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AUTHOR Bc. et Bc. JURAJ POLIAK
AUTOR PRÁCE
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ABSTRACT
Master’s thesis deals with scalar diffraction theory and introduces an important solu-
tion of wave equation – elliptically symetrical Gaussian beam. In practical part, two
approaches of diffraction model are used. The model will be experimentaly confirmed
during experiment. In the final part, results of this experiment and simulation are criticaly
discussed.
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ABSTRAKT
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rovnice a to elipticky symetrický Gaussov zväzok. V praktickej časti bude poṕısané
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experimentálne overený experimentom. V záverečnej časti bude kriticky pojednané o
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1 INTRODUCTION

Increasing demand for optical communication systems is observed in last decade.

Whether it’s for a practical reason (unlicensed band, directivity of transmission) or

to obtain higher speed rate. During pointing and shaping the optical beam, there

are many wave phenomena of light applied to describe its distribution along the

path, mostly diffraction phenomena. As later will be described, this phenomena

were observed already in 17th century a despite that, a man has still not been able

fully describe all its effects.

Second part of the thesis deals with a description of laser beam using important

solution of wave equation - gaussian beam. For simplicity, basic parameters will

be introduced on circularly symetrical gaussian beam. In practice, to describe real

situation more finely, elipticaly symetrical gaussian beams are used and will be

discussed as well.

In the main part, two different approaches to simulate diffraction and its aspects

will be introduced. First model uses Fourier transform of 2-dimensional signal and

second one uses integral of Bessel functions. Results of both simulation will be

compared.

Thesis concludes with a simulation of real beam and experimental verification of

function of this program. The aim of this thesis will be to develop an application,

which will is able to simulate diffraction effects and to test it on an experimental

link.
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2 DIFFRACTION

With description of electromagnetic radiation in free space deals optics. According

to degree of abstraction, optics is further divided into:

• Geometric

• Wave

• Electromagnetic

• Quantum

Each area includes all previous areas. It would be then logical to use always

knowledge of quantum optics to express all optics effects. That would lead to re-

dundant effort, as usualy such a fine resolution would not be necessary. In some

cases it is not even possible.

Electromagnetic radiation never distributes throughout infinite space. During its

distribution it collides with obstacles and as will be discussed later, this interaction

leads to interesting effects. The most common and most significant is diffraction.

Name for diffraction was created by the founder of diffraction F.M.Grimaldi in

1665. The word is consists of two parts: latin dis-, that means opposite, negation

and frangere, thats main meaning is to bend. Grimaldi so characterised the light,

that deviates from its straightforward distribution in another way than bending or

refraction. In his book ”Physico-mathesis de lumine, coloribus, et iride” (Physico-

mathematical Studies of Light, Colors, and the Rainbow) wrote:

”Lumen propagatur seu diffunditur non solum directe, refracte ac

reflexe, sed etiam alio quodam quarto modo, diffracte.”

”Light propagates and spreads not only directly, through refraction,

and reflection, but also by a fourth mode, diffraction.”

This sentence up to this day defines the term of diffraction. For modern purposes

is appropriate to add, that distribution via homogenous and isotropic enviroment is

supposed and for the term of diffraction is used for light effect behind the obstacle

limiting the optical beam.

2.1 Fresnel and Fraunhofer diffraction

In optics, two types of diffraction phenomena are distinguished. It’s Fresnel and

Fraunhofer diffraction. In this section, qualitative analysis of both will be discussed.

In case of screening of image, e.g. rectangle aperture (see fig.2.1) without any use

of optics, shielding object µ with rectangle aperture is placed between light source

P0 and plane of observation π. Expectations of inexperienced would be, that the

12



projection of the aperture in the plane π would be more precise as the dimension of

the light source P0 decreases. However, when monochromatic light is used, in the

plane π complex pattern (such as on fig.2.2) will be observed. The cause is bending

of light on the obstacle and the fourth way of distribution of light occurs.

Fig. 2.1: Projection of aperture in the shielding object µ to plane of observation π.

[1]

When small monochromatic coherent light source P0 is used, Fresnel phenomena

are apparent during shadow projection and in optical imaging systems are the main

cause of blur and limit resolution of the whole system.

But problematics of Fraunhofer diffraction is more complex. In many cases it may

be considered as special case of Fresnel diffraction. This phenomenon is so complex,

that many scientists understand diffraction simply as Fraunhofer diffraction.

In the experiment on figure 2.1 one may increase the distance from source P0

to the plane π as well as distance from the plane π to µ. Theoreticaly, one may

increase these distances to infinity (a, b →∞). Then, only planar wave approaching

the plane of observation µ is considered and points in infinity will be considered as

directions. Fraunhofer diffraction then represents distribution of light in direction

to the point of observation, i.e. intensity of radiation distributing from the aperture

to the observation plane in individual directions. In case of Fresnel diffraction,

distribution of light as the function of location is considered. In practice, Fraunhofer

pattern is achieved using lens.

13



Fig. 2.2: Observation of Fresnel diffraction on rectangle aperture in opaque object

obtained from the experiment on figure 2.1 for various combinations of values a a b.

Dimension of aperture in the plane P0 are 5.4 ×7.5 mm, λ = 630 nm.[1]

2.2 Huygens-Fresnel principle

Diffraction phenomena are usually derived from Huygens-Fresnel principle. Huygens

in his work ”Traité de la lumiére” (1690) was first who quantitatively expressed

distribution of light in free space, reflection, refraction and birefringence (or double

refraction). He used ”Huygens constructions” (equivalent for Huygens principle). It

includes two arguments:

I/ Every point of homogenous and isotropic enviroment, on which a wave (every

point of wavefront) falls is considered to be a centre of secondary spherical

wave.

II/ Wavefront at the time t + ∆t is a sum of secondary spherical waves at the

previous time t.

The idea according to the second statement is obviously incorrect as it contradicts

the observations of interference and diffraction phenomena.

Augustin Jean Fresnel was first who was able to explain all known diffraction

phenomena. He achieved this with a change in the second Huygens’ statement.

Fresnel added, that secondary waveforms interfere with each other and specified

amplitude and phase of secondary waveforms.

It is assumed, that enviroment in which the wave propagates is homogenous

and isotropic dielectric medium. Optical wave is monochromatic, spherical, linearly

poliarised and its optical intensity is so low, that it doesn’t induce any nonlinear

effects in that enviroment. Plane S defines position of planar wave at the time t.
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Let in the points M of this plane be a known wave function ψ0(M ) and it indicates

a primary stimulus. From every point on the right side of the plane S secondary

wave is coming out.

ψ(s, ϑ) = − j

λ
K(ϑ)ψ0(M)

ejksM

sM
, (2.1)

where the meaning of symbols is obvious according to the figure 2.3. Moreover, ϑ

denotes the angle between normal to the plane S and direction sM. e
jksM

sM is devergent

spherical wave coming from the point M .

Fig. 2.3: Representation of Huygens-Fresnel principle. [2]

Term − j

λ
indicates, that secondary waves’ amplitude is inversely proportional

to the wavelength and its phase outruns the phase of primary stimulus for quarter

of a period. Fresnel introduced this factor to come to a correct solution in case no

obstacle is present. K(ϑ) might be the most problematic factor and it was named

slope factor. It indicates, that amplitude of secondary waves is depends on the

direction of wave distribution. As the plane S Fresnel has chosen a wavefront. Then

the angle ϑ would be the angle between normal to a wavefront at the point M

and the direction determined by the connection of the point M and the point of

observation P and the factor K(ϑ) assumed in the form of

K(ϑ) =

{
cos ϑ pre ϑ ∈

〈
−π

2
, π
2

〉
0 pre ϑ ∈

〈π
2
, 3π

2

〉 . (2.2)

Nowadays the plane S is considered to be the plane of diffraction aperture.
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Let S0 be the part of the plane S, which is not shadowed with diffraction shield.

