
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

HIGH-LEVELPROGRAMMINGLANGUAGETRANSPILERS
HIGH-LEVEL PROGRAMMING LANGUAGE TRANSPILERS

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR ANDREJ MOKRIŠ
AUTOR PRÁCE

SUPERVISOR prof. RNDr. ALEXANDER MEDUNA, CSc.
VEDOUCÍ PRÁCE

BRNO 2024

Institut: Department of Information Systems (DIFS)

Student: Mokriš Andrej

Programme: Information Technology

Category: Compiler Construction

Academic year: 2023/24

Assignment:

1. Based on the advisor's guidance, study source-to-source compilers, which make translations
betweeen high-level programming languages.

2. Based on the advisor's instructions, study intermediate codes used by these compilers.
3. Based upon the information obtained in parts 1 and 2, design a new transpiler that make translations

between selected high-level programming languages.
4. Implement the designed compiler. Demonstrate its functionality by translating the code between

selected languages, for example a translation from C++ into JavaScript.
5. Evaluate the results achieved and discuss potential future work on the project.

Literature:
• Meduna, A.: Elements of Compiler Design. Auerbach Publications; 1st edition (December 3, 2007).

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Meduna Alexandr, prof. RNDr., CSc.

Head of Department: Kolář Dušan, doc. Dr. Ing.

Beginning of work: 1.11.2023

Submission deadline: 9.5.2024

Approval date: 30.10.2023

Bachelor's Thesis Assignment
153866

High-Level Programming Language TranspilersTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
A rapid development of programming languages has caused practical problems, such as
not granting backward compatibility. Transpilers offer a potential solution to some of
these problems. This thesis presents concepts of formal languages, compilers, and more
detailed description of parsing methods. The goal of this thesis is to design and implement
a transpiler that converts a subset of PHP to JavaScript.

Abstrakt
Rýchly vývoj programovacích jazykov priniesol radu praktických problémov, napríklad
obmedzenú spätnú kompatibilitu. Časť týchto problémov môže byť riešená transpilátormi.
Táto práca predstavuje základné koncepty z teórie formálnych jazykov, prekladačov a prís-
tupov k syntaktickej analýze. Cieľom práce je navrhnúť a implementovať transpilátor, ktorý
prekladá podmnožinu jazyka PHP do jazyka JavaScript.

Keywords
Transpiler, Compiler, Syntax analysis, Static analysis, Abstract syntax tree, Recursive-
descent parser, JavaScript, PHP

Klíčová slova
Transpilátor, Kompilátor, Syntaktická analýza, Statická analýza, Abstraktný syntaktický
strom, Rekurzívny zostup, JavaScript, PHP

Reference
MOKRIŠ, Andrej. High-Level Programming Language Transpilers. Brno, 2024. Bachelor’s
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor prof.
RNDr. Alexander Meduna, CSc.

Rozšířený abstrakt
Neustály vývoj programovacích jazykov priniesol radu praktických problémov, ako naprík-
lad obmedzená spätná kompatibilita. Časť týchto problémov môže byť riešená automat-
ickým prekladom do iného jazyka pomocou transpilátoru. Transpilátor prekladá zdrojový
kód z jedného jazyka do druhého, no na rozdiel od tradičného prekladača sú dané jazyky
na podobnej úrovni abstrakcie. Praktickým príkladom transpilátoru môžu byť Babel, ktorý
prekladá JavaScript verzie ES6 do verzie ES5, zabezpečujúc tak spätnú kompatibilitu so
staršími verziami webových prehliadačov, či 2to3, ktorý prekladal kód jazyka Python verzie
2 do verzie 3.

Hlavným cieľom práce je návrh, implementácia a testovanie transpilátoru z podmnožiny
jazyka PHP do jazyka JavaScript. V úvode sa práca zaoberá motiváciu pre vývoj tran-
spilátorov a popisuje štruktúru práce. Druhá kapitola definuje pojmy z teórie formálnych
jazykov ako napríklad jazyk, abeceda, konečný automat, či bezkontextová gramatika. Sú
tu pojmy, ktoré sú využívané pri výstavbe prekladačov aj v tejto práci.

Následne sa práca zaoberá teóriou prekladačov, kde sú popísané jednotlivé fázy prekladu
a vzťahy medzi nimi. Práca popisuje základný princíp činnosti jednotlivých fáz prekladu,
ako lexikálna či syntaktická analýza, až po generovanie cieľového kódu. Taktiež opisuje
rozdiel medzi tradičným prekladačom a transpilátorom. Dva základné princípy syntaktickej
analýze - zhora nadol (top-down) a z dola nahor (bottom-up) sú vysvetlené v kapitole 4,
ktorá detailnejšie približuje a fungovanie, výhody a nevýhody využitia daných prístupov
pri výstavbe prekladača. Dané prístupy sú následne využité aj pri realizácii praktickej časti
práce.

Kapitola 5 obsahuje popis jazyka PHP, ktorý je zdrojový jazyk v rámci implemen-
tácie transpilátoru a jazyka JavaScript, ktorý je vybraný ako cieľový jazyk. Kapitola ob-
sahuje popis podporovanej podmnožiny cieľového jazyka a vybrané syntaktické a sémantické
rozdiely, ktoré ovplyvňujú výsledný návrh a implementáciu.

Práca opisuje proces návrhu transpilátora s dôrazom na možnosť budúcej rozšíriteľnosti
ako podporovanej podmnožiny jazyka, tak vstavaných funkcií. Implementácia nevyužíva
žiadne pomocné knižnice alebo nástroje na generovanie lexikálne alebo syntaktickej analýzy.
Syntaktická analýza využíva kombináciu dvoch prístupov - rekurzívneho zostupu, teda
metódy zhora-nadol, ktorá spracováva štruktúru programu ako podmienky či cykly a metódu
precedenčnej syntaktickej analýzy, ktorá spracováva výrazy a pomocou precedenčnej tabuľky
zabezpečuje vyhodnocovanie operácií v správnom poradí. Sémantická analýza overuje kom-
patibilitu typov pri operáciách, či existenciu premenných a funkcií. Zo zostaveného a ana-
lyzovaného stromu je následne vygenerovaný kód v cieľovom jazyku.

Výsledná implementácia podporuje základné štruktúry ako podmienky, či rôzne typy
cyklov. Taktiež podporuje volanie a definovanie vlastných funkcií a malú podmnožinu vs-
tavaných funkcií zdrojového jazyka primárne pre prácu s reťazcami, poľami, či matematické
operácie, a vygenerovaný kód je funkčne ekvivalentný so zdrojovým. Funkčnosť riešenie je
otestovaná na vzorke PHP programov, ktorých výstup je porovnaný s výstupom preloženého
kódu. Funkčnosť je taktiež porovnaná s existujúcimi riešeniami poskytujúcimi preklad z
PHP do jazyka JavaScript.

High-Level Programming Language Transpilers

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of prof. RNDr. Alexander Meduna CSc. I have listed all the literary
sources, publications and other sources, which were used during the preparation of this
thesis.

. .
Andrej Mokriš

May 7, 2024

Acknowledgements
I would like to thank my supervisor, Prof. RNDr. Alexander Meduna, CSc., for his guidance
and prompt responses. I would also like to express my gratitude to my family and my
girlfriend for their support.

Contents

1 Introduction 3

2 Introduction to formal languages 5
2.1 Alphabets and languages . 5
2.2 Finite automata . 5
2.3 Grammar . 6

3 Compilers 8
3.1 Compiler . 8
3.2 Transpiler . 8
3.3 Interpret . 9
3.4 The structure of a compiler . 9
3.5 The structure of a transpiler . 13

4 Syntax analysis approaches 14
4.1 Top-down parsing . 14
4.2 Bottom-up parsing . 15

5 Source and target languages 19
5.1 PHP . 19
5.2 JavaScript . 20

6 Design, implementation, and testing 22
6.1 Design of the transpiler . 22
6.2 Lexical analysis . 23
6.3 Symbol table . 24
6.4 Syntax analysis . 24
6.5 Semantic analysis . 27
6.6 Code generation . 28

7 Testing and comparison with alternative tools 30
7.1 Testing . 30
7.2 Comparison with alternative tools . 31

8 Conclusion 33

Bibliography 34

A Contents of the included storage media 35

1

List of Figures

3.1 Compiler phases diagram . 9
3.2 Finite state machine accepting a PHP variable name 10
3.3 Parsing of the expression to the derivation tree 11
3.4 An example of the optimization of the three-address code 13
3.5 Simplified principle of the transpiler . 13

6.1 Visualized AST of a simple PHP program 25

2

Chapter 1

Introduction

The process of rewriting the codebase from one programming language to another is very
resource-intensive and error-prone. Transpilers, also known as source-to-source compilers,
help automate parts of the process and make it more efficient. Languages that were a
popular choice a while ago may have been replaced by newer alternatives that excel in many
key factors, such as performance, speed of development, or popularity in the community.
As programming languages are constantly being improved to support new features, they
may no longer maintain backward compatibility with older platforms or runtimes, therefore
programmers are limited to the subset of a language they can use. This practical problem
can be solved using a transpiler. An example may be Babel, which transpiles the ES6+
version of JavaScript to older versions supported by legacy JavaScript environments, such
as older browsers.

