024x768
DE: GNOME
WM: Mutter
Wfl Theme: Adwaita
Theme: Adwaita-dark [GTK2/3]
Icons: Adwaita [GTK2/3]
Ter m i n a l : gnome-terminal
CPU: I n t e l (s k y l a k e , I B R S)
GPU: 90:01.0 Red Hat, I n t .
Memory: 1217MiB / 3B34M1B

[2) @ 3.695GHZ
QXL p a r a v i r t u a l g r a p h i

[testtalocalhost ~]$ |

Figure 5.1: G N O M E Terminal appl icat ion U I

Setup a n d C l e a n u p

A large part of test cases generated for G N O M E Terminal performs some changes of settings
either v i a the Preferences dialog or through menus located at the top of the window.
Preferences can change various aspects of the applicat ion, including the text encoding,
layout of widgets, and color schemes. Those changes need to be set back to default values to
make sure that test cases w i l l not affect subsequent test cases. In Terminal, this is achieved
through 2 cleanup commands (see L i s t i ng 5.2) that are executed at the end of every test case.
Testing was performed wi th the r p m package gnome-terminal-3.28.3-1 .el8.x86_64.

dconf reset /org/gtk/Settings/Debug/enable-inspector-keybinding
dconf reset - f /org/gnome/terminal/legacy/

Lis t ing 5.2: The cleanup commands required to reset G N O M E Terminal to its default
settings

x h t t p s : //help.gnome.org/users/gnome-terminal/stable/introduction.html.en

40

Test G e n e r a t i o n a n d Resu l t s

Lis t ing 5.3 contains the final test generator report and summarizes the testing performed on
Terminal. The developed test generator was able to generate 485 test cases while covering
1,700 events in the applicat ion. Tests are covering menus, several smaller dialogs, and a
Preferences window.

1 Test Generator Report f o r Component: Terminal
2 Covered Events: 1700/1702 (99.88 °/„)
3 Number of Covered Nodes: 516
4 Number of Generated Test Cases: 485
5 Nodes without the Coverage:
6 Edit:menu:click => Preferences:menu i t e m : c l i c k => : l i s t item:
7 => Menu:toggle b u t t o n : c l i c k
8 No errors found!
9 Generation Time: 1:53:52.676497s

Lis t ing 5.3: F i n a l test generator report for G N O M E Terminal

5.3 G N O M E Help

G N O M E Help (Yelp) is a help viewer for G N O M E 2 . The applicat ion natively renders doc
uments in various formats including H T M L documents. The U I (see Figure 5.2) of the
application is filled w i th links to navigate between documents.

•:• GNOME Help
Getting started with G N O M E
New to GNOME? Learn how to get aim

Visual
A v ilk"

of G N O M E
o"ycur (Im <icp, ;he :cp sac, a id ;he Ac;Y; «

Log out, power off or switch users
Learn how to leave your user account, by logging out, switching u:

Start applications
Launch apps from the Activities

Your desktop
Calendar, notifications, keyboar
windows and workspaces,,,

Files, folders S search
Searching, delete files, backups,

magnifier,,,

Networking, web S email
Wireless, wired, connection problems, v
browsing, email accounts,,.

User & system settings
Keyboard, mouse & touchpad, display,
.anguages, user accounts...

TipsStrii
Special ch

Sound, videoS pictures
Digital cameras, iPods, editing photos,
playing videos.,,

Hardware S drivers
Hardware ncblems, oriniers, ocvver
settings, color management, Bluetooth,

Get more help
T c i us iq : i i qu tie, help improve thi;
guide, mailing list, IRC...

Figure 5.2: G N O M E Help (Yelp) appl icat ion U I

Test G e n e r a t i o n a n d Resu l t s

Lis t ing 5.4 contains the final report and summarizes the testing performed on GNOME
Help. The developed test generator was able to generate 2,412 test cases while covering the

2 h t t p s : //wiki.gnome.org/Apps/Yelp

41

http://gnome.org/Apps/Yelp

4,690 events i n the applicat ion. The applicat ion d id not require any ind iv idua l setup, the
testing was performed wi th the r p m package yelp-3.28. l-3.el8.x86_64.

1 Test Generator Report f o r Component: Help
2 Covered Events: 4690/4696 (99.87%)
3 Number of Covered Nodes: 2415
4 Number of Generated Test Cases: 2412
5 Nodes without the Coverage:
6 GNOME Help:frame: => D i g i t a l cameras:link:jump
7 => More Information:heading:Click
8
9 Generation Time: 4:57:13.370368s

Lis t ing 5.4: The final test generator report for G N O M E Help

The report also contains 6 failed event sequences. The reason behind these failures
is par t ia l ly the way we implemented our test generator. A s discussed in Section 4.1, we
introduced the file rolenames.py where we enumerated a l l role names for nodes without
an action. The mentioned failures contain node w i t h the role name heading. Since the
majority of headings are assigned wi th an action called jump, the role name heading is not
blacklisted in the file rolenames .py. However, there are nodes wi th the role name heading
that are assigned w i t h an empty action (an empty string). This is how the accessibility
system labels l inks i n Help that are not available for interaction. Our test generator handles
a node wi th an empty action by replacing the empty action wi th a default one - C l i ck . Since
the default action is not the one assigned to a node, its execution might fail which is what
most probably happened in the failed event sequences.

The second part of the report is dedicated to captured error messages. Overal l , there
were 42 warnings about occurrences of error messages during the test generation along wi th
their reproducers. The examinat ion has revealed that error messages were found i n test
cases where an external l ink leads to a web page. Ex te rna l l inks are not handled by the Help
application, they are forwarded to a default web browser for the G N O M E session. In our
case, the default web browser was Firefox. A manual appl icat ion of reported reproducers
has shown, that the captured error messages were not originated from the Help process,
but they were generated by the Firefox process. Initially, we were not able to reproduce
the issue because the messages d id not appear unt i l the Firefox window was closed. To
support the c la im that the error messages are caused by the bug i n Firefox, we successfully
reproduced the same issue wi th the LibreOffice StartCenter, where our test generator found
the same error messages i n a different test scenario. Our findings were submit ted i n a bug
report 3 .

