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Abstract

The experimental techniques based on the nuclear resonant scattering provide a unique
information on solid systems via modified energy levels of nuclei caused by their hyper-
fine interactions. Namely, the coherent elastic nuclear resonant scattering in the forward
direction can be experimentally realized either in the energy domain as a transmission
Mössbauer spectroscopy or in the time domain as a nuclear forward scattering of synchro-
tron radiation. Despite finding many applications in various research fields, the potential
of these methods has not been fully explored. The aim of this work is to provide a theore-
tical description of the nuclear resonant scattering applied to complex materials exhibiting
spatial inhomogeneities of hyperfine interactions along the direction of the incident radi-
ation. Such situation has been observed, for example, in iron-based metallic glasses which
have been subject to special treatment. The thickness effects, polarization mixing and
preferential orientations of present hyperfine fields (i.e. texture) play a crucial role in the
scattering process, so a general theoretical formalism is required for a proper description
and interpretation of measured data. A significant part of the work is also devoted to
the texture description for thick samples measured in both the energy and the time do-
main. The theory was successfully applied for the analysis and interpretation of nuclear
forward scattering experiments conducted on Fe81Mo8Cu1B10 metallic glass during the
crystallization process. The work also includes a description of the developed software
package.

Abstrakt

Experimentální techniky založené na jevu jaderného rezonančního rozptylu poskytují
informace o pevných látkách prostřednictvím modifikovaných energetických hladin jader
v důsledku hyperjemných interakcí. Koherentní elastický jaderný rezonanční rozptyl v do-
předném směru může být experimentálně realizován v energetické doméně jako transmisní
Mössbauerova spektroskopie nebo v časové doméně jako jaderný dopředný rozptyl syn-
chrotronového záření. Přestože tyto metody nalézají mnohá využití v rozličných výzkum-
ných odvětvích, jejich potenciál doposud nebyl plně využit. Cílem této práce je teoreticky
popsat jaderný rezonanční rozptyl na materiálech vykazujících nehomogenní rozložení hy-
perjemných interakcí ve směru dopadajícího záření. Takový případ byl pozorován napří-
klad u speciálně upravených železo-obsahujících kovových skel. Zásadní vliv na rozptyl má
v tomto případě tloušťka vzorku, změny v polarizaci záření a preferenční orientace pří-
tomných hyperjemných polí (textura). Pro správný popis a interpretaci naměřených dat
je pak potřeba použít obecný teoretický formalismus zahrnující uvedené jevy. Významná
část práce je vyhrazena právě popisu textury v tlustých vzorcích pro měření v energetické i
časové doméně. Popsaná teorie byla úspěšně použita k interpretaci experimentů jaderného
dopředného rozptylu provedených na kovovém skle o složení Fe81Mo8Cu1B10 v průběhu
krystalizace. Součástí práce je také popis vyvíjeného softwaru.
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Introduction
Nuclear resonant methods utilize an interaction of the electromagnetic radiation with

atomic nuclei in a solid. The nuclei serve as a probe to explore their local surroundings
and offer information on the structural and magnetic ordering, electron configurations of
atoms, etc. This information is coded in the nuclei energy levels, which are modified by so
called hyperfine interactions between the nuclei and their surroundings.

If the energy of the incident photons is in resonance with the energy corresponding to a
transition between the nuclei energy levels, the photons can be absorbed and subsequently
reemitted. In a special case the directions of the incident and the emitted photons are the
same, i.e. the nuclear resonant scattering proceeds in the forward direction. Experiments
of the nuclear resonant forward scattering can be conducted either in energy domain
as a transmission (absorption) spectroscopy or in time domain, where the intensity of
the reemitted radiation is detected as a function of a time delay after its absorption.
The former is realized as the Mössbauer spectroscopy method, which uses a radioactive
material as a source of the incident radiation. The latter utilizes a synchrotron radiation
source and is referred to as the nuclear forward scattering.

Both experimental techniques provide a unique insight into the local electric and mag-
netic properties in a solid state. However, the crucial part of nuclear resonant measure-
ments is the evaluation of the experimental data, which is generally not an easy task.
It is based on a comparison of the measured data with theoretical curves, that can be
based on rather complex models of the studied samples. During the long-term existence
of the nuclear resonant methods a universally applicable and automatic data evaluation
procedure has not yet been invented.

It is important to continuously improve the data analysis as novel (often very com-
plex) materials are being invented and more detailed information on studied samples is
required to further improve their properties and performance. For example, iron-based me-
tallic glasses exposed to an ion irradiation have recently been studied for their potential
applications in accelerator devices. In addition to relatively complex hyperfine interacti-
ons, these materials may comprise spatially inhomogeneous regions, i.e. different hyperfine
interactions in different parts of the system.

The interaction of photons with a scattering system exhibiting inhomogeneities along
the direction of the incident radiation may result in interesting phenomena, arising from
thickness effects, polarization changes and directional preferences of hyperfine interactions
referred to as texture. Therefore, to explore the inhomogeneities by the nuclear resonant
methods, a general scattering formalism must be utilized for a proper analysis and inter-
pretation of the measurements.

The aim of this thesis is to theoretically describe the nuclear resonant scattering in
the forward direction for materials with the spatial inhomogeneities of their hyperfine in-
teractions. This work focuses on the nuclear resonance of 57Fe nuclide. The description
includes the analysis of the scattering effects that occur as a result of the inhomogeneities.
Namely, a rotational invariance of the scattering and its relation to the inhomogeneities
are studied. From a practical point of view, information on the spatial distributions of
hyperfine interactions can be obtained from an experimentally observable violation of the
rotational invariance. The described theory based on the model of a multilayered scatte-
ring system is applied to nuclear forward scattering experiments which were conducted on
Fe81Mo8Cu1B10 metallic glass exposed to an irradiation by nitrogen ions. The differen-
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ces between the measured data obtained under different geometrical arrangements of the
sample allowed to identify the magnetic origin of the inhomogeneities.

The theoretically described and experimentally observed phenomena are strongly con-
nected to the texture. The Mössbauer samples exhibiting a preferential orientation of lo-
cal electric or magnetic fields have been described in detail for the case of Mössbauer
spectroscopy applied to very thin samples, so the thickness effects can be negligible.
However, the thickness effects play a significant role in the inhomogeneities identification
using the nuclear resonant methods. This work introduces a generalized texture descrip-
tion for both Mössbauer spectroscopy and nuclear forward scattering. It is based on the
approach conventionally used in the Mössbauer spectroscopy, which uses spherical harmo-
nics as an orthogonal basis for the directional distributions of electric or magnetic fields.
This allows a relatively simple implementation of the texture into calculations of data in
energy and time domains. In addition, the results obtained under different considerations
regarding the sample thickness and the used experimental technique are directly compared.

Due to new demands on the data evaluation in the nuclear resonant methods a new
software package has been developed. Currently, the developed software calculates the
energy and time domain data for materials containing 57Fe. It allows the computations
for the homogeneous systems as well as for the multilayers, simulating the inhomogeneous
systems.

The thesis is divided into four chapters. The first chapter provides an introduction
into the nuclear resonant scattering and its utilization in the transmission Mössbauer
spectroscopy and nuclear forward scattering methods. The second chapter contains the
theoretical description of the scattering on inhomogeneous systems and its relation to the
rotational invariance of the scattering and its violation. The analysis and interpretation
of the conducted experiments is also included in this chapter. The third chapter describes
the texture and its effects in the nuclear resonant scattering. The fourth chapter presents
the developed software package.
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1 Nuclear Resonant Methods
The experimental techniques based on the resonant absorption and emission of photons

by atomic nuclei started to be developed very soon after the discovery of the Mössbauer
effect [1]. Today, these techniques find a wide range of applications across many scientific
fields [2–5]. One of the main advantages is the possibility to inspect the hyperfine splitting
of nuclei energy levels in a solid. The splitting is characteristic for a given surrounding of
nuclei and allows to study the interactions of the surrounding with the nuclear system.
Thus, the information on the atomic valence and spin states, local structural arrangements
and magnetic ordering within the studied systems can be obtained [6].

This chapter provides a basic theoretical description of the nuclear resonance in a solid
state. It focuses mainly on two similar experimental techniqes, transmission Mössbauer
spectroscopy (TMS) and nuclear forward scattering (NFS). A utilization of the theory to
describe the experimental data in both the energy domain (TMS) and the time domain
(NFS) is shown. The techniques are also mutually compared, regarding the corresponding
experimental arrangements, used radiation sources and data evaluation procedures.

1.1 Hyperfine Interactions

The interactions of a nuclear system with its surroundings depend on the properties of
given nuclei and on the local fields acting on the nuclei. In the following part the physical
quantities that describe both the nuclei and their surroundings are introduced. These
quantities can be used as parameters describing the hyperfine splitting of the nuclei energy
levels. Assuming the nuclei properties are known by selecting a particular nuclide the
information on the energy levels is directly related to the studied surroundings described
by corresponding hyperfine parameters. As the main field of interest of this work is the
resonance of 57Fe the theory will be demonstrated using this particular nuclide.

1.1.1 Nuclear System

A single nucleus can be treated as a quantum mechanical system of Zn protons and
Nn neutrons with a total angular momentum described by the j and m quantum numbers
according to the eigenvalue equations [7, 8]

Ĵz |j,m〉 = m~ |j,m〉 , (1.1)

Ĵ2 |j,m〉 = j(j + 1)~2 |j,m〉 , (1.2)

where ~ = 1.055 · 10−34 J · s is the reduced Planck’s constant. The operator Ĵz is the
projection of the angular momentum into the quantization z-axis and Ĵ is the angular
momentum magnitude. The quantum numbers j,m can take the values of j = 0, 1

2 , 1,
3
2 , . . .

and m = −j,−j + 1, . . . , j − 1, j.
Nuclei with a non-zero angular momentum in their ground state will be further consi-

dered. Such nuclei also have a magnetic dipole moment, where [9]

µ̂z |j,m〉 = γG m~ |j,m〉 , (1.3)

µ̂2 |j,m〉 = γ2
G j(j + 1)~2 |j,m〉 . (1.4)
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The operators µ̂z and µ̂ are the z-axis component and the magnitude of the magnetic
dipole moment, respectively. The gyromagnetic ratio γG, which relates the magnetic dipole
moment to the angular momentum, can also be expressed using the nuclear magneton µN
and the g-factor of a nucleus as

γG = gµN
~

. (1.5)

The electric properties of a nucleus can be described by its total electric charge qn and
electric quadrupole moment1 [10]. The electric charge is given by the number of protons
forming the nucleus

qn = Znq0, (1.6)

where q0 = 1.602 · 10−19 C is the elementary electric charge. The electric quadrupole
moment gives a deviation of the nuclear electric charge distribution from the spherical
symmetry. It is a 2nd-order tensor generally described by five independent values. Similarly
to the magnetic dipole moment, the quadrupole moment is related to the nuclear angular
momentum. If j < 1 it is equal to zero. For j ≥ 1 the nucleus exhibits an axially symmetric
charge distribution with respect to the quantization z-axis. Therefore, in the coordinate
system coinciding with the tensor main axes, the quadrupole moment can be described by
a single value. This value can be assigned to the eigenvalue of the Q̂zz (diagonal tensor
element) operator according to the formula

Q̂zz |j,m〉 = 3m2 − j(j + 1)
j(2j − 1) q0Q |j,m〉 . (1.7)

For given j and m values the quantity Q fully defines the quadrupole moment.
For a nucleus in an excited quantum state the electric and magnetic properties may

be different from those in its ground state. For example, the nuclide of 57Fe has a ground
state described by the quantum number jg = 1/2 and so its electric quadrupole moment is
zero. In the first excited state the nuclide has the quantum number je = 3/2 and exhibits
a non-zero quadrupole moment. A list of parameters describing the ground and the first
excited state of 57Fe is shown in Table 1.1.

57Fe j g γG [rad · s−1 · T−1] Q [barn]

ground state 1/2 0.1812 8.675 · 106 0

1st excited state 3/2 −0.1035 −4.955 · 106 0.16

Table 1.1: Values of g-factor, gyromagnetic ratio and electric quadrupole moment corresponding
to the ground and the first excited state of 57Fe. The quadrupole moment and g-factor values were
taken/calculated from [11]. The gyromagnetic ratios were calculated using formula (1.5).

1.1.2 Interaction Hamiltonian

The real solid state samples are many-body systems of mutually interacting nuclei and
electrons. The following description focuses on the nuclear system and introduces the in-
teraction Hamiltonian, from which the nuclei energy levels in a solid could be obtained. For
the sake of simplicity the time dependences of the interactions and the related relaxation

1The electric dipole moment of a nucleus is equal to zero, which results from a definite parity of the
nuclear quantum state. The electric multipole terms which are of higher order than the quadrupole moment
are usually neglected.
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phenomena will be neglected [2,12,13]. The interactions can be described by the effective
magnetic and electric fields interacting with the nuclear magnetic dipole moment, electric
charge and electric quadrupole moment. The individual contributions to the interaction
Hamiltonian will be now discussed in more detail.

The magnetic interaction Hamiltonian ĤM can be written as

ĤM = −~̂µ · ~B = −µ̂xBx − µ̂yBy − µ̂zBz, (1.8)

where ~B is the effective magnetic field. The Hamiltonian ĤM includes the interactions of
the magnetic dipole moment with the orbital and spin angular momenta of the electrons
around a nucleus, interactions with other electrons and nuclei in the solid and also the
interaction with an external magnetic field. The former plays a dominant role in magnetic
materials and the corresponding magnetic field contribution is referred to as the hyperfine
magnetic field ~Bhf . A detailed description of the individual contributions to the effective
magnetic field can be found in [14].

Using the properties of the angular momentum operators, the magnetic interaction
Hamiltonian can be expressed in the {|j,m〉} basis for individual values of j [7]. For the
ground and the first excited state of 57Fe the corresponding Hamiltonians are given as [15]

ĤM,g = −1
2 γG,g ~B

(
cos θ e−iφ sin θ
eiφ sin θ − cos θ

)
, (1.9)

ĤM,e = −3
2 γG,e ~B


cos θ

√
3

3 e
−iφ sin θ 0 0√

3
3 e

iφ sin θ 1
3 cos θ 2

3e
−iφ sin θ 0

0 2
3e
iφ sin θ −1

3 cos θ
√

3
3 e
−iφ sin θ

0 0
√

3
3 e

iφ sin θ − cos θ

 . (1.10)

The magnetic field is expressed in a spherical basis by its magnitude B, polar angle θ and
azimuth angle φ (Fig. 1.1). The Hamiltonians are diagonal only if the field is oriented in
the direction of the quantization z-axis, i.e. θ = 0.

x

y

z

θ

φ

~B

Figure 1.1: The effective magnetic field ~B in the laboratory reference frame.

The electric interactions can be obtained from basic considerations of a classical energy
of an electrically charged system in the effective electric field, which is described by a scalar
potential ϕ(~r) [16]. Using the multipole expansion of ϕ(~r) three main contributions can
be distinguished. The first contribution gives the electrostatic energy of a point charge qn
at the position of a nucleus E0 = ϕ(0)qn. This energy is the same for all nuclei quantum
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states and is usually omitted as it does not affect the energy transitions within the nuclear
system. The second contribution depends on the root-mean-square radius of a nucleus
〈r2

n〉 and on the charge density at the nuclear position, which is related to the probability
density of electrons being at this position |ψel(0)|2 [14]. The Hamiltonian ĤI corresponding
to this contribution reflects the finite size of a nucleus, which generally differs for different
j values. Analogously to (1.9) and (1.10) the matrix forms of ĤI for the ground and excited
states of 57Fe are

ĤI,g = Zq2
0

6 ε0
〈r2

n〉g|ψel(0)|2
(

1 0
0 1

)
, (1.11)

ĤI,e = Zq2
0

6 ε0
〈r2

n〉e|ψel(0)|2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (1.12)

where ε0 = 8.854·10−12 F ·m−1 is the vacuum permittivity. The scalar values in (1.11) and
(1.12) can be used to derive the isomer shift parameter, which is one of the main quantities
obtainable from the nuclear resonant measurements. Its relation to the electrons probabi-
lity density is widely used in chemical and materials applications where its determination
allows to distinguish between compounds with different atomic valence states in studied
samples [17].

The last contribution to the electric interactions reflects the deviation of the electric
field from the cubic symmetry. It is given by the quadrupole interaction Hamiltonian ĤQ
in the form [14]

ĤQ = 1
6
(
VxxQ̂xx + VyyQ̂yy + VzzQ̂zz

)
, (1.13)

where Vii are the diagonal elements of the electric field gradient (EFG) tensor

Vij = ∂2ϕ

∂xi∂xj
(0), i, j = x, y, z. (1.14)

In (1.13) a simplified form of the Hamiltonian is given, where the coordinate system with
the axes identical with the EFG main axes have been chosen. From the Vxx, Vyy and Vzz
only two values are independent because the EFG tensor has a zero trace. The coordinate
system is conventionally chosen so the |Vzz| ≥ |Vyy| ≥ |Vxx| and the two independent
parameters describing the EFG tensor are the Vzz component and so called asymmetry
parameter η given as

η = Vxx − Vyy
Vzz

. (1.15)

The quadrupole interaction Hamiltonian can be further simplified using formulas (1.7) and
(1.15) and the properties of the diagonal quadrupole moment elements Q̂xx, Q̂yy, Q̂zz with
respect to the angular momentum operators [10]. ĤQ,g corresponding to the ground state
of 57Fe is equal to zero because of its zero quadrupole moment (jg < 1). For the excited
state the Hamiltonian is given by the formula [15]

6



ĤQ,e = 1
4q0QeVzz


1 0 η√

3 0
0 −1 0 η√

3
η√
3 0 −1 0

0 η√
3 0 1

 . (1.16)

ĤQ,e is diagonal only for an axially symmetrical electric field, where Vxx = Vyy and η = 0.
The quadrupole interaction reflects the spatial charge distribution of electrons and atoms
around a nucleus and thus it can be used for studying a local structural ordering.

The total interaction Hamiltonian Ĥ is the sum of the individual magnetic and electric
contributions

Ĥ = ĤI + ĤQ + ĤM. (1.17)

The eigenvalues and eigenstates (eigenvectors) of Ĥ are essential to obtain the transition
energies and the probability amplitudes for the transitions between the ground and the
excited states energy levels. In general, the interaction Hamiltonian is not diagonal. In
the coordinate system coinciding with the EFG main axes the quadrupole interaction
Hamiltonian would be diagonal for η = 0. However, even in such case the general direction
of the effective magnetic field with respect to the EFG main axes would result in a non-
diagonal Ĥ. Therefore, the eigenvalues and eigenstates of Ĥ generally differ from those of
the Ĵz and Ĵ2 operators and need to be obtained using a diagonalization procedure [7].

The formula (1.17) can be analogously used in the individual j-value subspaces with
dimensions of 2j+1. For the 57Fe nuclide, using the formulas (1.9–1.12) and (1.16), we get
Ĥg = ĤI,g+ĤM,g in the 2-dimensional subspace with jg = 1/2 and Ĥe = ĤI,e+ĤQ,e+ĤM,e
in the 4-dimensional subspace with je = 3/2.

1.1.3 Rotation of EFG

To properly describe the absorption and emission of photons by the nuclear system
the eigenvalues and eigenstates of the interaction Hamiltonian with an arbitrary EFG and
~B orientations in the laboratory reference frame are needed. In the following description
the orientation of the magnetic field ~B will be given in the EFG coordinate system. The
EFG will exhibit an arbitrary orientation with respect to the laboratory coordinate system
(Fig. 1.2).

x

y

z

~vxx

~vyy~vzz

~B

θ

φ

Figure 1.2: The EFG main axes given by the ~vxx, ~vyy and ~vzz vectors in the laboratory reference
frame and the effective magnetic field ~B with angles θ and φ in the EFG coordinate system.
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A rotation of the EFG coordinate system in the 3-dimensional space can be described
by a real orthogonal 3 × 3 matrix, which is conventionally parametrized by three Euler
angles α, β, γ. In the Hilbert space of the physical system the rotation is represented by a
rotation operator D̂(α, β, γ) given as [18]

D̂(α, β, γ) = exp
(
−i Ĵzα

~

)
exp

(
−i Ĵyβ

~

)
exp

(
−i Ĵzγ

~

)
. (1.18)

For the system in a quantum state |ψ〉 before the rotation, the corresponding “rotated”
quantum state |ψ〉r is

|ψ〉r = D̂(α, β, γ) |ψ〉 . (1.19)

Matrix representation of the rotation operator in a given j-value subspace is given by the
Wigner matrix elements [19]

D(j)
m′m(α, β, γ) =

〈
j,m′

∣∣∣D̂(α, β, γ)
∣∣∣j,m〉 . (1.20)

It could be found out that for |ψ〉 = |j, ψ〉 being the eigenstate of the Ĵ2 operator with the
eigenvalue of ~2j(j + 1), the rotated quantum state D̂(α, β, γ) |j, ψ〉 is still an eigenstate
|ψ〉r = |j, ψ〉r of Ĵ2 with the same eigenvalue, i.e. the rotation does not affect the j quantum
number [7].

Diagonalization of the interaction Hamiltonian (1.17) for individual j-value subspaces
would lead to eigenvalues E(j)

n and eigenstates |j, ψn〉. The index n takes 2j + 1 different
values. The eigenstates |j, ψn〉 can be defined by their coefficients ψ(j)

m,n (m-th coefficient
of the n-th eigenstate) according to formula

|j, ψn〉 =
j∑

m=−j
|j,m〉〈j,m|j, ψn〉 =

j∑
m=−j

ψ(j)
m,n |j,m〉. (1.21)

The next step is to determine the eigenvalues and eigenstates of the Hamiltonian in the
laboratory reference frame with a general orientation of EFG (Fig. 1.2). As the application
of the rotation operator is a unitary transform with respect to Ĥ, the eigenvalues of the
Hamiltonian remain unchanged after the rotation [7]. However, the eigenstates generally
change according to (1.19). The coefficients of the rotated eigenstates ϕ(j)

m′,n = 〈j,m′|j, ψn〉r
(m′ = −j,−j + 1, . . . , j − 1, j) can be written as

ϕ
(j)
m′,n =

〈
j,m′

∣∣D(α, β, γ)
j∑

m=−j
ψ(j)
m,n |j,m〉 =

j∑
m=−j

ψ(j)
m,nD

(j)
m′m(α, β, γ). (1.22)

The values of E(j)
n and ϕ(j)

m′,n could be obtained according to the previously described
procedure for an arbitrary combination of the hyperfine interactions. A simplified results
can be obtained in the special cases of (i) zero magnetic hyperfine interaction and axially
symmetrical electric field, (ii) zero quadrupole hyperfine interaction and (iii) combined
electric and magnetic interactions with ~B parallel to the EFG main axes. For such cases
the laboratory coordinate system can be chosen in such way so that Ĥ commutes with Ĵz
and Ĵ2 operators and all these operators have a common set of eigenstates. The coefficients
ψ

(j)
m,n then reduce to a Kronecker delta δm,n, where n now labels a given |j, n〉 angular
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momentum eigenstate (n = −j,−j + 1, . . . , j − 1, j). Using the formula (1.22) we get the
eigenstates in a general coordinate system

ϕ
(j)
m′,n =

〈
j,m′|j, n

〉
r =

j∑
m=−j

δm,nD(j)
m′m(α, β, γ) = D(j)

m′n(α, β, γ). (1.23)

1.1.4 Hyperfine Splitting

The eigenvalues of the interaction Hamiltonian E(j)
n represent changes in the energies

corresponding to the individual quantum states of nuclei. In the absence of the hyperfine
interactions the nuclear system exhibits degeneracy, i.e. for given j there are 2j+1 different
stationary states of nuclei with the same energy E(j). Thanks to the hyperfine interactions
the degeneracy is lifted and a hyperfine splitting of the energy levels occurs. The splitting
contains information on the hyperfine interactions and may provide a unique insight into
the local nuclei surroundings. In the following part the hyperfine splitting of 57Fe energy
levels is demonstrated for individual types of interactions.

Although the interaction ĤI does not remove the degeneracy, it causes the energy levels
E(jg) and E(je) to be shifted into E(jg) + Znq2

0
6 ε0
〈r2

n〉g|ψel(0)|2 and E(je) + Znq2
0

6 ε0
〈r2

n〉e|ψel(0)|2
for the ground and the excited state, respectively. The original difference between the
energies E(je) − E(jg) is therefore increased by the value of Znq2

0
6 ε0

(
〈r2

n〉e − 〈r2
n〉g
)
|ψel(0)|2.

Different electronic surroundings of nuclei result in a different shift of the energy difference.
However, this cannot be directly measured as an absolute value. It can be determined only
as a relative value with respect to a reference material. This relative change defines the
isomer shift parameter δ as [14,17]

δ = Znq
2
0

6 ε0

(
〈r2

n〉e − 〈r2
n〉g
) (
|ψel(0)|2 − |ψref(0)|2

)
, (1.24)

where |ψref(~r)|2 is the electronic probability density in the reference system.
In the absence of the magnetic interactions, the electric quadrupole interaction ĤQ

splits only the excited state energy levels (the ground state exhibits a zero quadrupole
moment). The degeneracy is lifted partially, where for an axially symmetrical electric field
the energies are shifted by +1

4q0QeVzz for |je,±3/2〉 states and by −1
4q0QeVzz for |je,±1/2〉

states (Fig. 1.3a). Depending on the sign of Vzz one excited energy level is increased and
one decreased by the value of 1

4q0Qe|Vzz|. The difference between these two levels can be
written as |∆|, where [14]

∆ = 1
2q0QVzz (1.25)

is the quadrupole splitting parameter. The degeneracy can be completely broken in the
presence of the magnetic hyperfine interaction. For example, if ĤQ = 0 the energy shifts
are −mgγG,g~B for |jg,mg〉 and −meγG,e~B for |je,me〉 states (Fig. 1.3b).

To extract the information on the hyperfine splitting, nuclear resonant methods based
on the transitions between the individual nuclear energy levels have been developed.
These methods include nuclear magnetic and nuclear quadrupole resonance, Mössbauer
spectroscopy in the transmission (emission) or reflection geometry and NRS techniques
using the synchrotron radiation source.

The principle of the listed methods is the application of an electromagnetic radiation
of a proper energy (wavelength). The absorption and consequent reemission of photons
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by nuclei is accompanied by the excitation-deexcitation of the nuclear energy levels. This
process exhibits a sharp resonant behaviour that allows to reconstruct the information on
the transition energies, from which the parameters of the hyperfine interactions can be
obtained. The list of the hyperfine parameters that provide information on a given nuclear
surrounding is given in Table 1.2.

je = 3/2

je = 3/2

jg = 1/2

jg = 1/2

±3/2

±1/2

±1/2

+3/2
+1/2
−1/2
−3/2

−1/2
+1/2

me

mg

me

mg

ĤI

(a)

(b)

ĤI

ĤQ

57Fe

57Fe

ĤM

Figure 1.3: A schematic illustration of the 57Fe nuclear hyperfine splitting caused by the hyperfine
interactions. (a) A combination of ĤI and ĤQ interactions, which partially remove the degeneracy.
(b) A completely broken degeneracy by ĤI and ĤM interactions.

