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ABSTRACT 
Master's thesis deals with scalar diffraction theory and introduces an important solu
tion of wave equation - elliptically symetrical Gaussian beam. In practical part, two 
approaches of diffraction model are used. The model will be experimentaly confirmed 
during experiment. In the final part, results of this experiment and simulation are criticaly 
discussed. 
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rovnice a to elipticky symetrický Gaussov zväzok. V praktickej časti bude popísané 
modelovanie difrakcie na kruhovom otvore dvoma rôznymi prístupmi. Model bude 
experimentálne overený experimentom. V záverečnej časti bude kriticky pojednané o 
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1 INTRODUCTION 
Increasing demand for optical communication systems is observed in last decade. 
Whether it's for a practical reason (unlicensed band, directivity of transmission) or 
to obtain higher speed rate. During pointing and shaping the optical beam, there 
are many wave phenomena of light applied to describe its distribution along the 
path, mostly diffraction phenomena. As later will be described, this phenomena 
were observed already in 17 t h century a despite that, a man has still not been able 
fully describe all its effects. 

Second part of the thesis deals with a description of laser beam using important 
solution of wave equation - gaussian beam. For simplicity, basic parameters will 
be introduced on circularly symetrical gaussian beam. In practice, to describe real 
situation more finely, elipticaly symetrical gaussian beams are used and will be 
discussed as well. 

In the main part, two different approaches to simulate diffraction and its aspects 
will be introduced. First model uses Fourier transform of 2-dimensional signal and 
second one uses integral of Bessel functions. Results of both simulation will be 
compared. 

Thesis concludes with a simulation of real beam and experimental verification of 
function of this program. The aim of this thesis will be to develop an application, 
which will is able to simulate diffraction effects and to test it on an experimental 
link. 
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2 DIFFRACTION 
With description of electromagnetic radiation in free space deals optics. According 
to degree of abstraction, optics is further divided into: 

• Geometric 
• Wave 
• Electromagnetic 
• Quantum 
Each area includes all previous areas. It would be then logical to use always 

knowledge of quantum optics to express all optics effects. That would lead to re
dundant effort, as usualy such a fine resolution would not be necessary. In some 
cases it is not even possible. 

Electromagnetic radiation never distributes throughout infinite space. During its 
distribution it collides with obstacles and as will be discussed later, this interaction 
leads to interesting effects. The most common and most significant is diffraction. 

Name for diffraction was created by the founder of diffraction F.M.Grimaldi in 
1665. The word is consists of two parts: latin dis-, that means opposite, negation 
and frangere, thats main meaning is to bend. Grimaldi so characterised the light, 
that deviates from its straightforward distribution in another way than bending or 
refraction. In his book "Physico-mathesis de famine, coloribus, et iride" (Physico-
mathematical Studies of Light, Colors, and the Rainbow) wrote: 

"Lumen propagatur seu diffunditur non solum directe, refracte ac 
reflexe, sed etiam alio quodam quarto modo, diffracte." 

"Light propagates and spreads not only directly, through refraction, 
and reflection, but also by a fourth mode, diffraction." 

This sentence up to this day defines the term of diffraction. For modern purposes 
is appropriate to add, that distribution via homogenous and isotropic enviroment is 
supposed and for the term of diffraction is used for light effect behind the obstacle 
limiting the optical beam. 

2.1 Fresnel and Fraunhofer diffraction 

In optics, two types of diffraction phenomena are distinguished. It's Fresnel and 
Fraunhofer diffraction. In this section, qualitative analysis of both will be discussed. 

In case of screening of image, e.g. rectangle aperture (see fig.2.1) without any use 
of optics, shielding object \i with rectangle aperture is placed between light source 
Po and plane of observation n. Expectations of inexperienced would be, that the 
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projection of the aperture in the plane TT would be more precise as the dimension of 
the light source PQ decreases. However, when monochromatic light is used, in the 
plane n complex pattern (such as on fig.2.2) will be observed. The cause is bending 
of light on the obstacle and the fourth way of distribution of light occurs. 

a b 
k »k >J 

Fig. 2.1: Projection of aperture in the shielding object \x to plane of observation TV. 

[1] 

When small monochromatic coherent light source PQ is used, Fresnel phenomena 
are apparent during shadow projection and in optical imaging systems are the main 
cause of blur and limit resolution of the whole system. 

But problematics of Fraunhofer diffraction is more complex. In many cases it may 
be considered as special case of Fresnel diffraction. This phenomenon is so complex, 
that many scientists understand diffraction simply as Fraunhofer diffraction. 

In the experiment on figure 2.1 one may increase the distance from source PQ 
to the plane n as well as distance from the plane n to \i. Theoreticaly, one may 
increase these distances to infinity (a, b —> oo). Then, only planar wave approaching 
the plane of observation \x is considered and points in infinity will be considered as 
directions. Fraunhofer diffraction then represents distribution of light in direction 
to the point of observation, i.e. intensity of radiation distributing from the aperture 
to the observation plane in individual directions. In case of Fresnel diffraction, 
distribution of light as the function of location is considered. In practice, Fraunhofer 
pattern is achieved using lens. 

13 



Fig. 2.2: Observation of Fresnel diffraction on rectangle aperture in opaque object 
obtained from the experiment on figure 2.1 for various combinations of values a a b. 
Dimension of aperture in the plane Po a r e 5.4 x7.5 mm, A = 630 nm.[l] 

2.2 Huygens-Fresnel principle 

Diffraction phenomena are usually derived from Huygens-Fresnel principle. Huygens 
in his work "Traite de la lumiere" (1690) was first who quantitatively expressed 
distribution of light in free space, reflection, refraction and birefringence (or double 
refraction). He used "Huygens constructions" (equivalent for Huygens principle). It 
includes two arguments: 

1/ Every point of homogenous and isotropic enviroment, on which a wave (every 
point of wavefront) falls is considered to be a centre of secondary spherical 
wave. 

II/ Wavefront at the time t + At is a sum of secondary spherical waves at the 
previous time t. 

The idea according to the second statement is obviously incorrect as it contradicts 
the observations of interference and diffraction phenomena. 

Augustin Jean Fresnel was first who was able to explain all known diffraction 
phenomena. He achieved this with a change in the second Huygens' statement. 
Fresnel added, that secondary waveforms interfere with each other and specified 
amplitude and phase of secondary waveforms. 

It is assumed, that enviroment in which the wave propagates is homogenous 
and isotropic dielectric medium. Optical wave is monochromatic, spherical, linearly 
poliarised and its optical intensity is so low, that it doesn't induce any nonlinear 
effects in that enviroment. Plane S defines position of planar wave at the time t. 
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Let in the points M of this plane be a known wave function ijj0(M) and it indicates 
a primary stimulus. From every point on the right side of the plane S secondary 
wave is coming out. 

jksM 

^(s,#) = -(tf(#M>(M) 
A SM 

(2.1) 

where the meaning of symbols is obvious according to the figure 2.3. Moreover, d 
denotes the angle between normal to the plane S and direction % . g is devergent 
spherical wave coming from the point M. 

s 

M 

I'M 

* 
Si 

M0 

Fig. 2.3: Representation of Huygens-Fresnel principle. [2] 

Term — — indicates, that secondary waves' amplitude is inversely proportional 
to the wavelength and its phase outruns the phase of primary stimulus for quarter 
of a period. Fresnel introduced this factor to come to a correct solution in case no 
obstacle is present. K{d) might be the most problematic factor and it was named 
slope factor. It indicates, that amplitude of secondary waves is depends on the 
direction of wave distribution. As the plane S Fresnel has chosen a wavefront. Then 
the angle i? would be the angle between normal to a wavefront at the point M 
and the direction determined by the connection of the point M and the point of 
observation P and the factor K{d) assumed in the form of 

K(tf) 
cos •§ pre •§ G ( —y, \ ) 

0 p r e t f e < f , f ) ' 

Nowadays the plane S is considered to be the plane of diffraction aperture. 

