

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF RADIO ELECTRONICS

Digitální střídavý wattmetr

DIGITAL AC WATTMETER

BAKÁLÁŘSKÝ PROJEKT BACHELOR'S PROJECT

AUTOR PRÁCE AUTHOR VEDOUCÍ PRÁCE SUPERVISOR Jan Ledvina

Ing. Jiří Šebesta, Ph.D.

BRNO, 2010

VYSOKÉ UČENÍ TECHNICKÉ V BR<mark>N</mark>Ě

Fakulta elektrotechniky a komunikačních technologií

Ústav radioelektroniky

Bakalářská práce

bakalářský studijní obor Elektronika a sdělovací technika

Student: Jan Ledvina Ročník: 3 *ID:* 106591 *Akademický rok:* 2009/2010

NÁZEV TÉMATU:

Digitální střídavý wattmetr

POKYNY PRO VYPRACOVÁNÍ:

Seznamte se s problematikou číslicového měření střídavých napětí, proudů a výkonů. Proveďte koncepční rozbor řešení střídavého wattmetru s "True RMS" měřením pro napětí z elektrorozvodné sítě. Uvažujte rovněž napájení samotného wattmetru z elektrorozvodné sítě s předpokladem velkého rozsahu efektivního napětí (30 - 260 V). Navrhněte kompletní zapojení wattmetru a jeho mechanické řešení s ohledem na bezpečnost obsluhy.

Navrhněte desku plošných spojů wattmetru a realizujte jej. Sestavte a odlaďte firmware řídicího procesoru wattmetru a proveďte měření jeho parametrů.

DOPORUČENÁ LITERATURA:

WITTE, R. A. Electronic Test Instruments. New Jersey: Prentice Hall, 2002.
 ĎAĎO, S., VEDRAL, J. Číslicové měření. Skriptum. Praha: ČVUT v Praze, 2006.

Termín zadání: 8.2.2010

Termín odevzdání: 28.5.2010

Vedoucí práce: Ing. Jiří Šebesta, Ph.D.

prof. Dr. Ing. Zbyněk Raida Předseda oborové rady

UPOZORNĚNÍ:

Autor bakalářské práce nesmí při vytváření bakalářské práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

ABSTRAKT

Hlavním cílem této bakalářské práce byl vývoj prototypu měřicího přístroje. Přístrojem je Wattmetr s metodou měření TrueRMS. Konstrukce a návrh celého přístroje je rozdělen na dvě oblasti: napájecí zdroj a samotný přístroj. Důvodem tohoto rozdělení je požadavek na široký rozsah vstupních napětí pro zdroj.

KLÍČOVÁ SLOVA

Elektrický výkon

Číslicové měření

TrueRMS

ABSTRACT

The main aim of this bachelor's project was the development of measuring device. The device is the Wattmeter with measuring method TrueRMS. The construction and design of the device is split in two areas: power supply and main device. The reason of this split is requirement of wide range input voltage for power supply.

KEYWORDS

Electric power Digital measuring TrueRMS

LEDVINA, J. *Digitální střídavý wattmetr*. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií. Ústav radioelektroniky, 2010. 51 s., 13 s. příloh. Bakalářská práce. Vedoucí práce: ing. Jiří Šebesta, Ph.D.

PROHLÁŠENÍ

Prohlašuji, že svou bakalářskou práci na téma Digitální střídavý wattmetr jsem vypracoval samostatně pod vedením vedoucího bakalářské práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.

Jako autor uvedené bakalářské práce dále prohlašuji, že v souvislosti s vytvořením této bakalářské práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl nedovoleným způsobem do cizích autorských práv osobnostních a jsem si plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení § 152 trestního zákona č. 140/1961 Sb.

V Brně dne

.....

(podpis autora)

PODĚKOVÁNÍ

Děkuji vedoucímu bakalářské práce ing. Jiřímu Šebestovi, Ph.D. za účinnou metodickou, pedagogickou a odbornou pomoc a další cenné rady při zpracování mé bakalářské práce.

V Brně dne

.....

(podpis autora)

OBSAH

Sez	znam obrá	izků	viii
1	Úvod		10
	1.1	Typické vstupní obvody zdrojů	
	1.2	Definice reálného výkonu	
	1.3	Metody měření výkonu	
	1.3.	1 Měření harmonických průběhů	
	1.3.	2 Měření neharmonických průběhů	13
	1.3.	3 Měření periodických průběhů s dodatečnou úpravou	13
	1.3.	4 Měření metodou TrueRMS	13
2	Teoretic	ký návrh	14
	2.1	Principiální schéma zapojení	
	2.2	Frekvenční rozsah přístroje	
	2.3	Napěťový rozsah přístroje	
	2.4	Proudový rozsah přístroje	
	2.5	Chyby měření	
	2.5.	.1 Chyba měření napětí a proudu	
	2.5.	.2 Chyba výpočtu	
	2.5.	.3 Chyba nevhodného rozsahu	
3	Praktick	a realizace HW	19
	3.1	Zapojení měřícího přístroje v obvodu	
	3.2	Analogová část přístroje	19
	3.2.	.1 Vstupní měřicí a ochranné obvody	
	3.2.	.2 Anti-aliasingové filtry	
	3.2.	.3 Zdroj Uref a volba ADC	
	3.3	Číslicová část přístroje	
	3.3.	.1 Volba MCU a realizace zdroje taktu	
	3.3.	.2 Komunikace MCU a ADC	
	3.3.	.3 LCD	
	3.4	Napájení přístroje	

	3.5	Mechanická konstrukce, bezpečnost obsluhy	28		
4	Praktick	á realizace SW	30		
	4.1	Hlavní smyčka-vývojový diagram	30		
	4.2	Měřící přerušení-vývojový diagram	31		
	4.3	Zdrojový kód	31		
5	Kalibrac	e a měření parametrů druhého prototypu	32		
	5.1	Metoda kalibrace zařízení	32		
	5.2	Měření dosažených vlastností	33		
	5.2.	1 Teoretický úvod a zadání	33		
	5.2.	2 Schéma měření	35		
	5.2.	3 Tabulky použitých měřících přístrojů	36		
	5.2.	4 Tabulky naměřených a vypočtených hodnot	36		
	5.2.	5 Vzor výpočtu	39		
	5.2.	6 Grafické zpracování výsledků měření	40		
	5.2.	7 Vyhodnocení výsledků měření	42		
6	Návrh no	ového typu zdoje	44		
	6.1	Teoretický návrh	44		
	6.2	Návrh hlavních součástek měniče	44		
	6.3	Návrh zbývajících částí zdroje	46		
	6.4	Poznatky z praktické realizace prototypu	47		
7	Závěr		48		
Li	teratura		49		
Se	Seznam symbolů, veličin a zkratek 50				
Se	Seznam příloh 52				

SEZNAM OBRÁZKŮ

Obr. 1.1:	Blokové schéma vstupních obvodů zdrojů 10)
Obr. 1.2:	Voltampérová charakteristika diody11	L
Obr. 1.3:	Jednocestný usměrňovač s reálnou zátěží11	L
Obr. 1.4:	Obvod pro simulaci odběru proudu11	L
Obr. 1.5:	Časové průběhy napětí a proudů jednocestného usměrňovače s kapacitn zátěží	í 2
Obr. 2.1:	Principiální schéma měření14	1
Obr. 2.2:	Frekvenční spektrum proudu i115	5
Obr. 2.3:	Zjednodušené schéma spotřebiče 220W16	5
Obr. 2.4:	Časový odběr proudu spotřebiče 220W17	7
Obr. 3.1:	Způsob zapojení přístroje při měřící činnosti19)
Obr. 3.2: S	chéma vstupních obvodů20)
Obr. 3.3:	Schéma dolní propusti 3-tího řádu (převzato z [3])21	l
Obr. 3.4:	Anti-aliasingový filtr	l
Obr. 3.5:	Frekvenční přenosová charakteristika anti-aliasingového filtru 22	2
Obr. 3.6:	Schéma obvodu ADC převodníků a napěťové reference	3
Obr. 3.7:	Schéma zdroje vzorkovacího kmitočtu	5
Obr. 3.8:]	Detail DPS v oblasti generátoru taktu pro MCU externí generátor-vpravo interní generátor-vlevo (měřítko M 1:4)25	5
Obr. 3.9: Č	asové průběhy komunikace SPI 1,1 mezi ADC a MCU (převzato z [4])20	5
Obr. 3.10:	Zapojení silového okruhu přístroje s detailem na zdroj27	7
Obr. 3.11:	Schéma řízeného usměrňovače28	3
Obr. 3.12:	Mechanické uspořádání prvků přístroje (měřítko M 1:2)29	9
Obr. 4.1: V	ývojový diagram hlavního programu)
Obr. 4.2: V	ývojový diagram přerušení	1
Obr. 5.1: V	levo-multiplikativní chyba; Vpravo-aditivní chyba (převzato z [2])	2
Obr. 5.2: S	chéma měření frekvenční přenosové charakteristiky AAF	5
Obr. 5.3: S	chéma měření převodní funkce proudu3	5
Obr. 5.4: S	chéma měření převodní funkce napětí30	5
Obr. 5.5: 6	Grafy frekvenčních přenosových charakteristik AAF40	0

Obr. 5.6: Graf chyby měření DC proudu	40
Obr. 5.7: Graf chyby měření AC proudu	
Obr. 5.8: Graf chyby měření AC napětí – chybný firmware	41
Obr. 5.9: Graf chyby měření AC proudu – opravený firmware	
Obr. 6.1: Blokové schéma druhého zdroje	
Obr. 6.2: Schéma zdroje 2	

1 ÚVOD

Již dlouho je známo, že pro přenos elektrické energie je výhodnější střídavý proud. Narozdíl od stejnosměrného se vyznačuje menšími ztrátami na vedení. Jednotlivé výhody rovněž popisuje [1]. Jedním z důvodů pro používání střídavého proudu je možnost tento proud pomocí transformátorů transformovat na jiné hodnoty napětí. Tato vlastnost se rovněž uplatňuje u většiny elektrických zařízení, kde se síťové napětí transformuje na hodnotu, která vyhovuje danému zařízení.

Pro většinu zařízení střídavý proud není dále použitelný. Naopak je zde velice často požadavek na proud stejnosměrný. Z těchto důvodů je třeba na vstup takovéhoto zařízení zařadit blok, který převede proud střídavý na proud stejnosměrný. Stejnosměrné napětí je v dnešní době požadováno minimálně pro napájení řídících obvodů.

1.1 Typické vstupní obvody zdrojů

Jelikož elektrická rozvodná síť se používá jako zdroj energie pro elektrická zařízení, jsou na vstupech těchto zařízení obvody, jejichž úkolem je vytvoření požadovaných napětí. Tyto části zařízení jsou zdroje. Takovýto zdroj je znázorněn na blokovém schématu zde Obr. 1.1.

Obr. 1.1: Blokové schéma vstupních obvodů zdrojů

Vstupním blokem bývá odrušovací filtr, který se často u jednoduchých zařízení vypouští. Tento filtr má zejména význam z hlediska elektromagnetické kompatibility zařízení. Další částí je transformátor. Jeho význam je galvanické oddělení a napěťové přizpůsobení. Tento blok v některých konstrukcích rovněž není použit. Další důležitý blok je usměrňovač. Usměrňovač obecně je zařízení měnící střídavé napětí na napětí stejnosměrné. Takováto přeměna se nejjednodušeji realizuje na nelineárním prvku, jehož možnou voltampérovou charakteristiku znázorňuje Obr. 1.2. Zapojíme-li potom takovýto prvek do jednoduchého obvodu viz Obr. 1.3. získáme jednocestný usměrňovač, jehož časové průběhy veličin jsou rovněž na Obr. 1.3.