The principle and structure of transpilers is similar to that of traditional compilers. It
consists of a sequence of phases described in 3.4, where each phase has its function in the
chain. In comparison with traditional compilers, such as GCC, transpilers generate code
at a similar level of abstraction, usually from a source high-level programming language to
another high-level language, producing functionally equivalent source code.

The goal of this thesis is to design and implement a transpiler from PHP to JavaScript,
which supports a subset of the source language and generates code in the target language
so that programs are functionally equivalent. PHP and JavaScript are both dynamically
typed scripting programming languages that are traditionally used in web development,
with PHP running on the server and JavaScript on the client side. With the popularization
of using JavaScript on the server side, mainly due to the arrival of the V8 JavaScript engine,
it has proven beneficial to use the same language on the frontend as well as on the backend.
Furthermore, JavaScript is the most popular language according to developer community
surveys, such as Stack overflow developer survey 20231, and many codebases still written in
PHP, with the big enough supported subset of the language, the tool may find a practical
usage.

In chapter 2, the foundations of the theory of formal language that are referred to
throughout the thesis are defined. That includes concepts such as language 2.1.3, grammar
2.3.1, or finite automata 2.2.1, providing their formal definitions and practical usage in the
context of compiler development.

1Developer survey 2023 : https://survey.stackoverflow.co/2023

3

https://survey.stackoverflow.co/2023

After the necessary theoretical introduction, the chapter 3 explains basic ideas of com-
piling, presents differences between different types of language processors, and describes
individual phases of the compilation process.

The chapter 4 provides a more detailed explanation of the syntax analysis and discusses
two main approaches to syntax analysis; top-down 4.1 and bottom-up 4.2 parsing, their
principles and limitations as well as construction of the abstract syntax tree.

The description of selected source and target programming languages is in the chapter 5.
It provides a general description of languages, their usual use cases, and semantic differences,
which influence the process of design and implementation of the transpiler.

The practical segment of the thesis, detailed in chapter 6 provides insight into design
considerations before the implementation, the implementation process in the Python pro-
gramming language.

Testing of the implementation and comparison of its capabilities with existing tools are
described in chapter 7.

4

Chapter 2

Introduction to formal languages

Building a compiler requires a certain level of knowledge about formal languages. This
chapter explains formal languages and mathematics tools that will be referred to throughout
the thesis, such as alphabet 2.1.1, language 2.1.3, finite automata 2.2.1, or a context-free
grammar 2.3.1. In this chapter, the information presented are adopted from [7], [1]. Formal
definitions are adopted from [8].

2.1 Alphabets and languages
Definition 2.1.1 An alphabet Σ is a finite, nonempty set of elements, which are called
symbols.

Definition 2.1.2 Let Σ be an alphabet. 𝜖 denotes the empty string over Σ. If 𝑥 is a string
over Σ and 𝑎 ∈ Σ, then 𝑥𝑎 is a string over Σ.

Definition 2.1.3 Let Σ* denote the set of all strings over Σ. Every subset 𝐿 ⊆ Σ* is a
language over Σ.

2.2 Finite automata
Finite automata are fundamental models of lexical analysis. Their task is to accept or reject
an input. A finite automaton accepts an input string 𝑥 if and only if there exists a path
in the transition graph from the start state to one of the accepting states, such that the
symbols along the path spell out 𝑥.

Definition 2.2.1 A finite automaton (FA) is a 5-tuple:

𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹)

where:

• 𝑄 is a finite set of states.

• Σ is an input alphabet.

• 𝑅 is a finite set of rules of the form: 𝑝𝑎 → 𝑞, where 𝑝, 𝑞 ∈ 𝑄, 𝑎 ∈ Σ ∪ {𝜖}.

• 𝑠 ∈ 𝑄 is the start state.

5

• 𝐹 ⊆ 𝑄 is a set of final states.

The general variants represent mathematically convenient models, which are difficult
to apply in practice. In general, these automata work non-deterministically, meaning that
from the current configuration of the automata, there are several possible moves with the
same input symbol. Such behavior makes the implementation of the lexical analyzer more
difficult. For those reasons, there are more restricted models, such as 𝜖-free automata or
deterministic finite state automata.

Definition 2.2.2 Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹) be an finite automaton. 𝑀 is an 𝜖-free finite
automaton if for all rules 𝑝𝑎 → 𝑞 ∈ 𝑅, where 𝑝, 𝑞 ∈ 𝑄, holds 𝑎 ∈ Σ (𝑎 ̸= 𝜖).

Definition 2.2.3 Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹) be an 𝜖-free finite automaton. 𝑀 is a deter-
ministic finite automaton (DFA) if for each rule 𝑝𝑎 → 𝑞 ∈ 𝑅 it holds that 𝑅 − {𝑝𝑎 → 𝑞}
contains no rule with the left-hand side equal to 𝑝𝑎.

All these variants are capable of recognizing the same languages, called the regular
languages, so we can always use any of them without any loss of generality. A finite
automaton can be represented either tabularly by a state table or graphically using a state
diagram.

2.3 Grammar
A grammar is based upon finitely many rules, which contain terminal and nonterminal
symbols. Terminals represent tokens and nonterminal symbols formalize more general syn-
tactical entities, such as loops. A grammar derives string by beginning with the start
symbol and repeatedly replacing a nonterminal with the body of the production for that
nonterminal. If we find the derivation of the program, it is a syntactically well-formed
program.

Grammars used in the field of formal languages and compilers are often called a context-
free grammar 2.3.1 to point out that during any derivation step, a nonterminal is rewritten
regardless of the surrounding context.
Definition 2.3.1 A context-free grammar (CFG) is a quadruple

𝐺 = (𝑁,𝑇, 𝑃, 𝑆)

where:
• 𝑁 is an alphabet of nonterminals (sometimes called ”syntactic variables“).

• 𝑇 is an alphabet of terminals (referred to as ”tokens“), 𝑁 ∩ 𝑇 = ∅.

• 𝑃 is a finite set of rules of the form 𝐴 → 𝑥, where 𝐴 ∈ 𝑁 , 𝑥 ∈ (𝑁 ∪ 𝑇)*.

• 𝑆 ∈ 𝑁 is the start nonterminal.
By convention, terminal symbols are written by lowercase letters, such as 𝑎, 𝑏, 𝑐, and

nonterminals by uppercase letters 𝐴, 𝐵, 𝐶, 𝐷. As an example of a rewriting rule, consider
string 𝑥𝐴𝑦 and a rule 𝑟 : 𝐴 → 𝑢 ∈ 𝑅. By using this rule, 𝐺 makes a derivation step from
𝑥𝐴𝑦 to 𝑥𝑢𝑦 by changing 𝐴 to 𝑢, written as 𝑥𝐴𝑦 → 𝑥𝑢𝑦.

A language generated by the context-free grammar 2.3.1 is called a context-free language
(CFL).

6

Definition 2.3.2 Let 𝐿 be a language. 𝐿 is a context-free language (CFL) if there exists
a context-free grammar that generates 𝐿.

A parse tree is a graphical representation of a derivation that filters out the order
in which productions are applied to replace nonterminals. A grammar that produces more
than one parse tree for some sentence is said to be ambiguous. Similar to non-deterministic
finite automata, it causes practical problems in the process of implementation of the com-
piler, as the program has to determine, which parse tree is the correct one to continue with.

During the parsing, nonterminal symbols are rewritten by the body of the production.
In the case of top-down parsing, it finds the left-most derivation of the program, meaning
that during the derivation step, the leftmost nonterminal is rewritten.

Definition 2.3.3 Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be a CFG, let 𝑢 ∈ 𝑇 *, 𝑣 ∈ (𝑁 ∪ 𝑇)*. Let 𝑝 = 𝐴 →
𝑥 ∈ 𝑃 be a rule. Then, 𝑢𝐴𝑣 directly derives 𝑢𝑥𝑣 in the leftmost way according to 𝑝 in 𝐺,
written as 𝑢𝐴𝑣 ⇒𝑙𝑚 𝑢𝑥𝑣[𝑝].

The construction of a top-down parser is aided by a construction of sets First and
Follow, as they allow to choose the correct production rule based on the next input symbol.
𝐹𝑖𝑟𝑠𝑡(𝑥) is the set of all terminals that appear as the first symbol of a string derivable from
𝑥.

Definition 2.3.4 Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be a CFG. For every 𝑥 ∈ (𝑁 ∪ 𝑇)*, we define the
set First(𝑥) as First(𝑥) = {𝑎 : 𝑎 ∈ 𝑇, 𝑥 ⇒* 𝑎𝑦; 𝑦 ∈ (𝑁 ∪ 𝑇)*}.

𝐹𝑜𝑙𝑙𝑜𝑤(𝐴), for non-terminal 𝐴 is a set of all terminals, that can appear immediately to
the right of that non-terminal in some sentential form derivable from the start symbol 𝑆.