(2.2) 
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Let So be the part of the plane S, which is not shadowed with diffraction shield. 
According to Fresnel the wave function in the point P out of the plane S is given 
as sum of all secundary waves coming from the plane So, then: 

\k ff ejkSM 

m = ~ ^ MM)—cos* dS0. ( 2 . 3 ) 

27T J J SM 

So 

is a mathematical expression of Huygens-Fresnel principle 

2.3 Fresnel zones 
To explain diffraction effect one has to fimiliarise himself with the term of Fresnel 
zone. It provides a better description of diffraction phenomena. 

Let from the point source P\ come a spherical wave out and S is one of its 
equiphase surface in the distance z\. In the distance z\ + z from the source let be 
the point of observation P. Then, let <70,o"i,<72, . . .be spherical waves with radius 
z, z + A/2, z + 2.A/2, .. .respectively around this point. These waves divide the 
equiphase surface S into zones. When ipi,ip2,ip3, • • - mark sums of these secondary 
waves coming to the point P from the first, second, third, . . . zone respectively, then 
it is obvious, that ip2 will have opposite phase, than ipi and so on. Radius r„ of nth 

zone according to Pythagorean theorem (fig.3 [1]) would be: 

(zi - A ) 2 + r „ 2 

(z + A ) 2 + r „ 2 

After the exclusion A : 

z + n A (2.4) 

n\z\z 
Zi + z 

^ 1 /n\\ zf + z1z — z2 1 fn\ 1 f n \ 

Z\z{z\ + z) 2 \ 2 ) Z\{z\ + z) 8 \ 2 / z\z{z\ + z 
(2.5) 

Quantitative analysis shows, that terms of second, third and fourth order may 
be excluded. Then radius of nth zone is 

nXziZ 
zl + z 

Them Fresnel zones on the wavefront S are approximately planar: 

vr(r 2 - r 2 _ x ) = n 
Xz\z 

(2.6) 

(2.7) 
zl + z 

That also concludes, that sums ip* of secondary waves coming from these zones 
to the point P have the same absolute value. Then, when through the opaque shield 
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exactly first two zones penetrate, wave function in the point P will be zero, because 
sums ipi a ip2 have the same absolute value, but opposite phase. That means, that 
optical intensity will be zero as well. The same situation repeats when even number 
of Fresnel zones is transmitted through the aperture. 

Construction of Fresnel zones leads to a conclusion, that when aperture in the 
shield is increased from zero radius, intensity at the point of observation P increases 
until exactly first Fresnel zone is transmitted. When the radius is further increased, 
optical intensity at the point P decreases to zero when the second Fresnel zone is 
transmitted. When the radius is increased even more, the whole process repeats. 
Maximum modulus of wave function aplitude occurs when odd number of Fresnel 
zones is transmitted. 

This maximum intensity is derived in [1], section 5.8.1.. Here, the expression 
as Fresnel formulated it will be mentioned. Despite of inaccurate reasoning, this 
expression appeared to be correct. When through the circular aperture an odd 
number of Fresnel zone is transmitted, optical intensity at the point of observation 
P is quadruple compared with optical intensity that would be at this place in case 
of no shield present, i.e. that wave function would be double. This implies, that if 
only half of the first Fresnel zone is transmitted, there would be the same optical 
intensity at the point P as for not obscured wave. This result Fresnel assumed and 
supported it with an assumption, which was not correct and Fresnel knew it. He 
calculated contribution ipi of individual zones: 

ij(P) = + Q^i + ^2 + \ ^ + • • • + fa = (2.8) 

and a half of a contribution of the last zone 

left out. He justified this with zero value of a slope factor K($) = cosi? for 
1? = TT/2. 

Simply contribution of wave function from each even zone compensated with 
contributions from halfs of adjacent odd zones. Result, even when not derived 
mathematically correctly, represents the reality. This illustrates meaning of sur
rounding of the point MQ (point of stationary phase) for the wave function at the 
point of observation P. 

When the planar incident wave is considered, surface S is planar and from the 
Pythagorean theorem can be for outer radius r„ of nth Fresnel zone derived following 
expression: 

r„ = Vn\z\ 1 + —. (2.9) 

17 



One may with high accuracy presume, that 

r„ = Vn\z. (2.10) 

2.4 Derivation of diffraction integrals 
In following section diffraction integrals for Fraunhofer and Fresnel diffraction will 
be derived. 

In the integral 2.3 stands as integral area So usualy nonshielding part of wavefront 
or diffraction shield. In this derivation, as an integral area, the part of a plane that 
corresponds with transparent parts of the shade will be taken and this plane will be 
considered as the axis plane z — 0. 

Fig. 2.4: Representation of Fresnel diffraction integral derivation. [1] 

The slope factor is assumed to be K{d) = 1. Expression 2.3 is now as follows: 

j k f f eiksM 
ip(P) = -7T / / ^O(XM,VM) dxM dyM- (2.11) 

InJJ sM 

So 

When the spherical wave in the equation 2.11 is substituted with its Fresnel 
approximation [1]: 

ef-z\(x-xM)2+(y-yM)2} ^ (2.12) 
SM Z 

where IPO(XM,VM) = 0 at the points of opaque part of the shade. 
Diffraction integral for Fresnel diffraction phenomena is now at following form: 

i/>(x,y,z) 
'2TT' 

0jkz 

ipo{xM,yM)e** [{x~ •XM?+(y-yM?} d x M d y M- (2.13) 

So 
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From this expression on may proceed also when analytical calculation of wave 
function characterising some typical Fresnel diffraction effects. These calculations 
are not very straightforward as they use special functions - Fresnel integrals, Bessel 
and Lommel functions. Not even numerical calculations would be simple. There is a 
simple way to modify this expression to Fourier integral: One has to expand square 
power in the phasor argument and that leads to 

ii(x,y,z) = - ~ - ^ e t ^ v 2 ) jjMxM,yM)e^+y^e-T^+yy^ dxM dyM. 

So 

(2.14) 
Wave function characterising Fresnel diffraction is then expressed using Fourier 

transform of products of wave function ipo on the plane of diffraction aperture and 
the phasor e^&M+VM'). 

Derivation of diffraction integral for Fraunhofer diffraction using Huygens-Fresnel 
principle is not as elegant as widespread. It proceeds, same as derivation of Fresnel 
diffraction integral, from the approximation of spherical wave. This time in a dif
ferent way. The distance SQ between the points M and P can be expanded in power 
series [1]. 

When the function IPO(XM,VM) has nonzero values only close to origin O, as it 
can be in case of apertures in an opaque shade, specificaly if 

k(x2

M + y2

M) 

2s0 

<2TT , tj. \ x 2

M + y2

M < V 2 A ^ , (2-15) 

one may vanish terms containing integral variable of second and higher order in 
exponent of spherical wave expression and then the spherical wave can be expressed 
as follows 

pjksM pjkso I \ 

% s0 

Using this expression has integral 2.11 shape of Fourier transform: 

HP) = j j n { x M , y M ) e - ] k ^ X M + ^ y M ) dxM dyM. (2.17) 

So 

Considering 

— = nx, — = ny, (2.18) 
So SQ 
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where (nx, ny, ^ / l — nx — riy) are direction cosines of the direction OP and when 
the condition 2.15 is satisfied, the expression in front of the integral 2.17 is constant 
and wave function ip is a function of direction cosines nx, ny and is in a form 

ij(P) = C [[ MxM,yM)e-ik{n*XM+nvVM) dxM dyM. (2.19) 
So 

After closer look at the condition 2.15 is obvious, that Fraunhofer diffraction 
occurs only when linear dimension of aperture are relatively small with respect to 
the diameter of the first Fresnel zone. Within this context, Fresnel number Nf is 
defined as 

= (2.20, 

where a is radius of the circle, where shade has nonzero values of the transmission 
function a z is distance of this aperture from the plane of observation. It is used to 
determine which type of diffraction is observed. When Fresnel number is Nf > 1, it is 
mostly Fresnel diffraction. In case of Nf < 1 or rather Nf 1 Fraunhofer diffraction 
is observed, except the case when the plane of observation is simultaneously plane 
of geometrical image of the source. 

