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Abstrakt 
Disertační práce formuluje asymptot ické odhady řešení tzv. sublineárních a superlineárních 
diferenciálních rovnic se zpožděním. V těchto odhadech vystupuje řešení pomocných 
funkcionálních rovnic a nerovností. Dále práce pojednává o kvalitativních vlastnostech 
diferenčních rovnic se zpožděním, které vznikly diskretizací s tudovaných diferenciálních 
rovnic. Pozornost je věnována souvislostem asympotického chování řešení rovnic ve spo­
j i tém a diskrétním tvaru, a to v obecném i v konkrétních případech. S tudována je rovněž 
stabilita numerické diskretizace vycházející z ^-metody. Práce obsahuje několik příkladů 
ilustrujících dosažené výsledky. 

Abstract 
This thesis formulates the asymptotic estimates of solutions of the so-called sublinear and 
super linear differential equations with a delayed argument. These estimates are given in 
terms of auxiliary functional equations and inequalities. Further this thesis discusses the 
qualitative properties of some delay difference equations originating from discretizations 
of studied differential equations. We also deal with the resemblances between asymptotic 
behaviour of solutions of given equations in the continuous and discrete form, consider­
ing general as well as particular cases. We discuss stability properties of the 6>-method 
discretizations, too. Several examples illustrating the obtained results are included in the 
thesis. 

K l í č o v á slova 
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1. Introduction 
Delay differential equations play an important role in the research field of various 

applied sciences such as control theory, electrical networks, population dynamics, envi­
ronment science, biology and life science. Mathematical models employing delay differ­
ential equations turn out to be useful especially in the situation, where the description 
of investigated systems depends not only on the position of a system in the current time, 
but also in the past. In such cases the use of ordinary differential equations turns out 
to be insufficient. The presence of a delayed time argument in investigated system may 
frequently influence properties of solutions. 

Delay differential equations in special forms were already investigated by L . Euler. 
However, the systematic study of these differential equations starts at the beginning of 
the fifties of the previous century. The survey of the theory related to delay differential 
equations can be found e.g. in books [3], [6], [18], [28] or [40]. 

It is known that the exact solution of delay differential equations can be found just in 
some special cases. There is no unified approach to solve the delayed differential equations, 
even in the linear case. The theory of ordinary differential equations gives various methods 
to obtain analytical solution (e.g. the variation of constants method, the separation of 
variables method and others). But these methods are inapplicable dealing with delay 
differential equations. Hence qualitative and numerical analysis of these equations gather 
great importance. It utilizes the classic procedures (modified in some sense) for ordinary 
differential equations, e.g. variation of constants method, Lyapunov functional method, 
Taylor and Dirichlet series method, methods of Euler type, trapezoidal rule etc. 

Roughly speaking, basic numerical methods for delay differential equations originate 
from the corresponding procedures for ordinary differential equations, where some addi­
tional operations (especially the interpolation of delayed terms) are involved. The result­
ing formulae are then delay difference equations. Their previous qualitative investigation 
is rather rare because (on the contrary to delay differential equations) there do not exist 
many original significant applications for this type of difference equations. Therefore 
it is just a numerical discretization of delay differential equations which motivates the 
investigation of delay difference equations. 

For successful implementation of numerical methods it is often necessary to have ge­
neral information about qualitative behaviour of solutions of the corresponding exact 
equation. In this sense the qualitative and numerical analysis of solutions of delay dif­
ferential equations influence each other. As an example we can mention a simple initial 
value problem 

x'(t) = -x (0 .99t ) , t>0, x(0) = 1. 

Its solution (exact or numerical) takes within a long time interval almost zero values 
(e.g. x(t) ~ 10~ 1 0 for t G (100; 200)), consequently the numerical solution gives the 
identically zero solution after some critical instant due to the rounding errors. But it 
is contrary to qualitative behaviour of the exact solution, which is not stable (for more 
details see [35] and [15]). From this point of view, the simultaneous qualitative and 
numerical investigation of delay differential equations seems to be desirable. 

The aim of the thesis is to investigate qualitative (especially asymptotic) properties 
of some nonlinear delay differential and difference equations. 
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The first part of this thesis deals with the behaviour of all solutions of the differential 
equation 

x'(t) = a(t)x(t) + f(t,x(r(t))), t e l :=[to,oo), (1.1) 

where x(t) represents a given state value, a(t) and f(t,x) are real continuous functions 
on / and I x l , respectively, r(t) is a real continuous, increasing and unbounded function 
on / (representing delayed argument), which fulfills conditions r(t) < t for all t > to and 
T(to) < to- m particular, it also involves some special cases, e.g. r(t) = t — K, K > 0 
(constant delay) or r(t) = Xt, 0 < A < 1, t > 0 (proportional delay). 

In this text we focus on the equation (1.1), where the function f(t,x) fulfills the 
relation 

\f{t,x)\<\b(t)\\x\r + \g{t)\ 

for a l H G /, x G M. and for suitable continuous functions b(t), g(t) on / and a suitable real 
r > 0. In this thesis there wil l be discussed two cases of these equations: the sublinear 
delay differential equation (0 < r < 1) and super linear delay differential equation (r > 1). 

The second part of this thesis concerns asymptotic properties of solutions of the delay 
difference equation 

k 
Ay(n) =p{n)y{n) + J2 Qi(n)\y(fi(n))\ri sgny(f,(n)) + d(n), n G N ( n 0 ) , (1.2) 

i=i 

where p(n), qi(n), d(n) are sequences of reals and fi(n) are nondecreasing unbounded 
sequences of integers satisfying fi(n) < n (and representing lags). This difference equation 
has been obtained via the numerical discretization of the studied differential equation, 
where several delays instead of one delay have been considered. For this purpose, we 
utilized the Euler method as the probably simplest convergent numerical schema. Also 
other studied discrete equations correspond to selected numerical formulae, which can be 
used for approximate solutions of analysed equation. 

Another task consists in comparisons of the results following from qualitative analysis 
of studied delay differential equations and corresponding difference equations. Due to 
these comparisons, we set up conditions on numerical parameters (the stepsize) preserving 
specific qualitative properties of the underlying equations (stability solutions, asymptotic 
estimates, etc.). 

At the end of the introductory part we mention short comments on the structure of 
this thesis. 

In Chapter 2 we introduce three motivation examples of concrete utilization of l in­
ear and nonlinear differential equations, where delay effect is demonstrated. Chapter 3 
presents results concerning the asymptotic behaviour of solutions of the delay differential 
equation (1.1). First, there wil l be describes asymptotic estimates for a sublinear equa­
tion, following by consequences and examples. Secondly, there wil l be shown asymptotic 
estimates for a super linear equation with consequences and examples. 

Chapter 4 introduces qualitative analysis of the sublinear delay difference equation 
(1.2). Chapter 5 discusses selected discretizations of studied differential equations with 
special emphasis put on ^-methods. This chapter significantly utilizes results of Chapter 
4. It involves, among others, the stability analysis of the ^-method. Finally, several 
examples illustrate the obtained results. 
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2. Motivational examples 
There are introduced three examples of differential equations comprising a delayed 

argument in the following text. A l l of these equations were set up as a real problem 
model (more about modeling via delay differential equations can be found e.g. in [28]). 
Example 2.1 leads to a linear differential equation with a constant delayed argument. A 
linear differential equation with a nonconstant (and even unbounded) delay is described 
in Example 2.2. Finally, Example 2.3 introduces a nonlinear differential equation from 
the field of electronics. 

2.1. Example — Water temperature regulation 
We assume that a showering person controls the water temperature by a single lever mixer 
tap and tries to reach an ideal temperature Td. The term Tm(t) denotes water tempera­
ture at the mixer at time t and h denotes a constant time necessary to deliver the water 
from the mixer output of the tap towards the head of the showering person. 

The water temperature is constant before regulation, i.e. the initial condition is given 
by 

Tm(t) —Td = const Ý 0, to — h < t < to. 

A showering person adjusts the faucet based on the water temperature at the faucet h 
seconds ago and so the evolution of the water temperature is described by 

rm(t) = -K(Tm(t-h)-Td). 

The constant K, measures reaction rate of showering person to a wrong water temperature. 
Here it depends on whether the temperament is more phlegmatic or choleric and on how 
the lever rotates. A phlegmatic person would choose a small value of K, whereas an 
energetic person would prefer a large value of K. 

The solution properties depend on the product of h and K. If hn < - the temperature 
Td wi l l be set very quickly. If ^ < hn < | the water temperature oscillates but converges 
to Td. If hn = I the water temperature oscillates around Td constantly but does not 
converge to it. A n d if hn > | the water temperature oscillations may occur maybe with 
increasing amplitude leading to burns or frostbite. 

A detailed description can be found in [28]. 

2.2. Example — Pantograph equation 
The aim is a mathematical description for the determination of a locomotive collector 
movement that collects current from the upper trolley wire. It is under constant tension 
and each wire section of constant length is fixed by a stiff spring. A pantograph model 
represented by two bodies connected by the spring and the damper is depicted in Figure 
2.1. The upper body - the collector is in a permanent contact with the trolley wire. The 
lower body is affected only by the damper and by a constant upward force that represents 
the pantograph arm mounted on the locomotive roof. 
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Figure 2.1: Schema of the pantograph 

The stiffness and elasticity of the wire in the locations close to the supports are omitted. 
The contact condition between the collector and the trolley wire is described by system 
of four differential equations with a proportional delayed argument in the form 

x'(t) = Ax(t) + Bx(Xt), t>0, 

where 0 < A < 1 is a real scalar and A, B are nonzero matrices of the fourth order. The 
solution x(t) of this system represents a vertical shift of both pantograph bodies and the 
contact force of the wire and of the pantograph upper body. This model of pantograph 
was introduced and discussed in [41]. The qualitative analysis of the pantograph equation 
and its modifications was presented e.g. in [23], [33], [34] or [42]. 

2.3. Example — Long line with the Esaki diode 
The Esaki diode (or a tunnel diode) behaves in comparison to a common semiconductor 
diode as a linear resistor with low resistance (this means that it transmits electric current). 
It has a negative differential resistance in the field of decreasing current. Because of this 
property, the Esaki diode can be used in fast switches in high-frequency amplifiers and for 
building oscillators (the diode is able to excite high-frequency oscillations in a resonance 
circuit). 

A long linear conductor with homogeneously distributed parameters is considered in 
the following text. The energy losses are omitted. A n external constant voltage power 
supply unit E is at one end (x = 0) of the wire and the other end {x = I) of the wire is 
grounded by means of the Esaki diode. 

The current i(t, x) and the voltage v(t, x) are functions of time t and conductor length 
x and fulfill the system of telegraph equations 

^di dv ^dv di 
dt dx ' dt dx 

Here L is the inductivity and C is the capacity of the conductor per unit length. 
The boundary conditions can be formulated as 

dv 
(v + R0i) | a = 0 = E, [i-Ci—-f(v] 

0, (2.2) 
x=l 

where RQ denotes an input resistance, C\ means the capacity at the output and f(v) is 
a function of current dependence on the Esaki diode voltage. The behaviour of f(v) is 
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Figure 2.2: Current-voltage characteristic 

depicted in Figure 2.2. This empirical characteristic is such that /(0) = 0. Then the 
current increases nearly directly to anode voltage and its local maximum is about 0.1 V . 

The system of equations 

v + R0i = E, i-f(v) = 0 

defines the possible stationary values v = vo,i = io, when the diode is "switched on". 
It is further assumed that the point [i>o,«o] lies near the highest point of the graph 

i = f(v), at the right of it. Then for the working part of the characteristic we can take 
the relation 

Conditions for the circuit voltage and current can be obtained by application of the 
d'Alembert rule to the solution of (2.1). These conditions and the boundary ones (2.2) 
imply the nonlinear differential equation with constant delay 

where k, m, n are non-dimension constants determined by inductivity, capacity and re­
sistance of the circuit. The problem is described in [28]. 

It should be noted that according to standard classification of delay differential equa­
tions, (2.3) is of neutral type, because the delayed term t — K, appears as the argument of 
the unknown function x and also of its derivative. 

f(v) = f(Vo) - a(v - v0) - p(v - v0)2, a,p = const > 0. 

x'(t) — kx'{t — K) = mx(t) + knx(t — K) + [x(t) — kx(t — K)]2, (2.3) 



3. Asymptotic properties of 
solutions of some nonlinear delay 
differential equations 

3.1. Some preliminaries 
This chapter consists essentially of papers [10] and [16], where we studied the problem of 
the asymptotic bounds of all solutions for the nonlinear delay differential equation 

x'(t) = a(t)x(t) + f(t,x(r(t))), t e I := [t0,oo), (3.1) 

where a : / —> R is a continuous function, / : / x R —> R is given continuous function 
and r : / —> R is a real continuous, increasing and unbounded function on / , which fulfills 
conditions r(t) < t for all t > to and r(to) < to. 

B y a solution of (3.1) we understand a real valued function x(t) which is continuous 
on [r(to),co), continuously differentiable on / and satisfies (3.1) on / . 