Voltamperová charakteristika diody

Obr. 1.2: Voltampérová charakteristika diody

Obr. 1.3: Jednocestný usměrňovač s reálnou zátěží

Pro lepší činnost zdrojů je napětí z těchto usměrňovačů přiváděno na filtry. Tyto filtry potom odstraňují střídavou složku z výstupního usměrněného napětí.

Obr. 1.4: Obvod pro simulaci odběru proudu

Zapojení z Obr. 1.4 představuje jednoduché schéma pro simulaci vlastností těchto obvodů v programu PSpice. Výsledné časové průběhy napětí a proudu na vstupu i výstupu pak znázorňuje Obr. 1.5.

Obr. 1.5: Časové průběhy napětí a proudů jednocestného usměrňovače s kapacitní zátěží

1.2 Definice reálného výkonu

Dle [2] je definováno několik údajů popisujících výkon. Jedná se o střední hodnotu výkonu, okamžitou hodnotu výkonu, příp. se dále rozlišuje, zda se jedná o výkon funkcí periodických, neperiodických nebo harmonických. Střední výkon periodických funkcí je definován dle [2]

$$P = \frac{1}{T} \int_{0}^{T} u(t) \cdot i(t) \cdot dt$$
(1.1)

veličina u(t) reprezentuje časový průběh napětí na zátěži, jejíž výkon zjišťujeme. Veličina i(t) je časový průběh proudu tekoucího do této zátěže. Z tohoto vztahu se tedy obvykle při stanovení výkonu v obecném tvaru vychází.

1.3 Metody měření výkonu

V praxi se rovněž setkáváme se spoustou případů, kdy není třeba dodržovat vztah (1.1) a využívá se některých vlastností pro zjednodušení měření. Proto existuje spousta možností jak výkon měřit. Některé typické metody zde budou krátce popsány.

1.3.1 Měření harmonických průběhů

V případě, že časová funkce u(t) a i(t) je harmonická, můžeme měření výkonu zjednodušit. Vztah (1.1) přejde na nový vztah (1.2)

 $P = U \cdot I \cdot \cos \varphi$

kde *U* značí efektivní hodnotu harmonického napětí a *I* efektivní hodnotu proudu. Úhel φ značí vzájemný fázový posuv těchto veličin.

Tato metoda nachází své obrovské uplatnění zejména v silnoproudých aplikacích, kde se setkáváme převážně s harmonickými průběhy.

1.3.2 Měření neharmonických průběhů

Pokud měřené průběhy nejsou harmonické, je třeba opět použít vztah (1.1). Pro realizaci takovéhoto měření se dříve používaly ručkové wattmetry. Jejich konstrukce byla schopna realizovat matematickou funkci pro správné měření. Nevýhodou těchto ústrojí byl jejich frekvenční rozsah a přesnost. V dnešní době je další nevýhodou cena a rovněž chybí možnost automatizace měření.

1.3.3 Měření periodických průběhů s dodatečnou úpravou

Jelikož spousta číslicových přístrojů neumí měřit efektivní hodnoty, používají se metody, kde se vychází z předpokladu měření harmonické funkce. Potom se tedy obvykle měří špičková hodnota, případně se toto napětí usměrňuje a měří se střední hodnota tohoto usměrněného průběhu. Obě tyto hodnoty se pomocí konstanty dají přepočítat na efektivní hodnotu. Nevýhodou je různost této konstanty pro každou funkci. Některé tyto konstanty lze nalézt v [2].

1.3.4 Měření metodou TrueRMS

Z názvu TrueRMS již vyplývá základní vlastnost této metody. Měří se totiž skutečná efektivní hodnota. Tato metoda vznikla rovněž s příchodem číslicových měření. Opět se vychází ze vztahu (1.1). Tento vztah se realizuje buď v pomocných analogových obvodech násobiček a integrátoru nebo číslicově v procesoru dle rovnice (1.3).

$$P = \frac{1}{N} \sum_{i=0}^{N} U_i \cdot I_i \tag{1.3}$$

kde *N* je celkový počet vzorků z kterých se určuje výkon. U_i a I_i jsou jednotlivé vzorky časových funkcí napětí a proudu.

2 TEORETICKÝ NÁVRH

V této kapitole se řeší princip celého přístroje, jeho parametry a možný vznik jednotlivých chyb měření.

2.1 Principiální schéma zapojení

Ze dvou uvedených možností měření TrueRMS byla vybrána pro tuto práci druhá v pořadí, tedy s výpočtem v procesoru. Schéma pro popis principu tohoto měření je na Obr. 2.1.

Obr. 2.1: Principiální schéma měření

Princip činnosti je následující. V obvodech analogového zpracování dojde k potřebným úpravám veličin u(t) a i(t) tak, aby je bylo možno dále číslicově zpracovat. A/D obvody zajistí příslušnou konverzi z těchto časových průběhů na posloupnosti čísel. Tato posloupnost poté putuje do mikrokontroléru, kde dojde k výpočtu vztahu (1.3). Pro zajištění konstantní hodnoty délky periody *T* se používá časový generátor. Výsledná hodnota je potom mikrokontrolérem poslána dále. Z tohoto principu lze stanovit základní požadavky a vlastnosti jednotlivých částí systému.

2.2 Frekvenční rozsah přístroje

Pokud provedeme Furierovu transformaci časových funkcí proudu a napětí na zátěži, ve většině případů zjistíme, že spektra těchto funkcí obsahují velké množství vyšších harmonických složek. Toto je většinou důsledek práce usměrňovačů na vstupech měřených obvodů. Příklad spektra časové funkce proudu i1(t) z Obr. 1.5 je znázorněn na Obr. 2.2.

Obr. 2.2: Frekvenční spektrum proudu il

Z obrázku vyplývá, že pro přesné měření je třeba měřit i vyšší harmonické. Za předpokladu zanedbání složek slabších než 0,001 násobek první harmonické, musí přístroj měřit frekvence do 8 kHz.

Zde vzniká první důležitý požadavek pro správnou funkci přístroje. Základní podmínkou všech číslicových obvodů je splnění tzv. Nyquistova theoremu [2]. Vztah vyjadřující tuto podmínku je (2.1).

$$f_{vz} \ge 2 \cdot f_{\max} \tag{2.1}$$

kde f_{max} je maximální kmitočet vzorkovaného časového průběhu a f_{vz} je frekvence vzorkování.

Pro splnění této podmínky by tedy obvod v případě zpracování frekvencí do 8 kHz musel vzorkovat rychlosti 16 kHz. Další podmínkou pro správnost zpracování je vyrovnaná frekvenční charakteristika přenosové trasy, neboli části přístroje s pomocnými analogovými obvody. Z Obr. 2.2 lze stanovit potřebný rozsah přenosu frekvencí 0 ÷ 8 kHz. Požadavek na nulovou frekvenci znamená nutnost přenášet i stejnosměrnou složku měřených veličin. Toto je velmi problematické zejména při návrhu vazeb mezi jednotlivými obvody.

2.3 Napěťový rozsah přístroje

Běžné obvody pro A/D převod pracují s referenčními napětími v řádu jednotek voltů. Z těchto důvodů se používají v měřicích přístrojích napěťové děliče, jejichž úkolem je přizpůsobit měřené napětí pro daný A/D převodník. Jak uvádí [2], pro přesné měření je třeba využívat konec rozsahu měřicího převodníku. Nesmí ovšem dojít k saturaci neboli překročení referenčního napětí. U kvalitnějších přístrojů se využívá možnosti změny rozsahu převodníku v rámci zajištění přesnějšího měření. Pro zpracování běžné síťové hodnoty napětí tedy je třeba volit vstupní rozsah jako velikost maximálního síťového napětí + rezerva pro nepřekročení saturace. Přibližný výpočet hodnoty rozsahu přístroje:

$$U_{MAX} = \left(U_{EF} \cdot \sqrt{2}\right) + 10\% + 10\% \tag{2.2}$$

kde U_{MAX} je maximální kladná nebo záporná hodnota měřeného napětí. U_{EF} je efektivní hodnota síťového napětí (230 V) hodnoty +10 % zohledňují možnost kolísání síťového napětí a rezervu proti saturaci. Za předpokladu využití tohoto přístroje pro měření přímo na síťovém napětí je potřebný rozsah napětí asi -395 V až +395 V.

2.4 Proudový rozsah přístroje

Proudový rozsah přístroje musí být stejně jako napěťový dimenzován na špičkovou hodnotu. Tato hodnota nebyla v zadání blíže určena. Pro její stanovení je třeba uvážit časové průběhy měřených veličin a hodnoty měřených veličin. Jak ukazuje Obr. 1.5, proudový odběr jednoduchého simulovaného obvodu byl velmi dynamický a ve špičce několikanásobně překračoval proud dodávaný do zátěže.

U běžných zařízení napájených ze sítě pro domácí užití se hodnoty příkonu pohybují od desítek wattů do stovek, někdy až tisíců wattů. Zařízení s vyšším odběrem obvykle mají odběry proudu harmonické a lze je měřit i pomocí běžných přístrojů. Z tohoto hlediska by proudový rozsah přístroje měl pokrývat možnost měření výkonů alespoň do řádu stovek wattů.

Jako směrodatný údaj byl použit výsledek simulace jednoduchého obvodu reprezentujícího vlastnosti některých spínaných zdrojů. Schéma obvodu je na Obr. 2.3. Je zde použit dvoucestný usměrňovač, což je pro vyšší výkony typické. Dále byla zohledněna vlastní impedance sítě pomocí odporu R1 a indukčnost L1. Zátěž je opět simulována proudovým zdrojem, jehož odběr při daném napětí představuje hodnotu kolem 220 W.

Obr. 2.3: Zjednodušené schéma spotřebiče 220W

Výsledný časový průběh odebíraného proudu je na Obr. 2.4. Je zde rovněž zapsaná hodnota špičkového odběru proudu. Z těchto údajů lze stanovit přibližný proudový rozsah přístroje pomocí vztahu (2.3).

$$I_{MAX} = I_{PEAK} + 10\%$$
 (2.3)

kde I_{MAX} je maximální měřená hodnota proudu a I_{PEAK} je špičková hodnota určena simulací. Proudový rozsah přístroje by měl být -4,2 A až +4,2 A.

Obr. 2.4: Časový odběr proudu spotřebiče 220W

2.5 Chyby měření

Dle [2] se způsob měření s dodatečným výpočtem označuje jako nepřímá měřící metoda. Toto znamená, že pro celkové měření je třeba měřit jiné veličiny a z nich vypočítat požadovanou veličinu. V tomto případě se jedná o měření proudu a napětí. Každá tato veličina se měří s jistou chybou a ta se potom promítne do celkového výsledku.

2.5.1 Chyba měření napětí a proudu

Chyby měření napětí a proudu vznikají zejména na trase mezi měřícím bodem a obvodem ADC. Na této chybě se podepisují různé vlastnosti všech součástek v této cestě. Zásadní vliv mají zejména výrobní rozptyly parametrů součástek.

Pro kompenzaci těchto rozptylových parametrů je vhodné volit odpory do děličů a zesilovačů na trase s malou tolerancí. Největší chyba tak bude vznikat na snímacím odporu proudu, jehož hodnota bude velmi malá a takovéto odpory se vyrábí pouze s tolerancí 1% příp. 5%.