Magnetic interactions Electric interactions

eff. mag. field magnitude B isomer shift δ

polar angle θ quadrupole splitting ∆

azimuth angle φ asymmetry parameter η

EFG orientation (Euler angles) α, β, γ

Table 1.2: List of hyperfine parameters conventionally used for describing interactions of nuclei
with their surrounding and the related hyperfine splitting of the nuclear energy levels.
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1.2 Nuclear Resonant Scattering

For a given nuclear resonant method a suitable energy of the electromagnetic radiation
is chosen to excite the nuclear energy levels. The nuclear magnetic resonance and nuclear
quadrupole resonance methods are based on the transitions between the individual ground
state energy levels. They use the radiation in the frequency range 0.1–1000 MHz. For details
regarding these methods the readers are referred to the designated literature [20, 21].
Here we focus on the conventional Mössbauer spectroscopy and the synchrotron radiation
nuclear resonant scattering (NRS) methods, that utilize electromagnetic radiation in the
1–100 keV energy range. These energies belong to the hard X-ray and gamma radiation
domain and are suitable for transitions between the ground and excited state energy levels.
An example of the energy transitions is given in Fig. 1.4.

∆E

0 0.1 0.2 0.3−0.1−0.2−0.3

∆E −
(
E(je) − E(jg)) (µeV)

57Fe

je = 3/2

jg = 1/2

E(je) − E(jg) = 14.4 keV

Figure 1.4: Scheme of the 57Fe nuclear transitions between the ground and excited state energy
levels. Thanks to the hyperfine splitting the individual transition energies are slightly shifted from
the E(je) − E(jg) transition energy between the unsplit levels.

1.2.1 Mössbauer Effect

The transitions between the ground and excited state energy levels (jg ←→ je) of 57Fe
nuclei exhibit an energy of 14.4 keV. On the other hand, the hyperfine splitting of the
individual levels goes typically below 1µeV (see Fig. 1.4). That is more than 10 orders
of magnitude less. Considering measurements in energy domain, an outstanding energy
resolution is required for observing the energy shifts of individual nuclear transitions.

The interaction of the electromagnetic radiation with nuclei proceeds in agreement
with energy and momentum conservation laws [10]. The momentum conservation results
in absorption and emission of photons with recoil. Part of the photon energy is transferred
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to the energy of atomic motion. As a result, the energy of the absorbed or emitted photons
is not equal to the transition energy between the ground and excited states, but is shifted
by the recoil energy (Fig. 1.5).

je jg

Eph = ∆E + ER

Figure 1.5: A schematic example of the photon emission with recoil. The transition of a nucleus
from an excited to a ground energy level is accompanied by the lost of the atomic motion energy
(energy of the recoil, illustrated by the black arrow on the left). The energy of the emitted photon
Eph is then equal to the transition energy ∆E, increased by the recoil energy ER.

Quantum mechanically, the recoil proceeds via the creation or annihilation of phonon
modes in a solid lattice. The energy transferred between photons and the phonon system
is in the range of meV. This has been utilized in the synchrotron radiation based nuclear
resonant inelastic X-ray scattering (NRIXS) where tuning of the photon energy in the
meV range using X-ray optics equipment can be realized [22]. By scanning the energy
of the incident radiation and measuring the intensities of resonantly scattered photons a
phonon energy spectrum can be obtained, which provides the information on the lattice
dynamics [23,24].

An example of the phonon spectrum is given in Fig. 1.6. The centre of the energy axis
corresponds to the transition energy between the ground and excited state energy levels.
The right side of the spectrum describes the absorption of photons with energy, which is
higher than the transition energy. Therefore, part of the photon energy was transferred
to the lattice via creation of phonon quanta. Analogously, the left side of the spectrum
describes the absorption of lower-energy photons, which is accompanied by annihilation
of phonons.

Figure 1.6: An example of a phonon energy spectrum measured by NRIXS. The data were taken
from [25].
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Despite being very useful in various scientific fields, the photon absorption and emis-
sion with recoil significantly complicates observation of the hyperfine splitting. The infor-
mation on the nuclear transition energies is lost in the energy exchange with the lattice.
New possibilities came with a recoilless absorption and emission of photons discovered by
Rudolph Mössbauer in 1958 [26]. The conducted experiment showed that absorption and
emission of photons in a solid may occur without the creation or annihilation of phonon
quanta. Instead, the whole lattice may exhibit the recoil. Considering the total mass of a
solid system, the energy taken by this recoil is negligible with respect to a given transition
energy. This has two significant consequences. First, the photons absorbed and emitted
without recoil can be used to obtain the information on the split nuclear energy levels and
the related hyperfine interactions. Second, the linewidth of the recoilless emission is close
to the natural linewidth of the nuclear excited state energy level (∼ 10−8 eV). This allows
to realize a gamma radiation source with energy resolution of 10−12, which is sufficient for
the observation of hyperfine splitting. The Mössbauer spectroscopy methods, which utilize
such radiation sources, are described in section 1.3.1.

The relative number of recoilless events is expressed by the Lamb-Mössbauer factor
fLM (also known as the f-factor or the recoilless fraction) [14]

fLM = exp
(
−4π2 〈x2〉

λ2

)
, (1.26)

where λ is the radiation wavelength and 〈x2〉 is the atomic mean square vibrational am-
plitude. Greater radiation energy (lower wavelength) results in lower probability for the
absorption and emission of photons without recoil. For a given nuclide the radiation energy
is fixed (e.g. 14.4 keV for 57Fe) and fLM depends solely on 〈x2〉, which is related to the
properties of the crystal lattice and the temperature. The Lamb-Mössbauer factor plays
an important role in the recoilless absorption and emission measurements and in the expe-
rimental data analysis. Moreover, measurements of fLM and its temperature dependence
can be also used to explore the lattice dynamics [27–29].

1.2.2 Scattering Length

Generally, the electromagnetic radiation may interact with a solid in many different
ways. For example, the interaction with electrons can take place via coherent scattering,
photoelectric effect, Compton scattering or electron-positron pair production [30]. The
resonant scattering on atomic nuclei, described as a photon absorption-reemission process,
could occur with or without recoil. Furthermore, when a photon is absorbed the excited
nucleus may deexcite not only by emitting a photon but also by emitting a conversion
electron instead [30]. This is also accompanied by secondary effects such as the emission
of conversion X-rays and Auger electrons. The scattering via conversion process is used in
the conversion electron Mössbauer spectroscopy (CEMS) and conversion X-ray Mössbauer
spectroscopy (CXMS) techniques. The cross-sections of individual types of interaction
depend on the properties of the scattering system and on the radiation energy.

The TMS and NFS methods are based on the recoilless absorption and reemission of
photons which satisfies two basic conditions. First, the state of the solid system after the
scattering is identical to its initial state. Second, the energy of the system is not changed
by the scattering, thus the energy of the emitted and the absorbed photon is the same.
In other words, the scattering of the radiation on the nuclear system is coherent and
elastic [31]. Another common characteristics of TMS and NFS is that the radiation is
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detected in the forward direction. Denoting the wave vector of the incident (absorbed)
photon as ~k in and the wave vector of the scattered (emitted) photon as ~k the forward
scattering follows the relation ~k = ~kin.

The semi-classical theoretical formalism developed for the nuclear resonant coherent
elastic scattering considers the solid system as a continuous optical medium described
by an energy dependent index of refraction [11, 32]. Generally, the index of refraction is
a multidimensional matrix that includes all possible scattering routes of electronic and
nuclear origin. To simplify the description, the non-resonant scattering routes including
the electronic contributions can be omitted. The nuclear resonant contribution given by
the scattering length N reflects probability amplitudes for absorption-emission processes
between individual ground and excited nuclear quantum states. The scattering length can
be written as [32]

N~ε,~εin ∝
∑
ng,ne

〈
jg, ng;~k, ~εin

∣∣Ĥ∣∣je, ne
〉〈
je, ne

∣∣Ĥ∣∣jg, ng;~k, ~ε
〉

E −∆Eng,ne + iΓ/2 , (1.27)

where the sum runs over all possible ground and excited states. The vectors ~εin, ~ε define the
polarizations of the absorbed and the emitted photon. The operator Ĥ is the Hamiltonian
of the interaction between the nuclear system and the electromagnetic radiation [33]. The
resonant character is given by Lorentzian functions Lne

ng(E) in the form

Lne
ng(E) = 1

E −∆Eng,ne + iΓ/2 , (1.28)

where E is the photon energy, ∆Eng,ne is the transition energy between the ground and
excited state and Γ is the natural linewidth of the excited energy level.

Formula (1.27) can be simplified depending on a given resonant nuclide and the corre-
sponding transition properties. In the case of 57Fe the magnetic dipole transition (M1)
dominates [34] and the scattering length is explicitly given as2 [11, 35]

N~ε,~εin =
∑
ng,ne

Lne
ng(E)

1∑
M ′,M=−1

[
~ε *· ~Y *

M ′(~k)
] [
~Y *
M (~k) · ~εin

]
G
ng,ne
M ′

(
G
ng,ne
M

)∗
, (1.29)

where ~YM are vector spherical harmonics corresponding to the M1 transition [35,36]. The
first dependence of the scattering on the hyperfine parameters is hidden in the resonant
energies ∆Eng,ne , which depend on the eigenvalues of the interaction Hamiltonian (see
section 1.1). The second dependence is hidden in the Gng,ne

M factors, which depend on the
components of the Hamiltonian eigenstates according to formula

G
ng,ne
M =

jg∑
mg=−jg

(
ϕ(jg)
mg,ng

)∗
ϕ

(je)
mg+M,ne

C(jg1je;mgM). (1.30)

The formula respects the rules of angular momenta addition, where for the dipole transition
of 57Fe the j = jg = 1/2 and j = 1 angular momenta are being coupled [19]. Therefore,
the non-zero contributions for me = mg +M are included and multiplied by corresponding
Clebsch-Gordan coefficients C(jg1je;mgM).

2In contrast to the conventionally defined scattering length the introduced quantity has different units.
To simplify the description, certain constants were excluded from the formula. They will be included into
a common constant introduced later.
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In general, the polarization ~εin of the absorbed photon may not be the same as the
polarization ~ε of the emitted photon. It is convenient to introduce a matrix formalism to
consider possible polarization changes and describe the scattering for arbitrary polarization
states of the incident radiation [37,38]. In the linear polarization basis given by orthogonal
unit vectors ~εσ, ~επ the scattering length N is a 2-dimensional matrix, which can be written
as a sum (compare with formula (1.29))

N =
∑
ng,ne

Lne
ng(E)nng,ne , (1.31)

i.e. (
Nσσ Nσπ

Nπσ Nππ

)
=
∑
ng,ne

Lne
ng(E)

(
n
ng,ne
σσ n

ng,ne
σπ

n
ng,ne
πσ n

ng,ne
ππ

)
, (1.32)

where the elements of the nng,ne matrices are

nng,ne
νµ =

1∑
M ′=−1

1∑
M=−1

[
~ε *ν · ~Y *

M ′(~k)
] [
~Y *
M (~k) · ~εµ

]
G
ng,ne
M ′

(
G
ng,ne
M

)∗
, µ, ν ∈ {σ, π} . (1.33)

Application of the scattering length to the incident radiation wave field ~Ain to obtain
the resulting scattered field ~Asc = N ~Ain is a good approximation for very thin scattering
systems (kinematical approximation), where only the single scattering process occurs [39].
For a scattering system of an arbitrary thickness the multiple scattering effects must be
included into the description.

To quantitatively evaluate the rate of the multiple scattering in real solids the effective
thickness deff is conventionally used. It is a dimensionless quantity defined by formula [40]

deff = σ0fLM%d, (1.34)

where fLM is the Lamb-Mössbauer factor, % is the density of the resonant nuclei in the
units of m−3, d is the thickness of the scattering system and σ0 is the nuclear resonant
effective cross-section. Strictly speaking, a studied sample may be classified as ideally thin
if the condition deff � 1 is satisfied. However, the measurements are often conducted
on much thicker samples and whether the multiple scattering significantly influences the
measurements or not depends on particular sample properties, experimental conditions
and the quantities that are being extracted from the measurements [41].

All possible scattering paths (single scattering, double scattering, . . . ) including the
case of no resonant interaction with the nuclear system are included in the resulting
scattering matrix (transmission matrix) T , which takes the exponential form [11]

T = eiξN . (1.35)

The constant ξ reflects the effective thickness of the system and for the 57Fe transition it
is given as

ξ = −πΓdeff
2 . (1.36)

The application of the scattering matrix to the incident radiation field gives the transmit-
ted radiation field in the forward direction

~Atr = T ~Ain. (1.37)
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The transmitted field can be understood as a superposition of the field ~Ain (no resonant
interaction with nuclei) and the scattered field [42]

~Atr = ~Asc + ~Ain, (1.38)

from which the scattered field could be written analogously to (1.37) as

~Asc = (T − I) ~Ain, (1.39)

where I is the unit matrix. The outlined scattering matrix formalism could be used for
arbitrary sample thickness and allows to include important physical phenomena such as
the polarization mixing into considerations.

1.2.3 Nuclear Sites

The scattering length given by formulas (1.31–1.33) describes a homogeneous scattering
system containing one nuclear site (Mössbauer site, spectral component). This means
that all the resonant nuclei in the system have exactly the same surrounding described
by a common set of hyperfine parameters. However, in the real samples a discrete or a
continuous distribution of different nuclear sites (nuclei with different local surroundings)
can occur. Each nuclear site may exhibit a different hyperfine splitting, which contributes
to the resulting final form of the experimental data.

Discrete nuclear sites are common for various types of multiphase materials in either
compact or powder form. Multiple nuclear sites also appear in single crystalline phases
with non-equivalent crystallographic sites (Fig. 1.7). Retrieving the information on the
individual phases and crystallographic positions is one of the main goals of the nuclear
resonant methods applied in chemistry, solid state physics and materials science [43–45].

Figure 1.7: Example of a transmission Mössbauer spectrum measured on a sample containing
different iron oxide phases. The spectrum contains five distinguishable contributions ascribed to
individual nuclear sites. These are α-Fe2O3 and β-Fe2O3 with single crystallographic sites and
ε-Fe2O3 with three distinguishable crystallographic sites. The data were taken from [44].
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The presence of more nuclear sites gives more possibilities for the interaction of photons
with the nuclear system. The total scattering length is then given as a finite sum

N =
∑
i

wiNi, (1.40)

where the weight factors wi give the relative ratio of the i-th nuclear site in the material
(
∑
iwi = 1) and the corresponding scattering lengths Ni are calculated from (1.31–1.33).

Formula (1.35) can still be used for arbitrary homogeneous material if the scattering length
in the exponent is taken as the total scattering length.

The case of continuous distributions needs to be included if the studied solid system
exhibits a sufficiently significant disorder of chemical, structural or magnetic nature. This
can be demonstrated on the example of metallic glasses, i.e. materials with a high degree of
disorder related to their amorphous structure [46,47]. Thanks to this disorder each nucleus
may exhibit slightly different hyperfine interactions. Distribution functions for correspon-
ding hyperfine parameters are then used instead of discrete sharp values (Fig. 1.8). The
interpretation of the nuclear surroundings is then quite different from the discrete case.
Rather than a system consisting of a high number of distinguishable nuclear sites, it is
more properly described as a single nuclear site system, where the values of hyperfine
parameters follow a given statistical distribution.

Figure 1.8: Example of a transmission Mössbauer spectrum measured on Fe90Zr7B3 metallic glass
(on the left). The sample contains three nuclear sites exhibiting distributions of hyperfine magnetic
field magnitudes (on the right). The data were taken from [46].

A generalisation of the total scattering length for the continuous case can be done by
replacing the discrete sum with an integral

N =
∫
N(p)f(p) dp, (1.41)

where p stands for a hyperfine parameter or a set of hyperfine parameters whose values are
distributed. N(p) is again the partial scattering length given by (1.31–1.33) with explicitly
written dependence on the hyperfine parameters. The distribution (weight) function f(p)
is a continuous non-negative function satisfying the normalisation condition

∫
f(p) dp = 1.

It is appropriate to distinguish between magnitude distributions and directional distri-
butions as each of these two types influences the sample measurements and their results
differently. The term “distribution of hyperfine parameters” then usually refers to the
magnitude distributions. These are often ascribed to the quadrupole splitting parameter

17



∆ and to the magnitude of the effective magnetic field B. The directional distributions
(distributions of electric and magnetic field orientations) are closely related to the texture
problem, which will be closely discussed in chapter 3.

1.3 Coherent Elastic Forward Scattering

The information on the nuclear hyperfine splitting is coded in the scattering length N
and can be potentially extracted from the measured intensities of the transmitted or the
scattered radiation fields. The theoretical formalism outlined in the previous sections can
be applied in both energy and time domain measurements. The differences between the
energy domain TMS and the time domain NFS are related mainly to their experimental
arrangements and the used radiation sources.

1.3.1 Transmission Mössbauer Spectroscopy

The transmission Mössbauer spectroscopy utilizes a suitable radioactive material as
a source of gamma photons. For example, the 57Co radioactive nuclide built in a solid
matrix is used as a source for excitation of 57Fe energy levels [48]. During the decay
process the 57Co nuclei transform into 57Fe nuclei, which are in excited quantum states
and can subsequently deexcite by emitting the 14.4 keV photons (Fig. 1.9). Depending on
the Lamb-Mössbauer factor of the source, part of the radiation is emitted without recoil
and the source exhibits an extremely narrow emission line.

57Co

57Fe
j = 5/2

j = 3/2

j = 1/2

τ ≈ 270 days

136.5 keV
122.1 keV

τ = 141 ns

14.4 keV

electron
capture

(γ, e−)

Figure 1.9: Scheme of the 57Co radioactive decay. The deexcitation into the ground state of 57Fe
may proceed via emission of 14.4 keV gamma photons. Conversion electrons could also be emitted
during the process. The lifetimes of corresponding nuclei states are given by τ .

Principle of the Mössbauer measurement in the transmission geometry is demonstrated
in Fig. 1.10. Mössbauer transmission spectrum, measured as the transmitted radiation
intensity Itr(E), is obtained by modulating of the source emission energy and simultaneous
detection of the transmitted photons. The modulation of the emission line is realized by
changing the relative velocity v of the source with respect to the measured sample [2,49].
According to the Doppler effect the energy of the emitted radiation is equal to

E = ∆Es

(
1 + v

c

)
, (1.42)
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where c = 299 792 458 m/s is the speed of light and ∆Es is the source transition energy.
When the source is at rest with respect to the sample the emitted photons have energy
equal to ∆Es. When the source moves towards the sample the energy is increased and
vice versa. The velocity change of 1 mm/s causes the energy of 14.4 keV to be shifted
approximately by 48 neV. Therefore, in 57Fe Mössbauer spectroscopy the scanning range
of less than 20 mm/s is usually enough to cover all the sample transition energies. As
the radiation energy is directly related to the source velocity by (1.42) the energy axis of
measured spectra is conventionally displayed in the mm/s velocity units.

v

transducer source detector

~Ain ~Atr

sample

~εσ

~επ

~k

Figure 1.10: Demonstration of TMS experimental arrangement. The radioactive source is moved
by the velocity transducer unit and the transmitted radiation intensity is detected for each velocity
(energy) point.

If the incident radiation is in a pure polarization state (linear, circular or elliptical
polarization) the transmission intensity is simply a magnitude squared of the transmitted
radiation field given by (1.37). Although Mössbauer spectrometers with a polarized gamma
source can be realized [50,51], the radiation coming from a radioactive source is generally
unpolarized. The density matrix formalism can be used to obtain transmission spectrum
for mixed polarization states of the incident radiation [11, 32]. Itr(E) can be written in a
compact and normalised form

Itr(E) = Tr
{
TρT †

}
, (1.43)

where ρ is the density matrix describing the incident radiation. For the special cases of
linearly polarized radiation in the direction of the ~εσ vector and unpolarized radiation the
corresponding density matrices ρσ and ρu are given as

ρσ =
(

1 0
0 0

)
, ρu = 1

2

(
1 0
0 1

)
. (1.44)

If the the radiation energy E is off-resonance with respect to the sample transition
energies the coherent elastic nuclear resonant scattering is suppressed. On the other hand, if
the radiation is tuned to a resonance then the coherent elastic nuclear resonant scattering
becomes significant and the measured spectrum exhibits an intensity attenuation [42] (see
Fig. 1.11). This could be interpreted as a resonant absorption (photons are absorbed and
reemitted not into the forward direction) resulting in Mössbauer absorption lines in the
spectrum. Positions, amplitudes and shapes of the Mössbauer lines are then essential to
extract the required information on the sample. Thanks to the linear relation between the
source velocity and the radiation energy the measured Mössbauer spectra can be directly
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compared to the theory and after a proper data evaluation the information on the nuclear
sites in the sample and their hyperfine parameters can be obtained.

(a)

(b)

(c)

(d)

E

Itr

Figure 1.11: Illustration of a selected Mössbauer absorption line. The intensity of the transmitted
radiation depends on the relative position of the source emission line (solid lines in the circles) with
respect to a given transition energy line (dashed lines). In the resonance (b, c) there is a significant
attenuation of the intensity with respect to the off-resonance case (a, d).

Hyperfine splittings caused by electric quadrupole and magnetic hyperfine interactions
can be determined, as they are basically given by the relative positions and amplitudes
of the corresponding Mössbauer lines, one to each other. On the other hand, the shifts
of the nuclear energy levels caused by the ĤI interaction are related to the lines absolute
positions and so they cannot be experimentally obtained. Instead of absolute values, the
relative values of the transition energies for each nuclear site are determined with respect
to a reference. This is done by a calibration procedure [2], where the Mössbauer spectrum
of a reference material is measured and a selected energy point of the spectrum is taken
as a reference (zero) point. All measured spectra are then given in a relative energy axis
with the origin 0 mm/s corresponding to the reference point. A calibration foil of α-Fe is
typically used, where the reference point is the center of the sextet spectrum. The shift of
the lines corresponding to a given nuclear site in the sample then determines the isomer
shift parameter given by formula (1.24).

There are several practical aspects of the Mössbauer measurements which generally
need to be taken into considerations for a correct analysis and interpretation of the results.
One of them is a finite width of the source emission line, where the transmitted intensity
contributions from different parts of the emission line overlapping with the transition
energy lines are simultaneously detected. The theoretical spectrum from (1.43) is then
convoluted with the emission line [30], which results in a minimum Mössbauer linewidth
of ∼ 2Γ, where Γ = 0.097 mm/s. Another important aspect is the detection of background,
where Itr(E) is increased by a non-resonant contribution arising mainly from higher-energy
photons emitted by the source [30]. Finally, the emission of both higher-energy photons
and resonant 14.4 keV photons by the radioactive source as well as the nuclear resonant
scattering exhibit a statistical character. A sufficiently high intensity (number of counts)
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is then required for a proper data evaluation. The time needed for Mössbauer spectra
accumulation depends on the source activity, sample effective thickness and properties
of the experimental setup. Commonly, the measurements take from several hours up to
several days.

1.3.2 Nuclear Forward Scattering

NFS belongs to the group of experimental techniques that utilize modern synchrotron
radiation sources. These sources are based on the radiation properties of charged par-
ticles (usually electrons) when their speed approaches the speed of light [52]. A schematic
illustration of a synchrotron radiation source is shown in Fig. 1.12. First, the particles
are accelerated using the linear accelerator and the booster synchrotron. After their ac-
celeration the particles are injected into the accelerator storage ring containing specially
designed magnetic structures (undulators are used in NFS). When passing through the
generated magnetic field the particles trajectory is being appropriately curved, causing
the generation of the resulting coherent radiation with unique energy, time and spatial
properties [53].

linac
booster

storage
ring

beamline

undulator

Figure 1.12: Scheme of a modern synchrotron radiation source showing the charged particles
accelerated in the linear accelerator (linac) and booster synchrotron, then injected into the storage
ring and emitting the radiation when passing through the undulator.

In contrast to “single-line” radioactive sources the synchrotron radiation coming from
the undulator exhibits a broad energy distribution of the emitted radiation. Thanks to the
wide range of usable energies the nuclear resonance can be observed for a large number
of different resonant nuclides [54]. This can be an advantage over TMS where the usable
nuclides are limited by the existence of radioactive sources with appropriate nuclear gamma
transitions. Another difference from the radioactive sources is that the synchrotron sources
generate the radiation which exhibits a high degree of polarization. The radiation is linearly
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polarized in the plane of the accelerator storage ring (in NFS the ~εσ vector is conventionally
chosen to lie in this plane, so the radiation is ~εσ-polarized).

Time properties of the emitted radiation are crucial for the performance of the NRS
experiments. The movement of the charged particles in the storage ring can be realized in
a bunch mode. The particles are grouped in several discrete bunches with a specific time
separation between them. When passing through the undulator, each bunch generates
a separate synchrotron radiation pulse of ∼ 100 ps time duration. The time separation
between individual pulses depends on a given bunch mode and is usually ∼ 101–102 ns.

The principle of NFS is shown in Fig. 1.13. The system of monochromators [11], based
on the single-crystal diffraction, is used to select the radiation energy suitable for a given
Mössbauer nuclide. The energy bandwidth of the radiation is in the order of eV when
coming from the heat-load monochromator and in the meV or sub-meV range when leaving
the high-resolution monochromator. However, this is still several orders more than the
range of the nuclear transition energies (see Fig. 1.4).

energy

∼ meV10 kev 100 kev

storage
ring

undulator

sample

detector

time time

energyenergy

monochromators

∼102 ns

Figure 1.13: NFS experimental arrangement with the energy and time properties of the synchro-
tron radiation before/after monochromatization and after the scattering.

Instead of separate excitations of the individual nuclear energy levels as in the TMS, the
synchrotron radiation pulses cause simultaneous coherent excitations of all the energy
levels. During the subsequent deexcitation the radiation fields are emitted, with energies
corresponding to differences between the individual ground and excited state energy levels
(Fig. 1.14). The superposition of these radiation fields gives the resulting scattered field
whose intensity exhibits typical time interference patterns known as quantum beats [55,56].
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Figure 1.14: Radiation fields corresponding to individual transitions between the nuclear energy
levels (on the left). Their superposition results in quantum beats of the detected signal in time
domain (on the right).