GNOME HELP also offered a good demonstration of how nodes are expanded during
the test generation. To visualize the node expansion performed by our test generator during
the testing, we integrated an automatic generation of event flow graphs implemented by
the networkx l ibrary wri t ten in Py thon3 . A n in i t i a l graph is generated after the scan of
the S U T performed i n the beginning of testing. A final graph is generated at the end of
the test generation process. A l l graphs that were generated during the testing wi th our
generator are available in Append ix F .

3https://bugzilla.redhat.com/show_bug.cgi?id=1837978

42

https://bugzilla.redhat.com/show_bug.cgi?id=1837978

Figure 5.3: The in i t i a l event flow graph of event sequences for G N O M E Help

Initially, the generator scans the tree for the available nodes and builds a model from
78 available nodes (widgets) and derives 96 event sequences (Figure 5.3). The Generator
proceeds wi th the applicat ion of event sequences and continuously expands the model to
the final number of 2,415 nodes and 4,696 event sequences (Figure 5.4). The expanded
graph shows which event lead to the discovery of new nodes associated wi th an action that
can be executed by the accessibility system. W h e n compared to manual testing, the effort
required to achieve this coverage would be very tedious and time-consuming.

5.4 LibreOffice Start Center

In this section, we describe results achieved by our test generator when we tested LibreOf
fice applications. Moreover, we discuss the alterations that were required to be implement
wi th in our test generator due to issues caused by the accessibility layer. LibreOffice Start-
Center (Figure 5.5) is a document management application, it connects 7 other applications
from the document suite. Each applicat ion can open and edit a different format of docu
ments 1 . LibreOffice is not a part of the G N O M E applicat ion stack, al though it is being
shipped as a default document suite i n a lot of L i n u x distributions and has the required
accessibility layer support.

File Tools Help

Open File

, r~^' Remote Files

j^P Recent Files

f ^ Templates

Create:

[j Writer Docur

[•j Calc Spreadsl

1 .|| Impress Pres

ĵ J Draw Drawin

^ Math Formul;

[Sj BaseDatabas

Help E»

Figure 5.5: LibreOffice StartCenter U I

R e q u i r e d I m p l e m e n t a t i o n C h a n g e s a n d L i m i t a t i o n s

Dur ing the testing of LibreOffice StartCenter we encountered issues wi th LibreOffice Calc
which forced us to implement application-specific changes to our test generator.

Tests generated for LibreOffice StartCenter are executing a l l applications from the Libre
Office suite. LibreOffice Ca lc is a spreadsheet editor that contains theoretically an infinite
number of editable cells that are created on demand. Therefore, the applicat ion cannot
be recursively explored for new nodes. A recursive search causes that the applicat ion w i l l
generate new cells un t i l the R A M on a v i r tua l machine is depleted. The v i r tua l machine is

4 h t t p s : //help.libreof f ice.org/3.3/Common/Start_Center

44

1
2
3
4
5
6
7

Test Generator Report f o r Component: L i b r e O f f i c e StartCenter
Covered Events: 7795/7853 (99.26 °/„)
Number of Covered Nodes: 2516
Number of Generated Test Cases: 2315
Nodes without the Coverage:

Generation Time: 11:48:49.071478s
Lis t ing 5.6: The final test generator report for LibreOffice StartCenter

unresponsive and even refuses to execute commands through a remote shell. Therefore, the
implementation of the test generator was altered to avoid the execution of recursive search
querries on LibreOffice Calc .

Another accessibility-related issue has started to occur when the test generation process
reached certain types of dialogs (a letter wizard, a fax wizard, etc.). The behavior was quite
similar to the previous issue, the test generator hanged on a recursive search query for a
while and then failed wi th the error message shown in L i s t ing 5.5.

1 F a i l e d to handle new nodes atspi_error:The a p p l i c a t i o n no longer e x i s t s (0)

Lis t ing 5.5: The accessibility layer error that prevents the generator from node expansion
when testing LibreOffice StartCenter

The investigation has shown the applicat ion spawns 2 windows, the first one is the
previously mentioned dialog, the second one is a generic LibreOffice window that contains
only menus. The blank window probably spawned because those wizard dialogs are not
standalone applications, they belong to other applications from the LibreOffice suite. This
c la im is supported by the fact that the blank window only lasts as long as the dialog is
opened. The blank window contains widgets but they are not available for interaction as the
focus can only be placed on the dialog window i n the front. Therefore, the blank window is
an issue from the implementat ion perspective of the generator as it tries to perform node
expansion on a window that never becomes available. Since the accessibility system throws
the mentioned error, it is handled as an exception and the generator continues without
expansion to a next test case. The cancellation of the node expansion process also means
that widgets from the affected dialog window are not tested by our generator.

T e s t i n g a n d Resu l t s

Testing LibreOffice required some setup in the apps. yaml file. The applicat ion instance
has to be started w i t h the —norestore parameter to avoid the restoration of unsaved
documents from previous sessions. Furthermore, the user configurations files located in
-/. conf i g / l i b r e o f f i c e / are removed during the cleanup process. After the previously
discussed implementat ion changes, the generator has been able to perform a full run on the
application and produces a test report that is par t ia l ly shown i n L i s t ing 5.6. A subset of
tests generated for LibreOffice Ca lc is shown i n Append ix D .

The report shows that the achieved event coverage was not as successful as w i t h the
previous components. The majority of the failed sequences contained nodes that have the
action available, but the action could not be executed at a given time.

