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Abstract
Anxiety affects human abilities, behavior, productivity, and quality of life. Anxiety keeps us
safe as part of a system that helps to control and avert danger. However, this safety system
can go wrong. When such impairment emerges, it can lead to depression and even suicide.
This work aims to develop a novel method of anxiety detection from brain signals, in par-
ticular electroencephalography (EEG), a non-invasive and cost-effective screening method.
The proposed method incorporates microstates, which were not previously utilized for anxi-
ety detection. Additional features in the time and frequency domain are extracted. Finally,
a machine learning classifier is trained and evaluated on these features, outperforming other
existing methods.

Abstrakt
Úzkosť ovplyvňuje ľudské schopnosti, správanie, produktivitu a kvalitu života. Úzkosť nás
udržuje v bezpečí ako súčasť systému, ktorý pomáha kontrolovať a odvracať nebezpečen-
stvo. Tento systém sa však môže narušiť. Keď takéto narušenie nastane, môže to viesť
k depresii a dokonca k samovražde. Cieľom tejto práce je vyvinúť novú metódu detekcie
úzkosti zo signálov mozgu, konkrétne elektroencefalogramu (EEG), neinvazívnej a nák-
ladovo efektívnej skríningovej metódy. Navrhovaná metóda zahŕňa mikrostavy, ktoré zatiaľ
neboli na základe dostupnej literatúry použité na detekciu úzkosti. Extrahované sú aj
ďalšie vlastnosti v časovej a frekvenčnej doméne. Nakoniec bol na týchto vlastnostiach na-
trénovaný a vyhodnotený klasifikátor strojového učenia, ktorý prekonal aktuálne dostupné
metódy.
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Chapter 1

Introduction

Anxiety is an emotion people experience in their lives quite often. It is characterized by
an unpleasant state of inner turmoil and feelings of dread over anticipated events. Anxiety
keeps us safe as part of the system that helps control and avert danger. However, this safety
system can go wrong. Such impairment can lead to an anxiety disorder characterized by
excessive and uncontrollable feelings of anxiety and fear without presence of an external
threat. Anxiety disorders are diagnosed using various questionnaires, which are subjective
methods. Therefore, there is a need for objective methods based on data to eliminate
inaccurate diagnoses resulting in inappropriate treatment.

This chapter is to provide an introduction to the brain, anxiety, and brain imaging tech-
niques. At the beginning, the brain, its anatomy, and the limbic system is discussed. The
following section then focuses on the underlying mechanisms of anxiety, including current
medical diagnostics methods. Finally, the chapter ends by outlining different screening
methods, with emphasis on electroencephalography.

1.1 Brain
The brain is a central organ of the nervous system. It controls most of the activities of the
human body, such as processing, integrating, and coordinating information it receives from
the sense organs and making decisions as to the instructions sent to the rest of the body.

1.1.1 Anatomy

The primary building block of the brain is a neuron. The neuron is a type of cell that
communicates with other cells. The neuron consists of a soma (neuron body), dendrites,
and an axon. The soma contains a nucleus. The dendrites are cellular extensions branching
out of the soma, and their function is to receive messages from other neurons. The axon
is connected to the soma and carries nerve signals away to other neurons. At the end of
the axon, there is an axon terminal that contains synapses. Synapses are structures that
permit the passing of electric signals to another neuron. Nerve impulse, also known as an
action potential, occurs when the membrane potential of a neuron rapidly increases and
falls; often said to “fire”.
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Figure 1.1: Anatomy of a multipolar neuron. Figure taken from [13].

The brain consists of about 90 billion of neurons. Neurons are interconnected and
form structures. The brain is divided into the hindbrain (rhombencephalon), midbrain
(mesencephalon), and forebrain (prosencephalon) [46]. The hindbrain is subdivided into
the medulla oblongata, pons, and cerebellum. Medulla oblongata, pons, and midbrain are
collectively referred to as the brainstem. The forebrain is subdivided into the diencephalon
and the telencephalon. Diencephalon equates primarily to the thalamus and hypothalamus.
The telencephalon is mainly composed of the cerebrum (cerebral cortex), the brain’s largest
part. The main functions of the cerebrum are sensory processing, olfaction, language and
communication, learning, and memory. The cerebrum is formed by the right and left
cerebral hemispheres separated by the longitudinal fissure. The corpus callosum, a large
bundle of nerve fibers, links these two hemispheres. Each cerebral hemisphere is divided
into six lobes: frontal, parietal, occipital, temporal, insular, and limbic lobes [46]. Limbic
lobes are particularly interesting in regard to anxiety as they relate to emotional activity.
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Figure 1.2: Fundamental structures of the brain. Figure taken from [38].

1.1.2 Limbic System

The limbic system is concerned with emotional and motivational activity and other essential
psychological functions such as memory and learning. Most descriptions of the limbic
system include the structures within the limbic lobe – the amygdaloid nuclear complex;
various nuclei of the hypothalamus, the septal nuclei; nucleus accumbens; cingulate cortex;
major areas of the prefrontal cortex habenula; anterior thalamic nuclei; parts of the basal
ganglia; ventral tegmental area; and limbic midbrain areas, including the periaqueductal
grey. The term “limbic brain” encompasses all of these structures and their projections to
the forebrain, midbrain, lower brainstem, and spinal cord limbic systems [46].

When it comes to function, the thalamus is like a relay station of the brain – most of
the incoming external sensory information makes a stop in here en route to the cortex. The
hypothalamus is located below the thalamus and links the nervous and endocrine systems
together. It regulates many of the body’s essential functions, e.g., body temperature,
hunger, thirst, sleep, or circadian rhythms. Every single nucleus in the limbic system tries
to stimulate the hypothalamus to reach its goal depending on the situation.
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Figure 1.3: Limbic lobe with corresponding structures. Figure taken from [11].

Brain structures described in this section are involved in forming anxiety. The next
section provides an overview of underlying mechanisms.

1.2 Anxiety
Anxiety is an emotion people experience in their lives quite often. It is characterized by an
unpleasant state of inner turmoil and feelings of dread over anticipated events. However,
anxiety keeps us safe as part of the system that helps control and avert danger. According
to British psychologist Eysenck, brave individuals have died, and the anxious ones survived
the Stone Age [26].

1.2.1 Mechanism

The limbic system, especially the amygdala, forms the emotion of anxiety. Anxiety is the
result of the interaction between the nuclei in the brainstem (noradrenergic locus coeruleus,
serotonergic nuclei raphe, and glutamatergic nucleus gigantocellularis), limbic system (espe-
cially thalamus, amygdala, and hippocampus) and the prefrontal cortex [26]. The amygdala
forms the emotion of anxiety by associating sensory information from the thalamus. When
the amygdala evaluates a situation as threatening, it triggers a cascade of reactions. Amyg-
dala activates specific nucleus in the brainstem responsible for arousal and attention and
activates the sympathetic nervous system, which stimulates the body’s “fight or flight”
response. Amygdala also increases the release of corticotropin-releasing hormone (CRH)
from the hypothalamus.

These interactions lead to the activation of the stress axis: sympatho-adrenomedullary
axis and the hypothalamic-pituitary-adrenal (HPA) axis. Sympatho-adrenomedullary axis
responds quickly – within a few seconds. The adrenal gland (in particular, the adrenal
medulla) washes out adrenaline and noradrenaline. These hormones increase heart rate,
cardiac output, and blood pressure. The body needs to react fast to resolve the possi-
bly threatening situation. Hypothalamic-pituitary-adrenal axis responds slowly – within
dozens of minutes. The pituitary gland (in particular, the anterior pituitary) washes out
adrenocorticotropic hormone (ACTH), which causes the increased output of cortisol from
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the adrenal gland (in particular, the adrenal cortex). Cortisol is a hormone that affects
several aspects of the body and mainly helps regulate the body’s response to stress. The
prefrontal cortex intensifies or suppresses an emotional reaction based on the experience.
At any time during this series of interactions, the anxiety is over if the brain works out that
the threat is no longer present.

This section described underlying mechanisms of anxiety. Anxiety happens to be formed
in the deep brain areas. This might indicate that the proper diagnostics is rather difficult.
Next section outlines current diagnostic methods of anxiety in medical practice.

1.2.2 Diagnostics

The problem with diagnostics of anxiety, and mental disorders in general, is that there
are not enough objective methods looking directly at the brain. Mental disorders are
classified by the two most widely used systems – DSM-5 (US) and ICD-10 (UK). These
classification standards contain signs and symptoms that help psychiatrists categorize the
illness. Diagnosing anxiety as a disorder is done by assessing the patient’s thoughts and
excluding other somatic disorders. In many other areas of medicine, diagnosis is set by
doing a comprehensive assessment based on an objective examination of the physical state
of the patient’s body (e.g., assessing the risk of diabetes is done by measuring glucose blood
levels). There is a need for more objective methods of indicating the state of anxiety. Brain
can be inspected by various methods described in the next section.

1.3 Screening Methods
As of today, various techniques inspect the brain. The most well-established methods used
for anatomical imaging are computed tomography (CT) and magnetic resonance imag-
ing (MRI). For functional analysis, it is functional MRI (fMRI), magnetoencephalography
(MEG), positron emission tomography (PET), and electroencephalography (EEG). They
are usually used at a hospital and require a skilled professional, except EEG, which is
relatively inexpensive, small, and easy to use.

In CT scanning, X-rays (ionizing radiation) pass through the body. In PET, a radioac-
tive isotope is injected into the bloodstream. The amount of radiation in these methods
is at a possible minimum. However, there is still some amount, so people should only be
exposed to radiation when the situation needs it. It is always up to a medician to decide
if the benefits overcome the risks. On the other hand, MRI/fMRI is a risk-free method,
considered safe – radio waves and a magnetic field are used to produce detailed images of
body tissues. Unfortunately, the main disadvantages of MRI/fMRI are the time needed to
do a scan (up to an hour), cost, and the assistance of a skilled professional. Another method
based on the magnetic field’s principles is MEG. It measures magnetic fields produced by
the brain’s electrical currents. MEG provides good both temporal and spatial resolution.
Unfortunately, it has similar disadvantages as MRI, mainly the device’s size and cost, and
requires a skilled person.
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Figure 1.4: MRI machine. Figure taken from [16].

The method which appears as a trade-off between the advantages and disadvantages of
the former methods is electroencephalography (EEG). Next section describes EEG in more
detail.

1.3.1 Electroencephalography

Electroencephalography (EEG) is a non-invasive screening method to record the brain’s
electrical activity. EEG is painless and risk-free. Although it has a high temporal resolution
(milliseconds), spatial resolution is limited, and thus hard to locate the exact source of the
signal. The electric signal is presented as waves of varying frequency, amplitude, and shape.
EEG can measure spontaneous brain activity or brain activity during an event, known as
event-related potential (ERP). EEG does not record the signal of single neurons, but rather
a large bundle of neurons [29]. To be precise, EEG measures postsynaptic potentials [12].
The postsynaptic potential is a potential in the dendrites of a neuron that is receiving
synapses from other neurons [11].

EEG electrodes are placed on the scalp, as shown in figure 1.5. The arrangement of
electrodes is standardized. For example, one widely used arrangement is the so-called
10/20 system, shown in figure 1.6. The “10” and “20” refer to the actual distances between
adjacent electrodes and are either 10% or 20% of the total front–back or right–left distance
of the skull. The placement of the electrodes is referred to as montage [29]. In the bipolar
montage, each waveform represents the difference between adjacent electrodes. In the
referential montage, one electrode is a reference, and the waveform of every other electrode
is represented as the difference between the electrode and the referential electrode.

Recorded EEG signals can incorporate noise – artifacts. The artifact is an EEG signal
originating from non-cerebral origins [29]. Artifacts can be introduced by internal brain
function (e.g., eye-blinking) or external environment (e.g., recording in the presence of a
thunderstorm). Such artifacts can usually be removed by pre-processing phase of signal
processing.
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Figure 1.5: Besdata Medical EEG Headset [10].

Figure 1.6: Arrangement of electrodes in 10/20 system. Figure taken from [21].