According to Fresnel the wave function in the point P out of the plane S is given

as sum of all secundary waves coming from the plane S0, then:

ψ(P) = − jk

2π

∫∫
S0

ψ0(M)
ejksM

sM
cos ϑ dS0. (2.3)

is a mathematical expression of Huygens-Fresnel principle.

2.3 Fresnel zones

To explain diffraction effect one has to fimiliarise himself with the term of Fresnel

zone. It provides a better description of diffraction phenomena.

Let from the point source P1 come a spherical wave out and S is one of its

equiphase surface in the distance z1. In the distance z1 + z from the source let be

the point of observation P . Then, let σ0, σ1, σ2, . . . be spherical waves with radius

z, z + λ/2, z + 2.λ/2, . . . respectively around this point. These waves divide the

equiphase surface S into zones. When ψ1, ψ2, ψ3, . . . mark sums of these secondary

waves coming to the point P from the first, second, third, . . . zone respectively, then

it is obvious, that ψ2 will have opposite phase, than ψ1 and so on. Radius rn of nth

zone according to Pythagorean theorem (fig.3 [1]) would be:

(z1 −∆)2 + rn
2 = z1

2

(z + ∆)2 + rn
2 =

(
z + nλ

2

)2 . (2.4)

After the exclusion ∆:

r2n =
nλz1z

z1 + z

[
1+

1

2

(
nλ

2

)
z21 + z1z − z2

z1z(z1 + z)
−1

2

(
nλ

2

)2
1

z1(z1 + z)
−1

8

(
nλ

2

)3
1

z1z(z1 + z)

]
.

(2.5)

Quantitative analysis shows, that terms of second, third and fourth order may

be excluded. Then radius of nth zone is

rn =

√
nλz1z

z1 + z
. (2.6)

Them Fresnel zones on the wavefront S are approximately planar:

π
(
r2n − r2n−1

)
= π

λz1z

z1 + z
. (2.7)

That also concludes, that sums ψi of secondary waves coming from these zones

to the point P have the same absolute value. Then, when through the opaque shield

16



exactly first two zones penetrate, wave function in the point P will be zero, because

sums ψ1 a ψ2 have the same absolute value, but opposite phase. That means, that

optical intensity will be zero as well. The same situation repeats when even number

of Fresnel zones is transmitted through the aperture.

Construction of Fresnel zones leads to a conclusion, that when aperture in the

shield is increased from zero radius, intensity at the point of observation P increases

until exactly first Fresnel zone is transmitted. When the radius is further increased,

optical intensity at the point P decreases to zero when the second Fresnel zone is

transmitted. When the radius is increased even more, the whole process repeats.

Maximum modulus of wave function aplitude occurs when odd number of Fresnel

zones is transmitted.

This maximum intensity is derived in [1], section 5.8.1.. Here, the expression

as Fresnel formulated it will be mentioned. Despite of inaccurate reasoning, this

expression appeared to be correct. When through the circular aperture an odd

number of Fresnel zone is transmitted, optical intensity at the point of observation

P is quadruple compared with optical intensity that would be at this place in case

of no shield present, i.e. that wave function would be double. This implies, that if

only half of the first Fresnel zone is transmitted, there would be the same optical

intensity at the point P as for not obscured wave. This result Fresnel assumed and

supported it with an assumption, which was not correct and Fresnel knew it. He

calculated contribution ψi of individual zones:

ψ(P ) =
1

2
ψ1 +

(
1

2
ψ1 + ψ2 +

1

2
ψ3

)
+ · · ·+ ψϑ =

1

2
ψ1, (2.8)

and a half of a contribution of the last zone

ψϑ =
1

2
ψn, resp. ψϑ =

1

2
ψn−1 + ψn

left out. He justified this with zero value of a slope factor K(ϑ) = cosϑ for

ϑ = π/2.

Simply contribution of wave function from each even zone compensated with

contributions from halfs of adjacent odd zones. Result, even when not derived

mathematically correctly, represents the reality. This illustrates meaning of sur-

rounding of the point M0 (point of stationary phase) for the wave function at the

point of observation P .

When the planar incident wave is considered, surface S is planar and from the

Pythagorean theorem can be for outer radius rn of nth Fresnel zone derived following

expression:

rn =
√
nλz

√
1 +

nλ

4z
. (2.9)
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One may with high accuracy presume, that

rn =
√
nλz. (2.10)

2.4 Derivation of diffraction integrals

In following section diffraction integrals for Fraunhofer and Fresnel diffraction will

be derived.

In the integral 2.3 stands as integral area S0 usualy nonshielding part of wavefront

or diffraction shield. In this derivation, as an integral area, the part of a plane that

corresponds with transparent parts of the shade will be taken and this plane will be

considered as the axis plane z = 0.

Fig. 2.4: Representation of Fresnel diffraction integral derivation. [1]

The slope factor is assumed to be K(ϑ) = 1. Expression 2.3 is now as follows:

ψ(P) = − jk

2π

∫∫
S0

ψ0(xM , yM)
ejksM

sM
dxM dyM . (2.11)

When the spherical wave in the equation 2.11 is substituted with its Fresnel

approximation [1]:

ejksM

sM
≈ ejkz

z
e

jk
2z

[(x−xM )2+(y−yM )2], (2.12)

where ψ0(xM , yM) = 0 at the points of opaque part of the shade.

Diffraction integral for Fresnel diffraction phenomena is now at following form:

ψ(x, y, z) = − jk

2π

ejkz

z

∫∫
S0

ψ0(xM , yM)e
jk
2z

[(x−xM )2+(y−yM )2] dxM dyM . (2.13)
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From this expression on may proceed also when analytical calculation of wave

function characterising some typical Fresnel diffraction effects. These calculations

are not very straightforward as they use special functions - Fresnel integrals, Bessel

and Lommel functions. Not even numerical calculations would be simple. There is a

simple way to modify this expression to Fourier integral: One has to expand square

power in the phasor argument and that leads to

ψ(x, y, z) = − jk

2π

ejkz

z
e

jk
2z

(x2+y2)

∫∫
S0

ψ0(xM , yM)e
jk
2z

(x2M+y2M )e−
jk
z
(xxM+yyM ) dxM dyM .

(2.14)

Wave function characterising Fresnel diffraction is then expressed using Fourier

transform of products of wave function ψ0 on the plane of diffraction aperture and

the phasor e
jk
2z

(x2M+y2M ).

Derivation of diffraction integral for Fraunhofer diffraction using Huygens-Fresnel

principle is not as elegant as widespread. It proceeds, same as derivation of Fresnel

diffraction integral, from the approximation of spherical wave. This time in a dif-

ferent way. The distance s0 between the points M and P can be expanded in power

series [1].

When the function ψ0(xM , yM) has nonzero values only close to origin O, as it

can be in case of apertures in an opaque shade, specificaly if

k(x2M + y2M)

2s0

∣∣∣∣∣
max

� 2π, tj.
√
x2M + y2M

∣∣∣∣
max

�
√

2λs0, (2.15)

one may vanish terms containing integral variable of second and higher order in

exponent of spherical wave expression and then the spherical wave can be expressed

as follows

ejksM

sM
≈ ejks0

s0
e
−jk
(

x
s0
xM+ y

s0
yM

)
. (2.16)

Using this expression has integral 2.11 shape of Fourier transform:

ψ(P) = − jk

2π

ejks0

s0

∫∫
S0

ψ0(xM , yM)e
−jk
(

x
s0
xM+ y

s0
yM

)
dxM dyM . (2.17)

Considering

x

s0
= nx,

y

s0
= ny, (2.18)
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where
(
nx, ny,

√
1− n2

x − n2
y

)
are direction cosines of the direction ~OP and when

the condition 2.15 is satisfied, the expression in front of the integral 2.17 is constant

and wave function ψ is a function of direction cosines nx, ny and is in a form

ψ(P) = C

∫∫
S0

ψ0(xM , yM)e−jk(nxxM+nyyM ) dxM dyM . (2.19)

After closer look at the condition 2.15 is obvious, that Fraunhofer diffraction

occurs only when linear dimension of aperture are relatively small with respect to

the diameter of the first Fresnel zone. Within this context, Fresnel number Nf is

defined as

Nf =
a2

λz
, (2.20)

where a is radius of the circle, where shade has nonzero values of the transmission

function a z is distance of this aperture from the plane of observation. It is used to

determine which type of diffraction is observed. When Fresnel number isNf ≥ 1, it is

mostly Fresnel diffraction. In case of Nf < 1 or rather Nf � 1 Fraunhofer diffraction

is observed, except the case when the plane of observation is simultaneously plane

of geometrical image of the source.