Řešením je použití obvodu jemného doladění. Bude se zejména jednat o trimry kompenzující zesílení příp. napěťový offset. Návrh těchto obvodů by se ovšem měl opírat o prakticky zjištěné vlastnosti systému. Z těchto důvodů zde není uvedeno zapojení těchto obvodů.

2.5.2 Chyba výpočtu

Chyba výpočtu v mikrokontroléru je způsobena zaokrouhlováním. Pro snížení této chyby je třeba počítat na dostatečný počet míst a provést zaokrouhlení až na konci.

V tomto návrhu se počítá s provedením celého výpočtu bez zaokrouhlení. A až na konci je výsledek omezen na pevně daný počet míst. Tuto chybu tedy nemá smysl zde uvažovat.

2.5.3 Chyba nevhodného rozsahu

Tato chyba vzniká vlivem špatné volby rozsahu měřícího přístroje. U tohoto přístroje nebude možná volba rozsahu a tato chyba tedy není tak důležitá. K jejímu vzniku zde však může dojít a to ve třech oblastech: překročení frekvenčního, napěťového nebo proudového rozsahu přístroje.

Tato chyba bude také vznikat v případě měření malých hodnot, kdy se jedná o chybu měření napětí nebo proudu. Jako zásadní zdroj této chyby pak bude obvod ADC, který pracuje s chybou na úrovni kvantovacího šumu.

3 PRAKTICKÁ REALIZACE HW

V této kapitole je popis celého přístroje po hardwarové stránce. Je zde proveden návrh všech součástek a podkladů pro výrobu funkčního prototypu zařízení.

3.1 Zapojení měřícího přístroje v obvodu

Schéma na Obr. 3.1 znázorňuje způsob zapojení přístroje do obvodu, kde má v budoucnu pracovat. Je zde rovněž rozkresleno pár základních vnitřních obvodů přístroje, jejichž funkce je přímo ovlivněna tímto zapojením.

Obr. 3.1: Způsob zapojení přístroje při měřící činnosti

Nejdůležitější v tomto zapojení je možnost záměny fázového (L) a zpětného (N) vodiče. Dle stávajících norem již u sítí TN-S v elektroinstalačních rozvodech není určeno, zapojení L a N vodiče. Na základě tohoto faktu je třeba v konstrukci přístroje uvažovat možnost, že vnitřní svorka GND bude připojena přímo na fázové napětí 230V!!!

Další důležité úvahy souvisí s řešením poruchových stavů přístroje. Zejména se jedná o přerušení snímacího odporu proudu, odpojení přístroje od sítě při připojené akumulační zátěži a přepětí v elektrorozvodné sítí 230V.

3.2 Analogová část přístroje

V této části je popis vstupních obvodu přístroje. Jsou zde naznačeny i ochranné obvody, jejichž činnost souvisí s možnými poruchovými stavy přístroje viz předchozí odstavec. Dále jsou zde obvody AAF a ADC spolu se zdrojem referenčního napětí.

Na základě tohoto řešení je pak navržena i konečná verze DPS pro obvody analogového zpracovaní. Výsledné podklady pro výrobu této DPS jsou na konci v příloze.

3.2.1 Vstupní měřicí a ochranné obvody

Vstupní obvody přístroje plní dvě základní funkce. Dle názvu kapitoly se jedná o měřící a ochrannou funkci. Na Obr. 3.1 je vidět, že snímací prvky jsou vysokonapěťový dělič napětí a sériový snímací odpor proudu. Tyto prvky přímo ovlivňují přesnost měření a proto je uvažováno jejich umístění přímo na základní desku přístroje.

V návaznosti na tyto snímací obvody je třeba připojit impedanční oddělovače a zároveň je třeba uvažovat zavedení stejnosměrného předpětí pro ADC. Tyto obvody jsou všechny konstrukčně navrženy v těsné návaznosti a jsou umístěny na první polovině DPS.

Celkové zapojení této části přístroje včetně obvodů jemné ochrany vstupů je na Obr. 3.2. Další obvody ochran budou umístěny u silové části na DPS zdroje. Jedná se zejména o pojistku a varistor.

Obr. 3.2: Schéma vstupních obvodů

3.2.2 Anti-aliasingové filtry

Pro správnou funkci číslicových systémů je třeba zaručit platnost vztahu (2.1). Při vzorkovacím kmitočtu 65,5 kHz musí být frekvenční spektrum vstupního signálu

omezeno na frekvenci 32,7 kHz. Tento problém řeší tzv. anti-aliasingový filtr. V tomto návrhu je použita dolní propust 5. řádu z RC členů a operačních zesilovačů.

Tyto obvody jsou popsány v mnoha literaturách [3]. Obvyklé způsoby řešení filtrů vyšších řádů je kaskádní řazení elementárních bloků. Jako příklad je zde uveden Obr. 3.3, jehož princip i popis funkce je uveden v [3].

Obr. 3.3: Schéma dolní propusti 3-tího řádu (převzato z [3])

Realizace filtru 5. řádu je i zde řešena kaskádou dvou filtrů. Jeden odpovídá Obr. 3.3 a druhý je opět převzat z [3]. Celkové schéma je na Obr. 3.4. Aproximace filtru byla zvolena Butterwortova.

Obr. 3.4: Anti-aliasingový filtr

Pro zamezení teplotní závislosti obvodu a stability parametru je vhodné použít foliové kondenzátory s tolerancí 5 % a rezistory s tolerancí 5 % a nebo lépe 1 %.

V použitém obvodu je rovněž třeba dbát na správný přenos stejnosměrné složky. Z tohoto hlediska byly zvoleny operační zesilovače s malým napěťovým offsetem. Jde o zesilovače s označením OP07 [5]. Jejich parametry jsou uvedeny v Tab. 3.1. Celkové zapojení bylo odsimulováno v PC a výsledný přenos je na Obr. 3.5.

Parametr	Hodnota	Jednotka
vstupní nesymetrie napěťová	<250	uV
vstupní nesymetrie proudová	<8	nA
Zesílení	>100k	-
šířka pásma	>0,4	MHz
vstupní odpor	>7	MΩ
napájecí napětí	±3 až ±18	V

Tab. 3.1Přehled parametrů obvodu OP07C (převzato z [5])

Obr. 3.5: Frekvenční přenosová charakteristika anti-aliasingového filtru

3.2.3 Zdroj Uref a volba ADC

Při volbě ADC se nejprve vycházelo z přijatelné ceny. Na základě úvahy pro dosažení přesnosti měřeni alespoň 1% byly použity ADC firmy Microchip s označením MCP3201 [4]. Jejich nejdůležitější parametry jsou uvedeny v Tab. 3.2.

Tab. 3.2: Parametry obvodu MCP3201 (převzato z [4])

Parametr	Hodnota
Rozlišení	12 bit
Napájecí napětí	2,7 až 5,5 V
Maximální vzorkovací frekvence při Ucc=5V	100 kS/s
Komunikace	SPI TM mode $0,0$ a $1,1$

Z těchto parametrů lze stanovit hodnotu U_{ref} tak, aby byla splněna podmínka, kdy se kvantizační krok převodníku q rovná celému číslu ve voltech nebo násobcích voltů. Toto později značně zjednoduší výpočet. Zápis této podmínky je zde (3.1).

$$U_{ref} = 2^b \cdot q \tag{3.1}$$

kde U_{ref} je hledaná hodnota napětí, *b* je počet bitů převodníku a *q* je velikost kvantizačního kroku.

Tento problém je již dlouhodobě znám. Proto se vyrábí napěťové reference určené pro toto použití a jejich hodnoty odpovídají hledaným napětím. V tomto případě se jedná o napětí 4,096 V.

Zde byl zvolen obvod firmy Analog Device s označením REF198GS. Celé zapojení obvodu ADC a napěťové reference je uvedeno na Obr. 3.6.

Obr. 3.6: Schéma obvodu ADC převodníků a napěťové reference

Prvky L1,L2,L3 a C1 až C10 jsou filtry pro potlačení rušivých napětí z napájení. Ostatní pasivní součástky představují ochranu vstupů ADC.

3.3 Číslicová část přístroje

V této částí je návrh číslicové části přístroje. Především se jedná o volbu řídícího mikrokontroléru (dále jen MCU), o řešení komunikace mezi LCD příp. ADC a MCU.

Na základě výsledků této části byla navržena i konečná podoba DPS. Podklady jsou opět v příloze.

3.3.1 Volba MCU a realizace zdroje taktu

Vzhledem k předchozím zkušenostem při realizaci prvního prototypu s MCU ATtiny2313 a následně možností práce s MCU ATmega644P spolu s debuggerem AVR Dragon byl zvolen MCU ATmega164P. Tento obvod však v době konstrukce nebyl k dispozici a tak je použit ATmega644P. Praktické rozdíly jsou však pouze ve velikosti pamětí a ceně.

Výhodou nového MCU oproti předchozímu je zejména implementovaná hardwarová násobička a také 2x rozhraní USART, které lze konfigurovat do režimu master SPI.

Pro volbu kmitočtů byly opět směrodatné předchozí zkušenosti. Na základě ověřené realizace výpočtu na MCU ATtiny2313 při taktování 20 MHz, byl obvod schopen zpracovat data s vzorkovacím kmitočtem 65,536 kHz. Při realizaci byly tedy použity opět tyto dva kmitočty.

Volba kmitočtu 65,536 kHz

Dle vzorce (1.3) je potřeba po skončení měření podělit výslednou sumu právě hodnotou *N*. Jelikož dělení je velmi náročná operace pro MCU, je i zde vhodné vybrat hodnotu tak, aby ulehčila závěrečný výpočet.

Obecně platí, že pro dělení základem soustavy lze použít pouze posun řádové čárky. Tato vlastnost je s výhodou použita i zde. Číslo N bylo zvoleno jako mocnina základu dvojkové soustavy $2^{16} = 65536$. Toto číslo tedy určuje počet vzorků pro výpočet sumy. Na konci pak stačí pouze 16 krát provést operaci bitového posunu a dostaneme výsledek v korektní formě.

Aby i zde byly čísla názornější, příp. pro budoucí rozšíření možností měření, byl zvolen kmitočet vzorkování právě 65536 Hz. Z těchto údajů vyplývá, že perioda měření je rovna času 1 s.

Jelikož přesnost zdroje vzorkovacího kmitočtu by mohla ovlivnit výslednou přesnost měření, byl jako zdroj tohoto signálu zvolen krystal na kmitočtu 6,5536 MHz, jehož frekvence byla snížena děličkou 1:100. Schéma tohoto obvodu je na Obr. 3.7.

Obr. 3.7: Schéma zdroje vzorkovacího kmitočtu

Obvod používá obvyklé zapojení inventoru s krystalem s následnou úpravou hran v hradle a dále je zde pouze obvod 74LS390, který obsahuje 2x děličku 1:10.

Volba kmitočtu 20 MHz

Pro dosažení největšího možného výkonu byl zvolen tento kmitočet. Jde o nejvyšší možný u MCU řady AVR 8 bit. Toto byl rovněž jeden z aspektů při volbě MCU.

Při první realizaci obvodu na nepájivém poli bylo zjištěno, že MCU není schopen v zapojení s krystalem pracovat správně. Při dalším vývoji se ukázalo, že interní oscilátor MCU ATmega644P není schopen při krystalech vyšších frekvencí (f>15 MHz) pracovat korektně. Naopak při použití externího generátoru taktu byl MCU schopen pracovat správně i na frekvenci 24 MHz. Na základě těchto zjištění byla v návrhu DPS vytvořena možnost realizovat oba generátory, aby bylo jisté, že MCU bude pracovat korektně. Jednotlivé způsoby úprav DPS pro volbu konkrétního generátoru jsou zaznačeny v Obr. 3.8.