When in the equation 2.19 k is substituted for k = ^ and introducing spatial 
frequencies 

v = ^ , (2.21) 

one leads to an equation 

tP(P) =C J!MxM,yM)e-i27r{uXM+VVM) dxM dyM, (2.22) 

So 

that expresses the relation between Fraunhofer diffraction and 2-dimensional 
Fourier transform. 

20 



3 GAUSSIAN B E A M 
In this chapter, fundamental characteristics of laser beam, more specifically Gaussian 
beam, will be introduced. Gaussian beam is the simplest and most widely used 
approximation of real laser beam. Its origin is in the solution of wave equation 
for paraxial waves. First, circularly symmetrical beam is introduced followed by 
elliptically symetrical Gaussian beam. 

3.1 Parameters of Gaussian beam 

Optical power of Gaussian beam is focused into narrow cone and optical intensity / 
in a plane upright to the direction of propagation is given as a circularly symmetrical 
Gaussian function with a maximum J 0 on the axis of beam. This axis is determined 
by axis Oz of system of coordinates Oxyz. 

Beam halfwidth is from the designers' point of view one of the most interesting 
parameters. Laser beam can not be described as a ray, but as a beam, whose 
width changes during propagation. First, edge of the beam needs to be determined. 
It's given as a point where optical intensity decreases to the level Then beam 
halfwidth w is a distance from the beam axis to edge of the beam. Gaussian beam 
has the smallest value of beam halfwidth at the beam waist WQ. Beam waist is located 
on a plane xOy and determines the origin of the coordinate system. Mathematically, 
in case 2-dimensional wave function is considered, following expression applies 

where k is wave number mentioned above, w(z) halfwidth of beam in the dis
tance z and parameters R(z) and <f>(z) are curvature radius and beam divergency 
described below, respectively. Real part of exponential function determines evolu
tion of intensity along transverse direction and imaginary part relates to a phase of 
the beam. Then, the relation of amplitude of wave function and optical intensity is 

(3.2) 

(3.3) 

Beam half-width w(z) in the distance z is 

(3.4) 
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where ZQ expresses the boundary between near and far field, i.e. Rayleigh dis
tance. In this distance also W{ZQ) = wy/2 applies. This distance is the boundary 
between Fresnel and Fraunhofer region. This paper deals with diffraction effects in 
the distance less than ZQ. 

O 0.5 1 1.5 a 2.5 3 3.5 d 4.5 5 

Z/Zc 

Fig. 3.1: Dependency of relative beam half-width on dimensionless coordinate Z/ZQ. 

[2] 

The angle 9, which is the angle between the asymptote and axis x and is called 
beam divergency. For the beam divergency, following expression applies 

6 > = l n n ^ = J - = - ^ . (3.5) 
z^oo z KWo 71 Wo 

Wavefronts of Gaussian beam are close to the origin almost planar with radius 
of curvature R —> oo. These wavefronts are bending as the wavefront propagates to 
both sides from the origin as denotes fig. 3.2. Gaussian beam wavefront curvature is 
maximum in Rayleigh distance. Radius of curvature in this distance is R(z0) = 2z0. 
It's evolution along the direction of propagation is given as follows 

R(z) = z + 1+1*0 
21 2 

(3.6) 
z J 

Gaussian beam is fully determined by beamwidth w(z) and radius of curvature 
R(z). These parameters may be unified in one complex parameter - complex radius 
of curvature given as 

1 = 1 . 2 = 1 X 
q{z) R{z) 3kw2{z) R{z) 3TTW2{Z) 1 ' ' 

3.2 Elliptically symmetrical Gaussian beam 

In the previous chapter circularly symmetrical distribution of beam wave function 
ip amplitude was assumed. That means, that in any plane upright to the direction 
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Fig. 3.2: Dependency of relative Gaussian beam radius of curvature on dimensionless 
coordinate z/z0. [2] 

of propagation, one is able to determine beam parameters as introduced above and 
independetnly on selection of this plane, these parameters are constant. Although 
this approximation simplifies calculations, it does not correspond with reality. 

Better approximation of real laser beam is elliptically symmetrical Gaussian 
beam. There will be not only one parameter of beamwidth, but two: beam half-
width wx, and wy at the a;-axis and y-axis respectively. Amplitude of wave function 
will also change from 3.2 to 

vl_ 
ip(x,y,z) oc e w*(z) wy(z). (3.8) 

Interesting is, that orientation of semi-major axis (in the cut of the plane upright 
to direction of propagation) will change after reaching the point, where both half-
widths are equal and cut through this plane is circular. 

Fig. 3.3: Spatial dependency of elliptically symmetrical Gaussian beam half-width 
(modified from [3]) 
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4 MODELLING OF DIFFRACTION 

4.1 Limits and conditions of validity 
For modelling of diffraction phenomena is from authors' point of view the most 
suitable to use M A T L A B programme. It provides suitable enviroment, prearranged 
commands to image processing, integral calculation, Fourier transform as well as 
Bessel functions. 

Before starting to write a programme itself, one has to be aware of all limitations, 
approximations and conditions when to use a desired expression. Diffraction is a 
phenomenon so complex, that to obtain accurate results, many aspect have to be 
analysed. On one hand, the phenomena should be described as generally as possible. 
But on the other hand, redundant complexity may lead to loss of contact between 
theory and reality. Therefore, limitations of expression describing diffraction have 
to be analysed. 

Let assume diffraction of monochromatic planar wave with elliptically symmet
rical Gaussian distribution of optical intensity around the origin common with the 
center of diffraction aperture. First, one has to be aware of coherence degree of laser 
beam. Therefore, spatial and time coherence is discussed at first. 

4.1.1 Coherence 

Common lasers used in practice have spectral width of order 10~ 1 0 m and they 
emmit radiation with wavelength of order 10~6 m. Degree of coherence therefore 
will be as follows 

that is a degree of coherence, that one may conclude, that laser beam is time-
coherent. Then, average wavelentgh A may be used in previous expressions. 

Size of the elliptical area, from which laser radiation is emitted to space is critical 
to determine degree of spatial coherence. Its size is usualy of order 10~6 m. In 
practice, this radiation is observed in approximately 10° m. Considering ratio of 
these dimensions, one may consider the laser beam is radiated from a single point, 
i.e. laser is a point source. 

4.1.2 Wavefront shape 

To obtain planar wavefront at the transmitting aperture, the laser source has to be 
placed in infinity. Practically is this obtained using plan-convex lens and placing 

AA _ i r r
1 0 

T~ ~ IQ " 6 
10 
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the source to focus of this lens. This will ensure constant phase distribution at all 
points of diffraction apertures, which is an assumuption to use planar wave in the 
calculations. This assumption must be fulfiled. 

Although, in practice the laser beam is slightly divergent in order of ones of 
miliradians. This allows easier pointing and to avoid other wave behaviour effects 
related to Heisenberg indeterminancy principle. 

4.2 Choice of models 

Model needs to be selected with respect to computational power and complexity of 
problem. 