45

The report also contained several crashes and errors. A couple of those errors confirmed
the Firefox issue mentioned i n Subsection 5.3 that we reported. Furthermore, another
severe issue was discovered by our solution when the StartCenter crashed after cl icking
on the Help but ton. We submitted a bug report for the issue and it has been fixed by
developers.

The remaining group of crashes was caused by quite an interesting phenomenon. The
test generator reported 6 crashes that appeared to be quite similar . Each of those crashes
was triggered by an event associated wi th a but ton that was not available for an interaction.
A manual applicat ion of the reproducers was not possible because the event can only be
sent through the accessibility system. Nevertheless, this proves that the proposed test
generator can reveal this k ind of flaws i n G U I software. The testing was performed wi th
the libreoffice-core-6.3.6.2-l.el8.x86_64 rpm.

5.5 Evince

This section introduces us to a document viewer applicat ion E v i n c e 6 , along wi th the results
that we achieved by testing the applicat ion wi th our test generator.

es;ing C-io...
• AT-SPIArchi...
• Design of th...
• Testing and ...

5 ::. CCJ-'l"!:: IV

Setup Instru...
Examples of...
Contents oft...

BRNO UNIVERSITY OF TECHNOLOGY

FACULTY OF INFORMATION TECHNOLOGY

DEPARTMENT OF INTELLIGENT SYSTEMS

AUTOMATED GENERATION OF TESTS FOR GNOME
GUI APPLICATIONS USING AT-SPI METADATA

MASTER'S THESIS

Be. MARTIN KRAJNAK

prof. Ing. TOMÁŠ VOJNAR, Ph.D.

Figure 5.6: Evince document viewer U I

T e s t i n g a n d Resu l t s

Initially, we tested a blank Evince instance without a test file. However, results have shown
that a lot of widgets are not available, or are disabled. Therefore, we decided to add a
test file i n the .pdf format as shown in Figure 5.6. A name and a path of the test file is
configurable v i a the apps.yaml file. The test file is used during the test case generation
process as well as the test case execution process. A n inclusion of the test file has unlocked
the majority of disabled widgets and allowed us to use the full potential of our test generator.

5https://bugzilla.redhat.com/show_bug.cgi?id=1819798
6 h t t p s : //wiki.gnome.org/Apps/Evince

46

https://bugzilla.redhat.com/show_bug.cgi?id=1819798
http://gnome.org/Apps/Evince

1 Test Generator Report f o r Component: Document Viewer
2 Covered Events: 373/398 (93.71 °/„)
3 Number of Covered Nodes: 217
4 Number of Generated Test Cases: 189
5 Nodes without the Coverage:
6 . . .
7 Generation time: 0:29:20.398814s

Lis t ing 5.7: F i n a l test generator report for Evince

L is t ing 5.7 contains the final test generator report. The report section that starts on
line 5 contains a list of unexecuted event sequences. The manual reproduction of sequences
has shown that the reported event sequences lead to widgets that were not available for an
interaction. In two cases, our test generator crashed the applicat ion by executing an action
on an unavailable widget through the accessibility layer. This is the same issue that we
encountered when we tested LibreOfnce StartCenter (see Subsection 5.4).

Open • m
gcnerated.fcature

•ojecto •'/Projects'teste*:tr3cLor''e.'ince_

1 Feature: evince tests
2
3
4
5
6
7

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

@0_viewoptions
Scenario: evince: View options

* Start: "evince" via command "evince test_files/gnome-documents
* State: "toggle button" "View options" "showing" is "True"
* Action: "click" "View options" "toggle button"

@1 Fileoptions
Scenario: evince: File options

* Start: "evince" via command "evince test_h'les/gnome-documents-
* State: "toggle button" "File options" "showing" is "True"
* Action: "click" "File options" "toggle button"

@2_Annotatedocument
Scenario: evince: Annotate document

* Start: "evince" via command "evince testfiles/gnome-documents
* State: "toggle button" "Annotate document" "showing" is "True"
* Action: "click" "Annotate document" "toggle button"

@3Find
Scenario: evince: Find

* Start: "evince" via command "evince test_files/gnome-documents
* State: "toggle button" "Find" "showing" is "True"
* Action: "click" "Find" "toggle button"

@4_Open

Save As...

Save All

Find.,.

Find and Replace...

Clear Highlight

Goto Line...

View

Tools

Preferences

Keyboard Shortcuts

Help

About Text Editor

Plain Text » TabWidth: 8 »

Figure 5.7: Gedi t text editor U I

Our test generator revealed an unknown issue wi th the Gtk-CRITICAL error message.
We were able to report the issue from the reproducer provided by our test generator (see
Append ix C) and we created a bug repor t 7 . The issue occurs in a test case when a document
is being opened in the Presentation Mode. The error message is not that severe, however this
k ind of messages are printed when a cr i t ical failure occurs wi th in the applicat ion and there
are numerous bug reports for the G N O M E applications for similar issues. Furthermore,
the issues like the one we reported are harder to find, because they can be only detected
by checking the stderr of a G U I application.

Since the RHEL 8.3 d is t r ibut ion contains an older version of the applicat ion that we
tested (gedit-3.28.1-3. el8. x86_64), we also decided to test a newer flatpak version of the

7 h t t p s : //bugzilla.redhat.com/show_bug.cgi?id= 1842017

47

application (org.gnome.Evince, Version:3.36. l) . The testing was performed without
confirmation of the bug i n the newest version. B y testing the flatpak version of Evince we
confirmed the compat ibi l i ty of our test generator w i th flatpak applications.

5.6 Gedit

This section presents the results achieved w i t h our test generator when testing Gedi t ap
plicat ion (see Figure 5.7), which is a text editor of the G N O M E desktop environment 8 .

