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Chapter 1

Introduction

1.1 Quantum optics

Quantum optics is a field of research that focuses on the application of quantum
mechanics to the phenomena involving light and its interaction with matter. The
term quantum optics was not customary in the first part of 20th century as the re-
search in quantum mechanics was more focused on the properties of matter rather
then light. This changed with the developments in laser science in which quantum
mechanics underlying the laser’s principles was studied with the emphasis on the
properties of light [1].

From 1950s the interest in quantum optics rose rapidly as J. Klauder, G.
Sudarshan, R. J. Glauber1 and L. Mandel presented a quantum description of
electromagnetic field which provided better understanding of photodetection and
photon statistics [2, 3]. This led to an introduction of the coherent state which
approximately describes the output of a single-frequency laser and exhibits Pois-
sonian photon number statistics unlike the thermal light where the number of de-
tected photons exhibits Bose-Einstein distribution. Other exotic quantum states,
such as squeezed states of light [4] were subsequently discovered. Since develop-
ment of the laser many areas of research in the topic of quantum optics emerged.
Development of short and ultrashort pulses achieved by Q-switching [5] and mode-
locking [6] techniques made the research of ultrashort processes possible [7].2 The
study of mechanical forces of light on matter led to levitating and positioning
cloud of atoms by optical trap and optical tweezers [8]. A very interesting ap-
plication of quantum optics and laser science is Doppler [9] and Sisyphus cooling
[10] which was crucial for achieving the Bose-Einstein condensation.3 Experimen-

1In 2005 R. J. Glauber received the Nobel price for his contribution to the quantum theory
of optical coherence.

2In 2018 G. Morou and D. Strickland received the Nobel price for their method of generating
high-intensity, ultra-short optical pulses. This price was shared with A. Ashkin for his research
in the optical tweezers and their application to biological systems.

3In 1997 S. Chu, C. Cohen-Tannoudji and W. D. Phillips were awarded the Nobel Prize for
their work in laser cooling and atom trapping.
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2 CHAPTER 1. INTRODUCTION

tal demonstration of quantum entanglement [11, 12], quantum teleportation [13,
14] and the construction of quantum logical gates [15] achieved generally on the
optical platform opened the way to the study of quantum information processing
and quantum communications. This progress led for example to the possibility
for quantum algorithms [16, 17] and information-theoretic secure communications
[18–20].

The study of quantum physics and using the quantum laws of nature for our
benefit already did bring us better understanding of the workings of our universe
and innovations which would be hard to give up. Nevertheless there are still many
questions unanswered and the possibility for improvement of our technology is
almost limitless.

1.2 Quantum information processing

Quantum information processing (QIP) is diverse and interdisciplinary field of
research including quantum information theory, quantum communications, quan-
tum computation, quantum algorithms and their complexity and quantum con-
trol. It relies on the use of laws of quantum physics to improve the above men-
tioned areas of quantum information science with respect to their classical coun-
terparts [21].

The basis for these improvements is the information encoding. While current
classical computers encode information into bits which are binary, quantum com-
puters encode information into qubits [22] which can exist in superposition. This
and other phenomena of quantum physics4 potentially enable quantum computers
to solve certain problems much faster then any classical computer.

For instance, a well known example of a quantum algorithm that, in principle,
runs faster then it would be possible with known classical approach is the Shor’s
algorithm [17]. It is theoretically capable to factorize the product of large prime
numbers in polynomial time, almost an exponential speed-up compared to known
classical factoring algorithms. There have been several experimental demonstra-
tions of the Shor’s algorithm [23, 24], although these were able to factorize only
double-digit numbers.5

Nevertheless, the potential efficiency of quantum algorithms is so significant
that they pose a threat to commonly used classical cryptographic methods. It is
again quantum mechanics that provides possible solution to these security con-
cerns. The so-called quantum cryptography [19, 20] makes use of quantum me-
chanical properties of quantum states such as the impossibility of perfect cloning
[18] to provide information-theoretic secure distribution of information.

4such as quantum entanglement
5In 2012 two groups demonstrated the factorization of numbers 15 and 21.
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However, no-cloning theorem also makes the distribution of quantum informa-
tion (qubits) over long distances not an easy task. It is due to signal degradation
within the quantum channel [25]. Therefore, a quantum approach to overcome
transmission loss is required. Solution can be provided by the quantum entan-
glement, a phenomenon achievable between at least two qubits. Devices based
on the entanglement swapping protocol [26] such as quantum relay or repeater in
principle split the transmission distance into smaller segments lowering the error
probability [25, 27]. There are many challenges involved in the development of
quantum relays or repeaters as they are complex systems requiring sophisticated
quantum devices and routines such as quantum memories [28, 29] and entangle-
ment distillation [30, 31].

QIP schemes can be realized on several physical platforms including trapped
ions, nuclear magnetic resonance, cavity quantum electrodynamics and linear op-
tics [32–34, A1]. The platforms where information is stored in the properties of
electrons or ions is better suited for quantum computing, complex logical gates or
quantum memory. The linear optics platform on which qubits are encoded into
properties of light (photons) seems particularly suitable for quantum communica-
tions as photons are fast, well controllable and mostly unaffected by environment
[35–38]. As this area of research is very promising many quantum communica-
tions protocols and QIP schemes, including those presented in this theses, are
being proposed and experimentally implemented.

1.3 Quantum machine learning

Machine learning is study of data analysis techniques that use computational
methods to learn (seek patterns in empirical data) without relying on a predeter-
mined explicitly formulated model. The learning algorithms are based on mini-
mizing a constrained multivariate function, where the result of this optimization
is a decision function that maps input points to output points. In other words,
machine learning algorithms build a mathematical model based on training data
in order to make predictions or decisions without being explicitly programmed to
do so. Machine learning has become a key technique for solving complex tasks
involving large amount of data and lots of variables. Such as email filtering, face
and speech recognition, self-driving cars and algorithmic trading [39].

The term quantum machine learning most often refers to machine learning
algorithms for the analysis of classical data, where the whole task or just compu-
tationally difficult subroutines are outsourced to quantum device, i.e. quantum-
enhanced machine learning [40–42]. Computational complexity of an algorithm
is defined as the amount of resources (time, memory, number of arithmetic op-
erations) required to solve a problem. In computer science, the computational
complexity is standardly described in terms of the Big O notation [43]. It is used
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Figure 1.1: Four different approaches to combine the disciplines of quantum
computing and machine learning.

to classify algorithms according to the growth of requirements with respect to
the growth of the inputs.6 It has been already demonstrated that by quantum
approach one can reduce the complexity of several algorithms used as subrou-
tines in machine learning [44–47]. One can also consider convexity which is often
desired in machine learning. Convex optimization problems are not sensitive to
initial conditions and do not fail due to local extrema. Finding the minimum
of a loss function is then relatively fast, simple and less computationally inten-
sive. However, many optimization problems such as neural networks are generally
non-convex [48]. Even though some of these problems are differentiable, meaning
that they can be decomposed to a number of convex problems, there are some
non-convex optimization algorithms, such as evolutionary algorithms, which show
several advantages for learning. For instance, sparser models ensure better gen-
eralization performance, and non-convex objective functions are less sensitive to
noise and outliers [49]. For this reason, non-convex optimization algorithms seem
to be gaining more and more recognition in the machine learning community.
This approach to optimization might prove easier and faster to solve by quantum
computing as quantum algorithms look for the optimum through different, more
physical, process and are not bound by convexity restrictions [40].

1.4 Outline

The main part of this thesis consists of three genuine QIP experiments realized
on the linear optical platform. These experiments were performed at the Joint
Laboratory of Optics of Palacký University and Czech Academy of Sciences. The
Quantum Optics group at this institution has a lot of experience and rich history
of research in quantum information processing [50–52].

6For example, notation O(x2) states that requirements of a certain algorithm grow quadrat-
ically as x → ∞.
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1.4.1 Experiment 1: Measurement of a non-linear entanglement
witness by hyper-entangling two-qubit states

Based on Vojtěch Trávníček, Karol Bartkiewicz, Antonín Černoch, and Karel Lemr
Phys. Rev. A 98, 032307 (2018).

The first experiment presented in this thesis discusses the problem of entangle-
ment detection. Quantum entanglement is one of the key phenomenon in quantum
physics [53, 54]. It plays a crucial role in quantum communications and quantum
computing, therefore, it is the subject of intense investigation [15, 55]. In the
experiment we demonstrate that non-linear entanglement witnesses can be made
particularly useful for entanglement detection in hyper-entangled or multilevel
states.

For the purposes of demonstrating this concept, one of the less complex non-
linear entanglement witnesses known as the collectibility was selected. The orig-
inal technique which was proposed by Rudnicki et al. [56, 57] allows to detect
entanglement in large number of two-qubit states. The collectibility measurement
of systems entangled in one degree of freedom requires to perform the collective
measurements on two identical copies of the investigated state. This was later
experimentally realized by Lemr et al. [58]. The presented experiment shows
that collectibility can be measured directly on a single multilevel state where a
two-qubit state is copied across two degrees of freedom. This approach was tested
for three characteristic two-qubit quantum states. The experiment was performed
in 2017 and published year later.

1.4.2 Experiment 2: Measurement of the Hilbert-Schmidt dis-
tance between two-qubit states

Based on Vojtěch Trávníček, Karol Bartkiewicz, Antonín Černoch, and Karel Lemr
Phys. Rev. Lett. 123, 260501 (2019).

The second experiment addresses distance measurements in Hilbert space. The
measurement of distance between quantum states is an important tool for the
field of quantum communications, where the transmission channel accuracy can
be determined by measuring distances between transmitted and received states.
These distance measures are also essential for certain classification algorithms as
the common method is to perform distance measurements among sample vec-
tors [40]. The most prominent distance measures include Uhlmann-Jozsa fidelity
(Bures metrics), trace distance and Hilbert-Schmidt distance [59, 60, A2].

The experiment aims to demonstrate the measurement of Hilbert-Schmidt dis-
tance between characteristic two-qubit states. It shows that the new method for
measuring distances in Hilbert space is far less complex than reconstructing den-
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sity matrices and that it can be applied in quantum-enhanced machine learning
to reduce the complexity of calculating Euclidean distances between multidimen-
sional points. The results are also a novel example of applying mixed states in
quantum information processing. Usually working with mixed states is undesired,
but here it gives the possibility of encoding extra information in the coherence be-
tween given two dimensions of the density matrix. The experiment was performed
in 2019 and published in the same year.

1.4.3 Experiment 3: Diagnostics of entanglement swapping by a
collective entanglement test

Based on Vojtěch Trávníček, Karol Bartkiewicz, Antonín Černoch, and Karel
Lemr, Phys. Rev. Applied, 14, 064071 (2020).

The third experiment discusses the diagnostics of entanglement swapping pro-
tocol [26] by means of collective entanglement witness [56, 57]. Since entangle-
ment swapping is a key procedure for quantum repeaters [25], quantum relays
[27], device-independent quantum communications or entanglement assisted error
correction [61, 62], this can aid in faster and practical resolution of quality-of-
transmission related problems as this approach requires fewer measurements then
other means of diagnostics.

In this experiment we make use of similarities shared between a non-linear
entanglement witness and an entanglement swapping device. By measuring in-
dividual quantities used to calculate this non-linear witness, we simultaneously
obtain useful data that allow to identify any imperfections in the entanglement
swapping.

The experiment demonstrates that this approach is suitable to detect distur-
bances occurring in the preparation of quantum states, quantum communication
channel and imperfect Bell-state projection. The experiment was performed in
2019 and published in 2020.



Chapter 2

Methods and tools

2.1 Hilbert space

A state of a physical system is in quantum mechanics represented by a vector
in Hilbert space (H) [63]. The term Hilbert space often refers to an infinite-
dimensional complex vector space with inner product that is complete or closed.
However, in quantum information processing it is also used in context of finite-
dimensional spaces, where the condition of completeness is automatically satis-
fied.1 The vectors in H are in quantum mechanics usually denoted using Dirac
notation as |v〉 called a ket, where v is the "name" of the vector. The inner product
is then defined as 〈u|v〉, where 〈u| is called a bra which is a hermitian conjugate
(conjugate transpose) to |u〉. A collection of linearly independent vectors {|vi〉}
forms a basis of H if every element of H (|ψ〉) can be written as linear combination
of these vectors as

|ψ〉 =
d∑
i

ci|vi〉, (2.1)

where d is dimension ofH. Particularly useful are basis vectors that are orthogonal
and complete with following properties

〈vi|vj〉 = δij , (2.2)

d∑
i

|vi〉〈vi| = 1, (2.3)

1This is true when one encodes information into individual physical objects such as photons.

7
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where δij is the Kronecker delta. It is often convenient to think of kets and bras
as column and row vectors respectively

|ψ〉 =


c1

c2
...
cd

 〈ψ| =
[
c?1, c?2, . . . , c?d

]
. (2.4)

Note that the numbers ci and c?i depend on the choice of basis, while the inner
product is independent.

2.1.1 Kets and physical properties

Two vectors |ψ〉 and ξ|ψ〉, where ξ|ψ〉 is a scalar multiplication of |ψ〉 by a non-zero
complex number ξ, have in quantum mechanics the same physical significance.
For this reason, one might say that the state of a physical system is not repre-
sented by a vector, but rather by a ray defined as a collection of all the complex
multiplications of the given vector.