Definition 2.3.5 Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be a CFG. For every 𝐴 ∈ 𝑁 , we define the set
Follow(𝐴) as Follow(𝐴) = {𝑎 : 𝑎 ∈ 𝑇, 𝑆 ⇒* 𝑥𝐴𝑎𝑦, 𝑥, 𝑦 ∈ (𝑁 ∪ 𝑇)*} ∪ {$: 𝑆 ⇒* 𝑥𝐴, 𝑥 ∈
(𝑁 ∪ 𝑇)*}.

7

Chapter 3

Compilers

This chapter explains the terms which are relevant in the context of solving the thesis. It
will explain the differences between compilers and transpilers and the steps in the process
of transpiling. This chapter uses information from [7],[1], and [5].

3.1 Compiler
A compiler is a computer program, which reads a source program in a source language
and translates it into a target program in a target language. A compiler is primarily used
for translating between languages at different levels of abstraction, usually from a high-
level programming language (C++, Java) to a low-level programming language (assembly
language, or machine code), which is specific to the architecture of the platform. The source
program and the target program are functionally equivalent. During the translation, the
compiler first analyzes the source program to verify that the source program is correctly
written in the source language. If so, the compiler generates the target program; otherwise,
report the error. The steps in the compiling process are explained in chapter 3.4.

3.2 Transpiler
A transpiler, also known as a source-to-source compiler, is a special type of compiler that
reads a source program in a source language and generates a functionally equivalent pro-
gram in a different, in some cases even the same programming language. In comparison
with the compiler 3.1, both source and target languages are at a similar level of abstraction.
Transpilers are used to address performance, developer experience, or compatibility prob-
lems. The problem with transpilers is, that different programming languages have many
semantic differences, that may not be obvious at first sight, which leads to a very complex
development process and testing. As an example of usage of transpilers, TypeScript1, which
is a superset of JavaScript with static typing and has to be transpiled back to JavaScript
to be executed, or Babel2, which transpiles JavaScript to older versions to grant backward
compatibility with older browsers.

1TypeScript: https://www.typescriptlang.org/
2Babel: https://babeljs.io/

8

https://www.typescriptlang.org/
https://babeljs.io/

3.3 Interpret
The last common type of language processor is called an interpret. Instead of translating the
source program into the target program, it directly executes the source program, without
requiring it to have been processed by a different program.

3.4 The structure of a compiler
The process of compilation is a complex problem, thus the process is segmented into distinct
phases. Each phase operates with specific inputs and outputs, where the output of the
previous layer is used as input for the next step in the chain.

The structure of the compiler is split into two main categories - the front end and the back
end. The front end analyzes the source program and builds the intermediate representation
of the source program, usually in the form of the three-address code or the abstract syntax
tree. The front end consists of lexical analysis 3.4.1, syntax analysis 3.4.2, and semantic
analysis 3.4.3. The role of the back end is target code generation. Such separation of
concerns ensures the benefit of modularity of compilers.

In addition to phases, compilers use symbol tables, which are data structures used to
hold information about the constructs of the source program. The entries in the table are
collected during the analysis phases of a compiler and contain information about identifiers,
such as name, position, and any relevant information [1].

Figure 3.1: Compiler phases diagram

9

3.4.1 Lexical analysis

The initial phase of a compiler is called lexical analysis or scanning. In this phase, the lexer
reads the stream of characters that make up the source program and groups the characters
into meaningful sequences called lexemes.

The main task of lexical analysis is the recognition and classification of lexemes and their
representation of them by their tokens. Its task is also to remove parts of the source code
that are not necessary for compiling, such as comments or whitespaces. For each lexeme,
the lexical analyzer produces a token of the form

<token-name, attribute-value>

that it passes on to the next phase, syntax analysis. The token-name attribute possesses the
information about the type of the token such as a variable name or a floating-point number.
This information is important for the process of syntax analysis. The attribute-value points
to an entry in the symbol table for this token. During the lexical analysis, new entries are
inserted into the symbol table. Information from the symbol table is used primarily during
the semantic analysis phase.

The lexical analyzer can be expressed using a deterministic finite state machine or a set of
regular expressions:

• In the case of finite state machines, transitions between states are determined by
the incoming character and the current state. If the state is declared as a terminal
state, and can not accept another character, a new token is returned, and the state
machine returns to the initial state. If there is no possible transition from the current
configuration with the incoming character, the lexer will report a lexical error.

q0: Start
$

q1: $
_/a-z/A-Z

q2

_/a-z/A-Z

Figure 3.2: Finite state machine accepting a PHP variable name

• Lexems can be described using regular expressions, which use three operations: con-
catenation, union, and iteration.

In practice, lexical analyzers are built using lexical analyzer generators, such as Lex [6].
It uses user-defined regular expressions to describe patterns for tokens using Lex language.
The Lex compiler translates the source code into a program in the C programming language,
which can be used as a lexical analyzer module within the compiler.

3.4.2 Syntax analysis

The second phase of the compiler is syntax analysis or parsing. The syntax of a programming
language describes the proper form of its programs. To specify syntax, the forms used are

10

called context-free grammars or BNF (Backus Naur form). Grammar consists of finitely
many rules that are used for derivation. An example of rules may be:

𝑠𝑡𝑚𝑡 → 𝑒𝑥𝑝𝑟;
| if (𝑒𝑥𝑝𝑟) 𝑠𝑡𝑚𝑡1
| assignment

𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 → identifier = 𝑒𝑥𝑝𝑟

The syntax analyzer uses tokens generated by the lexical analyzer to verify that the
string of tokens represents a syntactically well-formed program and is in compliance with
the grammar of the source language. Incoming tokens are compared with the expected
values, according to grammar rules. When the program is syntactically correct, the parser
generates a structured representation of the token stream, referred to as a parse tree, which
is used during subsequent phases of the translation. A parse tree is a graphical represen-
tation of derivation steps that show the order in which productions are applied to replace
nonterminals. Otherwise, the parser will report a syntax error.

There are two main approaches to parsing; top-down and bottom-up, which will be discussed
further in chapter 4.

Syntax analyzer closely cooperates with the semantic analysis and drives the entire process
of translation - referred to as syntax-directed translation. The syntax-directed translation
is done by attaching rules or program fragments to productions in grammar, which are
called semantic actions. The result of syntax-directed translation is the intermediate rep-
resentation of the program, usually a abstract syntax tree. It is derived from the parse tree,
however, it abstracts from any information, that is not essential for the compilation. It
may also perform various checks of the semantic analysis, such as type checking.

$a = [2, 4, 6];

<assign>

<var, a> <array>

<int, 2> <int, 4> <int, 6>

Parser

Figure 3.3: Parsing of the expression to the derivation tree

11

3.4.3 Semantic analysis

The semantic analyzer uses the parse tree, which is generated by the syntax analyzer,
and the information in the symbol table to check the program for semantic correctness.
This process detects errors that were not discovered during the lexical and syntax analysis,
as they cannot be defined formally using regular expressions or grammar. The semantic
analyzer checks the compatibility of types; for example, operation addition (+) is not
allowed between the integer and string types.

Using the symbol table verifies the existence of variables or functions used in the program.
It handles implicit type conversions. An example may be the operation multiplication (*)
between an integer and a floating-point number. In this case, the operator of type integer
will be converted to a floating-point number, without the programmer having to explicitly
make it so, as on a lower level, computers use different instructions to work with integers
and floating-point numbers. The result of the semantic analysis is an abstract syntax tree.

3.4.4 Intermediate code generation

After the analysis phase of the compilation, the compiler generates an intermediate code.
It is the internal version of the target program, which is similar to the machine code, also
called the three-address code. In a three-address code, there is at most one operator on
the right side of an instruction, so it does not allow for built-up arithmetic expressions.
This intermediate representation should have two important properties: It should be easy
to produce and easy to translate into the target machine.

The intermediate code serves as a bridge between the front end and the back end of a
compiler, where the front end analyzes a source program and creates an intermediate rep-
resentation from which the back end generates the target code. The intermediate code is
also used during the optimization phase of the compiling, which will be discussed in chapter
3.4.5.

3.4.5 Optimization

Optimization is an optional phase in the compilation process. The syntax-direct transla-
tion produces intermediate code that can be made more efficient so that it runs faster or
takes less space. The code is improved by various transformations, such as the removal of
unnecessary instructions or their replacement. However, the optimized program and the
original program have to be functionally equivalent.

The optimizer first breaks the program into basic blocks that are made up of sequences
of three-address instructions that are executed sequentially. Then it analyzes the use of
variables within these blocks and between them.

Optimization can be split into two different types - machine dependent and machine inde-
pendent optimization.

• Machine independent - transforms the intermediate code independently of the
target machine.

• Machine dependent - optimization for a specific type of hardware and architecture.
Focuses on effective register allocation so it results into a reduction of the number of
moves between the registers and the memory.