T e s t i n g a n d Resu l t s

After the issues we experienced wi th testing Evince without a test file, we included one
for Gedi t tests from the beginning. The achieved results are summarized i n the final test
generator report shown in L i s t i ng 5.8. The report contains a lot of unexecuted event
sequences that are not displayed in the l is t ing. The issues were quite s imilar to issues
that occured wi th applications we tested before. O u r generator failed to derive an event
sequence for a group of widgets in a Print dialog and a Preferences dialog.

Furthermore, the report contained 9 occurrences of the Gtk-CRITICAL error. However,
when we applied reproducers from the report manually, the errors d id not appear. The
errors could only be achieved by execution of actions through the accessibility system.
Dur ing the investigation, we found out that a l l 9 test cases have one common denominator,
which is a so-called hamburger menu shown i n Figure 5.7. We examined the menu through
the Sniff u t i l i ty to discover that the accessibility system reports a wrong hierarchy of
widgets associated w i t h this menu. The menu but ton is i n this case an end node, which
means that this is where the event sequence derived for the menu ends. Since the group
of widgets associated w i t h this menu is reported by the accessibility layer on a wrong
place, our test generator derives a group of event sequences for them without an important
middle step - opening a menu. Therefore, the reported errors are not bugs, as the generator
triggers an event on a node which is not present on the screen. In conclusion, this is another
discovered imperfection of the accessibility system.

1 Test Generator Report f o r Component: Text Editor
2 Covered Events: 1200/1301 (92.23 °/„)
3 Number of Covered Nodes: 643
4 Number of Generated Test Cases: 565
5 Nodes without the coverage:
6 . . .
7 Generation time: 2:48:58.877205

Lis t ing 5.8: The final test generator report for Gedi t

'https: //wiki.gnome.org/Apps/Gedit

18

http://gnome.org/Apps/Gedit

Chapter 6

Evaluation and Future Work

This chapter presents an overall evaluation of our test generator. Section 6.1 discusses the
results of a code coverage analysis. In Section 6, we compare the proposed test generator
to existing test suites for the G N O M E aplications. Section 6.3 describes a recommended
workflow for our test generator and concludes this chapter w i t h plans for a future work.

A s discussed i n Chapter 4, the approach to applicat ion testing done by this work com
bines several testing techniques and takes advantage of existing testing frameworks and
libraries. We are not aware of any currently available solutions designed to generate test
cases from the A T - S P I metadata i n the G N O M E environment. The closest related solutions
were described i n Subsection 2.10.1. However, that solution is designed for applications wi th
different development cycles, where a model is being developed before a prototype of the
applicat ion is available. Other solutions (e.g. references [21],[5]) rely on static analysis and
bui ld a model from the byte code of the G U I applications wri t ten i n Java.

6.1 Code Coverage Evaluation

In this section, we compare our test generator to another G U I test generator based on static
analysis. Further, we compare the tests generated by our test generator to the tests wri t ten
w i t h the script based tools.

Our test generation tool works on black-box testing principles. However, we were able
to perform a code coverage analysis for Evince, Gedit, and Terminal to evaluate the amount
of source code covered by our solution. To put the results of our code coverage analysis in
perspective wi th s imilar tools, we compared our results to results acquired by a solution
introduced by A r t l et a l . [5]. However, their solution targets a different platform and it
also takes advantage of white-box testing principles. Table 6.1 compares the amount of
coverage achieved by our test generator w i t h a range of coverage acquired by their solution
on 4 open-source applications wri t ten in Java. The code coverage achieved wi th our test
generator d id not reach the same results, however there are several factors that must be
considered in evaluation.

The analysis performed on the tests generated for Terminal has shown that several parts
of the G U I code were not executed by the tests. A gcov code coverage report provides a
detailed analysis of source code. A n examination of data provided by the analysis identified
a set of functions designed to handle keyboard shortcuts that are not covered by our tests.
It is also expected that a large por t ion of source code is related to n o n - G U I operations
which are not covered by our test cases at a l l .

49

O u r Solution Solution [5]
Appl icat ion Evince Gedi t Terminal Selected Java Appl ica t ions

Lines Coverage (%) 22.4 37.2 33.2 54-62
Functions Coverage (%) 33.6 46 41.0 —
Branches Coverage (%) 16.0 23.7 20.8 26-37

Table 6.1: Coverage results achieved wi th our test generator based on A T - S P I metadata
(black-box approach) compared to the test generation tool [5] w i th a white-box approach

Furthermore, we performed the code coverage analysis of tests generated for Evince
twice. Our findings have shown, that by including a .pdf test file, we raised lines coverage
in Evince by 11.4 %, functions coverage by 15.6 %, and branches coverage by 5.9 %. W i t h
consideration that Evince supports 8 other document formats, we could possibly grow the
code coverage by including more test files. The similar approach may be applied i n Gedit
as it supports syntax highlighting for various programming languages.

6.2 Comparison with Exist ing Solutions and Test Suites

W h e n it comes to solutions used for test automation for G N O M E applications, several
Record-and-Replay tools were described in Section 2.7. The proposed solution utilizes
dogtail combined w i t h the behave framework, so the generated test cases are executable
even after the generation process is finished.

Scripted test cases are wri t ten by humans (quality engineers). Thei r goal is either to
automate scenarios that cover key features i n applications or to create scenarios based on
previously discovered bugs and defects. However, the proposed test generator is a semi-
smart tool . Errors and crashes that occur during the generation process are recognized
and reported wi th a reproducer. The potential problem is w i t h the semantics of the test
cases. The test generator can apply a sequence of actions to the applicat ion, al though
it cannot decide whether the outcome is expected. Therefore, the proposed tool should
aid testers w i t h development of test automation right after the executable version of an
application is available. The ma in advantage is i n the exploratory testing performed during
the test generation. The test generator can sequentially execute available events (event
sequences), detect errors and crashes, and thus help testers to avoid drawbacks of manual
testing. A report from the test generation process w i l l also point out the widgets that
were not covered by the exploratory testing and therefore they are not covered by the test
cases. A n addi t ional benefit is provided by the fairly quick availabil i ty of the working test
automation. Testers can push either a l l or a subset of test cases in the C I environment.
A n y test case can be reviewed and updated, new test cases could be wri t ten wi th available
behave steps or a new step definition can be added. Generated test cases can be merged
wi th test automation available from the previous versions, if it is not too obsolete.