In this thesis we focus on the equation (3.1), where the function f(t,x) fulfills the 
relation 

\f(t,x)\ < \b(t)\\x\r + \g(t)\, t e l (3.2) 

for a suitable real number r > 0, where x G R and b(t), g(t) are continuous functions 
on / . The main results of this chapter are formulated in Subsections 3.2.1 and 3.3.1. In 
Section 3.2, we derive the asymptotic estimate of all solutions of sublinear delay differential 
equations, i.e. of the equation (3.1) satisfying (3.2) for some 0 < r < 1 (note that r = 1 
corresponds to the linear case). The example of such equations is 

x'(t) = a(t)x(t) + b(t)\x(r(t))\r sgnx(r(t)) + g(t), t e l , 0 < r < 1. (3.3) 

In Section 3.3 we formulate the asymptotic description of all solutions of super linear 
delay differential equations, i.e. of the equation (3.1) satisfying (3.2) for some r > 1. As 
an example we can again mention the equation 

x'(t) = a(t)x(t) + b(t)\x(r(t))\r sgnx(r(t)) + g(t), t e l , r > 1. (3.4) 

As far as the existence and uniqueness of solutions of (3.1) are concerned, assuming 
r(to) < we can apply the method of steps to show that there exists a unique solution 
of this equation coinciding with a given initial function on the initial interval [r(to),^o]-
But if r(to) = to is valid, then the initial set degenerates to {to} and instead of the 
initial function we prescribe the initial condition x(to) = XQ- TO show the existence and 
uniqueness of the solution of the corresponding initial value problem, we can mention the 
following result issuing from Theorem 1 and Corollary 6 of [19]. 

Theorem 3.1. Consider the equation (3.1) subject to the inequality (3.2). Then (3.1) has 
a solution on I for any initial value XQ. Furthermore, if f(t,x) is Lipschitz continuous, 
then this solution is unique. 
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Now we proceed to describe the asymptotic properties of solutions of (3.1). It is 
obvious that the properties depend on the sign of the coefficient a(t). If a(t) is positive, 
then exponential behaviour of solutions can be expected because (under certain additional 
assumptions) the equation (3.1) can be treated as a perturbation of the equation 

x'(t) = a(t)x(t), t G I. 

This hypothesis is confirmed by the results obtained for some linear delay differential 
equations (see, e.g. [2], [13] or [14]). 

If a(t) is negative, the solution properties depend on the form of the delay r(t) which 
makes the problem more complicated. Note that if the equation (3.3) in the linear case and 
with proportional delay is considered, then an algebraic asymptotic behaviour of solution 
can be observed (see [42]). If we consider the power delay (i.e. r(t) = t1, 0 < 7 < 1, t > 1) 
the asymptotics of solutions is related to logarithmic functions. The precise formulation of 
the relevant results and their generalization to linear equations with variable coefficients 
and general variable delay can be found, e.g., in papers [9], [39]. 

To describe the asymptotic behaviour of solutions of (3.1) with a(t) negative, we 
introduce the following functional relations, namely the Abe l functional equation 

i!>(r(t)) = m - 1, t e l , (3.5) 

the auxiliary nonlinear functional equation 

\b(t)\cur(T(t)) = \a(t)\uj(t), t e l (3.6) 

and corresponding functional inequality 

\b(t)\cur(T(t)) < \a(t)\u(t) t G / . (3.7) 

The question of the existence and uniqueness of solutions of equations (3.5) and (3.6) 
can be found, e.g., in the monograph [30]. Here we recall the statement ensuring the 
existence of solutions of (3.5) which has some differential properties. 

Proposition 3.2. Let r G C ' 1 ( / ) , r(t) < t and r'(t) > 0 for all t e l . Then there exits 
a solution G Cl(\T(tQ), 00)) of (3.5) such that ip'(t) > 0 for all t e l . 

Remark 3.3. Because of the assumption of Proposition 3.2 throughout this thesis we 
assume that r(t) < t for allt G / (the case r(to) = to does not enable to solve (3.5) on the 
whole I). However, we note that all the results presented in this chapter are valid (with 
some minor modifications) also for lags vanishing at to because we are interested in the 
asymptotic behaviour of solutions as t —> 00. 

Now we discuss properties of the nonlinear functional equation (3.6) which wil l be 
relevant in Section 3.3. 

Proposition 3.4. Consider the functional equation (3.6), where a,b,r G Cl(I), a(t) < 0, 
b(t) 7̂  0, ĵ jj is nondecreasing on I, r(t) < t for all t e l , r(t) is increasing on I and 
let M > 0 be arbitrarily large. Then there exists a positive and nondecreasing solution 
ou e Cl{I) of (3.6) such that to{t) > M for all t G [r(t0),*o]-
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Proof. Let M > 0 be such that | 6 ( t 0 ) | M r - 1 > |a(t 0)|, let UJQ G Cl{[r{t0), t0]) be a nonde-
creasing function such that LOo(t) > M on [r(to),*o] a n d let 

\b{to)\coro{r{to)) = |a(t 0)Mto), 

[ | 6 ( t ) k r ( r ( 0 ) ] U = [ l ° ( * ) K * ) ] U -
Using the step method we can extend the function u)o(t) onto [r(to),oo] as the required 
solution of (3.6). • 

3.2. Sublinear delay differential equations 
In this section we describe the asymptotic properties of the solution of the sublinear 
differential equation (3.1) satisfying condition (3.2) for a suitable 0 < r < 1. 

First, there wil l be presented theorems which yield asymptotic estimates of solutions 
of (3.1), (3.2), where we distinguish the cases a{t) positive and negative. Secondly, we 
formulate consequences of these estimates in some particular cases. 

3.2.1. The general case 
A n asymptotic description of the solution of (3.1), (3.2) with positive function a(t) wi l l 
be introduced first. This statement confirms a hypothesis about the expected exponential 
behaviour of the solution. 

Theorem 3.5. Consider the equation (3.1) subject to the condition (3.2) for a suitable 
real 0 < r < 1, where a,b,g,T G C{I), f G C(I x R), r(t) < t for all t <E I, r(t) is 
increasing and unbounded on I and let both the integrals 

roo t"!~(t) rt 
\ \b(t)\ exp{—(1 — r) / a(u)du— / a(u)du}dt, 

Jt0 Jt0 Jr(t) 

poo rt 

\ exp{— / a(u)du} \g(t)\dt 
converge. Then for any solution x(t) of (3.1) there exists a constant L e t such that 

<-t 

Proof. We set 

in (3.1) to obtain 

l im x(t) exp{— / a(u) du} = L. 
Jto 

z{t) = exp{— / a(u) du}x(t) 
Jtn 

z'(t) = f(t,z(r(t))), t e l , ( 3 i 

where /(*, z) = e x p { - j j a(u) du}f(t, zex.p{ft

r

0

{t) a(u) du}). 
Further, we put tj = sup{t > tj-i,r(t) < tj-i}, Mj = max{\z(t)\, t G [ ^ - i , ^ ] } and 

Mj = m a x ( l , M j ) (j = 1,2,...). Considering any t* G [tj,tj+i] and by integrating (3.8) 
over [tj,t*] we obtain 

z(t*) = z(tj)+ f f(t,z(r(t)))dt. (3.9) 



To estimate the integral term in modulus we write 

\f(t,z(T(t)))\<exp{- [ta(u)du}(\b(t)\\z(T(t))\rexp{r a(u) du} + g(t) 
J to \ Jto 

rt rr(t) rt 
< Mj\b(t)\exp{- a(u)du + r a(u) du} + e x p { - / a(u)du}\g(t)\ 

J to ^ to J to 

by use of (3.2). Then by substituting this relation into (3.9) we have 

rt* ft rr(t) z(t*)\ <Mj (1 + / |6( t ) |exp{- / a(u)du + r f a(u)du}dt) 
\ Jtj Jto Jto J 

+ / e x p { - / a(u)du}\g(t)\dt 
Jtj Jt0 

<Mj (l + J^+1 \b(t)\ e x p { - ( l - r) £ { t ) a(u) du - ^ a(u) du} dtj 

f i ft 
exp{— / a(u) du} \g(t)\dt, 

Jto 

i.e., 

_ / rtj + 1 rr(t) rt 
Mj+l <Mj I 1 + J \b(t)\ e x p { ( - l -r)J a{u) du - / a(u) du} dt r(t) 

+ 
•j+l ft 

exp{— / a(u) du} \g(t)\dt. 
Jtn 

B y repeating this procedure we arrive at the inequality 

— — ^ ( ftk+i rT{t) ft 
Mj+1 < M i I I 1 + / l&(*)l e x P { - ( ! - r) I a(u) du - I a(u) du}dt 

t 0 Jr(t) 

fc=l 

X 
i=k+l 

+ E ( / ^ e x P { " / <u) du} \9(t)\ & 
u—i \Jtk Jto 

n (l + |6(t)| exp{—(1 -r) a{u)du- j\{u)du}dtj j 

< ^ M i + j f °° e x p { - a(u) d«} |#(£) | dtj 
0 0 / /-tfc+i fr{t) ft \ 

x TT 1 + / | 6 ( t ) | exp{- ( l - r ) / a(u)du- a(u)du}dt) 

which is valid for all j = 1,2,.... The convergence of the infinite product now implies the 
boundedness of Mj as j —> oo, i.e., z(t) is bounded as t —> oo. 

It remains to show that z(t) tends to a finite limit as t —> oo. B y integrating (3.8) 
from i to t we get 

\z(t)-z(t)\ < / | 6 ( t ) | e x p { - ( l - r ) / a(u)du- a(u)du}\z(r(t))\rdt 
Ji Jto Jr(t) 

+ / e x p { - / a(«)dM}|fif(t)|dt. 
J t J t n 'to 
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Now the property z(t) = 0(1) as t —> oo and the convergence of both integral terms yield 
that considering t, i sufficiently large we have \z(t) — z(t) \ < e for any e > 0. The theorem 
is proved. • 

Remark 3.6. The positivity of the coefficient a(t) is not strictly required in the previous 
theorem. However, the convergence requirement put on both integrals would be too strict 
constraint in the opposite case. 

Now we presented the asymptotic properties of solutions of (3.1), (3.2) provided a(t) 
is negative. 

Theorem 3.7. Consider the equation (3.1) subject to the condition (3.2) for a suitable 
real 0 < r < 1, where a G C(I) is negative and nonincreasing on I, f G C{I x M), 
b,g G C{I), T G Cl(T), rit) < t, r'(t) > 0 for all t E I and r(t) -> oo as t -> oo. 

Let ip(t) be a solution of (3.5) with the properties guaranteed by Proposition 3.2 such that 
assume that there exists a positive function to G C2(I) fulfilling 

the inequality (3.7) such that to1 — uoa > 0 on I, w'JiuJ — uoa) is nonincreasing on I and 

r 77 ^} , < , ^ ' ( * ) dt < OO, J to u)'(t)-uj(t)a(t) Y w 

w/jere ^ ( t ) = {\tu'{t)\ - co'(t))/2, t e l . If g(t) = O(co(t)) as t - » oo, tfjen 

= 0(w( t)) as t —> oo 

for any solution x(t) of (3.1). 

Proof. Let x(t) be a solution of (3.1). If we put 

uj{t) 

then the equation (3.1) becomes 

_ / ( - . . W W ) ) ) _ u / ( t ) - u , ( f ) . ( f ) 

The equation (3.10) can be rewritten as 

d <-f <-f 

-[uj(t) exp{— 
't0 ' J t0 

dt 
[u(t)exp{- [ a(u)du}z(t)] = e x p { - / a(u)du}f(t,u(j(t))z(j(t))). (3.11) 

Jtn Jtn 

Similarly as in the proof of Theorem 3.5 we put tj = sup{£ > tj-i,r(t) < tj-i}, Mj 
max{\z(t)\,t G [tj-i,tj]} and Mj = m a x ( l , M j ) (j = 1,2,...). 

Let t* G [tj,tj+i\. B y integrating (3.11) over [tj,t*] we obtain 

u(t)exp{- [ a(u)du}z(t% = f e x p { - f a(u)du}f(t,uj(T(t))z(T(t)))dt. 

Hence, 

= e x p { ^ a ^ d M } ^ ^ ^ ^ ) + 
(**) 3 U){t*) 

t* rt 
e x p { - / a(u)du}f(t,uj(T(t))z(T(t)))dt. 