The complex number ξ can always be chosen so that the quantum state |ψ〉
representing the physical system is normalized

〈ψ|ψ〉 = 1. (2.5)

Working with normalized vectors is often convenient as in quantum mechanics
one usually looks for probabilities of finding a physical system described by |ψ〉
in some quantum state e.g., |φ〉. This probability is defined by the inner product
of these two vectors as

|〈φ|ψ〉|2, (2.6)

where the normalization condition ensures that the inner product has dimension
of probability. Note that one can multiply normalized vector by a phase eiϕ,
where ϕ is real without changing the normalization or physical meaning. Thus
normalization does not produce a unique vector representation of a given physical
system.

Keep in mind that just because |ψ〉 and ξ|ψ〉 have the same physical signifi-
cance does not mean that one can multiply a vector inside a linear combination
by a constant without changing the physical interpretation. Note that |φ〉 + |ψ〉
and |φ〉 − |ψ〉 do not, in general, represent the same physical system.

2.2 Qubit

In classical information theory the basic unit of information is called a bit (binary
digit). As the name suggests the bit represents a logical state with one of two
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possible values usually represented by numbers "0" and "1". Physically, the bits
are most commonly encoded into electrical voltage, current or light intensity. The
most important fact about the bit from the quantum physics point of view is that
it theoretically possesses the logical value "0" or "1" with absolute certainty [64].

This is not the case with the qubit, which is a unit of quantum information
[22]. It is due to one of the fundamental principle of quantum physics, which is
the quantum superposition. The principle states that if a physical system may be
in one of multiple configurations then the most general pure state of the system
is a linear combination of all these possibilities. For instance, for a pure quantum
state of a qubit with two orthonormal basis states |0〉 and |1〉 the most general
state would be

|Ψ〉 = α|0〉+ β|1〉.

The coefficients α, β are generally complex numbers associated with probability
amplitudes, therefore, they obey the normalization constrained

|α|2 + |β|2 = 1.

Qubit is then formally defined as normalized vector in a two-dimensional Hilbert
space. Note that the state of the qubit in superposition is not somewhere in
between the basis states, rather, when measured, the qubit is with probability
|α|2 (|β|2) found in state |0〉 (|1〉) [21].

In order to physically encode a qubit, one requires an object that supports
a two-level quantum system. This object might be an electron, ion, Josephson
junction or a photon. A qubit can be encoded into the state of photons in multiple
ways, however, there are two distinct approaches. Firstly, it is individual photon
encoding such as polarization (e.g., [14, 65]), spatial mode (e.g., [50, 66]) and
time-bin encoding (e.g., [67]). These are also known as discrete variables. The
second approach uses collective multiphoton states and is often related to the
so-called continuous variables for example light quadratures [68, 69]. Note that
in hereby presented experiments qubits were encoded into the discrete variables
namely into polarization and spatial modes.

Encoding into polarization degree of freedom is widely used especially in QIP
realized in bulk optics. The mapping of qubit state onto polarization state of a
photon is quite straightforward as they both occupy the same two-dimensional
Hilbert space. It is useful to visualize polarization state of a photon using the
Bloch sphere, where horizontal and vertical polarizations sit on the poles, mean-
while their balanced superpositions are situated on the equator (see Figure 2.1).
It is customary to associate horizontal and vertical polarizations with logical qubit
states |0〉 and |1〉 respectively. Due to equivalent representations of states via the
Bloch diagram, any state on the surface of the Bloch sphere can be written as
|Ψ〉 = cos θ2 |H〉+ eiϕ sin θ

2 |V 〉.
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Figure 2.1: Visualization of the Bloch sphere. Horizontal polarization state
|H〉 represents logical qubit state |0〉 while vertical polarization state |V 〉 corre-
sponds to logical qubit state |1〉. The depiction also includes positions of balanced
superposition states situated on the equator. Diagonal and anti-diagonal linear
polarization states are labeled |D〉 and |A〉. Right-hand and left-hand circular
polarization states are denoted |R〉 and |L〉 (see Table 2.1).

Another degree of freedom that can be employed to encode quantum infor-
mation are the spatial modes of a photon. Here, the presence of a photon on a
certain path is designated logical state |0〉 or |1〉 (see Figure 2.2). Note that using
a general fiber coupler one can also prepare a superposition of the two modes.
Spatial mode encoding is predominantly used in fiber-optical setups as polariza-
tion state of a photon is prone to change during propagation in a standard optical
fiber.

Viable option is also to encode multiple qubits into multiple degrees of freedom
of a single photon [A1, A3]. This approach allows one to encode more information
into the available number of photons, however, it makes building the desired QIP
scheme more challenging. An example of this mixed encoding is presented in
the first two experiments included in this thesis. In both cases polarization and
spatial degree of freedom were used to encode two qubits of information into a
single photon.

2.3 Photons for quantum information processing

Quantum information processing schemes realized with individual discrete pho-
tons and linear optics rely on photon interference for the desired photonic interac-
tions to take place. This means that the photons should be close to ideal Fock |1〉
states and highly indistinguishable in their wavelength, polarization, spatial mode
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Figure 2.2: Schematic depiction of spatial encoding. Photon in the upper path
represents logical qubit state |1〉 while photon in the lower path logical qubit state
|0〉.

and time of arrival. Therefore, it is evident that preparation of suitable photons
is a necessary condition for experimental implementation of the QIP schemes.
This sections provides a brief description of the principle of the photon source
employed in the later presented experiments.

The source is based on a non-linear process commonly known as spontaneous
parametric down conversion (SPDC) observable under certain conditions in a
medium with a χ(2) optical non-linearity pumped by strong optical field [70, 71].
The interaction between the pump beam and the medium might result in decay
of a pump photon (p) into a pair of time correlated photons called signal (s)
and idler (i) of lower energy. The spectral properties and spatial geometry of
the generated photons are determined by the conservation laws of energy and
momentum (phase-matching condition)

~ωp = ~ωs + ~ωi, ~~kp = ~~ks + ~~ki, (2.7)

together with the configuration and characteristics of the medium. The phase-
matching condition has dramatic effect on the efficiency of the SPDC process and
therefore, should be maintained for the entire length of the medium. However, it
is very difficult to fulfill the phase-matching condition in homogeneous isotropic
materials. It is due to chromatic dispersion where the interacting waves experience
different index of refraction which causes phase mismatch

|∆~k| = |~kp| − |~ks| − |~ki| 6= 0. (2.8)

One way how to mitigate the phase mismatch is to use birefringent materials,
typically LiIO3 or β-BaB2O4 (BBO), where the refractive index not only depends
on frequency, but also on the polarization and direction of the light propagating
through the crystal. The phase matching condition is then fulfilled by suitable
polarization of the waves and orientation of the crystal. There are several types
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Figure 2.3: Simplified scheme of a source of photon pairs based on the SPDC
process: The pumping beam is focused by a lens (L) and impinges on the non-
linear crystal (NLC), where a pumping photon (p) might decay into a pair of
time correlated photons called signal (s) and idler (i). These photons are then
collected by couplers into single-mode optical fibers (SMF). In order to ensure
the wavelength indinstinguishability of the generated photons and to prevent the
diffracted pumping photons from entering the fibers, cut-off or interference filters
(IF) are positioned in front of the couplers.

of birefringent phase matching that differ in polarization states of the input and
output photons. In the presented experiments only the non-collinear type I phase
matching was used, where extraordinary polarized pumping photon generates two
photons with ordinary polarization that leave the crystal on opposite sides of a
cone centered around the pumping beam (see Figure 2.3). As it was mentioned
earlier, the photons must be highly indistinguishable this requires precise posi-
tioning of photon couplers, single-mode optical fibers and spectral filtering by
cut-off or interference filters.

Note that the source generates time correlated photon pairs whose polarization
state can be in an ideal case described by a pure separable state, for instance
|HH〉. Although separable states are suitable for many QIP schemes, there are
QIP protocols, such as quantum teleportation or quantum repeater, that rely on
entangled photon states.

2.3.1 Generation of entangled photon pairs

One non-linear crystal with type I phase matching can not directly produce polar-
ization entangled photon pairs. Indirect polarization entanglement is achievable
afterwards by means of post-selection [72]. This approach however, requires the
post-selection to be compatible with the rest of the QIP scheme which is not al-
ways feasible. One can generate polarization entangled photons directly by means
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Figure 2.4: Simplified scheme of a source of polarization entangled photon pairs
based on the Kwiat source: The pumping beam is focused by a lens (L) and im-
pinges on two non-linear crystals (NLC) mutually rotated by 90◦. The directions
of the optical axes of the crystals are represented by red and black stripes. Due
to indistinguishable point of origin of the photon pair and generally elliptical po-
larization of the pumping beam the polarization state of the two photons is in the
form Eq. (2.9). The photons then pass through cut-off or interference filters (IF)
to ensure the wavelength indinstinguishability and are collected by couplers into
single-mode optical fibers (SMF). The polarization state of the pumping beam is
tuned by half-wave plate (HWP) and quarter-wave (QWP) plate in front of the
crystals.

of type II phase matching [14]. During this process extraordinary polarized pump-
ing photon decays into two photons with orthogonal polarizations. The generated
photons leave the crystal in a direction of two cones (one for each polarization)
which are symmetrical to the pumping beam. The amount of overlap between
the cones depends on the orientation of the crystal (orientation of it’s optical
axis) and the angle of incidence of the pumping beam. Polarization entangled
photon pairs then can be observed at the cross-section of the two cones. Due
to the orthogonal polarizations of the signal and idler photons there are effects
known as walk-off that reduce the quality of the entanglement. The polarization
dependent refractive indices cause the separation of the signal and idler beams
called transversal walk-off meanwhile different group velocities cause longitudinal
walk-off. This negative effects can be mitigated by compensation optics [70].

A photon source that produces polarization entangled photon pairs and does
not have problems with walk-off was realized by Kwiat et al. [73]. The source,
depicted in Figure 2.4, consists of two non-linear crystals cut for type I phase
matching mutually rotated by 90◦. Hence, the down-converted photons created
in one crystal have orthogonal polarization with respect to the photons created in
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the other crystal. Note that if the pumping beam is polarized so that both hori-
zontal and vertical polarization components are non-zero either of the crystals is
capable of down-conversion. In order to prepare an entangled state, the couplers
must collect photon pairs from both crystals simultaneously. This is achieved
by combination of several aspects such as the thickness of the crystals2 and the
angle between propagation direction of the pumping beam and generated pho-
tons.3 Thinner crystals and tighter angles improve spatial overlap of the photons
generated from both crystals. However, they also lower the probability of down-
conversion event and make the manipulation with the couplers more difficult as
the couplers are now closer to the pumping beam. The later can be mitigated by
increasing the distance between the crystals and the couplers.4 Combining these
aspects ensures that paths of the generated photons from both crystals are almost
identical, therefore, the couplers can not distinguish in which crystal the photon
pair originated. This makes the polarization state of the photon pair a coherent
superposition of separable states |HH〉 and |V V 〉.

The Kwiat source generally produces polarization entangled two-photon states
in the form of

|ψ〉 = cos(α)|HH〉+ eiθ sin(α)|V V 〉, (2.9)

where the parameters α, θ are connected to the polarization state of the pumping
beam. The ratio between the |HH〉 and |V V 〉 components is affected by pa-
rameter α which can be modified by rotating a half-wave plate in the pumping
beam. Parameter θ affects the phase between the components. The phase can
be changed by tilting a quarter-wave plate in front of the crystals. Note that for
α = π/2 both crystals are pumped equally and the source generates maximally
entangled states.

2.4 Linear optical toolbox

Manipulation with the photons and thus processing the information stored in their
states is achieved by a series of linear optical tools [1, 74]. This section describes
several of these optical elements employed in the presented experiments.

2.4.1 Beam splitter

One of the most important tools for QIP realized on the platform of linear optics
is presumably the beam splitter. Physically, it usually takes the form of a semi-
transparent mirror which transmits only a certain portion of the incident light

2in our case 0.6mm
3In the presented experiments the angle between the pumping beam and the photons was

about 4◦.
4in our case 1m
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Figure 2.5: Conceptual scheme of a cube beam splitter: Optical fields in the
input ports characterized by annihilation operators â and b̂ are being coherently
mixed according to the beam splitter transformation described in Eq. (2.11)

while reflecting the rest. There are several beam splitter constructions, for in-
stance, cube and plate beam splitters for bulk optics or fiber beam splitter (FBS)
for fiber optics. In classical description, beam splitter transforms incident light
with amplitude E into the transmitted and reflected beams which amplitudes are
given by

Et = t1E, Er = r1E, (2.10)

where t1 and r1 are the transmission and reflection amplitudes respectively. In
quantum theory the amplitudes of the field are replaced by Heisenberg annihila-
tion operators E → â, Et → ĉ, Er → d̂ [2]. To make sure that these annihilation
operators fulfill commutation relations, one needs to consider both input ports
of the beam splitter even if one of the ports is in vacuum state (Fock state |0〉).
Thus in quantum mechanical description the beam splitter is characterized by
transmission ti and reflection ri amplitudes in two input ports (see Figure 2.5).
A phase shift between the transmission and reflection introduced at the interface
is usually associated only with one of the beams. Let transmission coefficient ti
be a real number, thus the information about the relative phase shift is carried
by the reflection coefficient rieiϕi . Then the action of lossless beam splitter can
be described in matrix formalism by(

ĉ

d̂

)
=

(
t1 r2e

iϕ2

r1e
iϕ1 t2

)(
â

b̂

)
= U

(
â

b̂

)
, (2.11)
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where the transformation matrix U has to be unitary in order to ensure the
validity of commutation relations for the Heisenberg operators. Assuming |t1| =
|t2|, |r1| = |r2| leads to

U †U =

(
t2 + r2 tr(eiϕ2 + e−iϕ1)

tr(eiϕ1 + e−iϕ2) t2 + r2

)
=

(
1 0

0 1

)
. (2.12)

It is evident that for a lossless beam splitter t2 + r2 = 1. Also from

eiϕ1 + e−iϕ2 ≡ 2ei(ϕ1−ϕ2)/2 cos
ϕ1 + ϕ2

2
= 0, (2.13)

one concludes that ϕ1 +ϕ2 = π where the consensus is to set ϕ1 = π
2 and ϕ2 = π

2

(Beam splitter with symmetrical phase shift). Then the transformation matrix
takes the form of

U =

(
t ir

ir t

)
. (2.14)

It is the linear relation Eq. (2.11) for the operators that makes the linear optics
called "linear".