Exact Reyleigh-Sommerfeld integral as follows 

it \ ] k z 

f(xM,VM) 

X 1 + 

exp(j/cA/(x - xM)2 + (y~ VM)2 +" 
x - xM)2 + (y - yu)2 + z 1 

dxMdyM 

- x 

ksj(x - xM)2 + {y - yu)2 + z 

(4.2) 

is redundant. Its use would require for every point on observation plane double 
integral of complex function to be calculated. 

4.2.1 Model based on F F T 

For purposes of diploma thesis is most appropriate to work with Fresnel approxima
tion (see section 2.4). Based on equation 2.14 one obtains 

ipip * (x,y,z) = C II circ Pi exp 2\l (XM + VM) x 

x exp - § (xxM + WM) dxMdyM 

where C is a constant and po radius of diffraction aperture. 
Then from the equation 2.10 to intraduce distance z 

(4.3) 

where n is number of transmitted Fresnel zones. 

(4.4) 
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Final equation would be 

iH> * (x,y,z) = c j j c i r c | ^ k ] 0 X ] ) 
^ (XM + VM) 

exp 2-7mj (xxM + WM) dxMdy M 

(4.5) 

Function circ in the expression 4.5 represents circular diffraction aperture and 
it's defined as follows 

circ ix] 

The term exp - ^f{xxM+yyM) 

1 for x < 1 
0 for x < 0 

(4.6) 

in the equation 4.5 is phase term derived 
from Fresnel approximation of diffraction integral. Last term in this equation is the 
term similar to term represented in Fourier transform. Then, one may write 

ipip * (x, y, z(n)) oc -r I / XM 

s i circ' 
2 +yl 

PI 
exp 

. T17T / 2 2 \ 

i ~ \ X M + VM) 
. Po 

(4.7) 

Formulation based on number of Fresnel zones is practical during process of 
studying diffraction phenomena as it is illustrative approach. But this approach is 
not usable in practice, when distance z from the plane of shade, i.e. distance of 
receiver from the transmitter needs to be determined. 

When equation 4.4 and k = % apply, then 

And finally 
T 

k_ 
2~z (4-

ipip * (x, y, z(n)) oc Fl circ 
XM + v_M 

PI 
exp 

• k ( 2 
i 2 Z { X M + VM) (4.9) 

For purposes of implementation of Fourier transform in computer science, algo-
rith of Fast Fourier Transforn (FFT, see more in [4], section 8.4) was developed. It's 
used when real-time image processing is needed, also in fast spetroscopes. 

AS it was already mentioned above, programme was developed in M A T L A B 
enviroment as a GUI. In the window one only has to fill all the parameters and push 
the appropriate button. Functionality of the script is described below. 

Program itself consists of several parts. In the first one, input parameters of 
physical meaning, e.g. wavelength lambda, radius of diffraction aperture r, distance 
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zjreal, beamwidth in x-axis and y-axis plane wx and wy, are defined. There are 
also signal discretisation parameters such as size of plane object plane range and 
number of discretisation points N, defined. 

In the following part, parameters needed for calculations are evaluated. These 
parameters are: wave number k, step of discretisation delta, distance in units of 
points z and scale, that is needed to determine range of display. Step of discretisation 
is needed to convert from real units, e.g. meter to display units (point or pixel) and 
vice versa. The relation between these is as follows 

where xm is quantity expressed in real units, xp is quantity expressed in display 
units and A is step defined as 

Furthermore, diffraction aperture is defined 

1 DP = zeros(N,N); % object plane of diffraction object 
2 [x y] = m e s h g r i d ( - N / 2 : N / 2 - l , - N / 2 : N / 2 - l ) ; % definition of 

object plane 
3 s = s q r t ( ( x + l ) .* (x+1) + y .* y) ; 
4 DP(s <= r / d e l t a ) = 1; % execution of circ(x) function 
5%% Gaussian distribution 
6 wx = wx/ d e l t a ; 
7 wy = w y / d e l t a ; 
8 G2 = zeros (N,N) ; 

x. rn (4.10) 

15 

14 G2 (y ,x ) = e x p ( - ( ( ( x - ( N + l ) / 2 r 2 / ( 2 * w x " 2 ) ) + ( ( y 
- ( N + l ) / 2 K 2 / ( 2 * w y " 2 ) ) ) ) ; 

F F ( y , x ) = G2 (y ,x ) * D P ( y , x ) * ( e x p ( i * k / ( 2 * z ) 
* ( ( x - N / 2 K 2 + ( y - N / 2 r 2 ) ) ) ; 

1G end 
17 end 
18 F = f ft shi f t (( abs ( f ft 2 (FF) ) ) ) ; 
19 F = F . ^ 2 ; 
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Gaussian distribution of intensity is defined by beamwidth already in the begin
ning of the program. Matrix of zero elements has to be created, that will be filled 
with calculated values of Gaussian distribution. Also, real quantities have to be 
converted to point units again. 

Then, diffraction pattern is calculated using F F T algorithm. 
Function f ftl evaluates spectrum so that areas corresponding to zero frequency 

are located in the corners. It is desirable to display this area in the center of the 
image. Therefore fftshift function is used to rearrange individual quadrants. 

Finaly, the script ends with functions to display graphs. Graphs display in 
general elliptically symmetrical incident laser beam on the upper left corner and 
circularly symmetrical aperture on the right. Distribution of diffraction pattern 
in the determined distance z is in the center. On the bottom, there are two one-
dimensional distributions of this pattern accross the centre in horizontal and vertical 
axis, respectively. 

On figure 4.1 are displayed results of monochromatic planar wave diffraction 
simmulation with parameters A = 830 nm, wx = 20 mm a wy = 40 mm, r = 30 mm 
in the distance z = 361,44 m (exactly 3 Fresnel zones). It is obvious how choice of 
the beamwidth compared with aperture radius affects diffraction pattern. 

4.2.2 Model based on integration of Bessel function 

Bessel function Zu(z) of u-ih order are solution of differential equation 

Bessel functions are very important, because many situations, that have rota
tional or spherical symmetry, lead to Bessel equation and Bessel functions. Optical 
systems often show rotational symmetry, therefore one may use Bessel functions to 
solve them. 

It can be shown ([5] Appendix B), that particular integral of this equation is in 
the form 

and is called Bessel function of the first kind of the u-ih order. Besides that, 
there are also Bessel function of the second and third kind as well as of half-integer 
orders when v = n ± 1 2 . For better description, see [5]. Course of the Bessel function 
of the first kind is on the figure 4.2. 

There are limits of using Bessel function of the first kind resulting from what was 
already mentioned above - restriction to rotationaly symmetrical situations. That 

(4.12) 

(4.13) 
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B0H > myDiff 

Fig. 4.1: Results of simulation using M A T L A B script with parameters: A = 830 
nm; wx = 20 mm; wy = 40 mm; r = 30 mm; z = 361,44 m (3 Fresnel zones). 

means, when Bessel functions are used, one can not use an ellipticaly symmetrical 
beam. In some applications, when rotationaly symmetrical beam is needed, or easily 
obtained, this restriction is fulfilled. 