I J TO 
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B y using (3.2), (3.7) and the asymptotic property \g(t)\ < Lu(i) for al\t E I and a suitable 
real L > 0 we get 

t* u(tj) exp{//o* o(«) du} 
W O I exp { j / t j «(») d , } ^ + 

x / ' e x p { - / ' a ( U ) d « } ( | 6 ( t ) | ^ ( T ( ( ) ) U - ( T ( t ) ) r + | 9 ( t ) | ) d t 

** , . ^ ( f y ) e x p { j f o(«) du} 
<Mj e x P { ^ a ( w ) du} 

x 
t ft" 

-Mr- I a(t)w(t) e x p { - / a(u)du}dt + Lf u{t)exp{-[ a(u) du} dt 

i.e., 

|z(t*)| <M,exp{ / a(u)du} 

exp{ J/* a( M ) dn} /•*• d /•* 

^ ) 4 ^ W ^ [ e x p { - Y t o a M d W } ] d t 
exp{f f aQu) d^} /•*' 1 d r* 

— ^ — 1 w f { t ) ^ [ e M - L a { u ) d u } ] ^ >(£*) 7tj a(t) cu J i 0 

Since a(t) is nonincreasing, we arrive at the estimate 

\z(t*)\<MjeMr a(u)du}^ 
Jtj U!{t ) (3.12) 

To estimate the last integral we write 

'to 
/ o>(£) —[exp{— / a(u) du}] dt 
Jtj dt Jt0 

<uj(t)exp{- [ a(u)du}\f + [ u>l(t)exp{- / a(u)du}dt 
Jt0

 3 Jtj Jt0 

fl * OJ1(t) fl 

< u,(t) e x p { - I a(u) iu% + ^ ^ f W e x p { - ^ „ ( . ) d B } | ' 
— Lj'(t) . /"** 

<cu( t )exp{- j f a ( u ) d u } | £ I 1 wife) 

to 3 V ^(fy) - u(tj)a(tj) 
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B y substituting this estimate into (3.12) we get 

\z(t*)\ <M3 exp{ f a{u) d«}^4 + (M, - ^ ) d "> 

x l 1 + 

tO [ vj j yvj jujyvj ^ 

77 v , \ 77 v M t ) e x p { - / a ( « ) d « } | 

<Mj ( 1 + 77 7 ,1 - - ^ r f 1 - exp{ f a(u) d u } w ( ' ' 

x 1 + 

oj'itj) — co(tj)a(tj)J o,(tj) \ Jtj ^(t*) 

Since t* G [tj,tj+i] was arbitrary, we have the estimate 

fc^i a ( ^ ) / fe=i V w'(^fc) - u(tk)a(tk) 

which is valid for all j = 1,2, . . . . 
To prove the boundedness of M j as j —> oo it remains to show that both the series 

- 1 ^ 

fe^i°(*Jk)' -u(tk)a(tk) 

converge as j —> oo. We set s = ip(t) and denote so = ip(to). Then 

^(t f c) = ^ ( r - f e ( t 0 ) ) = ^(*o) + *: = so + k, k = 1 ,2, . . . , 

where T~k(t) is the fc-th iterate of the inverse function r _ 1 ( t ) . Hence, 

J - 1 j - 1 
f — - = y — 

and the convergence of this series (as j —> oo) follows from the convergence of the corre­
sponding improper integral J]°° dt by use of the integral criterion and the substitution 
rule. The convergence of the latter series can be proved quite similarly. 

Summarizing this, the sequence Mj is bounded as j —> oo. Hence, z(t) is bounded 
as t —> oo and using the backward substitution x(t) = z{t)uj(t) we obtain the required 
asymptotic estimate. • 

Remark 3.8. This theorem essentially says that, under certain constraints, the solution 
x(t) of the delay differential equation (3.1) can be estimated by a solution uj(t) of a func­
tional nondifferential equation (3.7). However, finding such a solution is not a simple 
matter, in general. 

13 



Remark 3.9. It follows from the proof of Theorem 3.7 that considering (3.2) with g(t) 
identically zero on I we can omit the assumptions that a(t) is nonincreasing and dt 
< oo. Similarly, if g(t) is not identically zero on I and both the mentioned assumptions 
are replaced by a(t) < a < 0 for all t <E I, then using the same line of arguments as given 
in the proof of Theorem 3.7 we can modify the result of Theorem 3.7 as 

x(t) = 0(u}(t)ip(t)) as t -» oo 

for any solution x(t) of (3.1). 

3.2.2. Applications to particular cases 
In the sequel we give some applications of Theorem 3.5 and Theorem 3.7. Particularly, we 
consider the equation (3.3) under various assumptions on a(t), b(t) and r(t) and show that 
the previous assertions can yield effective asymptotic results. These results are illustrated 
by several examples, where the choices of the delayed argument r(t) enable to solve the 
Abe l equation (3.5) explicitly. 

Corollary 3.10. Consider the sublinear delay differential equation 

x\t) = a(t)x(t) + b(t)\x(T(t))\rsgnx(T(t)) + g(t), t e l , 0 < r < 1, (3.13) 

where a,b,g G C(I), r G Cl{I), 0 < |6(t)| < K\a{t)\, r(t) < t, r'(t) > 0 for all t G I and 
a suitable real K > 0 and r{t) —> oo as t —> oo. 

(i) If a(t) is positive on I and exp{— ft a(u) du}\g(t)\dt < oo, then for any solution 
x(t) of (3.13) there exists a constant L G M. such that 

l im x(t) exp{— / a(u) du} = L. 
Jtn 

(ii) If a(t) is negative and g(t) is identically zero on I, then any solution x(t) of (3.13) 
is bounded on I. 

(Hi) If a(t) is negative and nonincreasing on I, g(t) is bounded on I and f^-z^dt 
converges, where ip(t) is a solution of the Abel equation (3.5) with the properties 
guaranteed by Proposition 3.2, then any solution x(t) of (3.13) is bounded on I. 

Proof. To prove the case (i) it is enough to verify the assumptions of Theorem 3.5, 
particularly the first integral condition. Indeed, 

rT(t) _ _ ft poo rT\t) ft 
/ | 6 ( t ) | exp{- ( l -r) / a(u)du- a{u) du) dt 

J to J t0 Jr(t) 
roo fT(t) ft 

<K / a(t) exp{—(1 — r) / a(u)du— / a(u)du}dt 
Jtn Jtn Jr(t) 110 J t0 Jr(t) 

(•OO ft fOO ft 
<K / a ( t ) e x p { - ( l -r) / a(u) du}dt 

J to Jto 
K f°° d [* 

= / — [exp{—(1 — r) / a(u) du}]dt < oo. 
1 — r Jt0 dt Jt0 
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Now let a(t) < 0 on / . Under the assumptions of Theorem 3.7, we can relate the 
asymptotic bounds of any solution of (3.13) to a solution of (3.7). It is easy to verify that 
under the assumption \b(t)\ < K\a(t)\ the inequality (3.7) admits the positive constant 
solution, namely Lo(t) = . Then u£ = UJ' = 0 on / and the corresponding assumptions 
of Theorem 3.7 become trivial. Now both cases (ii) and (iii) follow immediately from 
Theorem 3.7 with the respect to Remark 3.9. • 

Example 3.11. We investigate the asymptotic behaviour of the solutions of 

x'(t) = ax{t) + b\x{r{t))\r sgnx(r(t)) + g(t), t E I, 0 < r < 1, (3.14) 

where a, b ^ 0 are real constants, g E C(I), r G C 1 (7 ) , r(t) < t, r'(t) > 0 for all t G / 
and r(t) —> oo as t —> oo. 

(i) If a > 0 and exp{—at}\g(t)\ dt < oo, then for any solution x(t) of (3.14) there 
exists a constant L G K such that 

l im x(t) exp{—at} = L . 
^—S-CXD 

(ii) If a < 0 and g(t) = 0 on / , then any solution x(t) of (3.14) is bounded on / . 

(iii) If a < 0 and is bounded on / , then, by Remark 3.9, 

x(t) = 0(ip(t)) as t —> oo, 

where -0(t) is a solution of the Abe l equation (3.5) with the properties guaranteed 
by Proposition 3.2. 

In the sequel we consider only the cases when a(t) is negative and g(t) is identically 
zero on / in (3.13). The extension of the next results also to a(t) positive and g{t) nonzero 
can be easily done by use of Theorem 3.5 and Theorem 3.7. 

Corollary 3.12. Consider the equation without forcing term 

x'(t) = a(t)x(t) + b{t)\x{T{t))\r sgnx(r(t)) , t E I, 0 < r < 1, (3.15) 

where I = [t0,oo) with t0 > 0, a, b G C(I), r G Cl{I), a(t) < 0, b(t) f 0, r(t) < t, 
r(to) > 0, r'(t) > 0 for all t E I, r(t) —> oo as t —> oo and assume that 0 < \b(t)\ < 
< K\a{t)\tA{T{t))-ra for suitable K,a e l , K > 0 and all t G / . 

(i) If a > 0, t/ien 

x ( t ) = 0{ta) as t -» oo (3.16) 

/or any solution x(t) of (3.15). 

(ii) If a < 0, a(t) < j /or a//1 E I, a(t)t is nonincreasing on I and 

/ ; , dt < oo, 

where ip(t) is a solution of (3.5) with the properties guaranteed by Proposition 3.2, 
then (3.16) holds for any solution x(t) of (3.15). 
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Proof. We can easily check that the function 

u(t) = K ^ t a 

defines a positive solution of the auxiliary functional inequality (3.7). The assumptions 
of Corollary 3.12 are now the reformulation of those presented in Theorem 3.7 with the 
respect to this solution co(t). • 

Example 3.13. We consider the equation 

a , < , b 
x\t) = (-7= - l)x{t) + -y/\x(Xt) \ sgnx(At), *e [2 ,oo) , (3.17) 

v t t 

where a < 0, b ^ 0, 0 < A < 1 are real constants. Then the Abe l equation (3.5) can be 
read as 

MM) = m -1 

and admits the solution ip(t) = having the required properties. Now it follows from 
Corollary 3.12 (with r = \, a = - 2 , K = \b\/X) that 

x{t) = O ^—^ as t —> oo 

for any solution x(t) of (3.17). 

Corollary 3.14. Consider the equation (3.15), where a,b G C(I), r G C 1 (7 ) such that 
a(t) < 0, b(t) ^ 0, r(t) < t, r'(t) > 0 for all t G I, r(t) -» oo as t -» oo. Let ^(*) fee a 
solution of (3.5) with the properties guaranteed by Proposition 3.2. Further assume that 
0 < \b(t)\ < LK^\a(t)\ for suitable real constants L, K > 0 and all t e l . 

(i) lfK>\, then 

x(t) = O R— as t -» oo (3.18) 

/or any solution x(t) of (3.15). 

(ii) If 0 < K < 1, a(t) < ^^-tp'(t) for all t E I, a(t)/tp'(t) is nonincreasing on the 
interval I and, moreover, 

4 ( l o g K ) ^ ( t ) - ( l - r ) a ( t ) 

£/ien (3.18) holds for any solution x(t) of (3.15). 

Proof. B y substituting into (3.7) we can verify that the function 

u(t) = MK—, M = (LR—r)—r 

defines a solution of the auxiliary inequality (3.7). Now it is easy to verify that this 
function co(t) fulfills all the assumptions introduced in Theorem 3.7. • 
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Example 3.15. We consider the equation 

x'(t) = -(logt)x(t) + b{t)\]\x{\fi)\ sgnx(\/i), *e [2 ,oo) , (3.19) 

where b(t) is bounded on [2, oo). In this case we investigate the equation with a power 
lag. Therefore the corresponding Abe l equation (3.5) has the form 

ifj(Vt) = ip(t) - 1 

and admits the solution ip(t) = * having the required properties. Now it follows from 
Corollary 3.14 (with r = K = § and |6(t)| < L for all t > 2) that 

x(t) = O [ — | as t —> 00 
\\og2t) 

for any solution x(t) of (3.19). 

3.3. Superlinear delay differential equations 
In this section we derive the asymptotic properties of the solution of the superlinear 
differential equation (3.1) satisfying condition (3.2) for a suitable r > 1. 

Comparing with the sublinear case we impose two restrictions. We assume that the 
function g(t), appearing in (3.2), is identically zero, and, furthermore, a(t) is negative. 

3.3.1. The general case 
Theorem 3.16. Let x(t) be a solution of (3.1) and (3.2) holds for a suitable real r > 1, 
where g(t) = 0, a(t), b(t) are continuously differentiable functions on I such that a(t) is 
negative, b(t) is nonzero and ĵ j is nondecreasing on I. Further, let r G Cl{I), r(t) < t 
andr'(t) > 0 for allt £ I and letip(t) be a solution of (3.5) with the properties guaranteed 
by Proposition 3.2. Finally assume that to G C 1 (7 ) is a positive and nondecreasing function 
satisfying (3.6) and let MQ = sup { ^ ^ , ^ G [T(£O),£O]}-

(i) If M0 < 1, then \x(t)\ < w(t) for all t > t0. 

(11) / / M 0 > I, then \x(t) \ < u(t) Mfm+1~^to> for all t > to-

Proof. Let x(t) be a solution of (3.1). If we set 

then the equation (3.1) becomes 

uj(t) uj(t) 

The equation (3.20) can be rewritten as 

_d 
dt 
d r* r* 

u(t)exp{- a{u)du}z(t)]=exp{- a(u) du}f(t,u(T(t))z(r(t))). 
J to •> tg 
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Now similarly as in the proof of Theorem 3.7, we put tj = sup{t > t ,_ i , r ( t ) < tj-i} and 
Mj = max{\z(t)\,t G {j = 1 ,2, . . . ) . Considering arbitrary t* G [tj,tj+i] and 
integrating the previous equation over [tj,t*] we have 

ft ft* ft 
u(t)exp{- a(u)du}z(t% = e x p { - / a(u) du}f(t, u(T(t))z(r(t))) dt. 