Obr. 3.8: Detail DPS v oblasti generátoru taktu pro MCU externí generátor-vpravo interní generátor-vlevo (měřítko M 1:4)

3.3.2 Komunikace MCU a ADC

Jedním z důvodů volby nového MCU byla právě možnost nové metody komunikace s ADC. Předchozí návrh řešil komunikaci s využitím pomocných obvodu a softwarovou pomocí. Nový MCU má však k dispozici 2x USART. Toto rozhraní je složeno z několika konfigurovatelných obvodu z nichž lze sestavit obvody plnicí funkci různých sériových komunikací. Dle [6] je možnost toto rozhraní rovněž nastavit do režimu SPI.

Celková realizace komunikace je tedy plně obstarána MCU. ADC podporují dva módy SPI [4]. V tomto návrhu byl pro realizaci vybrán SPI mód 1,1. Detailní průběh komunikace mezi ADC a MCU v tomto módu je na Obr. 3.9.

Obr. 3.9: Časové průběhy komunikace SPI 1,1 mezi ADC a MCU (převzato z [4])

3.3.3 LCD

Pro zobrazení měřené veličiny bylo zvoleno použití alfanumerického displeje LCD. Jde o displej s integrovaným řadičem na bázi obvodu HD44780. Pro komunikaci s tímto řadičem se používají 3 řídící vodiče a 8 příp. 4 datové. Celkový počet vodičů pro komunikaci je tedy 7 nebo 11. V tomto řešení bylo využito možnosti se 7 vodiči. Tyto vodiče jsou přivedeny na port A MCU. LCD displej má možnost použití podsvětlení. Tato možnost je zde rovněž využita. Samotná komunikace je potom detailně popsána v [7].

3.4 Napájení přístroje

Dle zadání by měl přístroj používat pro své napájení měřeného síťového napětí v rozsahu hodnot 30 V až 260 V efektivních. Toto je velice široký rozsah a obtížně realizovatelný.

Pro lepší orientaci je na Obr. 3.10 opět uvedeno připojení přístroje na silový okruh, nyní však s přesnějším zapojením zdroje.

Obr. 3.10: Zapojení silového okruhu přístroje s detailem na zdroj

Na tomto schématu je zejména důležité dodržet zapojení odporu R_1 až R_3 a zapojení vodiče GND. Také je důležité napájet wattmetr přímo ze sítě ještě před snímacím odporem proudu, aby nedošlo k tomu, že odpor bude snímat i napájecí proud wattmetru.

Během realizace prvního prototypu přístroje byly změřený proudové nároky přístroje pro další návrh. Zde je tabulka se získanými hodnotami.

Tab.	3.3	Proudové	nároky	prvního	prototypu
------	-----	----------	--------	---------	-----------

Parametr	Hodnota	Jednotka
I_{CC+5V}	+89	mA
I_{CC+12V}	+14	mA
I_{CC-12V}	-14	mA

Na základě těchto hodnot byla vybrána možnost realizace zdroje s řízeným usměrňovačem. Celkové zapojení zdroje pak bylo rozděleno na dva bloky. První blok je pro získání přibližně stabilního napětí z vstupního střídavého napětí. Druhý blok má za úkol stabilizovat napětí na požadované hodnoty. Napětí -12 V je získáno pomocí obvodu nábojové pumpy.

Při návrhu zdroje bylo stěžejním bodem sestavení řízeného usměrňovače. Schéma pouze tohoto bloku je na Obr. 3.11.

Obr. 3.11: Schéma řízeného usměrňovače

Řídícím prvkem zapojení je komparátor IO1, který otevírá silový prvek T2. Podmínkou otevření silového prvku je 0 V $U_{fázové}$ <30 V. Pro správné rozběhnutí zdroje je třeba rychle získat napájecí napětí pro komparátor. Toto je zařízeno pomocnými prvky R1,R2,C1,D1.

Při návrhu DPS zdroje bylo třeba zohlednit již realizované mechanické částí, proto byla DPS rozdělena na dvě části. Tyto DPS a jejich schémata jsou uvedené v příloze.

3.5 Mechanická konstrukce, bezpečnost obsluhy

Jako třída ochrany elektrického zařízení je použita třída I., která je charakteristická připojením ochranného vodiče a k němu připojením všech vnějších kovových části přístroje.

Pro připojení přístroje k měřenému objektu budou na těle přístroje dvě zásuvky. Vstupní napájecí zásuvka s eurokonektorem a výstupní zásuvka bude běžná elektroinstalační zásuvka s ochranným vodičem.

Na základě předchozího návrhu byla použita kovová krabička z katalogu firmy EZK (2004) pod označením KK07-100. Pro dodržení bezpečnosti obsluhy je třeba zajistit vždy připojení mezi ochranným vodičem a krabičkou. Celkové uspořádaní jednotlivých částí přístroje je na Obr. 3.12.

Obr. 3.12: Mechanické uspořádání prvků přístroje (měřítko M 1:2)

4 PRAKTICKÁ REALIZACE SW

V této kapitole je jednoduchý náznak realizace firmwaru pro řídící obvod ATmega644. Úkolem programu je realizovat celkový výpočet a na základě požadavku obsluhy zobrazit požadovaná data.

4.1 Hlavní smyčka-vývojový diagram

Hlavní smyčka je zde realizována jako dvě smyčky vložené do sebe. Vnitřní smyčka má za úkol kontrolovat tlačítka, čítač a čekat na přerušení. V případě přetečení čítače pak program přeskočí do vnější smyčky, kde dojde k dodatečným výpočtům a zobrazení daného výsledku dle požadavků obsluhy. Celý proces je na Obr. 4.1.

Obr. 4.1: Vývojový diagram hlavního programu

4.2 Měřící přerušení-vývojový diagram

Na základě předchozích zkušenosti a realizaci prototypu s mikrokontrolerem ATtiny2313 bylo zvoleno synchronizování měřícího a výpočetního cyklu pomoci přerušení. Toto přerušení je generováno krystalovým generátorem s frekvencí 65,536 kHz. Zároveň je zde využita možnost připojení čítače na externí zdroj taktu. Tento zdroj je rovněž frekvence 65,536 kHz. Díky tomuto je celé hlídaní délky měřícího cyklu jednodušší. Samotný program obsahující komunikaci s ADC a výpočet je pak umístěna v již zmíněném přerušení. Jednoduchý vývojový diagram tohoto přerušení je na Obr. 4.2.

Obr. 4.2: Vývojový diagram přerušení

4.3 Zdrojový kód

Jelikož pro dosažení většího výkonu MCU bylo použito pouze jazyka symbolických adres (dále jen JSA) je samozřejmě výsledný kód nepřehledný a není ani univerzální.

Pro možnost orientace je v příloze uvedena přehledová tabulka, která popisuje význam pamětí RAM i s významovým popisem uložených dat. Co se týče registru ty jsou rozděleny na tři skupiny. V první se pracuje v přerušení, v druhé se pracuje mimo přerušení a poslední lze využit v obou oblastech. Registry pro přerušení jsou: R2, R3, R4, R5, R6, R7, R8, R9, R18, R19, R20, R21, R22, R23, R24, R25; pro hl. smyčku: R10, R11, R12, R13, R14, R15, R26, R27, R28, R29, R30, R31; společné jsou: R0, R1, R16, R17.

5 KALIBRACE A MĚŘENÍ PARAMETRŮ DRUHÉHO PROTOTYPU

Tato kapitola popisuje ověřovaní dosažených vlastností již realizovaného zařízeni, včetně popisu metody kalibrace.

5.1 Metoda kalibrace zařízení

Před samotným měřením a hodnocením dosažených parametrů je třeba zkalibrovat přístroj. Tento přístroj má možnost kalibrace 4 parametrů. Dva parametry ovlivňují přenosovou funkci měření napětí a zbývající dva přenosovou funkci měření proudu.

Dle [2] existuje několik základních chyb přístroje, které jsou charakteristické tím jak ovlivní převodní charakteristiku. (aditivní, multiplikativní, nelineární, apod.) Názorněji tyto chyby vyjadřuje Obr. 5.1.

Obr. 5.1: Vlevo-multiplikativní chyba; Vpravo-aditivní chyba (převzato z [2])

Přesně tyto dvě chyby umožňuje přístroj korigovat. Pokud bychom korekci těchto chyb chtěli popsat matematicky jde o změnu konstant K_{mul} a K_{add} v rovnici (5.1) tak, aby výsledný vztah byl lineární závislost veličiny $Y_{\rm M}$ na $X_{\rm M}$ s jednotkovou směrnicí. Konkrétní hledané hodnoty by pak byly K_{add} =0 a K_{mul} =1.

$$Y_M = K_{add} + K_{mul} \cdot X_M \qquad [x;x,-,x]$$
(5.1)

kde $Y_{\rm M}$ je výsledná změřená hodnota veličiny, $K_{\rm add}$ je aditivní chyba měření, $K_{\rm mul}$ je multiplikativní chyba měření a $X_{\rm M}$ je skutečná měřená hodnota veličiny.

Výhodou kalibrace tohoto přístroje je možnost kalibrovat i pomocí stejnosměrného napětí a proudu.

Postup kalibrace přístroje:

- 1) Zapojit přístroj s pomocným zdrojem napětí +5V,+12V,-12V
- 2) Použít firmware MCU s možností měření samostatně U a I
- 3) Zkratovat všechny měřící svorky přístroje.
- "NULOVÁNÍ" Pomocí kalibračních trimrů R39 a R41 nastavit na displeji hodnoty U=000.0V a I=0.000A. V případě, že hodnota nelze nastavit, je třeba nastavit nejnižší možnou hodnotu.
- 5) Odstranit zkrat ze svorek přístroje. Zapojit externí zdroj stejnosměrného/střídavého proudu a ampérmetr do smyčky měření proudu viz Obr. 5.3.
- 6) Nastavit proud na hodnotu v rozsahu 0,5-2 A_{ef}, tak aby kalibrační ampérmetr dosáhl nejmenší možné chyby.
- 7) Odečíst přesným "kalibračním" ampérmetrem hodnotu proudu a tuto hodnotu nastavit pomocí trimru R40 na displeji přístroje.
- 8) Odpojit kalibrační zdroj proudu a ampérmetr. Připojit externí zdroj stejnosměrného/střídavého napětí a voltmetr k svorkám měření napětí viz Obr. 5.4.
- 9) Nastavit napětí na hodnotu v rozsahu 100-260 V_{ef} , tak aby kalibrační voltmetr dosáhl nejmenší možné chyby.
- 10) Odečíst přesným "kalibračním" voltmetrem hodnotu napětí a tuto hodnotu nastavit pomocí trimru R42 na displeji přístroje.
- 11) Zajistit trimry proti změně (zalepení). Konec kalibrace.

5.2 Měření dosažených vlastností

Během vývoje každého zařízení je třeba zaznamenávat dosažené výsledky a zjišťovat, zda skutečné parametry odpovídají teoretickým. Toto samozřejmě patří i k vývoji tohoto přístroje. V první řadě je třeba měřením kontrolovat klíčové vlastnosti bloků, které později mají přímý vliv na měřící schopnosti zařízení. Dalším důvodem těchto měření je možnost celkové klasifikace kvality přístroje. A v neposlední řadě lze těchto výsledků užít při praktickém pokračovaní vývoje zařízení.

