
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

HIGH-LEVEL PROGRAMMING LANGUAGE TRANSPILERS
HIGH-LEVEL P R O G R A M M I N G L A N G U A G E TRANSPILERS

BACHELOR'S THESIS
B A K A L Á Ř S K Á PRÁCE

AUTHOR ANDREJ MOKRIŠ
A U T O R PRÁCE

SUPERVISOR prof. RNDr. ALEXANDER MEDUNA, CSc.
V E D O U C Í PRÁCE

BRNO 2024

Bachelor's Thesis Assignment
Institut:

Student :

P rogramme:

Tit le:

Category:

Depar tment of Informat ion Sys tems (DIFS)
M o k r i s A n d r e j
Informat ion Techno logy

H i g h - L e v e l P r o g r a m m i n g L a n g u a g e T r a n s p i l e r s
Compi ler Construct ion

153866

Academic year: 2023/24

Ass ignment :

1. Based on the advisor 's gu idance, s tudy source- to-source compi lers , wh ich make t ranslat ions
be tweeen high- level p rogramming languages.

2. Based on the advisor 's instruct ions, s tudy in termediate codes used by these compi le rs .

3. Based upon the informat ion obta ined in parts 1 and 2, des ign a new transpi ler that make t ranslat ions
be tween se lected high- level p rogramming languages.

4 . Imp lement the des igned compi ler . Demonst ra te its funct ional i ty by t ranslat ing the code between
selected languages, for examp le a t ranslat ion f rom C++ into JavaScr ipt .

5. Evaluate the results ach ieved and d iscuss potent ial future wo rk on the project.

Li terature:
• Meduna , A.: Elements of Compiler Design. Aue rbach Publ icat ions; 1st edi t ion (December 3, 2007) .

Detai led formal requi rements can be found at ht tps: / /www.f i t .vut .cz/study/ theses/

Superv isor : M e d u n a A l e x a n d r , p ro f . RNDr. , CSc .

Head of Depar tment : Kolář Dušan , doc. Dr. Ing.

Beginning of work : 1.11.2023

Submiss ion deadl ine: 9.5.2024

Approva l date: 30.10.2023

Faculty of Informat ion Techno logy , Brno Universi ty of Techno logy / Bože těchova 1/2 / 612 66 / Brno

https://www.fit.vut.cz/study/theses/

Abstract
A rap id development of programming languages has caused pract ical problems, such as
not granting backward compatibi l i ty. Transpilers offer a potential solution to some of
these problems. Th is thesis presents concepts of formal languages, compilers, and more
detailed description of parsing methods. The goal of this thesis is to design and implement
a transpiler that converts a subset of P H P to JavaScript.

Abstrakt
Rýchly vývoj programovacích jazykov priniesol radu praktických problémov, napríklad
obmedzenú spätnú kompat ib i l i tu . Časť týchto problémov môže byť riešená transpilátormi.
Táto práca predstavuje základné koncepty z teórie formálnych jazykov, prekladačov a prís­
tupov k syntaktickej analýze. Cieľom práce je navrhnúť a implementovat transpilátor, ktorý
prekladá podmnožinu jazyka P H P do jazyka JavaScript.

Keywords
Transpiler, Compiler , Syntax analysis, Static analysis, Abstract syntax tree, Recursive-
descent parser, JavaScript, P H P

Klíčová slova
Transpilátor, Kompilátor, Syntaktická analýza, Statická analýza, Abstraktný syntaktický
strom, Rekurzívny zostup, JavaScript, P H P

Reference
M O R R I S , Andre j . High-Level Programming Language Transpilers. B rno , 2024. Bachelor 's
thesis. Brno Univers i ty of Technology, Faculty of Information Technology. Supervisor prof.
R N D r . Alexander Meduna, CSc .

Rozšířený abstrakt
Neustály vývoj programovacích jazykov priniesol radu praktických problémov, ako naprík­
lad obmedzená spätná kompat ib i l i ta . Časť týchto problémov môže byť riešená automat­
ickým prekladom do iného jazyka pomocou transpilátoru. Transpilátor prekladá zdrojový
kód z jedného jazyka do druhého, no na rozdiel od tradičného prekladača sú dané jazyky
na podobnej úrovni abstrakcie. Praktickým príkladom transpilátoru môžu byť Babe l , ktorý
prekladá JavaScript verzie E S 6 do verzie E S 5 , zabezpečujúc tak spätnú kompat ib i l i tu so
staršími verziami webových prehliadačov, či 2to3, ktorý prekladal kód jazyka Py thon verzie
2 do verzie 3.

Hlavným cieľom práce je návrh, implementácia a testovanie transpilátoru z podmnožiny
jazyka P H P do jazyka JavaScript . V úvode sa práca zaoberá motiváciu pre vývoj tran-
spilátorov a popisuje štruktúru práce. Druhá kapito la definuje pojmy z teórie formálnych
jazykov ako napríklad jazyk, abeceda, konečný automat, či bezkontextová gramatika. Sú
t u pojmy, ktoré sú využívané pr i výstavbe prekladačov aj v tejto práci.

Následne sa práca zaoberá teóriou prekladačov, kde sú popísané jednotlivé fázy prekladu
a vzťahy medzi n imi . Práca popisuje základný princíp činnosti jednotlivých fáz prekladu,
ako lexikálna či syntaktická analýza, až po generovanie cieľového kódu. Taktiež opisuje
rozdiel medzi tradičným prekladačom a transpilátorom. D v a základné princípy syntaktickej
analýze - zhora nadol (top-down) a z dola nahor (bottom-up) sú vysvetlené v kapitole 4,
ktorá detailnejšie približuje a fungovanie, výhody a nevýhody využitia daných prístupov
pr i výstavbe prekladača. Dané prístupy sú následne využité aj pr i realizácii praktickej časti
práce.

Kap i t o l a 5 obsahuje popis jazyka P H P , ktorý je zdrojový jazyk v rámci implemen­
tácie transpilátoru a jazyka JavaScript, ktorý je vybraný ako cieľový jazyk. Kap i t o l a ob­
sahuje popis podporovanej podmnožiny cieľového jazyka a vybrané syntaktické a sémantické
rozdiely, ktoré ovplyvňujú výsledný návrh a implementáciu.

Práca opisuje proces návrhu transpilátora s dôrazom na možnosť budúcej rozšiřitelnosti
ako podporovanej podmnožiny jazyka, tak vstavaných funkcií. Implementácia nevyužíva
žiadne pomocné knižnice alebo nástroje na generovanie lexikálne alebo syntaktickej analýzy.
Syntaktická analýza využíva kombináciu dvoch prístupov - rekurzívneho zostupu, teda
metódy zhora-nadol, ktorá spracováva štruktúru programu ako podmienky či cyk ly a metódu
precedenčnej syntaktickej analýzy, ktorá spracováva výrazy a pomocou precedenčnej tabuľky
zabezpečuje vyhodnocovanie operácií v správnom poradí. Sémantická analýza overuje kom­
pat ib i l i tu typov pr i operáciách, či existenciu premenných a funkcií. Zo zostaveného a ana­
lyzovaného stromu je následne vygenerovaný kód v cieľovom jazyku.

Výsledná implementácia podporuje základné štruktúry ako podmienky, či rôzne typy
cyklov. Taktiež podporuje volanie a definovanie vlastných funkcií a malú podmnožinu vs­
tavaných funkcií zdrojového jazyka primárne pre prácu s reťazcami, polárni, či matematické
operácie, a vygenerovaný kód je funkčne ekvivalentný so zdrojovým. Funkčnosť riešenie je
otestovaná na vzorke P H P programov, ktorých výstup je porovnaný s výstupom preloženého
kódu. Funkčnosť je taktiež porovnaná s existujúcimi riešeniami poskytujúcimi preklad z
P H P do jazyka JavaScript.

High-Level Programming Language Transpilers

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of prof. R N D r . Alexander Meduna CSc . I have l isted a l l the l iterary
sources, publications and other sources, which were used dur ing the preparation of this
thesis.

Andrej Mokr i s
M a y 7, 2024

Acknowledgements
I would like to thank my supervisor, Prof. R N D r . Alexander Meduna , C S c , for his guidance
and prompt responses. I would also like to express my gratitude to my family and my
girlfriend for their support.

Contents

1 Introduction 3

2 Introduction to formal languages 5
2.1 Alphabets and languages 5
2.2 F in i te automata 5
2.3 Grammar 6

3 Compilers 8
3.1 Compi ler 8
3.2 Transpiler 8
3.3 Interpret 9
3.4 The structure of a compiler 9
3.5 The structure of a transpiler 13

4 Syntax analysis approaches 14
4.1 Top-down parsing 14
4.2 Bot tom-up parsing 15

5 Source and target languages 19
5.1 P H P 19
5.2 JavaScript 20

6 Design, implementation, and testing 22
6.1 Design of the transpiler 22
6.2 Lex ica l analysis 23
6.3 Symbol table 24
6.4 Syntax analysis 24
6.5 Semantic analysis 27
6.6 Code generation 28

7 Testing and comparison with alternative tools 30
7.1 Testing 30

7.2 Compar ison w i th alternative tools 31

8 Conclusion 33

Bibliography 34

A Contents of the included storage media 35

1

List of Figures

3.1 Compi ler phases diagram 9
3.2 F in i t e state machine accepting a P H P variable name 10
3.3 Pars ing of the expression to the derivation tree 11
3.4 A n example of the opt imizat ion of the three-address code 13
3.5 Simplif ied principle of the transpiler 13

6.1 Visual ized A S T of a simple P H P program 25

2

C h a p t e r 1

Introduct ion

The process of rewrit ing the codebase from one programming language to another is very
resource-intensive and error-prone. Transpilers, also known as source-to-source compilers,
help automate parts of the process and make it more efficient. Languages that were a
popular choice a while ago may have been replaced by newer alternatives that excel i n many
key factors, such as performance, speed of development, or popular i ty in the community.
As programming languages are constantly being improved to support new features, they
may no longer mainta in backward compat ibi l i ty w i th older platforms or runtimes, therefore
programmers are l imi ted to the subset of a language they can use. This pract ical problem
can be solved using a transpiler. A n example may be Babe l , which transpiles the E S 6 +
version of JavaScript to older versions supported by legacy JavaScript environments, such
as older browsers.