J TO J TJ J TO 

Hence 
e xP{/fo* a(u) du} 

K O = e x p { j T a ( « ) d « } ^ ^ ) + ;(**) J co(t*) 

x f e x p { - / * a(u)du}f(t,u(T(t))z(r(t)))dt. 
to 

Using the condition (3.2) and the functional equation (3.6) we arrive at the estimate 

\z(t*)\ < M J e x p { / ' < a(u)du}U^ 

Mj / a ( * M * ) e x p { - / a(u)du}dt. 
J U![t*) Jti Jtn 

• e x P { / f 0 Q(^)d^} rt* rt 
Uj(t*) Jtj " w - v / " " i-L 

We can rewrite the last integral and integrate by parts. We obtain 

rt* ft rt* d 
[ a(t)u>(t) exp{— f a(u)du}dt = — [ u(t) — [exp{— f a(u)du}]dt 

Jtj Jt0 Jtj dt Jt0 

= — u;(t)exp{— f a(u)du}\f. — [ u'(t)exp{ — f a(u)du}dt. 
Jtn J Jti Jtn 

Since the function uj{t) is nondecreasing on / , we obtain the estimation 

RT RT 
a{t)u){t) exp{— / a{u) du] dt < u(t) exp{— / a(u)du}\t. . 

Jtn Jtn 

Hence, we can estimate \z(t*)\ as 

\z(t*)\ < Mj e x p { j T o(«) d u } ^ + Mj(l- e x p { £ a{u) d « } ^ 

and then 

\z(t*)\<M;+(MJ-M;)exp{^ 0 ( « ) d « } ^ . (3.21) 

First let MQ < 1. We put j = 0 in (3.21). Since a(t) is a negative function and 
u>(t) is nondecreasing, we get \z(t*)\ < M 0 , i.e., M i < M 0 . Repeating this we obtain 
the boundedness of (Mj) as j —> oo, namely M j < 1 (j = 0 ,1 , . . . ) . Hence, we have 
1̂ (̂ )1 < 1, i G / and after using the backward substitution 

\x(t)\<co(t) for a l l * > to-

Now let M 0 > 1. Similarly to the previous case we put j = 0 in (3.21) and we get 
\z(t*)\ < M 0

r , i.e., M i < M 0

r . This implies M j < M 0

r ' (j = 1, 2 , . . . ) . B y the definition of 
M j , < M 0 ^ w + 1 - " ( f 0 ) , t e / , i . e . 

|x(t)| < o ; ( t ) M 0 ^ ( f ) + 1 " " ( f 0 ) f o r a l U > t 0 . 

• 
18 



Remark 3.17. It follows from the proof of Theorem 3.16 that the functional equation 
(3.6) can he replaced by the functional inequality (3.7) and the assertion of Theorem 3.16 
remains valid. Moreover, in this case it is not necessary to require the differentiability of 
a(t), b(t) and we can omit the monotonie assumption on Ĵ JJ-

Remark 3.18. The conclusions of Theorem 3.16 can be modified in the following way. 
By Proposition 3.4, we are able to make the function to arbitrarily large on [r(ío),ío]-
This implies, among others, that we can choose a solution to(t) of (3.7) such that MQ < 1. 
However, it does not mean that this procedure automatically yields the "better" estimate 
than the original result of Theorem 3.16 (corresponding to the case MQ > 1) yields. More 
details concerning this question will be discussed in the next section. 

3.3.2. Applications to particular cases 
Corollary 3.19. Consider the superlinear delay differential equation 

x'(t) = a(t)x(t) + 6(t) |x(r(t)) | r sgnx(r(t)) , t £ I, r > 1, (3.22) 

where a,b G C{I), r G C1^), a(t) < 0, 0 < |6(t)| < K\a(t)\, r(t) < t and r'(t) > 0 for 
all t £ I and a suitable real K > 0. Let x(t) be a solution of the equation (3.22) and let 
X0 = sup{|x(t) |, t G [r(t0),t0]}. 

(i) IfX0 < K ^ , then \x(t)\ < for all t > t0. 

(ii) If X0 > , then \x{t)\ < (XQK^J for all t > t0, where ifj(t) is 
a solution of (3.5) with the properties guaranteed by Proposition 3.2. 

Proof. It is easy to verify that under the assumption 0 < \b(t)\ < K\a(t)\ the inequality 
(3.7) admits the positive constant solution, namely to{t) = K1^. Then the cases (i) and 
(ii) follow immediately from Theorem 3.16 with the respect to Remark 3.17. • 

Example 3.20. We investigate asymptotic behaviour of solutions of the superlinear delay 
differential equation with constant coefficients and a constant delay 

x'(t) = ax(t) + b\x(t — K)\rsgnx(t — K), t G / , r > 1,K > 0, (3.23) 

where a < 0, b ^ 0 are real constants. 
The corresponding Abe l equation (3.5) becomes ip(t — K) = ip(t) — 1 and admits 

ip(t) = j: as a solution, which satisfies assumptions mentioned in Proposition 3.2. If we 
put K = | -1, then the estimate 

\x(t)\ < 
b 

i 
l - r b 

- i -i 
l - r 

< a 
Xo 

a 

,l(t-t0)+1 

t G / 

holds for any solution x(t) of (3.23) (see Corollary 3.19). Moreover, if X0 < ĵ j1 r , then 

\x(t)\ < N1^ for all t G / . 
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Example 3.21. Consider the superlinear delay differential equation with constant coef­
ficients and with a proportional delay, i.e. the equation 

x'(t) = ax(t) + b\x(\t)\rsgnx(\t), t>t0>0, r > 1, 0 < A < 1, (3.24) 

where a < 0, b ^ 0 are real constants. 
In the case of the proportional delay, the function tp(t) = l 0 g f - i is a solution of the 

Abe l equation ip(Xt) = ip(t) — 1 and fulfills assumptions described in Proposition 3.2. If 
K = then, by Corollary 3.19, 

b i 
l - r 

b - i -i 

l - r < a 
X0 a 

f l o g A - 1 

for any solution x(t) of (3.24). Moreover, if X0 < 

t G / 

', then \x(t)\ < for all t e l . 

Remark 3.22. Consider the equation (3.22) under assumptions of Corollary 3.19. Sub­
stituting into (3.7), we can easily verify that the system 

cu{t) = exp{ar^ ( t ) } , t e I, r > 1, (3.25) 

where a is a real parameter and ip(t) is a solution of the Abel equation (3.5), forms the 
one-parameters family of solutions of (3.7). Hence (3.25) satisfies the auxiliary functional 
inequality (3.7). Moreover, choosing a large enough we can fulfill the required inequality 
ui(t) > M for all t G [r(to),to] and M being arbitrarily large (see also Proposition 3.4). 
In particular, if 

a = r 1 " ^ ) i 0 g ( x 0 K - ^ ) , Xo = sup{\x(t)\,t e [r(t0),t0]}, 

then MQ = sup j ^ y , t G [r(io),^o]} < 1 and, by Theorem 3.16, the estimate 

! , _ i N rV-(*) + l-V-(*o) 
\x{t)\ < u(t) = K— (x0K—j t e l 

holds for any solution x(t) of (3.22). It may be interesting to note, that this estimate 
coincides with the result obtained in Corollary 3.19 (ii). 

Corollary 3.23. Consider the equation (3.22) subject to the condition 

0 < |6(t)| < K\a{t)\exp{c{t - rr(t))}, t e l , r > 1, (3.26) 

where a,b G C{I), r G C1^), a(t) < 0, r(t) < t and r'(t) > 0 for all t e I and K > 0, 
c > 0 are suitable real constants. Further, we assume that X0 = svp{\x(t)\,t G [T(£O),£O]}-

(i) If XQ < exp{cr(t 0 )}, then for a solution x(t) of (3.22) holds 

\x(t)\ < exp{ct} for all t > t0. 
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(ii) IfXQ > K1-* exp{cr(to)}, then for a solution x(t) of (3.22) holds 

< exp{c£} ( l o ^ 1 ^ exp{ -c r ( t 0 ) } ) 

for all t > to, where ip(t) is a solution of (3.5) with the properties guaranteed by 
Proposition 3.2. 

Proof. We can check that the function 

uj(t) = exp{ct}, t e l , r > 1, c > 0, K > 0 

is a solution of inequality (3.7). B y substituting into Theorem 3.16 we obtain the required 
estimate presented in Corollary 3.23. • 

Example 3.24. We assume the equation 

x\t) = a(t)x(t)+b(t)(x(t/A))2, t>l, (3.27) 

where a,b e C{I), a(t) < 0, 0 < |6(t)| < K\a(t)\exp{£/2}, K > 0 for all t > 1. Based 
on Corollary 3.23 (if we put r(t) = t/4, r = 2 and c = 1), the asymptotic behaviour of a 
solution x(t) of (3.27) is going to be estimated. 

The corresponding Abe l equation (3.5) is ip(t/4) = ib(t) — 1 and admits the solution 
tp(t) = We assume that x(t) is a solution of (3.27) and X0 = swp{\x(t)\, t G [\, 1]}. 

(i) If X 0 < Ä ' - 1 e x p { i } then 

\x{t)\ < Ä " _ 1 e x p { t } , t > l . 

(ii) If X 0 > Ä ' - 1 e x p { i } then 

\x(t)\ < K'1 exp{t} (X0Kexpl-l/A})2^ , t > 1. 

Remark 3.25. Consider the equation (3.22) subject to the condition (3.26). It can be 
verified easily that the one-parameter system 

tu{t) = exp{ct + a r m } , t e l , r > 1, c > 0, K > 0, 

where a is a real parameter and ip(t) is a solution of the Abel equation (3.5), solves 
the auxiliary functional inequality (3.7). We will proceed similarly as in Remark 3.22. 
Choosing a large enough we can ensure the validity of uj{t) > M for all t G [r(to,^o] ( s e e 

also Proposition 3.4). In particular, if we put 

a = r1'^ log (X0K^ exp{-cr( to)}) , 

where X0 = swp{\x(t)\,t G [T(£O),^O]}; then M 0 = s u p | ^ y , t G [T(£O),£O]} < 1 and, by 
Theorem 3.16, we can estimate any solution x(t) of the equation (3.22) as 

\x(t)\ < K~r exp{ct} [X0K~r exp{ -c r ( t 0 ) } ) t G / . 

This estimate and the estimate presented in Corollary 3.23 (ii) are the same ones. 

Remark 3.26. The term ip(t) — ip(to) appearing in the previous asymptotic estimates 
will be further studied. It holds that if ib{t) is a solution of the Abel equation (3.5), then 
ip{t) + a, a G M. is also a solution of (3.5). This implies that without the loss of validity 
we can choose the solution ip(t) of (3.5) with the property ip(to) = 0 and then omit ip(to) 
in all formulae involving the term ip(t) — i/j(to). 
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4. Asymptotic estimates of solutions 
of linear or sublinear difference 
equations 

4.1. Some preliminaries 
The content of this chapter is based on the paper [11], which discusses some asymptotic 
properties of the delay difference equation 

k 
Ay(n) =p{n)y{n) + £ Qi{n)\y{fi{n))\Ti sgny(f,(n)) + d(n), n G N ( n 0 ) , (4.1) 

i=i 

where no G Z is nonnegative, N(no) = {no, no +1 , no + 2 , . . . }, 0 < T\ < 1 are real scalars, 
p(n), qi(n), d(n) are sequences of reals and fi(n) are nondecreasing unbounded sequences 
of integers such that fi(n) < n for all n G N(no) (i = 1, . . . , k). The forward difference 
operator A is defined as usually, i.e. Ay(n) = y{n + 1) — y(n). The equation (4.1) is a 
discrete analogue of the delay differential equation 

k 
x'(t) = a(t)x(t) + J2 bi(t)\x(r(t))\ri sgnx(r(t)) + g(t), t > t0. 

i = i 

This differential equation with k = 1 has been discussed in the previous chapter. 
Considering the discrete case, we consider k G N to generalize some known results of 
the qualitative theory of difference equations. Note that the extension of the results of 
Chapter 3 for the case of several delays is only a technical matter. 

First, we briefly mention some known qualitative properties of the equation (4.1). 
The form (4.1) involves both the linear case (r^ = 1 for a l H = 1, . . . , k) and the sublinear 
case (0 < ri < 1 for some i). Probably the simplest (nontrivial) particular case of (4.1) 
is provided by the choice T\ = 1, p(n) = p, qo = 1 + p, qi(n) = % and fi(n) = n — i 
(i = 1 , . . . , k) and f(n) = 0, when (4.1) becomes 

k 
y{n + 1) = J2^y(n-i), n G N ( n 0 ) . (4.2) 

The problem of necessary and sufficient conditions for the asymptotic stability of 
(4.2) has attracted the attention of many mathematicians. From a theoretical viewpoint, 
this problem is solved by the Schur-Cohn criterion (see [17]), but explicit conditions of 
asymptotic stability of (4.2) are known only in special cases (see [31]). We recall that the 
basic sufficient (in some particular cases also necessary) condition guaranteeing asymptotic 
stability of (4.2) for any k G N is 

k 
£ N < 1 . (4.3) 
i=0 

This condition can be extended to more general linear difference equations (see, e.g., [38]). 
We note that a stability condition for the nonautonomous equation (4.2) analogous to the 
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condition (4.3) appears as a special consequence of our more general result proved by use 
of a different technique. 

The asymptotic investigation of sublinear difference equations is less developed. Some 
related results can be found in [22] and [29], where properties of the equation 

Ay(n) = f(y(n — K,)), n G N ( n 0 ) , K G N 

have been reported. The description of asymptotics of (4.1) was stated in [45], where the 
author established a condition under which the behaviour at infinity of solutions of (4.1) 
with d(n) = 0 can be related to the behaviour of a solution of the difference equation 

Ay(n) = p(n)y(n), n G N ( n 0 ) . (4.4) 

We recall this result here because of its relevance to our investigations. 