Derivation of equation comes from the integral 2.11, where for radius of diffrac-
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10 If, 

Fig. 4.2: Plot of Bessel function JQ(X) of the first kind for order v = 0. 

tion aperture a and planar wave with constant amplitude distribution applies 

4>O(XM,VM) = c i r c ( ^ ) . (4.14) 

Fig. 4.3: Geometrical setup for rotationaly symmetrical case of Fresnel diffraction 
on circular aperture in an opaque shield. [1] 

One has to transform SM to cylindrical coordinates according to 

'a; PM + P2 ~ 2p M pcos (^ M - tp) + z2. (4.15) 

Meaning of symbols is obvious from figure 4.3. Then 

exp(j/csM) e x p 

SM 
exp 2z 

PM - 2pMpcos (ipM - <f) >• (4.16) 
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Finaly can be equation 2.11 in cylindrical coordinates expressed in form 

HP) 
j A ,exp 2z 

2TT 

2z <>XP 1 2~zP~ ' 1 <>XP pMp C O S (ifM-f) dppdp, 

(4.17) 
where inner integral can be expressed as Bessel function of the first kind as 

2TT 

exp PMP C O S ( < ^ M - if) dip = 2TTJ0 I k-pM 

Applying additional substitutions according to [1] leads to 

(4.18) 

ip(p, z) = — j27rnexp j (kz + irpr2) J exp (j7rnt2) J02irnptdt. 
o 

For desired intensity applies 

(4.19) 

•xptp * (p) = (2nn) cos (irnt2 )Jo(2irnpt)tdt 
- 2 R 1 r 

+ / 
- J 

L 0 

1 2 -

sin(7rnt2) Jq (2irnpt)tdt 

(4.20) 
where n is number of observed Fresnel zones and p is distance from the axis of 

symmetry on the plane of receiver in the multiples of aperture radius a. 
Expression 4.20 was finaly used as fundamental during development of pro

gramme simulating rotationaly symmetrical case of Fresnel diffraction on circular 
aperture. 

In the script, there are multiple parameters to be defined, e.g. resolution res 
determines number of points in the graph, parameter rhojmax determines maximal 
value on the x-axis to be displayed in the units of aperture radius and number of 
Fresnel zones n, that is determined by distance and wavelength according to equation 
2.10. Recommended setting is rho-max = 1,3. 

Script after being started numerically computes both integrals from the equation 
4.20 and in cycle evaluates individual points of diffraction pattern. Output of the 
script are individual graphs for specified number of Fresnel zones - default value is 
n G< 1,4 >, i.e. first 4 Fresnel zones. 
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Fig. 4.4: Results of simulation using M A T L A B script based on integration of Bessel 
functions. From top to the bottom: 1 to 4 Fresnel zones subsequently. 
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5 EXPERIMENT 
In the previous text theoretical aspects of diffraction were introduced followed by 
practical realization of simulation. Although, results of both simulations had veri
fied experimental experience, they were compared with a special experiment. The 
requirement for the experiment was physical accuracy. 

5.1 Experimental prerequisities 

Firstly, equation 2.14 applies for beam with one mode. Then, to prove function of 
the second model based on diffraction of Fresnel integral, the distribution of the 
intensity must be circularly symmetrical. Together with conditions introduced in 
section 4.1, there are following conditions to be fulfilled: 

• Spatial coherence 
• Time coherence 
• Planar wave 
• Circularly symmetrical distribution of intensity - constant or Gaussian 
• Single-mode distribution of radiation 
First two conditions are considered as fulfiled, as it was discussed in subsection 

4.1.1. Planar distribution of phase in the plane of diffraction shield according to 
the third condition is not fulfilled when naked beam is considered. The beam from 
the laser must be collimated, i.e. placed to focus point of the lens very precisely. 
The rough setting can be carried out using simple method comparing the diameter 
of the beam spot in several distances from the lens. This diameter should not 
change along the distance. Then, more precise method should be used to finely set 
the distance of the lens from the laser to obtain planar wave on its output. For 
collimation planconvex lenses are practicaly used (see [6]), when the input laser 
beam is faced to the planar side of the lens to obtain the best result. Then, He-Ne 
laser is used for its relatively clean beam spot, i.e. small number of modes and 
its circularly symmetrical beam. Finaly, to acquire single-mode distribution of the 
beam, limiting-mode circular-hole diaphragm may be used. This device consists 
of microscope objective and circular-hole diaphragm and is used to supress higher 
modes of radiated laser beam by first magnifying the beam by the factor k and then 
placing a diaphragm of a diameter D approximately few microns to take single mode 
of the beam only. 
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5.2 Experimental layout 
To satisfy all conditions mentioned above, following experimental layout was pro
posed: 

• He-Ne laser (A = 632.8 nm or A = 543.5 nm) 
• Modulator / m o ( j = 1 kHz (Disc driven by motor designed to on-off keying of 

laser beam) 
• Limiting-mode diaphragm consisting of 

— Objective k = 25 x 
— Diaphragm D = 15 /xm 

• Planconvex lens 
— Focal length / = 0.3 m 
— Diameter D = 0.15 m 

• Shield with set of apertures with radius r = 4 mm and r = 2.5 mm 
• Receiving photodiode 
• Digital camera Nikon D90 with C C D chip (23.6 x 15.8) mm 
The proposed layout was realised according to figure 5.1 and its part is shown 

on figure 5.2 

LASER 
632.8 nm/543 .5 nm 

MODULATOR 
/mod =1 kHz 

MODE-LIMITING 
DIAPHRAGM 

k= 25K; D = 15 (jm 

PLANCONVEX LENS 
/=Q.3 m; D =0.15 m 

SET OF APERTU RES 
a = 2.5 mm / a = 4 mnmn 

RECEIVING 
PhOTODIODE 

OSCILLOSCOPE 

Fig. 5.1: Block diagram of the experiment. Alternative measurement with C C D 
chip is shown with dashed line. 

The laser beam was directed through mechanical modulator to mode-limiting 
diaphragm. Single-mode beam was then collimated using planconvex lens. The col-
limation was crucial to obtain correct results, so it was carried out with maximum 
caution according to [6] using plane-parallel plate. To achieve good accuracy, mi
crometer shift drive in z-axis was used. Also, the best results are obtained when 
the lens faces its planar side to the beam. This setting produces single-mode planar 
laser beam that is assumed in all approximations mentioned in the text above. 
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Behind the lens, there is set of apertures. Plane of the aperture strip is referred 
above as plane of diffraction aperture. Then, in the distance z there is observation 
plane. In this case it is plane of receiving photodiode or C C D chip. 

The photodiode is integrating the received signal from its whole surface. As one 
needs to render relatively small (few milimeters radius) spot with all its details, 
there is need for diaphragm to reduce the spot on the photodiode. For practical 
applications, black paper with a very small aperture made with a needle is sufficient. 
After placing the receivers' diaphragm to the center of the diffraction pattern, using 
the micrometer shift drive in x-axis and oscilloscope, values in the tables 5.1 to 
5.8 in the following text were measured. These values were compared with values 
calculated using simulations introduced in the section 4.2. 

Measurement using photodiode gives us accurate, but only one-dimensional be
haviour of the pattern on the observation plane. To obtain two-dimensional distri
bution of the diffraction pattern, digital camera with C C D chip may be used. This 
measurement is marked in the figure 5.1 with dashed line. For this measurement, 
there was no photographic objective used. Pattern was recorded directly on the 
C C D chip. 

Experiment was carried out for all combinations of 
• Wavelength A = 632.8 nm and A = 543.5 nm 
• Radius of diffraction aperture r = 4.0 mm and r = 2.5 mm 
• Number of Fresnel zones n = 3 and n = 4, related to distance z according to 

equation 2.10 
In the following text, results of simulations and experiment are presented and 

compared. Every measurement is introduced by title, with the set of parameters. 
First, there is M A T L A B GUI simulating diffraction using F F T algorithm. Then, 
photograph of the diffraction pattern is showed followed by the table of distribution 
measured with photodiode. Finally, distribution measured with photodiode (black 
crosses) is compared with values calculated with script using F F T algorithm (red 
crosses) and script using integral of Bessel function (blue crosses). 