The principle and structure of transpilers is s imi lar to that of t rad i t ional compilers. It
consists of a sequence of phases described in 3.4, where each phase has its function i n the
chain. In comparison w i th t radi t ional compilers, such as G C C , transpilers generate code
at a s imi lar level of abstraction, usual ly from a source high-level programming language to
another high-level language, producing functionally equivalent source code.

The goal of this thesis is to design and implement a transpiler from P H P to JavaScript,
which supports a subset of the source language and generates code in the target language
so that programs are functionally equivalent. P H P and JavaScript are both dynamical ly
typed script ing programming languages that are tradi t ional ly used in web development,
w i th P H P running on the server and JavaScript on the client side. W i t h the popular izat ion
of using JavaScript on the server side, main ly due to the arr iva l of the V 8 JavaScript engine,
it has proven beneficial to use the same language on the frontend as well as on the backend.
Furthermore, JavaScript is the most popular language according to developer community
surveys, such as Stack overflow developer survey 2023 1 , and many codebases s t i l l wr i t ten in
P H P , w i th the big enough supported subset of the language, the tool may find a pract ical
usage.

In chapter 2, the foundations of the theory of formal language that are referred to
throughout the thesis are defined. That includes concepts such as language 2.1.3, grammar
2.3.1, or finite automata 2.2.1, providing their formal definitions and pract ical usage in the
context of compiler development.

1Developer survey 2023 : https://survey.stackoverf low.co/2023

3

https://survey.stackoverflow.co/2023

After the necessary theoretical introduct ion, the chapter 3 explains basic ideas of com­
pil ing, presents differences between different types of language processors, and describes
ind iv idua l phases of the compi lat ion process.

The chapter 4 provides a more detailed explanation of the syntax analysis and discusses
two main approaches to syntax analysis; top-down 4.1 and bottom-up 4.2 parsing, their
principles and l imitat ions as well as construction of the abstract syntax tree.

The description of selected source and target programming languages is in the chapter 5.
It provides a general description of languages, their usual use cases, and semantic differences,
which influence the process of design and implementat ion of the transpiler.

The pract ical segment of the thesis, detailed in chapter 6 provides insight into design
considerations before the implementation, the implementat ion process in the P y t h o n pro­
gramming language.

Testing of the implementation and comparison of its capabilit ies w i th existing tools are
described in chapter 7.

4

C h a p t e r 2

Introduct ion to formal languages

Bui ld ing a compiler requires a certain level of knowledge about formal languages. Th is
chapter explains formal languages and mathematics tools that w i l l be referred to throughout
the thesis, such as alphabet 2.1.1, language 2.1.3, finite automata 2.2.1, or a context-free
grammar 2.3.1. In this chapter, the information presented are adopted from [7], [1]. Formal
definitions are adopted from [8].

2.1 A lphabe ts and languages

Definition 2.1.1 An alphabet £ is a finite, nonempty set of elements, which are called
symbols.

Definition 2.1.2 Let £ be an alphabet, e denotes the empty string over S . Lf x is a string
over £ and a G X , then xa is a string over S .

Definition 2.1.3 Let S * denote the set of all strings over S . Every subset L C X * is a
language over S .

2.2 F in i t e automata

Fin i te automata are fundamental models of lexical analysis. The i r task is to accept or reject
an input. A finite automaton accepts an input str ing x i f and only if there exists a path
in the transit ion graph from the start state to one of the accepting states, such that the
symbols along the path spell out x.

Definition 2.2.1 A finite automaton (FA) is a 5-tuple:

M = (Q, S , R, s, F)

where:

• Q is a finite set of states.

• £ is an input alphabet.

• R is a finite set of rules of the form: pa —>• q, where p,q<EQ,a£Y,U {e}.

• s G Q is the start state.

5

• F C Q is a set of final states.

The general variants represent mathematical ly convenient models, which are difficult
to apply in practice. In general, these automata work non-deterministically, meaning that
from the current configuration of the automata, there are several possible moves w i th the
same input symbol . Such behavior makes the implementat ion of the lexical analyzer more
difficult. For those reasons, there are more restricted models, such as e-free automata or
deterministic finite state automata.

Definition 2.2.2 Let M = (Q,T,,R,s,F) be an finite automaton. M is an e-free finite
automaton if for all rules pa —>• q G R, where p,q<EQ, holds a G E (a ^ e).

Definition 2.2.3 Let M = (Q, E , R, s, F) be an e-free finite automaton. M is a deter­
ministic finite automaton (DFA) if for each rule pa —>• q G R it holds that R — {pa —> q}
contains no rule with the left-hand side equal to pa.

A l l these variants are capable of recognizing the same languages, called the regular
languages, so we can always use any of them without any loss of generality. A finite
automaton can be represented either tabular ly by a state table or graphical ly using a state
diagram.

2.3 G r a m m a r

A grammar is based upon finitely many rules, which contain terminal and nonterminal
symbols. Terminals represent tokens and nonterminal symbols formalize more general syn­
tact ica l entities, such as loops. A grammar derives str ing by beginning w i th the start
symbol and repeatedly replacing a nonterminal w i th the body of the product ion for that
nonterminal. If we find the derivation of the program, it is a syntactical ly well-formed
program.

Grammars used in the field of formal languages and compilers are often called a context-
free grammar 2.3.1 to point out that dur ing any derivation step, a nonterminal is rewritten
regardless of the surrounding context.

Definition 2.3.1 A context-free grammar (CFG) is a quadruple

G=(N,T,P,S)

where:

• N is an alphabet of nonterminals (sometimes called syntactic variables").

• T is an alphabet of terminals (referred to as tokens"), N (IT = 0.

• P is a finite set of rules of the form A —>• x, where A G N, x G (N U T)*.

• S G N is the start nonterminal.

B y convention, terminal symbols are wr i t ten by lowercase letters, such as a, 6, c, and
nonterminals by uppercase letters A, B, C , D. A s an example of a rewrit ing rule, consider
string xAy and a rule r : A —>• u G R. B y using this rule, G makes a derivation step from
xAy to xuy by changing A to u, wr i t ten as xAy —>• xuy.

A language generated by the context-free grammar 2.3.1 is called a context-free language
(C F L) .

G

Definition 2.3.2 Let L be a language. L is a context-free language (CFL) if there exists
a context-free grammar that generates L.

A parse tree is a graphical representation of a derivation that filters out the order
in which productions are applied to replace nonterminals. A grammar that produces more
than one parse tree for some sentence is said to be ambiguous. S imi lar to non-deterministic
finite automata, it causes pract ical problems in the process of implementat ion of the com­
piler, as the program has to determine, which parse tree is the correct one to continue wi th .

Dur ing the parsing, nonterminal symbols are rewritten by the body of the product ion.
In the case of top-down parsing, it finds the left-most derivation of the program, meaning
that dur ing the derivation step, the leftmost nonterminal is rewritten.

Definition 2.3.3 Let G = (N, T, P, S) be a CFG, let u G T*, v G (N U T)*. Let p = A ->
x G P be a rule. Then, uAv directly derives uxv in the leftmost way according to p in G,
written as uAv =4>;m uxv [p].

The construction of a top-down parser is aided by a construction of sets First and
Follow, as they allow to choose the correct product ion rule based on the next input symbol.
First(x) is the set of a l l terminals that appear as the first symbol of a str ing derivable from
x.

Definition 2.3.4 Let G = (N,T,P,S) be a CFG. For every x G (NUT)*, we define the
set First(x) as First(x) = {a : a G T,x =4>* ay; y G (N U T)*}.

Follow (A), for non-terminal A is a set of a l l terminals, that can appear immediately to
the right of that non-terminal in some sentential form derivable from the start symbol S.

Definition 2.3.5 Let G = (N,T,P,S) be a CFG. For every A G N, we define the set
Follow(A) as Follow(A) = {a : a eT,S =>* xAay,x,y G (N U T)*} U {$: S =>* xA, x G
(NUT)*}.

7

C h a p t e r 3

Compilers

This chapter explains the terms which are relevant i n the context of solving the thesis. It
w i l l explain the differences between compilers and transpilers and the steps in the process
of transpi l ing. Th is chapter uses information from [7],[1], and [5].