Theorem 4.1 ([45, Theorem 2]). Assume that 1 + p(n) ^ 0, d(n) = 0, n G N and 

o o i k ň(n)-l 

£ TT" I l+ N M|£ | F T ( W ) L II | l + í > ( j ) | r ť < o o . (4.5) 
n=n0 iij=0 \ L

 "T" P\J)\ i=l j=0 

Then for any solution y(n) of (4-1) there exists a solution y(n) of (4-4) such that y(n) 
is either asymptotically equivalent to y(n), or y(n) is of asymptotic order less than y(n). 
Conversely, for any solution y(n) of (4-4) there exists a solution y(n) of (4-1) asymptoti­
cally equivalent to y(n). 

Note that the condition (4.5) is "natural" especially for equations (4.1) with | l+p(n) | > 
1, n G N(no). If |1 + p(n)\ < 1, then (4.5) can result in a considerable restriction on 
coefficients qi{n) which must be very small (in modulus). For other related results we 
refer also to [1], [4] or [8]. 

The main goal is to formulate a general asymptotic bound for all solutions of (4.1) 
provided |1 + p(n)\ < 1 for all n G N(no). Using this estimate we present some effective 
asymptotic criterions for solutions y{n) of (4.1) in the linear and sublinear case. Through­
out the whole chapter let us assume that fi(n) [i = 1, . . . , k) satisfy conditions introduced 
at the beginning of this chapter, i.e. fi(n) are nondecreasing unbounded sequences of 
integers such that fi(n) < n for all n G N(no) [i = 1, • • •, k). 

4.2. The main result 
Let n _ i = min{fi(no) : % = 1, . . . , k}. B y a solution of (4.1) we mean a sequence y(n) of 
real numbers which is defined for n > n _ i and satisfies (4.1) for n > HQ. It is easy to 
see that for any given no G N(0) and initial conditions y(n) = yo(n), n _ i < n < no, the 
equation (4.1) has a unique solution satisfying these initial conditions. 

In the sequel, we formulate an upper bound for solutions y(n) of (4.1). Before doing 
this, we introduce some necessary notations and auxiliary relations. Put 

n _ i , 

no, 
max{n G N(no) : fi(n) < am for a l H = 1, . . . , k}, m = 0 , 1 ,2 , . . . 

C7_l = 

(T0 = 

0~m+l = 
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and consider two difference inequalities 

Tp(o-m+i)>ip(o-m) + l, m = 0 , 1 , 2 , . . . (4.6) 

and 
k 

Y h(n)\(io(fz(n)))r' < (1 - \l+p(n)\)u(n), n G N(n„) • (4.7) 
8 = 1 

Note that previous inequalities correspond to the auxiliary relations used in Chapter 
3. More precisely, the relation (4.6) is an analogue of the Abe l equation (3.5) and the 
inequality (4.7) is consistent with the auxiliary functional relation (3.7). In addition, 
sequences ip(n), Cu(n) are discrete analogues of functions ip(t), ui(t), respectively. 

Further, for m = 0 , 1 , 2 , . . . we denote 

u{m) = m i n { - — r , • om < v < am+1} (4.8) 

\d(v)\ 
v(m) = m a x { - — — : om < v < a m + 1 \ . (4.9 

(1 - |1 +p(v)\)u(v) 
Theorem 4.2. Consider the equation (4-1), where |1 + p(n)\ < 1 for all n G N(no). 
Further, let Cu(n) be a positive monotonous sequence satisfying (4-V> ^ ip(n) be a posi­
tive increasing sequence satisfying (4-6) and let u(m), v(m) be given by (4-8) and (4-9), 
respectively. 

(i) If Cu(n) is nondecreasing, then there exists a constant L > 0 such that 

L#n)J 
\y(n)\ < (L+ Y v(i))uj(n) (4.10) 

for any solution y(n) of (4-1) and all n G N(no). (The symbol |_ J means an integer 
part.) 

(ii) If Cu(n) is decreasing, then there exists a constant L > 0 such that 

( \ ^ W j / u(s) \ 
\y(n)\<(L+ Y v(i))u(n) ]J 1 - - ^ - ) (4.11) 

for any solution y(n) of (4-1) and all n G N(no). 

Proof. Using the transformation z{n) = y{n)/u){n) we convert (4.1) into 

k 
cu{n + l)z(n + 1) =(l+p(n))u(n)z(n) + Y ql{n){oo{n{n)))n\z{fi{n))\n 

i = i 

x sgnz(fj(n)) + d{n). 

(4.12) 

Now we denote M(s) = max.{\z(u)\, u G Z , <r_i < v < as} and M(s) = max(M(s) , 1) 
S = 0 , l , 2 , . . . . 
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Let n* G N(no) and let m G N be such that am < n* < <Jm+i- We wish to express 
and estimate z(n*) in term of z(s), where <r_i < s < am. Hereafter it is necessary to 
distinguish the following three cases in the proof: 

(a) Let l+p(n) ^ 0 for any am < n < n*-l. Mul t ip ly relation (4.12) by 1/Uham(l+P^)) 
to get 

A 
uj(n)z{n) \ E J

f c=igi(")(w(Ti(n))) r ! |z(Ti(n))| T ' !sgnz(Ti(n)) + d(n) 

B y applying the discrete Newton-Leibniz formula we have 

uj{n*)Z{n*) , w , ^ E U ^ m m m ^ m w ^ g n z m ^ + d U ) 

n ^ i ( i + ^ ) ) - ^ U m ) Z K U m > liLrJi+m) 

i.e. 

n(rr \ n*—l i n* — 1 , k 

z{n*)=^-z{om) i[(i+p(£)) + - — J: ( j : q ^ ( m ) r \ 4 m ) r s g n z ( m ) 
s n*-l 

+ d(j)) II ( l + P W ) -
7 €=j+l 

The relation (4.7) implies 

- / \ n* — l i n* — l , 
\z(n*)\<M(m)^l II + ^ E M ( m ) ( l - |1+p( j ) | )^( j ) 

v / «=o-m v y j=<rm 

v n*-l 

+\d(j)\) n II+PWI 

=M(m)^4 U I1 + PWI + - 7 ^ ^ f + n i J ^ ' ^ 

n*-l 

XW(J)A n II+PWI, 
where the difference operator A is considered with respect to the variable j . Then using 
(4.9) we get 

W „ - ) | < M ( m m " f f li +

 a ( ' ^ r ( m ) L -0 )A"ff U + K O I -

B y applying the summation by parts we arrives at 

/ i n* — 1 n* —1 \ 

| ^n*) | < ( M ( m ) + W (m)) 1 - — — E Au)(j) n )• ( 4-!3) 
\ H n J j= C T m £=j+l 7 

If tD(n) is nondecreasing, then (4.13) can be reduced to 

\z(n*)\<M(m) + v(m). (4.14) 
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Obviously 

m—1 m 

M ( m ) < M ( 0 ) + ] T hence \z(n*)\ < M(0 ) + £ . (4.15) 
i=0 i=0 

To estimate m in terms of n* we recall that am < n* < <Jm+i. Since ^(<rm) > i/>(<Jo) + m, 
we get 

m < ^ ( a m ) - ^ (a 0 ) < L^(n*)J . (4.16) 

Now substituting back y(n) = u){n)z{n) into (4.15)2 we can deduce the validity of (4.10). 
If u){n) is decreasing, then (4.13) becomes 

1 Au(j) " 1 

\z(n*)\<(M(m) + v(m)) (l - — - £ - g ^ A l ] | l + p ( * ) | 

< (M(m) + v(m))(l "("')' 
(4.17) 

by use of (4.8). Repeated application of this estimate yields 

m— 1 ii( o\ m—1 m—1 II(Q} 

M(m) < M ( 0 ) n ( i - + E « ( o n ( i -
m—1 m—1 

< ( M ( 0 ) + £ ,,(0) n ( i -
i=0 s=0 <4^i>+l 

Now the backward substitution y(n) = u;(n)z(n) along with (4.16) implies (4.11). 

(b) Let 1 + p{n* - 1) = 0. Then 

zin*) = -J—(£ F T( n* - l)u)(f;(n* - l ) ) r k ( f , ( n * - l))\rsgn^(n* - 1)) + d(n* - 1 
u ; ( n * ) V ^ 

Taking absolute values and using (4.7) and (4.9) we get 

i / *M s^in* — 1) \d(n* — 1)1 / - . . . .\tD(n* —1) 
Lz n* < M(m) v . . ; + 1 v . . ; | < ( M m + v(m)) K , ' . (4.18) 

If u)(n) is nondecreasing then (4.18) can be reduced to |z(n*)| < M{m) + v(m). This 
relation corresponds to the relation (4.14) as it was proceeded in the part (a). 

If u){n) is decreasing then by use of (4.8) we get 

\z(n*) | < ( M ( m ) + v(mj) ( l - ^ * 1 } ) < (Xf(m) + v ( m ) ) ( l - . 

This relation corresponds exactly to the equation (4.17). The proof continues as in the 
previous part (a). 

(c) Let 1 +p(n* — 1) 0 and 1 +p(v) = 0 for some v G N(no) such than am < v < n* — 1. 
The proof technique applied in this case is a combination of procedures utilized in cases 
(a) and (b) and therefore we present only the main idea. Denote 

a := max{z/ G N ( n o ) , c m < v < n* — 1 and 1 +p(u) = 0}. 
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Then multiply the equation (4.12) by l / n " = 0 - + i ( l + p (0 ) a n d sum from a + 1 to n* 
to obtain 

Z(n = : :—Z > + l) I I + E E f t 0 " ) ( w ( r « ( 7 ) ) ) r i l ^ i 0 " ) ) l r < 

win*) , w i n , • , i x • i 
v n*-l 

x s g n ^ r i O ^ + dO')) I I 

The definition of a implies 1 +p(c) = 0, hence, by the case (b), we can use the estimate 

\z(a + 1)| < (M{m) +u(m))-
W <7 

W CT+ 1 

Then the application of relation (4.7) yields 

Lu(a) n*~l 1 
z(n*)\<(M(m)+v(m) I I 11 + + 7 ^ E M ( m ) ( l - |1 + p(j)IMi) 

win*) » w i n i • , - i 

n*-l 

Using (4.9) we obtain 

\z(n*)\ < (M(m)+v(m))^ "ft \l+p(£)\ + M ^ + ^ ^ w(j) "if |1 + p(*)| 
win*) 0 w i n * , . . , « •, 1 

i n*-l n*-l 

< ( M ( m ) + t ; ( m ) ) ( l - - _ Aw( j ) J] 1!+^)! 
j=a £=j+l 

The right-hand side of this inequality is a modification of the corresponding term involved 
in (4.13) with am replaced by a. Using the same line of arguments as given in the case 
(a) we arrive at (4.10) for w(n) nondecreasing and (4.11) for w(n) decreasing. • 

R e m a r k 4.3. If the product in (4-H) converges as n —> oo, it is useless to solve the 
auxiliary relation (4-6) and the estimate (4-H) becomes (4-10) (see also Corollary 4-10). 

R e m a r k 4.4. By Theorem 4-2, any solution y(n) of the delay difference equation (4-1) 
with a forcing term d(n), can be estimated in terms of solutions of difference inequalities 
(4-6) and (4-7). Moreover, if d{n) is identically zero, then v(i) is also identically zero and 
both the estimates (4-10) and (4-H) are significantly simplified. 

R e m a r k 4.5. The asymptotics of solutions of (4-1), described by estimates (4-10) and 
(4-11) under the assumption |1 + p(n)\ < 1, is quite different from that presented in 
Theorem 4.1. In particular, contrary to Theorem 4-1, we are able to formulate conditions 
for boundedness of solutions y(n) of (4-1), or discuss their convergency to zero including 
the rate of this convergency. 
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4.3. Applications to particular cases 
In this part we apply our general asymptotic result to some important particular cases to 
demonstrate, how it can be turned into effective asymptotic criterions. 

Corollary 4.6. Consider the equation (4-1), where d(n) = 0 and letr = m a x { r i , . . . , /•&}. 
Then any solution y(n) of (4-1) is bounded if either 

k 
r = l and |1 +p(n)\ + ^ \qi(n)\ < 1, n G N(n 0 ) (4.19) 

i = i 

or 

0 < r < 1 and 0 < _^=LM^) I < K n G N ( n ) ( 4 . 2 0) 
1 - |1 +p(n) | v ; ' v ' 

where K is a suitable scalar. 

Proof. If (4.19) holds, then for any constant ijj > 1 the sequence u>(n) = o> is a positive 
constant solution of (4.7). Let (4.20) holds and let K > 1. Then 

k 
^2 \qi(n)\K^ < (1 - |1 + p ( n ) | ) K i ^ , n G N ( n 0 ) , 
i = l 

hence u>(n) = K 1 / ( 1 _ r ) is also a positive constant solution of (4.7). The statement now 
follows immediately from (4.10) with respect to v(i) = 0. • 

Remark 4.7. The condition (4-19) corresponds to the known stability results for linear 
difference equations with a constant delay (in particular, (4-19)2 is consistent with (4-3)). 
However, considering the sublinear case, a region of coefficients guaranteeing boundedness 
of all solutions of (4-1) is much larger. The following example illustrates it. 