5.3 Accuracy of results 

In this section, deviations of measured values from simulated ones are mentioned. 
Main sources of uncertainty and deviation are determined and their impact on results 
of experiment are discussed. 
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• Setting of collimation 
• Accuracy of determination of distance z from plane of diffraction aperture to 

observation plane 
• Mechanical inaccuracy of the diffraction aperture 
• Uncertainty in reading measured values of voltage on receiving photodiode on 

oscilloscope 
Setting of collimation in the z-axis is crucial to obtain accurate results. As 

was experimentaly confirmed, change of lens position in z axis for approximately 
3 mm resulted in qualitatively different pattern on observation plane, e.g. when 
collimated beam was set, there were 3 Fresnel zones observed on observation plane, 
but when the lens was moved in z-axis for 3 mm, there were 4 Fresnel zones observed. 
Quantitaively, applying used lens with focus length / = 0.3 m, deviation of only 1% 
resulted in qualitatively different pattern on observation plane. Its greatest impact 
is for values near the axis Oz, i.e. axis of symmetry for rotationally symmetrical 
systems like the one in experiment. Practically, the collimation can be set with an 
accuracy of determination of distance of lens from laser Az\ = 0.5 mm for / = 0.3 
m and accuracy of collimation Sc = 0.2 % can be achieved. 

Accuracy of determination of distance z is critical especially for distances in 
Fresnel region, i.e. distances smaller then Rayleigh distance ZQ. It is given according 
to the equation 2.10 and it can be seen, that change in the distance has impact 
on the diffraction pattern as the Fresnel number Nf is determined by the distance 
z. In the experiment, accuracy of placing the detector to determined distance was 
approximately Az = 3 cm for distances of order of metres. That results in accuracy 
of Sz = 0.5 %. It was difficult to determine distance z for taking a photograph with 
digital camera. The camera that was used in experiment has set of mirrors and it 
was not known what distance does the beam inside the camera travels. Reasonable 
estimation of accuracy for determination of distance z for experiment with camera 
was Az = 10 cm, that resulted in accuracy 5Z = 1.5 %. 

The set of aperture was made of epoxide with thickness h = 2 mm by electri
cal drill with a standard set of drills. The accuracy of the size is approximately 
Aa = 0.05 mm, i.e. Sa = 1.25 % for aperture with a = 4 mm. Change of the aper
ture diameter in this order may be noticable and may cause disagreement between 
simulation and experiment. According to the simulations, the difference would not 
be qualitative, but may cause change in the shape of second maxima in case three 
or four Fresnel zones are observed. 

According to the experimental layout, results were observed with photodiode 
detector. Therefore, the laser beam must have been modulated with / m o d = 1 
kHz. This allowed to observe the voltage signal on oscilloscope and using cursors, 
determine its peak-to-peak value. Signal on the photodiode is relatively small and 
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producing output voltage in order of tens of milivolts. Additionaly, the signal was, 
especially for the laser with A = 543.5 nm, noisy and causing higher deviation of 
reading of values. The accuracy was estimated as 5VVV — 5 %. 

Error of setting the small aperture of photodiode should also be considered. It 
should have diameter greater than the step of measurement in x-axis. This statement 
is considered to be fullfiled. There is an error related to the position of this aperture 
in the y-axis. It should be placed precisely on the vertical axism otherwise it will 
cause additional error when there is not sharp maximum or minimum in the origin 
and also the measured pattern would be proportionaly smaller with respect to the 
simulated pattern. 

Summing all deviations mentioned in the text above results in estimation of 
overall deviation estimation 

<5meas = 8C + 8g + 8a + SVpp = 0.2 + 0.5 + 1.25 + 5 = 7.95%. (5.1) 

This error was considered in results simulated using F F T to determine area in 
which should measured results fall into and this area was displayed in graphs below. 
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Parameters of simulation: A = 632.8 nm; a = 4.0 mm; z = 8.43 m; 
n = 3 



Fig. 5.4: Digital photograph of simulated diffraction pattern on C C D chip. 

x mm] 12.60 12.80 13.00 13.20 13.40 13.60 13.80 14.00 14.20 14.40 
V p p [mV] 218.8 165.6 85.63 39.06 27.66 38.44 63.44 82.50 82.50 91.88 

X mm] 14.60 14.80 15.00 15.20 15.40 15.60 15.80 16.00 16.20 16.40 
V p p [mV] 97.50 97.50 70.31 52.19 49.06 42.50 29.53 27.97 27.97 20.94 

x mm] 16.60 16.80 17.00 17.20 17.40 17.60 17.80 18.00 
V p p [mV] 12.81 10.25 7.812 3.688 2.438 3.00 2.00 1.50 

Tab. 5.1: Measured voltage on receiving photodiode using oscilloscope. 
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Fig. 5.5: Comparison of both models (red - F F T , blue - Bessel function integration) 
with measured diffraction pattern distribution (black). 
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Parameters of simulation: A = 632.8 nm; a = 4.0 mm; z = 6.32 m; 
n = 4 



Fig. 5.7: Digital photograph of simulated diffraction pattern on C C D chip. 

x [mm] 4.75 4.90 5.00 5.10 5.20 5.40 5.60 5.80 5.90 6.00 6.10 
V p p [mV] 7.875 15.78 35.94 63.13 86.88 100.00 95.00 55.94 45.63 41.56 41.87 

x [mm] 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 
VpP[mV] 43.75 47.19 51.88 60.62 71.87 63.75 63.75 68.75 54.69 49.06 43.13 

x [mm] 8.40 8.60 8.80 9.00 9.20 9.40 9.60 9.80 10.00 
VppfmV] 27.50 21.09 12.69 6.188 6.875 4.750 3.938 3.562 2.000 

Tab. 5.2: Measured voltage on receiving photodiode using oscilloscope. 

1,2 -i 

+ Measured 
+ FFT 
+ Bessel 

x [mm] 

Fig. 5.8: Comparison of both models (red - F F T , blue - Bessel function integration) 
with measured diffraction pattern distribution (black). 
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Parameters of simulation: A = 632.8 nm; a = 2.5 mm; z = 3.29 m; 
n = 3 



Fig. 5.10: Digital photograph of simulated diffraction pattern on C C D chip. 

mm] 7.55 7.70 7.80 7.90 8.00 8.10 8.20 8.30 8.40 
V p p [mV] 92.50 61.56 34.7 16.25 9.625 10.75 17.19 28.59 37.50 

X mm] 8.50 8.60 8.70 8.80 8.90 9.00 9.10 9.20 9.30 
V p p [mV] 40.94 38.44 36.25 36.25 36.56 33.13 26.41 22.03 22.34 

X mm] 9.40 9.50 9.60 9.70 9.80 9.90 10.00 10.10 10.20 
V p p [mV] 22.97 19.37 13.63 9.688 8.313 7.000 5.188 3.500 3.310 

Tab. 5.3: Measured voltage on receiving photodiode using oscilloscope. 
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Fig. 5.11: Comparison of both models (red - F F T , blue - Bessel function integration) 
with measured diffraction pattern distribution (black). 
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Parameters of simulation: A = 632.8 nm; a = 2.5 mm; z = 2.47 m; 
n = 4 

Fig. 5.12: Simulation of Fresnel diffraction using model based on F F T . 
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Fig. 5.13: Digital photograph of simulated diffraction pattern on C C D chip. 

mm] 14.15 14.30 14.40 14.50 14.60 14.70 14.80 14.90 15.00 
V p p [mV] 3.188 12.38 29.06 39.69 32.19 17.97 10.63 9.688 12.31 

X mm] 15.10 15.20 15.30 15.40 15.50 15.60 15.70 15.80 15.90 
V p p [mV] 15.16 16.87 20.63 28.44 31.88 28.44 23.59 20.94 18.59 

x mm] 16.00 16.10 16.20 16.30 16.40 16.50 16.60 16.70 16.80 
V p p [mV] 14.19 13.69 12.75 9.75 6.062 5.437 4.813 3.437 3.000 