In conclusion, generated test cases are not comparable wi th the currently available test
automation developed by testers w i t h the script-based tools. The goal of generated test
cases is to cover as many events i n applications as possible, whereas the currently available
test suites are focused on automation of the most essential tasks performed by users in
which bugs and defects occurred in the past. Th is comparison does not include unit tests
or any other white-box tests performed on the l ibrary level.

50

The test generator itself is a piece of software as well . It is designed to work wi th as
many applications as possible, therefore, the implementat ion is as general as possible. If a
tested applicat ion reveals flaws wi th in the test generator, the adjustments must mainta in
the general approach to ensure that the generation process for other applications w i l l not be
affected. Therefore, i f the adjustment is too application-specific, the effort that needs to be
done to include the adjustment i n the test generator should not be greater than developing
a custom test case.

6.3 Recommended Usage and Future Work

In Chapter 1, we introduced a recommended workflow wi th our test generator (Figure 4.1).
The workflow contains a review of generated test cases that could be i n some cases as
t ime consuming as manual testing. W h e n we tested L ib reOmce StartCenter or G N O M E
Help, the amount of t ime required for test generation went up to 12 hours. Therefore, we
introduced the command-line option — s h a l l o w that prevents the test generator from the
expansion of newly discovered nodes. The option provides the abi l i ty to obtain the most
essential test automation for an applicat ion in a reasonable t ime (up to 10 minutes), and
wi th the reasonable amount of test cases (up to 100). Th i s so-called shallow automation
could be quickly reviewed and pushed to a C I environment to perform regression testing
when a new version of an applicat ion is bui l t . Then, a non-shallow run can be performed
to let our generator go through a l l extracted scenarios and report reproducers for potential
issues.

Furthermore, another option could be implemented to restrict the depth of executed
event sequences. However, the option can lead to generation of unreasonable test cases,
e.g. opening a menu without cl icking on menu items, triggering a dialog without cl icking a
button, etc.

Lastly, we could narrow an amount of generated test cases by definition of a window, a
dialog, or a menu we want to test. The implementat ion of this feature would require us to
handle an addi t ional input, specifically a name and a roleName of a widget as wel l as an
event sequence that is required to navigate to the widget.

51

Chapter 7

Conclusion

In this thesis, we presented our test generator for G N O M E G U I applications. The gener
ator utilizes the metadata of accessibility technologies to create an abstract model of an
applicat ion. The model is then used for identification of event sequences that are executed
on a tested applicat ion. The extracted event sequences are applied on a live instance of the
tested applicat ion. The state of the applicat ion is monitored for severe issues that could
appear during the interaction wi th the applicat ion. Addi t ional ly , the generator can discover
widgets that appear during the testing and include them to the model . The generator also
creates addi t ional assertions based on metadata from the accessibility layer as well as as
sertions that are performed by the O C R engine Tesseract. The event sequences along wi th
assertions are put together in a set of executable test cases wri t ten i n a behave framework.
The generated test cases are suitable for regression testing performed by the C I pipeline.

Futhermore, we used our solution to test 5 G N O M E G U I applications. For 2 of those
applications, we extended the testing on their flatpak versions. The testing performed wi th
our test generator has proven the abi l i ty to identify unknown bugs i n mult iple applications
which were reported to developers. We also verified the deployment of the tests generated
by our solution by performing several successful test runs w i t h a selected group of tests
(shallow tests) i n the Desktop-CI environment used by R e d Hat .

We have also described the l imitat ions caused by the accessibility layer that we encoun
tered during the testing. These l imitat ions par t ia l ly changed our approach to keep the
implementation as general as possible and forced us to integrate some application-specific
changes in our solution. The majority of issues we encountered wi th the accessibility in
G T K 3 applications need to be fixed wi th in the affected applications. However, the accessi
bi l i ty bugs are usually not a priority, unless they are cr i t ical .

A plan for future work includes the integration of new parameters that would allow
us to test only a selected part of the applicat ion. The evaluation of code coverage results
achieved by our test generator has shown, that we can possibly increase the level of the
code coverage by including more test files supported by applications. Therefore, we might
implement a mechanism that w i l l exchange mult iple files dur ing the test generation.

52

Bibliography

[1] Automated Testing Advantages, Disadvantages and Guidelines [online]. 2 0 0 5 [cit.
2020-04-25]. Available at: http://www.exforsys.com/tutorials/testing/automated-
test ing-advantages-disadvantages-and-guidelines.html.

[2] Flatpak [online]. 2 0 2 0 - 0 3 - 1 6 [cit. 2020-04-20]. Available at:

https: //wiki.debian.org/FlatPak.

[3] A L E X A N D E R , V . , B E N S O N , C , C A M E R O N , B . , H A N E M A N , B . , O ' B R I A I N , P . et al .

GNOME Accessibility Developers Guide [online]. G N O M E Documentat ion Project,
2 0 0 8 [cit. 2019-6-11] . Available at:

https: / / developer.gnome.org/accessibility-devel-guide/stable/index.html.en.

[4] A L E G R O T H , F . R . R . L . V i s u a l G U I testing in practice: challenges, problemsand
l imitat ions. Empirical Software Engineering. New York : Springer U S . 2 0 1 5 , vol . 2 0 ,
no. 3 , p. 6 9 4 - 7 4 4 . I S S N 1 3 8 2 - 3 2 5 6 .