For the incident radiation in a pure polarization state the transmitted radiation field
in the time domain ~Atr(t) can be obtained by a Fourier transform [34]

~Atr(t) = F
[
~Atr(E)

]
, (1.45)

where ~Atr(E) is the energy-dependent transmitted radiation field from formula (1.37). The
energy and time dependence is explicitly written in the brackets to distinguish between the
quantities in these two domains. From the linearity of the Fourier transform and formula
(1.38) we get

~Atr(t) = F
[
~Asc(E)

]
+ F

[
~Ain
]
. (1.46)

The first term in (1.46) gives the scattered radiation field in the time domain ~Asc(t). The
second term represents that part of the radiation which does not interact resonantly with
the nuclear system. In comparison to the resonant interaction, which takes typically from
101 ns to 102 ns (∼ lifetime of the nuclei excited state), the non-resonant interaction is
significantly faster and represents an initial prompt peak. By gating the prompt peak
its time separation from the “delayed” radiation can be realized. Therefore, the detected
signal is formed by the resonantly scattered photons only and is described by the scattered
radiation intensity Isc(t) [42]

Isc(t) =
∣∣ ~Asc(t)

∣∣2. (1.47)

Analogously to energy-domain measurements, the theory could be generalized for mixed
polarization states of the incident radiation described by a density matrix ρ. In agreement
with (1.39) and (1.45) the normalised scattered radiation intensity is given by the general
formula

Isc(t) = Tr
{
F [T − 1] ρF †[T − 1]

}
. (1.48)

Although the experimental data are measured in time domain as time interference patterns
(i.e. quantum beats) and do not provide a direct spectral information, a less accurate term
“time spectrum” has been established for Isc(t).

In many aspects, the transmission Mössbauer spectra with absorption lines and the
NFS time spectra featuring quantum beats provide equivalent information on the solid
systems. However, there are also some differences. This can be demonstrated on the exam-
ple of the isomer shift determination. It can be found out that time spectra depend only
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on the differences ∆Eng,ne−∆En′g,n′e between different transition energies and not on their
absolute values. The same problem was discussed in TMS, where the relative values of the
transition energies with respect to a reference (i.e. isomer shift) could be obtained for each
nuclear site from a single measurement using the calibration. To perform similar approach
in the time domain, the reference time spectrum would have to be measured not once, but
for each NFS measurement separately [57]. This is usually not done and for a sample with
a single nuclear site the information on its isomer shift is lost. For multiple nuclear sites
one of them can be chosen as an inner reference and the isomer shifts of the rest can be
determined with respect to it. Other differences between TMS and NFS, related mainly
to the thickness effects, will be discussed later in this work.

The synchrotron radiation sources bring a big advantage over conventional Mössbauer
sources regarding the intensity. The accumulated NFS time spectra consist of a very
high number of contributions from individual synchrotron radiation pulses (coming with
∼ 102 ns period). To highlight the benefits of the synchrotron radiation, the physical quan-
tities of spectral photon flux and brilliance are usually used [11, 58]. The spectral flux is
defined as the number of emitted photons per second, normalised to 0.1 % of the radiation
energy bandwidth. The brilliance is then given as the spectral flux normalised to a solid
angle of 1 mrad2 and to a source area of 1 mm2. Basically, higher values of these quanti-
ties mean either better statistics within the same measuring time or faster measurement
with the same statistics. High brilliance is especially important when studying very small
samples requiring high concentration of photons in a small area [59]. The brilliance of the
synchrotron radiation is significantly higher (by more than 10 orders) when compared to
the radioactive sources.

The usage of synchrotron radiation has opened entirely new possibilities of hyperfine
methods. An example is the use of NFS for the investigation of fast processes, including
solid-state chemical reactions, structural re-ordering, diffusion or magnetic transformations
[60–62]. Such studies are of a high importance from both the basic research perspective
(exploring transformation kinetics and mechanisms, discovering temporary inter-phases,
etc.) and the possible applications (altering transformation conditions to modify material
properties). With the current radiation intensity one time spectrum could be accumulated
in less than one minute. Further decrease of the measuring time can be expected with the
development of free-electron lasers [58].

1.3.3 Solutions for Simple Cases

The described theory can be significantly simplified when the electric and magnetic
hyperfine interactions are not generally combined but follow one of the special cases given
in section 1.1.3. In these cases the interaction Hamiltonian (1.17) takes a simple diagonal
form. The scattering length N~ε,~εin from (1.29) could be rewritten into the form given for
example in [11,35]

N~ε,~εin = 3
16π

[
(F+1 + F−1)(~b ∗ ·~b in) − i(F+1 − F−1)(~b ∗ ×~b in) · ~z0 +

+ (2F0 − F+1 − F−1)(~b ∗ · ~m)(~b in · ~z0)
]
.

(1.49)

It depends on the relative directions between the ~εin, ~ε and ~k0 unit vectors and the ~z0
unit vector, whose direction corresponds to the quantization axis in which the interaction
Hamiltonian is diagonal. For the pure magnetic interactions ~z0 coincides with the direction
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of the effective magnetic field. For the electric interactions it coincides with the unit vector
~vzz of the EFG main axis. Considering the M1 transition, ~bin = ~k0 × ~εin and ~b = ~k0 × ~ε.
The FM factors include the scattering dependence on the energy

FM =
jg∑

mg=−jg

C2 (jg1je;mgM)
E −∆Emg,mg+M + iΓ

2
, M = −1, 0,+1 . (1.50)

Note that the scattering length includes only six possible transitions between the nuclei
ground and excited state energy levels. The other two transitionsmg = 1/2 ↔ me = −3/2
and mg = −1/2 ↔ me = 3/2 do not satisfy the selection rule for the angular momenta
addition me = mg +M . Depending on the type of the hyperfine splitting (see Fig. 1.3) for
a given nuclear site, the Mössbauer spectra can be divided into those of a single transition
(ĤI interaction, singlet), two transitions (ĤI +ĤQ interaction, doublet) and six transitions
(ĤI + ĤM interaction, sextet). Examples of Mössbauer spectra and corresponding NFS
time spectra for the individual transition types is shown in Fig. 1.15. Even for the general
combined case (ĤI + ĤQ + ĤM interaction) the two additional transitions are usually
suppressed over the other six. They can be measured only under special conditions with
comparable quadrupole and magnetic interactions [14].
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Figure 1.15: Examples of the transmission Mössbauer spectra and the NFS time spectra of singlet
(a, d), doublet (b, e) and sextet (c, f). The time spectra are shown in a logarithmic scale.

Another important case is the random orientation of the effective electric and magnetic
fields in measured samples. The scattering length matrix can be obtained from (1.41) by
integrating over all possible directions

N =
∫

Ω
N(Ω) dΩ (1.51)

with N(Ω) given by (1.31) and Ω indicating the orientation dependence. The simplest
approach is integration over orientations of the radiation coordinate system with a fixed
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sample orientation. Similarly to the rotation of the EFG coordinate system described in
section 1.1.3, the radiation coordinate system (~εσ, ~επ and ~k vectors) can be rotated by
Euler angles Φ,Θ,Ψ. Integration over these angles leads to a diagonal form of the scattering
length

N = π
∑
ng,ne

Lne
ng(E)

∑
M ′,M

G
ng,ne
M ′

(
G
ng,ne
M

)∗( 1 0
0 1

)
. (1.52)

Let us use the symbol sc(N) for the scalar value in (1.52). The scattering matrix T is then
given as

T = exp
[
i ξ sc(N)

]( 1 0
0 1

)
. (1.53)

The effect of the random orientation can be demonstrated using an incident radiation in
a pure polarization state ~Ain = Ain,σ~εσ + Ain,π~επ. The transmitted radiation field ~Atr(E)
can be calculated as

~Atr(E) = T ~Ain = exp
[
i ξ sc(N)

]( 1 0
0 1

)(
Ain,σ
Ain,π

)
= exp

[
i ξ sc(N)

]
~Ain (1.54)

and the radiation intensity is

Itr(E) =
∣∣ ~Ain

∣∣2 exp
[
i ξ sc(N)− i ξ sc∗(N)

]
=
∣∣ ~Ain

∣∣2 exp
[
− 2 ξ Im

{
sc(N)

}]
. (1.55)

Clearly, the scattering does not affect the polarization of the incident radiation. Essentially
the formula for the transmitted radiation intensity follows the general absorption law with
the absorption coefficient proportional to the imaginary part of the scattering length scalar.

In summary, there are many situations where certain symmetries within the scattering
system may simplify the scattering problem. Generally, the polarization effects could be
omitted from the description and simplified theoretical formalisms could be used [15].
This applies mainly for the Mössbauer spectroscopy with upolarized radiation sources and
scattering systems which could be considered as ideally thin (deff � 1). For significantly
thick samples and possible polarization mixing, the usage of more general descriptions
should be considered.

1.3.4 Thickness Effects

The impact of the finite (effective) thickness of the scattering system on the measured
Mössbauer and time spectra can be demonstrated by expanding the scattering matrix T
of the system in a Taylor series

T = eiξN =
∞∑
l=0

(iξN)l

l! = 1 + iξN + (iξN)2

2 + (iξN)3

6 + . . . . (1.56)

The individual terms in the Taylor expansion correspond respectively to the non-resonant
interaction, single scattering, double scattering, etc.

In TMS the transmitted intensity is given by formula (1.43). Using the properties of
the matrix trace and the Taylor series we may write

Itr(E) = Tr
{
ρ

[
1− iξN † +

(
iξN †

)2

2 −

(
iξN †

)3

6 + . . .

]

×
[
1 + iξN + (iξN)2

2 + (iξN)3

6 + . . .

]}
.

(1.57)
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The individual intensity terms in (1.57) after the expansion can be divided according to
the orders of the powers of ξ. The 0-th order consists only of 1, the first order terms
are iξN − iξN †, the second order includes (1/2) (iξN)2 − (iξ)2N †N + (1/2)(iξN †)2, etc.
The thin-sample approximation of the intensity is realized by taking only the terms up
to the lowest present power of ξ, which in this case is the first order ξ1. The second-
order approximation would be realized by including the second-order terms, third-order
approximation by including the third-order terms, etc. More detailed evaluation of the
expanded transmitted intensity and its terms will be provided in the next chapters.

In the first-order approximation the energy dependence is basically given by the real
Lorentzian functions taken as the imaginary part of Lne

ng(E). These Lorentzian dependences
form the basic form of the Mössbauer lines. As the effective thickness (see formula (1.36))
increases the higher orders of Itr(E) start to significantly influence the Mössbauer lines so
they can no longer be considered as Lorentzian. Instead, there is an increasing contribu-
tion from the “higher-order Lorentzian” functions, which results in the broadening of the
Mössbauer lines (Fig. 1.16a).

In simplified cases the line broadening due to the thickness can be approximately mo-
delled by distributions of hyperfine parameters. However, the thickness effects generally do
not alter only the line-shapes. This can be illustrated on an example of the Mössbauer lines
ratios [63]. Considering a system of polycrystalline α-Fe foil with the well-distinguished
magnetic hyperfine splitting, the corresponding Mössbauer spectrum could be calcula-
ted, for example, using the simplified formulas (1.49) and (1.55). In the thin-sample ap-
proximation the amplitudes of the absorption lines follow the 3:2:1:1:2:3 ratios, which are
typical for the randomly oriented magnetic fields in the system. Deviations from these
ratios may usually be ascribed to additional nuclear sites in the sample or to preferentially
oriented magnetic fields, which will be described in chapter 3. However, for thicker samples
the amplitudes of the outer lines decrease with respect to the inner lines. This can be seen
in Fig. 1.16a, where the decrease is apparent for the effective thickness of ∼ 10, which
corresponds to 30µm thick α-Fe foil at room temperature with natural 57Fe abundance.
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Figure 1.16: (a) First three absorption lines of a Mössbauer spectrum of polycrystalline α–Fe
with the natural 57Fe abundance and the thickness of 1µm (red line) and 30µm (black line).
(b) Corresponding NFS time spectra in a logarithmic scale. The 30µm sample exhibits a speed-up
effect, which can be seen as a steeper slope of the time decay. The presented data were simulated
for linearly polarized incident radiation.
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Thickness effects in time domain are strongly connected to the coherence of the scatte-
ring process [64,65]. Rather than scattering on a single nucleus the whole nuclear system
is coherently excited. The following deexcitation then exhibits a speed-up effect, where
the increasing effective thickness results in shorter deexcitation times (Fig. 1.16b). Even
for the unsplit nuclear energy levels the photon emission does not follow the exponential
decay with the lifetime of the excited state, as would be the case for the excitation of
a single nucleus. The emission proceeds faster, the exponential time dependence is being
pushed towards the lower times and exhibits beating patterns. These patterns are similar
to the quantum beats, but arise from the multiple scattering and are referred to as dyna-
mical beats. For the split energy levels the superposition of the dynamical beats with the
quantum beats may occur, which results in a more complex time dependence described as
the hybrid beats [66].

The Taylor expansion of the scattering matrix could also be used for the time spectra
description. Using formula (1.48) and linearity of the Fourier transform the scattered
radiation intensity could be written as

Isc(t) = Tr
{
ρ

[
− iξF†[N ] + (iξ)2F†

[
N2]

2 − (iξ)3F†
[
N3]

6 + . . .

]

×
[
iξF [N ] + (iξ)2F

[
N2]

2 + (iξ)3F
[
N3]

6 + . . .

]}
.

(1.58)

The thin-sample approximation is again described by terms with the lowest order of ξ.
In NFS it is the second-order term − (iξ)2 ρF†[N ]F [N ]. Consequently, NFS exhibits a
different sensitivity to the effective thickness than TMS.

1.3.5 Data Evaluation

For obtaining quantitative information on nuclear sites in a sample and their hyperfine
parameters the experimental data are compared to a theoretical curve, which is calculated
for a selected model of the sample. The most widespread approach is the least squares
fitting, where the best statistical agreement between the measurement and the theory is
achieved by minimizing the χ2 parameter given as [67]

χ2 =
L∑
l=1

(
Iex
l − I th

l

)2
σ2
l

, (1.59)

where Iex
l are the intensities detected at individual energy/time points (experimental data)

and Ith
l are the calculated intensities at the corresponding points (theoretical data). The

squared differences of the experimental and theoretical data are weighted by the standard
deviation squared σ2

l , which is usually estimated as Iex
l . The χ2 parameter is often given

in a normalized form obtained by dividing (1.59) by a degree of freedom, which is the total
number of data points L decreased by the number of fitted parameters.

One of the drawbacks of the least squares fitting is the requirement for a good initial
estimate of the fitted parameters. If the initial theoretical curve differs too much from a
measured spectrum the optimization procedure may not converge or converges only to a
local minimum. This represents a relatively smaller problem in TMS, where the estimation
is based (to a large extent) on the positions of measured Mössbauer lines, which reflect
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the nuclear transition energies very well. Nevertheless, the Mössbauer spectra fitting is ge-
nerally not an easy task as individual nuclear sites may significantly overlap, distributions
and thickness effects may cause additional line broadening, etc. The fitting becomes more
difficult as the complexity of the sample and the number of fitted parameters increase.
The fitting is significantly more complicated in the time domain. Thanks to the cohe-
rent superposition of the radiation fields coming from individual nuclear transitions and
also the superposition of the quantum and dynamical beats the estimation of individual
nuclear sites and their hyperfine splitting from the measured time spectra is extremely
difficult [66].

There have been demands for novel optimisation approaches to simplify the evaluation
of TMS and NFS experimental data. Initial estimations of parameters using the Monte
Carlo methods, selection of sample models based on the Fourier transform of experimental
data, implementation of artificial neural networks and genetic algorithms are few options
worth mentioning [67–70]. The further improvements of the data analysis show to be very
important for both the Mössbauer and the synchrotron radiation NRS community.

Many efforts have also been given to the automation and fastening of the data eva-
luation. This becomes crucial in the NFS studies of fast processes, where one experiment
may consist of hundreds of measured time spectra (even larger data sets are to be expected
in the future) [71]. A sequential fitting procedure, based on connecting the neighbouring
time spectra via their input and output parameter values, has been presented as a usable
approach [72]. By connecting the conventional fitting software CONUSS with a specially
developed package Hubert the efficiency of the experimental data evaluation was conside-
rably increased [73,74].

A separate description could be dedicated to special methodologies created for speci-
fic requirements depending on the type of information that is being extracted from the
carried experiments, e.g. measurements of Lamb-Mössbauer factors, magnetic responses
to external fields or texture [28,41,75].

29



2 Violation of Rotational Invariance by
Inhomogeneous Systems

A novel methodology for investigating the material inhomogeneities by nuclear resonant
scattering techniques is presented in this chapter. The introduced approach is based on
the rotational invariance and its violation, which was experimentally observed in the NFS
experiments conducted for two different geometrical arrangements. Comparison of the
obtained results allows to extract a unique information on the spatial distribution of nuclei
featuring different hyperfine interactions, along the direction of the incident radiation.

Differences in the measured time spectra were observed upon a specific sample rotation.
Similar phenomena were observed in the past within the studies of fundamental properties
of scattering, such as “polarization rotation” (Faraday rotation), time-reversal invariance
or reciprocity [32,76]. These properties and conditions for their observation/violation could
be explored by ensuring well-conceived experimental conditions (e.g. combination of two
absorbers, application of external magnetic fields). This work focuses on the phenomenon
of rotational invariance, whose violation was observed without any artificially introduced
experimental conditions, solely as a result of the inner properties of the studied sample.

As an outcome, a simple method for identifying the presence of inhomogeneities in the
bulk of a solid has been described. It is noteworthy that possibilities to experimentally
observe bulk inhomogeneities of hyperfine interactions are limited [77–79]. To the author’s
knowledge, such a similar observation on the real samples interpreted on the basis of
rotational properties of NRS has not been reported in the literature. Despite exhibiting
certain limitations regarding specific conditions imposed on the samples, the presented
approach could be an inspiration for further developments. This might potentially lead to
even more complex reconstruction of material inhomogeneities via an imaging technique.

The first section of this chapter is devoted to the theoretical description of rotational
invariance and its connection to spatial distribution of hyperfine interactions. Conditions
for observing the inhomogeneities are also determined and interpreted from the physical
point of view. The second section provides an experimental demonstration of the described
approach. NFS experiments conducted on a metallic glass sample provided information
on the magnetic inhomogeneities. This information became accessible by comparing two
sets of time spectra, measured at room temperature and during an isothermal annealing.
The chapter is concluded by a general discussion of the achieved results.

2.1 Theoretical Description
2.1.1 Rotational Invariance and Homogeneous Systems

The concept of rotational invariance generally refers to situations in which the radiation
intensity is not influenced by rotating the scattering system with respect to the radiation
coordinate system3. This work is specifically focused on the 180 ◦ rotation around one of
the polarization axes defined by the unit vectors ~εσ and ~επ (see Fig. 2.1). We also assume
that the incident radiation is either unpolarized or fully linearly polarized along one of the
polarization axes.

3More accurately, we use the concept of magnitude rotational invariance, which does not reflect changes
in the phase of the radiation. However, the term “magnitude” will be omitted in the following description.
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Figure 2.1: Geometrical arrangements used for the study of rotational invariance. The scattering
system is rotated around one of the polarization axes (rotation around ~επ-axis is illustrated in the
figure) and experimental data obtained before and after the rotation are compared.

First, let us examine the rotational invariance for a scattering system with nuclear sites
homogeneously distributed along the direction of the incident radiation4. The scattering
length of the system is given by formulas (1.31–1.33) and (1.40). It is convenient to extract
the radiation-dependent term from the sum over all present nuclear sites

Nνµ =
∑
M,M ′

[
~ε *ν · ~Y *

M ′(~k)
] [
~Y *
M (~k) · ~εµ

]∑
i

wi F
(i)
M ′,M , (2.1)

where F (i)
M ′,M includes the energy dependences and Gng,ne

M factors of the i-th nuclear site.
The radiation coordinate system can be rotated instead of the scattering system. For exam-
ple, rotating around the original ~επ-axis by 180 ◦ causes substitutions in (2.1) according to
Fig. 2.2. It can be found that the vector spherical harmonics ~YM transform to −~YM and
the “rotated” scattering length N rot can be expressed using the elements of the original
scattering length N as

N rot =
(

Nσσ −Nσπ

−Nπσ Nππ

)
. (2.2)

Moreover, the relation between N and N rot defined by formula (2.2) holds for arbitrary
powers of N and N rot. Therefore, the scattering matrix T rot transforms in the same way
with respect to T and the 180 ◦ rotation changes only the sign of the off-diagonal scattering
matrix elements. The identical results could be obtained for the rotation around ~εσ-axis.
These two rotations around individual polarization axes are equivalent. They differ only
by additional 180 ◦ rotation around ~k-axis, which does not affect the scattering length.

For the considered polarization states of the incident radiation the intensity of the
transmitted (scattered) radiation depends only on the magnitudes of the scattering matrix
elements. The changes in the phase of the off-diagonal matrix elements do not influence
the intensity, which means that the rotational invariance is always satisfied for the case
of homogeneous scattering systems. Consequently, measuring the violation of rotational
invariance (VRI) may potentially provide information on the system inhomogeneities. For
example, it may reveal that the studied system is not fully homogeneous. In the following

4Spatial distribution of nuclear sites in the plane perpendicular to the direction of the incident radiation
is related to the transverse coherence effects and will not be treated in this work [80].
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part the connection between VRI and the inhomogeneities, as well as the conditions for
its observation, will be examined.

~εσ

~επ

~k

−~k

−~εσ

~επ

180 ◦

Figure 2.2: Rotation of the radiation coordinate system around ~επ-axis causing transformations
~εσ → −~εσ, ~επ → ~επ and ~k → −~k in the scattering length N .

2.1.2 Scattering on Multilayers

The inhomogeneous spatial distribution of nuclear sites in a sample causes the total
scattering length to be a general function of the sample depth along the radiation direction.
For being able to demonstrate the role of inhomogeneities a system consisting of n sepa-
rately homogeneous layers will be considered [11]. The spatial separation of the nuclear
sites into individual layers described by ξi and Ni (i = 1, 2, . . . , n) allows to generalize the
scattering matrix of the system and discuss the effects of rotation.

The construction of the scattering matrix can be demonstrated for an incident radiation
~Ain in a pure polarization state. When the radiation passes through the first layer the
transmitted radiation field is given as ~A1 = T1 ~Ain, where T1 = ei ξ1N1 is the scattering
matrix of the first layer. In general, each layer is described by its own scattering matrix
Ti = ei ξiNi . As the radiation ~A1 passes through the second layer it acts as an incident
radiation on this layer and therefore ~A2 = T2 ~A1 = T2T1 ~Ain. The same procedure can be
applied analogously for all remaining layers. After passing through the whole system, the
transmitted radiation field is given as

~Atr = TnTn−1 . . . T2T1 ~Ain. (2.3)

Comparison of formula (2.3) with (1.37) shows that the same theoretical description that
was used for the homogeneous samples can be applied here, if the total scattering length
T is taken as a multiplication of individual partial scattering matrices (Fig. 2.3).

in1 out1 = in2 outn−1 = inn outn

T = TnTn−1 . . . T2T1

T1 T2 Tn−1 Tn

. . .

Figure 2.3: An illustration of a scattering system consisting of n layers. The radiation field, which
is transmitted through the jth layer described by Tj , is the incident radiation field for the following
layer, i.e. outj = inj+1.
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Mathematically, the rotation of the multilayered system by 180 ◦ is equivalent to mutual
interchanges of the layers followed by a separate rotation of each layer (Fig. 2.4). The total
scattering matrix of the rotated system takes the form

T rot = (TnTn−1 . . . T2T1)rot = T rot
1 T rot

2 . . . T rot
n−1T

rot
n , (2.4)

where the T rot
i matrices follow the same relation with respect to Ti which was given for

homogeneous samples, see formula (2.2). Whether the system exhibits VRI or not depends
on the relation between T and T rot, which is, however, determined by relations between
the scattering lengths of individual layers Ni, Nj (i, j = 1, 2, . . . , n and i 6= j). Various
criteria may be chosen to examine the properties of Ni and their connection to rotational
properties of the scattering system. In this work the commutativity of the scattering
lengths is analysed. The reasons for choosing this criterion will be clarified later in this
chapter.

We shall consider an illustrative example of a two-layered scattering system. If N1 and
N2 satisfy the commutation relation N1N2 = N2N1 than the scattering matrices T1 and
T2 follow the same relation, as their exponents commute. Therefore, the total scattering
matrix can be written as a single exponential

T = ei(ξ1N1+ ξ2N2), (2.5)

which is analogous to the scattering matrix of a system consisting of two homogeneously
distributed nuclear sites, see formulas (1.35) and (1.40). Furthermore, it could be found
that the rotated scattering matrices T rot

1 and T rot
2 also commute and

T rot = ei(ξ1Nrot
1 + ξ2Nrot

2 ). (2.6)

The exponents in (2.5) and (2.6) differ only in the signs of their off-diagonal elements
and so the same relation between T and T rot as in the case of a homogeneous scattering
system is obtained. Consequently, VRI cannot be observed if the individual scattering
lengths mutually commute. In other words, noncommutativity of the scattering lengths is
a necessary condition for VRI.

45 3 2 121 3 4 5

21 3 4 5

45 3 2 121 3 4 5

Figure 2.4: A scheme showing the equivalence between the rotation of the multilayered system
(upper part) and the interchange of individual layers with respect to the system center, followed
by a separate rotation of each layer (lower part).
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2.1.3 Texture and Multiple Scattering Effects

The physical meaning of the noncommutativity condition is closely related to rotational
distributions of hyperfine parameters. A special case of random electric or magnetic field
orientations was treated in section 1.3.3, where the scattering length could be simplified
into a unit matrix multiplied by a constant. Therefore, for a multilayered system with all its
layers exhibiting randomly oriented fields, the scattering lengths Ni would be proportional
to unit matrices. Clearly, in such a case all the scattering lengths would commute and so
the magnetically and electrically random layers cannot contribute to VRI. This brings up
another physical condition on the scattering system, along with the inhomogeneous spatial
distribution of nuclear sites. The observation of VRI is possible only if the inhomogeneous
system exhibits a preferential orientation of the electric and/or magnetic field, i.e. texture.
Presumably, the condition on the presence of texture in samples can be applicable not only
to multilayers but to arbitrary inhomogeneous materials.

Based on the previous statements, the inhomogeneities of hyperfine interactions that
allow the observation of VRI can be classified into three basic cases. The first one includes
inhomogeneities of the magnitudes of corresponding hyperfine parameters (e.g. magnitude
of hyperfine magnetic field) in the presence of homogeneous texture. The second case are
the inhomogeneities of texture with homogeneous magnitudes. The last case is the combi-
nation of the previous two, where both magnitudes and orientations are inhomogeneously
distributed along the direction of the incident radiation. Illustrative examples of all the
three cases are shown in Fig. 2.5. For simplicity, the directional inhomogeneities (Fig. 2.5b)
will be used as a model example for the next part.