3.1 Compi l e r

A compiler is a computer program, which reads a source program in a source language
and translates it into a target program in a target language. A compiler is pr imar i ly used
for translat ing between languages at different levels of abstraction, usually from a high-
level programming language (C++ , Java) to a low-level programming language (assembly
language, or machine code), which is specific to the architecture of the platform. The source
program and the target program are functionally equivalent. Dur ing the translat ion, the
compiler first analyzes the source program to verify that the source program is correctly
wr i t ten in the source language. If so, the compiler generates the target program; otherwise,
report the error. The steps in the compi l ing process are explained in chapter 3.4.

3.2 Transpi ler

A transpiler, also known as a source-to-source compiler, is a special type of compiler that
reads a source program in a source language and generates a functionally equivalent pro­
gram in a different, i n some cases even the same programming language. In comparison
w i th the compiler 3.1, both source and target languages are at a s imi lar level of abstraction.
Transpilers are used to address performance, developer experience, or compat ib i l i ty prob­
lems. The problem w i th transpilers is, that different programming languages have many
semantic differences, that may not be obvious at first sight, which leads to a very complex
development process and testing. A s an example of usage of transpilers, TypeScr ip t 1 , which
is a superset of JavaScript w i th static typing and has to be transpiled back to JavaScript
to be executed, or B a b e l 2 , which transpiles JavaScript to older versions to grant backward
compat ibi l i ty w i th older browsers.

1 TypeScript: h t t p s : //www.typescriptlang.org/
2 Babe l : h t t p s : //babe l j s . i o/

8

http://www.typescriptlang.org/
https://babeljs.io/

3.3 Interpret

The last common type of language processor is called an interpret. Instead of translat ing the
source program into the target program, it direct ly executes the source program, without
requiring it to have been processed by a different program.

3.4 The structure of a compi ler

The process of compi lat ion is a complex problem, thus the process is segmented into distinct
phases. Each phase operates w i th specific inputs and outputs, where the output of the
previous layer is used as input for the next step i n the chain.

The structure of the compiler is split into two main categories - the front end and the back
end. The front end analyzes the source program and builds the intermediate representation
of the source program, usual ly in the form of the three-address code or the abstract syntax
tree. The front end consists of lexical analysis 3.4.1, syntax analysis 3.4.2, and semantic
analysis 3.4.3. The role of the back end is target code generation. Such separation of
concerns ensures the benefit of modular i ty of compilers.

In addi t ion to phases, compilers use symbol tables, which are data structures used to
hold information about the constructs of the source program. The entries i n the table are
collected dur ing the analysis phases of a compiler and contain information about identifiers,
such as name, posit ion, and any relevant information [1].

Source program

V

Lexical analyzer
V J

-Tokens ^

C A
Intermediate

code generation
^ Syntax tree -

Syntax analyzer

parse tree
simulation

Semantic
analyzer

V J

Intermediate code

A
Optimizer Optimized int.

code Code generator
V , J

Target program

Figure 3.1: Compi ler phases diagram

9

3.4.1 Lex i ca l analysis

The in i t i a l phase of a compiler is called lexical analysis or scanning. In this phase, the lexer
reads the stream of characters that make up the source program and groups the characters
into meaningful sequences called lexemes.

The ma in task of lexical analysis is the recognition and classification of lexemes and their
representation of them by their tokens. Its task is also to remove parts of the source code
that are not necessary for compil ing, such as comments or whitespaces. For each lexeme,
the lexical analyzer produces a token of the form

<token-name, attribute-value>

that it passes on to the next phase, syntax analysis. The token-name attr ibute possesses the
information about the type of the token such as a variable name or a floating-point number.
Th is information is important for the process of syntax analysis. The attribute-value points
to an entry in the symbol table for this token. Dur ing the lexical analysis, new entries are
inserted into the symbol table. Information from the symbol table is used pr imar i ly during
the semantic analysis phase.

The lexical analyzer can be expressed using a deterministic finite state machine or a set of
regular expressions:

• In the case of finite state machines, transit ions between states are determined by
the incoming character and the current state. If the state is declared as a terminal
state, and can not accept another character, a new token is returned, and the state
machine returns to the in i t ia l state. If there is no possible transit ion from the current
configuration w i th the incoming character, the lexer w i l l report a lexical error.

/a-z/A-Z

Figure 3.2: F in i te state machine accepting a P H P variable name

• Lexems can be described using regular expressions, which use three operations: con­
catenation, union, and iteration.

In practice, lexical analyzers are bui l t using lexical analyzer generators, such as Lex [6].
It uses user-defined regular expressions to describe patterns for tokens using Lex language.
The Lex compiler translates the source code into a program in the C programming language,
which can be used as a lexical analyzer module w i th in the compiler.

3.4.2 Syntax analysis

The second phase of the compiler is syntax analysis or parsing. The syntax of a programming
language describes the proper form of its programs. To specify syntax, the forms used are

10

called context-free grammars or BNF (Backus Naur form). G rammar consists of finitely
many rules that are used for derivation. A n example of rules may be:

stmt —>• expr:
i f (expr) stmt\
assignment

assignment —> identifier = expr

The syntax analyzer uses tokens generated by the lexical analyzer to verify that the
string of tokens represents a syntactical ly well-formed program and is i n compliance w i th
the grammar of the source language. Incoming tokens are compared w i th the expected
values, according to grammar rules. W h e n the program is syntactical ly correct, the parser
generates a structured representation of the token stream, referred to as a parse tree, which
is used dur ing subsequent phases of the translat ion. A parse tree is a graphical represen­
tat ion of derivation steps that show the order i n which productions are applied to replace
nonterminals. Otherwise, the parser w i l l report a syntax error.

There are two main approaches to parsing; top-down and bottom-up, which w i l l be discussed
further i n chapter 4.

Syntax analyzer closely cooperates w i th the semantic analysis and drives the entire process
of translat ion - referred to as syntax-directed translation. The syntax-directed translat ion
is done by attaching rules or program fragments to productions in grammar, which are
called semantic actions. The result of syntax-directed translat ion is the intermediate rep­
resentation of the program, usually a abstract syntax tree. It is derived from the parse tree,
however, it abstracts from any information, that is not essential for the compilat ion. It
may also perform various checks of the semantic analysis, such as type checking.

$a = 2 , 4 , 6] ;

Parser

V < a s s i g n >

< v a r , a > < a r r a y >

< i n t , 2 > < i n t , 4 > < i n t , 6 >

Figure 3.3: Pars ing of the expression to the derivation tree

11

3.4.3 Semant ic analysis

The semantic analyzer uses the parse tree, which is generated by the syntax analyzer,
and the information in the symbol table to check the program for semantic correctness.
Th is process detects errors that were not discovered dur ing the lexical and syntax analysis,
as they cannot be defined formally using regular expressions or grammar. The semantic
analyzer checks the compat ib i l i ty of types; for example, operation addi t ion (+) is not
allowed between the integer and str ing types.

Us ing the symbol table verifies the existence of variables or functions used in the program.
It handles impl ic i t type conversions. A n example may be the operation mult ip l icat ion (*)
between an integer and a floating-point number. In this case, the operator of type integer
wi l l be converted to a floating-point number, without the programmer having to expl ic i t ly
make it so, as on a lower level, computers use different instructions to work w i th integers
and floating-point numbers. The result of the semantic analysis is an abstract syntax tree.

3.4.4 Intermediate code generat ion

After the analysis phase of the compilat ion, the compiler generates an intermediate code.
It is the internal version of the target program, which is similar to the machine code, also
called the three-address code. In a three-address code, there is at most one operator on
the right side of an instruct ion, so it does not allow for bui l t -up ar i thmetic expressions.
Th is intermediate representation should have two important properties: It should be easy
to produce and easy to translate into the target machine.

The intermediate code serves as a bridge between the front end and the back end of a
compiler, where the front end analyzes a source program and creates an intermediate rep­
resentation from which the back end generates the target code. The intermediate code is
also used dur ing the opt imizat ion phase of the compil ing, which w i l l be discussed in chapter
3.4.5.

3.4.5 O p t i m i z a t i o n

Opt imizat ion is an opt ional phase in the compi lat ion process. The syntax-direct transla­
t ion produces intermediate code that can be made more efficient so that it runs faster or
takes less space. The code is improved by various transformations, such as the removal of
unnecessary instructions or their replacement. However, the opt imized program and the
original program have to be functionally equivalent.

The optimizer first breaks the program into basic blocks that are made up of sequences
of three-address instructions that are executed sequentially. T h e n it analyzes the use of
variables w i th in these blocks and between them.

Opt imizat ion can be split into two different types - machine dependent and machine inde­
pendent opt imizat ion.

• Machine independent - transforms the intermediate code independently of the
target machine.

• Machine dependent - opt imizat ion for a specific type of hardware and architecture.
Focuses on effective register al location so it results into a reduction of the number of
moves between the registers and the memory.

12

t l = i n t2 f l o a t (60)
t2 = id2 * t l t l = id3 * 60 .0
t 3 = id2 + t2 ^ id = id2 + t l
id = t 3

Figure 3.4: A n example of the opt imizat ion of the three-address code

3.4.6 C o d e generat ion

The code generation phase is the last and it translates the intermediate representation of a
source program, which can either be an abstract syntax tree or a three-address code, to a
functionally equivalent target program and, thereby, completes the compi lat ion process.