2.4.2 Polarization sensitive beam splitter

QIP schemes based on the popular polarization encoding require optical compo-
nents that are sensitive to the polarization state of the incident photons. It is
needed for controlling the polarization degree of freedom of individual photons in
order to process the quantum information. One of these components is a polariza-
tion sensitive beam splitter (PSBS) which exhibits different reflection coefficients
for horizontal and vertical polarization components of the incident light. This
complicates the mathematical description of an ideal PSBS as both polarization
components require separate input and output modes (see Figure 2.6)

ĉh

ĉv

d̂h

d̂v

 =


th 0 irh 0

0 tv 0 irv

irh 0 th 0

0 irv 0 tv



âh

âv

b̂h

b̂v

 , (2.15)

where indices h and v denote horizontal and vertical polarization in relation to
the plane of incidence. In the experiments presented in later chapters cube PS-
BSs were used. The cube is often made of two triangular glass prisms that are
attached by a transparent resin or cement. The polarization sensitive beam split-
ters were used as polarizators (PBS) for which the typical values of transmission
and reflection coefficients are |th|2 > 90% and |rv|2 > 99.5%. The action of PBS
then separates the two polarization components by reflecting one of them with
dielectric coating which is applied to the hypotenuse of one of the prisms. Con-
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Figure 2.6: Conceptual scheme of a polarization sensitive beam splitter cube:
Generally, the orthogonal polarization components do not experience the same
splitting ratio. This is due to polarization sensitive reflection coating which in-
troduces different reflection coefficients for the two polarization components of
the incident light. Note that in a spatial case PSBS can act as polarizing beam
splitter.

struction of the cube PBS ensures a 90◦ separation between the horizontal and
vertical polarization and a minimal transverse offset of the transmitted beam.
Note that the action of PBS can be used for spatial encoding which is described
in the previous Section 2.2.

2.4.3 Beam displacer

Beam displacer (BD) is similar to a PBS in separating incident light into two or-
thogonally polarized beams, however, there are few important differences. Unlike
PBS, the beam displacer used in the conducted experiments was manufactured
from birefringent material such as calcite. Due to it’s birefringent nature, light
polarized perpendicular to a plane defined by the optical axis and direction of
propagation experiences a different index of refraction than light which is polar-
ized parallel to the plane. Moreover due to the fact that the optical axis is not
parallel or perpendicular to the incident spatial mode, a walk-off effect is observed
for one polarization. Therefore, the incident light is laterally separated into two
orthogonally polarized beams that exit the crystal by the same side. For refer-
ence see Figure 2.7. The displacement (d) of the two polarization states can be
calculated as

d = L tan(α), (2.16)
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Figure 2.7: Conceptual scheme of a beam displacer: The beam displacer sep-
arates horizontal and vertical polarization components of the incident light by
birefringence and orientation of an optical axis. Note that optical field in the
displaced path is polarized parallel to the plane defined by the optical axis and
direction of propagation while optical field in the unchanged path is polarized
perpendicularly.

tan(α) =

(
1− n2o

n2e

)
tan(θ)

1 + n2
o
n2
e

tan2(θ)
, (2.17)

where no and ne are the ordinary and extraordinary refraction indices respectively.
Typical distance between the outgoing beams is for commercially available calcite
beam displacers in a range of few millimeters. Depending on the construction and
material of the BD the outgoing beams might be parallel or divergent.

2.4.4 Wave plates

Another polarization controlling devices are birefringent wave plates, or retarda-
tion plates. These optical elements transmit light and modify its polarization state
without attenuating, deviating, or displacing the beam.5 They are extremely use-
ful when one needs to manipulate the polarization of light within a single spatial
mode. A wave plate is a thin wafer of a uniaxial crystal, typically quartz, which
is cut in a way that the plane of the wafer contains the fast and slow optical axis.
In this case the optical axis is perpendicular to the designated incident spatial
mode. Light polarized along fast axis encounters lower index of refraction and
travels faster through wave plate than light polarized along the slow axis. Thus,
the wave plate introduces a relative phase Γ between those two components, which
is related to the birefringence ∆n = ne−no and the thickness L of the crystal by
the formula

Γ =
2π∆nL

λ0
, (2.18)

5This is a case for zero angle of incidence.
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Table 2.1: Jones vectors and matrices for polarized light and wave plates.

Polarization ket notation Jones vector

horizontal |H〉
(

1
0

)
vertical |V 〉

(
0
1

)
diagonal |D〉 = 1√

2
(|H〉+ |V 〉) 1√

2

(
1
1

)
anti-diagonal |A〉 = 1√

2
(|H〉 − |V 〉) 1√

2

(
1
−1

)
right-hand circular |R〉 = 1√

2
(|H〉 − i|V 〉) 1√

2

(
1
−i

)
left-hand circular |L〉 = 1√

2
(|H〉+ i|V 〉) 1√

2

(
1
i

)

Optical element
(fast axis w.r.t. horizontal axis) Jones matrix

HWP@0◦ e−
iπ
2

(
1 0
0 −1

)
HWP@45◦ e−

iπ
2

(
0 1
1 0

)
QWP@0◦ e−

iπ
4

(
1 0
0 i

)
QWP@90◦ e

iπ
4

(
1 0
0 −i

)

where λ0 is the vacuum wavelength of the light. The most common wave plate de-
signs include the so-called half-wave plate (HWP) and quarter-wave plate (QWP).
These retarders impose relative phases Γ = π and Γ = π

2 between polarizations
along their fast and slow optical axis respectively.

In optics, change in polarization can be described using the Jones calculus,
where polarized light is represented by a Jones vector and optical elements such as
wave plates are represented by matrices (see Table 2.1). The action of an optical
element on a polarized light is then calculated by applying corresponding matrix
to a Jones vector.
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2.4.5 Interference filter

As it was discussed in previous Section 2.3, the photons for QIP are often required
to be indistinguishable in several characteristics. The indistinguishability in wave-
lengths among involved photons is achieved by spectral filtering often realized by
interference filters.

The construction of bandpass interference filter is modeled after a Fabry-Perot
interferometr which consists of two partially transparent mirrors separated by an
air gap [75]. The principle of wavelength selection relies on the interference of
multiple reflected beams inside the resonator. It is evident that the construction
ensures an even number of reflections for the transmitted waves. If there is no
phase difference between emerging waves the interference is constructive, there-
fore, the transmission is maximal. This is dependent on the optical path difference
which for maximal transmission should be integral multiple of the desired wave-
length. The constructive interference condition allows the central wavelength of
the resonator together with small bend of wavelengths to either side, to be trans-
mitted effectively. The FWHM (full width at half maximum) of the transmission
peaks is influenced by reflectance of the mirrors, where higher reflectance produces
narrower peaks [76]. Wavelengths that do not obey this condition are suppressed
by destructive interference and thus reflected toward a source. However, the
blocked bands around the central wavelength are quite narrow. It is due to other
allowed wavelengths that meet the condition and the reduced reflectance outside
the central wavelength. In order to broaden the range of blocked wavelengths,
materials with wide absorption spectra (e.g., colored glass filters) should be part
of the interference filter.

In commercially available bandpass interference filters the air gap is replaced
by a dielectric spacer layer with optical thickness nλ2 , where n is a integer and
λ the central wavelength6, which can be made of colored glass to enhance the
blocking range of the filter. The highly reflected mirrors are made of several
stacks separated by the aforementioned spacer layer. The stacks are composed
of a number of thin (λ4 ) dielectric layers with alternating low and high indices
of refraction. The assembly of a half-wave spacer layer sandwiched between two
quarter-wave stacks is called a cavity. A bandpass interference filter can be formed
by multiple of these cavities, where the advantages of multi-cavity filters are
steeper band slopes and improved near-band rejection. Finally, the bandpass
interference filters based on Fabry-Perot design are often designated for use at
zero angle of incidence. This is because transmission band will be shifted in
wavelength and might be reduced if other angle of incidence is used [77].

Theoretically any type of filter (low-pass, high-pass, band-pass, neutral den-
sity, etc.) can be constructed with this technique. In the presented experiments

6wavelength with the highest transmittance
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narrow band-pass interference filters (IF) of FWHM 5 nm and 10 nm were used.

2.5 Quantum state analysis

As in many QIP schemes and all experiments presented in later chapters, the
information is encoded into the state of single photons. Therefore, in order to
read the information stored within the qubits one needs to perform a quantum
state analysis and also be able to detect the individual photons.

There is a number of detectors that posses single-photon sensitivity. For in-
stance, avalanche photo-diodes in Geiger mode, photomultipliers or array detec-
tors such as iCCD (intensified CCD) and EM-CCD (electron multiplying CCD).
There are also rather exotic single-photon detectors e.g., transition-edge sen-
sors (TES) or nanowires. These detectors have excellent quantum efficiencies
but require intensive cooling [78]. In hereby presented experiments silicon based
avalanche photo-diodes in Geiger mode were used. The quantum efficiency for the
near infrared wavelengths employed in the experiments was around 60%. Note
that even though this type of detector is sensitive enough to detect individual
photons, it is unable to resolve how many photons have actually been absorbed
by the detector within the detection window. The photon number resolution can
however be achieved by other types of detectors (e.g, TES) or by time or space
multiplexing [74, 79]. A specially designed fiber loop that splits incoming optical
pulse into a number of segments each containing ideally a single photon is an
example of time multiplexing.

Note that in QIP schemes that include two or more photons instead of single-
photon detections, the experimentalist records coincidence detections i.e., simul-
taneous detection events by two or more detectors.

The full quantum state analysis also know as quantum state tomography
(QST) is required if one wishes to fully characterize the quantum state. The anal-
ysis consists of a number of repeated measurements designed to obtain enough
data to reconstruct the density matrix. In the case of polarization encoding, these
measurements are composed of all the mutual combinations of single photon po-
larization projections (i.e., |H〉, |V 〉, |D〉, |A〉, |R〉, |L〉) implemented by polarizers
and half- and quarter-wave plates. Then from the coincidence rates under various
projections one can estimate the density matrix belonging to the initial quan-
tum state. In our workflow, maximum likelihood algorithm is used to find such
a physically valid density matrix that best fits the observed coincidence counts
under the above-mentioned projection settings [80]. Note that in order to reveal
or confirm some property (e.g, entanglement) of the quantum state one does not
have to resort to QST. This is because the density matrix might contain more
information then is required. Therefore, a subset of the projection measurements
can be sufficient for the detection of the property. The reduction in the number
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of measurements does not come for free. For instance, one needs to know some
a priori information about the investigated quantum state or requires a second
identical quantum state which interacts with the initial state.

2.6 Entanglement witness

Since 1935 when Einstein, Podolsky and Rosen published their seminal paper
[81], the scientific community was caught in a dispute between the supporters
and critics of quantum theory that lasts to this date. In the heart of the debate
is the quantum mechanical principle of superposition that necessarily leads to
the concept of quantum entanglement. Phenomenon that is frowned upon by the
advocates of local realism who call it the "spooky action at a distance" [82, 83]. In
1964 John Bell created a theorem in which he expressed this philosophical dispute
in a form of mathematical inequality

Ch(a, c)− Ch(b, a)− Ch(b, c) ≤ 1, (2.19)

where Ch denotes correlations as predicted by local hidden variable (LHV) theories
and a, b and c refer to three arbitrary measurement settings [84]. The inequality
sets a upper bound on the quantum correlations between measurements preformed
on a quantum system. LHV theories satisfy these inequalities for any quantum
system. On the other hand quantum mechanics predicts for some systems vio-
lation of the inequalities. Experimental verification of the violation would state
that nature can not be described by local realism and that quantum mechanics is
complete. However experimental realization of the original Bell inequality was not
applicable due to technical difficulties. Those issues were overcome by Clauser,
Horne, Shimony and Holt who modified the Bell inequalities making experimen-
tal testing possible [85]. These modified inequalities are called CHSH inequalities
and can be written as

|S| ≤ 2, (2.20)

where
S = E(a, b)− E(a, b′) + E(a′, b) + E(a′, b′), (2.21)

where a, a′ and b, b′ are measurement settings. The terms E(a, b) represent quan-
tum correlations between the particles. For further information see comprehensive
review on Bell non-locality by Brunner et al. [86].