12

t1 = int2float(60)
t2 = id2 * t1
t3 = id2 + t2
id = t3

t1 = id3 * 60.0
id = id2 + t1

Figure 3.4: An example of the optimization of the three-address code

3.4.6 Code generation

The code generation phase is the last and it translates the intermediate representation of a
source program, which can either be an abstract syntax tree or a three-address code, to a
functionally equivalent target program and, thereby, completes the compilation process.

The code generation process is highly dependent on the target language. In the case of
traditional compilers, it is a low-level machine code, which means that the intermediate
representation of the program is translated into sequences of machine instructions. The
generated code is built for a specific type of machine. Transpilers, on the other hand,
usually generate code at a level of abstraction similar to that of the source code, which
means that in the case of high-level language transpilers, there is no need for machine-
dependent code generation.

3.5 The structure of a transpiler
Transpiler is simply a special type of traditional compiler that produces functionally equiv-
alent source code in different programming languages at a similar level of abstraction, which
means that the principle and structure are almost identical to that of a traditional compiler,
described in 3.4, which generates code in a lower level language. Phases, which belong to
the front end of a transpiler, work identically to the transpiler, as the source code has to
be split into tokens and parsed to construct an intermediate code representation, such as
an abstract syntax tree. Due to potentially different semantics of the source and target
programming languages, the abstract syntax tree is statically analyzed and transformed to
match the structure of the program in the target language, for example moving function
definitions to the start of the program in case of languages, that do not allow call before
definition, or moving variable declarations to match scopes in the target language. The
transformed tree is then used for the generation of the source code in the target language.
In addition to transpiling the source code, the transpiler needs to ensure support for the
built-in functions of the source language for the tool to be practically usable.

<?php

?>

let x;

PHP Source code AST
Javascript Source code

AST Transformation

Figure 3.5: Simplified principle of the transpiler

13

Chapter 4

Syntax analysis approaches

Syntax analysis 3.4.2 is the key part of every compiler. This chapter explains two common
approaches to syntax analysis: top-down parsing and bottom-up parsing. It will show its
strengths and limitations. Informations are adopted from [7], [1], and [11].

4.1 Top-down parsing
The top-down parser constructs its parse tree starting from the root of the tree and pro-
ceeding down towards the leaves of the tree, which represent terminal symbols. It reads
the token stream from left to right and tries to find the leftmost derivation 2.3.3 of the
input stream, meaning that at each step the leftmost nonterminal symbol is replaced by
its production rule. Top-down parsers are based on the LL(k) grammars, where the first
𝐿 stands from left-to-right scan and the second 𝐿 stands from left-most derivation. The 𝑘
indicates how many lookahead tokens it uses during parsing. However, in practice, LL(1)
grammar is preferred, as it simplifies the construction of the parser.

At each step of the parsing process, the key problem is, which production to pick. When
the production is chosen, the role of the parser is to verify that the incoming token matches
with the expected terminal symbols in the body of the production. When the incoming
token does not match the expected token, the parser reports a syntax error. As an example,
the rule which stands from if-statement:

statement → if (expression) statementList

has been chosen. After the if keyword, the parser expects left parentheses, otherwise
reports a syntax error due to an unexpected token. When the incorrect production has
been chosen, the parser backtracks to find an alternative production, which will match
the incoming token stream. Such an approach makes the practical implementation more
complex; however, it may be solved by predictive parsing.

The predictive parser relies on the parsing table, which is a two-dimensional array.
The parsing table is constructed using sets FIRST(X) 2.3.4 and FOLLOW(X) 2.3.5. The
LL(1) parse table is used to determine which rule should be applied for any combination of
the nonterminal symbol on the stack and the next token on the input stream. Each table
entry identifies which production to pick and continues the derivation using the production,
otherwise reports an error. By definition, an LL(1) grammar has exactly one rule to be
applied for each combination[11].

14

4.1.1 Recursive descent parsing

Recursive descent parsing is a top-down method of syntax analysis. It is a system of
mutually recursive procedures that parse the input program. For every nonterminal symbol
in the grammar, there typically exists a specific method, usually a Boolean function, that
determines whether the incoming token stream matches the expected program structure
defined by the grammar, comparing expected and the actual value of terminals and calling
corresponding procedures for expected nonterminals. The parsing algorithm starts with a
procedure corresponding to the start symbol of the grammar, which chooses the next step
in the derivation process based on the look-ahead symbol.

It runs until a complete parse tree is constructed, meaning the procedure correspond-
ing to the start symbols successfully finishes, otherwise reports an error. This method is
relatively simple to understand, as the implementation copies the grammar.

def IfRule() -> bool:
if match("if") and ExpressionRule() and match(":") and StatementRule():

return True
else:

report("syntax error")
return False

Listing 4.1: Nonterminal procedure matching if statement in Python

The recursive descent parser works with grammar that is not left-recursive. In context-
free grammar, a production rule is said to be left-recursive if the leftmost symbol of the
body is the same as the nonterminal at the head of the production.

𝑒𝑥𝑝𝑟 → 𝑒𝑥𝑝𝑟 + 𝑡𝑒𝑟𝑚

This creates a problem for recursive descent parsers, as it leads to infinite recursion when
attempting to expand the non-terminal symbol.

4.2 Bottom-up parsing
In contrast with the top-down parsing approach, bottom-up builds a parse tree starting at
the leaves and working up to the root. Each step in the derivation process represents a
𝑠ℎ𝑖𝑓𝑡 or a 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛. At each 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 step, a specific substring that matches the body
of a production is replaced by the nonterminal at the head of that production [1]. Similar
to top-down parsing, the key problem is which production to choose and whether to 𝑠ℎ𝑖𝑓𝑡
or 𝑟𝑒𝑑𝑢𝑐𝑒.

4.2.1 Operator-precedence parsing

Operator-precedence parsing is a popular deterministic bottom-up parsing method for ex-
pressions whose operators and their priorities control the parsing process, meaning oper-
ators with higher priorities are evaluated before lower-priority operators. It uses a stack,
the bottom of which is marked by a convention with the $ sign and a precedence table,
which shows the corresponding action for every combination of the top terminal and the
incoming symbol. At every step of the parsing process, the decision is made on whether an

15

action of 𝑠ℎ𝑖𝑓𝑡 or a 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 should take place. The decision is based on the symbol in
the precedence table.

• Shift - When the operation marks 𝑠ℎ𝑖𝑓𝑡 (usually marked with < symbol), the handle
symbol is added to the right side of the topmost terminal and current symbol is
pushed to the operator stack. In case of the = action, the current symbol is pushed
to stack without inserting the handle.

• Reduction - When the operation marks 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (usually marked with > symbol),
the parser verifies, whether there exists any production with the body matching the
top string at the pushdown. The end of the string at the stack is marked with a
handle symbol. If such a rule exists, the string is replaced with the nonterminal in
the head of the production. If there is not any rule matching production, the parser
reports an error.

• Error - The empty entry in the precedence table for the configuration of the topmost
terminal and an incoming character signals an error and ends the parsing process.

Algorithm 1: Operator-Precedence Parsing Algorithm [8]
1 Push($);
2 repeat
3 Let 𝑎 be the topmost terminal on the stack;
4 Let 𝑏 be the current token from the input string;
5 switch Table[𝑎][𝑏] do
6 case = do
7 Push(𝑏);
8 NextToken();
9 case < do

10 Replace 𝑎 with 𝑎 < on the stack;
11 Push(𝑏);
12 NextToken();
13 case > do
14 if < 𝑦 is the top string on the stack and 𝐴 → 𝑦 ∈ 𝑃 then
15 Replace < 𝑦 with 𝐴 on the stack;
16 end
17 else
18 Error;
19 end
20 case blank do
21 if 𝑎 = $ and 𝑏 = $ then
22 Success;
23 end
24 else
25 Error;
26 end
27 end
28 until Success or Error ;

16

In practice, the operator precedence parsers are frequently used in combination with
other parsers, including predictive parsers 4.1.1. In such configuration, the precedence
parser handles the syntax of expression, while the predictive parsers handle the general
structure of programming constructs, such as conditionals and loops [7].

4.2.2 LR parsing

LR parsers are table-driven bottom-up shift-reduce parsers, where L stands for left-to-right
scan of tokens and R for the rightmost derivation in reverse. The class of grammars that
can be parsed using LR methods is a proper superset of the class of grammars that can
be parsed with predictive or LL methods. This means that the power of the LR parser is
greater than that of other parsing methods and can be constructed to recognize virtually
all programming language constructs for which context-free grammars can be written [1].
It relies on the stack, which stores the states of the parser, whereas the other shift-reduce
types of parsers use stack to shift symbols representing terminals and nonterminals. Each
state summarizes the information contained in the stack below it. The LR table on which
the parser is built consists of two parts:

• Action part - Determines which action the parser should take, mainly what the next
state for the current configuration is, based on the current state and the next input
symbol. Common actions include Shift, Reduce, Accept, and Error action.

• Goto part - After the parser reduces a portion of the stack based on a production
rule, it consults the goto section to determine the next state to transition to based on
the non-terminal symbol at the head of the production applied.