~k

(a) (b) (c)

Figure 2.5: Examples of inhomogeneously distributed hyperfine interactions, e.g. magnitudes and
directions of hyperfine magnetic fields, along the direction of the incident radiation. Inhomogeneities
in (a) magnitudes, (b) orientations and (c) magnitudes and orientations simultaneously may occur
in the scattering system.

The observation of VRI shows to be strongly related to thickness effects. This can
be demonstrated using a two-layered magnetic system with specific orientations of the
magnetic fields (Fig. 2.6). All the resonant nuclei in both layers, denoted as A and B,
exhibit hyperfine magnetic fields of the same magnitude. The field directions for nuclei in
layers A and B are given by unit vectors ~mA and ~mB, respectively. Except for the field
directions, the two layers are identical.

As the electric interactions are not considered for the given example, the scattering
lengths NA and NB of layers before the rotation (Fig. 2.6a) can be calculated using the
simplified formulas (1.49) and (1.50)

34



NA = 3
16π

(
F+1 + F−1 i(F+1 − F−1)
−i(F+1 − F−1) F+1 + F−1

)
, (2.7)

NB = 3
16π

(
2F0 0
0 F+1 + F−1

)
. (2.8)

It could be found out that the scattering lengths do not commute. This is ensured by
the off-diagonal matrix elements of NA. If the two matrices were both diagonal than
the commutativity would be satisfied and VRI could not be observed. From the physical
perspective this is related to polarization mixing phenomena. A demonstration can be
shown, for example, for an incident radiation linearly polarized along the ~εσ axis. When
the radiation passes first through layer B (Fig. 2.6b) the resulting radiation hitting layer
A is still ~εσ-polarized. In the second geometrical arrangement (Fig. 2.6a) the radiation
transmitted through layer A exhibits an orthogonal scattering which results in a non-zero
~επ-component of the radiation field. Put simply, the polarization felt by layer B after
passing through layer A is not the same as the polarization felt by layer A after passing
through layer B. Consequently, the resulting polarization state after passing through the
whole system is not the same for the two arrangements. Generally, it could be stated that
VRI is always accompanied by the polarization effects during the scattering.

~εσ

~επ

~k
~mA

~mB

~εσ

~επ

~k

180 ◦

~mA

~mB

(a)

(b)

Figure 2.6: A two-layered scattering system with magnetic inhomogeneities introduced as different
directions of the hyperfine magnetic field, given by unit vectors ~mA in layer A and ~mB in layer B.

The exponentials of NA and NB can be calculated analytically and the resulting scat-
tering matrices of the layers are

TA = eiK(F+1+F−1)
(
C −S
S C

)
, (2.9)

TB =
(

ei 2KF0 0
0 eiK(F+1+F−1)

)
, (2.10)

where C = cos [K(F+1 − F−1)], S = sin [K(F+1 − F−1)] and K = (3ξ)/(16π). The total
scattering matrix of the system is then

T = TBTA =
(
CeiK(F+1+2F0+F−1) −SeiK(F+1+2F0+F−1)

Sei2K(F+1+F−1) Cei2K(F+1+F−1)

)
. (2.11)
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From the relation between rotated and non-rotated scattering lengths (and scattering
matrices) given by formula (2.2), one can find out that T rot

A and T rot
B after the rotation

(Fig. 2.6b) are given as a transpose of TA and TB, respectively. The rotated scattering
matrix T rot = T rot

A T rot
B is then also a transpose of T . As a result, there is a significant

difference between T and T rot which makes the measuring of VRI for such a two-layered
system possible.
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Figure 2.7: Simulated time spectra (on the right) and corresponding scattered radiation intensities
in energy domain (on the left), corresponding to the three different arrangements of the considered
two-layered system. The differences among the data increase with increasing thickness as a result
of multiple scattering.

Fig. (2.7) shows the calculated intensities of the scattered radiation for the two-layered
system. The data were simulated for fully ~εσ-polarized incident radiation and they are
presented in both the energy5 and the time domain. In addition to the two geometrical

5In contrast to transmission Mössbauer spectra the curves presented in the figure describe the energy
dependence of the scattered radiation field intensity.
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arrangements from Fig. 2.6, the third case representing a mixture of A and B into one
homogeneous layer is shown for comparison. The parameters of α-Fe (with all nuclei being
57Fe) at room temperature were used for the data simulations [29,81]. The intensities are
compared for different total thicknesses ranging from 0.1µm to 10µm.

The simulations clearly demonstrate the role of thickness effects. The differences among
the spectra become more significant as the thickness of the layers increases. On the other
hand, for very thin samples the three described cases give basically identical results and
VRI is suppressed. This observation can be explained as a consequence of the multiple scat-
tering. The exact mathematical description of this effect for the considered experimental
arrangement is provided in appendix A. The differences between the radiation intensities
before and after the 180 ◦ rotation arise from the multiple-scattering terms which include
the scattering on both system layers. Contributions from the single scattering or from the
multiple scattering in only one of the layers are invariant under the given rotation of the
system. For samples with a high effective thickness the non-invariant contributions are con-
siderable. As the effective thickness decreases these contributions become negligible with
respect to the invariant ones. Consequently, those contributions to spectra which reflect
the system inhomogeneities vanish in the thin-sample limit and the rotational invariance
is satisfied.

Observation of VRI depends not only on the scattering system properties but also on
given experimental arrangement. This can be demonstrated by using unpolarized radiation
for the interaction with the described two-layered system and by measuring the Mössbauer
transmission. In contrast to the linearly polarized radiation, where VRI is clearly visible for
relatively thick samples (see Fig. 2.7), the unpolarized radiation prevents its observation
regardless of the thickness. The calculation based on (1.43) gives the transmitted radiation
intensity in the form

∑
µν |Tµν |2 where µ, ν ∈ {σ, π}. The sum runs over all matrix elements

of T and for the scattering matrix (2.11) the resulting intensity is the same as for its
transpose, which is equal to T rot in the given example.

2.2 Experiments of Nuclear Forward Scattering
The following part reports on the observation of VRI by NFS of synchrotron radiation.

The experiments were conducted on an iron-based metallic glass, specially treated via a
process of ion irradiation [82]. Investigation of such materials is of a high interest, for
example, due to their possible use in radiofrequency cavities of accelerators. The knowledge
on their influence by an irradiation exposure is important for a proper performance of these
complex instruments. Exploring the mechanisms of the ion interactions in a solid is also
interesting from the fundamental research perspective.

Investigations of the ion-treated solid materials can be realized for various irradiation
conditions, including the selected types of accelerated ions, their energy and also fluency
(number of incident ions per unit area). A series of experiments were conducted on the
investigated metallic glass to study the effect of ion irradiation on the subsequent crys-
tallization process. For this work, selected experiments from the series were chosen to
demonstrate the previously described effects and their experimental feasibility.

2.2.1 Metallic Glass Sample and Experimental Arrangement

The composition of the studied metallic glass was Fe81Mo8Cu1B10 with around 50 %
of the iron atoms being in the form of 57Fe. The sample was prepared by a melt-spinning
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technique as approximately 20µm thick and 1 mm wide ribbons [83]. The preparation
conditions resulted in two physically and chemically different ribbon surfaces, also denoted
as “wheel side” and “air side”. The wheel side was in contact with the spinning wheel
during the cooling of the melt, whereas the air side was in contact with the surrounding
atmosphere [84].

The prepared ribbons in as-quenched state were irradiated by N+ ions with the energy
of 130 keV. In all the cases the sample was exposed to the N+ ions from the air side. The
experiments presented in this work were conducted on the ribbons which exhibited the
ion irradiation fluency of 2.5 · 1017 ions/cm2. Despite the relatively low energy of ions the
irradiation was sufficient for affecting the bulk magnetic properties of the sample [82].

The experiments were carried out at ID18 beamline in ESRF (European Synchrotron
Radiation Facility). Synchrotron radiation beam with the mean energy of 14.4 keV and
bandwidth of 1 meV was used. The radiation was linearly polarized in the plane of the
storage ring (~εσ-polarized). During the NFS measurements the sample was fixed on a
stable vertical holder placed inside a vacuum furnace. For selecting the sample orientations
with respect to the radiation coordinate system, distinguishing between the two sides of
ribbons was important. The measurements were carried out for two orientations (air-side
and wheel-side orientations) differing by the 180 ◦ rotation of the sample with respect to
the ~επ-axis (Fig. 2.8).

~εσ

~επ

~k

~εσ

~επ

~k

180 ◦

(a)

(b)

air side

wheel side

Figure 2.8: Two geometrical arrangements used for the NFS experiments. (a) Air-side orientation
with the air side of the ribbon facing the detector. (b) Wheel-side orientation with the wheel side
facing the detector and the air side oriented towards the incident radiation.

Each experiment consisted of three basic parts. First, one NFS time spectrum of the
sample was measured for 5 minutes at room temperature, prior to any thermal treatment.
After the room-temperature measurement the sample was heated within three minutes
up to 300 ◦C. This temperature was kept for about one hour and during the isothermal
annealing the time spectra were acquired for each three minutes. The sample was then
spontaneously cooled to room temperature and another time spectrum was measured.
Fig. 2.9 shows a scheme of the NFS experiments and a typical evolution of measured time
spectra. The time spectra presented in the figure correspond to the air-side orientation of
the sample.

38



1

10

100

1000

10000

40 80 120 160

Time (ns)

40 80 120 160

In
te
ns
it
y

Time (ns)

40 80 120 160

(b) (c) (d)

1.–3. min 7.–9. min 28.–30. min

Time (ns)

RT

300 ◦C

Temperature evolution

1

10

100

1000

10000

40 80 120 160

(a) (e)

RT before annealing RT after annealing

In
te
ns
it
y

Time (ns)

40 80 120 160

Time (ns)

Figure 2.9: A scheme of NFS experiments conducted on Fe81Mo8Cu1B10 sample after its exposure
to the N+ ions irradiation. (a) A room-temperature time spectrum accumulated before the thermal
treatment. (b–d) Time spectra measured under the elevated temperature during the corresponding
times of annealing. (e) A room-temperature time spectrum of the sample after the annealing.

2.2.2 Formation of Nanocrystalline Grains

The multi-element metallic glasses and the related nanocrystalline alloys are typically
very complex materials, regarding their elemental composition, structural properties and
magnetic ordering at different regions in the material. This results in a complicated hy-
perfine structure (number of nuclear sites and their hyperfine splitting), commonly with
broad distributions of hyperfine parameters [47,61,83,85].

For the studied NANOPERM-type system the structural arrangement is related to the
magnetic ordering, which allows to distinguish two basic contributions to the measured
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time spectra. The first contribution originates from the original amorphous matrix, which
is paramagnetic and exhibits only electric hyperfine interactions. It is typical by a broad
distribution of the quadrupole splitting resulting in a distinctive doublet in the energy
domain. The second contribution is given by nuclear sites in the sample which exhibit
magnetic hyperfine interactions. These are connected to the formation of nanocrystalline
grains in the amorphous matrix. The grains naturally take the structure and ferromagnetic
ordering of α-Fe and exhibit hyperfine magnetic field of more than 30 T [74]. In addition
to the crystalline magnetic phase, the ferromagnetic exchange interactions among the
grains might influence the amorphous regions in the vicinity of the crystals, causing a
magnetic splitting of 57Fe energy levels at these regions [86]. Consequently, the magnetic
contributions could be ascribed to both the crystalline and the amorphous magnetic phases
in the sample.

Although the transitions between the magnetically and electrically split energy levels
could be generally coupled in the time domain into complex quantum beats, the measured
time spectra of Fe81Mo8Cu1B10 allow to distinguish between the magnetic and the electric
contributions. The electric contribution results in the “envelope” time patterns occurring
with the period of around 40 ns at room temperature (see for example Fig. 2.9e), whereas
the energy splitting of the magnetic contribution gives the low-periodic (high-frequency)
beating with the room-temperature period of around 10–15 ns. In the following part, they
will be referred to as the low-frequency and the high-frequency (magnetic) quantum beats.

In the room-temperature time spectrum measured before the sample heating (Fig. 2.9a)
the low-frequency as well as the high-frequency quantum beats can be recognised. The
magnetic part is present because of very small magnetic grains, that were formed in the
sample during its preparation and could also be modified by the subsequent ion irradiation.

Fig. 2.9(b–d) demonstrate the evolution of time spectra during the sample annealing.
The time spectrum measured immediately after the temperature raise to 300 ◦C exhibits
dominantly contribution from the amorphous matrix and partially from the small amount
of the nanocrystalline grains (Fig. 2.9b). Few minutes later, new nanocrystalline grains
start to form. This is accompanied by the appearance and evolution of the high-frequency
quantum beats (Fig. 2.9b, c). Finally, a significant contribution of the magnetic phases
can be seen as the well-developed high-frequency quantum beats in Fig. 2.9e, i.e. after the
crystallization process has ended.

The next section compares the time spectra measured under both geometrical arrange-
ments and discusses the results on the basis of the rotational invariance and its violation.

2.2.3 Identification of Magnetic Inhomogeneities

Fig. 2.10 shows the pair of time spectra measured at room temperature before the
sample annealing, i.e. the time spectra measured under the same conditions for the air-
side and the wheel-side orientation of the sample are compared. Both time spectra were
normalized to unity area. Despite being qualitatively very similar, the time spectra exhibit
differences which are significantly higher than the uncertainties of the experimental points.
VRI is clearly visible mainly between 20 ns and 50 ns (Fig. 2.10b) in the form of different
ratios between the high-frequency quantum beats. On the basis of the theoretical analysis
in section 2.1, it can be concluded that the measured metallic glass sample exhibits inho-
mogeneities. These inhomogeneities are of a magnetic (high-frequency) nature and can be
therefore ascribed to the magnetic nuclear sites in the sample. In addition, the hyperfine
magnetic field directions are not randomly distributed but exhibit texture.
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Figure 2.10: NFS time spectra of Fe81Mo8Cu1B10 measured at room temperature for the air-side
(black squares) and the wheel-side (red-circles) orientation of the sample. The data are shown (a)
on a conventional logarithmic scale in full time range and (b) on a linear scale between 20 ns and
90 ns to emphasize the measured VRI.
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Figure 2.11: Time spectra of Fe81Mo8Cu1B10 measured at different times during the isothermal
annealing at 300 ◦C. Differences in the time spectra develop and VRI becomes more significant
with the increasing amount of nanocrystalline grains during the crystallization.
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Selected pairs of time spectra measured during the isothermal annealing of the sample
are shown in Fig. 2.11. The time spectra acquired before the onset of crystallization show
no significant difference (Fig. 2.11a, b). So the increase in temperature to 300 ◦C, which
resulted in the suppression of high-frequency quantum beats, also caused the rotational
invariance to be satisfied. This observation might be explained as a suppression of magnetic
interactions in the amorphous regions which, at room temperature, were influenced by the
exchange interactions among the nanocrystalline grains.

As new nanocrystalline grains began to form in the sample, VRI became visible again
(Fig. 2.11c, d). The differences in the ratios between the high-frequency quantum beats
further evolved with time up to around 30 minutes of annealing (Fig. 2.11e, f). After that
the time spectra did not exhibit any significant qualitative changes. It can be therefore
presumed that the crystallization took place mainly during this time period.

The development of differences between the ratios of high-frequency quantum beats
can be explained as a result of increasing amount of the crystalline magnetic phase in the
sample. This is analogous to the example given in Fig. 2.7. VRI becomes more significant
during the crystallization, where the amount of crystallites (and therefore the number of
57Fe nuclei that contribute to magnetic inhomogeneities) increases and enhances the role
of multiple scattering. At this state, the magnetic inhomogeneities and texture can be
ascribed to the newly formed nanocrystalline grains. The rotational invariance remained
violated when the sample cooled down to room temperature (Fig. 2.12).
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Figure 2.12: Comparison of time spectra measured at room temperature after the annealing.

2.3 Discussion
The conducted experiments demonstrated a utilization of NFS for the investigation of

materials exhibiting an inhomogeneous spatial distribution of hyperfine parameters. The
presence of magnetic inhomogeneities along the direction of the incoming radiation was
revealed in the Fe81Mo8Cu1B10 sample. This was achieved solely by the analysis based on
considering the VRI effect. Additional information could also be obtained by observing
the evolution of VRI during the crystallization process.

To emphasize the uniqueness of the obtained information, the experimental techniques
which are commonly used in solid-state studies do not allow any investigations of this type.
For example, CEMS can be used to obtain a surface-selective information (e.g. from the air
side and the wheel side of the ribbons separately) on the hyperfine interactions. However, it
allows measurements only to about 200 nm sample depths so the information on the sample
volume is unavailable by this technique. On the other hand, the conventional techniques
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that allow to explore the bulk sample modifications (e.g. magnetization measurements)
provide only an integral property over the whole measured system.

The information on the sample provided so far did not require any fitting of the time
spectra. Nevertheless, for obtaining more information on the inhomogeneous regions (their
thickness, hyperfine parameters, type of inhomogeneities, etc.) a detailed quantitative
evaluation of the experimental data would be required. Creating such a complex fitting
model solely on the basis of the conducted experiments is a challenging task. In addition to
the inhomogeneities, the model would also need to reflect the time evolution of nuclear sites
and their hyperfine parameters during the crystallization. Finally, a proper representation
of the texture needs to be implemented for a correct evaluation of experimental data. The
texture problem in NRS for a general case of thick samples will be described in the following
chapter. To the author’s knowledge, such a general implementation of the inhomogeneities
and texture has not been realized in any currently available fitting software.

In measurements of thick Mössbauer samples a possible influence of inhomogeneities
is worth considering. If a less accurate homogeneous system model is used for the spectra
fitting, incorrect results might be obtained. In the presented measurements it was possible
to fit the time spectra, to a certain degree, by a homogeneous model similar to those
conventionally used for this type of material [74]. However, this model could not be used
to fit the pairs of time spectra (air-side and wheel-side time spectra) simultaneously as
VRI could not be reflected in the model. This shows that (at least for certain special cases)
it is appropriate to evaluate thick-sample measurements carefully.

The approach of comparing two measurements differing by the 180 ◦ rotation of a sam-
ple with respect to one of the polarization axes can be a useful method to provide funda-
mental information on the inhomogeneities. Moreover, it could serve as a first step towards
the more advanced methods of the inhomogeneous samples investigation. Some examples
are mentioned very briefly as suggestions for possible future developments. (i) Regarding
the individual types of inhomogeneities from Fig. 2.5, different polarizations of the incident
radiation together with an external magnetic field could be utilized to identify a dominant
inhomogeneity type, magnitude or directional. (ii) The external field may also be useful if
a sample exhibits the magnitude magnetic inhomogeneities, but with random orientations
of hyperfine fields. For observing VRI the texture can be induced by applying the external
field in a chosen direction (see Fig. 2.5a). Advantageously, for sufficiently strong field the
texture can take a simple unidirectional form with all magnetic moments oriented in the
same chosen direction. (iii) Usage of polarization filtering could be considered for increa-
sing the sensitivity to non-invariant scattering contributions. This was successfully used in
the reciprocity studies. (iv) The previous ideas might be completed by conducting sets of
measurements under different sample orientations, leading to more precise determination
of the nuclear sites spatial distribution.
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3 Texture Analysis

3.1 Introduction to Texture
As already discussed in previous chapters, Mössbauer samples may exhibit a preferen-

tial orientation of their effective electric and magnetic fields, usually referred to as texture
(Fig. 3.1). In other words, the directional distributions of hyperfine interactions in the
solid system may deviate from the random case described in section 1.3.3. The deviation
may arise from the structure and atomic interactions within the system and it might also
be altered by a specific preparation/modification treatment [87]. Nuclear resonant scat-
tering shows to be highly sensitive to the local fields orientations and can be used for
reconstructing the information on the texture.

(a)

x y

z (b)

x y

z (c)
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z

Figure 3.1: Illustration of the effective (e.g. magnetic) fields directional distributions, where more
frequent orientations (more nuclei with a given magnetic field direction) are represented by bigger
arrows. (a) A random case with equally distributed field directions. (b) An extreme example of the
texture, where all the nuclei feel the magnetic field oriented in the same direction. (c) A general
case of texture with some field directions being preferred over others.

The general integral (1.41) can be used to include all the directional contributions and
obtain the total scattering length. The integration goes over all directions

N =
∫

Ω
N(Ω)D(Ω) dΩ, (3.1)

where the partial scattering lengths N(Ω) from (1.31) are weighted by the distribution
functionD(Ω) which is called the texture function. Essentially, the main goal of the texture
determination by the TMS and NFS methods is to reconstruct the maximum possible
information on the texture function.

In contrast to the (magnitude) distributions of hyperfine interactions, which may cause
a significant broadening of Mössbauer lines in the energy domain, the texture can affect
the relative probability amplitudes for individual transitions between the energy levels.
This can be measured as modified ratios of the amplitudes of individual Mössbauer lines.
These relative amplitudes can be considered as functions of the texture and the sample
orientation. The texture determination is then based on running a series of measurements
differing by appropriately chosen orientations of the sample with respect to the radiation
coordinate system. The information on the texture function can be extracted either by a
simultaneous fitting of the experimental data set with a proper fitting model or by applying
specifically developed mathematical procedures for evaluating directly the relative lines
amplitudes [11]. In the case of NFS the second option is complicated by the fact that the
amplitudes of individual time-spread “frequency contributions” instead of localized lines
are affected by the texture.
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To evaluate experimental data measured on samples with texture a parametrization
of the texture function is needed. Actually, the parametrization comes naturally from the
symmetries of the nuclear scattering process. This has been treated only for the special
cases of (i) pure magnetic hyperfine interactions, (ii) pure axially symmetrical electric
interactions or (iii) a collinear combination of the first two cases (see the section 1.3.3).
A conventional approach is to expand the texture function in the basis of real spherical
harmonics [19]

D(θ, φ) =
∞∑
l=0

l∑
m=−l

Dl,mYl,m(θ, φ). (3.2)

The angles θ, φ of the effective magnetic field in (3.2) could be equivalently exchanged
with the angles β, α of the EFG main axes orientation. For simplicity, the notation using
θ, φ will be used. The continuous texture function can be equivalently described by the
discrete coefficients Dl,m.

The description of the texture has been treated for TMS using the thin-sample appro-
ximation [75]. For M1 transition, the symmetries of the magnetic dipole radiation result in
the transmitted radiation intensity, which is linearly dependent on the texture coefficients
Dl,m for l ≤ 2, but is independent of the higher-order coefficients. Consequently, only a
limited information on the texture is obtainable by Mössbauer spectroscopy. A minimum
texture Dmin(θ, φ) defined as

Dmin(θ, φ) =
2∑
l=0

l∑
m=−l

Dl,mYl,m(θ, φ) (3.3)

is the closest experimentally available approximation of D(θ, φ).
The trivial texture coefficient D0,0 is equal to 1/

√
4π, which ensures the normalisation

of D(θ, φ) to unity. The other eight coefficients are parameters to be determined. Using
an unpolarized radiation source the five texture coefficientsD2,−2, D2,−1, D2,0, D2,+1, D2,+2
can be reconstructed. The other three coefficients D1,−1, D1,0, D1,+1 can be obtained using
a circularly or elliptically polarized radiation source. The physical interpretation of the
texture coefficients can be found in [88]. They are related to the average effective field
direction, its projections to individual coordinate axes and also the second moments of the
projections.

The problem could be further simplified depending on the properties of studied systems
and the used radiation. For example, for the unpolarized radiation the principal axes of a
system can be found in which only three of the five D2,m texture coefficients are not equal
to zero [89]. The number of non-zero coefficients may further decrease if the system texture
exhibits directional symmetries. Moreover, so called texture-free spectra (as measured for
randomly oriented fields) can be measured under a specific sample geometry [90].

The high-brilliance synchrotron radiation sources are advantageous over the radio-
active sources when magnetic structures of systems with a low effective thickness are
investigated [91, 92]. Complex evaluation procedures have been developed for the NFS
reconstruction of magnetic field directions in relatively thick samples using a simple mo-
del of unidirectional magnetic texture (combination of fully magnetized and fully random
cases) [93, 94]. However, the reconstruction of a general texture by analysing the measu-
rements in the time domain is a challenging task.
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3.2 Scattering Formalism Applied to Texture
To emphasize the requirements for a general texture analysis covering materials of an

arbitrary effective thickness, the complex metallic glass system from chapter 2 could be
taken as an example. The possibility to study the spatial inhomogeneities requires a high
effective thickness for exhibiting the multiple scattering. In the thin-sample approximation
the inhomogeneities would not be reflected in the measurements.

This chapter combines the description of the texture by its Dl,m coefficients, which has
been conventionally applied in TMS, with the general theoretical formalism of the nuclear
resonant coherent elastic scattering in the forward direction. This allows to include the
effective thickness into the calculations. The formalism can be applied for the Mössbauer
spectroscopy as well as for NFS.

The hyperfine interactions of the type (i–iii) given on the previous page will be consi-
dered. The results will be demonstrated for the case (i) of pure magnetic interactions with
the six allowed energy transitions. The other two cases could be treated analogously, with
the exception of the energy levels degeneracy in the case (ii).

The scattering length N(θ, φ) of a given nuclear site with the magnetic field orientation
given by the angles θ and φ is described by formula (1.31). The general integral (3.1) takes
the explicit form

N =
∫ 2π

0

∫ π

0
N(θ, φ)D(θ, φ) sin θ dθdφ. (3.4)

Formula (3.4) can be simplified by expanding bothN(θ, φ) andD(θ, φ) in the real spherical
harmonics basis. Unlike the texture coefficients, which depend on a particular texture
function, the scattering length coefficients can be explicitly determined. The results of
the N(θ, φ) evaluation using the real spherical harmonics are given in appendix B. The
angular dependence is hidden in the nmg,me matrices of the scattering length6 as given by
formulas (1.32) and (1.33). The expansion leads to the coefficients nmg,me

l,m which are also
matrices. By substituting the expansions into (3.4) and using the orthogonality of real
spherical harmonics the integral reduces to

N =
2∑
l=0

l∑
m=−l

∑
mg,me

Lme
mg(E)nmg,me

l,m Dl,m. (3.5)

In this notation the summation runs over all allowed transitions between the ground and
the excited energy levels. As only six transitions are allowed by the selection rules the
two transitions could be explicitly excluded from the summation indexes. However, the
established notation will be kept for simplicity.

The generalized scattering length N depends only on the first nine texture coefficients.
Consequently, only the minimum texture (3.3) can be extracted from the nuclear resonant
scattering, regardless of the applied method, the polarization of the incident radiation or
the sample effective thickness. The individual experimental and sample conditions may,
however, influence how much information on the texture is accessible and how sensitive
the scattering/transmission is to the directional distribution of the magnetic field. This
could also lead to various evaluation methods which might be suitable for different cases.