When in the equation 2.19 k is substituted for k = 2π
λ

and introducing spatial

frequencies

u =
nx
λ
, v =

ny
λ
, (2.21)

one leads to an equation

ψ(P) = C

∫∫
S0

ψ0(xM , yM)e−j2π(uxM+vyM ) dxM dyM , (2.22)

that expresses the relation between Fraunhofer diffraction and 2-dimensional

Fourier transform.
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3 GAUSSIAN BEAM

In this chapter, fundamental characteristics of laser beam, more specifically Gaussian

beam, will be introduced. Gaussian beam is the simplest and most widely used

approximation of real laser beam. Its origin is in the solution of wave equation

for paraxial waves. First, circularly symmetrical beam is introduced followed by

elliptically symetrical Gaussian beam.

3.1 Parameters of Gaussian beam

Optical power of Gaussian beam is focused into narrow cone and optical intensity I

in a plane upright to the direction of propagation is given as a circularly symmetrical

Gaussian function with a maximum I0 on the axis of beam. This axis is determined

by axis 0z of system of coordinates 0xyz.

Beam halfwidth is from the designers’ point of view one of the most interesting

parameters. Laser beam can not be described as a ray, but as a beam, whose

width changes during propagation. First, edge of the beam needs to be determined.

It’s given as a point where optical intensity decreases to the level I0
e2

. Then beam

halfwidth w is a distance from the beam axis to edge of the beam. Gaussian beam

has the smallest value of beam halfwidth at the beam waist w0. Beam waist is located

on a plane x0y and determines the origin of the coordinate system. Mathematically,

in case 2-dimensional wave function is considered, following expression applies

ψ(x, z) = ψ0

√
2

π

w0e
−j[θ0−θ(z)]

w(z)
e
−j kx2

2R(z)
− x2

w2(z) , (3.1)

where k is wave number mentioned above, w(z) halfwidth of beam in the dis-

tance z and parameters R(z) and φ(z) are curvature radius and beam divergency

described below, respectively. Real part of exponential function determines evolu-

tion of intensity along transverse direction and imaginary part relates to a phase of

the beam. Then, the relation of amplitude of wave function and optical intensity is

ψ(x, z) ∝ e
− x2

w2(z) , (3.2)

I(x, z) = |ψ(x, z)|2. (3.3)

Beam half-width w(z) in the distance z is

w(z) = w0

√√√√1 +

(
zλ

πw2
0

)2

=
∣∣∣πw2

0

λ
= z0

∣∣∣ = w0

√√√√1 +

(
z

z0

)2

, (3.4)
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where z0 expresses the boundary between near and far field, i.e. Rayleigh dis-

tance. In this distance also w(z0) = w
√

2 applies. This distance is the boundary

between Fresnel and Fraunhofer region. This paper deals with diffraction effects in

the distance less than z0.

Fig. 3.1: Dependency of relative beam half-width on dimensionless coordinate z/z0.

[2]

The angle θ, which is the angle between the asymptote and axis x and is called

beam divergency. For the beam divergency, following expression applies

θ = lim
z→∞

w(z)

z
=

2

kw0

=
λ

πw0

. (3.5)

Wavefronts of Gaussian beam are close to the origin almost planar with radius

of curvature R→∞. These wavefronts are bending as the wavefront propagates to

both sides from the origin as denotes fig. 3.2. Gaussian beam wavefront curvature is

maximum in Rayleigh distance. Radius of curvature in this distance is R(z0) = 2z0.

It’s evolution along the direction of propagation is given as follows

R(z) = z +

[
1 +

(z0
z

)2]2
. (3.6)

Gaussian beam is fully determined by beamwidth w(z) and radius of curvature

R(z). These parameters may be unified in one complex parameter - complex radius

of curvature given as

1

q̇(z)
=

1

R(z)
− j

2

kw2(z)
=

1

R(z)
− j

λ

πw2(z)
(3.7)

3.2 Elliptically symmetrical Gaussian beam

In the previous chapter circularly symmetrical distribution of beam wave function

ψ amplitude was assumed. That means, that in any plane upright to the direction
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Fig. 3.2: Dependency of relative Gaussian beam radius of curvature on dimensionless

coordinate z/z0. [2]

of propagation, one is able to determine beam parameters as introduced above and

independetnly on selection of this plane, these parameters are constant. Although

this approximation simplifies calculations, it does not correspond with reality.

Better approximation of real laser beam is elliptically symmetrical Gaussian

beam. There will be not only one parameter of beamwidth, but two: beam half-

width wx, and wy at the x-axis and y-axis respectively. Amplitude of wave function

will also change from 3.2 to

ψ(x, y, z) ∝ e
− x2

w2
x(z)
− y2

w2
y(z) . (3.8)

Interesting is, that orientation of semi-major axis (in the cut of the plane upright

to direction of propagation) will change after reaching the point, where both half-

widths are equal and cut through this plane is circular.

Fig. 3.3: Spatial dependency of elliptically symmetrical Gaussian beam half-width

(modified from [3])

.
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4 MODELLING OF DIFFRACTION

4.1 Limits and conditions of validity

For modelling of diffraction phenomena is from authors’ point of view the most

suitable to use MATLAB programme. It provides suitable enviroment, prearranged

commands to image processing, integral calculation, Fourier transform as well as

Bessel functions.

Before starting to write a programme itself, one has to be aware of all limitations,

approximations and conditions when to use a desired expression. Diffraction is a

phenomenon so complex, that to obtain accurate results, many aspect have to be

analysed. On one hand, the phenomena should be described as generally as possible.

But on the other hand, redundant complexity may lead to loss of contact between

theory and reality. Therefore, limitations of expression describing diffraction have

to be analysed.

Let assume diffraction of monochromatic planar wave with elliptically symmet-

rical Gaussian distribution of optical intensity around the origin common with the

center of diffraction aperture. First, one has to be aware of coherence degree of laser

beam. Therefore, spatial and time coherence is discussed at first.

4.1.1 Coherence

Common lasers used in practice have spectral width of order 10−10 m and they

emmit radiation with wavelength of order 10−6 m. Degree of coherence therefore

will be as follows

∆λ

λ
=

10−10

10−6
= 10−4, (4.1)

that is a degree of coherence, that one may conclude, that laser beam is time-

coherent. Then, average wavelentgh λ may be used in previous expressions.

Size of the elliptical area, from which laser radiation is emitted to space is critical

to determine degree of spatial coherence. Its size is usualy of order 10−6 m. In

practice, this radiation is observed in approximately 100 m. Considering ratio of

these dimensions, one may consider the laser beam is radiated from a single point,

i.e. laser is a point source.

4.1.2 Wavefront shape

To obtain planar wavefront at the transmitting aperture, the laser source has to be

placed in infinity. Practically is this obtained using plan-convex lens and placing
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the source to focus of this lens. This will ensure constant phase distribution at all

points of diffraction apertures, which is an assumuption to use planar wave in the

calculations. This assumption must be fulfiled.

Although, in practice the laser beam is slightly divergent in order of ones of

miliradians. This allows easier pointing and to avoid other wave behaviour effects

related to Heisenberg indeterminancy principle.