The code generation process is highly dependent on the target language. In the case of
t radi t ional compilers, it is a low-level machine code, which means that the intermediate
representation of the program is translated into sequences of machine instructions. The
generated code is bui l t for a specific type of machine. Transpilers, on the other hand,
usually generate code at a level of abstraction similar to that of the source code, which
means that i n the case of high-level language transpilers, there is no need for machine-
dependent code generation.

3.5 The structure of a transpi ler

Transpiler is s imply a special type of t radi t ional compiler that produces functionally equiv­
alent source code in different programming languages at a similar level of abstraction, which
means that the principle and structure are almost identical to that of a t radi t ional compiler,
described in 3.4, which generates code in a lower level language. Phases, which belong to
the front end of a transpiler, work identical ly to the transpiler, as the source code has to
be split into tokens and parsed to construct an intermediate code representation, such as
an abstract syntax tree. Due to potential ly different semantics of the source and target
programming languages, the abstract syntax tree is stat ical ly analyzed and transformed to
match the structure of the program in the target language, for example moving function
definitions to the start of the program in case of languages, that do not allow cal l before
definition, or moving variable declarations to match scopes in the target language. The
transformed tree is then used for the generation of the source code in the target language.
In addi t ion to transpi l ing the source code, the transpiler needs to ensure support for the
bui l t - in functions of the source language for the tool to be pract ical ly usable.

Figure 3.5: Simpli f ied principle of the transpiler

13

C h a p t e r 4

Syntax analysis approaches

Syntax analysis 3.4.2 is the key part of every compiler. Th is chapter explains two common
approaches to syntax analysis: top-down parsing and bottom-up parsing. It w i l l show its
strengths and l imitat ions. Informations are adopted from [7], [1], and [11].

4 .1 Top-down parsing

The top-down parser constructs its parse tree start ing from the root of the tree and pro­
ceeding down towards the leaves of the tree, which represent terminal symbols. It reads
the token stream from left to right and tries to find the leftmost derivation 2.3.3 of the
input stream, meaning that at each step the leftmost nonterminal symbol is replaced by
its product ion rule. Top-down parsers are based on the LL (k) grammars, where the first
L stands from left-to-right scan and the second L stands from left-most derivation. The k
indicates how many lookahead tokens it uses dur ing parsing. However, i n practice, LL (1)
grammar is preferred, as it simplifies the construction of the parser.

A t each step of the parsing process, the key problem is, which product ion to pick. W h e n
the product ion is chosen, the role of the parser is to verify that the incoming token matches
w i th the expected terminal symbols i n the body of the product ion. W h e n the incoming
token does not match the expected token, the parser reports a syntax error. A s an example,
the rule which stands from if-statement:

statement —>•«/(expression) statementList

has been chosen. After the i f keyword, the parser expects left parentheses, otherwise
reports a syntax error due to an unexpected token. W h e n the incorrect product ion has
been chosen, the parser backtracks to find an alternative product ion, which w i l l match
the incoming token stream. Such an approach makes the pract ical implementat ion more
complex; however, it may be solved by predictive parsing.

The predictive parser relies on the parsing table, which is a two-dimensional array.
The parsing table is constructed using sets F I R S T (X) 2.3.4 and F O L L O W (X) 2.3.5. The
LL (1) parse table is used to determine which rule should be applied for any combinat ion of
the nonterminal symbol on the stack and the next token on the input stream. Each table
entry identifies which product ion to pick and continues the derivation using the product ion,
otherwise reports an error. B y definition, an LL (1) grammar has exactly one rule to be
applied for each combina t i ona l] .

14

4.1.1 Recurs ive descent pars ing

Recursive descent parsing is a top-down method of syntax analysis. It is a system of
mutual ly recursive procedures that parse the input program. For every nonterminal symbol
in the grammar, there typical ly exists a specific method, usual ly a Boolean function, that
determines whether the incoming token stream matches the expected program structure
defined by the grammar, comparing expected and the actual value of terminals and cal l ing
corresponding procedures for expected nonterminals. The parsing a lgor i thm starts w i th a
procedure corresponding to the start symbol of the grammar, which chooses the next step
in the derivation process based on the look-ahead symbol.

It runs unt i l a complete parse tree is constructed, meaning the procedure correspond­
ing to the start symbols successfully finishes, otherwise reports an error. Th is method is
relatively simple to understand, as the implementat ion copies the grammar.

def IfRule() -> bool:
i f match("if") and ExpressionRule() and match(":") and StatementRuleO:

return True
else:

report("syntax error")
return False

L is t ing 4.1: Nonterminal procedure matching if statement in Py thon

The recursive descent parser works w i th grammar that is not left-recursive. In context-
free grammar, a product ion rule is said to be left-recursive if the leftmost symbol of the
body is the same as the nonterminal at the head of the product ion.

expr —>• expr + term

This creates a problem for recursive descent parsers, as it leads to infinite recursion when
attempting to expand the non-terminal symbol.

4.2 Bo t t om-up parsing

In contrast w i th the top-down parsing approach, bottom-up builds a parse tree start ing at
the leaves and working up to the root. Each step in the derivation process represents a
shift or a reduction. A t each reduction step, a specific substring that matches the body
of a product ion is replaced by the nonterminal at the head of that product ion [1]. S imi lar
to top-down parsing, the key problem is which product ion to choose and whether to shift
or reduce.

4.2.1 Opera to r -p recedence pars ing

Operator-precedence parsing is a popular deterministic bottom-up parsing method for ex­
pressions whose operators and their priorities control the parsing process, meaning oper­
ators w i th higher priorities are evaluated before lower-priority operators. It uses a stack,
the bot tom of which is marked by a convention w i th the $ sign and a precedence table,
which shows the corresponding action for every combination of the top terminal and the
incoming symbol . A t every step of the parsing process, the decision is made on whether an

15

action of shift or a reduction should take place. The decision is based on the symbol in
the precedence table.

• Shift - W h e n the operation marks shift (usually marked w i th < symbol) , the handle
symbol is added to the right side of the topmost terminal and current symbol is
pushed to the operator stack. In case of the = action, the current symbol is pushed
to stack without inserting the handle.

• Reduction - W h e n the operation marks reduction (usually marked w i th > symbol) ,
the parser verifies, whether there exists any product ion w i th the body matching the
top str ing at the pushdown. The end of the str ing at the stack is marked w i th a
handle symbol . If such a rule exists, the str ing is replaced w i th the nonterminal in
the head of the product ion. If there is not any rule matching product ion, the parser
reports an error.

• Er ror - The empty entry i n the precedence table for the configuration of the topmost
terminal and an incoming character signals an error and ends the parsing process.

Algor i thm 1: Operator-Precedence Pars ing A l go r i thm [8]

Push($):
repeat

Let a be the topmost terminal on the stack:
Let b be the current token from the input string:
switch Table [a] [b] do

case = do
Push(6);
NextToken() :

case < do
Replace a w i th a < on the stack:
Push(6);
NextToken() :

case > do
if < y is the top string on the stack and A

Replace < y w i th A on the stack:
end
else

Error :
end

case blank do
if a = $ and b = $ then

Success:
end
else

Error :
end

end
28 until Success or Error:

y € P then

16

In practice, the operator precedence parsers are frequently used in combination w i th
other parsers, inc luding predictive parsers 4.1.1. In such configuration, the precedence
parser handles the syntax of expression, while the predictive parsers handle the general
structure of programming constructs, such as conditionals and loops [7].

4.2.2 L R pars ing

L R parsers are table-driven bottom-up shift-reduce parsers, where L stands for left-to-right
scan of tokens and R for the rightmost derivation in reverse. The class of grammars that
can be parsed using L R methods is a proper superset of the class of grammars that can
be parsed w i th predictive or L L methods. Th is means that the power of the L R parser is
greater than that of other parsing methods and can be constructed to recognize v i r tua l ly
al l programming language constructs for which context-free grammars can be wr i t ten [1].
It relies on the stack, which stores the states of the parser, whereas the other shift-reduce
types of parsers use stack to shift symbols representing terminals and nonterminals. Each
state summarizes the information contained in the stack below it . The L R table on which
the parser is bui l t consists of two parts:

• Act ion part - Determines which act ion the parser should take, main ly what the next
state for the current configuration is, based on the current state and the next input
symbol. Common actions include Shift, Reduce, Accept, and Er ro r action.

• Goto part - After the parser reduces a port ion of the stack based on a product ion
rule, it consults the goto section to determine the next state to transit ion to based on
the non-terminal symbol at the head of the product ion applied.

Algor i thm 2: L R Pars ing A l go r i thm [1]

Input : Input str ing w w i th end marker '$ '
Output : Parse tree or error message
Let a be the first symbol of w$:
while true do

Let S be the state on top of the stack:
if ACTION[S, a] = shift t then

P u s h t onto the stack:
Let a be the next input symbol:

else if ACTION[S, a] = reduce A^a then
Pop | a| symbols off the stack:
Let state t now be on top of the stack:
P u s h G O T O [t , A] onto the stack;
Output the product ion A —>• a:

else if ACTION[S, a] = accept then
Break;
// Success

else
C a l l error-recovery routine;
// Handle syntax error

17

The ma in disadvantage of the L R parser is the difficulty of implementing the L R parser
for the grammar of a programming language by hand, as it is possible i n the case of the
L L parsers. However, s imilar to a lexical analysis generator, there are tools for generating
L R parser, such as Yacc or Bison, which read a description of a context-free grammar and
generate a L A L R (l) parser i n the C programming language.