Example 4.8. The linear difference equation 

k 
y(n + 1) = qoy(n) + ^ %y(fi(n)) , n G N(n 0 ) 

i=i 

has all its solutions bounded if J2i=o < 1- The sublinear difference equation 

k 
y(n + 1) = qoyin) + ^2ql\y{fl{n))\n sgny(ft(n)), 0 < n < 1, n G N(n 0 ) 

i = i 

has all its solutions bounded if | go I < 1 ( t n e values of qi,... ,qt may be arbitrary). It 
/ Y^ f e I I \ 

can be verified that the constant K = max (I, ^ ^ J ' j satisfies relation (4.20)2 and the 
sequence ijj(n) = K 1 / ( 1 _ r ) is the solution of inequality (4.7). Then boundedness of the 
solution y{n) follows from the previous Corollary 4.6. 

Example 4.9. Now we extend our illustrations by involving a nonzero term d{n) and 
show its influence on boundedness and asymptotics of solutions. Consider the sublinear 
difference equation 

k 
Ay(n) = p y ( n ) + ^ * | y ( ^ ( n ) ) | r ! s g n y ( f i ( n ) ) + d(n), n G N(n 0 ) , (4.21) 

i = i 
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where 0 < rt < 1 (i = 1, . . . , A;), p, qi,..., qu are real scalars. Assume that |1 +p\ < 1 and 
d(n) is bounded (an analogous discussion can be performed for the corresponding linear 
equation satisfying |1 + p\ + J2i=i \qi\ < !)• B y (4.8), the sequence u(i) is zero and, by 
(4.9), the sequence v(i) is bounded. Then Theorem 4.2 implies that 

yin) = 0(ip(n)) as n -> co (4.22) 

for any solution y(n) of (4.21), where the sequence ^(n) satisfying (4.6). 
To make this estimate quite explicit, we have to specify fi(n). Let fi(n) = n — Ki, 

Ki G N (i = 1, . . . , k), then am = oo + m/t, where «; = m i n - j ^ i , . . . , Kk} and it can be 
easily checked that tp(n) = nJK is a positive and nondecreasing sequence satisfying (4.6). 
Hence, (4.22) becomes 

y(n) = 0(n) as n —> oo . 

Further let Tj(n) = [^n j , 0 < Aj < 1 (i = 1, . . . , k) and let A := m a x { A i , . . . , A^}. Then 
&m = L ^ x ^ J a n d we can choose ip(n) = l o g ^~ g

A ^ 1

1 ~ A - > - > . In such a case, (4.22) becomes 

y(n) = O(logn) as n —> oo . 

To obtain a boundedness condition, assume that d{n) = 0(1/n) as n —> co. Analogously 
as in the previous example, if fj(n) = L ^ n J , 0 < < 1 (i = 1, . . . , k), then any solution 
y(n) of (4.21) is already bounded. 

As another consequence, we discuss the sublinear difference equation without a forcing 
term 

Ay(n) = p(n)y(n) + q(n)\y([\n\)\rsgny([\n\), n G N(n 0 ) , 0 < A , r < l , (4.23) 

originating from the numerical discretization of the sublinear pantograph equation. We 
present conditions under which all its solutions tend to zero and derive also the rate of 
this convergency. 

Corollary 4.10. Consider the equation (4-23), where \l+p(n)\ < p < 1 for alln G N(no) 
and \q(n) \ = 0 ( n a ( 1 _ r ) ) as n —> co for a real scalar a. Then 

y(n) = 0(na) as n -> co (4.24) 

for any solution y(n) of (4-23). 

Proof. The proof is divided in two cases, according to whether a is nonnegative or 
negative. 
(a) Let a > 0 and let K\ be the upper bound of the sequence \q(n)\n~a^~r\ We verify 
that u)(n) = K2na, where K2 = (Ki\ar/(1 — p))1^ is a solution of (4.7). Indeed, by 
substituting this form into (4.7) we get 

\q(n)\Kr

2\_\n\ar < KxKr

2\arna{x~r)+ar = (1 -p)K2na < (1 - |1 +p(n)\)K2na . 

Then (4.24) follows from (4.10). 
(b) If a < 0, we have to discuss the estimate (4.11). Here, similarly, uj(n) = K3na is the 
solution of (4.7) for a suitable K% > 0. Furthermore, by using the mean value theorem 
and the relation 

L A " V S J < c7 s + i < [X~l(o-s + 1)J + 1 
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we obtain 

—Aui(v) Kslalia 
u(s) \ = max{- —— : o~s < v < as+i\ < -

\a-l 

l-\l+p(u)\ 

and u)(as+i) = K3(as+i)a > K3\~a(as)a. From here we get 

\u(s)\ \a\\a 

1-p 

u)(as+1) (l-p)as 

Further it holds that 

(To > 
0~s-\ > < T s - 1 _ i > a ° _ v — > a ° 

A Xs 

and 
uis 

v(o-s+i. 
0 ( A S 

as s —> oo . 

Consequently, the product in (4.11) converges as n —> oo and the estimate (4.11) 
becomes (4.24). • 

Example 4.11. Assume the following difference equation 

1 a 
Ay(n) = - p ( l + ^ ) y ( n ) + - | y (LAnJ) | r sgny(LAnJ) , n G N(n 0 ) , (4.25) 

It where no > 1, 0 < A, r < 1, p, q are real constants such that q ^ 0, p G (0, j 

is easy to verify that there exists p G K such that |1 — p ( l + ^=)| < p < 1 holds for all 

n G N(n 0 ) . Further, |g | /n = 0 ( n a ( 1 _ r ) ) as n —> oo for a = j ^ - . Then (4.24) implies 

as n —> oo 

for any solution y(n) of (4.25). 
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5. Some discretizations of sublinear 
delay differential equations 

The importance of numerical solutions of delay differential equations has still been 
stated in the first chapter. Problems of numerical methods for (linear as well as nonlinear) 
delay differential equations have been investigated in many papers (see e.g. [7], [24], [25], 
[35], [37] or [43]). General reference is [6], where the overview of basic results from 
numerical analysis for differential equations with delayed argument can be found. In 
particular, numerical investigations of the ^-method for some linear delay differential 
equations are the subject of papers [5], [12], [20], [21], [32] and [44]. It can be stated 
that the analysis of the method for nonlinear delay differential equations is just at its 
beginning. 

In the first section of this chapter, the Euler formula for a sublinear delay differential 
equation is derived. Further, this formula is extended to the ^-method. Applications of 
qualitative results derived in Chapter 4 to these numerical discretizations are presented 
in the following two sections. The stability of these discretizations is discussed as well. 
Numerical experiments displayed in the last section of this chapter illustrate theoretical 
results. 

5.1. The derivation of numerical formulae 
For the illustration of derivations of corresponding difference relations we provide nume­
rical discretization for the equation (3.1) in its special cases (3.3) and (3.4), i.e. 

x'(t) = a(t)x(t) + 6(t) |x(r(t)) | r sgnx(r(t)) +g(t), t E I, r > 0, (5.1) 

where a(t), b(t), g(t) are real continuous functions on / , r is a suitable constant and r(t) 
is a function of delay satisfying assumptions introduced in the first chapter. Note that 
the derivation of appropriate discretizations for more general nonlinear equations is only 
a technical problem. 

We set the discretization equidistant grid tn := t0 + nh, where n EN and h > 0 is the 
stepsize, and let t E \tnitn+i\ be an arbitrary point. Then from the integration of (5.1) 
over [t n , t n+i] we obtain 

x(tn+i) — x(tn) = J a(u)x(u)du + J b(u)\x(T(u))\rsgnx(r(-u)) du + 
tn tn , 5 2 , 

tn+l 

+ J giu)du. 

To approximate integrals on the right-hand side we use some standard numerical 
integrations methods. First we approximate integrals on the right-hand side of (5.2) 
using the rectangular formula with the left grid point, i.e. 

i 
a(u)x(u) du ~ ha(tn)x(tn), 

tn 
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tn+l 

J b(u)\x(T(u))\r sgnx(r(n)) du « / i6 ( t „ ) | a ; ( r ( t n ) ) | r sgnx(r ( t n ) ) , 

t n + 1 

J g{u) du « /ifif(t„). 

Now let y(n) ~ The replacement of x( r ( t n ) ) (necessary in the second relation) 
is not evident to provide, because the value of r(tn) is not usually a grid point. This 
replacement can be done by several ways. A t first, we show the simplest of them. We 
perform the piecewise constant interpolation, i.e., we replace this value by the nearest left 
grid point: 

x(r(tn)) &y(f(n)), f (n) : = 

where symbol |_ J means an integer part. Substituting this into (5.2) we get the forward 
Euler method in the form 

Ay(n) =p(n)y(n) + o(n)|y(f (n ) ) | r sgny( f (n)) +d(n), (5.3) 

where 
p(n) := ha(tn), q{n) := hb(tn), d{n) := hg(tn). (5.4) 

Note that (5.3) has the form of the delay difference equation (4.1) with one lag (i.e. k = 1) 
investigated in Chapter 4. 

Another standard way of discretization of (5.1) utilizes the fact that integrals on the 
right-hand side of (5.2) can be approximated using the rectangular formula with the right 
grid point. Thus we arrive at the backward Euler formula. 

The linear combinations of both Euler methods implies the ^-method formula (0 < 
< 9 < 1). In this case, the replacement of all integrations on the right-hand side of (5.2) 
is 

tn+l 

J a{u)x{u) du « / i ( ( l - 9)a(tn)x(tn) + 9a(tn+1)x(tn+1fj 

w h{(l ~ 9)a(tn)y(n) + 9a{tn+1)y{n + 1)), 
tn+l 

J b(u)\x(r(u))|r sgnx(r(u)) du w h((l - 9)b(tn)\x(r(tn))\r sgnx(r(t n))+ 

+ 9b(tn+1) | x (T (tn+1)) | r sgn x (r (tn+1))), 

tn+l 

J g(u)du*h((l-9)g(tn) + 9g(tn+1)). 

The replacement of the values of x(t) at the points r(tn), r(tn+i) can be done similarly 
as in the previous part. We use the piecewise linear interpolation utilizing the left and 
right neighbours of r(tn), namely 

x(r(tn)) w yh{f{n)) := (1 - sn)y{f{n)) + sny{f{n) + 1), (5.5) 

r(tn) - t0 

h 
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where 
~{tn) — to 

h 
~{tn) — to 

h 

The interpolation value of point r(tn+i) is performed analogously. Then (5.2) becomes 

Ay(n) = h((l ~ 0)a(tn)y(n) + 9a{tn+1)y{n + 1) + (1 - 6)b{tn)\yh{f{n))\r 

x s g n / ( f ( n ) ) + db(tn+1)\yh(f(n + l))\r sgn yh(f(n + 1)) 

+ (1 - 9)g(tn) + 9g(tn+1) 

where we substitute the term from (5.5) instead of yh(f(n), yh(f(n + 1) . 
Let 1 — 9ha(tn+i) ^ 0. Then the previous equation can be also rewritten as difference 

equation 

(5.6) 

Ay{n) = p{n)y{n) + q{n)\^{n)y{f{n)) + n(n)y(f(n) + 1)| sgn \ji{n)y{f{n)) 

+ r](n)y(f(n) + if) + qin) jHn)y{f{n + 1)) + fj(n)y(f(n + 1) + V 

x sgn (jl{n)y{f{n + 1)) + rj(n)y(f(n + 1) + 1)) + d(n), 

where 

p(n) :--

d{n) :--

[1 - 9)ha(tn) + 6ha(t n+l, 

1 - 9ha(tn+1) 
[1 - 6)hg{tn) + 9hg(tn+l) 

1 - 9ha(t 

q{n) :--

q{n) :--

hb(tr 

1 - 9ha(tn+1) 
hb(tn+1) 

(5.7) 

n+l, 1 - 6ha{t n+l) 

and 

7]{n) [i-oy< 
TJtn) ~ tp 

h 
r{tn) -10 

h 

fj{n) := 9r 
i IT (t n+l) — 

~h 
it n+l, to 

h 

jj,{n) := (1 — 9)r — n(n) 

jlin) := 9^ — fj[n). 
(5.8) 

Note that if 9 = 0 we get the forward Euler formula, if 9 = 1 we get the backward 
Euler formula and if 9 = \ we get the trapezoidal rule. Of course if we use the piecewise 
constant interpolation, the formula (5.6) is simplified (in particular for 6 = 0 it becomes 
(5.3)). 

5.2. Asymptotic estimates for the Euler discretization 
of (3.3) 

As we have shown, the simplest discretization of (3.3) has the form 

Ay(n) =p{n)y{n) + q{n)\y{f{n))\r sgn y{f{n)) +d(n), n E N(0), 0 < r < l , (5.9) 

where y(n) approximates the value of x(tn) at tn = to + nh, h > 0 is the stepsize, 
p[n), q[n), din) are given by (5.4), f(n) = |^r(f"^~f° j and 0 < r < 1 is a real scalar. We 
can easily check that the assumptions imposed on r(t) in Chapter 3 ensure that properties 
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assumed on f (n) in Chapter 4 are valid. Then (5.9) is a particular case of the difference 
equation (4.1) considered in the previous chapter. 

Our aim is to show that asymptotic bounds of solutions valid in the continuous case 
hold (under some restrictions) also in the corresponding discrete case. Doing this, we 
formulate an upper bound for solutions y(n) of (5.9), which corresponds to the results 
mentioned in Theorem 3.7. 