5.2.1 Teoretický úvod a zadání

Měření je rozděleno na dvě oblasti. První je zaměřena na stanovení výsledné přesnosti přístroje. Druhá oblast je zaměřena na měření ostatních parametrů, zejména se jedná o měření parametrů zdroje.

Wattmetr je přístroj pro měření hodnoty výkonu. V případě měření střídavých výkonů je třeba, aby přístroj měřil dle skutečnosti. Toto je zdůrazněno i v samotném zadání projektu (TrueRMS). Definiční vztah pro měření výkonu je (5.2).

$$P = \frac{1}{T} \int_{0}^{t} u(t) \cdot i(t) dt \qquad [W;V,A]$$
(5.2)

kde T je doba měření, u(t) je časový průběh měřeného napětí a i(t) je časový průběh měřeného proudu.

Z tohoto vztahu je vidět, že pro změření hodnoty P je třeba změřit u a i. Pokud ale vztah (5.1) upravíme furierovou transformací dostaneme nový vztah (5.3).

$$P = \sum_{i=0}^{\infty} U_i \cdot I_i \cdot \cos \varphi_i \qquad [W; V, A, -]$$
(5.3)

Kde U_i je i-tá harmonická časového průběhu napětí, I_i je i-tá harmonická časového průběhu proudu a φ_i je i-tý fázový posuv mezi i-tými harmonickými napětí a proudu.

V tomto vztahu je již vidět, že přesnost přístroje bude ovlivněna rovněž jeho schopností přenášet jednotlivé spektrální složky. Pro správnost měření je tedy požadovaná vyrovnaná frekvenční přenosová charakteristika měřícího zapojení.

Na základě tohoto rozboru je třeba změřit celkové vlastnosti a porovnat je s předpokládanými. Přehled předpokládaných vlastností přístroje je uveden v Tab. 5.1.

Tab. 5.1: Předpokládané parametry přístroje

Parametr	Předpokládaná hodnota
Šířka pásma	$0 \div 30 \text{ kHz}$
Přesnost měření U	±1% ±2dig
Přesnost měření I	±2% ±2dig
Stabilita časové základny	10 ⁻⁵

Druhá část měření má za úkol zdokumentovat zejména dosažené vlastnosti navrženého zdroje. Při vývoji již byly na základě předchozího prototypu stanoveny požadavky na zdroj. Je tedy třeba provést měření splnění těchto parametrů. Přehled požadovaných parametrů zdroje je uveden v Tab. 5.2.

Tab. 5.2: Požadované parametry zdroje

Parametr	Předpokládaná hodnota		
Výstupní napětí	+(5±0,5) V; +(12±0,5) V; -(12±0,5) V;		
Výstupní proud +5V	> 100 mA		
Výstupní proud +12V	> 20 mA		
Výstupní proud -12V	> 20 mA		
Rozsah vstupních napětí	30 – 260V _{ef} /50Hz harmonického průběhu		

Obr. 5.2: Schéma měření frekvenční přenosové charakteristiky AAF

*vstup AAF je spoj mezi R39 a R30, resp. R41 a R7 *výstup AAF je pin č.2 u ADC

Obr. 5.3: Schéma měření převodní funkce proudu

Obr. 5.4: Schéma měření převodní funkce napětí

5.2.3 Tabulky použitých měřících přístrojů

Význam přístroje	Značka/Typ	Ev.Č./Výr.Č.	Poznámky
Generátor	METEX MS9170	-	-
milivoltmetr	Tesla BM579	-	-
Zdroj 1	-	-	Zdroj pevného napětí +12V
Zdroj 2	-	-	Zdroj pevného napětí +12V

Tab. 5.3: Tabulka použitých měřících přístrojů - měření AAF

Tab. 5.4: Tabulka použitých měřících přístrojů - kalibrace a měření převodních funkcí

Význam přístroje	Značka/Typ	Ev.Č./Výr.Č.	Poznámky
Voltmetr/ Ampérmetr	EZ DM-441B	S/N: 5030017	Digitální stolní multimetr, 4½
Zdroj 1	Diametral AC 250K1D	V.Č. 314	Regulovatelný zdroj střídavého napětí, 0- 250 V, 0-1 A
Zdroj 2	MCP M10-DP-305E	E.Č. 2004	Regulovatelný zdroj stejnosměrného napětí, 2x0-30 V, 0- 5 A

Tab. 5.5: Tabulka použitých měřících přístrojů - měření převodní funkce napětí a měření zdroje

Význam přístroje	Značka/Typ	Ev.Č./Výr.Č.	Poznámky
Voltmetr/ Ampérmetr	UNI-T U70A	S/N: 1080519410	Digitální stolní multimetr, 4½
Zdroj 1	-	-	Sériové spojení transformátorů pro
			s potenciometry pro tvorbu AC napětí

5.2.4 Tabulky naměřených a vypočtených hodnot

Měření dne: 5.3.2010

- Úroveň 0 dB je vztažena k 1 mW na 600 Ω (+10 dB \approx 2,45 V_{ef})
- Při měření bylo zjištěno, že hodnoty nad 50 kHz jsou silně ovlivněny superponovaným brumem 50 Hz. Tento problém byl ošetřen použitím jednoduchého RC článku typu HP s mezním kmitočtem asi 1 kHz. Hodnoty 47 kHz a více jsou měřeny s tímto filtrem.
- Přístroje dle Tab. 5.3

f[kHz]	$L_{uin}[dB]$	$L_{uout}[dB]$	$a_u[dB]$	f[kHz]	$L_{uin}[dB]$	$L_{uout}[dB]$	$a_u[dB]$
0,01	+10,0	+10,0	0,0	16,67	+10,0	+7,0	-3,0
0,02	+10,0	+10,0	0,0	21,8	+10,0	+3,7	-6,3
0,05	+10,0	+10,0	0,0	33,0	+10,0	-3,2	-13,2
0,10	+10,0	+10,0	0,0	47,0	+10,0	-12,0	-22,0
0,19	+10,0	+10,0	0,0	65,5	+10,0	-24,4	-34,4
0,50	+10,0	+10,0	0,0	100,0	+10,0	-43,4	-53,4
1,0	+10,0	+10,0	0,0	200,4	+10,0	-59,8	-69,8
2,0	+10,0	+10,0	0,0	501,4	+10,0	-56,4	-66,4
4,9	+10,0	+10,0	0,0	1000	+10,0	-48,3	-58,3
10,1	+10,0	+9,7	-0,3	2000	+10,0	-46,2	-56,2
15,0	+10,0	+8,1	-1,9				

Tab. 5.6: Měření frekvenční přenosové charakteristiky filtru - větev proudu

Tab. 5.7: Měření frekvenční přenosové charakteristiky filtru - větev napětí

f[kHz]	L _{uin} [dB]	$L_{uout}[dB]$	a _u [dB]	f[kHz]	L _{uin} [dB]	$L_{uout}[dB]$	$a_u[dB]$
0,01	+10,0	+10,0	0,0	16,07	+10,0	+7,0	-3,0
0,02	+10,0	+10,0	0,0	18,1	+10,0	+5,6	-4,4
0,05	+10,0	+10,0	0,0	32,9	+10,0	-4,9	-14,9
0,10	+10,0	+10,0	0,0	47,1	+10,0	-12,8	-22,8
0,20	+10,0	+10,0	0,0	65,5	+10,0	-24,7	-34,7
0,50	+10,0	+10,0	0,0	100,5	+10,0	-43,5	-53,5
1,0	+10,0	+10,0	0,0	205,4	+10,0	-53,5	-63,5
2,0	+10,0	+10,0	0,0	513,9	+10,0	-50,7	-60,7
4,9	+10,0	+10,0	0,0	1012	+10,0	-41,3	-51,3
9,8	+10,0	+10,0	0,0	2029	+10,0	-36,8	-46,8
14,9	+10,0	+7,8	-2,2				

Měření dne:14.4.2010

- Použita starší verze firmwaru s chybou výpočtu (chybí dvojkový doplněk)
- Hodnoty proudů nad 2,4 A_{ef} po asi 2 až 5 minutách zahřály snímací odpor na teplotu, kdy přístroj začal měřit chybně; krátkodobá zátěž těmito proudy však nevadila
- Přístroje dle Tab. 5.4

Tab. 5.8: Přehled kalibračních hodnot

Parametr	Skutečná hodnota	Měřená hodnota	Jednotky
I _{nulové}	0	0,000	А
$\mathbf{I}_{ ext{kalibračn} ext{i}}$	3,843	3,843	A_{DC}
$U_{nulov\acute{e}}$	0	0,001	V
$\mathbf{U}_{ ext{kalibračn} ext{i}}$	61,86	061,9	V_{DC}

I _{skut} [A]	Izměř[A]	odch	ylka	Iskut[A]	$I_{zmer}[A]$	odch	iylka
		$\Delta(I)[A]$	δ(I)[%]		·	$\Delta(I)[A]$	δ(I)[%]
0,000	0,000	0,000	0,00	1,200	1,199	-0,001	-0,08
0,124	0,124	0,000	0,00	1,399	1,399	0,000	0,00
0,242	0,243	0,001	0,41	1,587	1,587	0,000	0,00
0,317	0,317	0,000	0,00	1,805	1,806	0,001	0,06
0,422	0,422	0,000	0,00	1,996	1,997	0,001	0,05
0,535	0,535	0,000	0,00	2,218	2,218	0,000	0,00
0,621	0,620	-0,001	-0,16	2,420	2,422	0,002	0,08
0,706	0,705	-0,001	-0,14	2,643	2,643	0,000	0,00
0,803	0,803	0,000	0,00	2,852	2,853	0,001	0,04
0,909	0,908	-0,001	-0,11	3,011	3,011	0,000	0,00
1,008	1,008	0,000	0,00				

Tab. 5.9: Měření převodní závislosti - stejnosměrný proud

Tab. 5.10: Měření převodní závislosti – střídavý proud

I _{skut} [A]	I _{změř} [A]	odch	nylka	I _{skut} [A]	$I_{zm\check{e}\check{r}}[A]$	odch	iylka
		$\Delta(I)[A]$	δ(I)[%]	-		$\Delta(I)[A]$	δ(I)[%]
0,134	0,143	0,009	6,29	0,716	0,723	0,007	0,97
0,285	0,293	0,008	2,73	0,864	0,870	0,006	0,69
0,429	0,437	0,008	1,83	0,928	0,934	0,006	0,64
0,576	0,583	0,007	1,20	0,997	1,003	0,006	0,60

Tab. 5.11: Měření převodní závislosti - střídavé napětí

$U_{skut}[V]$	$U_{zmer}[V]$	odchylka		$U_{skut}[V]$	$U_{zm\check{e}\check{r}}[V]$	odchylka	
		$\Delta(U)[V]$	δ(U)[%]			$\Delta(U)[V]$	δ(U)[%]
9,3	10,3	1,0	9,71	135,3	136,7	1,4	1,02
19,7	20,7	1,0	4,83	146,1	147,5	1,4	0,95
30,1	31,2	1,1	3,53	156,5	157,8	1,3	0,82
40,6	41,7	1,1	2,64	167,1	168,5	1,4	0,83
51,0	52,1	1,1	2,11	177,6	178,7	1,1	0,62
61,4	62,4	1,0	1,60	187,9	188,9	1,0	0,53
72,3	73,5	1,2	1,63	198,5	199,0	0,5	0,25
82,7	83,9	1,2	1,43	208,9	208,6	-0,3	-0,14
93,2	94,5	1,3	1,38	219,5	218,3	-1,2	-0,55
103,7	105,0	1,3	1,24	230,4	227,9	-2,5	-1,10
114,1	115,3	1,2	1,04	251,1	244,6	-6,5	-2,66
124,6	125,9	1,3	1,03	261,1	252,6	-8,5	-3,37