Instead of Bell inequality measurements which are used mainly for testing the
theory of quantum mechanics in relation to the concepts of locality and realism,
entanglement witnesses (EWs) are specifically tuned for the detection of entangled
states. EWs are functionals of density matrices of investigated states and as such
they are experimentally measurable quantities. Generally, an observable W is an
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entanglement witness if its mean value is non-negative

〈W〉ρ̂sep ≥ 0 (2.22)

for all separable states and negative

〈W〉ρ̂ent < 0 (2.23)

for at least one entangled state. For further information on the properties of
entanglement witnesses see the excellent reviews [54, 87].

Entanglement witness is linear if it is a linear functional of density matrix or
the mathematical expression of the witness does not include any non-linear terms
of expectation values. In such case one needs to know some information about
the investigated state to optimize performance of the witness.

There are also non-linear entanglement witnesses which can be further dif-
ferentiated into two classes. First class being non-linear entanglement witnesses
which add non-linear terms of expectation values to existing linear witnesses im-
proving on the set of entangled states that can be detected [88–90]. Second class
of non-linear entanglement witnesses are non-linear functionals of density matrix
which also detect larger set of entangled states then linear witnesses but rely on
joint measurements on multiple copies of an investigated state [91, 92]. For this
reason they are known as collective entanglement witnesses (CEWs). Two of the
experiments presented in later chapters employ a collective entanglement witness
also known as collectibility, which was introduced by Rudnicki et al. [56, 57].
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Chapter 3

Measurement of a non-linear
entanglement witness by
hyper-entangling two-qubit states

Text adopted from Vojtěch Trávníček, Karol Bartkiewicz, Antonín Černoch, and
Karel Lemr, Phys. Rev. A 98, 032307 (2018) [A3].

3.1 Introduction

There are two commonly used methods for entanglement characterization. The
first method is based on quantum state tomography and density-matrix recon-
struction [80, 93–95]. The advantage of this strategy is that one does not have
to possess any a priori information about the input state. On the other hand,
executing a full state tomography is a time demanding process especially for multi-
level quantum states. The number of required measurements grows exponentially
with the dimension of the investigated state which makes both the necessary
measurement and the related data processing very time consuming [96].

The second method is based on the already mentioned entanglement witnesses
(EWs). Measuring simple linear EWs requires performing a set of suitable local
measurements which are direct products of projections applied on each subsystem
separately. These projections are chosen based on some a priori information about
the investigated state. Correlations of these local measurements across involved
parties then reveal the entanglement [85].

The second class of EWs encompasses the non-linear (collective) entanglement
witnesses [91, 97, 98] which removes the need for a priori information about a
given state, but requires simultaneous measurements on at least two copies of
the state. This idea has been experimentally demonstrated in a seminal paper
by Bovino et al. [99]. In fact, a number of non-linear EWs [56, 57, 92, 100–
106] have been devised for various classes of quantum states. Moreover, univer-

25
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sal experimental optical approaches to measuring or detecting the entanglement
of an arbitrary two-qubit state have been reported [107–109]. These universal
approaches require using up to four copies of the state. With two copies only,
the EWs are considerably easier to implement, but fail to detect some entangled
states or require larger numbers of distinct measurements.

This chapter describes the benefits of entanglement detection by means of a
non-linear EW on hyper-entangled states (HESs). A HES is a quantum state
entangled in more than one degree of freedom (d.o.f.) and can be written in the
form

ρ̂HES = ρ̂(p) ⊗ ρ̂(s), (3.1)

where subscripts p and s stand for two independent d.o.f. These states are an
invaluable resource for quantum information protocols. They can be used for
increasing channel capacity [110], efficient quantum key distribution [111], two-
qubit teleportation [111], or serve as a powerful safeguard against eavesdropping
[112]. Therefore, their quick detection and diagnosis is of paramount importance
for practical implementation of the mentioned protocols. For instance, Bell state
preparation and discrimination using hyper-entanglement was reported by Barbi-
eri and co-workers [113, 114]. An EW on HESs was achieved by Walborn et al.,
however, this witness operates only on pure states and their experimental setup
cannot be simply modified to generate and test mixed states [100].

By hyper-entangling only a single photon pair instead of preparing multiple
copies of a polarization-entangled pair of photons, we measure a non-linear EW
on this single pair of hyper-entangled photons. For the purposes of demonstrating
this concept, one of the less complex non-linear EWs known as the collectibility
was selected [56, 57].

The original technique proposed by the authors of Refs. [56, 57] allows one to
detect two-qubit entanglement in a large number of entangled states without the
need for any a priori information about the investigated state. The collectibility
measurement of two-qubit systems entangled in one d.o.f. requires to perform the
collective measurements on two identical copies of the investigated state [58]. On
the other hand collectibility can be measured directly on a single multilevel state
where a two-qubit state is copied across two d.o.f. forming a HES. Generating two
independent copies of a two-qubit state might seem easier, but properly managing
their interaction is highly demanding even on the platform of linear optics. Note
that in such case, ultrashort pumping together with narrow spectral filtering is
required to assure proper synchronization [58, 97]. Further, a typical four-photon
generation rate is about 10 mHz while with the hyper-entangled states of two
photons, one obtains hundreds of events per second. The collective measurements
of HESs consists of local and non-local projections. Local and non-local in this
concept stand for projections implemented separately respectively across the two
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d.o.f. This method of entanglement detection is tested on three characteristic
two-qubit quantum states encoded twice into two separate d.o.f. of a photon pair.
These states are Bell state, pure separable state, and maximally mixed state.

3.2 Theoretical framework

A hyper-entangled state is, e.g., a system composed of two quantum particles
(subsystems A and B) each encoding two qubits, one qubit per d.o.f. A pair
of photons with polarization (p) and spatial (s) d.o.f. is an example of such a
system. For the purpose of our analysis we consider only identical states encoded
into both d.o.f., i.e., ρ̂(p) = ρ̂(s), where ρ̂(x) = ρ̂Ax,Bx for x = p, s.

The collectibility of such system is defined in terms of five different local pro-
jections, where four of these projections are implemented simultaneously with one
non-local projection [58]. One subsystem (A) of the HES is measured with sepa-
rable projections, the other (B) with an entangled projection. The entanglement,
in terms of collective non-linear entanglement witness W (ρ̂), is then derived from
correlations between coincidence rates observed for these projections. The cor-
relations between coincidence rates of individual projections labeled pij can be
expressed in terms of joint projection probabilities

pij = Tr
[
Π̂

(i)
Ap ⊗ Π̂

(j)
As ⊗

(
|ψ−〉〈ψ−|

)
Bp,Bs

ρ̂HES

]
. (3.2)

Indices Xp and Xs mark the relevant d.o.f. for subsystem X = A,B, whereas
indices i, j = 0, 1,+ represent projections on qubit states |0〉, |1〉, and |+〉 = (|0〉+
|1〉)/

√
2 expressed in the computational basis. The projection (|ψ−〉〈ψ−|)Bp,Bs

stands for projecting the subsystem B onto a singlet state across the d.o.f. p and
s, where

|ψ−〉Bp,Bs = 1√
2

(|01〉 − |10〉)Bp,Bs . (3.3)

Using the notation from Ref. [58] and Eqs. (3.2), the collective non-linear entan-
glement witness can be formulated as

W (ρ̂) =
1

2
[η + P 2(1− p00) + (1− P )2(1− p11)

+ 2P (1− P )(1− p01)− 1],
(3.4)

where
η = 16P (1− P )

√
p00p11 + 4p++, (3.5)

and P = prob(|0〉Ap) = prob(|0〉As) is the probability of observing subsystem A

in state |0〉Ap (|0〉As) independently of the state of subsystem B.
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Figure 3.1: Experimental setup for measuring collectibility of photonic two-qubit
states by hyper-entangling the input photons. BD: beam displacer; HWP: half-
wave plate; PBS: polarization beam splitter; QWP: quarter-wave plate; IF: 10 nm
interference filter; FBS: fiber beam splitter; DET: single-photon detector; CC:
coincidence counter. Spatial modes are labeled by numbers 1-4.

3.3 Experimental implementation

The experimental implementation was realized on a platform of linear optics
with a hyper-entangled pair of photons encoding the same two-qubit state in
both polarization and spatial d.o.f. A horizontally polarized photon (i.e., sub-
system X = A,B) encodes the logical state |0〉Xp, a vertically-polarized photon
state |1〉Xp. Similarly, spatial modes 1 and 3 encode logical state |0〉As and |0〉Bs,
modes 2 and 4 logical state |1〉As and |1〉Bs. Thus, the relation between the states
encoded in the computational basis and in the states used in the experiment can
be expressed as

|mn〉Ap,As ≡ |δm,1V + δm,0H〉1+n
|kl〉Bp,Bs ≡ |δk,1V + δk,0H〉3+l,

(3.6)

where δ stands for the Kronecker’s delta, indices m, k = 0, 1 mark the single-
photon polarization states, and indices n, l = 0, 1 the spatial modes 1 + k and
3 + l.

The experimental setup consists of a two–photon source powered by pulsed
Paladine (Coherent) laser at λ = 355 nm with 300 mW of mean optical power and
repetition rate of 120 MHz.

Polarization-entangled photon pairs at λ = 710 nm are generated in non-
collinear type I spontaneous parametric down-conversion (SPDC) process in a
BBO (β-BaB2O4) crystal cascade (known as the Kwiat source [73]). This type of
light source if pumped by a generally polarized pumping beam generates pairs of
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horizontally and vertically polarized photons. Generation rates of these photons
as well as their mutual phase shift can be tuned by adjusting the polarization
of pumping beam. This way one can prepare states with various amount of en-
tanglement. Each photon from the generated pair is coupled into a single-mode
optical fiber and brought to one input port of the experimental setup depicted in
Figure 3.1.

The beam displacers (BD) transform polarization entanglement into spatial
entanglement and the two photons can interact on a polarizing beam splitter
(PBS) where they get entangled in polarization again. Thus, a given HES is
prepared.

The HES is consequently subjected to separable and entangled polarization
projective measurements. The photon leading to the detector through fiber beam
splitter (FBS) is subjected to separable projections Π̂

(i)
p ⊗ Π̂

(j)
s for i, j = 0, 1 as

described in section 3.2. For example projection Π̂
(0)
Ap ⊗ Π̂

(0)
As corresponds to a

projection onto a state |00〉Ap,As or, by using Eq. (3.6), |H〉1. The other photon is
projected on state |ψ−〉Bp,Bs or equivalently [see Eqs. (3.3) and (3.6)] 1√

2
(|H〉4 −

|V 〉3). Both projections are implemented by means of half-wave plates (HWP),
quarter-wave plates (QWP) and polarizing cubes (PBS). The photons are then
filtered by 10 nm interference filters (IF), coupled into single-mode optical fibers
and brought to single-photon detectors. Motorized translations (not depicted)
ensure temporal overlap of the photons on PBS and FBS.

3.4 Measurement and results

The collectibility was measured for three characteristic quantum states: (i) |ψ1〉 =
1√
2
(|00〉 + |11〉) (Bell state), (ii) |ψ2〉 = |10〉 (pure separable state), (iii) ρ̂3 = 1

4 1̂

(maximally mixed state), which were encoded twice in the following HESs

|Ψx〉HES = |ψx〉Ap,Bp ⊗ |ψx〉As,Bs for x = 1, 2,

ρ̂3,HES = 1
16 1̂Ap,Bp,As,Bs.

(3.7)

States (3.7) generated in the experiment can be expressed via Eq. (3.6) as

|Ψ1〉HES = 1
2(|HH〉1,3 + |HH〉2,4 + |V V 〉1,3 + |V V 〉2,4)

|Ψ2〉HES = |V H〉2,3,

ρ̂3,HES = 1
16 1̂

(p) ⊗ 1̂(s).

(3.8)

In order to prepare the state |Ψ1〉HES, one needs to set the pumping beam polar-
ization to diagonal orientation, rotate HWPs in front of the PBS to 22.5◦ w.r.t.
horizontal axis and ensure the photon overlap on PBS. The state |Ψ2〉HES was
prepared by setting the pump beam to horizontal polarization, therefore, only
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Figure 3.2: Experimental results and theoretical values of entanglement witness
for three characteristic quantum states. Note that measurement values are in
good agreement with the theoretically predicted values. As expected, the witness
gives a clearly negative values only in the case of the Bell state.

Table 3.1: Measured values of collectibility W and its theoretical predictions Wth

obtained for the states defined in Eq. (3.8).

Quantum state W Wth

Bell state (|Ψ1〉HES) -0.21 ± 0.03 -0.25
Separable state (|Ψ2〉HES) -0.01 ± 0.03 0.00

Mixed state (ρ̂3,HES) 0.69 ± 0.06 0.75

one of the BBO crystals was capable of dawn conversion, generating pairs of ver-
tically polarized photons. Then by rotating a HWP (not depicted) in front of the
beam displacer (BD) to 45◦, one prepares the state |V H〉2,3. In the case of the
state ρ̂3,HES, which was not prepared directly, the outcome of each projection was
obtained by accumulating coincidence rates associated with four Bell states.

For the Bell and mixed state, the probability P was set to P = 0.50, and for
the separable state to P = 0.01. The values of P are adjusted using purely single-
photon detection events and as a result the uncertainties of P are negligible in
comparison with the uncertainty of two-photon coincidence detections. Obtained
experimental and theoretically calculated values of collectibility W (ρ̂) for the
states from (3.8) are summarized in Table 3.1 and visualized in Figure 3.2.