[5] A R L T , S., P O D E L S K I , A . , B E R T O L I N I , C , S C H A F , M . , B A N E R J E E , I. et a l . Lightweight

Static Analys is for G U I Testing. In: 2012 IEEE 23rd International Symposium on
Software Reliability Engineering. I E E E , 2 0 1 2 , p. 3 0 1 - 3 1 0 . I S B N 9 7 8 1 4 6 7 3 4 6 3 8 2 .

[6] B E S T , S. Analyzing Code Coverage with gcov [online]. 2 0 1 9 - 0 3 - 0 9 [cit. 2020-01-16] .

Available at:
https: //www. linuxtoday.com/blog/anal yzing-code-coverage-with-gcov.html.

[7] C E R Z A , Z . , R O U S S E A U , E . , M A L C O L M , D . and H U M P A , V . Package dogtail [online].

R e d Hat , Inc., 2 0 1 4 [cit. 2019-12-20]. Available at:
https: I If edorapeople.org/~vhumpa/dogtail/epydoc/.

[8] C H A N D E L , V . S. Deep Learning based Text Recognition (OCR) using Tesseract and
OpenCV [online]. B i g V i s i o n L L C , 2 0 1 8 [cit. 2019-12-26]. Available at:
https: //www.learnopencv.com/deep-learning-based-text-recognition-ocr-using-
tesseract-and-opencv/.

[9] DiGGS, J . GTK+ and ATK - A Foundation for GNOME Accessibility [online].
G N O M E Documentat ion Project, 2 0 1 1 [cit. 2019-6-11]. Available at:
https://wiki.gnome.org/Accessibility/Documentation/GN0ME2/AtkGuide/Gtk.

[10] F R E E S O F T W A R E F O U N D A T I O N , I N C . Introduction to GNU Xnee [online]. 2 0 1 2 [cit.

2020-01-16]. Available at: https://xnee.wordpress.com/.

[11] G A G N O N , C . Xpresser [online]. 2 0 1 2 - 1 2 - 2 2 [cit. 2020-01-16]. Available at:

https: //wiki.ubuntu.com/Xpresser.

5 3

http://www.exf
http://debian.org/FlatPak
http://developer.gnome.org/
http://linuxtoday.com/blog/anal
http://edorapeople.org/~vhumpa/dogtail/epydoc/
http://www.learnopencv.com/deep-learning-based-text-recognition-ocr-using-
https://wiki.gnome.org/Accessibility/Documentation/GN0ME2/AtkGuide/Gtk
https://xnee.wordpress.com/

[12] J A A S K E L A I N E N , A . , K A T A R A , M . , K E R V I N E N , A . , M A U N U M A A , M . , P A A K K O N E N , T .

et a l . Au tomat ic G U I test generation for smartphone applications - an evaluation.
In: 2009 31st International Conference on Software Engineering - Companion
Volume. I E E E , 2 0 0 9 , p . 1 1 2 - 1 2 2 . I S B N 9 7 8 1 4 2 4 4 3 4 9 5 4 .

[13] M O R E I R A , P . A . C . N . M . M . A . Pattern-based G U I testing: Br idg ing the gap
between design and quali ty assurance. Software Testing, Verification and Reliability.
2 0 1 7 , vol . 2 7 , no. 3 , p. n / a - n / a . I S S N 0 9 6 0 - 0 8 3 3 .

[14] N G U Y E N , R . B . B . I. and M E M O N , A . G U I T A R : an innovative tool for automated
testing of GUI-d r iven software. Automated Software Engineering. Boston: Springer
U S . 2 0 1 4 , vol . 2 1 , no. 1, p. 6 5 - 1 0 5 . I S S N 0 9 2 8 - 8 9 1 0 .

[15] N I D H R A , S. Black B o x and W h i t e Box Testing Techniques - A Literature Review.
International Journal of Embedded Systems and Applications. June 2 0 1 2 , vol . 2 ,
p. 2 9 - 5 0 .

[16] N Y M A N , N . In Defense of Monkey Testing. Software Testing and Quality Engineering
Magazine. 2 0 0 0 - 0 1 , p . 1 8 - 2 1 .

[17] O D E H N A L , M . Automation of Desktop Applications [online]. 2 0 2 0 [cit. 2020-04-20] .

Available at: https://dogtail.gitlab.io/qecore/doc_basic_automation.html.

[18] O P E N C V T E A M . About Open Source Computer Vision Library [online]. O p e n C V ,
2 0 1 9 [cit. 2019-12-26] . Available at: https://opencv.org/about/.

[19] P A R E N T E , P . Package pyatspi [online]. I B M Corporat ion, 2 0 0 7 [cit. 2019-12-8] .

Available at: https://people.gnome.org/~parente/pyatspi/doc/.

[20] P A R M A R , D . Exploratory testing [online], [cit. 2020-04-20] . Available at: https:
//www.atlassian.com/continuous-delivery/software-testing/exploratory-testing.

[21] R E I S , J . and M O T A , A . A i d i n g exploratory testing wi th pruned G U I models.
Information Processing Letters. Elsevier B . V . 2 0 1 8 , vol . 1 3 3 , p. 4 9 - 5 5 . I S S N
0 0 2 0 - 0 1 9 0 .

[22] R u s s o , J . D . 5 Reasons To Use YAML Files In Your Machine Learning Projects
[online], towardsdatascience.com, 2 0 1 9 [cit. 2020-4-21] . Available at:
https://towardsdatascience.com/5-reasons-to-use-yaml-files-in-your-machine-
Iearning-projects-d4c7b9650f27.

[23] S A C O L I C K , I. W h a t is C I / C D ? Continuous integration and continuous delivery
explained. InfoWorld.com. M a y 1 0 2 0 1 8 . Copyright - Copyright Infoworld Med ia
Group M a y 1 0 , 2 0 1 8 ; Last updated - 2 0 2 0 - 0 3 - 3 0 .