Algorithm 2: LR Parsing Algorithm [1]
Input : Input string 𝑤 with end marker ‘$’
Output: Parse tree or error message

1 Let 𝑎 be the first symbol of 𝑤$;
2 while true do
3 Let 𝑆 be the state on top of the stack;
4 if ACTION[𝑆, 𝑎] = shift 𝑡 then
5 Push 𝑡 onto the stack;
6 Let 𝑎 be the next input symbol;
7 else if ACTION[𝑆, 𝑎] = reduce 𝐴 → 𝛼 then
8 Pop |𝛼| symbols off the stack;
9 Let state 𝑡 now be on top of the stack;

10 Push GOTO[𝑡, 𝐴] onto the stack;
11 Output the production 𝐴 → 𝛼;
12 else if ACTION[𝑆, 𝑎] = accept then
13 Break;

// Success
14 else
15 Call error-recovery routine;

// Handle syntax error

17

The main disadvantage of the LR parser is the difficulty of implementing the LR parser
for the grammar of a programming language by hand, as it is possible in the case of the
LL parsers. However, similar to a lexical analysis generator, there are tools for generating
LR parser, such as Yacc or Bison, which read a description of a context-free grammar and
generate a LALR(1) parser in the C programming language.

18

Chapter 5

Source and target languages

This chapter describes the PHP 5.1 and JavaScript 5.2 languages, which are used as the
source language and the target language for the transpilation, respectively. It describes the
syntax of source languages, which is important during the syntax analysis phases as well as
comparing semantic differences, which may lead to functionally non-equivalent programs or
difficulties in the process of target code generation. Information about languages is adapted
from [10] and [2].

5.1 PHP
PHP (Hypertext Preprocessor) is a widely-used open-source general-purpose scripting lan-
guage that is especially suited for web development and can be embedded into HTML.
PHP is a dynamically typed language, which means that the data type of a variable is
determined at runtime rather than at compile time. It is an imperative, procedural, and
object-oriented language. PHP is commonly used as a server-side scripting language, where
it is used in combination with HTML to create web pages with dynamic content based on
various factors such as user input, or populating the webpage with data from the database.
However, it can also be used as a traditional scripting language, which will be the focus of
the selected subset of the target language, not its usability in the web environment.

5.1.1 Syntax

PHP program typically starts with the opening tag <?php and may end with the closing tag
?>. The tags tell the PHP interpret, which part of the source code is code to be interpreted,
the rest is ignored. The syntax of the language is similar to that of the C programming
language, as it uses semicolons to terminate statements or curly braces to enclose code
blocks. Variables are denoted by the $ symbol followed by the name. It supports various
data types such as integers, floats, strings, booleans, null, arrays, objects, and resources.
The flow of the program is controlled by traditional structures such as conditions or loops
such as for, foreach, or while. It supports arithmetic and logical operations, assignments,
as well as function calls and definitions of custom functions.

5.1.2 Supported subset of the language

PHP is a versatile language with a wide range of built-in features and approaches to software
design. The design and implementation of a transpiler to support an entire language that

19

would produce functionally equivalent code would be very complex. Ignoring the object-
oriented approach, the transpiler supports basic programming constructs such as assignment
to a variable or an array, including assignment to a specific index in the string or an array.
It supports most of the control structures of the language:

• Conditional statement - Decision, whether the code is executed based on the spec-
ified condition. Examples of such structures are if, elseif, or else. The ternary
operator is also supported.

• Looping constructs - Allows iterating over data or executing the specified code
repeatedly. Example of looping constructs are while, do-while, for, or foreach.

• Control flow statements - Additional built-in constructs to control the flow of the
program including switch-case, break, continue, or a return statement.

Definition of custom functions and function calls are possible as well, including function
calls within mathematical expressions. In addition to user-defined functions, a small subset
of built-in functions is also supported:

• Array functions - Small subset of functions which allow manipulation and creation
of arrays, such as array(), count(), array_pop(), array_push(), explore(), or
implode(). Function range(), which creates an array containing a range of elements
is supported as well.

• String functions - Functions that allow operations with string literals, such as
strlen(), strpos(), or substr().

• Math functions - Implements commonly used mathematics functions such as sqrt(),
floor() or a pow(), which raises number to a certain power.

• Type conversions - Adds support for explicit type conversions such as intval(),
strval(), and conversion of characters to and from their ASCII values; chr() and
ord().

Within expressions, in addition to traditional mathematics operations, it supports log-
ical operations, comparisons, and working with array items at concrete indexes as well as
ternary operators.

5.2 JavaScript
JavaScript is an interpreted scripting language for web pages, many non-browser environ-
ments also use it, such as Node.js1, which is a JavaScript runtime environment. It is a
single-threaded, dynamic language supporting object-oriented, imperative, and declarative
styles [2]. The language is specified by the ECMA-262 standard [4]. This thesis assumes
the usage of Node.js as a JavaScript runtime. As already mentioned in the introduction,
JavaScript has been the most popular language in the developer community for many years.
Due to its popularity, the language has a large environment of open-source libraries and
tools, such as Bun2, the performance of which drastically overcomes that of Node.js.

1Node.js: https://nodejs.org/en
2Bun: https://bun.sh/

20

https://nodejs.org/en
https://bun.sh/

5.2.1 Syntax and semantics

The syntax of JavaScript is not very different from that of PHP, as it is part of C-family
programming languages, including code blocks delimited by curly braces ({}), or semicolon
(;) terminating expressions. Variables are declared using let, const, or var keywords.
Both let and const were introduced with the ES6 version of JavaScript and declare block-
scoped local variables, where the value of const cannot be reassigned using the assignment
operator. The var statement declares function-scoped or globally-scoped variables [2].
Similarly to PHP, a function can be declared using a function keyword, however, the ES6
version introduced the use of arrow functions using the => syntax. It is a dynamically
and weakly typed language, meaning that variables can change their type over time and
allows for implicit type conversions when the operation involves mismatched types. The
fundamental model of JavaScript is objects, including primitives such as Number, String,
Boolean, Null, or Undefined are wrapped into their corresponding object wrappers [2],
allowing the use of built-in functions specific to the object. Objects are created using a pair
of curly braces ({}) and can store key-value pairs. Even when assigned to a variable declared
using the const keyword, fields of objects can be mutated. Similar to PHP, it supports
different types of loops or conditional statements. The JavaScript code can be organized into
modules, where objects can be imported or exported using import and export keywords
introduced in ES6. It supports an object-oriented programming approach, allowing the
creation of classes, objects, or inheritance using the extend keyword. JavaScript offers
asynchronous programming using async/await syntax or promise. It enables the non-
blocking execution of time-consuming tasks such as database queries, or network request
processing

5.2.2 Language differences

Languages are syntactically and semantically similar, however, certain differences influence
the functionality of the generated code and require better semantic analysis in order to
mitigate the differences in the generated code. The difference in operator priority is solved
by the precedence-operator parser and using brackets to explicitly declare the priority of
operators in the generated code. Strings in PHP are mutable, therefore, you can explicitly
change the string, for example, assign a character to a certain index, which JavaScript
does not allow, and requires a sequence of steps to be generated to simulate the same
behavior. Implicit type conversions, such as using echo, which converts the expression to
string, behave differently than using console.log(), which in addition adds a new line
character after the output. The boolean value true is assigned to string ’1’, therefore, the
code generator has to simulate the behavior of PHP. Arrays in PHP can be indexed either
traditionally starting from 0, or including key-value pairs, where each item in the array
can be indexed using the corresponding key, and the behavior partly corresponds to that
of Objects from JavaScript.

21

Chapter 6

Design, implementation, and
testing

This chapter explains the design process and implementation of the transpiler. The program
is implemented in Python programming language. The transpiler is divided into phases that
are explained in 3.4.

6.1 Design of the transpiler
Before the start of the implementation process itself, it was necessary to create a maintain-
able and easily extensible design of the transpiler, which may support a larger subset of the
language in the future.

The first design concern was the usage of existing standardized tools to build compilers,
such as Lex for lexical analysis or Bison for generating a parser. After a discussion with the
supervisor, a decision was made not to use any of the tools due to the size of the subset of the
source language, which can be processed using approaches such as recursive descent parsing,
which can be easily written by hand without the need for a parser generator. Designing
the entire workflow without relying on standardized tools may offer greater flexibility and
enhance the learning experience.

The second problem was the approach to code generation. Although it is possible to
generate the code directly during the syntax analysis process, this approach would not
be ideal when translating the source code to other high-level programming languages, as
it requires more context, than in the case of generating the three-address code or other
similar low-level language. Similar to other transpilers, the ideal solution is to construct
an abstract syntax tree, which can be then statically analyzed, transformed, and used for
the generation of the target code with enough context to generate a functionally equivalent
program.

To make the transpiler extensible and maintainable, it is split into modules, which commu-
nicate with each other. The modules are as follows:

• Symbol table - Data structure to store and retrieve constructs such as identifiers,
or functions.