Further, we have investigated the collectibility of Werner states which up to
local unitary transformations can be expressed in the form of a weighted sum of
maximally entangled and maximally mixed state,

ρ̂W = p|Ψ1〉〈Ψ1|+ qρ̂3, (3.9)
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Figure 3.3: Experimental results and theoretical prediction of collectibility for
the Werner states as a function of parameter p. The solid green line depicts the
observed experimental results, the dashed black line is the theoretical prediction
and the light green area corresponds to the measurement uncertainty.

where 0 ≤ p ≤ 1 and q = 1 − p. It follows from Eq. (3.9) that p2 (q2) is the
probability of observing the maximally entangled (mixed) state simultaneously in
both d.o.f. The cross probability 2pq corresponds to observing entangled state in
one d.o.f. and mixed state in the other d.o.f. It can be directly shown that for
a mixed state encoded into one d.o.f., the projection probabilities pij and p++

are independent of the state encoded into the other d.o.f. As a consequence, to
obtain the values of collectibility for Werner states, one can simply interpolate
the results for |Ψ1〉 and ρ̂3 with effective weights of p2 and 1 − p2, respectively
[58]. Note that the collective entanglement witness is able to detect entanglement
only for p >

√
3
2 although Werner states are already entangled for any p > 1

3 [58,
97, 99, 115]. Obtained experimental and theoretical values of collectibility W (ρ̂)

as a function of the parameter p are summarized in Table 3.2 and visualized in
Figure 3.3.

In the experiment, collectibility of Werner states has been measured by prop-
erly combining (adding with proper weights) coincidence counts corresponding to
three configurations of the setup: (i) the triplet state |Ψ1〉, (ii) the mixed state
1
2 (|01〉〈01|+ |10〉〈10|) in both polarization and spatial modes and (iii) the mixed
state 1

2 (|00〉〈00|+ |11〉〈11|) again in both polarization and spatial modes. In case
of the triplet state |Ψ1〉 positions of motorized translations were set so that the
photons interfere on PBS and FBS. In case of the mixed states these translations
have been deliberately detuned so that the photons become distinguishable and
hence would not interfere. To switch between generation of the (ii) and (iii) state,
we have used a half-wave plate inserted into spatial modes 1 and 2 behind the
PBS together with relabeling of modes 3↔ 4. Note that our experimental setup
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Table 3.2: Assorted results obtained for Werner states defined in Eq. (3.9), where
W is the observed value of entanglement witness and Wth is its theoretical pre-
diction.

p W Wth

0.0 0.69 ± 0.06 0.75
0.2 0.65 ± 0.06 0.71
0.4 0.55 ± 0.06 0.59
0.6 0.37 ± 0.06 0.39
0.8 0.11 ± 0.06 0.11
1.0 -0.21 ± 0.03 -0.25

allows to directly generate mixed states of the form of

ρ̂4 = p|Ψ1〉〈Ψ1|+ (1− p)|Ψ5〉〈Ψ5|with (3.10)

|Ψ5〉 = 1
2(|HH〉1,3 − |HH〉2,4 − |V V 〉1,3 + |V V 〉2,4).

The parameter p is tuned by deliberate misplacement of the translations. This
makes the photons partially distinguishable and thus the resulting state partially
mixed.

3.5 Quick quality check of HES

Here, we demonstrate that collectibility can be used to quickly check the quality
of hyper-entanglement. HES transmission through a noisy channel can result in
decreased purity independently in both d.o.f. (i.e., in general ρ̂(p) and ρ̂(s) are
different). This effect non-trivially affects the collectibility measurement. We
obtained ρ̂(p) and ρ̂(s) states of different purities experimentally by intentionally
detuning temporal overlap between the photons using motorized translations. The
purity of the tested states does not affect the values of pij [see Eq. (3.2)] that
corresponds to local projections onto states |H〉1(2), |V 〉2 [see Eq. (3.6)]. The only
difference is observed for p++ which is measured by local projection 1

2(|H〉1 +

|V 〉1 + |H〉2 + |V 〉2). Due to interference, this measurement is sensitive to phase
difference between spatial modes 1 and 2. We define the ratio R as function of
this phase shift,

R =
ccmax

ccmin
, (3.11)

where ccmax and ccmin stand for maximum and minimum coincidences rates. The
measurement was implemented by combining pure and mixed states ρ̂(p) with
pure and mixed states ρ̂(s). The observed experimental values are summarized in
Table 3.3 and visualized in Figure 3.4.



3.6. CONCLUSIONS 33

Table 3.3: Measured values of entanglement witnessW and its theoretically pred-
icated values Wth for the quality analysis of HESs for Werner states.

ρ
(p)
W ρ

(s)
W W Wth

pure pure -0.21 ± 0.03 -0.25
pure mixed 0.71 ± 0.06 0.75
mixed pure 0.70 ± 0.06 0.75
mixed mixed 0.69 ± 0.06 0.75

Figure 3.4: Experimental values of the ratio R [see Eq. (3.11)] obtained for the
quality analysis of HESs for Werner states. The solid green (dashed black) curve
corresponds to the fitting. Note that R → ∞ for ideal experimental conditions.
The collectibility has been measured for the encircled states.

Note that if a HES becomes disentangled in one d.o.f., the ratio R goes to 1
(as seen in Figure 3.4). The value of p++ is then 1

4 and W (ρ̂) is positive. On
the other hand, when both ρ̂(p) and ρ̂(s) are sufficiently pure and entangled, W (ρ̂)

becomes negative. Hence, this method is a quick and easy way to diagnose HES
distribution.

3.6 Conclusions

We have reported on experimental measurement of collective non-linear entangle-
ment witness known as the collectibility on a single copy of a HES. The obtained
results are in good agreement with theoretical predictions. The collectibility wit-
ness for hyper-entangled Bell state (−0.21± 0.03) is negative with sufficient cer-
tainty and also close to its theoretical value. As expected, the observed results
of W (ρ̂) for the separable and mixed state are non-negative and within one stan-
dard deviation from theoretically calculated values. We have interpolated the
collectibility witness for several Werner states. These experimental results con-



34 CHAPTER 3. MEASUREMENT OF COLLECTIBILITY

form with theoretically predicted connection between collectibility witness and
the Werner states parameter p. The method for diagnostics of HESs developed
in this experiment is not as robust (fails on some partially entangled states) as
quantum state tomography but can be appealing for applications that need fast
verification whether the quantum system is sufficiently hyper-entangled. The ex-
perimental accessibility of our method makes it suitable for further development
of other non-linear EWs requiring more than two copies of the measured state
[107–109] or it can be easily adapted to measure a class of two-copy based EWs
studied in Ref. [97]. The experience based on the currently presented experi-
ment and the experiments implemented on two independent photon pairs [58, 97]
shows that it is of similar difficulty to assure preparation of two identical two-
qubit states in both cases. In the presented experiment, it was however much
easier to implement mutual interaction between these states.



Chapter 4

Measurement of the
Hilbert-Schmidt distance
between two-qubit states

Text adopted from Vojtěch Trávníček, Karol Bartkiewicz, Antonín Černoch, and
Karel Lemr, Phys. Rev. Lett. 123, 260501 (2019) [A1].

4.1 Introduction

In quantum communications the quality of a transmission channel is crucial. It is
due to security reasons, where imperfections of the communication channel lead
to signal degradation known as noise. This noise can be subsequently exploited
by potential eavesdroppers [116, 117]. Therefore, tools for the diagnostics of the
transmission channels are in demand. In quantum communications theory one
can quantify the accuracy of a signal transmission by measuring the distance
in the Hilbert space between the transmitted and received states. The most
prominent distance measures include the Uhlmann-Jozsa fidelity (Bures metrics),
trace distance, and the Hilbert-Schmidt distance (HSD) (for overviews, see, e.g.,
[59, 60, A2].

These distance measures are also essential for a field of quantum machine
learning. Where a common method for classification algorithms (e.g., k-means)
is to perform a distance measurement among M sample vectors of dimension
N . This procedure is a core subroutine for other machine learning algorithms,
e.g., supervised and unsupervised nearest-neighbor algorithms. Quantum machine
learning emerges as a new field of research in quantum information processing
with linear optics, where the benefits of applying this platform are unaffected by
unavoidably non-deterministic implementation of a universal set of gates [118]. It
has been already demonstrated that by using quantum resources one can reduce
the complexity of the k-means algorithm from O[poly(MN)] to O[log(MN)] [42,

35
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Figure 4.1: Conceptual scheme for measuring the Hilbert-Schmidt distance be-
tween two-qubit states. In general two different states ρ̂1 and ρ̂2 are encoded into
polarization and spatial modes of photon A and B respectively. Photons A and B
are then simultaneously measured by POVMs Î and Ŝ, where the two degrees of
freedom are addressed holistically at the same time. The operators Î and Ŝ are
the identity and singlet state projection where Ŝ = |Ψ−〉〈Ψ−|.

44, 118]. It was also shown in Ref. [A1] that by measuring the distance between
a pair of points in terms of HSD one obtains the complexity of the distance-
measuring algorithm O[log(N)] by using a different approach from that in Ref.
[44].

The HSD is defined as

DHS(ρ̂1, ρ̂2) ≡
√

Tr[(ρ̂1 − ρ̂2)2], (4.1)

where ρ̂1 and ρ̂2 are the density matrices representing the two quantum, in general
mixed, states. The HSD is a Riemann metrics, which makes it appropriate for
applying in machine learning problems. Moreover, in contrast to trace distance,
HSD is non-increasing under decoherence [59, 60]. For D-dimensional Hilbert
space a density matrix contains (D2 − 1) independent parameters. This fact
makes the complete quantum state tomography a very challenging problem, as it
requires an exponentially large number of measurements in relation to the number
of qubits constituting the composite system (see, e.g., [42, 94, 119]). However, this
otherwise problematic feature also opens a new possibility to encode N = D2− 1

parameters in a D-dimensional density matrix (i.e., the Hilbert-Schmidt space).
Note, that for pure states the number of independent parameters is much lower,
i.e., N = 2D−1. In this way, by using mixed instead of pure states one can encode
quadratically more features into a given state. Once the encoding is performed
for M states a constant number of times, each distance can be measured in only
three steps. This is because the HSD can be expressed by first-order overlaps
O(ρ̂i, ρ̂j) as described in Refs. [120, 121] [A2]

DHS(ρ̂1, ρ̂2) =
√
O(ρ̂1, ρ̂1) +O(ρ̂2, ρ̂2)− 2O(ρ̂1, ρ̂2), (4.2)
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where the directly measured observables are defined as O(ρ̂i, ρ̂j) = Tr(ρ̂iρ̂j).

4.1.1 Two-photon overlap

The density matrix of a single qubit can be expressed using Bloch representation
and making use of Einstein summation convention as (see. Ref. [122])

ρ̂ = 1
2Rm0σ̂m, (4.3)

where
Rm0 = Tr(ρ̂σ̂m) (4.4)

are elements of the Bloch vector defined by Pauli matrices σ̂m (m = 0, 1, 2, 3),
where σ̂0 = Î is the identity operator. The density matrix for two-qubit system
can be written in the similar way as

ρ̂ = 1
4Rmnσ̂m ⊗ σ̂n, (4.5)

where
Rmn = Tr[ρ̂(σ̂m ⊗ σ̂n)] (4.6)

are elements of the correlation matrix and m,n = 0, ..., 3. Then the first-order
overlap defined as

O(ρ̂1, ρ̂2) = Tr(ρ̂1ρ̂2) (4.7)

can be for two-qubit states calculated directly as

O(ρ̂1, ρ̂2) = 1
16R

(1)
mnR

(2)
kl Tr[(σ̂mσ̂n)⊗ (σ̂kσ̂l)] (4.8)

where

R(1)
mn = Tr[(σ̂m ⊗ σ̂n)ρ̂1], (4.9a)

R(2)
mn = Tr[(σ̂m ⊗ σ̂n)ρ̂2] (4.9b)

are the correlation matrices of individual two-qubit states. Further form commu-
tation and anti-commutation relations for the Pauli matrices one can compactly
describe their multiplication as

σ̂iσ̂j = iεijkσ̂k + δij σ̂0, (4.10)

where i is the imaginary unit, εijk Levi-Civita symbol and δij Kronecker delta.
Because the Pauli matrices are traceless except of σ̂0 the trace of their multipli-
cation is then

Tr(σ̂mσ̂n) = 2δmn (4.11)
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and the Eq. (4.8) simplifies to

O(ρ̂1, ρ̂2) =
1

4
R(1)
mnR

(2)
mn. (4.12)

Then by using Eqs. (4.9a,4.9b) one gets

O(ρ̂1, ρ̂2) = 1
4Tr[(σ̂m ⊗ σ̂n ⊗ σ̂m ⊗ σ̂n)(ρ̂1 ⊗ ρ̂2)]

= 1
4Tr[(σ̂m ⊗ σ̂m)⊗ (σ̂n ⊗ σ̂n)(ρ̂1 ⊗ ρ̂2)′]

= 1
4Tr[(V̂a1a2 ⊗ V̂b1b2)(ρ̂1 ⊗ ρ̂2)′], (4.13)

where V̂ = σ̂m⊗ σ̂m = 2Î−4|Ψ−〉〈Ψ−|, |Ψ−〉 is the singlet state, and (ρ̂1⊗ ρ̂2)′ =
Σ̂a2b1(ρ̂1⊗ ρ̂2)Σ̂a2b1 , where Σ̂a2b1 = Î⊗ Σ̂⊗ Î is unitary matrix swapping modes b1
and a2. Within this framework it is possible to introduce the Hermitian overlap
operator Ô measured on ρ̂1 ⊗ ρ̂2, i.e,

Ô = Σ̂a2b1 V̂a1a2 V̂b1b2Σ̂a2b1 . (4.14)

Measuring the purity or first-order overlap can be performed by measuring a
product of two V̂ operators that can be experimentally implemented within the
framework of linear optics, this was shown in Ref. [122].