As mentioned earlier, signal that EEG records originate from large bundles of neurons.
“Neurons can generate action potentials or spikes in a rhythmic pattern” [29]. These rhyth-
mic patterns can be divided into five major categories, namely delta (𝛿), theta (𝜃), alpha
(𝛼), beta (𝛽), and gamma (𝛾), shown in fig. 1.7.
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Figure 1.7: The five basic human brain waves.

Nowadays, some EEG headsets are getting easily accessible and come at a low price.
The facts might support the idea of getting easier access to diagnostics of various brain
abnormalities, becoming pathologic and irreversible.

1.4 Summary
This chapter focused on the biology of anxiety and its underlying mechanism. Next, screen-
ing methods were discussed, with emphasis on EEG. There is ongoing research in anxiety
detection. The next chapter reviews the literature, in particular, the methods that have
been proposed for anxiety detection from EEG data.
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Chapter 2

Literature review

This chapter reviews existing methods of anxiety detection from EEG signals. First, meth-
ods found in the literature are described briefly, giving an overview of the essential parts
of solving such task. Next, methods that are already used or have the potential to be
examined in terms of anxiety detection are described in more detail. After that, existing
datasets are explored. Finally, the chapter ends with a discussion of the current state based
on the literature review.

2.1 Assessment Methods of Anxiety
Various methods of detecting state and trait anxiety exists in the literature – to give an
overview, various studies are summarized in the next few paragraphs.

In the first study [8], authors focused on state anxiety. EEG signals of 23 healthy
participants, not suffering from psychological diseases, were recorded during anxiety elic-
itation. Dataset consists of 13 women and 10 men with average age of 30 years old. For
more information about dataset, see DASPS. Anxiety was elicited by means of face-to-face
psychological stimuli, where psychotherapist helps subjects to imagine a situation that can
cause anxiety. EGGs of 15s are kept, consisting of recording during self recall by subject.
EEG signals were recorded using wireless Emotiv Epoc EEG headset (14 electrodes). Data
were labelled using a HAM-A (Hamilton Anxiety Rating Scale) and SAM (Self Assess-
ment Manikin). Various features were tested separately. Highest classification accuracy
of 81.40% was obtained by k-NN classifier and feature Root Mean Square derived from
a wavelet decomposition, in a two class classification based on SAM labelling (normal-to-
light and moderate-to-severe classes). Consequently, authors produced newer paper [7],
where in addition to prediction based on SAM, also examined prediction based on HAM-
A, improving on lower accuracies reached in four-class classification – accuracy of 86.70%
was obtained using Stack Sparse Autoencoder with large feature vector, consisting of 277
features. Authors also comment on the lower accuracy when using features from longer
segments, such as 15s or 5s, stating that anxiety is evoked in shorter time, thus considering
15s and 5s trial too long as it might contain more than one emotion.

In the newer study [37], the same dataset consisting of EEG recordings of 23 healthy
participants is used. The data were segmented into 1 second chunks, resulting in 4140 data
instances. At first, authors performed channel selection to select statistically significant
channels, which results in using only AF3, AF4, FC5, FC6, P7 and P8 channels. They
also selected only subset of bands, particularly theta and beta bands. Features from these
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bands were selected by applying wrapper method. Features used for classification are
Rational asymmetry, Mean power, and Asymmetry Index. Various models were tested:
DT, k-NN, SVM, MLP, and RF. Highest accuracy of 94.90% and 92.74% is reached using
Random Forest in two-class and four-class classification respectively. Authors also mention,
that classification performance is validated using leave-one-out cross-validation mechanism,
where training and testing samples do not belong to the same subjects. Feature vector
length is 9 and 10 for two-class and four-class respectively. These results significantly
outperforms models in the former study, while still preserving small size of the feature
vector.

In another study [15], authors also focused on state anxiety. EEG recordings of 34 par-
ticipants during resting and meditation state. Participants were divided into non-anxiety
and anxiety group, where anxiety group consisted of patients with anxiety disorder. Final
labelling resulted into three classes – healthy (no anxiety), moderate anxiety and severe
anxiety. Healthy class consists of recordings of healthy patients. Moderate consists of
recordings of anxious patients during meditation; and severe consists of recordings of anx-
ious patients after meditation. Power spectrum density was used as a feature. This feature
was used for classification by SVM, resulting in accuracy of 92.48%.

In a study using low density headset [5], authors focused on trait anxiety. EEG signals of
65 participants were recorded during resting state. Information about medical conditions of
participants is not specified. The age of the participants ranges from 18 to 40 years. Wireless
MUSE EEG headband was used (4 electrodes). Unfortunately, dataset is not available on
the link provided in the paper. Data were labeled according to STAI (Y2), which is the
standard questionnaire designed for measurement of state and trait anxiety. In two class
labelling, 35 are labelled as non-anxious participants and 30 as anxious participants. In
three class labelling, 27 participants are labelled as non-anxious, 17 as low-anxious and 21 as
highly anxious. After the recording, data were preprocessed and used for classification. TP9
and AF8 were found to be significantly different channels and thus used for classification.
Features obtained after feature selection are signal peak-to-peak value and signal energy.
Models that were used are Multilayer perceptron, Logistic regression and Random forest.
The results were calculated using 10-fold cross-validation scheme. Highest accuracy of
87.69% was obtained using Random Forest classifier, discriminating between non-anxious
and anxious subjects. Classification into three classes (non-anxious, low-anxious and highly
anxious) resulted in lower accuracy of 83.07%. Feature vector length were 2 and 3 for
two-class and three-class detection respectively, which is surprisingly low. Also, extracted
features are very simple.

Study related to severity assessment of social anxiety disorder (SAD) using deep learning
models on brain effectivity connectivity focused on trait anxiety [3]. EEG signals of 88
participants were recording during resting state. Participants were recruited from 502
respondents. No link to dataset is provided. Dataset contains balanced distribution of
classes, in particular of 22 healthy group, 22 having mild SAD, 22 having moderate SAD,
and 22 with severe SAD. This grouping into different classes was based on self-assessment
of the SIAS (Social Interaction Anxiety Scale). All participants were healthy mentally and
physically, with no history of psychiatric disabilities. Data were collected using shielded
ANT Neuro cap (32 electrodes). Feature used is effective connectivity of the DMN (Default
mode network), particularly PDC (Partial directed coherence) matrices of size 8x8 are
obtained for each frequency band (one matrice carry information from signal duration of
3s). These are fed into CNN, LSTM and CNN + LSTM. The highest accuracy of 93 %
was obtained using CNN + LSTM. However, no information about validation technique
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used are available. Authors then compared their method to the former CNN or LSTM
methods found in the literature, where their method reached highest performance. Except
high classification accuracy, authors also located cortical sources of activity using effective
connectivity features, and were able to demonstrate the differences in the brain activity
between healthy and SAD participants, during resting state.

In the next sections, methods that are already used in studies described above, or have
the potential to be examined are described in more detail.

2.1.1 Event-Related Potential

An event-related potential (ERP) is the measured brain response to a specific event. It
provides a direct, instaneous, millisecond-resolution measure of neurotransmission-mediated
neural activity [32]. ERPs waveforms are described according to latency and amplitude.
Amplitude can be positive (P) or negative (N). For example, N170 is known ERP component
that relates to visual object recognition of faces, objects, and words [43]. In this component,
“N” stands for negative amplitude, and “170” determines the amplitude’s peak time in
milliseconds from onset of stimulus.

ERP components are extracted from recorded EEG signal. First, EEG signal is ampli-
fied and artifacts are removed. Then, ERPs are isolated from the EEG signal by averaging
procedure. This is done by marking the events that happened at specific times, such as
the onset of each stimulus. Then, these marks are used as a time-locking point to extract
segments of the EEG surrounding each event. There is need to perform many trials to
extract the activity related to stimulus processing from unrelated activity. Using averaging
procedure, related activity is kept, and unrelated activity discarded. This is because re-
lated activity has to be similar in all trials, while unrelated activity can be seen as varying
between the trials. Therefore, unrelated activity has to cancel out itself after applying av-
eraging procedure. However, different ERP components require different number of trials.
For large components, such as P300, 10-50 trials per subject are enough, while for smaller
components like P100, 100-500 trials are needed [32].

ERPs are studied in terms of anxiety. Next subsection focuses on findings from system-
atic review on attentional control in anxiety disorders, suggesting error-related negativity
as a promising marker of clinical anxiety [34].
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Figure 2.1: Event-related potential (ERP). Figure taken from [28].

Error-Related Negativity (ERN)

The error-related negativity (ERN) seems promising as a robust, transdiagnostic trait
marker of clinical anxiety. These findings originate from the systematic review of error-
related negativity and correct-response negativity [34]. ERN is a type of event-related
potential reflecting a response-locked negative deflection which occurs when a behavioural
error is made. ERN component peaks around 80–110 ms after error is made [33].

A total of 56 of the 66 studies measuring ERN found significantly greater ERN ampli-
tudes were associated with clinical anxiety. Review also aimed to assess correct-response
negativity (CRN), but only 20% of reviewed studies found significant changes in ampli-
tude. While the review suggests the ERN as a trait marker of clinical anxiety, they limit
this interpretation by past findings that the ERN is sensitive to state-specific manipula-
tions, including e.g., monetary incentive or caffeine; that the ERN is also related to other
cognitive processes such as working memory, and is also related to other psychological disor-
ders not related to anxiety. The review is also limited by the fact that only 6 of all studies
used emotional attentional control tasks, making it difficult to draw firm conclusions on
the effects of emotion on attentional control and if there are differences between emotional
and non-emotional attentional control. Another limitation is the gap in the literature on
older adults (60+), given that past research has shown a potential age-related decline in
attentional control. No studies have investigated the ERN’s sensitivity, specificity, or in-
cremental validity to make anxiety disorder diagnoses, so the paper’s authors are not going
as far as describing the ERN as a diagnostic marker of anxiety disorders. However, they
consider ERN as one of the elements in an array of objective biological markers of anxiety
disorders.
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Despite its limitations, all studies showed a consistent pattern of an increase in ERN
amplitude, which suggests that the ERN has the potential to be used as a trait marker of
clinical anxiety.

2.1.2 Source Localization

Source localization is a major problem in EEG. Localizing sources of the brain activity
helps to understand various functional abnormalities and cognitive behaviour of the brain
and leads for the specification for diagnoses of various brain disorders. The localization
process involves the prediction of scalp potentials from the current sources in the brain
(forward problem) and the estimation of the location of the sources from scalp potential
measurements (inverse problem) [29]. Forward problem is easy – scalp potentials are mea-
sured by scalp electrodes placed on the skull. However, inverse problem suggests predicting
the actual sources of brain activity from measured scalp potentials. The problem is that
inverse problem has non-unique solutions, which means many models can fit the data. Ad-
ditionally, the estimated data are tainted with errors, so estimated model always differ from
true model, therefore predicted model is just an approximation of the true model. Based
on these properties, the inverse problem is said to be ill posed problem.

Figure 2.2: Forward and inverse problem. Figure modified, taken from [39].

Minimum norm imaging (MNI) was used to exclude non-active cerebral areas from fur-
ther statistical EC analysis [3]. Authors computed source localization for the 32-electrode
EEG, applying MNI in Brainstorm [49], which is documented and freely available for down-
load online under the GNU general public license.

2.1.3 Time Series Analysis

Hjorth Parameters

Hjorth parameters were used in many former EEG studies [8]. Hjorth parameters are
measurement of basic signal properties by means of a time-base calculation. They consists
of three parameters – activity, mobility, and complexity [24].

Activity is measure of the squared standard deviation of the amplitude, sometimes
referred to as the variance or mean power:
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𝐴 = 𝑣𝑎𝑟(𝑦(𝑡)) (2.1)

Mobility is a measure of the standard deviation of the slope with reference to the standard
deviation of the amplitude. It is expressed as a ratio per time unit and may be conceived
also as a mean frequency:

𝑀 =

√︃
𝑣𝑎𝑟(d𝑦(𝑡)

d𝑡 )

𝑣𝑎𝑟(𝑦(𝑡))
(2.2)

Complexity is expressed as the number of standard slopes actually generated during the
average time required for generation of one standard amplitude as given by the mobility.
Due to the non-linear calculation of standard deviation this parameter will quantify any
deviation from the sine shape as an increase from unity:

𝐶 =
𝑀(d𝑦(𝑡)

d𝑡 )

𝑀(𝑦(𝑡))
(2.3)

In research related to anxiety detection and it’s severity, Hjorth parameters were cal-
culated for all EEG channels [8]. These parameters were then used as a features put into
k-NN classifier, reaching accuracy of 81.40% in binary classification, discriminating between
normal or light anxiety, and moderate or severe anxiety. Authors concluded that Hjorth
parameters are the most simple features to extract from an EEG signal, yet they produce
a significant accuracy throughout all types of datasets.