18

C h a p t e r 5

Source and target languages

This chapter describes the P H P 5.1 and JavaScript 5.2 languages, which are used as the
source language and the target language for the transpi lat ion, respectively. It describes the
syntax of source languages, which is important dur ing the syntax analysis phases as well as
comparing semantic differences, which may lead to functionally non-equivalent programs or
difficulties i n the process of target code generation. Information about languages is adapted
from [10] and [2].

5.1 P H P

P H P (Hypertext Preprocessor) is a widely-used open-source general-purpose script ing lan­
guage that is especially suited for web development and can be embedded into H T M L .
P H P is a dynamical ly typed language, which means that the data type of a variable is
determined at runtime rather than at compile t ime. It is an imperative, procedural, and
object-oriented language. P H P is commonly used as a server-side script ing language, where
it is used in combination w i th H T M L to create web pages w i th dynamic content based on
various factors such as user input, or populat ing the webpage w i th data from the database.
However, it can also be used as a t rad i t ional script ing language, which w i l l be the focus of
the selected subset of the target language, not its usabil i ty i n the web environment.

5.1.1 Syntax

P H P program typical ly starts w i th the opening tag <?php and may end w i th the closing tag
?>. The tags tel l the P H P interpret, which part of the source code is code to be interpreted,
the rest is ignored. The syntax of the language is s imilar to that of the C programming
language, as it uses semicolons to terminate statements or curly braces to enclose code
blocks. Variables are denoted by the $ symbol followed by the name. It supports various
data types such as integers, floats, strings, booleans, nul l , arrays, objects, and resources.
The flow of the program is controlled by t radi t ional structures such as conditions or loops
such as for, foreach, or while. It supports ar i thmetic and logical operations, assignments,
as well as function calls and definitions of custom functions.

5.1.2 S u p p o r t e d subset of the language

P H P is a versatile language w i th a wide range of bu i l t - in features and approaches to software
design. The design and implementat ion of a transpiler to support an entire language that

19

would produce functionally equivalent code would be very complex. Ignoring the object-
oriented approach, the transpiler supports basic programming constructs such as assignment
to a variable or an array, inc luding assignment to a specific index in the str ing or an array.
It supports most of the control structures of the language:

• Condit ional statement - Decision, whether the code is executed based on the spec­
ified condit ion. Examples of such structures are i f , e l se i f , or else. The ternary
operator is also supported.

• Looping constructs - Al lows iterating over data or executing the specified code
repeatedly. Example of looping constructs are while, do-while, for, or foreach.

• Contro l flow statements - Add i t i ona l bu i l t - in constructs to control the flow of the
program including switch-case, break, continue, or a return statement.

Definit ion of custom functions and function calls are possible as well, inc luding function
calls w i th in mathemat ica l expressions. In addi t ion to user-defined functions, a smal l subset
of bu i l t - in functions is also supported:

• A r ray functions - Smal l subset of functions which allow manipulat ion and creation
of arrays, such as array(), count(), array_pop(), array_push(), explore(), or
implode (). Funct ion range (), which creates an array containing a range of elements
is supported as well.

• String functions - Functions that allow operations w i th str ing literals, such as
s t r l e n O , s t rposO, or substr().

• M a t h functions - Implements commonly used mathematics functions such as sqrt (),
f loor() or a pow(), which raises number to a certain power.

• Type conversions - Adds support for explicit type conversions such as i n t v a l O ,
s t r v a l O , and conversion of characters to and from their A S C I I values; chr() and
ordO.

W i t h i n expressions, i n addi t ion to t radi t ional mathematics operations, it supports log­
ical operations, comparisons, and working w i th array items at concrete indexes as well as
ternary operators.

5.2 JavaScr ipt

JavaScript is an interpreted script ing language for web pages, many non-browser environ­
ments also use it, such as Node. js 1 , which is a JavaScript runtime environment. It is a
single-threaded, dynamic language support ing object-oriented, imperative, and declarative
styles [2]. The language is specified by the E C M A - 2 6 2 standard [4]. Th is thesis assumes
the usage of Node.js as a JavaScript runtime. As already mentioned in the introduct ion,
JavaScript has been the most popular language in the developer community for many years.
Due to its popularity, the language has a large environment of open-source libraries and
tools, such as B u n 2 , the performance of which drastical ly overcomes that of Node.js.

1Node.js: https://nodejs.org/en
2 B u n : ht tps ://bun.sh/

20

https://nodejs.org/en
https://bun.sh/

5.2.1 Syntax and semantics

The syntax of JavaScript is not very different from that of PHP, as it is part of C-family
programming languages, inc luding code blocks del imited by curly braces (O), or semicolon
(;) terminat ing expressions. Variables are declared using let , const, or var keywords.
B o t h l e t and const were introduced w i th the ES6 version of JavaScript and declare block-
scoped local variables, where the value of const cannot be reassigned using the assignment
operator. The var statement declares function-scoped or globally-scoped variables [2].
S imi lar ly to PHP, a function can be declared using a function keyword, however, the ES6
version introduced the use of arrow functions using the => syntax. It is a dynamical ly
and weakly typed language, meaning that variables can change their type over t ime and
allows for impl ic i t type conversions when the operation involves mismatched types. The
fundamental model of JavaScript is objects, inc luding primit ives such as Number , Str ing,
Boolean, N u l l , or Undefined are wrapped into their corresponding object wrappers [2],
al lowing the use of bu i l t - in functions specific to the object. Objects are created using a pair
of cur ly braces ({}) and can store key-value pairs. Even when assigned to a variable declared
using the const keyword, fields of objects can be mutated. S imi lar to PHP, it supports
different types of loops or condit ional statements. The JavaScript code can be organized into
modules, where objects can be imported or exported using import and export keywords
introduced in ES6 . It supports an object-oriented programming approach, al lowing the
creation of classes, objects, or inheritance using the extend keyword. JavaScript offers
asynchronous programming using async/await syntax or promise. It enables the non-
blocking execution of t ime-consuming tasks such as database queries, or network request
processing

5.2.2 Language differences

Languages are syntactical ly and semantically similar, however, certain differences influence
the functionality of the generated code and require better semantic analysis i n order to
mitigate the differences in the generated code. The difference in operator pr ior i ty is solved
by the precedence-operator parser and using brackets to expl ic i t ly declare the pr ior i ty of
operators in the generated code. Strings in PHP are mutable, therefore, you can expl ic i t ly
change the string, for example, assign a character to a certain index, which JavaScript
does not allow, and requires a sequence of steps to be generated to simulate the same
behavior. Implicit type conversions, such as using echo, which converts the expression to
string, behave differently than using console.log() , which in addit ion adds a new line
character after the output. The boolean value true is assigned to str ing ' 1', therefore, the
code generator has to simulate the behavior of PHP. Arrays in PHP can be indexed either
tradit ional ly start ing from 0, or inc luding key-value pairs, where each i tem in the array
can be indexed using the corresponding key, and the behavior part ly corresponds to that
of Objects from JavaScript.

21

C h a p t e r 6

Design, implementation, and
testing

This chapter explains the design process and implementat ion of the transpiler. The program
is implemented in Py thon programming language. The transpiler is div ided into phases that
are explained in 3.4.

6.1 Des ign of the transpi ler

Before the start of the implementat ion process itself, it was necessary to create a maintain­
able and easily extensible design of the transpiler, which may support a larger subset of the
language in the future.

The first design concern was the usage of existing standardized tools to bu i ld compilers,
such as Lex for lexical analysis or B ison for generating a parser. After a discussion w i th the
supervisor, a decision was made not to use any of the tools due to the size of the subset of the
source language, which can be processed using approaches such as recursive descent parsing,
which can be easily wr i t ten by hand without the need for a parser generator. Designing
the entire workflow without relying on standardized tools may offer greater f lexibil ity and
enhance the learning experience.

The second problem was the approach to code generation. A l though it is possible to
generate the code directly dur ing the syntax analysis process, this approach would not
be ideal when translat ing the source code to other high-level programming languages, as
it requires more context, than in the case of generating the three-address code or other
similar low-level language. S imi lar to other transpilers, the ideal solution is to construct
an abstract syntax tree, which can be then stat ical ly analyzed, transformed, and used for
the generation of the target code w i th enough context to generate a functionally equivalent
program.

To make the transpiler extensible and maintainable, it is split into modules, which commu­
nicate w i th each other. The modules ctre cts follows:

• Symbol table - D a t a structure to store and retrieve constructs such as identifiers,
or functions.

22

• Lexer - Performs lexical analysis, spl i t t ing the source code into tokens. Communi ­
cates w i th the syntax analyzer to provide tokens.

• Parser - Controls the entire compi lat ion process and contains an implementat ion of
the L L parser.

• Precedence parser stack - D a t a structure used dur ing expression analysis. Con­
tains methods for push operation and decides what the next operation w i l l be based
on the configuration of the stack.

• Expression parser - Pars ing of expressions. Ca l led by the Parser module. Imple­
mentation of the operation precedence parser.

• A S T - Def init ion of nodes used in the construction of the abstract syntax tree. Each
node is derived from the common Node parent node and implements a generate_code ()
and generate_dot () method.