22

• Lexer - Performs lexical analysis, splitting the source code into tokens. Communi-
cates with the syntax analyzer to provide tokens.

• Parser - Controls the entire compilation process and contains an implementation of
the LL parser.

• Precedence parser stack - Data structure used during expression analysis. Con-
tains methods for push operation and decides what the next operation will be based
on the configuration of the stack.

• Expression parser - Parsing of expressions. Called by the 𝑃𝑎𝑟𝑠𝑒𝑟 module. Imple-
mentation of the operation precedence parser.

• AST - Definition of nodes used in the construction of the abstract syntax tree. Each
node is derived from the common Node parent node and implements a generate_code()
and generate_dot() method.

• Code generator - The data structure used to store generated code and provides
utilities such as unique variable name generation.

6.2 Lexical analysis
The lexical analyzer is located in the src/lexer of the project folder structure in the class
Lexer. It is implemented as a deterministic finite state machine 2.2.1. At initialization,
the lexical analyzer reads the source code and splits it into tokens, which are stored in the
memory of the lexer.

During the syntax analysis phase of the compilation, the parser communicates with the
lexical analyzer using the function get_next_token(), which returns the next token object
and the function unget_token(), which decreases the index of the current token, so the
token can be returned by next call of the get_next_token() function. It is used in such
cases when the parser needs to look for more tokens ahead to parse the source program.

The token object contains information that is necessary for the compilation such as token
type and value. In addition, it also provides additional information such as the location
of the token in the source code (line and column), that are used for debugging and error
logging purposes. It ignores tokens that are not essential for the compilation process such
as comments, or white spaces. Lexer has to distinguish between identifiers and built-in
keywords. In PHP, keywords and function names are lexically identical, so it is distinguished
by the keyword table.

Lexer reads the source code character by character and based on the current state and the
incoming character, it decides which state to transition into. When the state is marked as
terminal and current character does not belong to the currently processed token, it returns
the new token object and makes a transition to the initial state. The lexer contains other
private methods, that are used during the lexical analysis including get_next_char(), or
add_token(), which adds the created token to the list of tokens, that are further used
during the compilation.

23

6.3 Symbol table
The symbol table is a data structure used during syntax and semantic analysis to store
information about identifiers, such as functions and variables. It is located in the 𝑠𝑟𝑐/𝑢𝑡𝑖𝑙𝑠
in the project structure and is divided into two modules - a variable table and a function
table.

The purpose of the symbol table is to store the names of variables used in the program
in different scopes. It is implemented as a stack of scopes, so when the parser enters the
body of a function, the previously used scope is stored in the stack, so it can be used later.
Available methods are get_var(name: str) that look for a variable in the symbol table
and returns the object if it is found, methods for working with scopes such as pop_scope()
or push_scope(), or methods for adding new variables. It uses Python’s built-in dictionary
data structure, which stores key-value pairs.

The function table is used to store the functions defined within the program and the
built-in functions of the standard library. When the function call is found during the syntax
analysis, the parser uses the get_function() method to verify, whether the function has
been defined or exists in the standard library. If it exists, the node corresponding to the
function is returned so it can be used during the abstract syntax tree construction. During
the definition of a new function, the add_function() method is used, which, in addition to
adding the new function object to the table, also verifies whether the function had not been
defined before. It also includes a list of built-in functions, where for every built-in function
exists a specific type of abstract syntax tree node, which includes methods for generating
the code in the target language.

6.4 Syntax analysis
A second part of the compilation process, syntax analysis, verifies the syntactic correctness
of the source program. As already mentioned in 3.4, syntax-directed translation controls
the entire compilation process. The syntax analyzer requests the next token from the lexer
or rewinds to the previously obtained token. Every rule in the parser includes semantic
actions, which not only generate nodes of the abstract syntax tree but also perform
various semantic analyses, such as controlling the existence of a variable in the symbol table
or verifying the type compatibility in operations. The syntax analyzer uses two different
approaches: top-down parsing 6.4.2 and bottom-up parsing 6.4.3. These approaches
are used in different situations where the top-down approach is used for parsing the general
structure of the program, such as loops and conditions, and the bottom-up parsing verifies
expressions.

6.4.1 Abstract syntax tree construction

Abstract syntax tree represents the structure of the source program and is the result of the
syntax analysis phase. This representation is later used for the generation of the target code.
It consists of nodes, which are defined in the src/ast in the project structure. The 𝑁𝑜𝑑𝑒
class serves as the base for all AST nodes, defining the kind attribute and two common
methods:

24

• generate_dot() - Generates DOT language code for visualization of the node. This
method recursively generates DOT code for each of its children, allowing for the
visualization of the entire abstract syntax tree.

• generate_code() - Using the context around the node generates the code in the target
language - JavaScript. It uses a similar recursive approach to the generate_dot()
function, meaning it calls the function for all of its child nodes.

=

$b

0

program

WhileStatement

< Program

10 +=

2

Figure 6.1: Visualized AST of a simple PHP program

Other subclasses extend the Node base class by providing custom attributes, their imple-
mentation of generate_dot() and generate_code() methods but also custom methods.
The root of the tree consists of the node of type Program:

class Program(Node):
def __init__(self, kind: str = "Program"):

super().__init__(kind)
self.children: List[Node] = []

Listing 6.1: Root of the AST

The parser then adds child nodes to the current root of the current code block, meaning
that if the parser enters a different code block, for example, the body of the while statement,
the node representing the body of the construct will become the current root of the AST,
and the previous root will be saved in the stack.

6.4.2 Parsing of the program structure

The main part of the syntax analyzer is implemented in the class Parser. It is a recursive
descent parser that analyzes most of the syntactic structures of the code, except for expres-
sions. The principle of a recursive descent parser is explained in 4.1.1 The process starts
with the call to the method, which corresponds to the starting symbol of the grammar. It
uses a look-ahead token to choose the appropriate action. As an example, when the token
represents the if keyword, a method corresponding to the if nonterminal is called. If the
method is completed successfully, the function corresponding to the starting symbol of the
grammar calls itself recursively until the end of the program is reached. As the goal of
syntax analysis is to build an abstract syntax tree, every function creates a node of a type,

25

which corresponds to the current nonterminal. Each type of node has different attributes,
which are necessary for creating the intermediate code representation. When the procedure
matching the nonterminal finishes successfully, the newly created AST node is added as a
child to the parent node.

class WhileStatement(Node):
def __init__(self, node_type: str = "WhileStatement"):

super().__init__(node_type)
self.test: Node = Node()
self.body: Program = Program()

Listing 6.2: AST node corresponding to while-loop construct

When the expression construct is expected, the parser has to cooperate with the operator
precedence parser. It calls the function analyze_exp(term_tokens), which takes the list
of terminating tokens as an argument to know where the expressions end. If expression
parsing succeeds, the abstract syntax tree of the expression is returned. In the while-loop
example, the returned expression may be used as a test attribute, which represents the
condition of the loop. The analysis is performed in two passes because PHP allows function
calls before the function has been defined. In the first pass, the parser checks the function
definitions and stores them in the function table. In the second pass, the remaining source
code is checked. This means that if a function call is encountered and the function has been
defined, even later in the program, it has already been added to the function table.

6.4.3 Parsing of expressions

Due to the different priorities of the operator in the expressions, the recursive descent
parser cannot be used for this purpose. The ideal approach may be to use an operator-
precedence parser explained in section 4.2.1. It is implemented in src/expression_parser
in the project structure and consists of three main parts - precedence table, stack, and the
parser itself. The table contains a corresponding operation for every combination of the
top-most terminal and the incoming terminal. At the initialization of the stack, the starting
symbol $ is inserted. The stack stores terminal and nonterminal symbols, which will be
used in the reduction process. It also provides helper functions such as insert_handle(),
stack_push(), or get_operation().

The PrecParser class is provided with a set of tokens, which signal the end of the expression.
The analyze_exp() function is implemented as an infinite loop, which gets a new token
from the lexical analyzer and, using the previously mentioned 𝑔𝑒𝑡_𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛(), performs
the corresponding action. If the operation signals reduction, items from the stack are
popped and saved to the reduced_items variable until the handle symbol is hit. The
parser then tries to find which rule corresponds to the item for reduction. If such a rule
exists, the reduction operation is performed and the result is pushed back to the stack;
otherwise, an error is reported. During the reduction, various semantic checks are also
performed, meaning that it cooperates with the symbol table, as well as analyzing the type
of the outcome of the operation.

Function calls can be part of expressions, which makes the implementation of the expression
parser more complex. First, it has to verify the existence of the function in the symbol
table and report an error if it has not been defined. Then, it has to switch to the recursive

26

descent approach to parse arguments of the function call and then continue in the process
of expression parsing as the function call can be considered a constant, similar to the
occurrence of a variable in expressions.

6.5 Semantic analysis
In addition to checking the syntax of the source program, the parser has to validate the
semantic correctness of the program as well. It is not implemented as a stand-alone module
but rather performed during the syntax analysis and code generation phases.