[24] V I N C E N T , L . Announcing Tesseract OCR [online]. Google Developers B log , 2 0 0 6 [cit.
2019-12-26] . Available at:

http ://googlecode.blogspot.com/2006/08/announcing-tesseract-ocr.html.

[25] Y U A N , X . , C O H E N , M . B . and M E M O N , A . M . G U I Interaction Testing:

Incorporating Event Context . IEEE Transactions on Software Engineering. Ju ly
2 0 1 1 , vol . 3 7 , no. 4 , p. 5 5 9 - 5 7 4 . I S S N 2 3 2 6 - 3 8 8 1 .

5 4

https://dogtail.gitlab.io/qecore/doc_basic_automation.html
https://opencv.org/about/
https://people.gnome.org/~parente/pyatspi/doc/
http://www.atlassian.com/continuous-delivery/software-testing/exploratory-testing
http://towardsdatascience.com
https://towardsdatascience.com/5-reasons-to-use-yaml-files-in-your-machine-
http://InfoWorld.com

[26] Z A N D E R , J . , S C H I E F E R D E C K E R , I . and M O S T E R M A N , P . J . Model-Based Testing for

Embedded Systems. C R C Press, 2 0 1 1 . I S B N 9 7 8 1 4 3 9 8 1 8 4 7 3 .

55

Appendix A

Abbreviations

A T K Accessibi l i ty Toolki t

A T - S P I Assistive Technology Service Provider Interface

C I Continuous Integration

C D Continuous Delivery

G A I L G N O M E Accessibi l i ty Implementation L ib ra ry

G C C G N U Compi ler Col lect ion

G C O V G N U Coverage Testing Too l

G N U G N U ' s Not U n i x

G N O M E G N U Network Object M o d e l Environment

G T K The G N O M E Toolki t

G U I Graphica l user interface

L T S M Long Short Term Memory

R H E L R e d Hat Enterprise L i n u x

pid process identification number

r p m R P M package manager

R R N Recurrent Neura l Network

O C R Opt ica l Image Recogni t ion

O p e n C V Open Source Computer V i s ion L ib ra ry

U I User Interface

56

Appendix B

Setup Instructions and User
Manual

Testing wi th our test generator requires the following setup:

1. Open a terminal ,

2. Copy the contents of the attached medium or clone a git repository by executing
$ g i t clone https://github.com/mkrajnak/testextractor

3. Based on the underlying L i n u x dis t r ibut ion (Fedora or RHEL), ins ta l l the dependen
cies located i n the install folder:
$ cd i n s t a l l && sudo dnf -y i n s t a l l ./*.rpm

4. Enable the A T - S P I :
$ gsettings set org.gnome.desktop.interface t o o l k i t - a c c e s s i b i l i t y true

5. Setup Tesseract (requires external software repositories):
$ dnf config-manager -add-repo
https://download.opensuse.org/repositories/home:
/Alexander_Pozdnyakov/CentOS_8/
$ rpm -import https://build.opensuse.org/projects/home:
Alexander_Pozdnyakov/public_key
$ dnf -y i n s t a l l tesseract

6. In the testextractor directory, create a v i r tua l environment and instal l the Py thon3
dependencies:
$ python3 -m venv .venv
$ source .venv/bin/activate
$ pip i n s t a l l - r requirements.txt

7. Intruction to use the test generator are shown Li s t ing B . l .

57

https://github.com/mkrajnak/testextractor
https://download.opensuse.org/repositories/home
https://build.opensuse.org/projects/home

1 Usage: testgen.py [OPTIONS]
2
3 A c c e s s i b i l i t y t e s t generation t o o l f o r GTK+ applications
4
5 Options:
6 —app TEXT Name of the a p p l i c a t i o n entry i n apps.yaml
7 (compulsory)
8 —generate-project-only Generates only the project f o l d e r f o r —app
9 — d i s a b l e - o c r Disables OCR

10 — s h a l l o w Disables the model expansion (test only nodes
11 a v a i l a b l e a f t e r s t a r t)
12 —verbose Enables verbose logging
13 — t e s t INTEGER Regenerates only defined t e s t , expected to be used
14 with — s h a l l o w
15 — h e l p Show t h i s message and e x i t .

Lis t ing B . l : output of ./testgen.py — h e l p

58

Appendix C

Test Generator Bug Report

1 . . .
2 WARNING:
3 TEST:0 contains CRITICAL:
4
5 (evince:15299): g l i b - c r i t i c a l **: 02:20:18.264: g_variant_new_string:

assertion ' s t r i n g != n u l l ' f a i l e d
6 Steps to Reproduce:
7 * St a r t : "evince" v i a command "evince test_files/gnome-documents-

getting-started.pdf" i n session
8 * State: "check box" "Presentation" "showing" i s "False"
9 * Action: " c l i c k " "Presentation" "check box"

10 ...
Lis t ing C . l : A demonstration of the bug found by our test generator

59

Appendix D

Examples of Generated Test Cases

1 Feature: l i b r e o f f i c e - s t a r t c e n t e r t e s t s
2 ...
3 @10_MasterDocument
4 Scenario: l i b r e o f f i c e - s t a r t c e n t e r : Master Document
5 * St a r t : " l i b r e o f f i c e - s t a r t c e n t e r " v i a command " l i b r e o f f i c e —

norestore" i n session
6 * Action: " c l i c k " " F i l e " "menu"
7 * Action: " c l i c k " "New" "menu"
8 * State: "menu item" "Master Document" "showing" i s "True"
9 * Action: " c l i c k " "Master Document" "menu item"
10 * State: "frame" "Navigator" i s shown
11 * OCR: "Navigator" i s shown on the screen
12
13 @ll_Templates
14 Scenario: l i b r e o f f i c e - s t a r t c e n t e r : Templates...
15 * St a r t : " l i b r e o f f i c e - s t a r t c e n t e r " v i a command " l i b r e o f f i c e —