The product of V̂ operators can be expressed in terms of the 4 POVMs as

|V̂ |2 = 4Î ⊗ Î − 8Ŝ ⊗ Î − 8Î ⊗ Ŝ + 16Ŝ ⊗ Ŝ, (4.15)

where Ŝ = |Ψ−〉〈Ψ−|.
If ρ̂1 = ρ̂2, one measures purity as discussed, e.g., in Refs. [58, 99, 122]. Each

overlap or other functions of overlaps can be measured directly by utilizing mul-
tiparticle interactions between copies of the investigated states [A2, 97, 120, 122–
126]. In contrast, by applying full quantum tomography (see, e.g., [127]) (D2−1)

measurements are required to calculate the value of HSD. For technical reasons we
measure each overlap by utilizing four positive-valued measures (POVMs). For
D = 4 this amounts to 12 POVMs for obtaining a single value of DHS.

4.2 Experimental setup

This section describes the measurement of HSD in a linear-optical experiment with
photons as information carriers. Here, the HSD is measured for two-qubit states
by simultaneous interaction between four qubits. A straightforward approach uses
four photons and only one degree of freedom (d.o.f.) such as polarization (see,
e.g., Ref. [120]), however, this setup utilizes two d.o.f. (polarization and spatial)
to encode two qubits (see Figure 4.1), therefore, only two photons were needed.
This way one achieves much higher detection rates which make the experiment
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Figure 4.2: Experimental setup for measuring Hilbert-Schmidt distance between
two two-qubit states. HWP: half-wave plate; BD: beam displacer; PBS: polariza-
tion beam splitter; QWP: quarter-wave plate; IF: 5 nm interference filter; DET:
single-photon detector; CC: coincidence counter. Spatial modes are labeled by
numbers 1-4.

considerably faster. The photons are labeled A and B, meanwhile their polariza-
tion and spatial modes are labeled p and s. There are horizontal (H) and vertical
(V) polarization modes, and four spatial modes: 1-4 (see scheme in Figure 4.2).
Horizontally polarized photons were associated with a logical state |0〉, vertically
polarized photons with a logical state |1〉. Similarly, spatial modes 1 and 3 were
associated with a logical state |0〉, modes 2 and 4 with a logical state |1〉. For
example, photon A encodes state |00〉 if its polarization is made horizontal and it
is placed in a spatial mode 1, i.e., in this notation |H1〉.

The two photons are generated in a crystal cascade (known as the Kwiat source
[73]) pumped by pulsed Paladine (coherent) laser a λ = 355 nm with 200 mW of
mean optical power and a repetition rate of 120 MHz. The source consists of
two BBO (β-BaB2O4) crystals and generates polarization-entangled photon pairs
at λ = 710 nm, i.e., |Ψ〉 = cos(α)|HH〉 + eiθsin(α)|V V 〉. The rates and mutual
phase shift between horizontally and vertically polarized photons can be tuned
by adjusting the pump beam polarization or by tilting one of the beam displacers
(BD1 or BD2 in Figure 4.2). By doing so one can prepare states with various
amounts of entanglement. Each photon from the generated pair is coupled into a
single-mode optical fiber and brought to one input port of the experimental setup.
The photons then pass through beam displacers where the initial polarization
encoding is transformed into spatial encoding. Afterwards the photons interact on
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the polarizing beam splitter (PBS) where a second, in principle different, quantum
state is encoded into polarization d.o.f. As a result, two, in principle different,
two-qubit states are encoded into the two d.o.f. The two states are then subjected
to projective measurements (discussed below) and accompanied by postselection.
The photons are filtered by 5 nm interference filters, coupled into single-mode
optical fibers and brought to single-photon detectors. Motorized translation (not
depicted) ensures temporal overlap of the photons on PBS. To demonstrate the
versatility of this approach, the HSD was measured between four Bell states, four
separable states, Werner states, and between Werner and Horodecki states.

To measure the HSD between any two states (ρ̂1, ρ̂2) the first-order overlap
has to be measured in three configurations, i.e., O(ρ̂1, ρ̂1), O(ρ̂2, ρ̂2) and O(ρ̂1, ρ̂2).
The first two configurations correspond to the situation when ρ̂1 (ρ̂2) is encoded
into both d.o.f. During the last configuration ρ̂1 and ρ̂2 are encoded each in one
d.o.f. Measurement of each first-order overlap O(ρ̂1, ρ̂2) is split into a measure-
ment of 4 POVMs on each photon across its d.o.f., i.e., ÎA⊗ ÎB, ŜA⊗ ÎB, ÎA⊗ ŜB,
and ŜA⊗ ŜB,where the Î stands for identity and the Ŝ for singlet state projection
that were implemented by suitable rotation of half-wave plates (HWP) behind the
PBS. For example, the POVM ÎA⊗ ÎB consists of all combinations of local projec-
tions, i.e., |H1, H3〉A,B, |H2, H3〉A,B, ..., |V2, V4〉A,B, while the ŜA ⊗ ŜB consists of
projections 1√

2
(|H2〉 − |V1〉)A and 1√

2
(|H4〉 − |V3〉)B. Both of these POVMs (Î , Ŝ)

can be implemented in a single step, but in this experiment they were implemented
as a series of von Neumann projections. The coincidence rates corresponding to
specific POVMs are labeled fx̂ŷ, where x̂, ŷ ∈ {Î , Ŝ}, where x̂ and ŷ are associated
with photon A and B, respectively. These values are obtained by summing up
the coincidence rates associated with respective von Neumann projections. The
mean value of the overlap operators relates to these rates as

O(ρ̂1, ρ̂2) = 1− 2(fŜÎ + fÎŜ − 2fŜŜ)/fÎ Î . (4.16)

Note that POVMs associated with fÎ Î measures photon rate and is needed for
normalization. In case of a stable photon source and know setup parameters this
value is constant and state-independent. The same is true for POVMs ÎA and ÎB
separately.

4.3 Results

First, distances between four Bell states |Φ±〉 = 1√
2
(|00〉 ± |11〉) and |Ψ±〉 =

1√
2
(|01〉 ± |10〉) have been measured. Encoding of the states into the d.o.f. was

implemented by a suitable choice of pump beam polarization, rotation of the
HWPs, and by tilting one of the beam displacers (BD1). For instance, the state
|Φ+〉 was encoded into the polarization and spatial modes by setting the HWPs in
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Table 4.1: Settings of HWPs and beam displacer for the preparation of Bell states
in polarization and spatial d.o.f. BD-max (BD-min) stands for maximization
(minimization) of coincidence events during ŜA ⊗ ŜB projection by tilting one
of the beam displacers. The term Switch (+) represents change in measurement
basis of one of the HWPs immediately behind PBS (0◦ ↔ 45◦).

HWPs (front of BDs) HWPs (front of PBS) BD Switch

|Φ+〉|Φ+〉 0◦,0◦ 22.5◦,22.5◦ max -
|Φ+〉|Φ−〉 0◦,0◦ 22.5◦,22.5◦ min -
|Φ−〉|Φ−〉 0◦,0◦ −22.5◦,−22.5◦ max -
|Ψ−〉|Φ−〉 0◦,0◦ −22.5◦,−22.5◦ max +
|Ψ−〉|Φ+〉 0◦,0◦ −22.5◦,−22.5◦ min +
|Ψ−〉|Ψ+〉 0◦,45◦ −22.5◦,−22.5◦ max -
|Ψ−〉|Ψ−〉 0◦,45◦ −22.5◦,−22.5◦ max -
|Ψ+〉|Ψ+〉 0◦,45◦ 22.5◦,22.5◦ max +
|Φ+〉|Ψ+〉 0◦,45◦ 22.5◦,22.5◦ max -
|Φ−〉|Ψ+〉 0◦,45◦ −22.5◦,−22.5◦ min -

front of the beam displacers to 0◦ w.r.t horizontal axis and HWPs in front of PBS
to 22.5◦. Also BD1 was tilted so there was maximum coincidence events while
projecting both photons on a singlet state (ŜA⊗ ŜB). For the preparation settings
of other states see Table 4.1. We have decided to plot a second power of the HSD
denoted D2

HS so it is linear in terms of the physically measured quantities. The
obtained experimental and theoretically calculated values of the second power of
HSD between Bell states are shown in Figure 4.3(a). Next, we have measured the
HSD between separable states |00〉, |11〉, |01〉 and |10〉. The obtained values are
visualized in Figure 4.3(b). In the third part of the experiment, the values of
D2

HS between Werner states have been calculated. A Werner state can be up to
local unitary transformation expressed in a form of a weighted sum of maximally
entangled and maximally mixed state

ρ̂W = p|Φ+〉〈Φ+|+ 1
4(1− p)Î . (4.17)

In the case of the mixed state, the outcome of each von Neumann projection
was obtained by accumulating coincidence rates associated with four Bell states,
i.e., making use of the identity ρ̂1 ⊗ ρ̂2 = 1

4(|Ψ+〉〈Ψ+|+ |Ψ−〉〈Ψ−|+ |Φ+〉〈Φ+|+
|Φ−〉〈Φ−|) = 1

4 Î⊗ Î . Subsequently, the values of D
2
HS have been calculated for var-

ious values of the weight parameter p. The results are visualized in Figure 4.4(a).
Finally, the D2

HS between Werner and Horodecki states have been calculated.
Horodecki states can be expressed in the form of a weighted sum of the maxi-
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Figure 4.3: Experimental results of the second power of Hilbert-Schmidt distance
D2

HS between: (a) Bell states, (b) separable states. The axis represent polarization
and spatial encoding (see Figure 4.1). Note that the theoretical value of the
second power of Hilbert-Schmidt distance between identical states (situated in
the diagonal) is 0, whereas D2

HS reaches its upper theoretical limit of 2 between
orthogonal states.

mally entangled and separable state

ρ̂H = q|Φ−〉〈Φ−|+ (1− q)|01〉. (4.18)

Therefore, one has to measure the overlap between states |Φ+〉 (|Φ−〉) and |01〉
encoded in polarization and spatial mode, respectively. The rest of the necessary
overlaps were calculated in the same way as explained above. The values of D2

HS
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Figure 4.4: Experimentally obtained values of D2
HS (a) between two Werner

states and (b) between Werner and Horodecki states for various weight parameters
(px, py) or (p, q) are represented by a corresponding light-shaded contours slightly
shifted with respect to the labeled black contours representing the theoretical
values of D2

HS. The vertical and horizontal axis represent polarization and spatial
encoding respectively (see Figure 4.1).

between Werner and Horodecki states for various weight parameters p and q are
visualized in Figure 4.4(b).

4.3.1 Performance of the k-means algorithm

In order to analyze the impact of the measurement error on the performance of
the k-means algorithm two numerical simulations were performed, where 2× 104

points were divided into 2 clusters. These simulations calculated the distance
between the points exactly or by introducing a relative error of 15% of the cal-
culated distance. In the numerical simulations the points were sampled from two
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Gaussian distributions of equal variance. The error in distance estimation results
in approximately 4% (on average) of points being assigned to different clusters
than assigned by the simulation with the exact distance calculation. The results
of our simulations are summarized in Figure 4.5.