The first thing to verify is the existence of identifiers and functions. At every occurrence
of a variable in expressions, the parser cooperates with the symbol table, which contains
information about all identifiers, to verify whether the variable has been declared and can be
used in the current scope. The symbol table implements a method 𝑔𝑒𝑡_𝑣𝑎𝑟(𝑛𝑎𝑚𝑒 : 𝑠𝑡𝑟),
which either returns the object corresponding to the variable or none if it has not been
found. New variables are added to the symbol table during the syntax analysis phase, more
precisely when the variable_assignment rule is being executed. Similar to checking the
existence of variables, when the function call within an expression is processed, the parser
needs to verify the existence of the function in the table of functions. Functions can be
defined within the program or be a part of the supported subset of built-in functions of
PHP. If the function exists, the parser needs to verify the correct number of arguments that
are passed to the function during its call. Additionally, parameters and the return type of
the function may optionally have declared types, which have to be semantically analyzed
as well.

The second task of the semantic analysis is to verify the compatibility of operators
and their types. Most of the type compatibility analysis occurs in the expression parser
during the reduction operation. First, the parser has to confirm that the given operator is
compatible with its operands; for example, operation addition (+) can not have a string as
its operand.

6.5.1 Type inference

The goal of type inference is to assign a type to each expression that occurs in a program
[3]. In addition to verifying the type compatibility of operators, the type of the result has
to be inferred, which is most cases affected by the operator, where, for example, result of
the comparison operation will be of type boolean. In general, type inference rules specify,
for each operator, the mapping between the operand types and the result type [3].

The inferred type is propagated to other parts of the program and may later influence the
function of the generated code. The simplest rule is variable assignment, where the type
on right side is assigned as the type to variable on left side of the assignment. The type
is assigned to the variable object found in the symbol table and can be used when the
variable occurs in expressions. In contrast with statically-typed languages, the declaration
of functions return and parameters types in PHP is only optional, and has to be inferred
by a semantic analyzer. The type declarations, however, enable better type checking when
the function call is a part of an expressions and can potentially provide more accurate code
generation. The type is returned as a result of the analyze_exp() function and can be
assigned to variable.

27

6.6 Code generation
The last step in the chain is code generation. It uses the abstract syntax tree representation
of the source code to generate the code in the target language. To generate functionally
equivalent code, every node in the tree has to know the context surrounding it, due to dif-
ferent semantics of operations in source and target languages. It uses the CodeGenerator
class located in /src/generator in the project structure. In addition to storing the gener-
ated source code, it provides methods for generating unique variable names or changing the
order of generated code. The generation of code uses the generate_code() method, which
is defined for every type of node that is used in the construction of the abstract syntax tree.

The target code generation phase uses the recursive approach, where the generate_code()
function is initially called for the root of the abstract syntax tree, which represents the
Program type of node, meaning it includes a list of children nodes. The generate_code()
is then called for every child node, which has its own implementation of the method, and
generating the code from the entire abstract syntax tree.

6.6.1 Variable generation

When generating a new variable in JavaScript, it can be declared in 3 ways - using const,
var, let, or automatically, with var used mostly in older browsers. Therefore during the
syntax analysis, we have to keep track, of whether the current occurrence of the variable is
the first one and should declare a new variable using let or const. To decide between let
and const, we have to keep track of whether the variable has been reassigned.

Another problem is, that in JavaScript, function has access and can modify variables
outside the scope of the function. This is solved by a symbol table that keeps track of the
existence of variables in certain scopes.

The major problem with a variable is keeping track of its type, which influences the
functionality of generated code. The type of variable is determined by the type of expression
that is assigned to the result. However, when the code is generated after the parsing and
the variable could have been reassigned many times, we need to find the type of it at a
certain point in time retrospectively. To solve this, every variable object has a queue, which
includes the history of the assignment operation so we can find the type during the code
generation.

6.6.2 Control structure generation

Control structure such as conditions or loops have almost identical syntax and semantics in
the source and target languages, so the generation itself is straightforward, since it is using
the recursive approach.
def generate_code(self, parent: Node) -> str:

gen_code = "while ("
if self.test:

gen_code += f"{self.test.generate_code(parent=self)}){{"
gen_code += f"{self.body.generate_code(parent=self)}}}\n"
return gen_code

Listing 6.3: Generation of the while-loop construct

28

6.6.3 Expression generation

The precedence of operators has been solved by the operator-precedence parser, so in code
generation, the code can be generated recursively from the abstract tree, only using brackets
to split the left and right subtrees to generate code for binary operations such as addition
or subtraction.

However, in order to generate functionally equivalent code, we need to use the context,
as there is difference in type conversion, mutability of strings between languages, and many
other differences not obvious at the first sight. Strings in PHP are mutable, which means
what in order to change the character at certain index, it is possible to assign a new
character to the desired index. To simulate this behavior in JavaScript, the string has to
transformed to a type, which allows mutation, such as an array, and mutate it. It can
be then transformed back to string, and assigned back to the original variable. When
generating Assign nonterminal, left side of which contains specific index and the right
side is of type string, the generator provides the code corresponding to the series of steps
mentioned before. Another example may be casting a boolean value to a string. In PHP,
the boolean value true is cast to '1' and false to '', whereas in JavaScript, it’s 'true' and
'false'. The context has to identified by the generator and generate the code functionally
equivalent with that in PHP. Therefore, each node needs access to its parent, which provides
the context in which the node is used.

6.6.4 Functions generation

The syntax of a function definition in PHP is very similar to that of JavaScript. Each
function is identified by its name, which is then used for the call of the function and has
to be unique within the program. It also includes list of parameters, where each parameter
may optionally have a type declared. Optionally, a return type of function may be declared,
simplifying the semantic analysis of expressions calling the function. The problem with
function generation in the target language is, that variables and functions name may collide,
which is not a problem in PHP. Therefore, during syntax and semantic analysis, when a new
function is declared, a new unique name is generated for the function, which is then stored
with the function in the table of functions. This ensures that during the code generation
process, a function is generated with the newly generated name. Function calls have to be
changed, so they match the newly generated name of function, as the function can be found
in the function table using the original name.

A supported subset of built-in functions is generated in two ways. The first approach is that
function calls are directly replaced by functionally equivalent code in the target language,
such as pow($number,$exponent) being replaced by Math.pow(number, exponent) for
the exponent function, or by a relatively simple sequence of steps to simulate identical
behavior of the original function. The second approach is used, when the code needed to
replace the original built-in function is more than a one-line function, such as in the case
of the range() function. In this approach, the code in the target language is stored in the
CodeGenerator, so at the start of the code generation process, saved built-in functions are
inserted at the start of the generated code, making them accessible for use.

29

Chapter 7

Testing and comparison with
alternative tools

This chapter describes the testing process of the implemented transpiler and compares the
results with existing tools. The comparison will focus on the size of the subset of the source
language, support of built-in functions, and whether the generated code is functionally
equivalent to the source program.

7.1 Testing
A set of automatic tests has been developed to verify the correctness of the implementation.
Test scripts are located in /tests folder containing a set of .php programs. Each of the
programs is transpiled into the target language and the results of running the original
and the transpiled program are compared. As the transpiler should produce functionally
equivalent code, the outputs must match for the test to pass successfully. The testing is
done using Node.js v20.12 and PHP 8.1.2.

The set of test cases includes tests at different levels of complexity, starting with testing
simple language constructs such as assignment to variable, operations with implicit type
conversion, testing of supported built-in function, or recursive function call. However, it
also includes more complex program examples, such as calculation of factorials or different
types of sorting algorithms. A subset of tests has been adopted from RosettaCode1, which
is a website that presents solutions to programming tasks in as many different languages
as possible, including PHP. An example may be Euler method, or Sierpinski carpet. The
source code of the solution in PHP from the RosettaCode is transpiled into JavaScript
and outputs of original and transpiled program are compared. Even though the transpiler
detects error, most of the test programs are syntactically and semantically correct, as the
goal of testing is not to verify error detection, but rather code generation in the target
language.

Regression testing using the developed test set helped to ensure functionality of previously
implemented modules during refactoring of the code or adding support for new features.
The testing ability is limited by the supported subset of the PHP, as commonly used object
oriented approach is not supported, as well as many commonly used built-in functions.

1RosettaCode: https://rosettacode.org/

30

https://rosettacode.org/

7.2 Comparison with alternative tools
The capabilities of the implementation were compared with the set of existing tools, which
differ in approach to transpiling and supported subset of the language.