6The matrices are indexed by the magnetic quantum numbers mg,e = −jg,e,−jg,e + 1, . . . , jg,e − 1, jg,e
as the Hamiltonian (1.17) is diagonal. Although a simplified form of the scattering matrix could be used
for calculations we kept the general form (a) to utilize properties of the general matrices that describe the
scattering length and (b) for the possible future extensions, where such description would be necessary.
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The following sections will treat separately individual cases, differing by the applied
experimental method (TMS or NFS) and by the thickness of the scattering system. The
results of this work will be demonstrated for unpolarized and linearly polarized radiation.

3.3 Thin Sample by TMS
Although the Mössbauer transmission through ideally thin samples in energy domain

has already been treated in the literature its following description using the scattering
matrix formalism allows to verify the validity of the obtained results and also their direct
comparison with the results derived in the later sections.

The transmitted radiation intensity Itr(E) can be calculated using the formula (1.43)
with the scattering matrix given by (1.35). The derived scattering length from (3.5) will
be used for the following calculations. The thin-sample approximation can be obtained by
expanding T in a Taylor series and restricting the intensity only to expressions which are
at most linear in ξ (see section 1.3.4). The normalized transmitted radiation intensity in
the first-order approximation with respect to ξ is then given by formula

I
(1)
tr (E) = Tr {ρ}+ iξTr

{
Nρ− ρN †

}
, (3.6)

where Tr {ρ} = 1.
After substituting the corresponding density matrices from (1.44) to (3.6) the radiation

intensities I(1)
tr,u(E) for the unpolarized incident radiation and I

(1)
tr,σ(E) for the linearly

polarized radiation along the ~εσ direction are given as

I
(1)
tr,σ(E) = 1− 2ξ Im {Nσσ(E)} , (3.7a)

I
(1)
tr,u(E) = 1− ξ Im {Nσσ(E) +Nππ(E)} . (3.7b)

The intensities depend linearly on the scattering length elements, showing that the multiple
scattering is not reflected in the thin sample approximation. Moreover, the off-diagonal
matrix elements are not present in the approximated formulas, so the polarization mixing
is negligible. This linearised problem can be described as a simple Mössbauer absorption.
The intensity (3.6) can be rewritten into a commonly used form which includes a sum of
individual absorption Mössbauer lines (Fig. 3.2)

I
(1)
tr (E) = 1−

∑
mg,me

I(1)
mg,me(E). (3.8)

The form of the Mössbauer lines for a given polarization is clear from the direct comparison
of (3.8) with (3.7a) and (3.7b). Finally, formula (3.5) can be used for substituting the
individual scattering length elements and obtaining the dependence of the Mössbauer
lines on the texture coefficients

I(1), σ
mg,me(E) = 2ξ Im

{
Lme
mg(E)

} ∑
l=0,2

l∑
m=−l

(
n
mg,me
l,m

)
σσ
Dl,m, (3.9a)

I(1),u
mg,me(E) = ξ Im

{
Lme
mg(E)

} ∑
l=0,2

l∑
m=−l

[(
n
mg,me
l,m

)
σσ

+
(
n
mg,me
l,m

)
ππ

]
Dl,m. (3.9b)

The formulas were simplified by using the fact that the diagonal elements of nmg,me
l,m are

real. The imaginary part of Lme
mg(E) is the conventional Lorentzian dependence of the
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absorption on the radiation energy [95]. The lines I(1), σ
mg,me(E), I(1),u

mg,me(E) fully describe the
Mössbauer spectra measured on thin samples with the unpolarized or linearly polarized
source, respectively.

0

1

I
tr

(E
)

E

0

1
−

I
tr

(E
)

E

I1

I2

I3 I4

I5

I6

Figure 3.2: Transmission Mössbauer spectrum (on the left) with the intensity attenuation given by
the individual Mössbauer absorption lines (on the right). The amplitudes of individual Mössbauer
lines Img,me can be reindexed by their order I−1/2,−3/2 = I1, I−1/2,−1/2 = I2, I−1/2,1/2 = I3, etc.

The sums in (3.9a) and (3.9b) run only over the l values of 0 and 2. The contribu-
tions corresponding to l = 1 are zero for the considered polarizations. As a result the
Mössbauer lines depend only on the trivial texture coefficient D0,0 and the five texture
coefficients D2,−2, D2,−1, D2,0, D2,+1, D2,+2. Information on D1,−1, D1,0, D1,+1 cannot be
extracted from Mössbauer spectra under such conditions.

As stated before, determination of the texture coefficients can be realized by evaluating
the amplitudes of the Mössbauer lines, given as the values of the transmitted radiation
intensities in resonances

I(1)
mg,me = I(1)

mg,me(∆Emg,me). (3.10)

Assuming a sufficient resolution of the individual lines (i.e. the lines do not overlap), the
resonance condition E = ∆Emg,me used in (3.10) leads to the following amplitudes

I(1), σ
mg,me = −4ξ

Γ
∑
l=0,2

l∑
m=−l

(
n
mg,me
l,m

)
σσ
Dl,m, (3.11a)

I(1), u
mg,me = −2ξ

Γ
∑
l=0,2

l∑
m=−l

[(
n
mg,me
l,m

)
σσ

+
(
n
mg,me
l,m

)
ππ

]
Dl,m. (3.11b)

The indexing of Mössbauer lines using the quantum numbers mg, me can be equivalently
rewritten by using their order in the energy domain from the lowest to the highest energy
instead. So the amplitudes of the lines can be re-indexed as I(1)

mg,me → Ik, k = 1, 2, . . . , 6.
In the conventional transmission arrangement the detection of background prevents

the direct comparison of the measured amplitudes of Mössbauer lines with (3.11a) and
(3.11b). The texture coefficients have to be taken not from the absolute values, but from
the ratios of the individual lines amplitudes. However, one can find that for the considered
polarization states the described transmission spectrum is symmetrical, i.e. I1 = I6, I2 = I5
and I3 = I4. In addition, the ratio I1/I3 is always equal to 3. One measured Mössbauer
spectrum thus provides only one independent ratio of the amplitudes, which is the ratio
of the first and the second line amplitude I1/I2.
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Denoting the measured value of the I1/I2 ratio as r, the problem can be essentially
understood as a simple linear equation I1 − rI2 = 0, where I1 and I2 are linear functions
of Dl,m according to (3.11a) and (3.11b), which also depend on the sample orientation.
To extract the five texture coefficients, five independent measurements for appropriate
orientations are required. In practice, the texture coefficients could be obtained either
from a simultaneous fitting of spectra or by fitting the amplitudes ratio as a function
r(Λ, Dl,m) of the sample orientation Λ, where Dl,m act as the fitting parameters [75,88].

3.4 Thick Sample by TMS
The transmission through thick samples follows the same general formulas as in the

thin-sample approximation. The expansion of the scattering matrix can be performed
again. However, for a scattering system of arbitrary effective thickness the problem cannot
be linearised, i.e. the exponential form of the matrix should be considered.

The Mössbauer lines of the energy sextet are again assumed to be well resolved. This
assumption is basically ensured by a sufficiently strong hyperfine magnetic field, which
is very often satisfied. The scattering length (3.5) in resonance with respect to a given
transition energy ∆Emg,me is then given by formula

N(∆Emg,me) = −i 2
Γ

2∑
l=0

l∑
m=−l

n
mg,me
l,m Dl,m. (3.12)

The sum over all energy transitions in (3.5) reduces to only one non-negligible contribution
for given mg,me because the Lorentzian functions corresponding to other transitions are
off-resonance and essentially zero at this energy.

The matrix exponential evaluation using (3.12) for the scattering length gives the
scattering matrix in a resonance

T (∆Emg,me) = exp

2ξ
Γ

2∑
l=0

l∑
m=−l

n
mg,me
l,m Dl,m

 (3.13)

and the resonant value of a Mössbauer spectrum for a given transition is

Itr(∆Emg,me) = Tr
{
T (∆Emg,me) ρ T †(∆Emg,me)

}
. (3.14)

The Hermitian conjugate of the scattering matrix can be written as

T †(∆Emg,me) = exp

4ξ
Γ

2∑
l=0

l∑
m=−l

(
n
mg,me
l,m

)†
Dl,m

. (3.15)

It can be checked that the matrices nmg,me
l,m are Hermitian (see appendix B) and there-

fore, using the basic properties of the matrix trace, the value of Itr(∆Emg,me) can be
simplified into the following final form

Itr(∆Emg,me) = Tr

ρ exp

4ξ
Γ

2∑
l=0

l∑
m=−l

n
mg,me
l,m Dl,m

 . (3.16)

The same notation as in the thin sample approximation may be used to obtain the ampli-
tudes of individual Mössbauer lines

Img,me = 1− Itr(∆Emg,me). (3.17)
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3.4.1 Non-linear Texture Dependence

The thin-sample approximation of the Mössbauer lines amplitudes I(1)
mg,me given by

(3.10) may be also obtained as the linear term of (3.17) after the exponential is expanded
in the Taylor series. It is equal to

I(1)
mg,me = −4ξ

Γ

2∑
l=0

l∑
m=−l

Tr
{
ρn

mg,me
l,m

}
Dl,m. (3.18)

It could be checked that the substitution of the corresponding density matrices into (3.18)
gives exactly the formulas (3.11a) and (3.11b). The zero contribution of the D1,m terms
can be explained by the fact that the nmg,me

1,m matrices are anti-diagonal (i.e. their diagonal
elements equal zero). Multiplication by the ρσ and ρu density matrices does not change
the diagonal elements and therefore the matrix trace in (3.18) gives zero for l = 1.

The effect of thickness can be illustrated on the first non-linear approximation I(2)
mg,me

of the amplitudes, which is the second-order approximation of (3.17)

I(2)
mg,me = I(1)

mg,me −
1
2

(4ξ
Γ

)2 2∑
l=0

l∑
m=−l

2∑
l′=0

l′∑
m′=−l′

Tr
{
ρn

mg,me
l,m n

mg,me
l′,m′

}
Dl,mDl′,m′ . (3.19)

By analysing the second term in (3.19) the main differences from the linear case can be
demonstrated. The first significant difference is that the terms containing Dl,m with l = 1
are generally not zero. Namely the terms with D1,mD1,m′ depend on multiplication of
the anti-diagonal matrices nmg,me

1,m n
mg,me
1,m′ . The multiplication of two anti-diagonal matri-

ces gives a diagonal matrix and the trace in (3.19) gives generally a non-zero value for
these terms. As a result, the amplitudes and their ratios depend on all the nine texture
coefficients.

The spectrum is still symmetric for the considered polarizations, so the number of
independent amplitudes ratios is still limited. The information on the texture coefficients
can be extracted from two independent ratios, e.g. I1/I2 and I1/I3. In contrast to the
linear case, the I1/I3 ratio is no longer a constant. As a consequence we may obtain two
independent equations from one measured spectrum. However, the amplitudes ratios now
also depend on the effective thickness of the scattering system. Nevertheless, the effective
thickness could either be taken as another variable or it could be determined in advance.
Therefore, if proper orientations of the sample are selected, then the five measurements
are again needed to extract the minimum texture.

With basically the same number of measurements as required for the thin-sample
approximation, more information on the texture is available from the Mössbauer mea-
surements when the thickness effects start to influence the spectra. As a drawback, the
resulted dependencies on the texture coefficients are now non-linear. Selecting a suitable
evaluation approach for extracting the texture coefficients for a general thickness would
be an important point.

3.4.2 Role of Effective Thickness

A simple simulation has been performed in order to describe the influence of the
increasing effective thickness on the Mössbauer lines amplitudes. The validity of the thin-
sample approximation, which is considered for deff � 1, is also checked for a selected
texture example.
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For the presented demonstration an example texture function Dex(θ, φ) defined by the
formula

Dex(θ, φ) = 1 + sin θ + 3 cos2 θ + sin θ cosφ+ sin2 θ cos 2φ+ sin θ cos θ cosφ
π(8 + π) (3.20)

has been used. The texture function has a finite integral over the magnetic field directions
and is normalised to unity. It could also be checked that Dex(θ, φ) is non-negative for all
the argument values θ ∈ 〈0, π〉, φ ∈ 〈0, 2π〉 and therefore satisfies the basic properties of
a texture function. The list of its corresponding texture coefficients Dex

l,m up to l = 2 is
given in Table 3.1. The visualisation of the function is shown in Fig. 3.3 and Fig. 3.4.
Dex(θ, φ) has also non-zero coefficients Dl,0 for the even values of l which are higher than
l = 2 (D4,0, D6,0 etc.). However, these coefficients do not influence Mössbauer spectra and
cannot be reconstructed from TMS measurements.

The simulation was realized by the following approach. First, the coefficients Dex
l,m from

Table 3.1 were substituted into (3.16) and the lines amplitudes were calculated from (3.17)
for the case of the unpolarized radiation. Then, the corresponding ratios I1/I2 were cal-
culated for selected orientations of the scattering system. This was done for the effective
thicknesses deff of 0.01, 0.1, 0.5 and 1. In this way a simulation of the real TMS measu-
rements on the samples with varying effective thickness was performed. In the next step
the texture coefficients were reconstructed by solving the corresponding linear equations
obtained from the thin-sample approximation as described in section 3.3. The thin-sample
approximation was used for obtaining the texture coefficients independently of the used
effective thickness.

l m Dex
l,m Dex

l,m round.

0 0 1√
4π 0.282

1 −1 0 0.000

1 0 0 0.000

1 1 − 2√
3π(8+π) −0.058

2 −2 0 0.000

2 −1 0 0.000

2 0 64−5π
16
√

5π(8+π) 0.068

2 1 − 2√
15π(8+π) −0.026

2 2 4√
15π(8+π) 0.052

Table 3.1: Texture coefficients of Dex(θ, φ) in the real spherical harmonics basis up to l = 2.
The third column contains the precise values of the coefficients. The fourth column shows their
corresponding numeric values rounded to three decimal places.
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Figure 3.3: Plot of the texture function Dex(θ, φ) from two different views.

Figure 3.4: Spatial visualization of Dex(θ, φ) in the Cartesian coordinate system.
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The obtained results of theDl,m reconstruction are presented in Tab. 3.2. For the lowest
effective thickness of 0.01 the reconstructed values are in agreement with the “real” ones.
The difference is still relatively small for deff = 0.1. As the effective thickness increases
the amplitudes of the Mössbauer lines start to be highly sensitive to the D1,m coefficients.
However, this is not reflected in the thin-sample approximation, leading to the incorrect
determination of the D2,m coefficients. Significant deviations can already be seen for the
effective thickness values of 0.5 and 1.

texture coefficient simulated value deff = 0.01 deff = 0.1 deff = 0.5 deff = 1
D1,−1 0.000 - - - -
D1,0 0.000 - - - -
D1,+1 −0.058 - - - -
D2,−2 0.000 0.000 0.003 0.015 0.029
D2,−1 0.000 0.000 0.003 0.015 0.030
D2,0 0.068 0.068 0.066 0.057 0.047
D2,+1 −0.026 −0.026 −0.026 −0.025 −0.024
D2,+2 0.052 0.052 0.049 0.035 0.019

Table 3.2: Determination of D2,m texture coefficients from the simulated amplitudes of Mössbauer
lines based on the thin-sample approximation. Each column corresponds to coefficients extracted
for a different thickness of the simulated scattering system. The deviation of the results from the
simulated values increase with the increasing effective thickness.

3.5 Texture in NFS
As the time domain measurements are typically carried out using the linearly polarized

incident radiation the texture description in NFS for this particular case will be provided.
The time spectrum is given by formula (1.47), where the scattered radiation field ~Asc(t)
can be obtained by a Fourier transform of the energy domain field from (1.39)

~Asc(t) = F
[
~Asc(E)

]
= F [T − I] ~Ain. (3.21)

The synchrotron radiation is linearly polarized in the plane of the accelerator storage ring
and so the incident radiation field may be written as ~Ain = Ain~εσ. The normalised form
will be considered, where Iin = |Ain|2 = 1. The scattered radiation field and the radiation
intensity in the time domain can be thus written as

~Asc(t) =
(
F [Tσσ − 1]
F [Tπσ]

)
Ain, (3.22)

Isc(t) = ~A∗sc(t) · ~Asc(t) =
∣∣F [Tσσ − 1]

∣∣2 +
∣∣F [Tπσ]

∣∣2. (3.23)
For the sake of simplicity we will restrict ourselves only to the first-order approximation

of Isc(t) in ξ. This is analogous to the previous approximation of the energy dependent
radiation intensity using the Taylor expansion (see section 1.3.4). By applying the linearity
of Fourier transform the approximated intensity follows the form

I(1)
sc (t) = ξ2

(∣∣F [Nσσ]
∣∣2 +

∣∣F [Nπσ]
∣∣2) . (3.24)

In contrast to the Mössbauer spectroscopy, where the first-order approximation was linear
in ξ, a quadratic dependence is obtained in NFS. In addition, the intensity depends on
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the off-diagonal scattering length element Nπσ even for a thin sample. The polarization
mixing in NFS is reflected in measured time spectra for arbitrary effective thickness.

The explicit dependence of time spectra on the texture coefficients can be obtained by
substituting formula (3.5) into (3.24)

I(1)
sc (t) = ξ2 ∑

l,m
l′,m′

∑
′mg,me
m′g,m

′
e

F
[
Lme
mg(E)

]∗
F
[
L
m′e
m′g

(E)
]
N mg,me,m′g,m

′
e

l,m,l′,m′ Dl,mDl′,m′ , (3.25)

where

N mg,me,m′g,m
′
e

l,m,l′,m′ =
[(
n
mg,me
l,m

)∗
σσ

(
n
m′g,m

′
e

l′,m′

)
σσ

+
(
n
mg,me
l,m

)∗
πσ

(
n
m′g,m

′
e

l′,m′

)
πσ

]
. (3.26)

The Fourier transform of the Lorentzian functions gives non-zero values for t > 0, which
is in agreement with the physical reality (scattered photons are detected after the incident
radiation pulse that triggers the time measurement). The time dependence consists of a
simple exponential decay with the lifetime of ~/Γ and a sum of complex harmonic functions
oscillating with the frequencies proportional to the energy differences between individual
energy transitions

I(1)
sc (t) ∝ ξ2 exp

(
−Γt

~

) ∑
l,m
l′,m′

∑
mg,me
m′g,m

′
e

exp

i
(
∆Emg,me −∆Em′g,m′e

)
t

~


× N mg,me,m′g,m

′
e

l,m,l′,m′ Dl,mDl′,m′ .

(3.27)

Properties of nmg,me
l,m matrices can be used to expand the harmonic time dependence in

simple trigonometric functions

I(1)
sc (t) ∝ ξ2 exp

(
−Γt

~

)
(I1 + 2I2 − 2I3) , (3.28)

where

I1 =
∑
l,m
l′,m′

∑
mg,me

N mg,me,mg,me
l,m,l′,m′ Dl,mDl′,m′ , (3.29a)

I2 =
∑
l,m
l′,m′

∑
mg,me
m′g,m

′
e

(mg,me)6=(m′g,m′e)

cos


(
∆Emg,me −∆Em′g,m′e

)
t

~

Re
{
N mg,me,m′g,m

′
e

l,m,l′,m′

}
Dl,mDl′,m′ , (3.29b)

I3 =
∑
l,m
l′,m′

∑
mg,me
m′g,m

′
e

(mg,me) 6=(m′g,m′e)

sin


(
∆Emg,me −∆Em′g,m′e

)
t

~

Im
{
N mg,me,m′g,m

′
e

l,m,l′,m′

}
Dl,mDl′,m′ . (3.29c)

The summations in I2 and I3 run only over different pairs of energy transitions.
Although an ideally thin sample was taken into considerations, a non-linear dependence

on the texture coefficients was obtained. The situation in NFS is more similar to that of
TMS applied to thick samples. The time spectrum contains information on all the nine
Dl,m coefficients. Basically, when applied to the same ideally thin scattering system, the
NFS method is “more sensitive” to texture than TMS. The disadvantages are mainly the
non-linearity and the necessity to extract the information in the time domain.
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3.6 Concluding Remarks
Combination of the general scattering formalism with the texture description, using its

coefficients in real spherical harmonics basis, allows to include the preferentially oriented
electric or magnetic fields into a theoretical model of a scattering system. The results, as
given in the previous sections, may be implemented into a software package for evaluating
experimental data from energy or time domain measurements. Further efforts in selecting
a suitable approach for the extraction of the texture coefficients is needed, mainly for
TMS applied to thick samples and for the time-domain NFS. Major difficulties could
be connected to the non-linear dependence of the Mössbauer lines and the time-domain
patterns on the texture coefficients. One of the options can be the simultaneous fitting of
the measured experimental data sets, where more sophisticated optimisation procedures
(see section 1.3.5) might be considered.

The evaluation of NFS time spectra is complicated as the information contained in the
energy absorption lines is delocalised in time. This can be seen in formula (3.28) and its
expansion in the harmonic terms. For a thick sample the time dependence would become
even more complicated due to a modulation by Bessel function [64,65].

Except the simultaneous fitting of time spectra the harmonic dependence encourages a
Fourier analysis for the texture extraction. Recently, the application of Fourier transform
to time spectra has been successfully applied in NRS studies [92, 96]. Similar procedures
to those developed in TMS could be used for the Dl,m extraction, where the ratios of the
lines obtained as a Fourier picture of the time signal could be evaluated.
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4 ERNST Software Package
Currently, there are a number of different software packages available for evaluating

the transmission Mössbauer spectra [63, 95, 97], NFS time spectra [98] or both [25, 99].
The development of a new software ERNST (Evaluation of Resonant Nuclear Scattering
in energy and Time domain) was motivated by newly emerging demands on the data
analysis, including those described in chapters 2 and 3. The basic information on the
ERNST package and its current development status is reported in this chapter. Some
specific software features and the future development are also discussed.

4.1 General Description
The software is developed in C programming language using Qt Creator development

environment [100]. The C standard library and GSL (GNU Scientific Library) are used for
the computation [101]. The code was written and tested on Linux operating system, but it
can also be extended to Windows. ERNST works as a command line executable program.
It reads the input data from an input ASCII file and, based on the chosen settings, creates
an output file with the calculated data (Fig. 4.1).

Figure 4.1: Screen of the ERNST software with a command line, an input ASCII file for setting
parameters and a plot of results using the gnuplot software.

The magnetic dipole transition of 57Fe nuclide is currently implemented in the soft-
ware. The calculations of time and energy domain spectra are based on the theoretical
formalism which was described in chapter 1. For each defined nuclear site the interaction
Hamiltonian (1.17) is calculated and consequently diagonalised to obtain the correspon-
ding eigenvalues and eigenvectors. The vector basis of the angular momentum operators
|jg,mg〉 for the ground and |je,me〉 for the excited state of 57Fe is used. The calculation
is based on a full interaction Hamiltonian with combined electric and magnetic hyperfine
interactions. The scattering lengths for individual nuclear sites are calculated according
to (1.31). Depending on the chosen settings the scattering lengths can be computed for
unidirectional or randomly oriented cases, with or without distributions of the hyperfine
parameters. The program accounts for multilayered scattering systems. For the chosen
number of layers the corresponding scattering matrices are calculated using the matrix
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exponential (1.35). The Fourier transform is utilized for obtaining the data in the time
domain. Finally, the radiation intensities Itr(E) for TMS and Isc(t) for TMS are calculated
for given properties of the incident radiation. The calculated and experimental data can
be compared and visualised using the gnuplot software package [102].

The input parameters used for the calculations are loaded from par.txt ASCII file.
The parameters can be divided into four main groups: sample parameters, hyperfine para-
meters, radiation parameters and data parameters. To each parameter a specific number
sequence [W.X.Y.Z] is assigned, where W number specifies the role of the parameter in
the computation, X and Y label the system layer and nuclear site, respectivelly and Z is a
number or a set of numbers that further specify the parameter. The corresponding numeric
value, which is typed after the “:” symbol in the file, is then loaded by the program.

The sample parameters define the effective thickness of a sample, which depends on
its real thickness, density of the resonant nuclei and the Lamb-Mössbauer factor. For a
sample consisting of multilayers the parameters define the total number layers and their
corresponding effective thicknesses. The number of nuclear sites in each layer is also defined
within this group. An example of the sample parameters as given in par.txt input file is
shown in Fig. 4.2.

=====================
* SAMPLE PARAMETERS *
=====================

.
[1] number of homogeneous sublayers : 2

.
[2.0] number of nuclear sites : 2
[3.0] sample thickness (µm) : 1.0
[4.0] 57Fe density (g/cm3) : 7.87
[5.0] Lamb-Mössbauer factor : 0.77

.
[2.1] number of nuclear sites : 1
[3.1] sample thickness (µm) : 0.5
[4.1] 57Fe density (g/cm3) : 7.87
[5.1] Lamb-Mössbauer factor : 0.77

.
Figure 4.2: Examples of the sample parameters from the par.txt file. The listed parameters
define a two-layered model with two nuclear sites in the first and one nuclear site in the second
layer.

The hyperfine parameters are defined for each nuclear site in each layer of the sample.
In Fig. 4.3 a list of hyperfine parameters corresponding to the X-th layer and Y-th nuclear
site in this layer is shown. Basic parameters are the relative weight of the nuclear site, the
isomer shift, the quadrupole splitting and the hyperfine magnetic field. For the last three
parameters a distribution of the values can be set by a group of additional parameters
defining the type and properties of the distribution. If required, the applied distribution
can be saved in a separate ASCII file which could be used for its visualization. The
distributions settings will be described in a separate subsection. To define the orientation
of the hyperfine magnetic field and the EFG tensor five angles are used (three Euler angles
for the EFG and two angles for the hyperfine magnetic field). The magnetic field orientation
is described with respect to the EFG coordination system (see Fig. 1.2). A deviation of the
EFG from the axially symmetrical case can be described by the asymmetry parameter.
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The last parameter is used to select if a unidirectional case defined by the five angles will
be calculated or if an integrated scattering length with randomly oriented fields will be
used.

========================
* HYPERFINE PARAMETERS *
========================

===========
* LAYER X *
===========

.
[6.X.Y.0] relative weight : 0.7

.
[6.X.Y.1] isomer shift (mm/s) : 0.0

––––––––––––––––––––––––––––––––––––––––––––––
[6.X.Y.1.1] distribution ("0" no, "1" yes) : 0
[6.X.Y.1.2] distribution width : 0
[6.X.Y.1.3] range coefficient : 0
[6.X.Y.1.4] number of distribution points : 0
––––––––––––––––––––––––––––––––––––––––––––––

.
[6.X.Y.2] quadrupole splitting (mm/s) : -0.2

––––––––––––––––––––––––––––––––––––––––––––––
[6.X.Y.2.1] distribution ("0" no, "1" yes) : 0
[6.X.Y.2.2] distribution width : 0
[6.X.Y.2.3] range coefficient : 0
[6.X.Y.2.4] number of distribution points : 0
––––––––––––––––––––––––––––––––––––––––––––––

[6.X.Y.3] asymmetry parameter : 0.0
[6.X.Y.4] Euler angle alpha (◦) : 0.0
[6.X.Y.5] Euler angle beta (◦) : 0.0
[6.X.Y.6] Euler angle gamma (◦) : 0.0

.
[6.X.Y.7] hyperfine magnetic field (T) : 30

––––––––––––––––––––––––––––––––––––––––––––––
[6.X.Y.7.1] distribution ("0" no, "1" yes) : 1
[6.X.Y.7.2] distribution width : 1.5
[6.X.Y.7.3] range coefficient : 3
[6.X.Y.7.4] number of distribution points : 10
––––––––––––––––––––––––––––––––––––––––––––––

[6.X.Y.8] Bhf angle theta (◦) : 0
[6.X.Y.9] Bhf angle phi (◦) : 0

.
[6.X.Y.10] distribution type : 0
[6.X.Y.11] print distribution ("0" no, "1" yes) : 1

.
[6.X.Y.12] "polycrystalline" ("0" no, "1" yes) : 1

.