norestore" i n session
16 * Action: " c l i c k " " F i l e " "menu"
17 * Action: " c l i c k " "New" "menu"
18 * State: "menu item" "Templates..." "showing" i s "True"
19 * Action: " c l i c k " "Templates..." "menu item"
20 * State: "dialog" "Templates" i s shown
21 * OCR: "Templates" i s shown on the screen
22
23 @12_0pen
24 Scenario: l i b r e o f f i c e - s t a r t c e n t e r : Open...
25 * St a r t : " l i b r e o f f i c e - s t a r t c e n t e r " v i a command " l i b r e o f f i c e —

norestore" i n session
26 * Action: " c l i c k " " F i l e " "menu"
27 * State: "menu item" "Open..." "showing" i s "True"
28 * Action: " c l i c k " "Open..." "menu item"
29 * State: " f i l e chooser" "Open" i s shown
30 * OCR: "Open" i s shown on the screen
31

60

32 @13_0penRemote
33 Scenario: l i b r e o f f i c e - s t a r t c e n t e r : Open Remote...
34 * St a r t : " l i b r e o f f i c e - s t a r t c e n t e r " v i a command " l i b r e o f f i c e —

norestore" i n session
35 * Action: " c l i c k " " F i l e " "menu"
36 * State: "menu item" "Open Remote..." "showing" i s "True"
37 * Action: " c l i c k " "Open Remote..." "menu item"
38 * State: "frame" "Remote F i l e s " i s shown
39 * OCR: "Remote F i l e s " i s shown on the screen
40 * State: "dialog" "Remote F i l e s " i s shown
41 * OCR: "Remote F i l e s " i s shown on the screen
42
43 @14_NoDocuments
44 Scenario: l i b r e o f f i c e - s t a r t c e n t e r : No Documents
45 * St a r t : " l i b r e o f f i c e - s t a r t c e n t e r " v i a command " l i b r e o f f i c e —

norestore" i n session
46 * Action: " c l i c k " " F i l e " "menu"
47 * Action: " c l i c k " "Recent Documents" "menu"
48 * State: "menu item" "No Documents" "showing" i s "True"
49 * Action: " c l i c k " "No Documents" "menu item"
50
51 @15_Letter
52 Scenario: l i b r e o f f i c e - s t a r t c e n t e r : L e t t e r . . .
53 * St a r t : " l i b r e o f f i c e - s t a r t c e n t e r " v i a command " l i b r e o f f i c e —

norestore" i n session
54 * Action: " c l i c k " " F i l e " "menu"
55 * Action: " c l i c k " "Wizards" "menu"
56 * State: "menu item" "Letter..." "showing" i s "True"
57 * Action: " c l i c k " "Letter..." "menu item"
58 * State: "dialog" "Letter Wizard" i s shown
59 * OCR: "Letter Wizard" i s shown on the screen
60
61 @16_Fax
62 Scenario: l i b r e o f f i c e - s t a r t c e n t e r : Fax...
63 * St a r t : " l i b r e o f f i c e - s t a r t c e n t e r " v i a command " l i b r e o f f i c e —

norestore" i n session
64 * Action: " c l i c k " " F i l e " "menu"
65 * Action: " c l i c k " "Wizards" "menu"
66 * State: "menu item" "Fax..." "showing" i s "True"
67 * Action: " c l i c k " "Fax..." "menu item"
68 * State: "frame" "<Empty>" i s shown

Lis t ing D . l : Test cases generated for LibreOffice StartCenter

61

Appendix E

Example of a Generated Project
Environment File

1 #!/usr/bin/env python3
2 import sys
3 import traceback
4 from os import system
5
6 from qecore.sandbox import TestSandbox
7
8 def b e f o r e _ a l l (c t x) :
9 t r y :

10 ctx.sandbox =TestSandbox("libreoffice-startcenter")
11 ctx.app =ctx.sandbox.get_application("libreoffice-startcenter"
12 , ally_app_name="soffice"
13 , app_process_name="soffice.bin"
14 , desktop_file_path="/usr/share/applications/libreoffice-startcenter.desktop")
15 except Exception as e:
16 print(f"Environment error: b e f o r e _ a l l : -[e]-")
17 traceback.print_exc(file=sys.stdout)
18 sys.exit(1)
19
20 def before_scenario(ctx, scenario):
21 t r y :
22 systemO'bash cleanup, sh")
23 # T0D0: Add a custom cleanup before runnnig the test
24 ctx.sandbox.before_scenario(ctx, scenario)
25 except Exception as e:
26 print(f"Environment error: before_scenario: {e}")
27 traceback.print_exc(file=sys.stdout)
28 sys.exit(1)
29
30 def afte r _ s c e n a r i o (c t x , scenario):
31 t r y :
32 ctx.sandbox.after_scenario(ctx, scenario)
33 except Exception as e:
34 print(f"Environment error: after_scenario: -[e]-")
35 traceback.print_exc(file=sys.stdout)

Lis t ing E . l : The environment. py file generated by our test generator for LibreOfnce
StartCenter

62

Appendix F

Event Flow Graphs

Figure F . 3 : In i t ia l event flow graph after the start of L ibreOmce StartCenter

Figure F .5 : In i t ia l event flow graph obtained after the start of Evince

Figure F .6 : F i n a l event flow graph of Evince

65

Figure F .7 : In i t ia l event flow graph obtained after the start of Gedi t

Appendix G

Contents of the Attached Medium

/
CI_test_runs - logs from performed CI te s t runs
coverage - the gcov code coverage reports f o r 3 of t e s t components
examples - examples of generated t e s t cases f o r tested components
i n s t a l l - required dependencies
t e s t e x t r a c t o r - source f i l e s of our t e s t generator
text - sources of t h i s t h e s i s
xkrajn02.pdf - f i n a l version of t h i s t h e s i s

67