2.1.4 Frequency Analysis

Delta-Beta Coupling

Delta-beta coupling represents the cross-frequency correlation between the amplitude of
delta-band and beta-band oscillations. Coupling between delta (1–4 Hz) and beta (14–30
Hz) oscillations is posited to reflect subcortico-cortical communication and stress regulation
[40].

There are different types of cross-frequency coupling – phase to phase coupling, power to
power coupling, frequency to frequency coupling, or combinations, resulting in six different
types [27], shown in figure 2.3.
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Figure 2.3: Different types of cross-frequency coupling (CFC). Signal X at a given constant
frequency fluctuating in the amplitude over time (red line). Then, possible couplings are
showed: (B) power to power (C) phase to phase (D) phase to power (E) phase to frequency.
(F) power to frequency (G) frequency to frequency. Figure taken from [27].

In the review study of various biomarkers of social anxiety disorder [2], delta-beta cross-
frequency correlation was investigated. Authors of the study consider delta-beta cross-
frequency correlation as a widely used measure in the investigation of social anxiety. They
reviewed literature related to delta-beta coupling in various states – resting, anticipatory,
and recovery state. Resting state EEG recordings denote spontaneous neural activity [9];
anticipation state is period in which participant anticipates the fearful situation; and re-
covery state happens after the anticipation state. Resting state and anticipatory state are
believed to be promising measure in terms of social anxiety disorder. Regarding recovery
state, authors suggest doing further research to assess whether the delta-beta coupling in
recovery state can serve as a measure of social anxiety disorder.

Amplitude Asymmetry

Amplitude asymmetry can be computed by comparing the EEG signal from two differ-
ent electrode locations. It was calculated using alpha band power, that can be extracted
using discrete wavelet transform (DWT) [8]. For more information about DWT, see Time-
Frequency Analysis. To calculate the asymmetry index, the continuous signal must be
broken into small parts. Scientific studies recommend overlapping epochs with each limited
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to a duration of 1-2 seconds [8]. Then, the asymmetry index equals to natural logarithm of
left side channels subtracted from the right ones (L-R):

𝐴𝐼 = ln(𝛼)|𝐿𝐶ℎ𝑎𝑛𝑛𝑒𝑙 − ln(𝛼)|𝑅𝐶ℎ𝑎𝑛𝑛𝑒𝑙 (2.4)

Various researches demonstrated that the asymmetry index is potential biomarker re-
lated to anxiety. Asymmetry index has reduced during an anxiety state in comparison to
relaxed state [5]. Frontal asymmetry (the relative difference in power between two signals
in different hemispheres) has been suggested as biomarker for anxiety [8]. Frontal asymme-
try within the alpha band can be inversely related to stress/anxiety. However, in another
review, authors found incosistent findings, thus indicating that frontal alpha asymmetry
is not a trait mark of SAD, but may be related to SAD in the presence of some definite
extreme stressors, suggesting more studies need to focus on the coexistence of SAD and
other mental disorders [2].

Fourier Transforms

Discrete Fourier transform (DFT) is used for analyzing discrete-time finite-duration signals
in the frequency domain. DFT transforms a sequence of 𝑁 complex numbers:

x𝑛 := 𝑥0, 𝑥1, . . . , 𝑥𝑁−1 (2.5)

into another sequence of complex numbers,

X𝑘 := 𝑋0, 𝑋1, ..., 𝑋𝑁−1 (2.6)

which is defined by:

𝑋𝑘 =
𝑁−1∑︁
𝑛=0

𝑥𝑛.𝑒
− 𝑖2𝜋

𝑁
𝑘𝑛 =

𝑁−1∑︁
𝑛=0

𝑥𝑛.

[︂
𝑐𝑜𝑠

(︂
2𝜋

𝑁
.𝑘𝑛

)︂
− 𝑖.𝑠𝑖𝑛

(︂
2𝜋

𝑁
.𝑘𝑛

)︂]︂
(2.7)

To obtain a fast or real-time implementation of (2.7), one often uses a fast Fourier
transform (FFT) algorithm, which makes use of the symmetry properties of DFT [30].
There are many variations of FFT algorithms.

Short-time Fourier transform (STFT) is a sequence of Fourier transforms of a windowed
signal. STFT provides the time-localized frequency information for situations in which
frequency components of a signal vary over time, whereas the standard Fourier transform
provides the frequency information averaged over the entire signal time interval [30].

Band Power

Band Power features are the most popular features in the context of EEG-based emotion
recognition [8]. The decomposition of the overall power in the EEG signal into individual
bands is commonly achieved through Fourier transforms, or alternatives like short-time
fourier transform (STFT) or estimation of power spectral density (PSD) using Welch’s
method.

Peak power is the highest power in an EEG signal. Absolute Power is the power of an
EEG band independent of the power of the other bands:

𝑃 =
∑︁⃒⃒

fft(𝑥)2
⃒⃒

(2.8)
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where 𝑥 is an EEG signal and fft is Fast Fourier Transform.
The study related to anxiety reduction concluded that an increase in the amplitude of

the beta band of the EEG signal was associated with the anxiety level of an individual
[5]. Another finding from this study is that after the treatment with the use of VR, beta
activity in the anterior cingulate cortex was significantly reduced. These findings might
indicate that the beta band amplitude is potentially associated with anxiety.

2.1.5 Time-Frequency Analysis

Wavelet Transform

Wavelet transform offers a generalization of STFT. From a signal theory point of view,
similar to DFT and STFT, wavelet transform can be viewed as the projection of a signal
into a set of basis functions named wavelets. Such basis functions offer localization in the
frequency domain. In contrast to STFT having equally spaced time-frequency localization,
wavelet transform provides high frequency resolution at low frequencies and high time
resolution at high frequencies [30].

Alpha and beta band wavelet coefficients were found to be highly correlated with the
anxiety level [5]. Another study states that time-frequency features obtained after a wavelet
transform achieved best rates in classification [8]. One of the features that perform very
well is Root Mean Square (RMS) using DWT. The highest accuracies based only on the
RMS feature were 77.40% and 73.60% for two class and four class classification respectively,
discriminating between the severity of state anxiety. In two-class, between light and severe;
in four-class between normal, light, moderate and severe anxiety. RMS is derived from
a wavelet decomposition with the function “db5” for 5 levels and is extracted for each
frequency band:

𝑅𝑀𝑆(𝐽) =

⎯⎸⎸⎷∑︀𝑗
𝑖=1

∑︀
𝑛𝑖
𝐷𝑖(𝑛)2∑︀𝑗

𝑖=1 𝑛𝑖

(2.9)

where 𝐷𝑖 are the detail coefficients, 𝑛𝑖 the number of 𝐷𝑖 at the 𝑖𝑡ℎ decomposition level, and
j denotes the number of levels.

Hilbert-Huang Spectrum

Hilbert-Huang spectrum (HHS) is considered as a new way to extract necessary information
from EEG data, since it defines amplitude and instaneous frequency for each sample [8].
In the work, they computed HHS for each signal using the Empirical Mode Decomposi-
tion (EMD) to obtain a set of Intrinsic Mode Functions (IMFs), representing the original
signal. Each IMF represents different frequency components of original signals. Extracted
features are Hilbert Spectrum (HS) and instantaneous energy density (IED) level. The
decomposition into IMFs resulted in 10 IMFs per each channel. However, features obtained
through HHS did not lead to a great accuracy (64%), despite authors commenting that
many researches proved this approach to perform well.
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Figure 2.4: Example block diagram showing schema of extracting Hilbert-Huang spectrum.
First, EEG signal is windowed into 5 second chunks. Then, EMD is used to obtain a set of
IMFs. Lastly, features are extracted and used for classification. Figure taken from [53].

2.1.6 Connectivity Analysis

Figure 2.5: The three types of connections between brain nodes: functional connectivity,
structural connectivity, and effective connectivity. Figure taken from [52].

Functional Connectivity

Functional connectivity (FC) is considered when activities within nervous system are highly
correlated over time. FC refers to the statistical relationship between signals from elec-
trodes. Structural connectivity is necessarry to assess the functional connectivity.
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Phase-Lag Index

Phase-Lag index (PLI) is a functional connectivity measure to obtain reliable estimates of
phase synchronization that are invariant against the presence of common sources (e.g. due
to volume conduction, multiple EEG electrodes can potentially measure signal from one
source) [45]. Let ∆Φ(𝑡𝑘) be the time series of phase differences, then PLI is defined as
follows:

𝑃𝐿𝐼 = |⟨sign [∆Φ(𝑡𝑘)]⟩| (2.10)

where sign is signum function. The PLI ranges between 0 and 1, with 0 indicating no
coupling due to volume conduction and 1 indicating true, lagged interaction.

PLI is commonly used to extract the adjacency matrix of functional connectivity of
brain networks in five bands [51]. In one study, authors mentioned phase-lag index to use
for features selection [4]. The adjacency matrix was obtained by the PLI algorithm, and
then converted into a binary matrix that determined whether there was an edge, choosing
an appropriate threshold, which authors set to 0.04 in this experiment. The brain network
(BN) was then used as an input for the classifier. Best results were obtained using CNN
model, with accuracy of 67.67%.

In a study on SAD, using the functional connectivity of the resting-state network, appli-
cation of weighted PLI to EEG electrodes showed an increase in the enhanced fluctuation in
oscillatory theta-rhythm coherence in the mid-frontal regions, proving that SAD has higher
connectivity in the resting-state in SAD patients than in healthcheck group [2].

Instead of PLI, Prefrontal Lateralization can be used. This is a common method in
evaluation of anxiety and depression patients [4]. It is defined as 𝑙𝑛(𝑅)− 𝑙𝑛(𝐿), where 𝑅 is
the power spectral density of each band in the right brain, and 𝐿 is that of the left brain.
If the score is positive, the activity is stronger in the left prefrontal lobe than in the right
prefrontal lobe. If the score is negative there is no left lateralization.

Authors of the review compared BN and Prefrontal lateralization, reaching to a conclu-
sion that BNs performed better with CNN than with prefrontal lateralization [4].

Effective Connectivity

Effective connectivity (EC) is a combination of physical connections and functional connec-
tivity because effective connectivity can effectively identify the network of causal influences
of one neural unit over others within the brain [2]. Calculating EC is more challenging than
determining functional brain connectivity.

EC is commonly estimated using different tools, including phase slope index (PSI) and
partial directed coherence (PDC). These methods are based on Granger causality principle.

Granger Causality

The fundamental basis of estimates of causal relations using Granger Causality is the fact
that a cause precedes the effect. Granger causality (GC), which identifies directed connec-
tions from time-series data, presents itself as an effective and widely used statistical method
that locates natural implementation in neuroscience studies. The GC concept reveals that
if a neural signal 𝑌 (𝑡) implies information in past values that assist in the prediction of
neural signal 𝑋(𝑡), 𝑌 (𝑡) is believed to cause 𝑋(𝑡) [3].

There are different frequency domain Granger causality measures, such as Partial Di-
rected Coherence (PDC) or directed transfer function (DTF).
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Partial Directed Coherence

Partial directed coherence (PDI) is a technique based on the MVAR and the concept of
partial coherence and Granger causality. The PDC from channel j to channel i indicates
the directional flow of information from one activity site to another. PDC values are in the
range of [0, 1]. PDC value from channel 𝑗 to channel 𝑖 can be expressed as follows:

𝑃𝐷𝐶𝑖𝑗 =
𝐴𝑖𝑗(𝑓)√︀

𝑎𝑗 −𝐻(𝑓)𝑎𝑗(𝑓)
(2.11)

where 𝑎𝑗(f) (𝑖 = 1, 2, . . . ,𝑀) represents the 𝑖𝑡ℎ columns of the matrix 𝐴(𝑓) and 𝑃𝐷𝐶𝑖𝑗

represents the directional influence and intensity of the information flow from channel 𝑗 to
channel 𝑖 at a frequency of 𝑓 .