Figure 4.3: Examples of the hyperfine parameters corresponding to the Y -th nuclear site in the
X-th layer of the sample. In the example a nuclear site with electric quadrupole and magnetic
hyperfine interactions is defined. For the latter a distribution of the hyperfine magnetic field is set.
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The radiation parameters are used to set the properties of the incident radiation and
of the radiation detection. The radiation coordinate system can be rotated with respect
to the laboratory reference frame. This is defined by the radiation Euler angles. The
polarization type of the incident radiation may be set to the linear, right circular or left
circular polarization. In the former, the plane of the linear polarization can also be rotated
with respect to the horizontal polarization plane by an additional angle. Concerning the
radiation detection, linear polarization filtering could be set, where the radiation passing
through the sample could be detected either with the ~εσ-filter or the ~επ-filter. Finally, for
NFS experiments the time delay between individual synchrotron radiation pulses needs to
be set (see section 1.3.2). The data parameters influence the processing and comparison of
the calculated and the experimental data. The minimum and maximum time values define
the time range for the theoretical and experimental data comparison. An example of the
radiation and the data parameters is presented in Fig. 4.4.

========================
* RADIATION PARAMETERS *
========================

.
[7] radiation Euler angle Phi (◦) : 0
[8] radiation Euler angle Theta (◦) : 0
[9] radiation Euler angle Psi (◦) : 0

.
[10] polarization type ("-1" rcirc, "0" lin, "1" lcirc) : 0
[11] linear polarization angle (◦) : 0
[12] polarized detection ("0" off, "1" sigma, "2" pi) : 0

.
[13] time delay of SR pulses (ns) : 173

.
===================
* DATA PARAMETERS *
===================

.
[14] time_min (ns) : 10
[15] time_max (ns) : 170

.
Figure 4.4: Examples of the radiation parameters and the data parameters.

4.2 Distributions of Hyperfine Parameters
ERNST enables a relatively simple setting of the hyperfine parameters distribution (see

section 1.2.3) with a variety of different options. For each distribution the corresponding
nuclear site is divided into individual “sub-sites” with their “sub-weights” given by a
chosen distribution type. A separate interaction Hamiltonian and a scattering length are
then affiliated to each sub-site.

There are currently three different distribution types: normal (Gaussian) distribution
f0, Cauchy (Lorentz) distribution f1 and uniform (rectangular) distribution f2. These
distribution types are described by the following formulas

f0(x) = 1√
2πx2

s
exp

[
−(x− xm)2

2x2
s

]
, (4.1)
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f1(x) = 1
π

xs

(x− xm)2 + x2
s
, (4.2)

f2(x) = 1
(xm +Rxxs)− (xm −Rxxs)

= 1
2Rxxs

, (4.3)

where x stands for a given hyperfine parameter (δ, ∆ or Bhf). xm represents a mean
value of x and is defined by the value of [6.X.Y.1], [6.X.Y.2] or [6.X.Y.7] depending
on which hyperfine parameter distribution was chosen. The parameter xs specifies the
distribution width and its interpretation depends on the selected distribution type. For f0 it
is the distribution standard deviation, for f1 it gives the half-width at half-maximum value
(HWHM) and for f2 the value of 2Rxxs defines the width of the rectangle (interval with
the non-zero value). The three distribution types are shown in Fig. 4.5. Other applicable
types could be easily included in the software if it was desirable.
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Figure 4.5: Examples of Gaussian (f0), Lorentz (f1) and rectangular (f2) distribution types.
The solid lines show the distributions, the vertical dashed lines show the positions of xm and the
horizontal lines in the f0 and f1 plots have the widths of xs. The rectangle in the f2 plot has the
half-width of Rxxs.

The software takes only a finite number of x values to calculate the distribution. The
total number of distribution points xN together with the range parameter Rx give us the
specific values of xj , j = 1, 2, . . . , xN as

xj = xm −Rxxs + (j − 1) 2Rxxs
xN − 1 . (4.4)

The corresponding distribution values f0,1,2(xj) are normalized, so the sum
∑
j f0,1,2(xj)

equals to the weight of a given nuclear site. The xj takes values in the range from xm−Rxxs
to xm +Rxxs with the step of 2Rxxs/(xN − 1) (see Fig. 4.6). For the computation to run
successfully xN must be greater than 1. The upper limit for xN is not set but a potential
user should keep in mind that more distribution points mean longer computing time, so
usually a reasonable estimation of needed distribution points is required.
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Figure 4.6: A Gaussian distribution with xN = 11 points. The distribution is set so x6 equals to
the mean value xm and x8 is xm +xs. The range Rx = 2.5 and so the xj values go from xm−2.5xs
to xm + 2.5xs with the step of xs/2.

ERNST also enables the use of multivariate distributions, i.e. simultaneous distribu-
tions of (δ, ∆), (δ, B), (∆, B) or (δ, ∆, B). The two-dimensional or three-dimensional
distributions f (2)

0,1,2, f
(3)
0,1,2 are used, where (under the assumption of independent variables)

these are given simply as multiplication of the corresponding one-dimensional distributions
f1,2,3. For example, the three-dimensional normal distribution of the hyperfine parameters
f

(3)
0 (δ,∆, B) is given as

f
(3)
0 (δ,∆, B) = f0(δ) f0(∆) f0(B) =

exp
{
−1

2

[
(δ−δm)2

δ2
s

+ (∆−∆m)2

∆2
s

+ (B−Bm)2

B2
s

]}
(2π)3/2δs∆sBs

. (4.5)

4.3 Incoherent Time Spectra Summation
In NFS a measured time spectrum is given by a contribution of many scattered synchro-

tron radiation pulses. Assuming the time delay between two following pulses comparable
to the lifetime of the 57Fe excited state, the number of pulses detected per one minute is
∼108. So far, the time spectra were described for a given steady state of a sample. Then
each radiation pulse is scattered under the same sample conditions and contributes equally
to the given time spectrum.

For studying a physical process (phase or structural transformation, magnetic transi-
tion, etc.) during which the time spectra are continuously acquired, the process must be
slow enough with respect to the acquisition time of one time spectrum. Although the pho-
ton flux and the brilliance of the synchrotron radiation have been significantly increasing
in the last decades, there could be cases where such condition is not satisfied. An example
case is a dynamical experiment conducted on magnetic sample in a vicinity of its Curie
temperature.

To evaluate time spectra acquired during fast changes of the measured samples, the
following procedure has been added to ERNST software. Consider a fast process7 with

7The process should still be slow enough with respect to the lifetime of the nuclei excited state, i.e.
during the scattering of one synchrotron radiation pulse the state of the scattering system should be
considered as static.
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respect to the acquisition time of one time spectrum. Under such assumption the time
spectrum should be considered as a sum of an appropriate number of sub-spectra, each
describing a different state of the sample during its evolution (Fig. 4.7). If the i-th time
sub-spectrum would be described by a normalized intensity Ii(t), then the time spectrum
Î(t) would be given as

Î(t) =
∑
i

viIi(t), (4.6)

where vi are weight coefficients of Ii(t),
∑
i vi = 1. Each Ii(t) and vi reflect a state of the

system described by a different set of hyperfine parameters. In contrast to the hyperfine
interactions distributions, where the scattering lengths are being weighted (see section
1.2.3), here the fast process results in the distribution of the intensities. In such case the
time sub-spectra are added “incoherently”, i.e. the radiation intensities are summed.
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Figure 4.7: A schematic demonstration of a time spectrum acquisition, where the red lines show
time sub-spectra collected during the acquisition time and the blue lines are the resulting time
spectra. In (a) the spectrum is being collected in a static state. The (b) case demonstrates a process
where the time sub-spectra are changing, which results in an incoherent sub-spectra summation.
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To make the software settings as simple as possible, the incoherent time spectra Î(t) are
set by the same parameters as the conventional distributions of the hyperfine parameters.
Therefore vj can be generated by the same distribution types f0,1,2, f (2)

0,1,2, f
(3)
0,1,2. From

the user point of view, the only difference is in the interpretation of the distributions.
The conventional distributions describe a system consisting of multiple nuclear sites, each
with slightly different hyperfine parameters, but all of them present simultaneously in the
sample. The distributions defined in this section describe a time evolution of hyperfine
parameters of a given nuclear site during the time spectrum acquisition.

4.4 Development
The presented software package is under a continuous development as there are many

topics in the nuclear resonant scattering data evaluation which deserve to be addressed.
Here, we list some of the current goals to be solved in the near future for the software
package to be a more versatile tool for the evaluation of the time and energy domain
spectra.

Although ERNST was originally developed for the time domain NFS measurements, it
may be also used for Mössbauer spectra analysis in the energy domain. To provide a
proper comparison of the calculated spectra to the measured ones a convolution of the
transmitted radiation intensity with the incident radiation source line (see section 1.3.1)
must be performed. Depending on the shape of the source line, different techniques could
be utilized. For a conventional transmission Mössbauer spectroscopy a single Lorentzian
source line

Ls(E) ∝ Γs

(E −∆Es)2 + (Γs/2)2 (4.7)

is usually used. Γs is a linewidth (full-width at half-maximum FWHM) of the source line
and ∆Es is the source transition energy. Mössbauer spectroscopy can be also realized
with the synchrotron Mössbauer source (SMS), where the spectrum is convoluted with
L2

s (E) [95]. In the resonant Mössbauer spectroscopy Ls(E)Ld(E) is used in the convolu-
tion [103], where Ld(E) is the resonant detector absorption line, which could be defined
analogously to the formula (4.7).

For an efficient evaluation of the experimental data by the developed software package
an appropriate fitting procedure will be implemented. Several different approaches could
be considered. Among them, the widely used procedure based on the least squares fitting
and the minimization of the χ2 could be a good candidate. However, an additional imple-
mentation of more advanced procedures could be desirable to help solving more complex
problems with a large number of parameters. Several possibilities can be considered inclu-
ding those outlined in section 1.3.5. Furthermore, regarding the texture measurements or
combined energy and time domain measurements, a simultaneous evaluation of several
data sets might also be profitable.

Finally, the implementation of the texture into the software can be realized using the
texture description from chapter 3 and appendix B. Mössbauer spectra and NFS time
spectra could be calculated for an arbitrary combination of the texture coefficients. For
reconstructing the coefficients from a set of nuclear resonant measurements an appropriate
evaluation method or a set of methods need to be chosen, as discussed previously.
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Conclusions
This thesis presented a theoretical description of the coherent elastic nuclear resonant

scattering in the forward direction applied to inhomogeneous scattering systems. The
results showed that the spatial inhomogeneities along the direction of the incoming photons
can be measured by nuclear resonant methods, ensuring several conditions on the studied
system and the used radiation source. A method for revealing inhomogeneously distributed
hyperfine interactions from two sets of measurements was introduced. It is based on the
violation of rotational invariance (VRI), experimentally observed as a difference in the
detected radiation intensities caused by a rotation of the sample by 180 ◦ around one of
the radiation polarization axes.

There is a significant connection between VRI and directional distributions of hyperfine
interactions within a studied system. The intensity differences can be observed only if the
system exhibits a texture (either as an inner property or externally induced). This is
related to the polarization effects which accompany the VRI. The observation of VRI also
requires a sufficiently high effective thickness of the sample. The non-invariance under the
rotation arises from the multiple scattering of photons which exhibits a non-commutative
nature.

A general description of the electric or magnetic texture was described in this work. The
transmission Mössbauer spectra and NFS time spectra can be calculated for an arbitrary
texture function, parametrized using the texture coefficients in the spherical harmonics
basis. Regardless of the used method or the sample approximation the nuclear resonant
scattering utilizing the 57Fe magnetic dipole transition is affected only by the texture
coefficients Dl,m with l ≤ 2. The amount of available information on the texture and
the applicable evaluation procedures depend on the used method, the incident radiation
polarization and the sample thickness.

The ERNST software package has been developed for treating both energy domain
TMS and time domain NFS experiments. The theoretical data can be computed and
compared to the measured spectra. More advanced procedures are gradually implemented
into the software in order to react to increasing demands on the NRS evaluation.

In conclusion, the TMS and NFS experimental techniques can provide detailed infor-
mation on the local properties of the resonant nuclei surroundings. They can be used for
investigating highly complicated materials with an inhomogeneous spatial distribution of
nuclear sites. The utilization of these methods constantly advances as both the experi-
mental realization and the data analysis procedures develop. Consequently, the amount
of information available from experiments, which become more and more sophisticated in
time, increases.
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List of Symbols and Abbreviations
~A radiation wave field
~b ~b = ~k0 × ~ε
~B magnetic field
c speed of light
C C = cos [K (F+1 − F−1)]
C(jg1je;mgM) Clebsch-Gordan coefficients
d thickness
deff effective thickness
D(θ, φ) texture function
Dl,m texture coefficients
D̂ rotation operator
D(j)
m′m Wigner matrix elements

E, E energy
∆E transition energy
fLM Lamb-Mössbauer factor
f0,1,2 distribution functions
FM FM factors
F Fourier transform
g nuclear g-factor
G
ng,ne
M G

ng,ne
M

~ reduced Planck’s constant
H,H Hamiltonian
I intensity
I1, I2, I3 intensity contributions
j nuclear spin quantum number
Ĵ magnitude of total nuclear angular momentum
Ĵz z-component of total nuclear angular momentum
~k,~k0 wave vector and unit wave vector
K K = (3ξ)/(16π)
L number of data points
L(E) Lorentzian function
m nuclear magnetic quantum number
~mA, ~mB magnetic field unit vectors
M multipole index
n index of Hamiltonian eigenstates
nng,ne nng,ne matrices
N scattering length
Nn number of neutrons
N scattering length contribution
p hyperfine parameter or a set of hyperfine parameters
q0 elementary electric charge
qn total electric charge of a nucleus
Q nuclear electric quadrupole moment value
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Q̂xx, Q̂yy, Q̂zz nuclear electric quadrupole moment diagonal elements
~r position vector
Rx range-specifying parameter〈
r2

n
〉

root-mean-square radius of a nucleus
S S = sin [K (F+1 − F−1)]
t time
T scattering matrix
~vxx, ~vyy, ~vzz unit vectors of the electric field gradient main axes
v velocity
Vij electric field gradient tensor elements
vi, wi weight factors
x variable hyperfine parameter〈
x2〉 atomic mean square vibrational amplitude
~YM (~k) vector spherical harmonics
Yl,m(θ, φ) real spherical harmonics
W,X,Y,Z integers of a number sequence
~z0 quantization axis unit vector
Zn number of protons
α, β, γ rotation Euler angles
γG gyromagnetic ratio
Γ natural linewidth
δm,n Kronecker delta
∆ quadrupole splitting
~ε polarization vector
ε0 vacuum permittivity
η asymmetry parameter
θ magnetic field polar angle
λ wavelength
µ̂ magnitude of nuclear magnetic dipole moment
µN nuclear magneton
µ̂z z-component of nuclear magnetic dipole moment
µ, ν, σ, π polarization indexes
ξ exponent constant
ρ density matrix
% number density of resonant nuclei
σ0 nuclear resonant effective cross-section
σl standard deviation of the l-th experimental data point
τ lifetime
φ magnetic field azimuth angle
ϕ(~r) electric field potential
ϕm,n, ψm,n eigenvector components
|ψ〉 quantum state ket
|ψ(~r)|2 electronic probability density
χ2 χ2 parameter
Φ,Θ,Ψ radiation Euler angles
Ω,Λ orientation dependence
C(jg1je;mgM)
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CEMS conversion electron Mössbauer spectroscopy
CXMS conversion X-ray Mössbauer spectroscopy
EFG electric field gradient
ESRF European Synchrotron Radiation Facility
ERNST Evaluation of Resonant Nuclear Scattering in energy and Time domain
FWHM full width at half maximum
GSL GNU Scientific Library
HWHM half width at half maximum
M1 magnetic dipole transition
NFS nuclear forward scattering
NRIXS nuclear resonant inelastic X-ray scattering
NRS nuclear resonant scattering
SMS synchrotron Mössbauer source
TMS transmission Mössbauer spectroscopy
VRI violation of rotational invariance
NANOPERM
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Appendix A: Thickness Effect on VRI for
Two Layers

Consider a scattering system consisting of two homogeneous layers with arbitrary (but
significantly high) effective thickness deff,A for layer A and deff,B for layer B. The scattering
matrices of the layers can be written as

TA = eiξANA = 1 + iξANA −
ξ2

AN
2
A

2 − i ξ
3
AN

3
A

6 + . . . , (A.1)

TB = eiξBNB = 1 + iξBNB −
ξ2

BN
2
B

2 − i ξ
3
BN

3
B

6 + . . . , (A.2)

where
ξA = −πΓdeff,A

2 , ξB = −πΓdeff,B
2 (A.3)

and the scattering lengths NA, NB are given by formula (1.31). The total scattering matrix
of the system (see Fig. 2.6a for comparison) is given as

T = TBTA = 1 + iξANA + iξBNB −
ξ2

AN
2
A

2 − ξAξBNBNA −
ξ2

BN
2
B

2 + . . . , (A.4)

where the expansion terms up to the second order are explicitly shown. The terms which
represent a mixed multiple scattering with photons being scattered on both system layers
are marked in red. The scattering matrix T rot of the system after its 180 ◦ rotation, e.g.
around the ~επ-axis, is then

T rot = T rot
A T rot

B = 1 + iξAN
rot
A + iξBN

rot
B − ξ2

A
(
N rot

A
)2

2 −

− ξAξBN
rot
A N rot

B − ξ2
B
(
N rot

B
)2

2 + . . . .

(A.5)

The comparison of (A.4) and (A.5) shows that the rotated and non-rotated quantities are
related by substitutions ξANA → ξBN

rot
B and ξBNB → ξAN

rot
A , which will be used in the

following part.
The transmitted radiation intensity Itr before the rotation follows the general formula

(1.43), where the Hermitian conjugate of T is given as

T † = 1− iξAN
†
A − iξBN

†
B −

ξ2
A

(
N †A

)2

2 − ξAξBN
†
AN
†
B −

ξ2
B

(
N †B

)2

2 + . . . . (A.6)

Itr can be written as a sum Itr,1+Itr,2+Itr,3+. . . , where the first contribution Itr,1 includes
the intensity terms which are at most linear in either ξA or ξB, the second contribution Itr,2
includes the terms which are proportional to ξ2

A, ξ2
B and ξAξB, the third contribution Itr,3

includes all the cubic terms, etc. The same expansion could be performed on the rotated
intensity Irot

tr .
Using the properties of a matrix trace, the first contribution to transmitted intensities

before the rotation can be written as

Itr,1 = Tr
[
ρ+ iρξANA − iρξAN

†
A + iρξBNB − iρξBN

†
B

]
(A.7)
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and the corresponding rotated contribution is

Irot
tr,1 = Tr

[
ρ+ iρξAN

rot
A − iρξA

(
N rot

A

)†
+ iρξBN

rot
B − iρξB

(
N rot

B

)† ]
. (A.8)

The linear terms in Itr,1 and Irot
tr,1 may contribute to VRI only if the difference ∆Itr,1 given

as Itr,1 − Irot
tr,1 is not a zero. Simplification of ∆Itr,1 leads to formula

∆Itr,1 = Tr
[
iρξA

(
NA −N rot

A

)
+ iρξA

(
NA −N rot

A

)†
+

+ iρξB
(
NB −N rot

B

)
+ iρξB

(
NB −N rot

B

)† ]
.

(A.9)

The individual differences in the round brackets are anti-diagonal (their diagonal elements
equal zero), because the rotated scattering lengths follow relation (2.2) with respect to
the non-rotated ones. For the considered cases of unpolarized or linearly (~εσ) polarized
radiation the multiplication of the density matrix ρ with these anti-diagonal matrices gives
also anti-diagonal matrices, thus the whole ∆Itr,1 equals zero. If the effective thickness of
the layers was low enough, the higher intensity contributions would become negligible and
the resulting spectrum would be invariant under the considered rotation.

The same procedure can now be applied to the second radiation intensity contribution

Itr,2 = Tr
{
ρ

[
ξ2

AN
†
ANA + ξAξBN

†
ANB + ξAξBN

†
BNA + ξ2

BρN
†
BNB −

− ξ2
AN

2
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2 −
ξ2

A

(
N †A

)2
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BN

2
B

2 −
ξ2

B

(
N †B
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2 − ξAξBNBNA − ξAξBN
†
AN
†
B

]}
.

(A.10)

The rotated intensity Irot
tr,2 is related to Itr,2 by the same substitutions as for the first case.

The terms in (A.10) which arise from the single scattering or the multiple scattering on
the same layer (the terms in black) would find their corresponding rotated counterparts
in the rotated intensity and the difference ∆Itr,2 = Itr,2 − Irot

tr,2 would contain analogous
terms to those in formula (A.9) which would result in anti-diagonal matrices giving a zero
contribution to the intensity difference. On the other hand, the mixed terms (the terms in
red) lead to the difference

∆Irot
tr,2 =Tr

{
ρ

[
− ξAξBNBNA − ξAξBN

†
AN
†
B +

+ ξAξBN
rot
A N rot

B + ξAξB
(
N rot

B

)† (
N rot

A

)†]}
,

(A.11)

which is generally different from zero. Consequently, the second-order mixed multiple
scattering terms already contribute to VRI.

The higher-order contributions to the transmitted radiation intensity could be analysed
analogously. However, they are not treated here as the number of individual contributions
to be analysed is relatively high, the calculations become complicated and are not very
illustrative.
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Concerning the scattered radiation and VRI in NFS time spectra, the calculations are
complicated by the Fourier transform of the matrices. The VRI contributions could be
illustrated for the intensity of the scattered radiation in the energy domain, as can be
seen in Fig. 2.7 (left column). The intensity Isc could then be evaluated using formulas
(A.1–A.4) and

Isc = Tr
[

(T − 1) ρ (T − 1)†
]
. (A.12)

By repeating the procedure which was described for the transmitted radiation intensity
the individual VRI contributions may be identified. It could be found that the intensity
does not exhibit any first-order term. The second-order terms, which give the thin-sample
approximation for NFS, would be anti-diagonal. The third-order terms already contain
the mixed multiple scattering terms which contribute to VRI.

78



Appendix B: Scattering Length Expansion
in Real Spherical Harmonics

The scattering lengthN of a nuclear site can be described by nmg,me matrices according
to formulas (1.31–1.33). These matrices depend on the angles of the magnetic (or axially
symmetrical electric) field, i.e. nmg,me = nmg,me(θ, φ). They can be expanded using the
real spherical harmonics Yl,m(θ, φ), where l = 0, 1, 2, . . . and m = −l,−l + 1, . . . , l − 1, l.
The spherical harmonic functions form an orthonormal basis reflected by formula∫ 2π

0

∫ π

0
Yl,m(θ, φ)Yl′,m′(θ, φ) sin θ dθdφ = δll′δmm′ . (B.1)

The expansion of nmg,me(θ, φ) can be written as

nmg,me(θ, φ) =
∞∑
l=0

l∑
m=−l

n
mg,me
l,m Yl,m(θ, φ), (B.2)

where the coefficient matrices nmg,me
l,m can be obtained by an integral

n
mg,me
l,m =

∫ 2π

0

∫ π

0
nmg,me(θ, φ)Yl,m(θ, φ) sin θ dθdφ. (B.3)

Once the nmg,me
l,m coefficient matrices are known the scattering length can be generally

written as a sum

N(θ, φ) =
∞∑
l=0

l∑
m=−l

∑
mg,me

Lme
mg(E)nmg,me

l,m Yl,m(θ, φ). (B.4)

The dependence of nmg,me(θ, φ) on the field directions is contained in eigenvector com-
ponents of the interaction Hamiltonian, see the Gmg,me

M factors in (1.30). For the considered
symmetrical case the eigenvector components are given by (1.23). It could be found that
the specific angular dependences result in non-zero nmg,me

l,m only for l ≤ 2 and so the sum in
(B.4) runs only over l = 0, 1, 2. The corresponding real spherical harmonics are explicitly
given as [1]

Y0,0(θ, φ) = 1√
4π

, Y1,−1(θ, φ) = −
√

3
4π sin θ sinφ ,

Y1,0(θ, φ) =
√

3
4π cos θ , Y1,1(θ, φ) = −

√
3

4π sin θ cosφ ,

Y2,−2(θ, φ) =
√

15
16π sin2 θ sin 2φ , Y2,−1(θ, φ) = −

√
15

16π sin 2θ sinφ ,

Y2,0(θ, φ) =
√

5
16π

(
3 cos2 θ − 1

)
, Y2,1(θ, φ) = −

√
15

16π sin 2θ cosφ ,

Y2,2(θ, φ) =
√

15
16π sin2 θ cos 2φ .

(B.5)
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The computation of nmg,me
l,m was performed using WolframMathematica software [2]. To

verify the zero higher-order contributions and correctness of the calculations the coefficient
matrices were determined for the l values going form 0 up to 6. As the angular dependence
of nmg,me(θ, φ) is not trivial the symbolic computations for higher orders become rather
time consuming. The nmg,me

l,m matrices for l = 0, 1, 2 and m = −l,−l + 1 . . . , l − 1, l are
shown on the following pages for three selected transitions between the nuclear energy
levels.

It might be noted that, physically, the integration in (B.3) does not reflect the rotation
of the sample, but the directional distribution with respect to the laboratory reference
frame. For rotating the sample with respect to the radiation coordinate system, the Euler
angles of the radiation system can be utilized. In this appendix these angles are denoted
as α, β, γ. Their usage for the sample rotation is based on the relation between the active
rotation of the physical system and corresponding passive rotation of the (radiation) co-
ordinate system [3]. Thus, for a chosen rotation of the sample the corresponding values of
α, β, γ can be substituted into the nmg,me

l,m matrices.
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Abstract

The experimental techniques based on the nuclear resonant scatte-
ring provide a unique information on solid systems via modified energy
levels of nuclei caused by their hyperfine interactions. The aim of this
work is to provide a theoretical description of the nuclear resonant scat-
tering applied to complex materials exhibiting spatial inhomogeneities
of hyperfine interactions along the direction of the incident radiation.
The thickness effects, polarization mixing and preferential orientations
of present hyperfine fields (i.e. texture) play a crucial role in the scatte-
ring process, so a general theoretical formalism is required for a proper
description and interpretation of measured data. A significant part of
the work is also devoted to the texture description for thick samples
measured in both the energy and the time domain. The theory was suc-
cessfully applied for the analysis and interpretation of nuclear forward
scattering experiments conducted on Fe81Mo8Cu1B10 metallic glass du-
ring the crystallization process. The work also includes a description of
the developed software package.