4.2 Choice of models

Model needs to be selected with respect to computational power and complexity of

problem.

Exact Reyleigh-Sommerfeld integral as follows

ψ(x, y, z) = − jkz

2π

∫∫
f(xM , yM)

exp(jk
√

(x− xM)2 + (y − yM)2 + z2)

(x− xM)2 + (y − yM)2 + z2
×

×

[
1 +

j

k
√

(x− xM)2 + (y − yM)2 + z2

]
dxMdyM

(4.2)

is redundant. Its use would require for every point on observation plane double

integral of complex function to be calculated.

4.2.1 Model based on FFT

For purposes of diploma thesis is most appropriate to work with Fresnel approxima-

tion (see section 2.4). Based on equation 2.14 one obtains

ψψ ∗ (x, y, z) = C

∣∣∣∣∣ ∫∫ circ

(
x2M+y2M

ρ20

)
exp

[
2πj
2λz

(
x2M + y2M

)]
×

× exp

[
− 2πj

λz

(
xxM + yyM

)]
dxMdyM

∣∣∣∣∣
2

,

(4.3)

where C is a constant and ρ0 radius of diffraction aperture.

Then from the equation 2.10 to intraduce distance z

z(n) =
ρ20
nλ
, (4.4)

where n is number of transmitted Fresnel zones.
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Final equation would be

ψψ ∗ (x, y, z) = C

∣∣∣∣∣ ∫∫ circ

(
x2M+y2M

ρ20

)
exp

[
nπj
ρ20

(
x2M + y2M

)]
exp

[
− 2πnj

ρ20

(
xxM + yyM

)]
dxMdyM

∣∣∣∣∣
2

.

(4.5)

Function circ in the expression 4.5 represents circular diffraction aperture and

it’s defined as follows

circ(x) =

{
1 for x ≤ 1

0 for x < 0
. (4.6)

The term exp
[
− 2πnj

ρ20

(
xxM + yyM

)]
in the equation 4.5 is phase term derived

from Fresnel approximation of diffraction integral. Last term in this equation is the

term similar to term represented in Fourier transform. Then, one may write

ψψ ∗ (x, y, z(n)) ∝

∣∣∣∣∣F
{

circ

(
x2M + y2M

ρ20

)
exp

[
j
nπ

ρ20

(
x2M + y2M

)]}∣∣∣∣∣
2

. (4.7)

Formulation based on number of Fresnel zones is practical during process of

studying diffraction phenomena as it is illustrative approach. But this approach is

not usable in practice, when distance z from the plane of shade, i.e. distance of

receiver from the transmitter needs to be determined.

When equation 4.4 and k = 2π
λ

apply, then

nπ

λ
=

k

2z
. (4.8)

And finally

ψψ ∗ (x, y, z(n)) ∝

∣∣∣∣∣F
{

circ

(
x2M + y2M

ρ20

)
exp

[
j
k

2z

(
x2M + y2M

)]}∣∣∣∣∣
2

. (4.9)

For purposes of implementation of Fourier transform in computer science, algo-

rith of Fast Fourier Transforn (FFT, see more in [4], section 8.4) was developed. It’s

used when real-time image processing is needed, also in fast spetroscopes.

AS it was already mentioned above, programme was developed in MATLAB

enviroment as a GUI. In the window one only has to fill all the parameters and push

the appropriate button. Functionality of the script is described below.

Program itself consists of several parts. In the first one, input parameters of

physical meaning, e.g. wavelength lambda, radius of diffraction aperture r, distance
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z real, beamwidth in x-axis and y-axis plane wx and wy, are defined. There are

also signal discretisation parameters such as size of plane object plane range and

number of discretisation points N , defined.

In the following part, parameters needed for calculations are evaluated. These

parameters are: wave number k, step of discretisation delta, distance in units of

points z and scale, that is needed to determine range of display. Step of discretisation

is needed to convert from real units, e.g. meter to display units (point or pixel) and

vice versa. The relation between these is as follows

xm = xp∆, (4.10)

where xm is quantity expressed in real units, xp is quantity expressed in display

units and ∆ is step defined as

∆ =
range

N
, (4.11)

Furthermore, diffraction aperture is defined

1 DP = zeros (N,N) ; % o b j e c t p lane o f d i f f r a c t i o n o b j e c t

2 [ x y ] = meshgrid(−N/2 :N/2−1,−N/2 :N/2−1) ; % d e f i n i t i o n o f

o b j e c t p lane

3 s = sqrt ( ( x+1) .∗ ( x+1) + y .∗ y ) ;

4 DP( s <= r / de l t a ) = 1 ; % e x e c u t i o n o f c i r c ( x ) f u n c t i o n

5 %% Gaussian d i s t r i b u t i o n

6 wx = wx/ de l t a ;

7 wy = wy/ de l t a ;

8 G2 = zeros (N,N) ;

9 %% Fast Fourier Transform

10 FF = zeros ( (N+1)/2) ;

11 x = 0 ; y = 0 ;

12 for x = 1 : s ize (DP, 1 )

13 for y = 1 : s ize (DP, 2 )

14 G2(y , x ) = exp(−(((x−(N+1)/2) ˆ2/(2∗wxˆ2) ) +((y

−(N+1)/2) ˆ2/(2∗wyˆ2) ) ) ) ;

15 FF(y , x ) = G2(y , x ) ∗ DP(y , x ) ∗(exp( i ∗k/(2∗ z )

∗ ( ( x−N/2) ˆ2+(y−N/2) ˆ2) ) ) ;

16 end

17 end

18 F = f f t s h i f t ( ( abs ( f f t2 (FF) ) ) ) ;

19 F = F . ˆ 2 ;
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Gaussian distribution of intensity is defined by beamwidth already in the begin-

ning of the program. Matrix of zero elements has to be created, that will be filled

with calculated values of Gaussian distribution. Also, real quantities have to be

converted to point units again.

Then, diffraction pattern is calculated using FFT algorithm.

Function fft2 evaluates spectrum so that areas corresponding to zero frequency

are located in the corners. It is desirable to display this area in the center of the

image. Therefore fftshift function is used to rearrange individual quadrants.

Finaly, the script ends with functions to display graphs. Graphs display in

general elliptically symmetrical incident laser beam on the upper left corner and

circularly symmetrical aperture on the right. Distribution of diffraction pattern

in the determined distance z is in the center. On the bottom, there are two one-

dimensional distributions of this pattern accross the centre in horizontal and vertical

axis, respectively.

On figure 4.1 are displayed results of monochromatic planar wave diffraction

simmulation with parameters λ = 830 nm, wx = 20 mm a wy = 40 mm, r = 30 mm

in the distance z = 361, 44 m (exactly 3 Fresnel zones). It is obvious how choice of

the beamwidth compared with aperture radius affects diffraction pattern.

4.2.2 Model based on integration of Bessel function

Bessel function Zν(z) of ν-th order are solution of differential equation

z2Z ′′ν (z) + zZ ′ν(z) +
(
z2 − ν2

)
Zν(z) = 0. (4.12)

Bessel functions are very important, because many situations, that have rota-

tional or spherical symmetry, lead to Bessel equation and Bessel functions. Optical

systems often show rotational symmetry, therefore one may use Bessel functions to

solve them.

It can be shown ([5] Appendix B), that particular integral of this equation is in

the form

Z(x) = Jν(x) =
(−1)k

k!Γ(ν + k + 1)

(
x

2

)ν+2k

, (4.13)

and is called Bessel function of the first kind of the ν-th order. Besides that,

there are also Bessel function of the second and third kind as well as of half-integer

orders when ν = n±12. For better description, see [5]. Course of the Bessel function

of the first kind is on the figure 4.2.