• Code generator - The data structure used to store generated code and provides
util it ies such as unique variable name generation.

6.2 Lex i ca l analysis

The lexical analyzer is located in the src/lexer of the project folder structure in the class
Lexer. It is implemented as a deterministic finite state machine 2.2.1. A t in i t ia l izat ion,
the lexical analyzer reads the source code and splits it into tokens, which are stored in the
memory of the lexer.

Dur ing the syntax analysis phase of the compi lat ion, the parser communicates w i th the
lexical analyzer using the function get_next_token(), which returns the next token object
and the function unget_token(), which decreases the index of the current token, so the
token can be returned by next cal l of the get_next_token() function. It is used in such
cases when the parser needs to look for more tokens ahead to parse the source program.

The token object contains information that is necessary for the compi lat ion such as token
type and value. In addit ion, it also provides addi t ional information such as the location
of the token in the source code (line and column), that are used for debugging and error
logging purposes. It ignores tokens that are not essential for the compi lat ion process such
as comments, or white spaces. Lexer has to dist inguish between identifiers and bui l t - in
keywords. In P H P , keywords and function names are lexically identical, so it is distinguished
by the keyword table.

Lexer reads the source code character by character and based on the current state and the
incoming character, it decides which state to transit ion into. W h e n the state is marked as
terminal and current character does not belong to the currently processed token, it returns
the new token object and makes a transit ion to the in i t i a l state. The lexer contains other
private methods, that are used dur ing the lexical analysis inc luding get_next_char (), or
add_token(), which adds the created token to the list of tokens, that are further used
during the compilat ion.

23

6.3 Symbo l table

The symbol table is a data structure used dur ing syntax and semantic analysis to store
information about identifiers, such as functions and variables. It is located in the src/utils
in the project structure and is div ided into two modules - a variable table and a function
table.

The purpose of the symbol table is to store the names of variables used in the program
in different scopes. It is implemented as a stack of scopes, so when the parser enters the
body of a function, the previously used scope is stored i n the stack, so it can be used later.
Available methods are get_var (name: str) that look for a variable i n the symbol table
and returns the object i f it is found, methods for working w i th scopes such as pop_scope ()
or push_scope(), or methods for adding new variables. It uses Python 's bu i l t - in dict ionary
data structure, which stores key-value pairs.

The function table is used to store the functions defined w i th in the program and the
bui l t - in functions of the standard l ibrary. W h e n the function ca l l is found dur ing the syntax
analysis, the parser uses the get_function() method to verify, whether the function has
been defined or exists i n the standard l ibrary. If it exists, the node corresponding to the
function is returned so it can be used dur ing the abstract syntax tree construction. Dur ing
the definition of a new function, the add_function() method is used, which, i n addi t ion to
adding the new function object to the table, also verifies whether the function had not been
defined before. It also includes a list of bu i l t - in functions, where for every bui l t - in function
exists a specific type of abstract syntax tree node, which includes methods for generating
the code in the target language.

6.4 Syntax analysis

A second part of the compi lat ion process, syntax analysis, verifies the syntactic correctness
of the source program. As already mentioned in 3.4, syntax-directed translat ion controls
the entire compilat ion process. The syntax analyzer requests the next token from the lexer
or rewinds to the previously obtained token. Every rule i n the parser includes semantic
actions, which not only generate nodes of the abstract syntax tree but also perform
various semantic analyses, such as control l ing the existence of a variable i n the symbol table
or verifying the type compat ib i l i ty in operations. The syntax analyzer uses two different
approaches: top-down parsing 6.4.2 and bottom-up parsing 6.4.3. These approaches
are used in different situations where the top-down approach is used for parsing the general
structure of the program, such as loops and conditions, and the bottom-up parsing verifies
expressions.

6.4.1 A b s t r a c t syntax tree cons t ruct ion

Abstract syntax tree represents the structure of the source program and is the result of the
syntax analysis phase. Th is representation is later used for the generation of the target code.
It consists of nodes, which are defined in the src/ast in the project structure. The Node
class serves as the base for a l l A S T nodes, defining the kind attr ibute and two common
methods:

24

• generate_dot () - Generates D O T language code for v isual izat ion of the node. Th is
method recursively generates D O T code for each of its children, al lowing for the
visual izat ion of the entire abstract syntax tree.

• generate_code () - Us ing the context around the node generates the code in the target
language - JavaScript. It uses a similar recursive approach to the generate_dot ()
function, meaning it calls the function for a l l of its chi ld nodes.

Figure 6.1: V isual ized A S T of a simple P H P program

Other subclasses extend the Node base class by providing custom attributes, their imple­
mentation of generate_dot () and generate_code () methods but also custom methods.
The root of the tree consists of the node of type Program:

class Program(Node):
def i n i t (sel f , kind: s t r = "Program"):

super(). i n i t (kind)
s e l f . ch i l d r en : List[Node] = []

L is t ing 6.1: Root of the A S T

The parser then adds chi ld nodes to the current root of the current code block, meaning
that if the parser enters a different code block, for example, the body of the while statement,
the node representing the body of the construct w i l l become the current root of the A S T ,
and the previous root w i l l be saved i n the stack.

6.4.2 Pa r s ing of the p r o g r a m st ructure

The main part of the syntax analyzer is implemented in the class Parser. It is a recursive
descent parser that analyzes most of the syntactic structures of the code, except for expres­
sions. The principle of a recursive descent parser is explained in 4.1.1 The process starts
w i th the ca l l to the method, which corresponds to the start ing symbol of the grammar. It
uses a look-ahead token to choose the appropriate act ion. As an example, when the token
represents the i f keyword, a method corresponding to the i f nonterminal is called. If the
method is completed successfully, the function corresponding to the start ing symbol of the
grammar calls itself recursively unt i l the end of the program is reached. As the goal of
syntax analysis is to bu i ld an abstract syntax tree, every function creates a node of a type,

25

which corresponds to the current nonterminal. Each type of node has different attributes,
which are necessary for creating the intermediate code representation. W h e n the procedure
matching the nonterminal finishes successfully, the newly created A S T node is added as a
chi ld to the parent node.

class WhileStatement(Node):
def i n i t (sel f , node_type: str = "WhileStatement"):

super(). i n i t (node_type)
s e l f . t e s t : Node = Node()
sel f .body: Program = ProgramO

Lis t ing 6.2: A S T node corresponding to while-loop construct

W h e n the expression construct is expected, the parser has to cooperate w i th the operator
precedence parser. It calls the function analyze_exp(term_tokens), which takes the list
of terminat ing tokens as an argument to know where the expressions end. If expression
parsing succeeds, the abstract syntax tree of the expression is returned. In the while-loop
example, the returned expression may be used as a test attr ibute, which represents the
condit ion of the loop. The analysis is performed in two passes because P H P allows function
calls before the function has been defined. In the first pass, the parser checks the function
definitions and stores them in the function table. In the second pass, the remaining source
code is checked. This means that i f a function ca l l is encountered and the function has been
defined, even later in the program, it has already been added to the function table.

6.4.3 Pa r s ing of expressions

Due to the different priorities of the operator i n the expressions, the recursive descent
parser cannot be used for this purpose. The ideal approach may be to use an operator-
precedence parser explained in section 4.2.1. It is implemented in src/expression_parser
in the project structure and consists of three ma in parts - precedence table, stack, and the
parser itself. The table contains a corresponding operation for every combination of the
top-most terminal and the incoming terminal . A t the in i t ia l i zat ion of the stack, the start ing
symbol $ is inserted. The stack stores terminal and nonterminal symbols, which w i l l be
used in the reduction process. It also provides helper functions such as insert_handle() ,
stack_push(), or get_operation().

The PrecParser class is provided w i th a set of tokens, which signal the end of the expression.
The analyze_exp() function is implemented as an infinite loop, which gets a new token
from the lexical analyzer and, using the previously mentioned get_operation(), performs
the corresponding action. If the operation signals reduction, items from the stack are
popped and saved to the reduced_items variable unt i l the handle symbol is hi t . The
parser then tries to find which rule corresponds to the i tem for reduction. If such a rule
exists, the reduction operation is performed and the result is pushed back to the stack:
otherwise, an error is reported. Dur ing the reduction, various semantic checks are also
performed, meaning that it cooperates w i th the symbol table, as well as analyzing the type
of the outcome of the operation.

Funct ion calls can be part of expressions, which makes the implementat ion of the expression
parser more complex. F i rs t , it has to verify the existence of the function i n the symbol
table and report an error if it has not been defined. Then, it has to switch to the recursive

26

descent approach to parse arguments of the function cal l and then continue in the process
of expression parsing as the function ca l l can be considered a constant, s imi lar to the
occurrence of a variable i n expressions.

6.5 Semantic analysis

In addi t ion to checking the syntax of the source program, the parser has to validate the
semantic correctness of the program as well. It is not implemented as a stand-alone module
but rather performed dur ing the syntax analysis and code generation phases.