In the study related to deep learning models based on effective connectivity features
[3], PDC was discussed. PDC was used as an effective connectivity feature for social
anxiety disorder prediction. The hyperactivity of DMN regions in higher severity of SAD
indicates neural correlations associated with social anxiety disorder’s (SAD) symptoms
severity. Default mode network (DMN) is usually active when a person is not focused on
any particular task and the brain is at wakeful rest. EEG in DMN is considered fundamental
for identifying the brain dysfunction in SAD in resting state. Therefore, PDC was applied
to the DMN-related regions for the estimation of the effective connections between them.
The calculation of the PDC matrix for each frequency band was obtained using continuous
3-second segments of EEG, which was recorded using 32-channel shielded cap (ANT Neuro).
This method reached accuracy of 93% using CNN and LSTM.

In this study, they also performed EC analysis to calculate the mean EEG activation
in the brain sources. It was done by averaging PDC matrices across all epochs for each
subject and then averaged within each group. There are 60 segments of 3 seconds each,
per subject. This results in topographic maps of the averaged peak activity of EC and the
activated areas associated with different anxiety severities and healthy group in five different
frequency bands. Then, multiple cortical sources were localized, using brainstorm toolbox.
Visualization of the computed EC source from EEG activity in the alpha band is shown in
figure 2.6. It was proved that precuneus is the most active region in severe and moderate
SAD groups compared to healthy and mild group. Healthy group also showed higher
information flow in the central mPFC region compared to other groups, which indicates
higher cognitive functions. Mild and moderate groups have shown greater information flow
in the left mPFC than the other groups.
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Figure 2.6: Visualization of the computed EC source from EEG activity in the alpha band.
It represents the highest 30% of EC values at significant level, 𝑝 < 0.05. Figure taken from
[3].

Partial directed coherence is a powerful method to assess the effective connectivity of
the brain.

2.2 Classification
This section summarizes findings from literature in terms of classification, with greater
detail on models.

2.2.1 Preprocessing

Preprocessing is an important step in classification pipeline. Data needs to be preprocessed
to remove unwated elements in the data.

Many researches mention the use of FIR band-pass filter. FIR band-pass filter is used
to eliminate the high-frequency electrocortical artifacts, signal noise, and low-frequency
deflections. For example, in one study FIR-band pass was used to acquire signal segments
between the frequency range of 0.4 and 50 Hz [3].

2.2.2 Feature Selection

Feature selection is the process of selecting important features. Wrapper method, also
known as sequential feature extraction is a feature selection method used to select important
features. It was employed in two studies on anxiety [5, 4]. This method select subset of

23



features with highest classification accuracy. The algorithm starts with empty set, and then
iteratively adds features, and stops when adding of feature does not improve accuracy.

2.2.3 Models

Multilayer Perceptron

Multilayer Perceptron (MLP) is a fully connected feedforward artificial neural network. It
consists of three types of layers – the input layer, output layer and hidden layer. Each
neurone of a layer is connected to each neurone of the next layer so that only forward
transmission through the network is possible, from the input layer to the output layer
through the hidden layers [25]. The training of an MLP is accomplished by using a back-
propagation algorithm [44].

MLP was used in study related to EEG detection of trait anxiety using low-cost EEG
headband [5]. MUSE headband with 4 channels was used. Network used has four-layer
hidden network with a sigmoid activation function and a learning rate of 0.3 and 0.2 re-
spectively. The results were calculated using a 10-fold cross-validation scheme. Training
and testing data never belong to the same subject. The best results were obtained by using
feature selection and channel selection, reaching accuracy of 76.92% accuracy in binary
classification, discriminating between non-anxious and anxious class. Classification into
three classes (non-anxious, low-anxious, high-anxious), only 56.92% accuracy was reached.
MLP doesn’t perform very well on this data.

Next model used in this study was Logistic regression, described in the next section.

Logistic Regression

Logistic regression is a binary classification model that can be generalized to multiclass
classification [48]. It takes a linear combination of features and applies a nonlinear sigmoidal
function to them [6]. Mathematically, Logistic Regression is the process of fitting the
weights of the model to minimize loss on a data set [44].

Best results were obtained, again, by using feature selection and channel selection. High-
est accuracy of 70.76% accuracy was reached in binary classification tasks, discriminating
between non-anxious and anxious class. Classification into three classes (non-anxious, low-
anxious, high-anxious), 52.30% accuracy was reached [5]. Logistic regression performed
even worse than MLP.

Last model that was discussed in that paper is Random Forest.

Random Forest

Random forest (RF) is a machine learning method that works by constructing many decision
trees. When used for classification, a random forest obtains a class vote from each tree,
and then classifies using majority vote; whereas when used for regression, the predictions
from each tree are simply averaged [22].

The number of decision trees for the RF classifier used in the study is 100 [5]. RF
reached accuracy of 87.69% accuracy in binary classification, discriminating between non-
anxious and anxious class. Classification into three classes (non-anxious, low-anxious, high-
anxious), 83.07% accuracy was reached. Random Forest reached highest accuracy in the
study, compared to Multilayer perceptron and Logistic regression.

Random Forest classifier was also discussed in the review related to machine learning
methods for anxiety detection [4]. Among other ML methods, RF reached the best perfor-
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mance. Three different studies mentioned in the review reached accuracy of 94.92%, 88%,
and 78.60% with leave-one-out cross validation for first two, and 10-fold cross validation
validation for the last. The first study tested various models – DT, kNN, SVM, MLP, and
RF; with RF outperforming all of them. They’ve used DASPS dataset, described in section
DASPS. Classification was done for two classes and four classes, discriminating between
the severity of state anxiety. In two-class, between light and severe; in four-class between
normal, light, moderate and severe anxiety.

K-Nearest Neighbors

K-nearest neighbors (k-NN) is a supervised machine learning method used for classification
and regression. The belonging to the class is decided based on the 𝑘 closest training
examples in a data set.

Using k-NN, authors of one study achieved best results were obtained when the trial
length is 1s, k-NN classifier using Hjorth features reaches 81.40% [8]. Authors compared
different durations, resulting in a conclusion that state anxiety may be evoked in 1 second,
but longer segments like 5 seconds or even 15 seconds might be too long and might contain
more than one emotion. For example, using 15s segments from DASPS dataset, accuracy
of only 67.07% was obtained.

Support Vector Machine

Support vectors machines (SVM) is a supervised machine learning method. SVM maps
training examples to maximise the width of the gap between the two categories. New data
are mapped into that same space and predicted to belong to a category based on which
side of the gap they fall. SVM can be also used for multiclass classification.

In one study on state anxiety detection participants were divided into three classes
– healthy (no anxiety), moderate anxiety and severe anxiety [15]. SVM obtained high
accuracy of 92.48%, using power spectrum density feature.

Deep Learning

Convolutional neural network (CNN) is a type of artificial neural network that use a math-
ematical operation called convolution. CNN consists of convolutional layers, pooling layers
and fully connected layers. Network is trained using a backgpropagation algorithm.

Long short-term memory (LSTM) is also a type of artificial neural network. Main
difference between CNN is that the LSTM can have feedback connections.

Study related to deep learning models assesing severity of anxiety [3], CNN and LSTM
were discussed. Authors recruited participants to create a dataset. Dataset contains EEG
data of 88 participants during resting-state (3 minutes per participant). Subjects were as-
signed anxiety severity based on their self-assessment reports of the SIAS (Social Interaction
Anxiety Scale). To ensure equal class balance, EEG recordings from 22 participants are
used for each class - mild, moderate, severe and healthy group. Eight important electrodes
were selected by process of MNI. Models were trained using EC features belonging to the
DMN regions. PDC matrices from 5 bands were combined to be the input to the CNN and
CNN + LSTM models. Combining CNN and LSTM together, model reached accuracy of
93%.
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2.3 Datasets
There are various datasets used for anxiety detection that can be found in the literature.
Generally, they can be divided into two groups, based on the environment in which they were
recorded – either resting state EEG, where participant tries to do nothing, remains calm
and minimizes movement; or during anxiety elicitation, where usually anxiety is induced in
a safe environment with the help of psychotherapist.

Regarding the first group, there are two resting state EEG datasetes. First dataset
comes from the study on anxiety detection from EEG headband with only 4 electrodes [5].
Signals of 65 participants were recorded, but there is no information medical conditions of
participants. Second dataset is from study assessing severity of anxiety using 32 channel
EEG headset [3]. EEG signals of 88 participants were recorded during resting state, where
all participants were healthy (both physically and mentally).

Moving to the datasets recorded during anxiety elicitation, two datasets are found.
First one contains recordings from 34 participants [52]. This is the only dataset consisting
of both healthy and anxiety disorder participants. Second dataset recorded during anxiety
elicitation consists of 23 healthy participants, not suffering from psychological diseases [8].

Regarding access to the datasets, only the last dataset mentioned is available publicly
and free to download. Due to this fact, more studies used this dataset for their research.
The dataset is named “DASPS”, and is described in the next section.

2.3.1 DASPS

Dataset named DASPS was presented, consisting of EEG recordings from 23 healthy sub-
jects (not suffering from psychological diseases) during anxiety elicitation [8]. 13 women
and 10 men with an average age of 30 years old. EEG data were recorded using a wire-
less EEG headset, the Emotiv EPOC 14 channels and 2 mastoids placed according to the
international 10-20 system.

They defined their own experimental procotol, shown in figure 2.7. In the protocol they
used actual exposure to the feared stimulus. A patient is confronted with a situation in
which the stimulus that provoked the original trauma is present. The trial consists of six
situations. The anxiety level was calculated before stimulation according to the Hamilton
Anxiety Rating Scale (HAM-A). HAM-A provides 14 items, each one contains a number of
symptoms that can be rated on a scale of zero to four. Experiment starts with closed eyes
and minimized gesture and speech. Psychotherapists starts by reciting the first situation
and helps the subject to imagine it. This phase is divided into two stages: recitation by the
psychotherapist for the first 15 sec and recall by the subject for the last 15 sec. When time
is over, the subject is asked to rate how he felt during stimulation using the Self Assessment
Manikin (SAM). It has two rows for rating: valence, ranging from negative to positive; and
arousal, ranging from calm to excited. This trial is repeated until the sixth situation. At
the end of the experiment, some items from HAM-A are re-evaluated.
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Figure 2.7: The experimental protocol of anxiety stimulation used to create DASPS dataset.
Figure taken from [8].

HAM-A scores were collected both before and after the trials. Groups are assigned
based on the following intervals – score in interval 0-12 is for normal anxiety, 13-19 is for
light anxiety, 20-25 is for moderate anxiety, and >25 is for severe anxiety. Based on the
scores before experiment, there are 4 participants with normal anxiety level, 6 light, 6
moderate, and 7 severe. Based on the scores after the experiment, there are 2 participants
with normal anxiety level, 5 light, 3 moderate, and 13 severe. Based on the comparison of
HAM-A before and after the trials, number of participants with severe anxiety increased
from 7 to 13 denoting the impact of elicitation of participants’ anxiety level. HAM-A
questionnaire can be found in appendices, see A.1.

SAM scores were collected after every stimuli situation, therefore six per participant.
Authors relies on the definition by Russell, who defines anxiety as: Low Valence and High
Arousal. Groups are assigned based on the following intervals – valence > 5 and arousal
< 5 is for normal, valence 4-5 and arousal 5-6 for light anxiety, valence 2-4 and arousal 6-7
for moderate anxiety, 0-2 Valence and 7-9 Arousal for severe anxiety. Using length of the
segment equal to 15 seconds, labeling resulted into 156 normal, 20 light, 10 moderate, 90
severe segments. SAM questionnaire can be found in appendices, see A.2.

Along with the creation of dataset, authors also performed classification, using SAM
scores. Highest accuracy reached was 74.60% for classification into four classes and 83.50%
for two classes of anxiety severity, using Stacked Sparse Autoencoder. They consider a 15
second recording too long for classification of anxiety, stating it may contain more than one
emotion, and thus it explains why results didn’t reach great accuracy. Such accuracy was
obtained by segmentation of signal into 1s chunks.