Abstrakt

Experimentální techniky založené na jevu jaderného rezonančního
rozptylu poskytují informace o pevných látkách prostřednictvím modifi-
kovaných energetických hladin jader v důsledku hyperjemných interakcí.
Cílem této práce je teoreticky popsat jaderný rezonanční rozptyl na ma-
teriálech vykazujících nehomogenní rozložení hyperjemných interakcí ve
směru dopadajícího záření. Zásadní vliv na rozptyl má v tomto případě
tloušťka vzorku, změny v polarizaci záření a preferenční orientace pří-
tomných hyperjemných polí (textura). Pro správný popis a interpretaci
naměřených dat je pak potřeba použít obecný teoretický formalismus
zahrnující uvedené jevy. Významná část práce je vyhrazena právě po-
pisu textury v tlustých vzorcích pro měření v energetické i časové do-
méně. Popsaná teorie byla úspěšně použita k interpretaci experimentů
jaderného dopředného rozptylu provedených na kovovém skle o složení
Fe81Mo8Cu1B10 v průběhu krystalizace. Součástí práce je také popis
vyvíjeného softwaru.
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Introduction

Experiments of nuclear resonant forward scattering can be conducted
either in energy domain as the Mössbauer spectroscopy or in time domain
as the nuclear forward scattering. Both techniques utilize an interaction
of the electromagnetic radiation with atomic nuclei and provide a unique
insight into the local electric and magnetic properties in a solid.

Iron-based metallic glasses exposed to an ion irradiation have recently
been studied for their potential applications in accelerator devices. These
materials may comprise spatially inhomogeneous regions, i.e. different
hyperfine interactions in different parts of the system. To explore the
inhomogeneities by the nuclear resonant methods, a general scattering
formalism must be utilized for a proper analysis and interpretation of
the measurements.

The aim of this thesis is to theoretically describe the nuclear reso-
nant scattering in the forward direction for materials with the spatial
inhomogeneities of their hyperfine interactions. The information on the
inhomogeneities can be obtained from an experimentally observable vi-
olation of the rotational invariance. The described theory, based on the
model of a multilayered scattering system, is applied to nuclear forward
scattering experiments conducted on Fe81Mo8Cu1B10 metallic glass ex-
posed to an irradiation by nitrogen ions. The differences between the
measured data obtained under different geometrical arrangements of the
sample allowed to identify the magnetic origin of the inhomogeneities.

The observed phenomena are strongly connected to directional prefe-
rences of hyperfine interactions, i.e. texture. This work introduces a gene-
ralized texture description for both Mössbauer spectroscopy and nuclear
forward scattering. It uses spherical harmonics as an orthogonal basis for
the directional distributions of electric or magnetic fields. This allows a
relatively simple implementation of the texture into calculations of data
in energy and time domains. The results obtained under different con-
siderations regarding the sample thickness and the used experimental
technique are directly compared.

Due to new demands on the data evaluation in the nuclear reso-
nant methods a new software package has been developed. The software
allows the computations for the homogeneous systems as well as for the
multilayers, simulating the inhomogeneous systems.
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1 Nuclear Resonant Methods
The experimental techniques based on the resonant absorption and

emission of photons by atomic nuclei started to be developed very soon
after the discovery of the Mössbauer effect [1]. Today, these techniques
find a wide range of applications across many scientific fields [2]. One
of the main advantages is the possibility to inspect the hyperfine split-
ting of nuclei energy levels in a solid. The splitting is characteristic for
a given surrounding of nuclei and allows to study the interactions of the
surrounding with the nuclear system. Thus, the information on the ato-
mic valence and spin states, local structural arrangements and magnetic
ordering within the studied systems can be obtained [3].

1.1 Hyperfine Interactions
The interactions of a nuclear system with its surroundings depend

on the properties of given nuclei and on the local fields acting on them.
Assuming the nuclei properties are known by selecting a particular nuc-
lide the information on the energy levels is directly related to the studied
surroundings described by corresponding hyperfine parameters. The the-
ory will be demonstrated using 57Fe nuclide.

A single nucleus can be treated as a quantummechanical system of Zn
protons and Nn neutrons with a total angular momentum described by
j = 0, 1

2 , 1,
3
2 , . . . andm = −j,−j+1, . . . , j−1, j quantum numbers [4,5].

Nuclei with a non-zero angular momentum also have a magnetic dipole
moment [6]. The electric properties of a nucleus can be described by its
total electric charge qn and electric quadrupole moment tensor [7].

The real solid state samples are many-body systems of mutually in-
teracting nuclei and electrons. The interactions can be described by the
effective magnetic and electric fields interacting with the nuclei. The to-
tal interaction Hamiltonian Ĥ is the sum of the individual magnetic and
electric contributions

Ĥ = ĤI + ĤQ + ĤM. (1.1)

The magnetic interaction Hamiltonian ĤM can be described by an ef-
fective magnetic field ~B interacting with the magnetic dipole moment [8].
It includes the interactions with the orbital and spin angular momenta
of the electrons around a nucleus, interactions with other electrons and
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nuclei in the solid and also the interaction with an external magnetic
field. The former plays a dominant role in magnetic materials and the
corresponding magnetic field contribution is referred to as the hyperfine
magnetic field ~Bhf [9].

The electric interactions comprise the “monopole” interaction ĤI and
quadrupole interaction ĤQ. The former is related to the isomer shift pa-
rameter δ, which is widely used in chemical and materials applications
where its determination allows to distinguish between compounds with
different atomic valence states [10]. The latter depends on the elements
of the electric field gradient (EFG) tensor described by two independent
parameters, the quadrupole splitting parameter ∆ and so called asym-
metry parameter η [8, 9] and reflects the spatial charge distribution of
electrons and atoms around a nucleus. Thus, it can be used for studying
a local structural ordering.

To properly describe the absorption and emission of photons by the
nuclear system the eigenvalues and eigenstates of the interaction Ha-
miltonian with an arbitrary EFG and ~B orientations in the laboratory
reference frame (Fig. 1.1) can be obtained [11].

x

y

z

~vxx

~vyy~vzz

~B

θ

φ

Figure 1.1: The EFG main axes given by the ~vxx, ~vyy and ~vzz vectors in the labo-
ratory reference frame and the effective magnetic field ~B with angles θ and φ in the
EFG coordinate system.

The eigenvalues of the interaction Hamiltonian provide information
on the nuclear energy levels. In the absence of the hyperfine interactions
the nuclear system exhibits degeneracy. Thanks to the hyperfine inter-
actions the degeneracy is lifted and the hyperfine splitting of the nuclear
energy levels occurs.
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To extract the information on the hyperfine splitting, nuclear reso-
nant methods based on the transitions between the individual nuclear
energy levels have been developed. The principle of the methods is the
application of an electromagnetic radiation of a proper energy. The ab-
sorption and consequent reemission of photons by nuclei is accompa-
nied by the excitation-deexcitation of the nuclear energy levels. The
Mössbauer spectroscopy and synchrotron radiation nuclear resonant scat-
tering (NRS) methods utilize electromagnetic radiation in the 1–100 keV
energy range. These energies belong to the hard X-ray and gamma ra-
diation domain and are suitable for transitions between the ground and
excited state energy levels. The transitions between the energy levels
(jg ←→ je) of 57Fe nuclei exhibit an energy of 14.4 keV. The hyperfine
splitting of the energy levels goes typically below 1µeV.

The absorption and emission of photons generally proceeds with re-
coil. Part of the photon energy is transferred to the energy of atomic
motion. As a result, the energy of the absorbed or emitted photons is
not equal to the transition energy between the ground and excited states,
but is shifted by the recoil energy. The information on the nuclear tran-
sition energies is then lost in the energy exchange with the lattice. New
possibilities came with a recoilless absorption and emission of photons
discovered by Rudolph Mössbauer in 1958. The experiment showed that
absorption and emission of photons in a solid may occur without the
recoil. This can be used to obtain the information on the split nuclear
energy levels and the related hyperfine interactions. The relative number
of recoilless events is expressed by the Lamb-Mössbauer factor fLM [9].

1.2 Nuclear Resonant Scattering
The transmission Mössbauer spectroscopy (TMS) and nuclear for-

ward scattering (NFS) methods are based on the scattering (absorption-
emission) process which is coherent and elastic. Furthermore, the radi-
ation is detected in the forward direction. The semi-classical theoretical
formalism developed for the nuclear resonant coherent elastic scattering
considers the solid system as a continuous optical medium described by
an energy dependent index of refraction [12, 13]. The nuclear resonant
contribution is given by the scattering lengthN , which reflects the proba-
bility amplitudes for the photons absorption and emission. The resonant
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behaviour is described by Lorentzian functions Lne
ng

(E) in the form

Lne
ng

(E) = 1
E −∆Eng,ne + iΓ/2 , (1.2)

where E is the photon energy, ∆Eng,ne is the transition energy between
the ground and excited state and Γ is the natural linewidth of the ex-
cited energy level. In the case of 57Fe the magnetic dipole transition
(M1) dominates [14]. A matrix formalism can be introduced to consider
possible polarization changes. The scattering length is a 2 × 2 complex
matrix, which can be written in the linear polarization basis (given by
orthogonal unit vectors ~εσ, ~επ) as [12,15]

N =
∑
ng,ne

Lne
ng

(E)nng,ne , (1.3)

i.e. (
Nσσ Nσπ
Nπσ Nππ

)
=
∑
ng,ne

Lne
ng

(E)
(
n
ng,ne
σσ n

ng,ne
σπ

n
ng,ne
πσ n

ng,ne
ππ

)
. (1.4)

The elements of the nng,ne matrices are

nng,ne
νµ =

1∑
M ′,M=−1

[
~ε *ν · ~Y *

M ′(~k)
] [
~Y *
M (~k) · ~εµ

]
G
ng,ne
M ′

(
G
ng,ne
M

)∗
, (1.5)

where µ, ν ∈ {σ, π} and the Gng,ne
M factors depend on the interaction

Hamiltonian eigenstates [15].
To quantitatively evaluate the rate of the multiple scattering in real

solids the effective thickness deff is conventionally used [16]. All possible
scattering paths (single scattering, double scattering, . . . ) including the
case of no resonant interaction with the nuclear system are included in
the resulting scattering matrix T , which takes the exponential form [12]

T = eiξN . (1.6)

The constant ξ reflects the effective thickness of the system and for the
57Fe transition it is given as

ξ = −πΓdeff

2 . (1.7)
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The application of the scattering matrix to the incident radiation field
gives the transmitted radiation field in the forward direction

~Atr = T ~Ain. (1.8)

The transmitted field can be understood as a superposition of the field
~Ain (no resonant interaction with nuclei) and the scattered field [17]

~Atr = ~Asc + ~Ain. (1.9)

In the real samples a discrete or a continuous distribution of different
nuclear sites (nuclei with different local surroundings) can occur. Each
nuclear site may exhibit a different hyperfine splitting, which contributes
to the resulting final form of the experimental data. The presence of more
nuclear sites gives more possibilities for the interaction of photons with
the nuclear system. The total scattering length is then given as a sum
(or an integral) of individual partial scattering lengths. The continuous
case is described by distributions of corresponding hyperfine parameters.

1.3 Coherent Elastic Forward Scattering
The information on the nuclear hyperfine splitting is coded in the

scattering length N and can be potentially extracted from the measu-
red intensities of the transmitted or the scattered radiation fields. The
theoretical formalism outlined in the previous sections can be applied in
both energy and time domain measurements.

1.3.1 Transmission Mössbauer Spectroscopy

The transmission Mössbauer spectroscopy utilizes a suitable radio-
active material as a source of gamma photons. For example, the 57Co
radioactive nuclide built in a solid matrix is used as a source for exci-
tation of 57Fe energy levels.

Mössbauer transmission spectrum, measured as the transmitted radi-
ation intensity Itr(E), is obtained by modulating of the source emission
energy and simultaneous detection of the transmitted photons. The mo-
dulation of the emission line is based on the Doppler effect, where the
relative velocity v of the source is changing with respect to the measu-
red sample [2]. The energy axis of measured spectra is conventionally
displayed in the mm/s velocity units.
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The density matrix formalism can be used to obtain transmission
spectrum for mixed polarization states of the incident radiation [12,13].
Itr(E) can be written in a compact and normalised form

Itr(E) = Tr
{
TρT †

}
, (1.10)

where ρ is the density matrix describing the incident radiation. If the
radiation is tuned to a resonance with respect to the sample transition
energies then the coherent elastic nuclear resonant scattering becomes
significant and the measured spectrum exhibits an intensity attenuation
(see Fig. 1.2).

(a)

(b)

(c)

(d)

E

Itr

Figure 1.2: Illustration of a selected Mössbauer absorption line. The intensity of
the transmitted radiation depends on the relative position of the source emission line
(solid lines in the circles) with respect to a given transition energy line (dashed lines).
In the resonance (b, c) there is a significant attenuation of the intensity with respect
to the off-resonance case (a, d).

1.3.2 Nuclear Forward Scattering

NFS belongs to the group of experimental techniques that utilize
modern synchrotron radiation sources. These sources are based on the
radiation properties of charged particles accelerated to speed that ap-
proaches the speed of light [18].

In contrast to “single-line” radioactive sources the synchrotron radi-
ation coming from the undulator exhibits a broad energy distribution of
the emitted radiation. Another difference is that the synchrotron sources
generate the radiation which exhibits a high degree of polarization. The
radiation is linearly polarized in the plane of the accelerator storage ring
(in NFS the ~εσ vector is conventionally chosen to lie in this plane, so the
radiation is ~εσ-polarized).
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Figure 1.3: NFS experimental arrangement with the energy and time properties of
the synchrotron radiation before/after monochromatization and after the scattering.

The movement of the charged particles in the storage ring can be
realized in a bunch mode. The particles are grouped in several discrete
bunches with a specific time separation between them (Fig. 1.3). When
passing through the undulator, each bunch generates a separate syn-
chrotron radiation pulse of ∼100 ps time duration. The time separation
between individual pulses is usually ∼ 101–102 ns.

The energy bandwidth of the radiation is in the meV or sub-meV
range when the radiation leaves the system of monochromators. This is
several orders more than the range of the nuclear transition energies. In-
stead of separate excitations of the individual nuclear energy levels as in
the TMS, the synchrotron radiation pulses cause simultaneous coherent
excitations of all the energy levels. During the subsequent deexcitation
the radiation fields are emitted, with energies corresponding to diffe-
rences between the individual ground and excited state energy levels.
The superposition of these radiation fields gives the resulting scattered
field whose intensity exhibits typical time interference patterns known
as quantum beats [19].
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The part of the radiation which does not interact resonantly with the
nuclei leaves the scattering system in a very short time after the exci-
tation by the radiation pulse. The time separation from the resonantly
scattered part can be realized, where the time signal at the first several
nanoseconds is not detected. The resulting time spectrum is given as
the time dependence of the scattered radiation intensity Isc(t). In agre-
ement with (1.9) and (1.10) the normalised scattered radiation intensity
is given by the general formula

Isc(t) = Tr
{
F [T − 1] ρF †[T − 1]

}
, (1.11)

where F denotes Fourier transform [14].
In many aspects, the transmission Mössbauer spectra with absorp-

tion lines and the NFS time spectra featuring quantum beats provide
equivalent information on the solid systems. The synchrotron radiation
sources bring a big advantage over conventional Mössbauer sources re-
garding the intensity. The accumulated NFS time spectra consist of a
very high number of contributions from individual synchrotron radiation
pulses (coming with ∼ 102 ns period). The brilliance of the synchrotron
radiation [12] is significantly higher (by more than 10 orders) when com-
pared to the radioactive sources.

The usage of synchrotron radiation has opened entirely new possibi-
lities of hyperfine methods. An example is the use of NFS for the investi-
gation of fast processes, including solid-state chemical reactions, structu-
ral re-ordering, diffusion or magnetic transformations [20–22]. Such stu-
dies are of a high importance from both the basic research perspective
(exploring transformation kinetics and mechanisms, discovering tempo-
rary inter-phases, etc.) and the possible applications (altering transfor-
mation conditions to modify material properties). With the current ra-
diation intensity one time spectrum could be accumulated in less than
one minute.

Many efforts have also been given to the automation and fastening
of the data evaluation. This becomes crucial in the NFS studies of fast
processes, where one experiment may consist of hundreds of measured
time spectra [23]. A sequential fitting procedure, based on connecting
the neighbouring time spectra via their input and output parameter
values, has been presented as a usable approach [24]. By connecting
the conventional fitting software CONUSS with a specially developed
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package Hubert the efficiency of the experimental data evaluation was
considerably increased [25,26].

1.3.3 Thickness Effects

The impact of the finite (effective) thickness of the scattering system
on the measured Mössbauer and time spectra can be demonstrated by
expanding the scattering matrix T of the system in a Taylor series

T = eiξN =
∞∑
l=0

(iξN)l

l! = 1 + iξN + (iξN)2

2 + (iξN)3

6 + . . . . (1.12)

The individual terms in the Taylor expansion correspond respectively to
the non-resonant interaction, single scattering, double scattering, etc.

In TMS the transmitted intensity is given by formula (1.10), into
which the expanded scattering matrix can be substituted. The intensity
Itr(E) can be expanded and divided according to the orders of the powers
of ξ. The thin-sample approximation of the intensity is realized by ta-
king only the terms up to the lowest present power of ξ, which in this
case is the first order ξ1. The second-order approximation would be rea-
lized by including the second-order terms, third-order approximation by
including the third-order terms, etc. As the effective thickness increases
the higher orders of Itr(E) start to influence the Mössbauer spectrum,
including the changes in the shapes and the relative amplitudes of the
individual Mössbauer lines.

Thickness effects in time domain are strongly connected to the cohe-
rence of the scattering process [27]. Rather than scattering on a single
nucleus the whole nuclear system is coherently excited. The following
deexcitation then exhibits a speed-up effect, where the increasing ef-
fective thickness results in shorter deexcitation times. Even for the un-
split nuclear energy levels the photon emission does not follow the ex-
ponential decay with the lifetime of the excited state, as would be the
case for the excitation of a single nucleus. The emission proceeds fas-
ter, the exponential time dependence is being pushed towards the lower
times and exhibits beating patterns. These patterns are similar to the
quantum beats, but arise from the multiple scattering and are referred
to as dynamical beats. For the split energy levels the superposition of
the dynamical beats with the quantum beats may occur, which results
in a more complex time dependence described as the hybrid beats [28].
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2 Violation of Rotational Invariance by
Inhomogeneous Systems

A novel methodology for investigating the material inhomogeneities
by nuclear resonant scattering techniques is presented in this chapter.
The introduced approach is based on the rotational invariance and its
violation, which was experimentally observed in the NFS experiments
conducted for two different geometrical arrangements. Comparison of
the obtained results allows to extract a unique information on the spatial
distribution of nuclei featuring different hyperfine interactions, along the
direction of the incident radiation.

Differences in the measured time spectra were observed upon a speci-
fic sample rotation. Similar phenomena were observed in the past within
the studies of fundamental properties of scattering [13, 29], explored by
ensuring well-conceived experimental conditions. This work focuses on
the phenomenon of rotational invariance, whose violation was observed
without any artificially introduced experimental conditions, solely as a
result of the inner properties of the studied sample.

As an outcome, a simple method for identifying the presence of inho-
mogeneities in the bulk of a solid has been described. It is noteworthy
that possibilities to experimentally observe bulk inhomogeneities of hy-
perfine interactions are limited [30,31]. To the author’s knowledge, such
a similar observation on the real samples interpreted on the basis of
rotational properties of NRS has not been reported in the literature.
Despite exhibiting certain limitations regarding specific conditions im-
posed on the samples, the presented approach could be an inspiration for
further developments. This might potentially lead to even more complex
reconstruction of material inhomogeneities via an imaging technique.

2.1 Theoretical Description
2.1.1 Rotational Invariance and Homogeneous Systems

The concept of rotational invariance generally refers to situations in
which the radiation intensity is not influenced by rotating the scattering
system with respect to the radiation coordinate system. This work is
specifically focused on the 180 ◦ rotation around one of the polarization
axes defined by the unit vectors ~εσ and ~επ (see Fig. 2.1). We also assume
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that the incident radiation is either unpolarized or fully linearly polarized
along one of the polarization axes.

~εσ

~επ

~k

~εσ

~επ

~k

180 ◦

Figure 2.1: Geometrical arrangements used for the study of rotational invariance.
The scattering system is rotated around one of the polarization axes (rotation around
~επ-axis is illustrated in the figure) and experimental data obtained before and after
the rotation are compared.

First, let us examine the rotational invariance for a scattering system
with nuclear sites homogeneously distributed along the direction of the
incident radiation. The scattering length of the system is given by for-
mulas (1.3–1.5). The rotation of the system around the original ~επ-axis
by 180 ◦ transforms the scattering length N into the rotated scattering
length N rot according to the formula

N =
(
Nσσ Nσπ
Nπσ Nππ

)
→ N rot =

(
Nσσ −Nσπ
−Nπσ Nππ

)
. (2.1)

Moreover, the relation between N and N rot defined by formula (2.1)
holds for arbitrary powers of N and N rot. Therefore, the scattering ma-
trix T rot transforms in the same way with respect to T and the 180 ◦
rotation changes only the sign of the off-diagonal scattering matrix ele-
ments. The identical results could be obtained for the rotation around
~εσ-axis.

For the considered polarization states of the incident radiation the
intensity of the transmitted (scattered) radiation depends only on the
magnitudes of the scattering matrix elements. The changes in the phase
of the off-diagonal matrix elements do not influence the intensity, which
means that the rotational invariance is always satisfied for the case of
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homogeneous scattering systems. Consequently, measuring the violation
of rotational invariance (VRI) may potentially provide information on
the system inhomogeneities. For example, it may reveal that the studied
system is not fully homogeneous.

2.1.2 Scattering on Multilayers

The inhomogeneous spatial distribution of nuclear sites in a sample
causes the total scattering length to be a general function of the sample
depth along the radiation direction. For being able to demonstrate the
role of inhomogeneities a system consisting of n separately homogeneous
layers will be considered [12]. The spatial separation of the nuclear sites
into individual layers described by ξi and Ni (i = 1, 2, . . . , n) allows to
generalize the scattering matrix of the system and discuss the effects of
rotation.

The construction of the scattering matrix can be demonstrated for an
incident radiation ~Ain in a pure polarization state. When the radiation
passes through the first layer the transmitted radiation field is given as
~A1 = T1 ~Ain, where T1 = ei ξ1N1 is the scattering matrix of the first
layer. In general, each layer is described by its own scattering matrix
Ti = ei ξiNi . As the radiation ~A1 passes through the second layer it acts as
an incident radiation on this layer and therefore ~A2 = T2 ~A1 = T2T1 ~Ain.
The same procedure can be applied analogously for all remaining layers.
After passing through the whole system, the transmitted radiation field
is given as

~Atr = TnTn−1 . . . T2T1 ~Ain. (2.2)

This shows that the same theoretical description that was used for the
homogeneous samples can be applied here, if the total scattering length
T is taken as a multiplication of individual partial scattering matrices
(Fig. 2.2).

in1 out1 = in2 outn−1 = inn outn

T = TnTn−1 . . . T2T1

T1 T2 Tn−1 Tn

. . .

Figure 2.2: An illustration of a scattering system consisting of n layers.
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Mathematically, the rotation of the multilayered system by 180 ◦ is
equivalent to mutual interchanges of the layers followed by a separate
rotation of each layer. The total scattering matrix of the rotated system
takes the form

T rot = (TnTn−1 . . . T2T1)rot = T rot
1 T rot

2 . . . T rot
n−1T

rot
n , (2.3)

where the T rot
i matrices follow the same relation with respect to Ti which

was given for homogeneous samples, see formula (2.1). Whether the sys-
tem exhibits VRI or not depends on the relation between T and T rot,
which is, however, determined by relations between the scattering len-
gths of individual layers Ni, Nj (i, j = 1, 2, . . . , n and i 6= j). In this
work the commutativity of the scattering lengths is chosen to analyse
the properties of Ni and their connection to rotational properties of the
scattering system.

We shall consider an illustrative example of a two-layered scattering
system. If N1 and N2 satisfy the commutation relation N1N2 = N2N1
than the scattering matrices T1 and T2 follow the same relation, as their
exponents commute. Therefore, the total scattering matrix can be writ-
ten as a single exponential

T = ei(ξ1N1+ ξ2N2), (2.4)

which is analogous to the scattering matrix of a system consisting of two
homogeneously distributed nuclear sites. Furthermore, it could be found
that the rotated scattering matrices T rot

1 and T rot
2 also commute and

T rot = ei(ξ1N
rot
1 + ξ2N

rot
2 ). (2.5)

The exponents in (2.4) and (2.5) differ only in the signs of their off-
diagonal elements and so the same relation between T and T rot as in
the case of a homogeneous scattering system is obtained. Consequently,
VRI cannot be observed if the individual scattering lengths mutually
commute. In other words, noncommutativity of the scattering lengths is
a necessary condition for VRI.

2.1.3 Texture and Multiple Scattering Effects

The physical meaning of the noncommutativity condition is closely
related to rotational distributions of hyperfine parameters. For a multi-
layered system with all its layers exhibiting randomly oriented fields, the
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scattering lengths Ni would be proportional to unit matrices. In such a
case all the scattering lengths would commute and so the magnetically
and electrically random layers cannot contribute to VRI. This brings
up another physical condition on the scattering system, along with the
inhomogeneous spatial distribution of nuclear sites. The observation of
VRI is possible only if the inhomogeneous system exhibits a preferential
orientation of the electric and/or magnetic field, i.e. texture.

The observation of VRI shows to be strongly related to thickness
effects. This can be demonstrated using a two-layered magnetic system
with specific orientations of the magnetic fields (Fig. 2.3). All the reso-
nant nuclei in both layers, denoted as A and B, exhibit hyperfine magne-
tic fields of the same magnitude. The field directions for nuclei in layers
A and B are given by unit vectors ~mA and ~mB, respectively. Except for
the field directions, the two layers are identical.

~εσ

~επ

~k
~mA

~mB

~εσ

~επ

~k

180 ◦

~mA

~mB

(a)

(b)

Figure 2.3: A two-layered scattering system with magnetic inhomogeneities intro-
duced as different directions of the hyperfine magnetic field, given by unit vectors
~mA in layer A and ~mB in layer B.