There are limits of using Bessel function of the first kind resulting from what was

already mentioned above - restriction to rotationaly symmetrical situations. That

28



Fig. 4.1: Results of simulation using MATLAB script with parameters: λ = 830

nm; wx = 20 mm; wy = 40 mm; r = 30 mm; z = 361,44 m (3 Fresnel zones).

means, when Bessel functions are used, one can not use an ellipticaly symmetrical

beam. In some applications, when rotationaly symmetrical beam is needed, or easily

obtained, this restriction is fulfilled.

Derivation of equation comes from the integral 2.11, where for radius of diffrac-
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Fig. 4.2: Plot of Bessel function J0(x) of the first kind for order ν = 0.

tion aperture a and planar wave with constant amplitude distribution applies

ψ0(xM , yM) = circ
(ρ0
a

)
. (4.14)

Fig. 4.3: Geometrical setup for rotationaly symmetrical case of Fresnel diffraction

on circular aperture in an opaque shield. [1]

One has to transform sM to cylindrical coordinates according to

s2M = ρ2M + ρ2 − 2ρMρ cos(ϕM − ϕ) + z2. (4.15)

Meaning of symbols is obvious from figure 4.3. Then

exp(jksM)

sM
=

exp
[
jk
(
z + ρ2

2z

)]
z

exp

{
jk

2z

[
ρ2M − 2ρMρ cos

(
ϕM − ϕ

)]}
. (4.16)
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Finaly can be equation 2.11 in cylindrical coordinates expressed in form

ψ(P ) = − jk

2z

exp
[
jk
(
z + ρ2

2z

)]
z

a∫
0

exp

(
jk

2z
ρ2
) 2π∫

0

exp

[
− jk

z
ρMρ cos

(
ϕM−ϕ

)]
dϕρdρ,

(4.17)

where inner integral can be expressed as Bessel function of the first kind as

2π∫
0

exp

[
− jk

z
ρMρ cos

(
ϕM − ϕ

)]
dϕ = 2πJ0

(
k
ρ

z
ρM

)
. (4.18)

Applying additional substitutions according to [1] leads to

ψ(ρ, z) = −j2πn exp
[
j
(
kz + πρr2

)] 1∫
0

exp
(
jπnt2

)
J02πnρtdt. (4.19)

For desired intensity applies

ψψ ∗ (ρ) = (2πn)2

{[ 1∫
0

cos(πnt2)J0(2πnρt)tdt

]2
+

[ 1∫
0

sin(πnt2)J0(2πnρt)tdt

]2}
,

(4.20)

where n is number of observed Fresnel zones and ρ is distance from the axis of

symmetry on the plane of receiver in the multiples of aperture radius a.

Expression 4.20 was finaly used as fundamental during development of pro-

gramme simulating rotationaly symmetrical case of Fresnel diffraction on circular

aperture.

In the script, there are multiple parameters to be defined, e.g. resolution res

determines number of points in the graph, parameter rho max determines maximal

value on the x-axis to be displayed in the units of aperture radius and number of

Fresnel zones n, that is determined by distance and wavelength according to equation

2.10. Recommended setting is rho max = 1, 3.

Script after being started numerically computes both integrals from the equation

4.20 and in cycle evaluates individual points of diffraction pattern. Output of the

script are individual graphs for specified number of Fresnel zones - default value is

n ∈< 1, 4 >, i.e. first 4 Fresnel zones.
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Fig. 4.4: Results of simulation using MATLAB script based on integration of Bessel

functions. From top to the bottom: 1 to 4 Fresnel zones subsequently.
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5 EXPERIMENT

In the previous text theoretical aspects of diffraction were introduced followed by

practical realization of simulation. Although, results of both simulations had veri-

fied experimental experience, they were compared with a special experiment. The

requirement for the experiment was physical accuracy.

5.1 Experimental prerequisities

Firstly, equation 2.14 applies for beam with one mode. Then, to prove function of

the second model based on diffraction of Fresnel integral, the distribution of the

intensity must be circularly symmetrical. Together with conditions introduced in

section 4.1, there are following conditions to be fulfilled:

• Spatial coherence

• Time coherence

• Planar wave

• Circularly symmetrical distribution of intensity - constant or Gaussian

• Single-mode distribution of radiation

First two conditions are considered as fulfiled, as it was discussed in subsection

4.1.1. Planar distribution of phase in the plane of diffraction shield according to

the third condition is not fulfilled when naked beam is considered. The beam from

the laser must be collimated, i.e. placed to focus point of the lens very precisely.

The rough setting can be carried out using simple method comparing the diameter

of the beam spot in several distances from the lens. This diameter should not

change along the distance. Then, more precise method should be used to finely set

the distance of the lens from the laser to obtain planar wave on its output. For

collimation planconvex lenses are practicaly used (see [6]), when the input laser

beam is faced to the planar side of the lens to obtain the best result. Then, He-Ne

laser is used for its relatively clean beam spot, i.e. small number of modes and

its circularly symmetrical beam. Finaly, to acquire single-mode distribution of the

beam, limiting-mode circular-hole diaphragm may be used. This device consists

of microscope objective and circular-hole diaphragm and is used to supress higher

modes of radiated laser beam by first magnifying the beam by the factor k and then

placing a diaphragm of a diameter D approximately few microns to take single mode

of the beam only.

33



5.2 Experimental layout

To satisfy all conditions mentioned above, following experimental layout was pro-

posed:

• He-Ne laser (λ = 632.8 nm or λ = 543.5 nm)

• Modulator fmod = 1 kHz (Disc driven by motor designed to on-off keying of

laser beam)

• Limiting-mode diaphragm consisting of

– Objective k = 25×
– Diaphragm D = 15 µm

• Planconvex lens

– Focal length f = 0.3 m

– Diameter D = 0.15 m

• Shield with set of apertures with radius r = 4 mm and r = 2.5 mm

• Receiving photodiode

• Digital camera Nikon D90 with CCD chip (23.6 × 15.8) mm

The proposed layout was realised according to figure 5.1 and its part is shown

on figure 5.2

Fig. 5.1: Block diagram of the experiment. Alternative measurement with CCD

chip is shown with dashed line.

The laser beam was directed through mechanical modulator to mode-limiting

diaphragm. Single-mode beam was then collimated using planconvex lens. The col-

limation was crucial to obtain correct results, so it was carried out with maximum

caution according to [6] using plane-parallel plate. To achieve good accuracy, mi-

crometer shift drive in z-axis was used. Also, the best results are obtained when

the lens faces its planar side to the beam. This setting produces single-mode planar

laser beam that is assumed in all approximations mentioned in the text above.
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Behind the lens, there is set of apertures. Plane of the aperture strip is referred

above as plane of diffraction aperture. Then, in the distance z there is observation

plane. In this case it is plane of receiving photodiode or CCD chip.

The photodiode is integrating the received signal from its whole surface. As one

needs to render relatively small (few milimeters radius) spot with all its details,

there is need for diaphragm to reduce the spot on the photodiode. For practical

applications, black paper with a very small aperture made with a needle is sufficient.

After placing the receivers’ diaphragm to the center of the diffraction pattern, using

the micrometer shift drive in x-axis and oscilloscope, values in the tables 5.1 to

5.8 in the following text were measured. These values were compared with values

calculated using simulations introduced in the section 4.2.

Measurement using photodiode gives us accurate, but only one-dimensional be-

haviour of the pattern on the observation plane. To obtain two-dimensional distri-

bution of the diffraction pattern, digital camera with CCD chip may be used. This

measurement is marked in the figure 5.1 with dashed line. For this measurement,

there was no photographic objective used. Pattern was recorded directly on the

CCD chip.

Experiment was carried out for all combinations of

• Wavelength λ = 632.8 nm and λ = 543.5 nm

• Radius of diffraction aperture r = 4.0 mm and r = 2.5 mm

• Number of Fresnel zones n = 3 and n = 4, related to distance z according to

equation 2.10

In the following text, results of simulations and experiment are presented and

compared. Every measurement is introduced by title, with the set of parameters.