Consequently, authors produced newer paper [7], where in addition to prediction based
on SAM also examined prediction based on HAM-A, reaching better accuracy of 86.70%
using Stack Sparse Autoencoder with large feature vector, consisting of 277 features.

Another study have worked on improving the results of the study in which the DASPS
database has been developed [37]. An accuracy of 94.90% and 92.74% is achieved for two
and four level anxiety classification, using RF classifier.

In the newest study [14], authors relied on transition behaviour instead of working with
the direct features computed from the recorded signals. Highest accuracy of 83.8 % is
obtained for both 2 and 4 level classification using k-NN.

Comparison of the existing methods using publicly available DASPS dataset is shown
in figure 2.8.
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Figure 2.8: Comparison of ML methods proposed in the literature using DASPS dataset.
Authors usually did not compute specificity in these papers, so values highlighted by blue
color were additionally computed based on confusion matrices found in the papers. Sen-
sitivity column contains sensitivities per class (N for normal, L for light, M for moderate,
and S is for severe anxiety). Baghdadi et al. [7], Chatterjee et al. [14], Muhammad et al.
[37].

2.4 Discussion
Research that is done in the field of anxiety detection can be categorized into two categories
based on the anxiety type - state anxiety and trait anxiety. State anxiety is a normal re-
sponse to a stressful or frightening situation that can be seen in all humans – both healthy
and those suffering from an anxiety disorder. Research on state anxiety usually examines
brain activity during acute anxiety induced by a psychotherapist in a safe environment.
Then, EEG data are captured and analyzed. On the other hand, trait anxiety is considered
a part of a person’s personality that leads to recurring anxious behavior in everyday situa-
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tions, which are generally not harmful. Trait anxiety is usually studied using resting state
EEG recording, finding the differences between anxious and non-anxious groups. Current
research not only tries to discriminate between anxiety and non-anxiety classes but also
assesses the severity of anxiety. However, the problem with anxiety research is that the
term “anxiety” varies in the literature – there is no agreed definition. Furthermore, in
the former studies, “anxiety” (presumably state anxiety) is also often interchanged with
“stress”. Therefore, it has to be carefully assessed in terms of the protocol utilized for the
EEG recording.

This chapter described various potential biomarkers related to anxiety. Regarding
ERPs, the error-related negativity (ERN) seems promising as a robust trait marker of
clinical anxiety. Regarding time domain features, Hjorth parameters are very simple to ex-
tract from EEG signals yet produce significant accuracies. Moving to the frequency domain
features, delta-beta cross-frequency correlation is a promising measure of social anxiety dis-
order. Another frequency feature is the asymmetry index, a potential biomarker related to
anxiety demonstrated by multiple studies. The amplitude of the beta band was also as-
sociated with the anxiety level of an individual. Regarding time-frequency features, alpha
and beta band wavelet coefficients were found to be highly correlated with anxiety lev-
els. Another study reports that time-frequency features obtained after a wavelet transform
achieved the best rates in classification, among other methods. Partial directed coherence
(PDC) was used as an effective connectivity feature, resulting in high classification accuracy
when used with CNN and LSTM.

Four studies used a dataset consisting of individuals with no record of psychiatric disease
[8, 14, 37, 3], one study used a mixed dataset of healthy and anxiety disorder patients [15],
and one study did not specify [5]. Different headsets were used, with a density of 4, 14,
and 32 channels. Surprisingly, even classification using a four-channel headset resulted in
accuracy close to 90% [5]. The questionnaire used for labeling of data is different in almost
every study. Classifying into more levels of granularity – i.e. severity of anxiety, resulting in
lower accuracy in studies that compared the accuracy between different levels of granularity
[15, 8, 37].

Only one anxiety dataset is publicly available and free to download, particularly the
DASPS dataset with EEG recordings of 23 participants in anxiety induction trials. For
more information about the dataset, see section 2.3.1. Because of availability, several
studies used this dataset – results are compared in the table 2.8. Every study which
used this dataset reported classification accuracies. Few studies also mention sensitivities.
Sensitivity in this context refers to the probability that a subject with a positive anxiety
test truly has anxiety. Lower accuracies are reported in multiclass classification as opposed
to binary classification, where the highest accuracy of 92.74% achieved with sensitivities of
0.84 for normal anxiety, 0.91 for light anxiety, 0.84 for moderate anxiety, and 0.96 for severe
anxiety, and F1 score of 0.9, which is not enough for a robust test. Specificities were not
reported in either study. Specificity refers to the probability that a subject with a negative
anxiety test truly does not have anxiety. Sensitivity and specificity are important measures
to eliminate misdiagnoses and are heavily used in medicine.

To address shortcomings of previous studies, the next chapter proposes a novel anxiety
detection based on machine learning methods, using microstates, and other features in time
and frequency domain.
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Chapter 3

Proposed Methodology

This chapter proposes a novel method of anxiety detection based on machine learning,
addressing the shortcomings of previous studies. The DASPS dataset is used for this pur-
pose. The ground truth is based on the HAM-A score. In the preprocessing stage, existing
methods are used to remove undesirable elements from the data. The contribution of this
work lies in incorporating various types of features, such as time series features, frequency
features, time-frequency features, and microstates, into machine learning models. Classifi-
cation is based on a two-phase classification consisting of three classifiers. It is important to
note that every classifier performs feature extraction and feature selection independently,
resulting in different feature sets. Finally, the result of the two-phase classification is the
assignment into one of the four classes. The method proposed is shown in figure 3.1.

Figure 3.1: Figure showing proposal of a novel method of anxiety detection. The method
incorporates various features into a two-phase classification process. In the first phase, the
top-level model classifies trials into two classes – Normal + Light and Moderate + Severe.
Then, in the second phase, further classification is done based on the assigned class from the
first model. For example, if the assigned class from the first model is Normal + Light, the
respective model in the second phase will further discriminate between Normal and Light
classes. The same principle applies to the other alternative, i.e., the Moderate + Severe
class. This work deals with areas highlighted in the blue rectangles.
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3.1 Features
This section presents features extracted from the EEG signal for further classification tasks.
These features consist of microstates, time series, frequency, and time-frequency features.

3.1.1 Microstates

The first set of features is based on microstates. Microstates are states or patterns of an
EEG signal, lasting anywhere from milliseconds to seconds. Although many topographic
maps can be obtained from an EEG signal, they are clustered based on similarity. Clustered
microstates are then back-fitted to the EEG signal. Next, various statistical features are
extracted. In particular, it is the microstates’ duration, occurrence, recurrence, coverage,
and transition probabilities. For a detailed diagram, see figure 3.2.

Figure 3.2: The figure shows microstate clustering, back-fitting of clustered microstates
to EEG signal, and statistics based on microstates. a) The GFP curve, drawn in red, is
obtained from the subjects’ EEG signals. Then, from the topographic maps obtained based
on the peaks of the GFP, microstate maps are obtained (A, B, C, and D) using a clustering
algorithm. b) The back fitting procedure assigns microstate labels to EEG samples based
on which microstate prototype they are most topographically similar to. c) From the EEG
signal represented by a sequence of microstate labels, it is possible to calculate the statistical
characteristics, such as microstates duration and the number of occurrences. The figure is
taken from [31].

Let us move from the introduction of the microstates to the proposed method. The
first step to obtaining microstates, Global Field Power (GFP), has to be computed. Then,

31



microstates from GFP peaks are clustered and back-fitted to the EEG signal. Subsequently,
various features based on microstates are extracted, such as the occurrence of microstates,
recurrence of microstates, duration of microstates, transition probabilities from one partic-
ular microstate to another, or coverage of microstates.

3.1.2 Time Series Features

Time series features can be further divided into univariate and bivariate categories. The
univariate feature is computed from a single channel, whereas the bivariate feature is com-
puted from two channels and thus captures the relationship between them.

Univariate Features

The following sections will describe univariate time series features that were selected, namely
Mean, Standard deviation, Quantile, Kurtosis, Zero Crossings, Line Length, Hjorth Param-
eters, Root Mean Square, Peak-to-Peak Amplitude, Approximate Entropy, Hurst Exponent,
Higuchi Fractal Dimension, Katz Fractal Dimension, SVD Entropy, and SVD Fisher Infor-
mation.

Mean from a signal {𝑥𝑖} can be obtained using following formula:

𝑥 =
1

𝑛

𝑛∑︁
𝑖=1

𝑥𝑖 (3.1)

Standard Deviation from a signal {𝑥𝑖} can be obtained using following formula:

𝜎 =

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑥)2 (3.2)

Quantile used in this particular case is 75% quantile. Quantile from a signal {𝑥𝑖} using
𝑞 = 0.75 is a value below which 75% of the data falls.

Kurtosis can be defined using different ways. In this particular case, Pearson’s definition
is used. According to Person’s definition, kurtosis is the fourth central moment 𝜇4, divided
by the square of the variance:

Kurtosis = 𝜇4

𝜎4
(3.3)

Zero Crossings represents the number of positive crossings of a signal through zero.

Line Length is calculated as the sum of the absolute differences between each pair of
adjacent points over a defined window [17]:

𝐿𝐿(𝑛) =
1

𝐾

𝑛∑︁
𝑘=𝑛−𝑁

𝑎𝑏𝑠[𝑥(𝑘 − 1)− 𝑥(𝑘)] =
𝐿(𝑛)

𝐾
(3.4)

where 𝐿𝐿(𝑛) is the normalized line length value at discrete time index 𝑛, 𝐿(𝑛) is the running
sum of distances between successive points within the sliding window of size 𝑁, 𝑥[𝑘] is the
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data sequence value at the 𝑘𝑡ℎ sample, 𝐾 is the normalization constant, 𝑁 is the sliding
windows length and 𝑎𝑏𝑠 stands for absolute value. Finally, 𝐿𝐿(𝑛) is computed for each
sample and then the average, representing the final feature.

Hjorth Parameters were already described in section 2.1.3.

Root Mean Square (RMS) is defined by following formula:

𝑅𝑀𝑆 =

√︂
1

𝑛

(︀
𝑥21 + 𝑥22 + · · ·+ 𝑥2𝑛

)︀
(3.5)

Peak-to-Peak Amplitude represents the difference between the maximum peak and the
minimum peak contained in the signal.

Figure 3.3: The figure shows the original signal and the signal produced by applying the
Teager-Kaiser Energy operator. The figure is taken from [23].

Approximate Entropy is a measure of system complexity. Lower values mean higher
self-similarity in the time series [41]. Let EEG signal be defined as 𝑥(1), 𝑥(2), . . . , 𝑥(𝑁) and
𝑚 dimensional vectors starting with 𝑖𝑡ℎ point:

𝑋(𝑖) = [𝑥(𝑖), 𝑥(𝑖+ 1), . . . , 𝑥(𝑖+𝑚− 1)]
𝑋(𝑗) = [𝑥(𝑗), 𝑥(𝑗 + 1), . . . , 𝑥(𝑗 +𝑚− 1)]
𝑖, 𝑗 = 1 < 𝑁 −𝑚+ 1; 𝑗 ̸= 𝑖

(3.6)

and Approximate Entropy defined as:

𝐴𝑝𝐸𝑛(𝑚, 𝑟,𝑁) = 𝜑𝑚(𝑟)− 𝜑𝑚+1(𝑟) (3.7)

where 𝑚 is length of EEG segment, 𝑟 is the tolerance value, 𝑁 is total length of EEG signal,
and function 𝜑𝑚(𝑟):

𝜑𝑚(𝑟) = (𝑁 −𝑚+ 1)−1
𝑁−𝑚+1∑︁

𝑖=1

ln [𝐶𝑚
𝑖 (𝑟)] (3.8)

is the average of the natural logarithms of the function 𝐶𝑚
𝑖 (𝑟), which is the probability that

any vector 𝑥𝑚(𝑗) is within 𝑟 of 𝑥𝑚(𝑖):
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𝐶𝑚
𝑟 (𝑖) =

𝐵𝑖

𝑁 −𝑚+ 1
(3.9)

where 𝐵𝑖 is the number of vectors 𝑥𝑚(𝑗) within 𝑟 of 𝑥𝑚(𝑖). Let 𝐴𝑖 be the number of vectors
𝑥𝑚+1(𝑗) within 𝑟 of 𝑥𝑚+1(𝑖), then:

𝐶𝑚+1
𝑟 (𝑖) = 𝐴𝑖

𝑁−𝑚

𝜑𝑚+1(𝑟) = (𝑁 −𝑚)−1∑︀𝑁−𝑚
𝑖=1 ln

[︀
𝐶𝑚+1
𝑖 (𝑟)

]︀ (3.10)

Hurst Exponent ranges between 0 and 1, and is defined as:

𝐻 =
log(𝑅(𝑇 )/𝑆(𝑇 ))

log(𝑇 )
(3.11)

where 𝑅(𝑇 ) is a difference between maximum and minimum values of the signal during
time interval 𝑇 , and 𝑆(𝑇 ) is the standard deviation of the EEG signal.