The scattering lengths NA and NB of the layers before the rotation
(Fig. 2.3a) are given as [12]

NA = 3
16π

(
F+1 + F−1 i(F+1 − F−1)
−i(F+1 − F−1) F+1 + F−1

)
, (2.6)

NB = 3
16π

(
2F0 0
0 F+1 + F−1

)
, (2.7)
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where

FM =
jg∑

mg=−jg

C2 (jg1je;mgM)
E −∆Emg,mg+M + iΓ

2
, M = −1, 0,+1 . (2.8)

The energy dependent FM factors include the transition energies be-
tween the individual nuclear energy levels ∆Emg,mg+M , the natural li-
newidth of the excited energy level Γ and the Clebsch-Gordan coefficients
C (jg1je;mgM) [32].

The exponentials of NA and NB can be calculated analytically and
the resulting scattering matrices of the layers are

TA = eiK(F+1+F−1)
(
C −S
S C

)
, (2.9)

TB =
(

ei 2KF0 0
0 eiK(F+1+F−1)

)
, (2.10)

with the constants C = cos [K(F+1 − F−1)], S = sin [K(F+1 − F−1)]
and K = (3ξ)/(16π). The total scattering matrix of the system is then

T = TBTA =
(
CeiK(F+1+2F0+F−1) −SeiK(F+1+2F0+F−1)

Sei2K(F+1+F−1) Cei2K(F+1+F−1)

)
. (2.11)

From the relation between rotated and non-rotated scattering lengths
(and scattering matrices) given by formula (2.1), one can find out that
T rot

A and T rot
B after the rotation (Fig. 2.3b) are given as a transpose of

TA and TB, respectively. The rotated scattering matrix T rot = T rot
A T rot

B
is then also a transpose of T . As a result, there is a significant difference
between T and T rot which makes the measuring of VRI for such a two-
layered system possible.

Fig. (2.4) shows the calculated intensities of the scattered radiation
for the two-layered system. The data were simulated for fully ~εσ-polarized
incident radiation and they are presented in both the energy and the time
domain. In addition to the two geometrical arrangements from Fig. 2.3
the third case representing a mixture of A and B into one homogeneous
layer is shown for comparison. The parameters of α-Fe (with all nuclei
being 57Fe) at room temperature were used for the data simulations [33].
The intensities are compared for different total thicknesses ranging from
0.1µm to 10µm.

16



0

1

2

3

0.1µm

0

20

40

60

80

homogeneous
rotated
non-rotated

0

2

4

6

8

1µm

0

20

40

60

homogeneous
rotated
non-rotated

0

5

10

15

20

5µm

0

20

40 homogeneous
rotated
non-rotated

0

5

10

15

20

25

0 1 2 3 4 5 6

Energy (mm/s)

10µm

0

20

40

60

20 40 60 80 100 120

R
e
la
ti
v
e
In

te
n
si
ty

Time (ns)

homogeneous
rotated
non-rotated

Figure 2.4: Simulated time spectra (on the right) and corresponding scattered radi-
ation intensities in energy domain (on the left), corresponding to the three different
arrangements of the considered two-layered system.

The simulations clearly demonstrate the role of thickness effects. The
differences between the radiation intensities before and after the 180 ◦
rotation arise from the multiple-scattering terms which include the scat-
tering on both system layers. Contributions from the single scattering
or from the multiple scattering in only one of the layers are invariant
under the given rotation of the system. For samples with a high effective
thickness the non-invariant contributions are considerable. As the ef-
fective thickness decreases these contributions become negligible with re-
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spect to the invariant ones. Consequently, those contributions to spectra
which reflect the system inhomogeneities vanish in the thin-sample limit
and the rotational invariance is satisfied.

2.2 Experiments of Nuclear Forward Scattering
The following part reports on the observation of VRI by NFS of syn-

chrotron radiation. The experiments were conducted on an iron-based
metallic glass, specially treated via a process of ion irradiation [34]. Inves-
tigation of such materials is of a high interest, for example, due to their
possible use in radiofrequency cavities of accelerators. The knowledge
on their influence by an irradiation exposure is important for a proper
performance of these complex instruments. Exploring the mechanisms of
the ion interactions in a solid is also interesting from the fundamental
research perspective.

2.2.1 Experimental Arrangement

The composition of the studied metallic glass was Fe81Mo8Cu1B10
with around 50 % of the iron atoms being in the form of 57Fe. The sam-
ple was prepared by a melt-spinning technique as approximately 20µm
thick and 1 mm wide ribbons [35]. The preparation conditions resulted
in two physically and chemically different ribbon surfaces, also denoted
as “wheel side” and “air side”. The wheel side was in contact with the
spinning wheel during the cooling of the melt, whereas the air side was
in contact with the surrounding atmosphere [36].

The prepared ribbons in as-quenched state were irradiated by N+

ions with the energy of 130 keV. In all the cases the sample was exposed
to the N+ ions from the air side. The experiments presented in this
work were conducted on the ribbons which exhibited the ion irradiation
fluency of 2.5 · 1017 ions/cm2. Despite the relatively low energy of ions
the irradiation was sufficient for affecting the bulk magnetic properties
of the sample [34].

The experiments were carried out at ID18 beamline in ESRF (Euro-
pean Synchrotron Radiation Facility). Synchrotron radiation beam with
the mean energy of 14.4 keV and bandwidth of 1 meV was used. The
radiation was linearly polarized in the plane of the storage ring (~εσ-
polarized). During the NFS measurements the sample was fixed on a
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stable vertical holder placed inside a vacuum furnace. For selecting the
sample orientations with respect to the radiation coordinate system, dis-
tinguishing between the two sides of ribbons was important. The mea-
surements were carried out for two orientations (air-side and wheel-side
orientations) differing by the 180 ◦ rotation of the sample with respect
to the ~επ-axis (Fig. 2.5).

~εσ

~επ

~k

~εσ

~επ

~k

180 ◦

(a)

(b)

air side

wheel side

Figure 2.5: Two geometrical arrangements used for the NFS experiments. (a) Air-
side orientation with the air side of the ribbon facing the detector. (b) Wheel-side
orientation with the wheel side facing the detector and the air side oriented towards
the incident radiation.

Each experiment consisted of three basic parts. First, one NFS time
spectrum of the sample was measured for 5 minutes at room tempera-
ture, prior to any thermal treatment. After the room-temperature me-
asurement the sample was heated within three minutes up to 300 ◦C.
This temperature was kept for about one hour and during the isother-
mal annealing the time spectra were acquired for each three minutes.
The sample was then spontaneously cooled to room temperature and
another time spectrum was measured.

2.2.2 Identification of Magnetic Inhomogeneities

Fig. 2.6 shows the pair of time spectra measured at room tempera-
ture before the sample annealing, i.e. the time spectra measured under
the same conditions for the air-side and the wheel-side orientation of
the sample are compared. Both time spectra were normalized to unity
area. Despite being qualitatively very similar, the time spectra exhibit
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differences which are significantly higher than the uncertainties of the
experimental points.

For the studied NANOPERM-type system two basic contributions to
the measured time spectra can be distinguished. The first contribution
originates from the original amorphous matrix, which is paramagnetic
and exhibits only electric hyperfine interactions. It is typical by a broad
distribution of the quadrupole splitting resulting in a distinctive doublet
in the energy domain. The second contribution is given by nuclear sites
in the sample which exhibit magnetic hyperfine interactions. These are
connected to the formation of nanocrystalline grains in the amorphous
matrix. The grains naturally take the structure and ferromagnetic orde-
ring of α-Fe and exhibit hyperfine magnetic field of more than 30 T [26].
In addition to the crystalline magnetic phase, the ferromagnetic exchange
interactions among the grains might influence the amorphous regions in
the vicinity of the crystals, causing a magnetic splitting of 57Fe energy
levels at these regions [37]. Consequently, the magnetic contributions
could be ascribed to both the crystalline and the amorphous magnetic
phases in the sample.
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Figure 2.6: NFS time spectra of Fe81Mo8Cu1B10 measured at room temperature for
the air-side (black squares) and the wheel-side (red-circles) orientation of the sample.
The data are shown (a) on a conventional logarithmic scale in full time range and (b)
on a linear scale between 20 ns and 90 ns to emphasize the measured VRI.

Although the transitions between the magnetically and electrically
split energy levels could be generally coupled in the time domain into
complex quantum beats, the measured time spectra of Fe81Mo8Cu1B10
allow to distinguish between the magnetic and the electric contributi-
ons. The electric contribution results in the “envelope” time patterns
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occurring with the period of around 40 ns at room temperature, whereas
the energy splitting of the magnetic contribution gives the low-periodic
(high-frequency) beating with the room-temperature period of around
10–15 ns. They will be referred to as the low-frequency and the high-
frequency (magnetic) quantum beats.

In Fig. 2.6 the low-frequency as well as the high-frequency quantum
beats can be recognised. The magnetic part is present because of very
small magnetic grains, that were formed in the sample during its pre-
paration and could also be modified by the subsequent ion irradiation.
VRI is clearly visible mainly between 20 ns and 50 ns (Fig. 2.6b) in the
form of different ratios between the high-frequency quantum beats. On
the basis of the theoretical analysis in section 2.1, it can be concluded
that the measured metallic glass sample exhibits inhomogeneities. These
inhomogeneities are of a magnetic (high-frequency) nature and can be
therefore ascribed to the magnetic nuclear sites in the sample. In addi-
tion, the hyperfine magnetic field directions are not randomly distributed
but exhibit texture.

Selected pairs of time spectra measured during the isothermal anne-
aling of the sample are shown in Fig. 2.7. The time spectra measured
immediately after the temperature raise to 300 ◦C exhibit dominantly the
low-frequency contribution from the amorphous matrix (Fig. 2.7a, b). At
the same time there is no significant difference between them. So the in-
crease in temperature to 300 ◦C, which resulted in the suppression of
high-frequency quantum beats, also caused the rotational invariance to
be satisfied. This observation might be explained as a suppression of mag-
netic interactions in the amorphous regions which, at room temperature,
were influenced by the exchange interactions among the nanocrystalline
grains.

Few minutes later, new nanocrystalline grains started to form. This
was accompanied by the appearance and evolution of the high-frequency
quantum beats. As the new grains began to form in the sample, VRI
became visible again (Fig. 2.7c, d) and further developed with time up
to around 30 minutes of annealing (Fig. 2.7e, f).

The development of differences between the ratios of high-frequency
quantum beats can be explained as a result of increasing amount of
the crystalline magnetic phase in the sample. This is analogous to the
example given in Fig. 2.4. VRI becomes more significant during the crys-
tallization, where the amount of crystallites (and therefore the number
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of 57Fe nuclei that contribute to magnetic inhomogeneities) increases
and enhances the role of multiple scattering. At this state, the magne-
tic inhomogeneities and texture can be ascribed to the newly formed
nanocrystalline grains.

(b)

(d)

20 30 40 50 60 70

Time (ns)

(f)

air side
wheel side

(a)

•

1.–3.min

R
e
la
ti
v
e
In

te
n
si
ty air side

wheel side

(c)

•

7.–9.min

20 40 60 80 100 120 140

Time (ns)

air side
wheel side

(e)

•

28.–30.min

Figure 2.7: Time spectra of Fe81Mo8Cu1B10 measured at different times during
the isothermal annealing at 300 ◦C. Differences in the time spectra develop and VRI
becomes more significant with the increasing amount of nanocrystalline grains during
the crystallization.

2.3 Discussion
The conducted experiments demonstrated a utilization of NFS for

the investigation of materials exhibiting an inhomogeneous spatial dis-
tribution of hyperfine parameters. The presence of magnetic inhomo-
geneities along the direction of the incoming radiation was revealed in
the Fe81Mo8Cu1B10 sample. This was achieved solely by the analysis
based on considering the VRI effect. Additional information could also
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be obtained by observing the evolution of VRI during the crystallization
process.

To emphasize the uniqueness of the obtained information, the expe-
rimental techniques which are commonly used in solid-state studies do
not allow any investigations of this type. For example, CEMS (conver-
sion electron Mössbauer spectroscopy) can be used to obtain a surface-
selective information (e.g. from the air side and the wheel side of the
ribbons separately) on the hyperfine interactions. However, it allows me-
asurements only to about 200 nm sample depths so the information on
the sample volume is unavailable by this technique. On the other hand,
the conventional techniques that allow to explore the bulk sample mo-
difications (e.g. magnetization measurements) provide only an integral
property over the whole measured system.

The information on the sample provided so far did not require any
fitting of the time spectra. Nevertheless, for obtaining more information
on the inhomogeneous regions (their thickness, hyperfine parameters,
type of inhomogeneities, etc.) a detailed quantitative evaluation of the
experimental data would be required. Creating such a complex fitting
model solely on the basis of the conducted experiments is a challenging
task. In addition to the inhomogeneities, the model would also need to
reflect the time evolution of nuclear sites and their hyperfine parameters
during the crystallization. Finally, a proper representation of the texture
needs to be implemented for a correct evaluation of experimental data
(see the following chapter). To the author’s knowledge, such a general
implementation of the inhomogeneities and texture has not been realized
in any currently available fitting software. This implementation will be
the subject of further research.
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3 Texture Analysis
3.1 Introduction to Texture

Mössbauer samples may exhibit a preferential orientation of their
effective electric and magnetic fields, i.e. a texture (Fig. 3.1). In other
words, the directional distributions of hyperfine interactions in the solid
system may deviate from the case of randomly oriented fields. Nuclear
resonant scattering shows to be highly sensitive to the local fields ori-
entations and can be used for reconstructing the information on the
texture.

(a)
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z (b)

x
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z (c)
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Figure 3.1: Illustration of the effective (e.g. magnetic) fields directional distributions,
where more frequent orientations (more nuclei with a given magnetic field direction)
are represented by bigger arrows. (a) A random case with equally distributed field
directions. (b) An extreme example of the texture, where all the nuclei feel the mag-
netic field oriented in the same direction. (c) A general case of texture with some
field directions being preferred over others.

To include the texture into the scattering formalism all the directional
contributions must be included into a total scattering length

N =
∫

Ω
N(Ω)D(Ω) dΩ, (3.1)

where the partial scattering lengths N(Ω) from (1.3) are weighted by the
distribution function D(Ω) which is called the texture function. Essen-
tially, the main goal of the texture determination is to reconstruct the
maximum possible information on the texture function.

To evaluate experimental data measured on samples with texture a
parametrization of the texture function is needed. This has been treated
for the special cases of (i) pure magnetic hyperfine interactions, (ii) pure
axially symmetrical electric interactions or (iii) a collinear combination
of the first two cases. A conventional approach is to expand the texture
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function in the basis of real spherical harmonics [32]

D(θ, φ) =
∞∑
l=0

l∑
m=−l

Dl,mYl,m(θ, φ). (3.2)

The angles θ, φ represent, for example, the direction of the effective
magnetic field. The texture has been treated for TMS using the thin-
sample approximation [38]. For 57Fe the transmitted radiation intensity
is linearly dependent on the texture coefficients Dl,m for l ≤ 2, but is
independent of the higher-order coefficients. Consequently, only a limited
information on the texture is obtainable by Mössbauer spectroscopy. A
minimum texture Dmin(θ, φ) defined as

Dmin(θ, φ) =
2∑
l=0

l∑
m=−l

Dl,mYl,m(θ, φ) (3.3)

is the closest experimentally available approximation of D(θ, φ).

3.2 Scattering Formalism Applied to Texture
The scattering length N(θ, φ) of a given nuclear site with the magne-

tic field orientation given by the angles θ and φ is described by formula
(1.3). The general integral (3.1) takes the explicit form

N =
∫ 2π

0

∫ π

0
N(θ, φ)D(θ, φ) sin θ dθdφ. (3.4)

Formula (3.4) can be simplified by expanding both N(θ, φ) and D(θ, φ)
in the real spherical harmonics basis.

The angular dependence is hidden in the nmg,me matrices of the scat-
tering length as given by formulas (1.4) and (1.5). The expansion leads
to the coefficients nmg,me

l,m which are also matrices. By substituting the
expansions into (3.4) and using the orthogonality of real spherical har-
monics the integral reduces to

N =
2∑
l=0

l∑
m=−l

∑
mg,me

Lme
mg

(E)nmg,me
l,m Dl,m. (3.5)
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The generalized scattering length N depends only on the first nine tex-
ture coefficients. Consequently, only the minimum texture (3.3) can be
extracted from the nuclear resonant scattering, regardless of the ap-
plied method, the polarization of the incident radiation or the sample
effective thickness. The individual experimental and sample conditions
may, however, influence how much information on the texture is acces-
sible and how sensitive the scattering/transmission is to the directional
distribution of the magnetic field. This could also lead to various eva-
luation methods which might be suitable for different cases.

The thin-sample approximation in TMS can be obtained by expan-
ding T in a Taylor series and restricting the intensity only to expressions
which are at most linear in ξ (see section 1.3.3). The normalized transmit-
ted radiation intensity in the first-order approximation with respect to ξ
can be written using the sum of individual absorption Mössbauer lines.
For the considered cases of linearly polarized and unpolarized incident
radiation the sum runs only over the l values of 0 and 2. The contribu-
tions corresponding to l = 1 are zero. As a result the Mössbauer lines
depend only on the trivial texture coefficient D0,0 and the five texture
coefficients D2,−2, D2,−1, D2,0, D2,+1 and D2,+2.

Determination of the texture coefficients can be realized by evalua-
ting the ratios of the amplitudes of the Mössbauer lines. The amplitudes
are given as the values of the transmitted radiation intensities in reso-
nances. It can be found that one measured Mössbauer spectrum provides
only one independent amplitudes ratio, which is the ratio of the first and
the second line amplitudes (in the ascending order of the lines resonant
energies). To extract the five texture coefficients, five independent mea-
surements for appropriate sample orientations are required.

The transmission through thick samples follows the same general for-
mulas as in the thin-sample approximation. The expansion of the scat-
tering matrix can be performed again. However, for a scattering system
of arbitrary effective thickness the problem cannot be linearised, i.e. the
exponential form of the matrix should be considered.

The first significant difference from the thin-sample approximation
is that the terms containing Dl,m with l = 1 are generally not zero.
As a result, the amplitudes and their ratios depend on all the nine tex-
ture coefficients. In addition, the information on the texture coefficients
can be extracted from two independent ratios. In contrast to the linear
case, the ratio of the first and the third line amplitudes is no longer a
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constant. Thus, we may obtain two independent equations from one me-
asured spectrum. The amplitudes ratios now also depend on the effective
thickness of the scattering system. Nevertheless, the effective thickness
could either be taken as another variable or it could be determined in
advance. Therefore, if proper orientations of the sample are selected,
then the five measurements are again needed to extract the minimum
texture.

With basically the same number of measurements as required for the
thin-sample approximation, more information on the texture is available
from the Mössbauer measurements when the thickness effects start to
influence the spectra. As a drawback, the resulted dependencies on the
texture coefficients are now non-linear. Selecting a suitable evaluation
approach for extracting the texture coefficients for a general thickness
would be an important point.

For the NFS method the synchrotron radiation is linearly polarized
in the plane of the accelerator storage ring and so the incident radiation
field may be written as ~Ain = Ain~εσ. The normalised form will be con-
sidered, where Iin = |Ain|2 = 1. The scattered radiation field and the
radiation intensity in the time domain can be thus written as

~Asc(t) =
(
F [Tσσ − 1]
F [Tπσ]

)
Ain, (3.6)

Isc(t) = ~A∗sc(t) · ~Asc(t) =
∣∣F [Tσσ − 1]

∣∣2 +
∣∣F [Tπσ]

∣∣2. (3.7)

The difference from TMS can be already seen in the thin-sample ap-
proximation. In contrast to the Mössbauer spectroscopy, where the ap-
proximated intensity was linear in ξ, a quadratic dependence is obtained
in NFS. In addition, the intensity depends on the off-diagonal scattering
length elements even for a thin sample. The polarization mixing in NFS
is reflected in measured time spectra for arbitrary effective thickness.

The analysis showed that the situation in NFS is more similar to
that of TMS applied to thick samples. The time spectrum contains in-
formation on all the nine Dl,m coefficients. Basically, when applied to the
same ideally thin scattering system, the NFS method is “more sensitive”
to texture than TMS. The disadvantages are mainly the non-linearity
and the necessity to extract the information in the time domain.
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3.3 Concluding Remarks
Combination of the general scattering formalism with the texture de-

scription, using its coefficients in real spherical harmonics basis, allows
to include the preferentially oriented electric or magnetic fields into a
theoretical model of a scattering system. The results, as given in the
previous sections, may be implemented into a software package for eva-
luating experimental data from energy or time domain measurements.
Further efforts in selecting a suitable approach for the extraction of the
texture coefficients is needed, mainly for TMS applied to thick samples
and for the time-domain NFS. Major difficulties could be connected to
the non-linear dependence of the Mössbauer lines and the time-domain
patterns on the texture coefficients. One of the options can be the simul-
taneous fitting of the measured experimental data sets.

The evaluation of NFS time spectra is complicated as the information
contained in the energy absorption lines is delocalised in time. Except the
simultaneous fitting of time spectra the harmonic dependence encourages
a Fourier analysis for the texture extraction. Recently, the application of
Fourier transform to time spectra has been successfully applied in NRS
studies [39, 40]. Similar procedures to those developed in TMS could be
used for the Dl,m extraction, where the ratios of the lines obtained as a
Fourier picture of the time signal could be evaluated.
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4 ERNST Software Package
The development of a new software ERNST (Evaluation of Resonant

Nuclear Scattering in energy and Time domain) was motivated by newly
emerging demands on the data analysis in the fields of TMS and NFS
(including those described in chapters 2 and 3).

The software is developed in C programming language using Qt Cre-
ator development environment [41]. The C standard library and GSL
(GNU Scientific Library) are used for the computation [42]. The code
was written and tested on Linux operating system, but it can also be
extended to Windows. ERNST works as a command line executable pro-
gram. It reads the input data from an input ASCII file and, based on the
chosen settings, creates an output file with the calculated data (Fig. 4.1).

Figure 4.1: Screen of the ERNST software with a command line, an input ASCII
file for setting parameters and a plot of results using the gnuplot software.

The magnetic dipole transition of 57Fe nuclide is currently implemen-
ted in the software. The calculations of time and energy domain spectra
are based on the theoretical formalism which was described in chapter
1. The radiation intensities Itr(E) for TMS and Isc(t) for TMS can be
calculated. The theoretical and experimental data can be compared and
visualised using the gnuplot software package [43]. The presented soft-
ware package is under a continuous development as there are many topics
in the nuclear resonant scattering data evaluation which deserve to be
addressed.
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Conclusions
This thesis presented a theoretical description of the coherent elastic

nuclear resonant scattering in the forward direction applied to inhomo-
geneous scattering systems. The results showed that the spatial inhomo-
geneities along the direction of the incoming photons can be measured
by nuclear resonant methods, ensuring several conditions on the studied
system and the used radiation source. A method for revealing inhomo-
geneously distributed hyperfine interactions from two sets of measure-
ments was introduced. It is based on the violation of rotational invariance
(VRI), experimentally observed as a difference in the detected radiation
intensities caused by a rotation of the sample by 180 ◦ around one of the
radiation polarization axes.

There is a significant connection between VRI and directional distri-
butions of hyperfine interactions within a studied system. The intensity
differences can be observed only if the system exhibits a texture (ei-
ther as an inner property or externally induced). This is related to the
polarization effects which accompany the VRI. The observation of VRI
also requires a sufficiently high effective thickness of the sample. The
non-invariance under the rotation arises from the multiple scattering of
photons which exhibits a non-commutative nature.

A general description of the electric or magnetic texture was de-
scribed in this work. The transmission Mössbauer spectra and NFS time
spectra can be calculated for an arbitrary texture function, parametrized
using the texture coefficients in the spherical harmonics basis. Regardless
of the used method or the sample approximation the nuclear resonant
scattering utilizing the 57Fe magnetic dipole transition is affected only
by the texture coefficients Dl,m with l ≤ 2. The amount of available
information on the texture and the applicable evaluation procedures de-
pend on the used method, the incident radiation polarization and the
sample thickness.

The ERNST software package has been developed for treating both
energy domain TMS and time domain NFS experiments. The theoreti-
cal data can be computed and compared to the measured spectra. More
advanced procedures are gradually implemented into the software in or-
der to react to increasing demands on the NRS evaluation.
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Shrnutí v českém jazyce
V dizertační práci je teoreticky popsán koherentní elastický jaderný

rezonanční rozptyl v dopředném směru a jeho využití ke studiu nehomo-
genních materiálů. Dosažené výsledky ukazují, že při splnění podmínek
týkajících se studovaného systému a použitého záření lze jaderné rezo-
nanční metody využít k měření nehomogenního rozložení hyperjemných
interakcí ve směru dopadajícího záření. V práci je představena metoda
pro určení přítomnosti nehomogenit ve vzorku. Tato metoda je založena
na porušení rotační invariance, jenž lze experimentálně pozorovat jako
rozdíl v intenzitě detekovaného záření při rotaci vzorku o 180 ◦ kolem
polarizační osy záření.

Porušení rotační invariance úzce souvisí se směrovými vlastnostmi
hyperjemných interakcí. Pozorování tohoto jevu je možné pouze, pokud
studovaný systém vykazuje preferenční orientace lokálních magnetických
či elektrických polí, tj. texturu. V takovém případě je pozorovaný rozdíl
doprovázen změnou polarizace záření. Další podmínkou pro pozorování
porušení rotační invariance je dostatečně velká efektivní tloušťka vzorku.
Invariance přestává být splněna v důsledku mnohonásobného rozptylu
fotonů, jenž vykazuje nekomutativní chování.

Práce dále obsahuje obecný popis textury v jaderných rezonančních
metodách. Parametrizace texturní funkce pomocí reálných sférických
harmonických funkcí umožňuje výpočet transmisních Mössbauerovských
spekter i časových spekter jaderného dopředného rozptylu. V případě
rezonančního rozptylu na jádrech 57Fe lze získat informaci o texturních
koeficientech Dl,m pouze pro l ≤ 2, a to nezávisle na použité experi-
mentální metodě nebo aproximaci tloušťky studovaného vzorku. Pou-
žitá metoda, vlastnosti dopadajícího záření a tloušťka vzorku nicméně
ovlivňují množství informace, jenž lze o textuře získat a vhodný postup
vyhodnocení naměřených dat.

Pro efektivní analýzu experimentálních dat byl vyvinut softwarový
balíček ERNST, který umožňuje provádět výpočty jak pro Mössbauerovu
spektroskopii v energetické doméně, tak i pro jaderný dopředný rozptyl v
časové doméně. Software umožňuje výpočet teoretických spekter a jejich
srovnání s naměřenými daty.
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