The first th ing to verify is the existence of identifiers and functions. A t every occurrence
of a variable i n expressions, the parser cooperates w i th the symbol table, which contains
information about a l l identifiers, to verify whether the variable has been declared and can be
used in the current scope. The symbol table implements a method get_var(name : str),
which either returns the object corresponding to the variable or none if it has not been
found. New variables are added to the symbol table dur ing the syntax analysis phase, more
precisely when the variable_assignment rule is being executed. Simi lar to checking the
existence of variables, when the function ca l l w i th in an expression is processed, the parser
needs to verify the existence of the function in the table of functions. Funct ions can be
defined w i th in the program or be a part of the supported subset of bu i l t - in functions of
P H P . If the function exists, the parser needs to verify the correct number of arguments that
are passed to the function dur ing its cal l . Addit ional ly , parameters and the return type of
the function may optional ly have declared types, which have to be semantically analyzed
as well.

The second task of the semantic analysis is to verify the compat ib i l i ty of operators
and their types. Most of the type compat ib i l i ty analysis occurs in the expression parser
during the reduction operation. F i rs t , the parser has to confirm that the given operator is
compatible w i th its operands; for example, operation addi t ion (+) can not have a str ing as
its operand.

6.5.1 T y p e inference

The goal of type inference is to assign a type to each expression that occurs i n a program
[3]. In addit ion to verifying the type compat ib i l i ty of operators, the type of the result has
to be inferred, which is most cases affected by the operator, where, for example, result of
the comparison operation w i l l be of type boolean. In general, type inference rules specify,
for each operator, the mapping between the operand types and the result type [3].

The inferred type is propagated to other parts of the program and may later influence the
function of the generated code. The simplest rule is variable assignment, where the type
on right side is assigned as the type to variable on left side of the assignment. The type
is assigned to the variable object found in the symbol table and can be used when the
variable occurs in expressions. In contrast w i th stat ical ly-typed languages, the declaration
of functions return and parameters types in P H P is only optional, and has to be inferred
by a semantic analyzer. The type declarations, however, enable better type checking when
the function cal l is a part of an expressions and can potential ly provide more accurate code
generation. The type is returned as a result of the analyze_exp() function and can be
assigned to variable.

27

6.6 Code generation

The last step in the chain is code generation. It uses the abstract syntax tree representation
of the source code to generate the code in the target language. To generate functionally
equivalent code, every node in the tree has to know the context surrounding it, due to dif­
ferent semantics of operations in source and target languages. It uses the CodeGenerator
class located in /src/generator in the project structure. In addit ion to storing the gener­
ated source code, it provides methods for generating unique variable names or changing the
order of generated code. The generation of code uses the generate_code () method, which
is defined for every type of node that is used in the construction of the abstract syntax tree.

The target code generation phase uses the recursive approach, where the generate_code ()
function is in i t ia l ly called for the root of the abstract syntax tree, which represents the
Program type of node, meaning it includes a list of chi ldren nodes. The generate_code ()
is then called for every chi ld node, which has its own implementat ion of the method, and
generating the code from the entire abstract syntax tree.

6.6.1 Var i ab l e generat ion

W h e n generating a new variable in JavaScript, it can be declared in 3 ways - using const,
var, let , or automatically, w i th var used mostly i n older browsers. Therefore dur ing the
syntax analysis, we have to keep track, of whether the current occurrence of the variable is
the first one and should declare a new variable using let or const. To decide between l e t
and const, we have to keep track of whether the variable has been reassigned.

Another problem is, that i n JavaScript, function has access and can modify variables
outside the scope of the function. Th is is solved by a symbol table that keeps track of the
existence of variables in certain scopes.

The major problem w i th a variable is keeping track of its type, which influences the
functionality of generated code. The type of variable is determined by the type of expression
that is assigned to the result. However, when the code is generated after the parsing and
the variable could have been reassigned many times, we need to find the type of it at a
certain point i n t ime retrospectively. To solve this, every variable object has a queue, which
includes the history of the assignment operation so we can find the type dur ing the code
generation.

6.6.2 C o n t r o l s t ructure generat ion

Contro l structure such as conditions or loops have almost identical syntax and semantics in
the source and target languages, so the generation itself is straightforward, since it is using
the recursive approach.

def generate_code(self, parent: Node) -> s t r :
gen_code = "while ("
i f s e l f . t e s t :

gen_code += f " { se l f . t es t . generate_code(parent=self)]-){{"
gen_code += f"{self.body.generate_code(parent=self)>>}\n"
return gen_code

Lis t ing 6.3: Generat ion of the while-loop construct

28

6.6.3 Exp re s s i on generat ion

The precedence of operators has been solved by the operator-precedence parser, so i n code
generation, the code can be generated recursively from the abstract tree, only using brackets
to split the left and right subtrees to generate code for binary operations such as addi t ion
or subtraction.

However, in order to generate functionally equivalent code, we need to use the context,
as there is difference in type conversion, mutabi l i ty of strings between languages, and many
other differences not obvious at the first sight. Strings in P H P are mutable, which means
what in order to change the character at certain index, it is possible to assign a new
character to the desired index. To simulate this behavior i n JavaScript, the str ing has to
transformed to a type, which allows mutat ion, such as an array, and mutate it . It can
be then transformed back to string, and assigned back to the original variable. W h e n
generating Assign nonterminal , left side of which contains specific index and the right
side is of type string, the generator provides the code corresponding to the series of steps
mentioned before. Another example may be casting a boolean value to a string. In P H P ,
the boolean value true is cast to '1 ' and fa lse to ", whereas in JavaScript, i t 's ' true' and
'false'. The context has to identified by the generator and generate the code functionally
equivalent w i th that i n P H P . Therefore, each node needs access to its parent, which provides
the context in which the node is used.

6.6.4 Funct ions generat ion

The syntax of a function definition in P H P is very similar to that of JavaScript . Each
function is identified by its name, which is then used for the ca l l of the function and has
to be unique w i th in the program. It also includes list of parameters, where each parameter
may optional ly have a type declared. Optional ly , a return type of function may be declared,
simpli fying the semantic analysis of expressions cal l ing the function. The problem w i th
function generation in the target language is, that variables and functions name may collide,
which is not a problem in P H P . Therefore, dur ing syntax and semantic analysis, when a new
function is declared, a new unique name is generated for the function, which is then stored
w i th the function in the table of functions. This ensures that dur ing the code generation
process, a function is generated w i th the newly generated name. Funct ion calls have to be
changed, so they match the newly generated name of function, as the function can be found
in the function table using the original name.

A supported subset of bu i l t - in functions is generated i n two ways. The first approach is that
function calls are direct ly replaced by functionally equivalent code in the target language,
such as pow($number,$exponent) being replaced by Math.pow(number, exponent) for
the exponent function, or by a relatively simple sequence of steps to simulate identical
behavior of the original function. The second approach is used, when the code needed to
replace the original bu i l t - in function is more than a one-line function, such as in the case
of the range () function. In this approach, the code in the target language is stored in the
CodeGenerator, so at the start of the code generation process, saved bui l t - in functions are
inserted at the start of the generated code, making them accessible for use.

29

C h a p t e r 7

Testing and comparison w i th
alternative tools

This chapter describes the testing process of the implemented transpiler and compares the
results w i th existing tools. The comparison w i l l focus on the size of the subset of the source
language, support of bu i l t - in functions, and whether the generated code is functionally
equivalent to the source program.

7 . 1 Test ing

A set of automatic tests has been developed to verify the correctness of the implementation.
Test scripts are located i n /tests folder containing a set of .php programs. Each of the
programs is transpiled into the target language and the results of running the original
and the transpiled program are compared. A s the transpiler should produce functionally
equivalent code, the outputs must match for the test to pass successfully. The testing is
done using Node. j s v20.12 and PHP 8.1.2.

The set of test cases includes tests at different levels of complexity, start ing w i th testing
simple language constructs such as assignment to variable, operations w i th impl ic i t type
conversion, testing of supported bui l t - in function, or recursive function cal l . However, it
also includes more complex program examples, such as calculat ion of factorials or different
types of sorting algorithms. A subset of tests has been adopted from Roset taCode 1 , which
is a website that presents solutions to programming tasks i n as many different languages
as possible, inc luding P H P . A n example may be Euler method, or Sierpinski carpet. The
source code of the solution i n P H P from the RosettaCode is transpiled into JavaScript
and outputs of original and transpiled program are compared. Even though the transpiler
detects error, most of the test programs are syntactical ly and semantically correct, as the
goal of testing is not to verify error detection, but rather code generation i n the target
language.

Regression testing using the developed test set helped to ensure functionality of previously
implemented modules dur ing refactoring of the code or adding support for new features.
The testing abi l i ty is l imi ted by the supported subset of the P H P , as commonly used object
oriented approach is not supported, as well as many commonly used bu i l t - in functions.

1RosettaCode: h t t p s : //rosettacode.org/

3 0

7 .2 Compar i son w i t h alternative tools

The capabilit ies of the implementat ion were compared w i th the set of existing tools, which
differ in approach to transpi l ing and supported subset of the language.