Higuchi Fractal Dimension is used to quantify the complexity and self-similarity of the
signal. Let represent EEG signal as 𝑋(1), 𝑋(2), . . . , 𝑋(𝑁), and construct a new time series,
𝑋𝑚

𝑘 as follows:

𝑋𝑘
𝑚 = 𝑋(𝑚), 𝑋(𝑚+ 𝑘), 𝑋(𝑚+ 2𝑘), . . . , 𝑋

(︂
𝑚+

[︂
𝑁 −𝑚

𝑘
· 𝑘

]︂)︂
(𝑚 = 1, 2, . . . , 𝑘) (3.12)

where 𝑚 indicate initial time and and 𝑘 indicate interval time respectively. In the case of
𝑘 = 4 and 𝑁 = 1000, for example, four time series are produced:

𝑋4
1 : 𝑋(1), 𝑋(5), 𝑋(9), . . . , 𝑋(993), 𝑋(997)

𝑋4
2 : 𝑋(2), 𝑋(6), . . . , 𝑋(998)

𝑋4
3 : 𝑋(3), 𝑋(7), . . . , 𝑋(999)

𝑋4
4 : 𝑋(4), 𝑋(8), . . . , 𝑋(1000)

(3.13)

Then, length of the curve, 𝑋𝑘
𝑚 is defined as follows:

𝐿𝑚(𝑘) =

⎧⎪⎨⎪⎩
⎛⎜⎝[𝑁−𝑚

𝑘
·𝑘]∑︁

𝑖=1

|𝑋(𝑚+ 𝑖𝑘)−𝑋(𝑚+ (𝑖− 1) · 𝑘|

⎞⎟⎠ 𝑁 − 1[︀
𝑁−𝑚

𝑘 · 𝑘
]︀
· 𝑘

⎫⎪⎬⎪⎭
⧸︃

𝑘 (3.14)

Finally, the length of the curve for the time interval 𝑘, 𝐿(𝑘), is calculated as the mean of
the 𝑘 values 𝐿𝑚(𝑘) for 𝑚 = 1, 2, . . . , 𝑘. [1]

Katz Fractal Dimension is derived directly from the waveform. The fractal dimension
of a curve can be defined as:

𝐷 =
log(𝑛)

log(𝑑/𝐿) + log(𝑛)
(3.15)

where 𝐿 is the total length of the curve or sum of distances between successive points,
and 𝑑 is the diameter estimated as the distance between the sequence’s first point and the
sequence’s point that provides the farthest distance. [18]
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SVD (Singular Value Decomposition) Entropy is defined as [42]:

𝐻 = −
𝑁∑︁
𝑖=1

𝜎𝑖 log 𝜎𝑖 (3.16)

where 𝜎𝑖 denotes normalized singular value:

𝜎𝑖 =
𝜎𝑖∑︀
𝑖 𝜎𝑖

(3.17)

SVD (Singular Value Decomposition) Fisher Information is defined as:

𝐹SVD =
𝑁−1∑︁
𝑖=1

(𝜎𝑖+1 − 𝜎𝑖)
2

𝜎𝑖
(3.18)

where 𝜎𝑖 denotes normalized singular value:

𝜎𝑖 =
𝜎𝑖∑︀
𝑖 𝜎𝑖

(3.19)

Teager-Kaiser Energy is a nonlinear quadratic operator to measure the real physical
energy of a system 𝐸𝑛:

𝐸𝑛 = 𝑥2𝑛 −
(︀
𝑥(𝑛+1)

)︀
*
(︀
𝑥(𝑛−1)

)︀
(3.20)

where 𝑥𝑛 is a discrete time signal and 𝑛 is the discrete time index. This operator is capable
of tracking instantaneously-varying special patterns. [19]

Figure 3.4: The figure shows the original signal and the signal produced by applying the
Teager-Kaiser Energy operator. The figure is taken from [19].

Bivariate Features

The following sections will describe selected bivariate time series features, namely Max-
imum Linear Cross-Correlation, Non-Linear Interdependence, Phase-Locking Value, and
Correlation Coefficients.
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Maximum Linear Cross-Correlation is a measures similarity of two signals {𝑥𝑖} and
{𝑦𝑖}. It can be quantified by using the maximum of a normalized cross-correlation function
as a measure for lag synchronization:

𝐶max = max
𝜏

{︃⃒⃒⃒⃒
⃒ 𝐶𝑥𝑦(𝜏)√︀

𝐶𝑥𝑥(0) · 𝐶𝑦𝑦(0)

⃒⃒⃒⃒
⃒
}︃

(3.21)

where 𝐶𝑥𝑦(𝜏) is linear cross-correlation function. 𝐶𝑚𝑎𝑥 is confined to the interval [0, 1] with
high values indicating that the two signals have a similar course in time (though possibly
shifted by a time lag 𝜏). In contrast, dissimilar signals will result in values close to zero.
[36]

Non-Linear Interdependence as a measure for generalized synchronization between two
EEG signals {𝑥𝑖} and {𝑦𝑖} is calculated after reconstruction of the state space trajectories
{�⃗�𝑖} and {�⃗�𝑖} for these signals. Let 𝛼𝑖𝑗 and 𝛽𝑖𝑗 with 𝑗 = 1, . . . , 𝑘 denote the time indices of
the 𝑘 nearest neighbours in state space of �⃗�𝑖 and �⃗�𝑖, respectively. For each �⃗�𝑖 the squared
mean Euclidean distance to its 𝑘 nearest neighbours is given by

x|y𝑆 =
1

𝑀

𝑀∑︁
𝑖=1

x𝑅
(𝑘)
𝑖

x|y𝑅
(𝑘)
𝑖

(3.22)

and
x|y𝐻 =

1

𝑀

𝑀∑︁
𝑖=1

log
x𝑅

(𝑀)
𝑖

x|y𝑅
(𝑘)
𝑖

(3.23)

with
x𝑅

(𝑀)
𝑖 =

1

𝑀 − 1

𝑀∑︁
𝑗=1,𝑗 ̸=𝑖

(�⃗�𝑖 − �⃗�𝑗)
2 (3.24)

𝑦|𝑥𝑆 and 𝑦|𝑥𝐻 are defined accordingly. Both measures yield high values for high degrees
of non-linear interdependence and low values for independent time series. While 𝑥|𝑦𝑆 is
restricted to the interval [0, 1], 𝑥|𝑦𝐻 is not normalized and might also have slightly negative
values. [36]

Phase Locking Value quantifies locking between the phases of the signals from two
distinct electrodes. For each channel 𝑖, extract instantaneous phase 𝜑𝑎

𝑖 (𝑡) of the analytical
signal 𝑥𝑎𝑖 (𝑡) of the time series 𝑥𝑖(𝑡). Then, for each pair (𝑖, 𝑗) of channels, compute the
modulus of the time-averaged phase difference mapped onto the unit circle [47]:

𝑃𝐿𝑉𝑖𝑗 =

⃒⃒⃒⃒
⃒ 1𝑇 ∑︁

𝑡

𝑒𝑖(𝜑
𝑎
𝑖 (𝑡)−𝜑𝑎

𝑗 (𝑡))

⃒⃒⃒⃒
⃒ (3.25)

Correlation Coefficients in the time domain between pair of EEG channels, using Pear-
son product-moment correlation coefficients. The input EEG signal is first standardized,
then the correlation coefficient matrix is calculated. The relationship between the the
correlation coefficient matrix, 𝑅, and the covariance matrix, 𝐶, is:

𝑅𝑖𝑗 =
𝐶𝑖𝑗√
𝐶𝑖𝑖𝐶𝑗𝑗

(3.26)

where values of 𝑅 are between -1 and 1, inclusive. Eigenvalues of the correlation matrix
are calculated too.
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3.1.3 Frequency Features

Frequency features consist of Band Power, Asymmetry Index, Correlation Coefficients (from
power spectra), Decorrelation Time, Spectral Edge Frequency, and Spectral Slope.

Band Power was already described in section 2.1.4.

Asymmetry Index was already described in section 2.1.4.

Correlation Coefficients in the frequency domain, obtained from the power spectrum.
The only difference of this feature with the time-domain variant is that for input data power
spectrum is used, which is obtained using Welsch’s method. All other details are the same
as in the time domain variant; See 3.1.2.

Decorrelation Time is defined as the time of the first zero crossing of the autocorrela-
tion sequence of a given EEG signal. If the decorrelation time is lower, the signal is less
correlated. The autocorrelation function is computed using the FFT of the signal. [50]

Spectral Edge Frequency is another measure obtained from the power spectrum. In a
typical EEG signal, most of the power is contained within the frequency band from 0 Hz
up to 40 Hz : 𝑃40 Hz ≈ 𝑃 . As a characterizing measure for the power distribution, the
so-called spectral edge frequency can be used, which is defined as the minimum frequency
up to which 50% the spectral power up to 40 Hz is contained in the signal [36]:

𝑓50 = min

⎧⎨⎩𝑓* |
𝑓*∑︁

𝑓=0 Hz

𝑝𝑓 > 𝑃40 Hz · 0.50

⎫⎬⎭ . (3.27)

Spectral Slope is estimated using linear regression of the power spectral density in the
log-log scale. Additionally, an intercept is used as a feature, too. Figure 3.5 shows a log-log
scale with an estimated spectral slope.

Figure 3.5: The figure shows the spectral slope on the power-spectral-density log-log graph.
The spectral slope is estimated using linear regression and shown as a dotted line. The
figure is taken from [20].
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3.1.4 Time-Frequency Features

The last category is for time-frequency features, which consist of only the Energy of Wavelet
Decomposition Coefficients.

Energy of Wavelet Decomposition Coefficients is obtained after wavelet transform.
For more information about wavelet transform, see 2.1.5. Wavelet used for this features is
Daubechies 4 (db4). After DWT (Discrete Wavelet Transform), coefficients are obtained.
Finally, energy is computed as the sum of the square of the absolute values of those coeffi-
cients.

3.2 Feature Selection
The next step is to perform feature selection based on already computed features. Features
are normalized before performing the feature selection step to have a similar scale. This
ensures that all features contribute equally to the model and prevents features with larger
values from dominating the model.

Various feature selection methods were tested: Ridge regression, Lasso regression, Cor-
relation, and Sequential Feature Selection. Ridge regression with Recursive feature elimi-
nation (RFE) is used as it showed the best classification performance on the final model,
selecting the most relevant features.

Ridge regression is linear least squares with L2 regularization. It adds “squared magni-
tude” of coefficient as penalty term to the loss function:

Loss = Error(𝑌 − ̂︀𝑌 ) + 𝜆
𝑛∑︁
1

𝑤2
𝑖 (3.28)

However, as we have a classification problem, a classification variant is used instead of
regression. The ridge classifier converts binary targets to {−1, 1} and then treats the
problem as a regression task, optimizing the same objective as above.

When the model is fitted on the provided data, based on the coefficients assigned to
every feature, the RFE step is performed. RFE aims to select features by recursively
considering smaller and smaller sets of features. First, the estimator is trained on the initial
set of features, and the importance of each feature is obtained. Then, the least important
feature is pruned from the current set of features. The least important feature is the one
having the smallest coefficient, thus not contributing to the final decision. The procedure
is recursively repeated on the pruned set until the desired number of features to select is
eventually reached. In this case, the number of features to select is set experimentally based
on the classification performance.