Měření dne: 8.5.2010

- Cílem měření bylo zjistit vliv opravy firmwaru na průběh chyby měření AC veličin
- Dalším cílem bylo ověření dosažených vlastnosti zdroje
- Výstup zdroje byl uvažován na svorkách kondenzátoru C9, zátěž byl rezistor o hodnotě R = 220 Ω
- Přístroje dle Tab. 5.5

U _{skut} [V]	$U_{zm\check{e}\check{r}}[V]$	odchylka		$U_{skut}[V]$	$U_{zm\check{e}\check{r}}[V]$	odch	ylka
		$\Delta(U)[V]$	$\delta(U)[\%]$			$\Delta(U)[V]$	δ(U)[%]
2,0	2,0	0,0	0,00	80,1	80,5	0,4	0,50
9,0	9,0	0,0	0,00	91,0	91,5	0,5	0,55
19,4	19,5	0,1	0,51	104,1	104,8	0,7	0,67
30,4	30,4	0,0	0,00	119,6	120,6	1,0	0,83
40,3	40,4	0,1	0,25	130,1	131,1	1,0	0,76
50,4	50,6	0,2	0,40	140,5	141,3	0,8	0,57
60,8	61,0	0,2	0,33	150,1	151,2	1,1	0,73
69,9	70,3	0,4	0,57	155,2	156,2	1,0	0,64

Tab. 5.12: Měření převodní závislosti - střídavé napětí

Tab. 5.13: Dosažené parametry zdroje

$U_{str}[V]$	$U_0[V]$	$U_Z[V]$	I _Z [mA]
22,6	23,4	24,0	109,0
56,7	23,4	19,6	90,1
114,5	23,4	16,0	72,5
239,5*	-	-	-

* při tomto napětí opakovaně došlo k průrazu výkonového prvku, pravděpodobně v důsledku přechodových jevů vysokým impulsním proudem

5.2.5 Vzor výpočtu

Výpočet napěťového přenosu:

 $a_U = L_{uout} - L_{uin} = +10,0 - +10,0 = 0,0dB$

Výpočet absolutní odchylky měřené veličiny:

$$\Delta(X) = X_{zmem} - X_{skut} \Longrightarrow \Delta(I) = I_{zmem} - I_{skut} = 0,124 - 0,124 = 0,000A$$

Výpočet relativní odchylky měřené veličiny:

$$\delta(X) = \frac{\Delta(X)}{X_{změm}} \cdot 100\% \Longrightarrow \delta(I) = \frac{\Delta(I)}{I_{změm}} \cdot 100\% = \frac{0,000}{0,124} \cdot 100\% = \underbrace{0,00\%}_{0,00\%}$$

5.2.6 Grafické zpracování výsledků měření

Frekvenční přenosové charakteristiky filtrů

-x- Proudová větev -+- Napěťová větev -*- Teoretický předpoklad

Obr. 5.5: Grafy frekvenčních přenosových charakteristik AAF

Graf závislosti relativní chyby měření DC proudu

Obr. 5.6: Graf chyby měření DC proudu

Graf závislosti relativní chyby měření AC proudu

Obr. 5.7: Graf chyby měření AC proudu

Graf závislosti relativní chyby měření AC napětí - chybný firmware

Obr. 5.8: Graf chyby měření AC napětí – chybný firmware

Graf závislosti relativní chyby měření na AC napětí-novější firmware

Obr. 5.9: Graf chyby měření AC proudu – opravený firmware

5.2.7 Vyhodnocení výsledků měření

V prvním měření bylo zjištěno, že výsledné frekvenční charakteristiky filtrů se od předpokládaného průběhu liší posunutím na frekvenční ose. Zásadním výsledkem je změna mezního kmitočtu. Předpokládaná hodnota byla 30 kHz, zjištěná hodnota byla 16 kHz. Tento posun bude zřejmě způsoben kaskádním spojením dvou filtrů nižších řádů, které mají lomovou frekvenci právě 30 kHz.

Další zjištění je neschopnost filtru správně blokovat vyšší kmitočty. Toto je samozřejmě spojeno s parazitními vlivy, které degraduji vlastnosti filtru. I přesto však oba filtry účinně potlačovaly kmitočty nad 100 kHz o více než 40 dB.

Celkově filtry degradují činnost celého zařízení a proto nevyhověly. Nicméně pro další vývoj zůstanou zapojeny a bude třeba počítat s touto vlastností.

Při dalším měření byla nejprve provedena kalibrace za pomocí stejnosměrných veličin. Poté byla změřena závislost chyby měření stejnosměrného proudu. Bylo zjištěno, že celková chyba měření byla na úrovni 1 digitu. V tabulce lze vidět, že rozdíl skutečné a měřené hodnoty byl buď 0,000 A nebo 0,001 A, což je způsobeno zaokrouhlovací chybou přístroje.

Při dalším měření již střídavých veličin byly zjištěny velké chyby měření. Celkově se pohybovaly do 10 %. Jejich příčina byla odhalena jako chyba firmwaru.

Po opravě chyby firmwaru bylo provedeno další měření, nyní už jen v domácích podmínkách. Bylo zjištěno, že celková chyba měření už nepřekračuje 1 %. Při pozornějším zkoumání výsledných hodnot zjistíme, že chybový průběh má charakter multiplikativní chyby, což bude nejspíše způsobeno samotnou chybou kontrolního měřícího přístroje. Proto lze předpokládat ještě menší chybu měření.

Co se týče výsledků měření parametrů zdroje ty jsou naprosto nedostačující. Zdroj vykazoval správnou činnost v rozsahu napětí 22 – 115 V, při vyšších hodnotách však došlo k destrukci. Jelikož se v tomto rozsahu nepohybuje nejpodstatnější hodnota 230 V. Je třeba návrh zdroje přepracovat. Těmto novým změnám se bude věnovat předposlední kapitola této práce.

6 NÁVRH NOVÉHO TYPU ZDOJE

V této kapitole je krátký popis návrhu druhého typu zdroje, který by měl zejména být schopen pracovat v rozsahu napětí $200-250V_{ef}$.

6.1 Teoretický návrh

Po předchozím nezdárném pokusu s řízeným usměrňovačem bylo jako typové řešení zvoleno použití spínaného měniče.

Jelikož stavba měniče přímo ze síťového napětí se zdála být složitá bylo zvoleno použiti vstupního transformátoru, který sníží napětí z rozsahu 30 až 230 V na rozsah cca 5 až 50 V. Toto napětí se usměrní a bude pomocí STEP-DOWN měniče sníženo na hodnotu cca 9 V. Toto napětí se pak použije přímo pro napájení OZ a pomoci LM7805 se získá napájení pro logické obvody. Jednoduché blokové schéma tohoto zdroje je na Obr. 6.1.

Obr. 6.1: Blokové schéma druhého zdroje

Pro řízení měniče byl zvolen obvod MC34063A. Při prvotní realizaci měniče dle aplikačních listu obvodu bylo zjištěno, že měnič má problémy při zpracování takto velkého rozsahu napětí. Na základě tohoto zjištění se konstrukce měniče změnila na STEP-DOWN/UP. Tento měnič dokázal ve své první realizaci pracovat v rozsahu 7 až 50 V_{DC} , při výstupním napětí 5 V a zatěžovacím proudu cca 220 mA.

6.2 Návrh hlavních součástek měniče

Jelikož provést detailní návrh takovéhoto měniče by si vyžádal více času a bylo by třeba zajistit vhodné součástky, což by mohlo vést ke zdržení, je návrh založen na součástkách, které byly v danou chvíli k dispozici.

Princip samotného měniče je obdobný funkci nábojové pumpy. Zde se však mezi vstupem a výstupem nepřepíná kondenzátor, ale indukčnost L1. Výkonové prvky T1 a T2 současně spínají a připojí indukčnost na vstupní napětí U_{in} . Po vypnutí těchto prvků se indukčnost snaží zachovat proud a otevírá novou cestu přes prvky D1 a D2 do výstupních kondenzátorů. Výstupní napětí je pak řídícím obvodem porovnáno s vnitřní referencí a podle výsledku obvod otevírá tranzistory častěji nebo naopak méně často. Doba otevření je pevně určena hodnotou časovacího kondenzátoru C0. Tento kondenzátor určí i poměr t_{on}/t_{off}. Ostatní součástky jsou především pomocné stupně s tranzistory.

Schéma měniče, které odpovídá navrhovanému je na Obr. 6.2. Jelikož obvod MC34063A je omezen na rozsah napájecích napětí 3 až 40 V, je zde použit pomocný stabilizátor pro napájení obvodu. Tento stabilizátor je tvořen zenerovou diodou D3 a výkonovým tranzistorem T3. Volba hodnoty odporu R2 vycházela nejprve z výpočtu na 33k, později však byla upravena experimentálně na 8k2. Zenerova dioda byla odzačátku zvolena pro $U_z = 12$ V. Hodnota časovacího kondenzátoru byla vypočtena na 680pF. K této hodnotě pak byla stanovena hodnota indukčnosti na 20uH. Součástky L1,T2,T3,T4,D1,D2,C1,C3 a C4 byly získány ze starého zdroje do PC. Tranzistor T1 byl zvolen BD652 a tranzistor T5 BC337. Hodnoty odporu pro nastavení pracovních bodů tranzistorů byly nejprve vypočteny a poté experimentálně upraveny na hodnoty R1 a R3 = 330R, R4,R7 a R8 = 150R. U výkonových prvku je zejména třeba hlídat dostatečné dimenzování na maximální napětí. Nejslabším článkem je tranzistor T1, ten má průrazné napětí 140 V.

Obr. 6.2: Schéma zdroje 2

Pro budoucí možnost realizace dalších zařízeni je zde uvedena tabulka Tab. 6.1 s porovnáním stávajících součástek, jejich možnou náhradou a poznámka, které parametry je třeba dodržet.

Označení	Stavající	Náhrada	Poznámka
L1	-	-	L _{min} =20uH; I _{peak} =20A
T2	E13009	BUT11A	Výkonový spínací tranzistor U _{CEmin} =150V; I _{cmin} =3A; I _{peak} =20A; B _{min} =10
Т3	E13009	TIP48	Standardní NF tranzistor U_{CEmin} =100V; I_{cmin} =100mA; P=1,5W
T4	E13009	MPSA42	Spínací tranzistor U _{CEmin} =150V; I _{cmin} =100mA
D1	F16C20C	BYV27-200	$t_{rr} \le 500$ ns; $U_{Rmin} = 100$ V; $I_{Fdc} = 1$ A; $I_{peak} = 50$ A
D2	F16C20C	BYV27-200	$t_{rr} \le 500$ ns; $U_{Rmin} = 100$ V; $I_{Fdc} = 1$ A; $I_{peak} = 50$ A
C1	680u/200V	-	U_{min} =100V; C_{min} =470u
C3,C4	470u/16V	-	Low ESR; U _{min} =16V; C _{min} =330u

Tab. 6.1: Přehled parametrů součástek měniče

6.3 Návrh zbývajících částí zdroje

Dle blokového schématu na Obr. 6.1 zbývá pouze zvolit typ transformátoru a navrhnout stabilizátory a pomocný zdroj záporného napětí. Při návrhu měniče už se předpokládal převodní poměr transformátoru 230/48V. Toto je tedy i dodrženo. Dalším parametrem je zatěžovací proudu transformátoru. Ten se samozřejmě bude měnit v závislosti na napájecím napětí, tak aby byl dodán požadovaný výkon. Přibližně bylo spočteno, že proud sekundárním vinutím muže dosáhnout až hodnot 450mA. Toto je důležité z hlediska dimenzovaní vinutí. Dalším parametrem je příkon ten je spočítán na asi 2,5 W, včetně spotřeby měniče. Toto klade nároky na transformátor zejména z hlediska jádra.