Tab. 5.4: Measured voltage on receiving photodiode using oscilloscope. 
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Fig. 5.14: Comparison of both models (red - F F T , blue - Bessel function integration) 
with measured diffraction pattern distribution (black). 
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Parameters of simulation: A = 543.5 nm; a = 4.0 mm; z = 9.81 m; 
n = 3 



Fig. 5.16: Digital photograph of simulated diffraction pattern on C C D chip. 

mm] 5.15 5.30 5.50 5.70 5.90 6.00 6.10 6.30 6.50 
V p p [mV] 125 113.1 65.62 35.16 25.47 25.00 25.47 33.44 39.38 

X mm] 6.70 6.90 7.10 7.30 7.50 7.70 7.90 8.10 8.30 
V p p [mV] 39.38 44.06 60.94 65.31 48.75 40.00 39.06 35.63 24.69 

x mm] 8.50 8.70 8.90 9.10 9.30 9.50 9.70 
V p p [mV] 19.06 17.81 13.59 8.063 7.375 6.250 3.688 

Tab. 5.5: Measured voltage on receiving photodiode using oscilloscope. 
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Fig. 5.17: Comparison of both models (red - F F T , blue - Bessel function integration) 
with measured diffraction pattern distribution (black). 
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Parameters of simulation: A = 543.5 nm; a = 4.0 mm; z = 7.36 m; 
n = 4 



Fig. 5.19: Digital photograph of simulated diffraction pattern on C C D chip. 

mm] 9.65 9.80 9.90 10.00 10.10 10.20 10.30 10.40 10.50 
V p p [mV] 6.375 9.875 18.44 33.75 51.25 62.19 62.19 52.81 40.63 

X mm] 10.60 10.70 10.80 10.90 11.00 11.10 11.20 11.30 11.40 
V p p [mV] 30.16 23.59 22.34 24.53 26.87 28.91 31.72 31.72 30.31 

x mm] 11.50 11.60 11.70 11.80 11.90 12.00 12.10 12.20 12.40 
V p p [mV] 32.97 39.03 44.69 47.19 47.19 40.31 37.81 36.56 35.63 

x mm] 12.60 12.80 13.00 13.20 13.40 13.60 13.80 14.00 
V p p [mV] 26.56 20.94 17.81 10.63 9.125 7.500 4.250 3.438 

Tab. 5.6: Measured voltage on receiving photodiode using oscilloscope. 
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Fig. 5.20: Comparison of both models (red - F F T , blue - Bessel function integration) 
with measured diffraction pattern distribution (black). 
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Parameters of simulation: A = 543.5 nm; a = 2.5 mm; z = 3.83 m; 
n = 3 

> rrryOiff • £ ) 

Circular profile of laser bBam Circular aperture of dilftacf ion aperture 

[H • I • | 
Diffraction of planar gaussian wave an circular aperlur? 

Fig. 5.21: Simulation of Fresnel diffraction using model based on F F T . 
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Fig. 5.22: Digital photograph of simulated diffraction pattern on C C D chip. 

mm] 9.35 9.40 9.50 9.60 9.70 9.80 9.90 10.00 10.10 
V p p [mV] 63.75 57.81 37.19 22.66 11.75 8.563 10.06 15.94 23.91 

X mm] 10.20 10.30 10.40 10.50 10.60 10.70 10.80 10.90 11.00 
V p p [mV] 29.38 29.53 26.87 25.94 29.06 28.44 25.94 18.75 16.09 

x mm] 11.10 11.20 11.30 11.40 11.50 11.60 11.70 11.80 11.90 
V p p [mV] 15.78 15.47 12.50 8.938 7.062 6.186 5.313 4.125 2.687 

Tab. 5.7: Measured voltage on receiving photodiode using oscilloscope. 
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Fig. 5.23: Comparison of both models (red - F F T , blue - Bessel function integration) 
with measured diffraction pattern distribution (black). 
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Parameters of simulation: A = 543.5 nm; a = 2.5 mm; z = 2.87 m; 
n = 4 



Fig. 5.25: Digital photograph of simulated diffraction pattern on C C D chip. 

mm] 5.20 5.30 5.40 5.50 5.60 5.70 5.80 5.90 6.00 
V p p [mV] 3.75 5.813 12.50 20.78 21.25 15.47 9.875 7.875 8.938 

X mm] 6.10 6.20 6.30 6.40 6.50 6.60 6.70 6.80 6.90 
V p p [mV] 11.81 13.06 13.06 14.69 17.81 18.44 16.25 15.62 15.31 

X mm] 7.00 7.10 7.20 7.30 7.40 7.50 7.60 7.70 7.80 
V p p [mV] 12.00 9.50 8.125 6.875 4.687 3.75 3.75 3.00 2.06 

Tab. 5.8: Measured voltage on receiving photodiode using oscilloscope. 
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Fig. 5.26: Comparison of both models (red - F F T , blue - Bessel function integration) 
with measured diffraction pattern distribution (black). 
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6 DISCUSSION 
In this chapter, results of both simulations and measurement according to the ex
periment introduced in chapter 5.2 are discussed. 

6.1 Confrontation of the model with experiment 

Both models presented in section 4.2 were compared and confronted with real ex
periment introduced in section 5.2. Results of this experiment displayed in graphs 
above matched expectations based on both simulations. This match is also statisti
c a l analysed according to estimation of deviation in section 5.3 and error bars were 
added to results of simulation based on F F T to determine area in which should 
theoretically the experimental results fall. 

Further analysis shows that the deviation of the measured values is higher, be
cause the overall deviation is not simply sum (see equation 5.1) of partial deviations 
caused by individual effects mentioned in section 5.3. For instance, 3 % change of the 
distance of lens from the laser will result in overall change of the diffraction pattern 
observed in distance z. Therefore to analyse precisely impact of partial deviations, 
estimation based on error propagation effect should be used. This method requires 
to solve partial derivative of function 2.14 with respect to all variables mentioned in 
the section 5.3. 

Number of Fresnel zones of laser beam with wavelength A observed in a given dis
tance z and using given radius of aperture a is determined according to equation 
2.20. As it is given precisely with a geometry of the system, it can provide valuable 
information. The Fresnel number can be seen directly from the diffraction pattern, 
however, it is not easy and it can lead to misjudge. As can be seen from pho
tographs, there are multiple circles, that should not be included in Fresnel number 
estimation. The best way to determine how many Fresnel zones are observed is 
to measure distribution of intensity in a given distance and calculate according to 
contrast between local maxima and minima. Threshold between cases when include 
or not a maxima to Fresnel number estimation should be set empirically. Contrast 
can be calculated as follows 

6.2 How to estimate Fresnel number 

k max min 

max 
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where J m a x and J m i n are relative intensity of maximum and minimum respec
tively. Reasonable estimation of threshold according to the simulation would be 
approximately k = 0.5, i.e. Fresnel zone can be calculated, when contrast between 
local maximum and minimum exceeds k = 0.5. 

6.3 Geometrical and diffraction divergency 

Geometrical divergency is determined by increase of beamwidth along the z-axis in 
the direction of propagation. This divergency is natural for all lasers. To meet the 
theoretical requirements, collimated beam was used in the experiment, i.e. beam 
with constant beamwidth along z-axis. This applies for first geometrical approxi
mation of the beam. 

Because of Heisenberg uncertainty principle the beam is always slightly diver
gent. It can be seen as well from the Huygens principle in the section 2.2, that 
the secondary waveform on the edge of the aperture causes additional divergency. 
This divergency is significant only when the beam is precisely collimated. Otherwise 
geometrical divergency exceeds the effect of diffraction divergency. 

At this point, numerical estimation of this effect is important. For Gaussian beam 
divergency, evolution of beamwidth size along beam propagation is fundamental. 
Its difference divided by the distance is approximately equal to beam divergency. 
Distribution of diffraction pattern in Fresnel region can not be approximated by 
Gaussian distribution to apply the same metrics and determine divergency of the 
beam behind the aperture. However, one may use his own arbitrary method to 
determine the divergency. 