3.3 Classification
The proposed method consists of a two-phase classification process, using SVM models.
In the first phase, the top-level model classifies trials into two classes – Normal + Light
and Moderate + Severe. Then, in the second phase, further classification is done based on
the assigned class from the first model. For example, if the assigned class from the first
model is Normal + Light, the respective model in the second phase will further discriminate
between Normal and Light classes. The same principle applies to the other alternative, i.e.,
the Moderate + Severe class. For more information about the method, see figure 3.1.
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Chapter 4

Implementation

This chapter presents tools used to implement the proposed method, including preprocess-
ing, calculation of features, feature selection, classification models, and hyper-parameter
tuning of the models.

4.1 Tools
This section lists the tools that were used to implement the proposed method. For the
implementation, Python programming language was chosen. Pandas1 is used to manipulate
data. Calculations related to vectors, matrices, and multidimensional arrays are done using
NumPy2. For machine learning and statistical calculations, scikit-learn3 and SciPy4 is used.
Matplotlib5 is used for data visualization. For loading EEG data from MATLAB format,
mat736 is used, as the dataset is in MATLAB 7.3 .mat format. MNE7 is an open-source
Python package for exploring, visualizing, and analyzing human neurophysiological data
from various sources, such as EEG or MEG. This toolbox was used for easier manipulation
with EEG epoched data and other helper functions. Some features were extracted using
MNE-Features8 package. This package implements various univariate and bivariate, time,
and frequency features. Epochs rejection and repairment is done using Autoreject9 package.
At the start of the work, the first hands-on with the data to check the validity by visual
inspection was done using MATLAB’s EEGLAB10 plugin.

Data Inspection

To ensure validity of the downloaded DASPS dataset, data were first loaded and plotted
using Matlab software and the EEGLAB package. Data from the first participant are
plotted in figure 4.1.

1https://pandas.pydata.org
2https://numpy.org
3https://scikit-learn.org
4https://scipy.org
5https://matplotlib.org
6https://pypi.org/project/mat73
7https://mne.tools
8https://mne.tools/mne-features
9https://autoreject.github.io

10https://eeglab.org
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Figure 4.1: The figure shows the EEG data of a participant in the DASPS database during
the first trial. There are visible muscle artifacts that need to be cleaned. Due to reported
high HAM-A and SAM scores, anxiety in the subject was elicited. The x-axis shows time
(milliseconds) per epoch, and the y-axis shows channels. Two epochs of length 15 seconds
are shown – the first is a recitation by a psychotherapist trying to induce anxiety, and
the second is the self-recall by the subject. The plot was created using Matlab EEGLAB
software.

4.2 Preprocessing
The DASPS dataset contains both raw and preprocessed versions of the data. The raw
data are available in “.edf” and “.mat” format, while preprocessed data are only available
in “.mat” format. Preprocessed data were denoised by cutting only the relevant sub-band
of EEG signals and removing ocular and muscular artifacts. A 4-45 Hz Finite impulse
response (FIR) pass-band filter was used for sub-band extraction. Artifacts were removed
using the EEGLAB toolbox by the authors of the dataset, and are summarized in the next
two paragraphs.

Muscular artifacts were removed using the implementation of BSSCCA Canonical Cor-
relation Analysis (CCA), which projects the observed EEG data into maximally auto-
correlated components. The criterion used is “emg_psd”, which considers the components
whose average power ratio in the typical EEG and EMG bands is below a certain threshold
to be EMG-related. The power estimator used is a Hamming-windowed Welch periodogram.

Ocular artifacts were corrected using the iWASOBI blind source separation algorithm for
autoregressive sources and the criterion “eog_fd”, which marks the components with smaller
fractal dimensions as artifactual. Conceptually, components with low fractal dimensions
are composed of few low-frequency components, which is often the case of ocular activity.
Therefore it is a suitable criterion for detecting ocular (EOG) components.

All this preprocessing steps were performed by the authors of the dataset. However,
after visualizing the data, there were still some artifacts left. Because of this, there is a need
to perform another artifact rejection procedure. For this, the Python framework Autoreject
was used. The Autoreject framework was used for the rejection of bad epochs and artifacts.
All algorithm steps are fully automated; that is also why the authors named it Autoreject.
A total of 35 epochs were further removed as part of the rejection procedure, therefore final
dataset contains 241 epochs. In addition, epochs that were not removed are repaired. This
preprocessing step should help with cleaning of data for the latter feature extraction step
that will follow.

40



4.3 Features
Every feature used is initialized from the base class Feature. This class contains method
compute_feature(), and all features inherited from parent class Feature must implement
this method. This method is used to compute the feature, as the name suggests.

Regarding the time needed to calculate features for the whole dataset, it takes around
10 minutes in parallel mode on 8-core AMD RYZEN 7 5800X @ 3.8GHz with 32 GB of
RAM.

The following sections outline the implementation details of the features that are used.

Microstates

The number of microstates is an important parameter when extracting the microstates. In
the review study of “EEG microstates as a tool for studying the temporal dynamics of whole-
brain neuronal networks” [35], authors discussed various aspects of microstates, along with
the number of cluster maps to extract. The authors mention that several initial studies that
used the k-mean clustering approach determined that the optimal number of cluster maps
across subjects is four. The global variance (GEV) that these four cluster maps explain
varies between reports, ranging from 65 to 84%. On the other hand, the authors mention
that another study reported that fifteen clusters were needed to explain approximately 80%
of the variance. The authors suggest that the most appropriate choice for the number of
cluster maps may not necessarily correspond to the “true” number of cluster maps. It
may instead result from a pragmatic compromise between the needs for specificity - which
typically benefits from increasing the number of maps – and generalizability, which typically
benefits from a relatively low number of maps.

To help find the number of microstates to extract, the Calinsky-Harabasz score was used.
Calinsky-Harabasz is also known as the Variance Ratio Criterion. The score is defined as
the ratio of the sum of between-cluster dispersion and of within-cluster dispersion. The
higher the score, the higher the dispersion between clusters and the lower dispersion within
clusters. The final number of microstates selected is chosen to be 7. Scores for 2-7 clusters
are visualized in figure 4.2. It is visible that score for 7 clusters represents the local peak.
The GEV (Globally Explained Variance) for seven clusters is 83.91%, a sufficiently high
variance that explains the data.
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Figure 4.2: The figure shows the number of clusters with their corresponding Calinsky-
Harabasz score.

Microstates are extracted for every model, as the data set differs in every model. Fig-
ure 4.3 shows extracted microstates for all models in the two-phase process. The first phase
consists of a model where all data are present; the second phase consists of Normal + Light
data, and the last model consists of Moderate + Severe data.

Looking at the figure, some of the extracted microstates can be instantly recognized
based on their similarity, compared with usually extracted microstates in the other liter-
ature. For example, microstates “3” and “6” for all data (Normal + Light + Moderate
+ Severe), which represent left-frontal to right-posterior and right-frontal to left-posterior
topographies, respectively.

However, some microstates might account for artifacts left in the data, for example, “5”
in the Moderate + Severe case. Fortunately, as feature selection is included in the classifica-
tion pipeline, it will only select features that contribute to the classifier’s performance, thus
removing unnecessary features. Artifacts do not contribute to the classification. Because
of this, such features extracted from “bad” microstates, which do not represent brain state
but rather some artifact, will not be included in the final set of selected features.
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Figure 4.3: The figure shows microstates extracted in the first phase, where all data are
present, and subsequently extracted microstates for the second phase, for the Normal +
Light data, and for the Moderate + Severe data.

Based on the extracted microstates, various statistical features were extracted. Namely,
microstates durations, the occurrence of microstates in the given epochs, coverage of the
microstate over the epoch, and transition probabilities between microstates. Besides mi-
crostates, other features were extracted and are explained in the next section.

Band Power

Another extracted feature is band power. This feature is explained in section 2.1.4. Band
power is computed using Welch’s method. It is computed as the average over power spectral
densities in the given frequency band. Band power is calculated for delta, theta, alpha, beta,
and gamma bands. This feature is implemented in BandPower(Feature) class.

Asymmetry Index

Another extracted feature is the asymmetry index between pairs of EEG channels for the
alpha band (8-12 Hz). This feature is already explained in section 2.1.4. Regarding imple-
mentation, power spectral density is estimated using Welch’s method. Then, only frequen-
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cies in the alpha range are kept. Next, the mean power in the alpha band is calculated. The
asymmetry index is finally computed as the difference in the mean power between pair of
channels, divided by their sum. The feature is implemented in AsymmetryIndex(Feature)
class.

MNE-Features

MNE-Features is a library in Python for feature extraction from M/EEG data. It imple-
ments various univariate and bivariate features easily integrated with the MNE toolbox.
All features proposed to use (see Proposed Methodology chapter) that were not mentioned
previously in this chapter are extracted using this library.

All features calculated by this library used default values for all parameters except the
power and energy of the frequency band. These two needed a little tweak; by default, they
are defined to work up to 100 Hz. However, the sampling frequency of the data is 128
Hz, and this calculation only works for frequencies that are less than half of the sampling
frequency. So the arguments of these features are updated to calculate it only for the delta,
theta, alpha, beta, and gamma band. All MNE-Features are wrapped under a class named
MNEFeatures(Feature).

4.4 Model Development

Feature selection

The next step is to perform feature selection based on already computed features. Features
were normalized before performing the feature selection step to have a similar scale. It also
significantly speeded up the model fitting to the data.

Ridge regression with Recursive feature elimination (RFE) is used as it showed the
best classification performance on the final model, therefore selecting the most relevant
features. Feature selection steps used are implemented as part of the scikit-learn package –
cross-validation variant of Ridge classifier (sklearn.linear_model.RidgeClassifierCV)
and RFE (sklearn.feature_selection.RFE).

Classification

Various classification models were examined to see how they compare in classification be-
tween anxiety levels. The main focus was on Support Vector Machine (SVM) and Random
Forests (RF). Besides these, other models such as Decision Tree, K-Nearest Neighbours,
Logistic Regression, or Multi-layer perceptron (MLP) were tested.

Random Forests is not working well with imbalanced datasets, which DASPS dataset
is. Thus, the RF model always preferred to classify the most occurring class. As already
mentioned, other models were tested, but as SVM showed first some highly positive results,
the main focus stayed on SVM.

The next section describes tuning of hyper-parameters, which improved classification
performance of the models.

Hyperparameter Tuning

At the beginning of experiments, all models were based on C-Support Vector Classification
(sklearn.svm.SVC), with the C parameter set to default value of 1.0. However, as shown
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later, Nu-Support Vector Classification (sklearn.svm.NuSVC) reached higher classification
performance in one of the models described in the next paragraph.

One of the models in the two-phase classification resulted in better classification results
when using the already mentioned Nu-Support Vector Classification. In particular, it is
in the second phase of the Normal and Light classification. The optimized parameter nu
improved the classifier’s overall performance. For the tuning of the hyperparameter, Grid
Search was used to find the best value of the parameter nu, which is 0.1. The parameter
nu represents an upper bound on the fraction of margin errors and a lower bound of the
fraction of support vectors relative to the total number of training examples. For example,
if nu is set to 0.1, there is a guarantee to find at most 10% of the training examples being
misclassified (at the cost of a small margin, though) and at least 10% of the training samples
being support vectors. The value is in the interval (0, 1].

Another parameter that was tuned is class_weight, where every class is assigned the
weight, which penalizes the class and is useful when the dataset is unbalanced. In this
case, it was shown that the best results are obtained when setting weights based on the
proportion of the class.
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Chapter 5

Results

This chapter summarizes the results of the classification of the proposed method. For
the evaluation of performance, 10-fold cross-validation was used. Every fold is made by
preserving the percentage of samples for each class. It is important to mention that if
participants’ epochs are present in the training fold, they are never part of the testing
fold. This is to preserve that the classifier does not classify anxiety based on the similarity
of EEG data from the same participant but generalizes over differences that appear with
people having anxiety.

5.1 Classification
Best results for all types of classification were obtained using SVM with linear kernel.
Because of the class imbalances in the dataset, weights for the classifier were set based on
the class proportion to penalize classes with a higher number of data points. This helps
the classifier model decision boundary more accurately, mitigating class imbalances.