Jelikož běžné transformátory se pro takovéto parametry nedělají byl zvolen transformátor s vyšším výkonem. Jediným omezením byly existující mechanické rozměry krabičky. Parametry transformátoru jsou tedy: převod 230/2x24V; jmenovitý příkon 6VA; jmenovitý proud 2x125mA. Tento poměrně malý proud je omezen schopností jádra přenést pouze 6VA. Proto bylo počítáno s možností samotná vinutí zatížit i vyššími proudy.

Blok stabilizace byl částečně použit s již stávajícího návrhu předchozího zdroje. Napětí 5V je získáno obvodem 7805. Napětí pro operační zesilovače je použito přímo z měniče s pouhým ochranným obvodem s zenerovou diodou. Za touto diodou je rovněž připojena nábojová pumpa pro získání záporného napětí.

Celkové schéma tohoto zdroje bez zakresleného transformátoru je spolu s návrhem jeho DPS v příloze.

6.4 Poznatky z praktické realizace prototypu

Po ověření základních schopností zdroje na nepájivém poli byla zhotovena DPS s celým měničem a stabilizátorem. Při prvních zkouškách bylo zjištěno, že zdroj funguje v rozsahu stejnosměrných napětí 13-47 V. Při těchto zkouškách bylo rovněž zjištěno, že dochází při zátěži 180 mA a vstupním napětí 13 V k silnému zahřívaní výkonových součástek. Z dlouhodobého hlediska je velice pravděpodobné, že navržené chlazení bude nedostačující.

Další zkoušky probíhaly na střídavém napětí zde bylo zjištěno, že zdroj pracuje správně od 10V do 38V. Tento rozsah byl omezen možnostmi zapojení vinutí pomocných transformátorů. Zdroj byl poté testován i na napětí 50V, ale po opakované zkoušce rozběhu došlo ke zničení výkonového tranzistoru T1.

Na základě těchto zjištění byla navržena ještě druhá verze DPS s lepší možností chlazení výkonových prvků. Zde vývoj zdroje v této práci končí.

7 ZÁVĚR

Dle předchozích návrhů se podařilo úspěšně sestavit a oživit hlavní části měřícího systému přístroje. Praktickým měřením bylo ověřeno, že původní návrh firmwaru s absencí výpočtu tzv. jednotkového doplňku je chybný a během měření způsobuje zásadní chybu. Po opravě této chyby bylo ověřeno značné zlepšení přesnosti měření. Při úpravách firmwaru bylo rovněž využito nově vzniklých výkonnostních možností nového mikrokontroleru. Tento výkon byl využit pro měření efektivních hodnot proudu a napětí. Později byla dodána i možnost měření účiníku. Nedostatkem firmwaru je nadále zejména výpis nesmyslných hodnot účiníku v době, kdy neteče proud.

Druhá část práce týkající se realizace zdroje již nemá žádný kladný výsledek. Bylo zjištěno, že první navrhovaný zdroj nebyl schopen pracovat při vyšších napětích. Opakovaně při zapínání docházelo k velkým proudovým rázům, které zřejmě zničily výkonový prvek.

Na základě tohoto neúspěchu byl vytvořen nový návrh zdroje se spínanou indukčností. Tento návrh vykazoval poměrně dobré vlastnosti. Zásadním nedostatkem však bylo silné zahřívaní výkonových prvků. Druhým problémem pak bylo zničení výkonového prvku při zkouškách na střídavé napětí 50V.

Celkový popis dosažených parametrů při zohlednění experimentálních měření je uveden v srovnávací tabulce

Parametr	Hodnota navržená	Hodnota reálná
Napěťový rozsah	±409,6 V _{peak}	260 V _{ef}
Proudový rozsah	±4,096 A _{peak}	2,3 A _{ef}
Frekvenční rozsah	0 ÷ 30 kHz	0-16 kHz
Odhadovaná chyba bez dolaďovacích obvodů	5 ÷ 10 %	-
Odhadovaná chyba s dolaďovacími obvody	<1 %	<1%

Tab. 7.1: Parametry realizovaného přístroje

LITERATURA

- [1] Elektrika.cz : Diskuse, Proč se v dnešní době používá výhradně střídavý a ne ss proud?
 [online]. 2006 [cit. 2010-04-12]. Dostupné z WWW: http://diskuse.elektrika.cz/index.php?topic=%209177.0.
- [2] GESCHEIDTOVÁ, Eva; REZ, Jiří; STEINBAUER, Miloslav. *Měření v elektrotechnice*. Brno : Vysoké učení technické v Brně, 2002. 185 s.
- [3] Aktivní filtry. Amaterské Radio. 1996, 3, s. 90-94.
- [4] Microchip Technology Inc., Katalogový list MCP3201 [online]. [cit. 2010-04-12]. Dostupné z WWW: <u>http://www.digchip.com/datasheets/download_datasheet.php?id=654892&part-number=MCP3201</u>.
- [5] National Semiconductor©, Katalogový list OP-07 [online]. [cit. 2010-04-12]. Dostupné z WWW: <u>http://www.digchip.com/datasheets/download_datasheet.php?id=722642&part-number=OP-07</u>.
- [6] Atmel®, *Katalogový list ATmega644* [online]. [cit. 2010-04-12], Dostupné z WWW: www.atmel.com/dyn/resources/prod_documents/doc8011.pdf.
- [7] Hitachi, Katalogový list HD44780 [online]. [cit. 2010-04-12], Dostupné z WWW: http://www.digchip.com/datasheets/part_details.php?id=1735465&partnumber=HD44780.

SEZNAM SYMBOLŮ, VELIČIN A ZKRATEK

u(t)	Časový průběh napětí
i(t)	Časový průběh proudu
Р	Elektrický výkon
Т	Perioda časových funkcí
U	Efektivní hodnota napětí
Ι	Efektivní hodnota proudu
φ	Fázový posuv harmonických funkcí
$U_{ m i}$	i-tý vzorek časové funkce napětí
Ii	i-tý vzorek časové funkce proudu
Ν	Počet vzorku časové funkce
$f_{ m vz}$	Vzorkovací kmitočet AD převodníku
q	Kvantizační krok AD převodníku
b	Rozlišení AD převodníku
f_{\max}	Maximální kmitočet, který bude správně zpracován číslicovým systémem
$U_{ m max}$	Požadovaná hodnota rozsahu měřícího přístroje
$U_{ m ef}$	Efektivní hodnota síťového napětí
<i>I</i> _{max}	Požadovaná hodnota rozsahu měřícího přístroje
Ipeak	Maximální špičková hodnota proudu měřených veličin
$U_{\rm ref}$	Referenční hodnota napětí měřícího přístroje
$K_{ m mul}$	Konstanta multiplikativní chyby
$K_{\rm add}$	Konstanta multiplikativní chyby
$Y_{\rm M}$	Měřená hodnota veličiny zatížená chybami
X_{M}	Skutečná hodnota veličiny
AAF	Anti-aliasing filtr
ADC	Analog-digital converter
DPS	Deska plošných spojů
LCD	Liquid crystal display
SPI	Serial peripheral interface
RMS	Root mean square

- USART Universal Synchronous and Asynchronous serial Receiver and Transmitter
- MCU Micro Controller Unit

SEZNAM PŘÍLOH

A	Návrh za	řízení	53
	A.1	Schéma analogové části	53
	A.2	Schéma číslicové části	54
	A.3	Schéma zdroje 1 spodní část	54
	A.4	Schéma zdroje 1 horní část	55
	A.5	Schéma zdroje 2	56
	A.6	DPS –analogová část	57
	A.7	DPS – číslicová část – bottom (strana spojů)	57
	A.8	DPS – číslicová část – top (strana součástek)	58
	A.9	DPS – zdroj 1 spodní část	58
	A.10	DPS – zdroj 1 horní část	58
	A.11	DPS – zdroj 2 oprava chlazení	59
B	Seznam s	součástek	60
	B .1	Součástky – analogová část	60
	B.2	Součástky – číslicová část	61
	B.3	Součástky – zdroj 1 spodní část	61
	B.4	Součástky – zdroj 1 horní část	62
	B.5	Součástky – zdroj 2	63
С	Přehled	paměti RAM MCU	64

A NÁVRH ZAŘÍZENÍ

A.1 Schéma analogové části

A.2 Schéma číslicové části

A.3 Schéma zdroje 1 spodní část

A.4 Schéma zdroje 1 horní část

A.6 DPS – analogová část

Rozměr desky 117x55 [mm], měřítko M1:1

A.7 DPS – číslicová část – bottom (strana spojů)

A.8 DPS – číslicová část – top (strana součástek)

- A.9 DPS zdroj 1 spodní část

Rozměry desky 95x35 [mm], měřítko M1:1

A.10 DPS – zdroj 1 horní část

Rozměry desky 130x45 [mm], měřítko M1:1

A.11 DPS – zdroj 2 oprava chlazení

Rozměry desky 115x35 [mm], měřítko M1:1

B SEZNAM SOUČÁSTEK

B.1 Součástky – analogová část

Označení	Hodnota	Pouzdro	Popis
R1,R2,R3	330k / 0,1%	R0207	Uhlíkový rezistor
R4,R5,R6	10k / 0,1%	R0207	Uhlíkový rezistor
R7,R8,R9	1k / 1%	R0204	Uhlíkový rezistor
R10,R11	2k7 / 1%	R0204	Uhlíkový rezistor
R12,R13	100R / 5%	R0207	Uhlíkový rezistor
R14÷R24	1R / 1%	SMD 1206	Uhlíkový rezistor
R25	10k / 5%	R0207	Uhlíkový rezistor
R26	1k / 0,1%	R0207	Uhlíkový rezistor
R27,R28,R29	10k / 0,1%	R0207	Uhlíkový rezistor
R30,R31,R32	1k / 1%	R0204	Uhlíkový rezistor
R33,R34	2k7 / 1%	R0204	Uhlíkový rezistor
R35,R36	100R / 5%	R0207	Uhlíkový rezistor
R39	500R	RTRIM64Z	Víceotáčkový cermentový trimr
R40	1k	RTRIM64Z	Víceotáčkový cermentový trimr
R41,R42	500R	RTRIM64Z	Víceotáčkový cermentový trimr
C1	6n8 / 5%	C050-025x075	Fóliový kondenzátor
C2	15n / 5%	C050-025x075	Fóliový kondenzátor
C3	1n / 5%	C050-025x075	Fóliový kondenzátor
C4	2n7 / 5%	C050-025x075	Fóliový kondenzátor
C5	1n5 / 5%	C050-025x075	Fóliový kondenzátor
C6	6n8 / 5%	C050-025x075	Fóliový kondenzátor
C7	15n / 5%	C050-025x075	Fóliový kondenzátor
C8	1n / 5%	C050-025x075	Fóliový kondenzátor
C9	2n7 / 5%	C050-025x075	Fóliový kondenzátor
C10	1n5 / 5%	C050-025x075	Fóliový kondenzátor
C11,C12	100n	C025-025x050	Keramický kondenzátor
C13	100n	C050-025x075	Keramický kondenzátor
C14,C15	100n	SMD 1206	Keramický kondenzátor
C16,C17	100n	C025-025x050	Keramický kondenzátor
C18÷C21	100n	SMD 1206	Keramický kondenzátor
C22	100n	C050-025x075	Keramický kondenzátor
C23,C24	100n	C025-025x050	Keramický kondenzátor
C25÷C30	100n	SMD 1206	Keramický kondenzátor
C31,C32	220u/16V	E5-10,5	Elektrolytický kondenzátor
C42	10u/16V	SMD A	Tantalový kondenzátor
C43	2u2/16V	SMD A	Tantalový kondenzátor
C44	4u7/10V	SMD A	Tantalový kondenzátor