First, there is MATLAB GUI simulating diffraction using FFT algorithm. Then,

photograph of the diffraction pattern is showed followed by the table of distribution

measured with photodiode. Finally, distribution measured with photodiode (black

crosses) is compared with values calculated with script using FFT algorithm (red

crosses) and script using integral of Bessel function (blue crosses).

5.3 Accuracy of results

In this section, deviations of measured values from simulated ones are mentioned.

Main sources of uncertainty and deviation are determined and their impact on results

of experiment are discussed.
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• Setting of collimation

• Accuracy of determination of distance z from plane of diffraction aperture to

observation plane

• Mechanical inaccuracy of the diffraction aperture

• Uncertainty in reading measured values of voltage on receiving photodiode on

oscilloscope

Setting of collimation in the z-axis is crucial to obtain accurate results. As

was experimentaly confirmed, change of lens position in z axis for approximately

3 mm resulted in qualitatively different pattern on observation plane, e.g. when

collimated beam was set, there were 3 Fresnel zones observed on observation plane,

but when the lens was moved in z-axis for 3 mm, there were 4 Fresnel zones observed.

Quantitaively, applying used lens with focus length f = 0.3 m, deviation of only 1%

resulted in qualitatively different pattern on observation plane. Its greatest impact

is for values near the axis 0z, i.e. axis of symmetry for rotationally symmetrical

systems like the one in experiment. Practically, the collimation can be set with an

accuracy of determination of distance of lens from laser ∆z1 = 0.5 mm for f = 0.3

m and accuracy of collimation δc = 0.2 % can be achieved.

Accuracy of determination of distance z is critical especially for distances in

Fresnel region, i.e. distances smaller then Rayleigh distance z0. It is given according

to the equation 2.10 and it can be seen, that change in the distance has impact

on the diffraction pattern as the Fresnel number Nf is determined by the distance

z. In the experiment, accuracy of placing the detector to determined distance was

approximately ∆z = 3 cm for distances of order of metres. That results in accuracy

of δz = 0.5 %. It was difficult to determine distance z for taking a photograph with

digital camera. The camera that was used in experiment has set of mirrors and it

was not known what distance does the beam inside the camera travels. Reasonable

estimation of accuracy for determination of distance z for experiment with camera

was ∆z = 10 cm, that resulted in accuracy δz = 1.5 %.

The set of aperture was made of epoxide with thickness h = 2 mm by electri-

cal drill with a standard set of drills. The accuracy of the size is approximately

∆a = 0.05 mm, i.e. δa = 1.25 % for aperture with a = 4 mm. Change of the aper-

ture diameter in this order may be noticable and may cause disagreement between

simulation and experiment. According to the simulations, the difference would not

be qualitative, but may cause change in the shape of second maxima in case three

or four Fresnel zones are observed.

According to the experimental layout, results were observed with photodiode

detector. Therefore, the laser beam must have been modulated with fmod = 1

kHz. This allowed to observe the voltage signal on oscilloscope and using cursors,

determine its peak-to-peak value. Signal on the photodiode is relatively small and
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producing output voltage in order of tens of milivolts. Additionaly, the signal was,

especially for the laser with λ = 543.5 nm, noisy and causing higher deviation of

reading of values. The accuracy was estimated as δVpp = 5 %.

Error of setting the small aperture of photodiode should also be considered. It

should have diameter greater than the step of measurement in x-axis. This statement

is considered to be fullfiled. There is an error related to the position of this aperture

in the y-axis. It should be placed precisely on the vertical axism otherwise it will

cause additional error when there is not sharp maximum or minimum in the origin

and also the measured pattern would be proportionaly smaller with respect to the

simulated pattern.

Summing all deviations mentioned in the text above results in estimation of

overall deviation estimation

δmeas = δc + δz + δa + δVpp = 0.2 + 0.5 + 1.25 + 5 = 7.95%. (5.1)

This error was considered in results simulated using FFT to determine area in

which should measured results fall into and this area was displayed in graphs below.
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Fig. 5.2: Realisation of the experiment.
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Parameters of simulation: λ = 632.8 nm; a = 4.0 mm; z = 8.43 m;

n = 3

Fig. 5.3: Simulation of Fresnel diffraction using model based on FFT.
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Fig. 5.4: Digital photograph of simulated diffraction pattern on CCD chip.

x [mm] 12.60 12.80 13.00 13.20 13.40 13.60 13.80 14.00 14.20 14.40

Vpp[mV] 218.8 165.6 85.63 39.06 27.66 38.44 63.44 82.50 82.50 91.88

x [mm] 14.60 14.80 15.00 15.20 15.40 15.60 15.80 16.00 16.20 16.40

Vpp[mV] 97.50 97.50 70.31 52.19 49.06 42.50 29.53 27.97 27.97 20.94

x [mm] 16.60 16.80 17.00 17.20 17.40 17.60 17.80 18.00

Vpp[mV] 12.81 10.25 7.812 3.688 2.438 3.00 2.00 1.50

Tab. 5.1: Measured voltage on receiving photodiode using oscilloscope.

Fig. 5.5: Comparison of both models (red - FFT, blue - Bessel function integration)

with measured diffraction pattern distribution (black).
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Parameters of simulation: λ = 632.8 nm; a = 4.0 mm; z = 6.32 m;

n = 4

Fig. 5.6: Simulation of Fresnel diffraction using model based on FFT.
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Fig. 5.7: Digital photograph of simulated diffraction pattern on CCD chip.

x [mm] 4.75 4.90 5.00 5.10 5.20 5.40 5.60 5.80 5.90 6.00 6.10

Vpp[mV] 7.875 15.78 35.94 63.13 86.88 100.00 95.00 55.94 45.63 41.56 41.87

x [mm] 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20

Vpp[mV] 43.75 47.19 51.88 60.62 71.87 63.75 63.75 68.75 54.69 49.06 43.13

x [mm] 8.40 8.60 8.80 9.00 9.20 9.40 9.60 9.80 10.00

Vpp[mV] 27.50 21.09 12.69 6.188 6.875 4.750 3.938 3.562 2.000

Tab. 5.2: Measured voltage on receiving photodiode using oscilloscope.

Fig. 5.8: Comparison of both models (red - FFT, blue - Bessel function integration)

with measured diffraction pattern distribution (black).
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Parameters of simulation: λ = 632.8 nm; a = 2.5 mm; z = 3.29 m;

n = 3

Fig. 5.9: Simulation of Fresnel diffraction using model based on FFT.
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Fig. 5.10: Digital photograph of simulated diffraction pattern on CCD chip.

x [mm] 7.55 7.70 7.80 7.90 8.00 8.10 8.20 8.30 8.40

Vpp[mV] 92.50 61.56 34.7 16.25 9.625 10.75 17.19 28.59 37.50

x [mm] 8.50 8.60 8.70 8.80 8.90 9.00 9.10 9.20 9.30

Vpp[mV] 40.94 38.44 36.25 36.25 36.56 33.13 26.41 22.03 22.34

x [mm] 9.40 9.50 9.60 9.70 9.80 9.90 10.00 10.10 10.20

Vpp[mV] 22.97 19.37 13.63 9.688 8.313 7.000 5.188 3.500 3.310

Tab. 5.3: Measured voltage on receiving photodiode using oscilloscope.

Fig. 5.11: Comparison of both models (red - FFT, blue - Bessel function integration)

with measured diffraction pattern distribution (black).
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Parameters of simulation: λ = 632.8 nm; a = 2.5 mm; z = 2.47 m;

n = 4

Fig. 5.12: Simulation of Fresnel diffraction using model based on FFT.
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Fig. 5.13: Digital photograph of simulated diffraction pattern on CCD chip.

x [mm] 14.15 14.30 14.40 14.50 14.60 14.70 14.80 14.90 15.00

Vpp[mV] 3.188 12.38 29.06 39.69 32.19 17.97 10.63 9.688 12.31

x [mm] 15.10 15.20 15.30 15.40 15.50 15.60 15.70 15.80 15.90

Vpp[mV] 15.16 16.87 20.63 28.44 31.88 28.44 23.59 20.94 18.59

x [mm] 16.00 16.10 16.20 16.30 16.40 16.50 16.60 16.70 16.80

Vpp[mV] 14.19 13.69 12.75 9.75 6.062 5.437 4.813 3.437 3.000

Tab. 5.4: Measured voltage on receiving photodiode using oscilloscope.