7.2.1 U n i t e r

Uniter [9] is an open-sourced transpiler from P H P to JavaScript wr i t ten i n JavaScript.
The too l enables P H P to run in the browser, using a custom transpiler. However, the
focus w i l l be on its capabilities w i th in the Node.js environment, where it can be installed
using the N P M package manager. It includes a command line interface, which offers three
main functions; directly running the P H P program using Node.js, transpi l ing the P H P to
JavaScript and returning the generated code, and returning the abstract syntax tree of P H P
code in the J S O N format. It supports a larger subset of P H P , inc luding object-oriented
programming capabilities, goto statement, magic constants, and a smal l subset of bu i l t - in
functions. The main l imi ta t ion is the generated code, which is generated in a format, which
depends on using the phpruntime runtime package to execute the code. Even though the
approach allows better control over type conversions and semantic differences, it makes the
transpiler dependent on the custom runtime packages, therefore not generating universally
usable code not only w i th in the Node.js environment but across different runtimes, such
as Deno or Zod. W h e n tested in the tests mentioned in 7.1, the support for the bu i l t - in
function is more l imited, causing many tests to fail.

require('phpruntime') .compile(function(core) { // echo 23;
var createlnteger = core.createlnteger,

echo = core.echo,
instrument = core.instrument,
l i n e ;

instrument(functionO {
return l i n e ;

}) ;
l i ne = 3;
echo((l ine = 3, createlnteger(23)));

}) ;
L i s t ing 7.1: Generated JavaScript code for the P H P program: echo 23;

7.2.2 P H P - t o - J a v a S c r i p t

The PHP- t o -JavaSc r i p t 2 provides a simple web interface playground to test its capabilit ies.
In addit ion to t radi t ional constructs such as loops or conditions, the transpiler supports
namespaces, classes, or constants, which is a bigger set of the supported language than is
supported by the transpiler developed for this thesis. The pract ical usage is however very
l imited by the fact, that it does not support any bui l t - in functions, such as functions to
work w i th arrays. Unknown functions are transpiled to JavaScript w i th an equivalent name,
which produces non-functioning code, as the name of the bu i l t - in function is not defined in
the target language. Another problem is the absence of type inference and almost entire
semantic analysis. The transpiler does not report errors on the use of undefined variables,

2 PHP-to-JavaScript : h t t p s : //g i thub.com/t i to l0047/PHP-to-Javascr ipt

31

functions, or incompatible type operations. It is therefore generating a functionally different
program. A s an example, we may take a simple echo true ; P H P program, which outputs
the expression w i th no addi t ional newlines or spaces. The echo construct is replaced w i th
console. log() , which adds a new line after the output. It also does not perform impl ic i t
type conversion from boolean to string, which in P H P would output 1, as the echo trans­
forms the boolean value into string, which in P H P is represented by '1'. Overal l , the tool
supports a larger subset of the language, but the absence of semantic analysis and naive
approach to code generation, which generates functionally non-equivalent code makes the
usage of the tool problematic.

7.2.3 L L M - b a s e d tools

W i t h the rise i n popular i ty of large language models, several tools use A I for converting code
from one language to another. Example of these tools are Codeconverter 3 , Docuwriter ' 1 , or
prompting any large language model, like C h a t G P T , to perform the code transpi lat ion task.
Due to non-determinism in these tools, it is hard to benchmark their capabilities and the
subset of supported language. The pract ica l usage is l imi ted by the „hallucination", where
models generate a confidently-sounding answer, which is however fundamentally incorrect.
That is, for any given P H P source code, it w i l l generate the JavaScript source code, even
though it may be functionally total ly different. The advantage of using L L M is that the
generated code is styled, like it has been wr i t ten by a human programmer, not generated
by a machine, therefore it 's more readable and easier to debug and fix errors, so the ideal
use case of L L M - b a s e d tools would be the acceleration of the migrat ion of code base to
different programming languages when the code mainta inabi l i ty is preferred over exact
function equivalence. Us ing the set of tests from 7.1, the L L M - b a s e d tools perform better
than the 2 tools mentioned above.

3CodeConverter: h t t p s : //www.codeconvert.ai/free-converter
4Docuwriter: h t t p s : //www.docuwriter.ai/php-to-j s -code-converter

32

http://www.codeconvert.ai/free-converter
http://www.docuwriter.ai/php-to-j

C h a p t e r 8

Conclusion

The goal of the thesis was to design and implement a high-level language transpiler from
P H P to JavaScript, and it has been achieved. The transpiler supports a usable subset of
the source programming language, al lowing usabil i ty for P H P programs w i th t radi t ional
syntactic structures such as loops, conditions, or function calls. It even supports a smal l
subset of P H P ' s bu i l t - in functions, such as functions for working w i th arrays, strings, or
math operations.

The transpiler is bui l t without the use of any tools, such as lexical analysis or parser
generators, using approaches mentioned in Chaps 3 and 4. Using top-down and bottom-up
parsing, the abstract syntax tree is bui l t that represents the structure of the source code.
It is analyzed and used for the generation of the code in the target language. The abstract
syntax tree can be visualized using Graphv iz . To verify the correctness of the implemen­
tat ion, a set of automatic sets has been developed, inc luding tests of different complexity.
The capabilit ies of the developed transpiler were compared w i th existing solutions, such
as Uni ter or L L M - b a s e d tools, showing both advantages and disadvantages compared to
these solutions. Even though the developed too l supports a smaller subset of the language,
the output is deterministic, and its ma in focus is on function equivalence of the generated
source code, which was not always the case in the previously mentioned tools. The tran­
spiler performs static analysis and type inference of the source code, which is necessary for
the generation of the functionally equivalent code in the target language, which was not
the case in most of the tested alternative solutions.

The ma in l imi t ing factor of pract ica l usage is the size of the supported subset of P H P .
To be usable, support for an object-oriented approach is necessary, as it is commonly used
in P H P code bases. The support for bu i l t - in functions is a very important factor in terms
of pract ical usability. The transpiler supports most commonly used functions, mostly to
work w i th arrays and strings, however, the greater subset would increase the usabil i ty
of the transpiler. The current design allows for a simple extension of the set of bu i l t - in
functions. It also does not support include or require, al lowing usage of mult iple files. To
reach the functional equivalence, the generated code's structure may not be easily readable
and maintainable, therefore, it is more useful as a tool for running the P H P codebase
in JavaScript, rather than accelerating the migrat ion of code base from one language to
another.

3 3

Bibl iography

[1] A H O , A . V . Compilers : principles, techniques & tools. 2nd ed. Boston: Add ison
Wesley, 2007. I S B N 0-321-48681-1.

[2] C O N T R I B U T O R S , M . JavaScript [online]. 2024. [Accessed: Apr i l 19, 2024]. Available at:
https: //developer. mozilla.org/en-US/docs/Web/ JavaScript.

[3] C O O P E R , K . D . and T O R C Z O N , L . Chapter 4 - Context-Sensitive Analys is . In:
C O O P E R , K . D . and T O R C Z O N , L . , ed. Engineering a Compiler (Second Edition).
Second Ed i t i on th ed. Boston: Morgan Kaufmann, 2012, p. 161-219. D O I :
https://doi.org/10.1016/B978-0-12-088478-0.00004-9. I S B N 978-0-12-088478-0.
Available at:
https://www.sciencedirect.com/science/article/pii/B9780120884780000049.

[4] E C M A , E . 262: Ecmascr ipt language specification. ECMA (European Association for
Standardizing Information and Communication Systems), pub-ECMA: adr,. 14th ed.
2023. [Online; Accessed: A p r i l 22, 2024]. Available at:
https: //262.ecma- international.org/.

[5] F I S C H E R , C . N . , C Y T R O N , R . K . and L E B L A N C , R . J . Crafting A Compiler, l s t t h ed.
U S A : Addison-Wesley Publ i sh ing Company, 2009. I S B N 0136067050.

[6] L E S K , M . E . and S C H M I D T , E . E . L e x — a lexical analyzer generator. 1990. Available
at: https : //api.semanticscholar.org/CorpusID: 7900881.

[7] M E D U N A , A . Elements of Compiler Design. 1st ed. M i l t o n : Auerbach Publishers,
Incorporated, 2007. I S B N 1420063235.

[8] M E D U N A , A . and K R I V K A , Z. Materials for IF J [Brno Univers i ty of Technology].
2017. [Online; Accessed: March 23, 2024]. Available at:
https: //www. fit.vutbr.cz/study/courses/IFJ/publ ic/materials/.

[9] P H I L L I M O R E , D . Uniter [online]. 2023. Accessed: Apr i l 22, 2024. Available at:
https://phptojs .com/.

[10] T E A M , P. D . PHP Manual. 2024. Online; Accessed: 13-April-2024. Available at:
https://www.php.net/manual/en/.

[11] T H A I N , D . Introduction to Compilers and Language Design. 1st ed. Lu lu .com, 2016.
I S B N 0-359-13804-7.

34

http://mozilla.org/en-US/docs/Web/
https://doi.org/10.1016/B978-0-12-088478-0.00004-9
https://www.sciencedirect.com/science/article/pii/B9780120884780000049
http://international.org/
http://semanticscholar.org/CorpusID
http://fit.vutbr.cz/
https://phptojs.com/
https://www.php.net/manual/en/
http://Lulu.com

A p p e n d i x A

Contents of the included storage
media

/
implementation Implementation of the transpiler

src Source flies of the transpiler
. t ransp i le r .py En t r y point of the transpiler
- ast Nodes of the A S T

— lexer Implementation of the lexical analyzer
. parser Implementation of the recursive-descent parser
expression_parser Implementation of the operator-precedence parser

— tests Folder containing test P H P programs
1— *. php Set of test programs

_ test . py Test script
README.md Transpiler manual

thesis Thesis L a T e X source codes
_README.md Thesis manual

xmokriOl .pdf Thesis text

3 5