7.2.1 Uniter

Uniter [9] is an open-sourced transpiler from PHP to JavaScript written in JavaScript.
The tool enables PHP to run in the browser, using a custom transpiler. However, the
focus will be on its capabilities within the Node.js environment, where it can be installed
using the NPM package manager. It includes a command line interface, which offers three
main functions; directly running the PHP program using Node.js, transpiling the PHP to
JavaScript and returning the generated code, and returning the abstract syntax tree of PHP
code in the JSON format. It supports a larger subset of PHP, including object-oriented
programming capabilities, goto statement, magic constants, and a small subset of built-in
functions. The main limitation is the generated code, which is generated in a format, which
depends on using the phpruntime runtime package to execute the code. Even though the
approach allows better control over type conversions and semantic differences, it makes the
transpiler dependent on the custom runtime packages, therefore not generating universally
usable code not only within the Node.js environment but across different runtimes, such
as Deno or Zod. When tested in the tests mentioned in 7.1, the support for the built-in
function is more limited, causing many tests to fail.

require(’phpruntime’).compile(function(core) { // echo 23;
var createInteger = core.createInteger,

echo = core.echo,
instrument = core.instrument,
line;

instrument(function() {
return line;

});
line = 3;
echo((line = 3, createInteger(23)));

});

Listing 7.1: Generated JavaScript code for the PHP program: echo 23;

7.2.2 PHP-to-JavaScript

The PHP-to-JavaScript2 provides a simple web interface playground to test its capabilities.
In addition to traditional constructs such as loops or conditions, the transpiler supports
namespaces, classes, or constants, which is a bigger set of the supported language than is
supported by the transpiler developed for this thesis. The practical usage is however very
limited by the fact, that it does not support any built-in functions, such as functions to
work with arrays. Unknown functions are transpiled to JavaScript with an equivalent name,
which produces non-functioning code, as the name of the built-in function is not defined in
the target language. Another problem is the absence of type inference and almost entire
semantic analysis. The transpiler does not report errors on the use of undefined variables,

2PHP-to-JavaScript: https://github.com/tito10047/PHP-to-Javascript

31

https://github.com/tito10047/PHP-to-Javascript

functions, or incompatible type operations. It is therefore generating a functionally different
program. As an example, we may take a simple echo true; PHP program, which outputs
the expression with no additional newlines or spaces. The echo construct is replaced with
console.log(), which adds a new line after the output. It also does not perform implicit
type conversion from boolean to string, which in PHP would output 1, as the echo trans-
forms the boolean value into string, which in PHP is represented by ’1’. Overall, the tool
supports a larger subset of the language, but the absence of semantic analysis and naive
approach to code generation, which generates functionally non-equivalent code makes the
usage of the tool problematic.

7.2.3 LLM-based tools

With the rise in popularity of large language models, several tools use AI for converting code
from one language to another. Example of these tools are Codeconverter3, Docuwriter4, or
prompting any large language model, like ChatGPT, to perform the code transpilation task.
Due to non-determinism in these tools, it is hard to benchmark their capabilities and the
subset of supported language. The practical usage is limited by the ”hallucination“, where
models generate a confidently-sounding answer, which is however fundamentally incorrect.
That is, for any given PHP source code, it will generate the JavaScript source code, even
though it may be functionally totally different. The advantage of using LLM is that the
generated code is styled, like it has been written by a human programmer, not generated
by a machine, therefore it’s more readable and easier to debug and fix errors, so the ideal
use case of LLM-based tools would be the acceleration of the migration of code base to
different programming languages when the code maintainability is preferred over exact
function equivalence. Using the set of tests from 7.1, the LLM-based tools perform better
than the 2 tools mentioned above.

3CodeConverter: https://www.codeconvert.ai/free-converter
4Docuwriter: https://www.docuwriter.ai/php-to-js-code-converter

32

https://www.codeconvert.ai/free-converter
https://www.docuwriter.ai/php-to-js-code-converter

Chapter 8

Conclusion

The goal of the thesis was to design and implement a high-level language transpiler from
PHP to JavaScript, and it has been achieved. The transpiler supports a usable subset of
the source programming language, allowing usability for PHP programs with traditional
syntactic structures such as loops, conditions, or function calls. It even supports a small
subset of PHP’s built-in functions, such as functions for working with arrays, strings, or
math operations.

The transpiler is built without the use of any tools, such as lexical analysis or parser
generators, using approaches mentioned in Chaps 3 and 4. Using top-down and bottom-up
parsing, the abstract syntax tree is built that represents the structure of the source code.
It is analyzed and used for the generation of the code in the target language. The abstract
syntax tree can be visualized using Graphviz. To verify the correctness of the implemen-
tation, a set of automatic sets has been developed, including tests of different complexity.
The capabilities of the developed transpiler were compared with existing solutions, such
as Uniter or LLM-based tools, showing both advantages and disadvantages compared to
these solutions. Even though the developed tool supports a smaller subset of the language,
the output is deterministic, and its main focus is on function equivalence of the generated
source code, which was not always the case in the previously mentioned tools. The tran-
spiler performs static analysis and type inference of the source code, which is necessary for
the generation of the functionally equivalent code in the target language, which was not
the case in most of the tested alternative solutions.

The main limiting factor of practical usage is the size of the supported subset of PHP.
To be usable, support for an object-oriented approach is necessary, as it is commonly used
in PHP code bases. The support for built-in functions is a very important factor in terms
of practical usability. The transpiler supports most commonly used functions, mostly to
work with arrays and strings, however, the greater subset would increase the usability
of the transpiler. The current design allows for a simple extension of the set of built-in
functions. It also does not support include or require, allowing usage of multiple files. To
reach the functional equivalence, the generated code’s structure may not be easily readable
and maintainable, therefore, it is more useful as a tool for running the PHP codebase
in JavaScript, rather than accelerating the migration of code base from one language to
another.

33

Bibliography

[1] Aho, A. V. Compilers : principles, techniques & tools. 2nd ed. Boston: Addison
Wesley, 2007. ISBN 0-321-48681-1.

[2] Contributors, M. JavaScript [online]. 2024. [Accessed: April 19, 2024]. Available at:
https://developer.mozilla.org/en-US/docs/Web/JavaScript.

[3] Cooper, K. D. and Torczon, L. Chapter 4 - Context-Sensitive Analysis. In:
Cooper, K. D. and Torczon, L., ed. Engineering a Compiler (Second Edition).
Second Editionth ed. Boston: Morgan Kaufmann, 2012, p. 161–219. DOI:
https://doi.org/10.1016/B978-0-12-088478-0.00004-9. ISBN 978-0-12-088478-0.
Available at:
https://www.sciencedirect.com/science/article/pii/B9780120884780000049.

[4] Ecma, E. 262: Ecmascript language specification. ECMA (European Association for
Standardizing Information and Communication Systems), pub-ECMA: adr,. 14th ed.
2023. [Online; Accessed: April 22, 2024]. Available at:
https://262.ecma-international.org/.

[5] Fischer, C. N., Cytron, R. K. and LeBlanc, R. J. Crafting A Compiler. 1stth ed.
USA: Addison-Wesley Publishing Company, 2009. ISBN 0136067050.

[6] Lesk, M. E. and Schmidt, E. E. Lex—a lexical analyzer generator. 1990. Available
at: https://api.semanticscholar.org/CorpusID:7900881.

[7] Meduna, A. Elements of Compiler Design. 1st ed. Milton: Auerbach Publishers,
Incorporated, 2007. ISBN 1420063235.

[8] Meduna, A. and Křivka, Z. Materials for IFJ [Brno University of Technology].
2017. [Online; Accessed: March 23, 2024]. Available at:
https://www.fit.vutbr.cz/study/courses/IFJ/public/materials/.

[9] Phillimore, D. Uniter [online]. 2023. Accessed: April 22, 2024. Available at:
https://phptojs.com/.

[10] Team, P. D. PHP Manual. 2024. Online; Accessed: 13-April-2024. Available at:
https://www.php.net/manual/en/.

[11] Thain, D. Introduction to Compilers and Language Design. 1st ed. Lulu.com, 2016.
ISBN 0-359-13804-7.

34

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://www.sciencedirect.com/science/article/pii/B9780120884780000049
https://262.ecma-international.org/
https://api.semanticscholar.org/CorpusID:7900881
https://www.fit.vutbr.cz/study/courses/IFJ/public/materials/
https://phptojs.com/
https://www.php.net/manual/en/

Appendix A

Contents of the included storage
media

/
implementation................................ Implementation of the transpiler

src..Source files of the transpiler
transpiler.py...............................Entry point of the transpiler
ast .. Nodes of the AST
lexer...............................Implementation of the lexical analyzer
parser......................Implementation of the recursive-descent parser
expression_parser Implementation of the operator-precedence parser

tests...................................Folder containing test PHP programs
*.php..Set of test programs

test.py..Test script
README.md...Transpiler manual

thesis...Thesis LaTeX source codes
README.md...Thesis manual
xmokri01.pdf...Thesis text

35

	Introduction
	Introduction to formal languages
	Alphabets and languages
	Finite automata
	Grammar

	Compilers
	Compiler
	Transpiler
	Interpret
	The structure of a compiler
	The structure of a transpiler

	Syntax analysis approaches
	Top-down parsing
	Bottom-up parsing

	Source and target languages
	PHP
	JavaScript

	Design, implementation, and testing
	Design of the transpiler
	Lexical analysis
	Symbol table
	Syntax analysis
	Semantic analysis
	Code generation

	Testing and comparison with alternative tools
	Testing
	Comparison with alternative tools

	Conclusion
	Bibliography
	Contents of the included storage media