Fig. 5.14: Comparison of both models (red - FFT, blue - Bessel function integration)

with measured diffraction pattern distribution (black).

46



Parameters of simulation: λ = 543.5 nm; a = 4.0 mm; z = 9.81 m;

n = 3

Fig. 5.15: Simulation of Fresnel diffraction using model based on FFT.
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Fig. 5.16: Digital photograph of simulated diffraction pattern on CCD chip.

x [mm] 5.15 5.30 5.50 5.70 5.90 6.00 6.10 6.30 6.50

Vpp[mV] 125 113.1 65.62 35.16 25.47 25.00 25.47 33.44 39.38

x [mm] 6.70 6.90 7.10 7.30 7.50 7.70 7.90 8.10 8.30

Vpp[mV] 39.38 44.06 60.94 65.31 48.75 40.00 39.06 35.63 24.69

x [mm] 8.50 8.70 8.90 9.10 9.30 9.50 9.70

Vpp[mV] 19.06 17.81 13.59 8.063 7.375 6.250 3.688

Tab. 5.5: Measured voltage on receiving photodiode using oscilloscope.

Fig. 5.17: Comparison of both models (red - FFT, blue - Bessel function integration)

with measured diffraction pattern distribution (black).
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Parameters of simulation: λ = 543.5 nm; a = 4.0 mm; z = 7.36 m;

n = 4

Fig. 5.18: Simulation of Fresnel diffraction using model based on FFT.
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Fig. 5.19: Digital photograph of simulated diffraction pattern on CCD chip.

x [mm] 9.65 9.80 9.90 10.00 10.10 10.20 10.30 10.40 10.50

Vpp[mV] 6.375 9.875 18.44 33.75 51.25 62.19 62.19 52.81 40.63

x [mm] 10.60 10.70 10.80 10.90 11.00 11.10 11.20 11.30 11.40

Vpp[mV] 30.16 23.59 22.34 24.53 26.87 28.91 31.72 31.72 30.31

x [mm] 11.50 11.60 11.70 11.80 11.90 12.00 12.10 12.20 12.40

Vpp[mV] 32.97 39.03 44.69 47.19 47.19 40.31 37.81 36.56 35.63

x [mm] 12.60 12.80 13.00 13.20 13.40 13.60 13.80 14.00

Vpp[mV] 26.56 20.94 17.81 10.63 9.125 7.500 4.250 3.438

Tab. 5.6: Measured voltage on receiving photodiode using oscilloscope.

Fig. 5.20: Comparison of both models (red - FFT, blue - Bessel function integration)

with measured diffraction pattern distribution (black).
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Parameters of simulation: λ = 543.5 nm; a = 2.5 mm; z = 3.83 m;

n = 3

Fig. 5.21: Simulation of Fresnel diffraction using model based on FFT.
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Fig. 5.22: Digital photograph of simulated diffraction pattern on CCD chip.

x [mm] 9.35 9.40 9.50 9.60 9.70 9.80 9.90 10.00 10.10

Vpp[mV] 63.75 57.81 37.19 22.66 11.75 8.563 10.06 15.94 23.91

x [mm] 10.20 10.30 10.40 10.50 10.60 10.70 10.80 10.90 11.00

Vpp[mV] 29.38 29.53 26.87 25.94 29.06 28.44 25.94 18.75 16.09

x [mm] 11.10 11.20 11.30 11.40 11.50 11.60 11.70 11.80 11.90

Vpp[mV] 15.78 15.47 12.50 8.938 7.062 6.186 5.313 4.125 2.687

Tab. 5.7: Measured voltage on receiving photodiode using oscilloscope.

Fig. 5.23: Comparison of both models (red - FFT, blue - Bessel function integration)

with measured diffraction pattern distribution (black).
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Parameters of simulation: λ = 543.5 nm; a = 2.5 mm; z = 2.87 m;

n = 4

Fig. 5.24: Simulation of Fresnel diffraction using model based on FFT.
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Fig. 5.25: Digital photograph of simulated diffraction pattern on CCD chip.

x [mm] 5.20 5.30 5.40 5.50 5.60 5.70 5.80 5.90 6.00

Vpp[mV] 3.75 5.813 12.50 20.78 21.25 15.47 9.875 7.875 8.938

x [mm] 6.10 6.20 6.30 6.40 6.50 6.60 6.70 6.80 6.90

Vpp[mV] 11.81 13.06 13.06 14.69 17.81 18.44 16.25 15.62 15.31

x [mm] 7.00 7.10 7.20 7.30 7.40 7.50 7.60 7.70 7.80

Vpp[mV] 12.00 9.50 8.125 6.875 4.687 3.75 3.75 3.00 2.06

Tab. 5.8: Measured voltage on receiving photodiode using oscilloscope.

Fig. 5.26: Comparison of both models (red - FFT, blue - Bessel function integration)

with measured diffraction pattern distribution (black).
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6 DISCUSSION

In this chapter, results of both simulations and measurement according to the ex-

periment introduced in chapter 5.2 are discussed.

6.1 Confrontation of the model with experiment

Both models presented in section 4.2 were compared and confronted with real ex-

periment introduced in section 5.2. Results of this experiment displayed in graphs

above matched expectations based on both simulations. This match is also statisti-

caly analysed according to estimation of deviation in section 5.3 and error bars were

added to results of simulation based on FFT to determine area in which should

theoretically the experimental results fall.

Further analysis shows that the deviation of the measured values is higher, be-

cause the overall deviation is not simply sum (see equation 5.1) of partial deviations

caused by individual effects mentioned in section 5.3. For instance, 3 % change of the

distance of lens from the laser will result in overall change of the diffraction pattern

observed in distance z. Therefore to analyse precisely impact of partial deviations,

estimation based on error propagation effect should be used. This method requires

to solve partial derivative of function 2.14 with respect to all variables mentioned in

the section 5.3.

6.2 How to estimate Fresnel number

Number of Fresnel zones of laser beam with wavelength λ observed in a given dis-

tance z and using given radius of aperture a is determined according to equation

2.20. As it is given precisely with a geometry of the system, it can provide valuable

information. The Fresnel number can be seen directly from the diffraction pattern,

however, it is not easy and it can lead to misjudge. As can be seen from pho-

tographs, there are multiple circles, that should not be included in Fresnel number

estimation. The best way to determine how many Fresnel zones are observed is

to measure distribution of intensity in a given distance and calculate according to

contrast between local maxima and minima. Threshold between cases when include

or not a maxima to Fresnel number estimation should be set empirically. Contrast

can be calculated as follows

k =
Imax − Imin

Imax + Imin

(6.1)

,
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where Imax and Imin are relative intensity of maximum and minimum respec-

tively. Reasonable estimation of threshold according to the simulation would be

approximately k = 0.5, i.e. Fresnel zone can be calculated, when contrast between

local maximum and minimum exceeds k = 0.5.

6.3 Geometrical and diffraction divergency

Geometrical divergency is determined by increase of beamwidth along the z-axis in

the direction of propagation. This divergency is natural for all lasers. To meet the

theoretical requirements, collimated beam was used in the experiment, i.e. beam

with constant beamwidth along z-axis. This applies for first geometrical approxi-

mation of the beam.

Because of Heisenberg uncertainty principle the beam is always slightly diver-

gent. It can be seen as well from the Huygens principle in the section 2.2, that

the secondary waveform on the edge of the aperture causes additional divergency.