One of the method would be based on the definition of divergency of the Gaussian 
beam and requires graphical representation of the intensity distribution (e.g. graph 
5.9). The beamwidth of the diffraction pattern would be distance from the axis 
of symmetry to the point, where intensity of the pattern equals Ioe~2, where IQ is 
maximum intensity in the diffraction pattern. The problem is, when more Fresnel 
zones are observed. Then, using this method, estimation of the beamwidth would be 
much smaller. In this case, one should start in the center of the diffraction pattern 
and going outwards, while counting number of Fresnel zones. When all of them are 
counted, going still outwards, one reaches the point in the graph, where the intensity 
equals desired level and takes this as the beamwidth. Then the procedure is same 
as for Gaussian beam. 
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6.4 Real consequences of Fresnel diffraction 
First, one has to realize, when does Fresnel diffraction occurs. Standard systems for 
free-space optical communications have following parameters regarding diffraction 
effects: Wavelength A = 850 nm and Radius of diffraction aperture (Lens holder 
clamp) a = 25 mm. In this case, range of Fresnel diffraction effects, i.e. range, 
where Fresnel number Nf > 1 is until the distance ZQ, where Nf = 1 according to 
equation 2.20 

On the other hand, when Fresnel number raise above certain level, Fresnel zones 
are not distinguishable in the pattern. This occurs for distances much lower than 
ZQ, e.g. z(Nf = 20) = 37 m. 

Most of communication operate in distances less than ZQ above, but more, than 
threshold for 20 Fresnel zones and therefore, in the region, where Fresnel diffraction 
occurs. Diffraction and especially Fresnel diffraction brings limitations in practical 
applications. 

Main concern regarding diffraction in optical communication is in PAT (pointing, 
acquisition and tracking) systems. These systems are used to precisely point the 
beam to the receiver's aperture. To achieve this, the receiver has to lock on the 
receiving beam. When in the plane of receiver more than one local maxima are 
observed, system may lose communication as they are not capable to distinguish on 
which to lock. Additionaly, these local maxima are narrower than beam propagating 
in the free space with no diffraction, so locking on the central maxima (when Nf is 
odd) is neither ideal solution. 

One of the method to avoid diffraction is to use lens wider than beamwidth 
on the plane of collimation. Simulations and further experiments show, that using 
lens size comparable to beamwidth reduces diffraction effects significantly. For this 
purpose, ratio - of beamwidth w to radius of lens a is defined. Simulations also 
show that to reduce contrast of undesirable local maxima and minima to k ~ 0.1, 
ratio — = 1.1 should be achieved. 

However, this approach has its limitations. On one hand, for practical purposes 
is the beam size on the receiver's plane wider than receiving aperture to avoid signal 
to noise ratio reducing due to effects in turbulent atmosphere. On the other hand, 
there is limitation in the size of the lens, that must be smaller to reduce its aperture 
defect as well as its focus length is for manufacturing reason double of its diameter. 
In practice, the beam is slightly divergent, e.g. in the order of miliradians to satisfy 
both limitations mentioned above. 

850.10"9 
735m. (6.2) 

a 
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7 CONCLUSION 
In the master's thesis scalar theory of diffraction was introduced as well as qualitative 
and quantitative analysis of diffraction effects in far-field and near-field with empha
sis on region of Fresnel diffraction. Furthermore, Fresnel approximation of Rayleigh-
Sommerfeld integral was introduced as the main approach to Fresnel diffraction ef
fects modelling. Terms Fresnel number and Fresnel zone were described. In the end, 
derivation of diffraction integral was mathematically derived. 

Following part deals with description of Gaussian beam as the most widely used 
approximation of real laser beams. Its main parameters beamwidth w and radius of 
curvature R were introduced and used to determine complex parameter of the beam 
q. For better approximation of real laser beams, elliptically symmetrical Gaussian 
beam was described. 

Main part of thesis describes simulation of diffraction effects. Two approaches 
are developed. First, based on integration of Bessel function brings limitations to 
only circularly symmetrical cases. Second, based on calculation of Fourier transform 
of the incident wave is taken as the main approach and it was embedded in GUI in 
M A T L A B enviroment. 

In the following part, both simulations were confronted with real experiment. 
There were limitations for the experiment discussed and layout of the experiment 
proposed and realised accordingly. Both simulations were confirmed and limits for 
their application were discussed. Additionaly, measurement error was estimated and 
its impact on measured results were discussed. 

In the final part, deviations of measured intensity distribution from simulated 
are discussed. As the main source of error precision of collimation was identified. 
Furthermore, method how to estimate Fresnel number was proposed as it causes 
many troubles when real diffraction patterns are observed. Within this context, 
method of estimation of contrast was discussed. Additionaly, differences between 
geometrical and diffraction divergency and its estimation were introduced. In the 
end, consequences of Fresnel diffraction in practice were identified. Proposed method 
of reducing its effect requires use of non-planar wave. 

Following effort will be focused on introducing divergent beam representation 
and study of multiple beam propagation and its use for beamshaping on the plane 
of receiver. 
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LIST OF SYMBOLS, PHYSICAL CONSTANTS 
AND ABBREVIATIONS 
C C D Charge-coupled device 

F F T Fast Fourier Transform 

F T Fourier Transform 

GUI Graphical user interface 

He-Ne Helium-Neon 

M A T L A B Matrix Laboratory 

PAT Pointing, Acquisition, Tracking 

a Distance from light source P 0 to shielding object \i 

b Distance from shielding object fi to plane of observation n 

C Arbitrary constant 

circ Circular function 

D Diameter 

A Difference 

A A Spectral width 

5 Deviation 

e Exponential function 

exp Exponential function 

T Fourier Transform 

/ Focal length 

/mod Modulation frequency 

J Intensity 

7 m a x Maximal intensity 

i m i n Minimal intensity 
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j Imaginary constant 

JV Bessel function of the first kind of z/-th order 

k Wave number 

k Magnification constant of objective 

k Contrast 

K(-d) Slope factor 

A Wavelength 

M Center of secondary waveform 

\i Plane of shielding object 

n Number of Fresnel zones 

nx Direction cosine 

ny Direction cosine 

Nf Fresnel number 

P Point of observation 

PQ Plane of light source 

Pi Point source 

7r Plane of observation 

0 Angle from the x axis to the point of observation P 

0o Sum of spherical waves coming to point of observation 

(pM Angle from the x axis to the point of diffraction M 

IIJQ(M) Wave function of incident wave on the plane of diffraction aperture 

ilj(x,y) Distribution of wave function in determined plane 

q Complex beam parameter 

R Radius of curvature 

r Radius 

61 



p Distance from the origin to the point of observation P 

Po Radius of diffraction aperture 

PM Distance from the origin to the point of diffraction M 

S Plane of diffraction aperture 

So Part of the diffraction aperture plane 

So Direction from the origin 0 to S 

SM Direction from the point M to S 

<r0 Spherical wave 

0 Beam divergency 

$ Angle between normal to a wavefront at the point M and the direction 

determined by the connection of the point M and the point of observation P 

u Spatial Frequency in x axis 

v Spatial Frequency in y axis 

VpP Peak to peak voltage 

w Beamwidth of beam 

WQ Beamwidth on the plane of beam waist 

wx Beamwidth of beam in x axis 

wy Beamwidth of beam in y axis 

x x axis 

XM x coordinate on the plane of diffraction 

xm Quantity in real units 

xp Quantity in display units 

y y axis 

VM y coordinate on the plane of diffraction 

Z Source of light 
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Bessel function of u-ih order 

z axis 

Rayleigh distance 