It is important to mention that every phase has its unique feature set to maximize
classification performance. In the case of one particular feature, microstates, not only a
different set of statistical features is selected, but also extracted microstates are different,
as the set of EEG data is different for every model (e.g., the model that discriminates
normal and light class contains only epochs trials labeled as normal or light and therefore
microstates has to differ).

Next section describes classification results from the first phase, binary classification
between the Normal + Light class and Moderate + Severe class.

5.1.1 I. phase

The first phase is to classify anxiety into two classes. As there are four classes initially,
Normal and Light cases are grouped together, and the same is for Moderate and Severe.

The best results for binary classification were obtained using SVM with a linear kernel.
Accuracy reached 98%, with a sensitivity of 0.95 and 1.00, specificity of 1.00 and 0.95, and
F1 score of 0.97 and 0.99 for Normal + Light and Moderate + Severe classes, respectively.
A confusion matrix is shown in figure 5.1. Other models, such as Random Forests or
MLP, were tried, but SVM outperformed them. The main problem in Random Forest is
an imbalance between classes, which confirms that the Random Forest is prone to prefer
classes with more samples in the training set.
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The best results were obtained by using a combination of various features. Selected
features, with their respective coefficients assigned by the classifier, are shown in figure 5.2.
When using only a single feature type for classification, accuracy never reached over 70%
for any feature type.

Figure 5.1: Confusion matrix for Normal + Light and Moderate + Severe classes.
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Figure 5.2: Selected features with weights by the SVM model (Normal + Light and Mod-
erate + Severe). See Appendix B.

48



5.1.2 II. phase

The second phase consists of two models. The first model is to discriminate between
Normal and Light classes, and the second is between Moderate and Severe classes. Results
are described in the following sections.

Normal and Light

The best results for binary classification between Normal and Light classes were obtained
using SVM with linear kernel again. Accuracy reached is 96%, the sensitivity of 0.87 and
1.00, specificity of 1.00 and 0.87, and F1 score of 0.93 and 0.97 for Normal and Light classes,
respectively. A confusion matrix is shown in figure 5.3. Other models were tried, too, but
were outperformed by SVM.

The best results were obtained by using a combination of various features. Selected
features, with their respective coefficients assigned by the classifier, are shown in figure 5.4.

Figure 5.3: Confusion matrix for Normal and Light classes.
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Figure 5.4: Selected features with weights by the SVM model (Normal vs. Light). Feature
abbreviations are described in Appendix B.

Moderate and Severe

The best results for binary classification between Moderate and Severe classes were obtained
again using SVM with linear kernel. Accuracy reached 99%, with a sensitivity of 0.97 and
0.99, specificity of 0.99 and 0.97, and F1 score of 0.97 and 0.99 for Moderate and Severe
classes, respectively. A confusion matrix is shown in figure 5.5. Other models were tried,
too but were outperformed by SVM. Selected features, with their respective coefficients
assigned by the classifier, are shown in figure 5.6.

Figure 5.5: Confusion matrix for Moderate and Severe classes.
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Figure 5.6: Selected features with weights by the SVM model (Moderate vs. Severe).
Feature abbreviations are described in Appendix B.
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5.1.3 Combined

Previous sections described each phase separately. This section describes the overall per-
formance reached when phases are combined.

The best results for a two-phase combination in four-level classification between Normal,
Light, Moderate, and Severe classes were obtained using individual models from previous
phases. Overall accuracy reached is 98%, sensitivities of 0.87, 1.00, 0.97, 0.98, and speci-
ficities of 1.00, 0.98, 1.00, 0.98, and F1 scores of 0.93, 0.96, 0.97, 0.99 for Normal, Light,
Moderate, and Severe class respectively. A confusion matrix is shown in figure 5.7.

Figure 5.7: Confusion matrix for Moderate and Severe classes.

5.2 Comparative Analysis
The proposed method in this work reached the highest accuracy, sensitivities, specificities,
and F1 scores compared with other studies. The proposed method’s performance metrics
and other studies for two- and four-level classification are shown in table 5.8.
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Figure 5.8: Comparison table of existing results in the literature with results provided in
this work. Baghdadi et al. [7], Muhammad et al. [37].

5.3 Discussion
This chapter shows the classification results of the proposed method – classification of two
and four anxiety levels. The ground truth is based on the HAM-A questionnaire. For
validation of the performance, 10-fold cross-validation was used. It is important to mention
that data from one participant are never present in the train and test set simultaneously.

Various methods for feature selection and classification were examined. The best re-
sults were achieved using a combination of Ridge Classification with Recursive Feature
Elimination for a feature selection and a Support Vector Machine with a linear kernel for
classification. A total of 100 and 102 features were selected for two-level and four-level clas-
sification, respectively. Because of the imbalances of samples between classes, the model’s
weights were set to penalize classes with more samples. The results reached an accuracy of
98% for both two-level and four-level. The performance was evaluated on various metrics,
such as classification accuracy, sensitivity, specificity, and F1-score.

The proposed method outperformed other existing methods. However, it was shown
that more feature types are required to surpass existing methods. In Muhammad et al.
[37], only three types of features were used. On the other hand, compared to Baghdadi et
al. [7], the proposed method consists of a shorter feature vector.

A combination of features is necessary to achieve high performance, as it was revealed
that using a single type of feature does not exceed an accuracy of 70%. The trade-off
between a number of features and performance is in favor of performance, as the goal of
any medical test is to minimize misdiagnosis, which is the most important thing for the
patient. Results presented in this work are within an error rate of 5% in all considered
metrics.
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The novelty and contribution of this work lie in incorporating microstates as a feature for
the classifier, as they were not used before in detecting anxiety. Results demonstrated that
no significant results were achieved when using only microstates for classification. However,
the performance surpassed existing methods when combining microstates with other time
and frequency domain features.

5.4 Directions for Future Research
Quantitative Differences

Exploring the impacts of features from the quantitative perspective can confirm or unveil
biomarkers that might account for anxiety. It would be interesting to do a group-level
analysis of anxiety levels for selected features; what are the quantitative differences between
people having anxiety vs. those who do not? Further, the next step can be to compare the
findings with the existing literature.

SAM Prediction

This work used the HAM-A questionnaire as the ground truth for anxiety levels. However,
the dataset also includes data from the SAM questionnaire, containing scores for valence
and arousal (see appendix A). However, this was out of the scope of this work; thus, I
recommend trying classification based on the SAM labels.

Brain Connectivity

Future works can incorporate brain connectivity to identify the causal influences of one
neural unit over others within the brain. In addition, brain connectivity is a feature suitable
for further interpretation, as it can demonstrate the differences in brain activity from true
brain sources. When considering extracting brain connectivity on this dataset, I would put
particular focus on data preprocessing, as it was shown that there are still some artifacts
left, and connectivity measurements are sensitive to them.
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Chapter 6

Conclusion

This work aimed to develop a novel method of anxiety detection from brain signals, in par-
ticular electroencephalography (EEG), a non-invasive and cost-effective screening method.

The first chapter was to provide an introduction to the brain, anxiety, and brain imag-
ing techniques. A particular focus here is on the brain parts related to anxiety and the
underlying mechanisms. Next, existing diagnostics methods for anxiety are presented, em-
phasizing the subjective nature of the measurements. Finally, different screening methods
for the brain are outlined, with an emphasis on EEG.

The next chapter reviews existing methods of anxiety detection from EEG signals.
Subsequently, several existing methods were compared on the DASPS dataset. This dataset
consists of EEG recordings of 23 participants, categorized into four anxiety levels: normal,
light, moderate, and severe. The dataset is public and was used for this thesis.

The proposed methodology is the most important chapter of this thesis. The scope
of the work is presented along with the proposed method, which includes two-level and
four-level classification of anxiety levels. Four-level classification uses a two-phase process
consisting of multiple binary classifiers. Based on the prediction of the first phase, one of
the models in the second phase is selected and predicts the definitive class. The proposed
method is based on microstates features, which were not previously utilized for anxiety
detection. Microstates were later shown to contribute to the overall performance. Except
for microstates, other time and frequency domain features are used and described in this
chapter. Implementation details are clarified after the method’s proposal, such as used tools,
features, feature selection methods, classification models, and hyperparameter tuning.

Finally, the results are presented. Various methods for feature selection and classifi-
cation were examined. A total of 100 and 102 features were selected for two-level and
four-level classification, respectively, by using Ridge regression. The best classification re-
sults were obtained using the SVM classifier, reaching an accuracy of 98% for both two-level
and four-level. The performance was evaluated on various metrics, such as classification
accuracy, sensitivity, specificity, and F1-score. Thesis ends with a discussion and directions
for future research.

The proposed method outperformed other existing methods. It was shown that a high
number of feature types is required to achieve high performance. Moreover, four-level classi-
fication achieves good results using a two-phase process comprising multiple binary models
having their own set of features. Despite the positive results, it is essential to continue
research on this topic to provide accurate, robust, and explainable diagnostics results, with
particular attention to minimizing the chance of misdiagnosis leading to mistreatment, to
be able to incorporate such objective methods into medical practice.
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Appendix A

Anxiety Questionnaires

HAM-A

Figure A.1: Hamilton Anxiety Rating Scale (HAM-A).
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SAM

Figure A.2: Self assessment manikin (SAM). First row represents Valence scale, ranging
from negative to positive. Second row represents Arousal scale, ranging from calm to
excited.
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Appendix B

Feature Abbreviations

Features names in plot are shown in format "<feature-name> (<feature-details>)",
where <feature-details> indicates either channel, pair of channels, or any other descrip-
tor provided by the MNE-Features1 package. The list of feature abbreviations with their
corresponding description:

• 0-1 - transition probability from microstate 0 to microstate 1

• 0-3 - transition probability from microstate 0 to microstate 3

• 0-5 - transition probability from microstate 0 to microstate 5

• 0-6 - transition probability from microstate 0 to microstate 6

• 0_occurence - occurence of microstate 0

• 2-0 - transition probability from microstate 2 to microstate 0

• 4-5 - transition probability from microstate 4 to microstate 5

• 4-6 - transition probability from microstate 4 to microstate 6

• 5-0 - transition probability from microstate 5 to microstate 0

• 5-3 - transition probability from microstate 5 to microstate 3

• app_P8 - approximate entropy of P8 channel

• asymmetry_index_FC5-FC6_8-12 - AI of FC5-FC6 channels in alpha band

• band-power_alpha_T8 - alpha band power of T8 channel

• band-power_beta_O2 - beta band power of O2 channel

• band-power_delta_F7 - delta band power of F7 channel

• band-power_delta_O2 - delta band power of O2 channel

• band-power_delta_P8 - delta band power of P8 channel

• band-power_theta_F7 - theta band power of F7 channel
1https://mne.tools/mne-features
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• band-power_theta_FC6 - theta band power of FC6 channel

• decorr_time - decorrelation time

• energy_freq_bands - energy in frequency bands

• higuchi_fd - Higuchi fractal dimension

• hjorth_complexity_spect - Hjorth complexity of spectrum

• hjorth_complexity - Hjorth complexity

• hjorth_mobility - Hjorth mobility

• hurst_exp - Hurst exponent

• katz_fd - Katz fractal dimension

• kurtosis - kurtosis

• line_length - line length

• max_cross_corr - maximum cross correlation

• mean - mean

• nonlin_interdep - nonlinear interdependence

• phase_lock_val - phase locking value

• pow_freq_bands - power in frequency bands

• ptp_amp - peak-to-peak amplitude

• quantile - quantile

• rms - root mean square

• samp_F3 - sample entropy of F3 channel

• samp_F7 - sample entropy of F7 channel

• samp_O2 - sample entropy of O2 channel

• samp_entropy - sample entropy

• spect_corr - spectral correlation

• spect_edge_freq - spectral edge frequency

• spect_slope - spectral slope

• std - standard deviation

• svd_entropy - singular value decomposition entropy

• svd_fisher_info - singular value decomposition Fisher information

64



• teager_kaiser_energy - Teager-Kaiser energy

• time_corr - time correlation

• wavelet_coef_energy - wavelet coefficient energy

• zero_crossings - zero crossings
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Appendix C

Contents of SD card

thesis/ text of the thesis in PDF and source code in LATEX

dataset/ DASPS dataset, preprocessed data

features/ calculated features

models/ trained models

sources/ source codes, jupyter notebooks

README.md user manual
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