This divergency is significant only when the beam is precisely collimated. Otherwise

geometrical divergency exceeds the effect of diffraction divergency.

At this point, numerical estimation of this effect is important. For Gaussian beam

divergency, evolution of beamwidth size along beam propagation is fundamental.

Its difference divided by the distance is approximately equal to beam divergency.

Distribution of diffraction pattern in Fresnel region can not be approximated by

Gaussian distribution to apply the same metrics and determine divergency of the

beam behind the aperture. However, one may use his own arbitrary method to

determine the divergency.

One of the method would be based on the definition of divergency of the Gaussian

beam and requires graphical representation of the intensity distribution (e.g. graph

5.9). The beamwidth of the diffraction pattern would be distance from the axis

of symmetry to the point, where intensity of the pattern equals I0e
−2, where I0 is

maximum intensity in the diffraction pattern. The problem is, when more Fresnel

zones are observed. Then, using this method, estimation of the beamwidth would be

much smaller. In this case, one should start in the center of the diffraction pattern

and going outwards, while counting number of Fresnel zones. When all of them are

counted, going still outwards, one reaches the point in the graph, where the intensity

equals desired level and takes this as the beamwidth. Then the procedure is same

as for Gaussian beam.
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6.4 Real consequences of Fresnel diffraction

First, one has to realize, when does Fresnel diffraction occurs. Standard systems for

free-space optical communications have following parameters regarding diffraction

effects: Wavelength λ = 850 nm and Radius of diffraction aperture (Lens holder

clamp) a = 25 mm. In this case, range of Fresnel diffraction effects, i.e. range,

where Fresnel number Nf ≥ 1 is until the distance z0, where Nf = 1 according to

equation 2.20

z0 =
a2

λ
=

(25.10−3)2

850.10−9
= 735m. (6.2)

On the other hand, when Fresnel number raise above certain level, Fresnel zones

are not distinguishable in the pattern. This occurs for distances much lower than

z0, e.g. z(Nf = 20) = 37 m.

Most of communication operate in distances less than z0 above, but more, than

threshold for 20 Fresnel zones and therefore, in the region, where Fresnel diffraction

occurs. Diffraction and especially Fresnel diffraction brings limitations in practical

applications.

Main concern regarding diffraction in optical communication is in PAT (pointing,

acquisition and tracking) systems. These systems are used to precisely point the

beam to the receiver’s aperture. To achieve this, the receiver has to lock on the

receiving beam. When in the plane of receiver more than one local maxima are

observed, system may lose communication as they are not capable to distinguish on

which to lock. Additionaly, these local maxima are narrower than beam propagating

in the free space with no diffraction, so locking on the central maxima (when Nf is

odd) is neither ideal solution.

One of the method to avoid diffraction is to use lens wider than beamwidth

on the plane of collimation. Simulations and further experiments show, that using

lens size comparable to beamwidth reduces diffraction effects significantly. For this

purpose, ratio w
a

of beamwidth w to radius of lens a is defined. Simulations also

show that to reduce contrast of undesirable local maxima and minima to k ≈ 0.1,

ratio w
a

= 1.1 should be achieved.

However, this approach has its limitations. On one hand, for practical purposes

is the beam size on the receiver’s plane wider than receiving aperture to avoid signal

to noise ratio reducing due to effects in turbulent atmosphere. On the other hand,

there is limitation in the size of the lens, that must be smaller to reduce its aperture

defect as well as its focus length is for manufacturing reason double of its diameter.

In practice, the beam is slightly divergent, e.g. in the order of miliradians to satisfy

both limitations mentioned above.
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7 CONCLUSION

In the master’s thesis scalar theory of diffraction was introduced as well as qualitative

and quantitative analysis of diffraction effects in far-field and near-field with empha-

sis on region of Fresnel diffraction. Furthermore, Fresnel approximation of Rayleigh-

Sommerfeld integral was introduced as the main approach to Fresnel diffraction ef-

fects modelling. Terms Fresnel number and Fresnel zone were described. In the end,

derivation of diffraction integral was mathematically derived.

Following part deals with description of Gaussian beam as the most widely used

approximation of real laser beams. Its main parameters beamwidth w and radius of

curvature R were introduced and used to determine complex parameter of the beam

q̇. For better approximation of real laser beams, elliptically symmetrical Gaussian

beam was described.

Main part of thesis describes simulation of diffraction effects. Two approaches

are developed. First, based on integration of Bessel function brings limitations to

only circularly symmetrical cases. Second, based on calculation of Fourier transform

of the incident wave is taken as the main approach and it was embedded in GUI in

MATLAB enviroment.

In the following part, both simulations were confronted with real experiment.

There were limitations for the experiment discussed and layout of the experiment

proposed and realised accordingly. Both simulations were confirmed and limits for

their application were discussed. Additionaly, measurement error was estimated and

its impact on measured results were discussed.

In the final part, deviations of measured intensity distribution from simulated

are discussed. As the main source of error precision of collimation was identified.

Furthermore, method how to estimate Fresnel number was proposed as it causes

many troubles when real diffraction patterns are observed. Within this context,

method of estimation of contrast was discussed. Additionaly, differences between

geometrical and diffraction divergency and its estimation were introduced. In the

end, consequences of Fresnel diffraction in practice were identified. Proposed method

of reducing its effect requires use of non-planar wave.

Following effort will be focused on introducing divergent beam representation

and study of multiple beam propagation and its use for beamshaping on the plane

of receiver.
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LIST OF SYMBOLS, PHYSICAL CONSTANTS

AND ABBREVIATIONS

CCD Charge-coupled device

FFT Fast Fourier Transform

FT Fourier Transform

GUI Graphical user interface

He–Ne Helium-Neon

MATLAB Matrix Laboratory

PAT Pointing, Acquisition, Tracking

a Distance from light source P0 to shielding object µ

b Distance from shielding object µ to plane of observation π

C Arbitrary constant

circ Circular function

D Diameter

∆ Difference

∆λ Spectral width

δ Deviation

e Exponential function

exp Exponential function

F Fourier Transform

f Focal length

fmod Modulation frequency

I Intensity

Imax Maximal intensity

Imin Minimal intensity
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j Imaginary constant

Jν Bessel function of the first kind of ν-th order

k Wave number

k Magnification constant of objective

k Contrast

K(ϑ) Slope factor

λ Wavelength

M Center of secondary waveform

µ Plane of shielding object

n Number of Fresnel zones

nx Direction cosine

ny Direction cosine

Nf Fresnel number

P Point of observation

P0 Plane of light source

P1 Point source

π Plane of observation

φ Angle from the x axis to the point of observation P

φ0 Sum of spherical waves coming to point of observation

φM Angle from the x axis to the point of diffraction M

ψ0(M) Wave function of incident wave on the plane of diffraction aperture

ψ(x, y) Distribution of wave function in determined plane

q̇ Complex beam parameter

R Radius of curvature

r Radius
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ρ Distance from the origin to the point of observation P

ρ0 Radius of diffraction aperture

ρM Distance from the origin to the point of diffraction M

S Plane of diffraction aperture

S0 Part of the diffraction aperture plane

s0 Direction from the origin 0 to S

sM Direction from the point M to S

σ0 Spherical wave

θ Beam divergency

ϑ Angle between normal to a wavefront at the point M and the direction

determined by the connection of the point M and the point of observation P

u Spatial Frequency in x axis

v Spatial Frequency in y axis

Vpp Peak to peak voltage

w Beamwidth of beam

w0 Beamwidth on the plane of beam waist

wx Beamwidth of beam in x axis

wy Beamwidth of beam in y axis

x x axis

xM x coordinate on the plane of diffraction

xm Quantity in real units

xp Quantity in display units

y y axis

yM y coordinate on the plane of diffraction

Z Source of light
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Zν Bessel function of ν-th order

z z axis

z0 Rayleigh distance
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