Označení	Hodnota	Pouzdro	Popis
C45	10u/16V	SMD A	Tantalový kondenzátor
L1,L2,L3	330u/100mA/9,5R	L0204	Indukčnost s jádrem
D1,D2	5V1	DO35	Zenerova dioda
D3÷D8	1N4148	DO35	Rychlá usměrňovací dioda
IO1÷IO6	OP-07CN	DIL8	Operační zesilovač
IO7,IO8	MCP 3201	DIL8	ADC převodník
IO9	REF198GS	SO 08	Napěťová reference
X1	1x7 pinu	MPT7	Pinový žebřík
X2,X3	-	ARK500/2	Svorkovnice

B.2 Součástky – číslicová část

Označení	Hodnota	Pouzdro	Popis	
R1	1M5 / 5%	SMD 1206	Uhlíkový rezistor	
R2	220R / 5%	SMD 1206	Uhlíkový rezistor	
R3	100R / 5%	R0207	Uhlíkový rezistor	
R4,R5	1k8 / 5%	R0207	Uhlíkový rezistor	
R6÷R9	5k6 / 5%	SMD 1206	Uhlíkový rezistor	
R10	10k / 5%	R0207	Uhlíkový rezistor	
R11	220R / 5%	R0207	Uhlíkový rezistor	
R12	1M5 / 5%	R0207	Uhlíkový rezistor	
R13	10k	CA6V	Uhlíkový trimr	
C1	100n	SMD 1206	Keramický kondenzátor	
C2,C3	22p	SMD 0805	Keramický kondenzátor	
C4,C5	15p	SMD 1206	Keramický kondenzátor	
C6÷C10	100n	SMD 1206	Keramický kondenzátor	
C11,C12	10u / 16V	E2,5-6	Elektrolytický kondenzátor	
Q1	65 536kHz	HC-49/U	Piezoelektrický krystal	
Q2	20 000kHz	U4	Piezoelektrický krystal	
IO1	74HC00D	DIL14	4x2 vstupové hradlo NAND	
IO2	74LS390N	DIL16	2x dekadický čítač	
IO3	ATmega644P	TQFP44	Mikrokontrolér	
SV1	2x8	ML16	Konektor pro displej	
SV2,SV3	2x5	ML10	Konektor pro JTAG,ISP	
X1	1x7	-	Dutinky pro kolikové lišty	
JP1÷JP6	1x2	-	Koliková lišta	

B.3 Součástky – zdroj 1 spodní část

Označení	Hodnota	Pouzdro	Popis
R1	470k / 5%	R0207	Uhlíkový rezistor
R2	56k	S63X	Uhlíkový trimr
R3	18k / 5%	R0207	Uhlíkový rezistor

Označení	Hodnota	Pouzdro	Popis
R4	10k / 5%	R0207	Uhlíkový rezistor
R5	18k / 5%	R0207	Uhlíkový rezistor
R6	8M2 / 5%	R0207	Uhlíkový rezistor
R7	10k / 5%	R0207	Uhlíkový rezistor
R 8	1R / 5%	R0207	Uhlíkový rezistor
C1÷C5	100n	C050-025x075	Keramický kondenzátor
C6	10u / 16V	E2,5-6	Elektrolytický kondenzátor
C7	4u7 / 10V	E2,5-6	Elektrolytický kondenzátor
C8	47u / 50V	E5-10,5	Elektrolytický kondenzátor
C9	2200u / 50V	E7,5-18	Elektrolytický kondenzátor
C10	220u / 50V	E3,5-8	Elektrolytický kondenzátor
C11÷C14	10u / 16V	E2,5-5	Elektrolytický kondenzátor
D1÷D3	1N4148	DO35	Rychlá usměrňovací dioda
D4	5V1 / 0,5W	DO35	Zenerova dioda
D5,D6	30 / 1,3W	DO41	Zenerova dioda
VAR1	33V	S05K40	Varistor
IO1	LM393N	DIL8	Komparátor
IO2	7812	TO220	Integrovaný stabilizátor napět
IO3	7805	TO220	Integrovaný stabilizátor napět
IO4	ICL7660CSA	SO8	DC-DC měnič

B.4 Součástky – zdroj 1 horní část

Označení	Hodnota	Pouzdro	Popis
R1	2M2 / 5%	R0207	Uhlíkový rezistor
R2	10k / 5%	R0207	Uhlíkový rezistor
R3,R4	470k / 5%	R0207	Uhlíkový rezistor
R5,R6	56k / 5%	R0207	Uhlíkový rezistor
R7	10k / 5%	R0207	Uhlíkový rezistor
R 8	100k / 5%	R0207	Uhlíkový rezistor
R9	10R / 5% / 5W	KH206-8	Drátový rezistor
C1	1u / 450V	E3,5-8	Elektrolytický kondenzátor
C2	10u / 450V	E5-10,5	Elektrolytický kondenzátor
CX1,CX2	0,1u / 250V	XC15B5	Síťové kondenzátory
CX3	0,22 / 250V	XC15B5	Síťové kondenzátory
CY1,CY2	22n / 1kV	YC10B4	Síťové kondenzátory
L1	5mH / 5A	MFE	Proudově kompenzované trafo
L2	68u / 4A	SFT830D	Indukčnost
D1,D2	BA159	DO41	Usměrňovací dioda
D3,D4	BYV26C	SOD57	Rychlá usměrňovací dioda
D5	36V / 2W	DO15	Zenerova dioda
D6	18V / 1,3W	DO41	Zenerova dioda
VAR1	350V	S10K300	Varistor

Označení	Hodnota	Pouzdro	Popis
T1	BC557	TO92	Univerzální tranzistor
T2	IRG4BC20U	TO220	IGBT tranzistor
F1	T 250mA	SHK20L	Pojistka a držák pojistky
F2	Т 2,5А	SHK20L	Pojistka a držák pojistky

B.5 Součástky – zdroj 2

Označení	Hodnota	Pouzdro	Popis	
R1	330R / 5%	R0207	Uhlíkový rezistor	
R2	8k2 / 5%	R0207	Uhlíkový rezistor	
R3	330R / 5%	R0207	Uhlíkový rezistor	
R4	150R / 5%	R0207	Uhlíkový rezistor	
R5	1k / 5%	R0207	Uhlíkový rezistor	
R6	5k6 / 5%	R0207	Uhlíkový rezistor	
R7,R8	150R / 5%	R0207	Uhlíkový rezistor	
R9	10R / 5%	R0207	Uhlíkový rezistor	
CO	680p	C050-025x075	Keramický kondenzátor	
C1	680u / 100V	E7,5-18	Elektrolytický kondenzátor	
C2	100n	C050-025x075	Keramický kondenzátor	
C3,C4	470u / 16V	E3,5-8	Elektrolytický kondenzátor	
C5	220u / 16V	E3,5-8	Elektrolytický kondenzátor	
C6	100n	C050-025x075	Keramický kondenzátor	
C7	470u / 16V	E3,5-8	Elektrolytický kondenzátor	
C9÷C11	10u / 16V	E2,5-5	Elektrolytický kondenzátor	
C12,C13	100n	C050-025x075	Keramický kondenzátor	
L1	20u / 20A	-	Akumulační indukčnost	
L2	1u / 2A	-	Indukčnost	
D1,D2	F16C20C	TO220	Rychlá usměrňovací dioda	
D3	12V / 0,5W	DO35	Zenerova dioda	
D4	9V / 1,3W	DO41	Zenerova dioda	
B2	100V / 1A	2KBP	Usměrňovací můstek	
T1	BD652	TO220	Darlingtonův tranzistor	
T2	BUT11A	TO220	Spínací tranzistor	
Т3	TIP48	TO220	Univerzální tranzistor	
T4	MPSA42	TO92	Vysokonapěťový tranzistor	
Т5	BC327	TO92	Univerzální tranzistor	
IO1	MC34063A	DIL8	Step-down/up měnič	
IO2	7805	TO220	Integrovaný stabilizátor	
IO3	ICL7660CSA	SO8	DC-DC měnič	

C PŘEHLED PAMĚTI RAM MCU

Rozsah paměti [hex]	MSB [hex]	LSB [hex]	význam	výskyt	Rozsah hodnot [hex]	Jednotky [dec]
0x0100 až 0x0104	0x0100	0x0104	Průběžná suma P	přerušení	-3FF00100 až 3FF00100	$1 \approx 6.1 \cdot 10^{-9} \mathrm{W}$
0x0105 až 0x0109	0x0105	0x0109	Průběžná suma U _{ef} ²	přerušení	0 až 3FF00100	$1\approx 6.1\cdot 10^{-7}~V^2$
0x010A až 0x010E	0x010A	0x010E	Průběžná suma I _{ef} ²	přerušení	0 až 3FF00100	$1\approx 6,1\cdot 10^{-11} \text{ A}^2$
0x0110 až 0x0112	0x0110	0x0112	Výsledná suma P	Hl. smyčka	-3FF001 až 3FF001	1 = 400 uW
0x0113 až 0x0115	0x0113	0x0115	Výsledná suma U _{ef} ²	Hl. smyčka	0 až FFC004	$1 = 0.01 \text{ V}^2$
0x0116 až 0x0118	0x0116	0x0118	Výsledná suma I _{ef} ²	Hl. smyčka	0 až FFC004	$1 = 1 \cdot 10^{-6} V^2$
0x0119 až 0x011A	0x0119	0x011A	Výsledek U _{ef}	Hl. smyčka	0 až 0FFE	1 = 0,1 V
0x011B až 0x011C	0x011B	0x011C	Výsledek I _{ef}	Hl. smyčka	0 až 0FFE	1 = 0,001 A
0x011F	-	-	Znaménko P	Hl. smyčka	0 nebo FF	0 = +; FF = -
0x0120 až 0x0124	0x0120	0x0124	BCD kód P	Hl. smyčka	5 digit	-
0x0128 až 0x012B	0x0128	0x012B	BCD kód U _{ef}	Hl. smyčka	4 digit	-
0x012A až 0x012F	0x012A	0x012F	BCD kód I _{ef}	Hl. smyčka	4 digit	-
0x0130 až 0x0133	0x0130	0x0133	Celkové P*1000	Hl. smyčka výpočet cos fi	0 až F9C183E8	-
0x0134 až 0x0136	0x0134	0x0136	$S = U_{ef} \cdot I_{ef}$	Hl. smyčka výpočet cos fi	0 až FFC004	1 = 400 uVA
0x0137 až 0x013A	0x0137	0x013A	BCD cos fi	Hl. smyčka výpočet cos fi	4 digit	-