First we state some notes on the initial conditions and necessary auxiliary relations. 
Similarly to Chapter 4, we set n _ i := r(0). The equation (5.9) has a unique solution 
satisfying initial conditions 

y{n) = yo(n), n G Z , n _ i < n < 0. 

These initial conditions originate from the prescribed initial functions defined on the initial 
interval [r(io),^o]- It is obvious that if r(to) = to, then n _ i = 0 and the initial condition 
is y(0) := x(to) (= x0). 

Furthermore we put <r_i = n _ i , cr0 = 0, am+i = max{n G N(0) : f(n) < am}, 
m = 0 , 1 , 2 , . . . . We consider the following auxiliary difference inequality 

\q{n)\to{f{n))r < (1 - |1 +p(n)\)u(n), n G N(0) . (5.10) 

This relation is a simplification of difference inequality (4.7). In addition, note that here 
we have to use relation (4.6) mentioned in the previous chapter, too. The sequences u(m), 
v(m) given by (4.8) and (4.9), respectively, for m = 0 , 1 , 2 , . . . are also used. 

Theorem 5.1. Letp(n), q(n), d(n) be given by (5.4) and let \l+p(n)\ < 1 for alln G N(0). 
Further, letu(m), v(m) be given by (4-8) and (4-9), respectively. Let to{n) be a positive 
monotonous sequence satisfying (5.10) and ib{n) a positive and increasing sequence satis­
fying (4-6). Finally let y(n) be a solution of (5.9). 

(i) If u){n) is nondecreasing, then there exists a constant L > 0 such that 

\y(n)\<(L+ v(i))<j(n) for all n G N(0). 

(ii) If u){n) is decreasing, then there exists a constant L > 0 such that 

( \ u(s) \ 
\y(n)\<[L+ T v(i))u(n) T] ( 1 - , \ ) for all n G N(0). 

V l = 0 J s = 0 V to{as+1)J 

Proof. The proof follows immediately from Theorem 4.2. • 

Corollary 5.2. Consider the equation (5.9) under the assumptions of Theorem 5.1, where 
d{n) = 0. 

(i) Let r = 1 and 

|1 +p(n)\ + \q(n)\ < 1, n G N(0). 

Then any solution y(n) of (5.9) is bounded. 
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(ii) Let 0 < r < 1. Assume that there exists an arbitrary K > 0 such that 

O < I - ! I ( + ! w i - a ' n € N ( o ) - < 5 - n ) 

Then any solution y(n) of (5.9) is bounded. 

Proof. The proof follows from Corollary 4.6. • 

Remark 5.3. Note that condition (5.11) is a discrete analogue of the condition 0 < 
\b(t)\ < K\a(t)\ from Corollary 3.10 formulated for the exact delay differential equation. 
Hence, the following two examples supplement Example 3.11. 

Example 5.4. We consider the sublinear differential equation 

x'(t) = ax(t) +b\x{r{t))\r sgnxijit)), t>t0,0<r<l, (5.12) 

where a < 0, b ^ 0 are real constants. As mentioned in Example 3.11 (ii), any solution 
x(t) of (5.12) is bounded. Now we describe the asymptotic estimate of solutions of the 
corresponding Euler discretization 

Ay(n) = hay(n) + hb\y(f (n)) | r sgny(f (n)), n G N(0), 0 < r < l (5.13) 

with the stepsize h > 0 and f (n) = |^r(f"^~f° j . If |1 + /ia| < 1 and b is arbitrary, then any 
solution y{n) of (5.13) is bounded due to Corollary 5.2. 

Example 5.5. Now we consider the sublinear delay differential equation with constant 
coefficients and with forcing term 

x'(t) = ax(t) + 6 |x(r( t)) | r sgnx(r( t)) + g(t), t>t0, 0 < r < l . (5.14) 

Assume that a < 0 and g(t) is bounded. B y Example 3.11 (hi), 

x(t) = 0{ip{t)) as t -» oo (5.15) 

for any solution x(t) of (5.14), where ij)(t) is a solution of the Abe l equation (3.5). 
In particular, if r(t) = t — K, K G M. (constant delay), then ip(t) = tJK is the solution 

of the Abe l equation (3.5) and (5.15) becomes 

x(t) = 0{t) as t -» oo. (5.16) 

Alternatively, if r(t) = Xt, 0 < A < 1 (the proportional delay), then the Abe l equation 
(3.5) admits the solution tp(t) = l 0 g f - i and from (5.15) we get 

x(t) = 0(\ogt) a s t ^ o o . (5.17) 

The Euler discretization of (5.14) is 

Ay(n) = hayin) + hb\y(f (n))| r sgny(f (n)) + d(n), n G N(0), 0 < r < 1, (5.18) 

where d{n) = hg{tn), f{n) = \j^tnj^to j and y{n) is an approximation of x{t) at t = tn. 
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We set the stepsize h such that |1 + ha\ < 1. It is clear that the sequence d(n) is 
bounded. Then from (4.9) the sequence v(m) is bounded too. From (4.8) the sequence 
u(m) is zero. Then Theorem 5.1 implies that 

y{n) = 0{^){n)) as n —> oo (5.19) 

for any solution y(n) of (5.18), where the sequence tp(n) satisfies (4.6). 
If we consider the constant delay, then f (n) = n — , K G K and a m = m. It can 

be easily checked that tp(n) = n/ f J is a positive and nondecreasing sequence satisfying 
(4.6). Hence, the estimate (5.19) becomes 

y{n) = 0{n) as n —> oo . (5.20) 

If we consider the proportional delay, then f(n) = \_\n\, 0 < A < 1 and am = l^y^-l-
We can choose i/)(n) = l o g ( T^g\ /!1rA ) ) • This sequence satisfies (4.6) and the estimate (5.19) 
becomes 

y{n) = O(logn) as n —> oo . (5-21) 

Comparing (5.16), (5.20) and (5.17), (5.21), we can observe the resemblance of the 
asymptotics of solutions of (5.14) and (5.18) provided that |1 + ha\ < 1. 

5.3. Asymptotic estimates for the ̂ -method discretiza­
tion of (3.3) 

As we have already mentioned, the standard discretization of (3.3) is the ^-method (5.6) 
involving Euler methods and the trapezoidal rule as its particular cases. In this section, we 
derive conditions which imply that the solution sequence of the ^-method discretization 
of (3.3) has asymptotic behaviour analogous to the behaviour of the exact solution. These 
conditions depend on coefficients a(t), b(t), the stepsize h and the parameter 9. 

We consider a sublinear differential equation with general delay (3.3) and its discretiza­
tion obtained from the ^-method (5.6) withp(n), q(n), q(n), d(n) given by (5.7) and t](n), 
n(n), rj(n), fi(n) given by (5.8). 

As in the previous section, we introduce a sequence am and an auxiliary relation. Put 
a-i = n_ i = f (0), (T 0 = 0, am+i = max{n G N(0) : f(n + 1) + 1 < a m } , m = 0 , 1 , 2 , . . . 
and consider a difference inequality 

I i r 
\q(n)\ • m(n)u(f(n)) + rj(n)u(f(n) + 1) 

I i r ( 5 - 2 2 ) 
+ \q(n)\ • \jl(n)uj(f(n + 1)) + f}(n)tu(f(n + 1) + 1)| < (1 - |1 +p(n)\)u(n) 

for all n G N(0). This relation corresponds to auxiliary inequality (4.7). The following 
theorem is a direct consequence of Theorem 4.2. 

Theorem 5.6. Letp(n), q{n), q{n), d{n) given by (5.7) andn(n), ji{n), fj{n), jx{n) given 
by (5.8) and let \l+p{n)\ < 1 for all n G N(0). Further, letu(m), v(m) be given by (4-8) 
and (4-9), respectively. Let to(n) be a positive monotonous sequence satisfying (5.22) and 
ip(n) a positive and increasing sequence satisfying (4-6)- Finally let y(n) be a solution of 
(5.6). 

3(3 
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(i) If uj{n) is nondecreasing, then there exists a constant L > 0 such that 

\y(n)\<[L+ Y v{i))uj{n) for all n G N(0). 

(ii) If Cu(n) is decreasing, then there exists a constant L > 0 such that 

( \ L ^ ) J / u(a) \ 
\y(n)\<[L+ T v(i))u(n) T] ( 1 - 7W

 N ) for all n G N(0). 

Using the notation 
g(n) := max(|o(n)|, \q(n)\) 

and the property 
|/x(n) + n(n) | r + |/t(n) + fj(n)\r = 1 

valid for all n G N(0) we get the following corollary. 
Corollary 5.7. Consider the equation (5.6) under the assumptions of Theorem 5.6, where 
d{n) = 0. 

(i) Let r = 1 and 
0 < |1 +p(n)\ +q(n) < 1, n G N(0). 

Then any solution y(n) of (5.6) is bounded. 

(ii) Let 0 < r < 1. Assume that there exists an arbitrary K > 0 such that 

0 < i , ? ( n ) 7 \ i <K, n G N(0). 
1 - |1 +p(n) | ~ w 

TTien any solution y(n) of (5.6) is bounded. 

Example 5.8. We discuss the same problem as in Example 5.4. Instead of the Euler 
discretization we consider the ^-method discretization with the piecewise linear interpo­
lation. B y Example 3.11 (ii), all solutions x(t) of (5.12) are bounded provided a < 0. The 
^-method discretization of (5.12) yields 

/ r 

Ay(n) = py(n) + q( /i(n)y(f(n)) + n(n)y(f{n) + 1) sgn(/x(n)y(f(n)) 

+r){n)y{f (n) + 1)) + \fi{n)y{f{n + 1)) + fj(n)y(f(n + 1) + 1)[ (5.23) 

x sgn(/i(n)y(f(n + 1)) + f)(n)y(f(n + 1) + 1))), 

where n G N(0), r 6 1, 0 < r < 1, 

P = \-8ha q = \-6ha 
and n(n), //(n), ?y(n), /t(n) are given by (5.8). B y Corollary 5.7 (with p(n) = p, <j(n) 

|g| -
I- |I+P|-and K = - , _ H L ,), the solution y(n) of (5.23) is bounded if 

i l+rf = l l + r ^ a l < l 

and a is arbitrary. In the next section, this particular example helps us to illustrate 
conditions on the parameters (especially on the parameter 8 and the stepsize h) under 
which the ^-method (5.23) is stable. 

37 

file:///-8ha
file:///-6ha


5.4. Stability analysis of the ^-method discretization 
of (3.3) 

The aim of this section is to analyse the stability of the numerical method originating 
from the ^-method discretization of (3.3). This analysis substantially utilizes qualitative 
properties of the studied differential equations and their discretizations (from related 
papers we refer to [26], [27], [36] and [38]). 

We consider the test equation 

x'(t) = ax(t) + 6 |x(r( t )) | r sgnx(r( t)) , t > t0, a, b, r G R, a, b f 0, 0 < r < 1 (5.24) 

and its ^-method discretization 

Ay(n) = py(n) + q(jn(n)y(f(n)) + rj(n)y{f(n) + 1)| sgn (ji{n)y{f{n)) 

+ rj(n)y(f(n) + 1)) + \jl(n)y(f(n + 1)) + fj(n)y(f(n + 1) + 1)[ (5.25) 

x sgn (jl(n)y(f(n + 1)) + rj(n)y(f(n + !) + !) 

n G N(0), where 
ha Kb , . 

P = r ^ ' Q = Y^eha ( 5 - 2 6 ) 

and 7](n), /J,(n), f)(n), fi(n) are given by (5.8) and h > 0 is the stepsize. We do not consider 
the pure delayed case (a = 0) in this section. 

A n important theoretical question on these numerical approximations is a problem 
whether the numerical and exact solutions have the related asymptotic behaviour on 
the unbounded domain. More precisely, if all solutions of a given differential equation 
have certain asymptotic properties, then we investigate if the solutions of corresponding 
discretization have the same properties (regardless of the stepsize h and the delayed 
argument r(t)). We pay a specially attention to boundedness property. 

Example 3.11 () (ii) implies 

Theorem 5.9. Let x(t) be a solution of (5.24), where a < 0 and 6 ^ 0 . Then x(t) is 
bounded as t —> oo. 

The following property is taken from the standard notions of stability of numerical 
methods for linear equations. 

Definition 5.10. The numerical method (5.25) is called stable if any application of the 
method to the equation (5.24), where a < 0, generates a numerical solution y(n) that is 
bounded for any h > 0. 

Procedures performed in Example 5.8 can be summarized as follows. 

Theorem 5.11. Let y(n) be a solution of the 6-method discretization (5.25) with p,q 
given by (5.26), 7](n), yu(n), fj(n), fi(n) are given by (5.8), where a, b ^ 0 and 

0 < |1 -6ha\ - |1 + (1 -6)ha\. (5.27) 

Then y(n) is bounded. 
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Remark 5.12. The case when r = 1 (the linear equation) will not be the subject of 
our investigation here. For particular cases of r(t), the corresponding results on linear 
equations can be found in [12], [24] or [26], where the asymptotic stability property is 
studied as well. 

We look in detail at the condition (5.27). This condition essentially gives a restriction 
on the stepsize h (which does not depend on the coefficient b). 