4.4 Conclusions

This work reports on the experimental measurement of the Hilbert-Schmidt dis-
tance between two-qubit states by the method of many-particle interference. The
method allows to measure the HSD between two two-qubit density matrices by
performing three overlap measurements (four POVMs per overlap). The scheme
works for both mixed and pure states, however, using the former is more desirable
for machine learning. This is because for a system of a fixed dimension D we can
encode quadratically more features in a mixed state than in a pure state. This
approach to measuring Euclidean distance between a pair of points in space of
dimension N = D2 − 1 exhibits a reduced complexity of O(logN) in comparison
to the standard approach of the complexity O(polyN). The obtained experimen-
tal results are in good agreement with theoretical predictions. To demonstrate
the versatility of this approach HSD was measured between assorted two-qubit
states. The HSD between identical Bell states is sufficiently close to theoretical
values. On the other hand, distances between orthogonal Bell states do not de-
viate from theoretical values by more than 15%. This error is partially caused
by the linearization of Eq. (4.1) and by phase instability in the relatively com-
plex interferometer. Further, partial distinguishability between photons causes
an imperfect bunching that leads to partial impurities of the states, therefore, in-
creasing the error. However, this discrepancy is implementation specific and not
a fundamental limit. To assess the impact of measurement errors on the shape
of two clusters created using a k-means algorithm with and without introducing
a maximum error of 15% in distance measurement we performed numerical sim-
ulations. The initial sets of points were created using Gaussian distributions (see
[41]). The clusters created for the range of distances between the Gaussians vary-
ing from 0 to 6 standard deviations differ on average by 4% of the points. Similar
measurement results were obtained for the separable states, however, the devia-
tion from the theoretical prediction is not as high due to the lower complexity of
the states. The HSDs between Werner states and between Werner and Horodecki
states for various values of the weight parameters were also interpolated. The
results are in good agreement with theoretical values represented by the contours
in Figure 4.4. We believe that these results can motivate subsequent research on
the topic of quantum channel characterization and quantum machine learning.
Especially in the latter, measuring distances between multidimensional points ef-
ficiently can reduce the computational complexity of supervised and unsupervised
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machine learning. Thus, the results can be inspiring for near term quantum tech-
nologies which would exhibit speedup in comparison to the best currently known
classical solutions. The results are also a novel example of applying mixed states
for quantum information processing. Usually working with mixed states is not de-
sired, but here it gives the possibility of encoding extra information as the degree
of coherence between the given two dimensions of the density matrix.
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Figure 4.5: The influence of distance calculation errors on the performance of
the k-means algorithm investigated by means of Monte-Carlo simulations. The
k-means algorithm works best for finding symmetric clusters of similar size. Thus,
the 2D points (in total 2× 104) were selected to be divided into 2 clusters (clus-
ters represented by dark green and red dots, and their centroids marked with
black dots) by sampling from two 2D symmetric Gaussian distributions of equal
variances (104 points per Gaussian). This way one can test the algorithm in the
regime in which it performs correctly. The only variable is the distance between
the central points (µ1 and µ2) of the Gaussians. The fraction of miss assigned
clusters with and without accounting for the distance calculation errors is given
in the central plot. Note that for the shaded range the average fraction is hard to
estimate as the choice of the clusters for a finite number of points becomes more
arbitrary with the distance between the Gaussians approaching 0. However, in
this regime the numerically estimated average value was approximately 0.11.



Chapter 5

Diagnostics of entanglement
swapping by a collective
entanglement test

Text adopted from Vojtěch Trávníček, Karol Bartkiewicz, Antonín Černoch, and
Karel Lemr, Phys. Rev. Applied, 14, 064071 (2020) [A4].

5.1 Introduction

The exchange of quantum information between parties connected through a quan-
tum network [35, 36] can become the inherently secure transmission of information
[19, 20] or provide an improved transmission rate [110, 128]. However, none of the
transmission media1 is lossless which results in errors that influence the quality
of the transmission. During quantum communications in free space the optical
signal is attenuated due to geometrical losses such as diffraction and atmospheric
extinction including absorption and scattering [129]. In an optical fiber the scaling
of probability for a photonic qubit being absorbed, depolarized, or dephased grows
exponentially with the length of the channel and remains the major obstacle to
practical long-distance quantum communications [25]. This does not only restrict
feasible lengths of quantum channels, but also represents a security threat as the
errors could be exploited for a potential attack on the communication protocol
[116, 117].

To combat these limitations, quantum repeaters and relays were proposed [25,
27]. Although the working principles of quantum repeaters and relays somewhat
differ, they both operate by splitting the communication channel into segments,
therefore, lowering the error probability. At their core, quantum repeaters and
relays apply the entanglement-swapping (ES) protocol [26]. This involves tele-
portation of a quantum state of a particle that shares entanglement with at least

1e.g. optical fiber, free space (atmosphere)

47
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Figure 5.1: (a) Conceptual diagram of the ES protocol. Two entangled quantum
states (e.g., two pairs of photons) are generated in EPR sources. One particle from
each pair is subjected to a Bell-state measurement. This results in projecting the
other two particles, which are sent to Alice and Bob, onto an entangled state.
(b) Conceptual scheme for measurement of a CEW. To witness entanglement of
a general two-qubit state ρ̂I , a copy ρ̂II is prepared. Similarly to ES, one particle
from each pair is subjected to a Bell-state measurement, while the remaining two
particles are subjected to a set of individual local projections R(θ, φ). The CEW
is then calculated from the rates of fourfold simultaneous detections observed for
a specific set of local projections.

one other particle. Thus, ES allows the establishment of entanglement between
particles that have never interacted directly. By properly positioning the en-
tanglement sources (EPR) and measurement devices across the communication
channel, one can distribute entanglement without physically sending the indi-
vidual quantum-correlated information carriers through the entire channel [see
Figure 5.1(a)]. The ES is also applied in device-independent quantum communi-
cations or entanglement-assisted error correction [61, 62].

In previous demonstrations of ES, quantum repeaters, and relays, the authors
used various methods to demonstrate successful operation of their schemes. For
instance, Li et al. [130] used quantum-state tomography, Pan et al. [26] and de
Riedmatten et al. [55] observed interference visibility and Jennewein et al. [131],
Zhao et al. [132], and Yuan et al. [133] tested Bell inequality on the resulting
state. This chapter discuses a practical method for diagnostics of ES by means
of a collective entanglement witness (CEW) [91, 97–99]. We make use of the fact
that the geometry of ES shares the layout of CEW (see Figure 5.1), both protocols
require simultaneous preparation of two copies of a given potentially entangled
state and a Bell-state projection. In particular, we adopt the collectibility witness
originally proposed by Rudnicki et al. [56, 57]. This approach is preferable to
diagnostics by other means as the method requires only six measurement config-
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Figure 5.2: Experimental setup for diagnostics of the ES protocol. HWP: half-
wave plate; QWP: quarter-wave plate; PBS: polarization beam splitter; PDL:
polarization dispersion line; IF: interference filters; FBS: fiber beam splitter; DET:
single-photon detector; CC: coincidence counter.

urations to calculate collectibility of a two-qubit state. A number that is smaller
especially when compared to complete quantum state tomography [93, 94, 119]).

5.2 Experimental implementation

This idea is experimentally demonstrated on a linear-optical platform, where two
independent EPR-state sources are constructed with an ES device linking them
together. Qubits are encoded into polarization states of individual photons. Po-
larizers and wave plates are used to implement errors occurring in three dis-
tinct quantum-information channels, i.e., (a) a depolarizing channel, (b) a phase-
damping channel, and (c) an amplitude-damping channel. In this experiment,
both EPR pairs are subjected to the identically prepared damping channels (see
Figure 5.2).

A frequency-doubled 413 nm femtosecond pulsed-laser beam is used to pump
spontaneous parametric down-conversion in a β-BaB2O4 (BBO) crystal cascade
[73]. At first, the pump polarization is made diagonal. Next, the beam travels
through a polarization dispersion line (PDL) to counter subsequent polarization
dispersion of the BBO material. This laser beam impinges on the crystal cascade
twice, i.e., after it passes the crystals for the first time, it gets reflected on a
mirror and pumps the crystals in the opposite direction. On both occasions, with
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some probability, a pair of photons in the Bell state |Φ+〉 = 1√
2

(|HH〉+ |V V 〉) is
generated, where H and V denote horizontally and vertically polarized photons,
respectively. Using mirrors, pairs of photons generated by both the forward and
backward propagating pumping beam are directed towards fiber couplers that lead
them to single-photon detectors via single-mode optical fibers. These couplers are
equipped with 10 nm interference filters in the case of photons 1 and 3 and by
5 nm interference filters in the case of photons 2 and 4. Typical four-photon
detection event occurs about once per 4 min depending on the adjusted quantum
state and polarization projection. The coincidences are accumulated for 10 h to
collect about 150 events. The errors are calculated assuming Poisson statistics of
the counts and using the Monte Carlo simulation. While polarization of photons
2 and 4 is projected locally on four states selected using combinations of half-
and quarter-wave plates followed by polarizers, the other two photons (1 and 3)
are projected onto a singlet state by means of a balanced fiber coupler (FBS) and
postselected onto coincident detection at both its output ports.

The four specific settings of local projections sufficient to estimate collectibility
[57] are |HH〉, |HV 〉, |V V 〉 and | + +〉, where letters indicate state projections
on the two locally projected photons, respectively, and |+〉 = 1√

2
(|H〉+ |V 〉).

We denote pXY (XY ∈ {HH,HV,VV,++}) the probability that both locally
projected photons pass the projections conditioned on the other two photons being
projected onto a singlet Bell state. However, due to non-removable jitter between
generation of the first and the second pair of photons, probability of two-photon
overlap is decreased. Note that this jitter originates from the uncertainty in the
moment in time when a pair is generated as the pumping pulse traverses the BBO
crystal. It affects only interference of photons from two different pairs (forward
and backward generated photon pairs) and is proportional to the length of the
pumping pulse. Its effect on the observed interference visibility scales inversely
with the coherence length of the generated photons, which can be extended by
spectral filtering at the expense of losses [134, 135]. The imperfect temporal
overlap between the photons caused by the aforementioned jitter is seen as noise,
which can be estimated and subtracted from the genuine coincidences. In order
to estimate the noise level both photon 1 and photon 3 are prepared in the same
polarization state (|H〉) and the achievable Hong-Ou-Mandel (HOM) bunching
effect is measured conditioned on detection of photon 2 and 4 (used as heralds).
The observed HOM dip depth in this configuration is 43 % (perfect interference
would result in 100 % dip depth). To compensate for the non-interacting photons,
all projections are measured in two regimes: (a) adjusted for overlap between
photons 1 and 3 and (b) with a completely detuned overlap so that the photons
can not interfere. We then subtract 57 % of the coincidence counts obtained
in both regimes and calculate the corrected HOM dip depth as their ratio. A
more detailed account on this procedure is described in Ref. [58]. Measuring the
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probabilities pXY, collectibility is calculated using formula

W (ρ̂) =1
2 [η + p2H(1− 2pHH) + (1− pH)2(1− 2pVV)

+ 2pH(1− pH)(1− 2pHV)− 1],
(5.1)

where η = 16pH(1 − pH)
√
pHHpVV + 4p++, and pH is the probability of local

projection of photon 1 or 3 onto horizontal polarization |H〉 independently of the
singlet Bell-state projection.

For each measurement of the pXY probabilities there was 16 setup configura-
tions of wave plates for photons 2 and 4. It should be emphasized that six local
projections at most are required to estimate collectibility. The 16 configurations
mentioned above are needed to measure all these six collectibility projections for
all state transformations required to implement the noisy channels described be-
low. For example, projection onto a |++〉 state on photons 2 and 4 together with
a phase flip transformation imposed to both these photons effectively requires
measuring them in a | − −〉 state (|−〉 = 1/

√
2(|H〉 − |V 〉). However, one should

clearly distinguish the projections needed to measure collectibility from the state
transformations imposed to deliberately implement various noisy channels. The
latter would obviously not be performed when diagnosing a given entanglement-
swapping device. Wave plates used for local polarization projections are used
simultaneously to introduce disturbances typical for a given type of noisy quan-
tum channel. As a result 16× 60 sequences of fourfold coincidences are obtained.
Depending on the simulated quantum channel a sequence is randomly with some
bias selected and placed into a new array ccXY, which in the end contained 60
randomly chosen sequences. The bias is dependent on the type of noisy quantum
channel and on the chance for error to occur. The probability pXY is then cal-
culated by summation of ccXY, normalization and correction on non-interacting
photons. For the scheme of the experimental process see Figure 5.3.

Here, we experimentally investigate noisy channels studied theoretically in the
context of quantum teleportation in Ref. [136]. In this experimental demonstra-
tion, we assume that noisy channels acting on both photons 2 and 4 are symmetric.
In principle, these photons might be subject to different sources and amounts of
noise. Our numerical analysis indicates that this effect would not generate any
qualitatively new results. For the purposes of this proof-of-principle experiment,
we are therefore limited to symmetric noisy channels.

We acquire the theoretical predictions for the below-described noisy channels
by mathematical simulation of the collectibility measurement, where the initial
Bell state |Φ+〉 is subjected to Kraus operators for various damping values ob-
taining the transformed state ρ̂. Two copies of the transformed state are used to
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Figure 5.3: Scheme of the experimental process of simulating noisy quantum
channels.

calculate the probabilities pH, pXY

pH = Tr[|H〉〈H|1̂2 ρ̂], (5.2)

pXY =
Tr[|X〉〈X|Ψ−〉〈Ψ−|Y 〉〈Y | ρ̂⊗ ρ̂]

Tr[|X〉〈X|1̂4|Y 〉〈Y | ρ̂⊗ ρ̂]
(5.3)

and subsequently the collectibility.

5.2.1 Depolarizing channel

Qubits transmitted through a depolarizing channel are randomly subjected to
three types of transformations causing decoherence. These transformations are bit
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flip, phase flip, and a combination of bit flip and phase flip. It is the randomness
and impossibility to predict these transformations that is the effective cause of
errors. The action of a depolarizing channel expressed by Kraus operators [21]
reads

Ê0 =
√

1− dDÎ , Êi =

√
dD
3
σ̂i for i ∈ {x, y, z}, (5.4)

where dD is the depolarization probability, Î stands for the identity operator and
σi are Pauli matrices. When propagating through such channel, a Bell state is
randomly transformed into one of the other three Bell states with equal probabil-
ity dD/3. The implementation of depolarizing channel, was realized by randomly
switching half-wave plates and quarter-wave plates between two positions: 0◦ and
45◦ for the HWPs and 0◦ and 90◦ for the QWPs. Using the procedure described
in the previous paragraph we are able to measure the collectibility of a Bell state
propagating through depolarizing channel for several values of the depolarization
probability dD. The observed collectibility and its theoretical prediction are de-
picted in Figure 5.4(a). As expected, collectibility reaches its maximum value
for dD = 3/4, W (ρ̂) = 0.80 ± 0.09 (theoretical prediction: W (ρ̂) = 0.75). This
corresponds to a maximally depolarizing action causing the transmitted state to
fully decohere to ρ̂D = 1̂/4. Meanwhile, in an ideal channel (dD = 0) the Bell
state is propagating undisturbed which coincides with the value of collectibility
being W (ρ̂) = −0.24± 0.06 (theoretical prediction: W (ρ̂) = −0.25).