If a < 0, then we distinguish two cases: if 

(l-d)h\a\ < 1 

holds, then (5.27) is satisfied trivially. On the contrary, if 

(l-d)h\a\ > 1 

is valid, then (5.27) is reduced to 

(1 - 26)h\a\ < 2. (5.28) 

This relation holds for a < 0 and any h > 0 if and only if | < 9 < 1. If we consider 
0 < 9 < \, then (5.28) yields the restriction on stepsize h in the form 

h < J ^ W a ( 5 ' 2 9 ) 

We summarize these considerations into the following theorem. 

Theorem 5.13. Let a < 0, b ^ 0. The 9-method discretization (5.25) is stable if and 
only if 

- < 9 < 1. 
2 ~ ~ 

5.5. Numerical experiments 
In this section, several comparisons and numerical consequences concerning the asymp­
totic estimates of solutions of exact equations and their discretizations are presented. 
Throughout this section y(n) means the approximation of the exact solution x(t) at 
tn = to + nh. 

This subsection includes five examples. The first example deals with a difference 
equation with no relation to a differential equation. The second example investigates 
the sublinear delay differential equation and its Euler discretization with respect to the 
boundedness of the solutions. The third example demonstrates the case when the solutions 
of differential and difference equation are tending to zero. The fourth example shows an 
equation with bounded forcing term. The fifth example illustrates the stability analysis. 

Example 5.14. We illustrate Example 4.8 as a particular initial value problem here. 
We consider an autonomous difference equation with one constant and one proportional 
delayed arguments 

y(n + 1) = 0.7y(n) + 1 . 3y^ (Ln /2 j ) | sgny(|_n/2j) + 0 .2^y(n - 3), n = 3 ,4 , . . . (5.30) 
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10000 

Figure 5.1: The solution y(n) and its constant upper bound 

with init ial conditions 
y ( 0 ) = y ( l ) = y (2 )=y(3 ) = l . 

It is easy to verify that conditions (4.20) are valid, for r = 1/2, p(n) = —0.3, qi(n) = 1.3, 
l2(n) = 0.2 and K > 6 (see also Example 4.8). Figure 5.1 shows that the solution y(n) 
of (5.30) is actually bounded, as it follows from Corollary 4.6. 

Example 5.15. We consider the initial value problem for the equation with nonconstant 
coefficients 

1. (5.31) x'(t) = ( s i n í - 2 ) x ( í ) + (sin2í + 2 ) ý x ( í / 4 ) , t > 0, x(0) 

It is easy to verify that coefficients in (5.31) satisfy the condition 

0 < |6(i)| < K\a(t)\, t>0 

from Corollary 3.10 with K > 3. It follows from Corollary 3.10 that any solution x(t) 
of (5.31) is bounded. The discretization of (5.31) via the Euler formula (5.9) with the 
stepsize h = 0.5 becomes 

y(o) 

y(n + 1) 

1, 
sin(n/2) , , / s i n n . , 

Jy(n)+ 1 + ^ 
2 " V ' V 2 

It is obvious that the condition (5.11) holds for coefficients 

y([n/4\), n = 0,1,2, 
(5.32) 

p(n) 
sin(n/2) 

1. q[n) 1 + 
s i n n 

and a suitable constant K > 3. Then, by Corollary 5.2, the solution y{n) of (5.32) is also 
bounded (see Figure 5.2). Since the forward Euler method is not stable, the choice of h 
can not be arbitrary if we wish to preserve the boundedness property. 
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Figure 5.2: The solution x(t) and its constant upper bound 

Example 5.16. In this example, we show a delay differential equation whose solution is 
tending to zero. We consider the equation 

x'{t) = - ( 1 + - ^ ) x ( i ) + -J\x{t/2>)\ sgnx(t/3), t>2 (5.33) 
yt t 

with the initial condition 

x(t) = 1 2/3 < t < 2. 

B y Example 3.13 (where a = — 1, b = 1 and A = 1/3), it holds 
x(t) = 0(1/t2) as t —> oo 

for the solution x(t) of (5.33). 
We perform the discretization of this equation using the forward Euler method, i.e. 

we use relations (5.3), (5.4) and we put tn = 2 + nh. We choose the stepsize h so that the 
condition |1 + p(n)\ < 1 formulated in Theorem 5.1 holds, i.e. we choose e.g. h = 0.1. 
The equation (5.9) thus becomes 

y(n) = l, n = - 1 4 , - 1 3 , . . . , 0 , 

^ t 9 \ / l 0 \ / \ 
y ( n + 1 ) = U - T o ^ T ^ > ( n ) ( 5 - 3 4 ) 

+ 2 o T ^ | y ( L n / 3 " 4 0 / 3 J ) l S g n y i [ n / S _ 4 0 / 3 j ) ' « = 0. 1» - • 
It is easy to check that all assumptions of Corollary 4.10 are fulfilled (with p(n) = -

1 0 ^ + n , q{n) = 2oT^, r = | , a = - 2 and p = 0.9). Moreover, then from (4.24) we get 

that 

y(n) = O f ~ ) as ?i —> oo 

for any solution y(n) of (5.34). This estimate again corresponds to the continuous case. 
B y Figure 5.3, the solution y(n) is actually tending to zero as n -» oo. For better 

comparison of the solution and its estimation we present Figure 5.4. This figure plots the 
value (nfc,log(|y(n/i)| + e)), where e = 2.23 x 10"" ^308 
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Figure 5.3: The solution y(n) and its upper bound 

Figure 5.4: The solution y{n) and its upper bounds on the logarithmic scale 

Example 5.17. This example shows the equation with nonzero forcing term. We consider 
a sublinear differential equation with constant delayed argument 

3 - 3 

x'(t) = -x(t) + W(x(t - -)Y sgnx(t - - ) +g(t), t>0 (5.35) 

with the initial condition 
x(t) = 1 for - 3/2 < t < 0. 

In addition we assume that g(t) is bounded. 
In this case of constant delay r(t) = t — 3/2, the function ijj(t) = 2t/3 is a solution 

of the Abe l equation (3.5). B y Example 3.11 (hi) (where a = —1, b = 10, r = 2/3), the 
asymptotic estimate of any solution x(t) of (5.35) is 

x(t) = 0(t) as t —> oo. 

After the Euler discretization of (5.35) we obtain 

y(n) = l, n =-3,-2,-1,0, 
1 2 1 /n\ (5.36) 

y(n + l) = -y(n)+5\y(n-3)\3Sgny(n-3) + -g(K-), n = 0 , 1 , 2 , . . . , 
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where we choose the stepsize h = 0.5 so that the condition |1 + p(n)\ < 1 formulated in 
Theorem 5.1 holds. B y Example 5.5 (with a = —1, 6 = 10, r = 2/3 and K = 3/2), the 
estimate (5.20) holds, i.e. 

y(n) = 0(n) as n ^ o o 

for any solution y{n) of the corresponding difference equation (5.36). 
Figure 5.5 shows solutions x(t) of (5.35) under choices g(t) = arctan(t), g{t) = sin(t) 

and g(t) = —1. 

o -| 1 1 1 1 1 1 1 1 1 r 
0 20 40 60 80 100 

Figure 5.5: The solution x(t) for g(t) = arctan(t); sin(t); —1 

Example 5.18. Consider the initial value problem for the delay differential equation with 
constant coefficients 

x'(t) = ax(t) +6 |x(At) | r sgnx(At) , t > 0, x(0) = 1, (5.37) 

where a, b, A, r are real scalars such that a < 0, b ^ 0 and 0 < A, r < 1. B y Theorem 5.9, 
the solution x(t) of (5.37) is bounded. 

We illustrate stability analysis stated in the previous subsection by this equation. We 
recall that the asymptotic properties (in particular boundedness) depend on the coefficient 
a, on the parameter 6 and on the stepsize h. We put a = —4, 6 = l , r = A = l / 2 and 
discuss the boundedness of the corresponding discretization with respect to changing 
h > 0 and 0 < 9 < 1. We perform the method discretization (5.6) to obtain the initial 
value problem 

2/(0) =1 

y(n + 1) =(1 + p)y(n) + qy/\fi(n)y([n/2\) + V(n)y([n/2\ + 1)| 

x sgn (ji(n)y([n/2\) + 7](n)y([n/2\ + 1)) (5.38) 

+ q^J\fi(n)y([(n + 1)/2J) + f,(n)y([(n + 1)/2J + 1)| 

x sgn (jl(n)y(l(n + 1)/2J) + v(n)y([(n + 1)/2J + 1)), 
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n = 0 , 1 , . . . , where 

P 

r)(n) 

f)(n) 

-Ah 
l + 40/i ' 
( l - 0 ) 2 ( n / 2 
92((n + l ) / 2 

K2J), /x(n) 
L(n + l ) / 2 j ) , /i(n) 

h 
T+A9h' 
( l - 6 » ) 2 ( l - n / 2 + Ln/2J), 

0 2 ( l - ( n + l ) / 2 + L(n + 1)/2J). 

B y Theorem 5.11, the solution y(n) of (5.38) is bounded if the condition 

0 < l + Wh- | l - 4 / i ( l - 0 ) | 

holds. First we consider 1/2 < 0 < 1, e.g. 9 = 0.8. In this case, by Theorem 5.13, the 
solution y{n) is bounded for all h > 0 and the method (5.38) is stable. The situation is 
illustrated by Table 5.1 and Figure 5.6. 

Further we assume 0 < 9 < 1/2, e.g. 9 = 0.3. It follows from (5.29) that the solution 
of (5.38) is bounded provided 

h < 1.25. 
2 ( 1 - 2 0 ) 

Table 5.2 and Figure 5.7 demonstrate the strictness of this stepsize condition. 

h\nh 50 150 500 1000 
0.01 0.06419 0.06306 0.06267 0.06258 
0.1 0.06482 0.06327 0.06273 0.06261 
0.5 0.06787 0.06414 0.06301 0.06275 
1 0.06992 0.06513 0.06321 0.06285 
5 0.10704 0.07189 0.06484 0.06366 
10 0.21264 0.08504 0.06626 0.06435 
50 1 0.06832 0.11672 0.08539 

Table 5.1: The solution x(nh) for 9 = 0.8 

h\nh 50 150 500 1000 
0.01 -0.05831 0.06234 0.06244 -0.06247 
0.5 -0.06773 -0.06388 -0.06203 0.06226 
1 0.09807 -0.06138 -0.05605 -0.05931 

1.24 0.9753 0.4786 0.09373 -0.02712 
1.2499 1.3398 1.3434 1.3666 1.1991 
1.255 -0.8951 -1.1907 2.7191 11.9956 

2 -779.004 -2.857 E9 2.689 E32 1.776 E65 

Table 5.2: The solution x(nh) for 9 = 0.3 
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Figure 5.6: The solution y(ri) for 9 = 0.8, h = 0.1 and h = 5 

10 

- j 

-10 

-

• 'h=1.255 

h=1.2499 

1 1 1 ' 1 1 1 1 i 1 i ' i 1 i . 1 . 

Figure 5.7: The solution y(n) for 9 = 0.3 
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6. Conclusion 
In this thesis, there are presented the results concerning with the asymptotic behaviour 

of the nonlinear delay differential equation 

x'(t) = a(t)x(t) + f(t, x(r(t))), t e [t0, oo), 

where the right-hand side fulfills the relation 

\f(t,x)\ < \b(t)\\x\r + \g(t)\, te[t0,oo), r > 0 . 

We derived two different types of asymptotics, which depends on the sign of the function 
a(t) provided that the studied equation is of sublinear type (0 < r < 1). Asymptotic 
estimates of the super linear equation (r > 1) were provided only for negative values of 
a(t). Obtained results were demonstrated by several corollaries and illustrating examples. 

Since the searching for an analytical solution of the studied nonlinear equations turned 
out to be impossible, we need to discuss the numerical solution. The appropriate numerical 
formulae are constructed as difference equations. Consequently, the second part of this 
thesis is already concerned with problems of sublinear difference equations (with one 
or more delays). Considering these equations, main qualitative properties (especially 
asymptotic) were derived. Using these results we discussed the stability property of the 9-
method discretization. It was shown, that for | < 9 < 1 this method is stable. Further, in 
several examples we compared asymptotic estimates of both exact and numerical solutions. 

There are several directions, where the results obtained in this work can be further 
developed. It can be useful to focus on improvement of some asymptotic estimates. Some 
numerical experiments indicate that some of these estimates can be improved. Another 
development may consist in considering the corresponding differential equations of neutral 
type. Finally, obtained results for differential and difference equations can be unified and 
generalized in the frame of the time scale theory. 
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7. List of abbreviations and symbols 
K set of real numbers 

Z set of integers 

N set of positive integers 

N(0) := {0 ,1 ,2 , . . .} set of nonnegative integers 

N(n 0 ) := { n 0 , n 0 + 1, n 0 + 2, . . .} 

set of integers > no 

C(7) set of continuous functions on / 

Cl(I) set of continuous and continuously differentiable functions on / 

[a, b] closed interval of real numbers 

/ := [to, oo) interval of real numbers 

I x R Cartesian product 

x'(t), first derivative of x(t) with respect to t 

Ay(n) := y(n + l) -y(n) 

forward difference operator 

sgn a signum function 

exp{a} natural exponential function ea 

\a\ absolute value of a 

[a\ integer part of a 

0(g(t)) Omicron notation, upper asymptotic estimate 
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