5.2.2 Phase-damping channel

The effect of phase damping causes decoherence between two basis qubit states
without, however, causing any bit flip transformation. Such channel can be de-
scribed by two Kraus operators

Ê0 =

√
1− dP

2
Î , Ê1 =

√
dP
2
σ̂z, (5.5)

where dP is the dephasing probability. Similarly to the previous case, the phase-
damping effect was implemented by randomly switching quarter-wave plates be-
tween two positions: 0◦ and 90◦. The resulting collectibility as a function of
dP is presented in Figure 5.4(b). Experimental value of collectibility at dP = 1

reachesW (ρ̂) = 0.32±0.09 (theoretical prediction: W (ρ̂) = 0.25) as the Bell state
propagating through this channel becomes ρ̂P = 1

2(|HH〉〈HH|+ |V V 〉〈V V |).

5.2.3 Amplitude-damping channel

Typically, amplitude damping causes lossy transmission of qubits through the
channel. The overall losses are trivial to detect as they decrease the overall number
of coincident detections. Apart from that, white (state-independent) losses do not
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Figure 5.4: Measured collectibility after the EPR pairs pass through: (a) de-
polarizing channel (b) phase-damping channel (c) amplitude-damping channel
parameterized by parameter dD, dP and dA respectively.

change the collectibility because the measurement relies solely on successful four-
photon detections. It is, therefore, more interesting to analyse state-dependent
(polarization sensitive) losses that cause disturbance in superposition of horizontal
and vertical polarizations of the state. One can describe this channel by an
effective matrix transformation

ρ̂→ ÊAρ̂Ê
†
A, ÊA =

(
1 0

0
√

1− dA

)
. (5.6)

Here, in contrast to the above-described channels, the entangled state remains
pure but its entanglement decreases. This corresponds to the Bell state being less
entangled 1√

2−dA
(|HH〉+(1−dA)|V V 〉) and eventually becoming separable ρ̂A =

|HH〉〈HH| as dA → 1, where the value of collectibility reaches W (ρ̂) = −0.05±
0.09 (theoretical prediction: W (ρ̂) = 0). Collectibility allows this transition to be
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captured as shown in Figure 5.4(c). Note that the CEW for pure states can serve
as an entanglement measure [56, 57].

To simulate the effect of amplitude damping on the pH probability the fourfold
coincidences outside of the HOM dip (without Bell-state measurement) were mea-
sured while projecting photons 2 and 4 onto HH and VV polarizations. Note that
pHH /pVV probability outside of dip is equal to p2H /(1 − pH)2. Both projections
consisted of 74 measurements each taking 10 min. Given the four-photon detec-
tion rate and length of the time, the number of coincidences detected in each of
the 74 sequences fluctuated from 0 to about 5. The 74 sequences of coincidences
were then organized in a decreasing and increasing order for the HH and VV

polarizations, respectively. The ratio R was introduced as∑N
n=1 ccHH(n)∑N
n=1 ccVV(n)

= R(N) =
p2H

(1− pH)2
, N ∈ [1, 74] (5.7)

from which the probability pH was obtained by solving the quadratic equation
Eq. (5.7).

5.2.4 Channel characteristics

Measurement of collectibility is a powerful tool that allows detection of distur-
bance occurring in the channel. However, in order to promote this method even
further, analysis of characteristic effects of the three types of noisy channels was
performed. By detailed analysis of the individual probabilities used for collectibil-
ity calculation one can identify which type of damping is inflicted. Five proba-
bilities are measured to calculate collectibility pXY for XY ∈ {HH,HV,VV,++},
and pH. The experimental and theoretical values of these quantities for three
tested channels and a reference perfect channel are visualized in Figure 5.5. The
exact results are then summarized in Table 5.1. For a perfect channel the overall
state of the system is

|Φ+〉|Φ+〉 = 1
2 [(|HH〉+ |V V 〉)(|HH〉+ |V V 〉)], (5.8)

which after projecting the photons 1 and 3 onto a singlet state collapses also to a
singlet state

|Φ+〉|Φ+〉
|ψ−

13〉〈ψ
−
13|−−−−−−→ |ψ−24〉. (5.9)

Hence, the only conditioned projection that one observes is the |HV 〉 projection
with probability pHV of 1/2. It follows from the Eq. (5.8) that the probability pH
of unconditional projection |H〉 is also 1/2. In a fully depolarizing channel the
state of the system becomes maximally mixed

ρ̂D ⊗ ρ̂D = 1̂/16
|ψ−

13〉〈ψ
−
13|−−−−−−→ 1̂24/4. (5.10)
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Figure 5.5: Characteristic channel signatures allowing to identify type of er-
rors from the individual measurements that constitute collectibility. Gray and
blue bars represent theoretical predictions and experimentally obtained values
respectively. The uncertainty of the unconditioned probability pH is negligible,
therefore, is not visualized.

Therefore, all of the conditional projections are equally likely with probabilities
of 1/4. The probability pH of unconditional projection |H〉 stays at 1/2. Phase
damping transforms the initial Bell state into a ρ̂P. The final state of the photons
2 and 4 is then

ρ̂P ⊗ ρ̂P
|ψ−

13〉〈ψ
−
13|−−−−−−→ 1

2(|H2V4〉〈H2V4|+ |V2H4〉〈V2H4|). (5.11)

The probability of observing a conditional |HV 〉 projection is 1/2, however, due
to the phase flip transformation we also observe signal in | + +〉 projection with
probability p++ of 1/4. The unconditional projection |H〉 happens with probabil-
ity 1/2. In an amplitude-damping channel with attenuated vertical polarization,
the not normalized state of the photons 2 and 4 becomes

|Φ+〉|Φ+〉
|ψ−

13〉〈ψ
−
13|−−−−−−→ 1

2
√

2

√
1− dA

(
|H2〉|V4〉 − |V2〉|H4〉

)
. (5.12)

Post-selection of photons 1 and 3 onto a singlet Bell state, steers the state of
photons 2 and 4 onto a perfect Bell state independently of the amplitude damping
parameter dA hence the probabilities pXY remain unchanged. On the other hand,
the dA parameter affects the probability of successful post-selection of photons
1 and 3 onto a singlet state as well as the local probability pH. In case of a
completely damping channels dA = 1, pH becomes 1 and the collectibility W
becomes 0 as correctly expected for a separable state of photons 1 and 2 and 3

and 4 respectively.

5.2.5 Imperfect Bell-state measurement

To explicitly demonstrate that imperfect Bell-state projection also has a measur-
able effect and can be detected, we calculated the probabilities pXY without the
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Table 5.1: Experimental results and theoretical prediction (in parenthesis) of
the pXY and pH probabilities and collectibility obtained for the perfect, fully
depolarizing, fully phase-damping and fully amplitude-damping channel. The
uncertainty of conditional probabilities pXY and unconditional probability pH is
4% and less than 1% respectively. The uncertainty of collectibility measurement
is ±0.09.

perfect
channel

depolarizing
channel

phase-dam.
channel

amplitude-dam.
channel

pHH(%) 1 (0) 20 (25) 1 (0) 1 (0)
pHV(%) 50 (50) 21 (25) 50 (50) 50 (50)
pVV(%) 3 (0) 20 (25) 3 (0) 3 (0)
p++(%) 1 (0) 32 (25) 28 (25) 0 (0)
pH(%) 50 (50) 50 (50) 50 (50) 100 (100)
W (ρ̂) -0.22 (-0.25) 0.81 (0.75) 0.33 (0.25) -0.01 (0.00)

compensation for non-interacting photons. This is specific to the linear-optical
platform, where Bell-state projection is implemented by two-photon interference.
The obtained values are pHH = 0.29, pHV = 0.49, pVV = 0.27 and p++ = 0.29,
with typical uncertainty of 0.03. The resulting collectibility readsW = 0.75±0.06.
These results prove that imperfect Bell-state projection by a balanced beam split-
ter is also detected by our method and additionally manifests a unique signature:
the probability pHV should maintain a value of 0.5 as in the case of a perfect
channel, whereas the remaining probabilities should uniformly increase their val-
ues from 0 (perfect Bell-state projection) up to 0.5 (Bell-state projection replaced
by completely non-interfering photons). Consequently, the imperfections in Bell-
state projection can be distinguished from the channel imperfections. Our exper-
imental results reflect the fact that the Bell-state measurement is imperfect only
to some degree. The portion of non-interacting photons in the Hong-Ou-Mandel
cross-pair interference is 57 %.

5.3 Conclusions

This work reports on the experimental diagnostics of entanglement swapping by
utilizing four partial measurements applied for determining CEW (collectibility).
With this approach one can capitalize on the similarity between the geometry
of the ES protocol and the layout for measurement of CEW. This method al-
lows detection of disturbance in a channel by measuring four probabilities pXY

and estimating the collectibility making it a preferable method as the number
of measurement configurations is lower than in other means of diagnostics. The
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collectibility was measured for three noisy channels: depolarizing channel, phase-
damping channel, and amplitude-damping channel. The obtained experimental
data is in a good agreement with theoretical predictions. Additionally, by anal-
ysis of the measured pXY probabilities, one can determine which type of error is
occurring in a given experimental setting for all three damping channels. The
experiment also demonstrate that this approach is able to detect imperfections
in Bell-state measurement and is capable of distinguishing them from previously
mentioned faulty channels. A real-world channel may constitute a combination of
typical noisy channels (depolarizing, dephasing) and hence the observed channel
characteristics reflected in the measured probabilities pXY would be a combination
of characteristics of the participating types of noise. This effect, however, does
not change qualitatively any of the presented results and drawn conclusions. We
believe that these results can contribute to the field of quantum communications
and mainly represent a practical instrument for future deployment of quantum
networks or engineering of complex multilevel quantum systems.



Chapter 6

Conclusions

As described in the introduction, quantum information processing realized on the
platform of linear optics represents a perspective area of research. In recent years
it accomplished several milestones such as controlled and long-distance quan-
tum teleportation or secure quantum key distribution. Nevertheless, there are
still many concepts that need to be theoretically investigated and experimentally
demonstrated.

In this thesis, three original QIP experiments were presented. They were mo-
tivated by recent developments in the field and by our believe that they might
contribute to the advancement of quantum information processing. The focuses of
these experiments were the detection of entanglement in hyper-entangled states,
characterization of errors that could occur during an entanglement swapping and
a distance measure between quantum states. To our satisfaction, all of our re-
sults were published in journals with an impact factor. In one case the results
were deemed important enough to warrant publication in the prestigious Physical
Review Letters. These results were also promoted to general public via several
media [137–139].

The first experiment, presented in Chapter 3, successfully demonstrated the
detection of entanglement in a hyper-entangled state by a non-linear entanglement
witness. The original technique which was proposed by Rudnicki et al. allows
to detect entanglement in large number of two-qubit states. The collectibility
measurement of systems entangled in one degree of freedom requires to perform
the collective measurements on two identical copies of the investigated state. Here
the collectibility was measured directly on a single multilevel state where a two-
qubit state is copied across two degrees of freedom. Advantage of the mixed
encoding is that one needs fewer information carriers (photons) therefore, the
detection events are more frequent and the whole measurement is considerably
faster. Further to that, complete Bell analysis is feasible with linear optics when
two degrees of freedom are involved.

The fourth Chapter presents the second experiment which was focused on
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the measurement of Hilbert-Schmidt distance between two two-qubit states. The
experiment demonstrates that our method for measuring Hilbert-Schmidt dis-
tance is far less complex than reconstructing density matrices and that it can
be applied in quantum-enhanced machine learning to reduce the complexity of
calculating Euclidean distances between multidimensional points. The results are
also a novel example of applying mixed states in quantum information processing.
Usually working with mixed states is undesired, but here it gives the possibility
of encoding extra information as coherence between given two dimensions of the
density matrix.

The third experiment is discussed in Chapter 5. It aimed at the diagnostics
of entanglement swapping protocol by means of collectibility. The experiment
successfully demonstrated that our approach is suitable to detect disturbances
occurring in the preparation of quantum states, quantum communication chan-
nel and imperfect Bell-state projection. Advantage of this method is that there
is considerable similarity between the geometry of the entanglement swapping
protocol and the layout for collectibility measurement.

In addition to the three experiments described in this thesis, the author is also
a co-author of other two publications. One is related to the distance measures
in Hilbert space [A2], the other to the characterization of photon-number noise
in Rarity-Tapster-Loudon-type interferometers [A5] published as a summary of
authors Master’s thesis. The first paper is a theoretical study into direct mea-
surement of quantum state distances investigated during the author’s research
visit to prof. Karol Bartkiewicz at Adam Mickiewicz University in Poland.

There are still many compelling topics and concepts whether related or un-
related to the discussed experiments that deserve some attention. The author
believes that he might pursue some of them in his future work.
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