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Chapter 1 

Introduction 

1.1 Quantum optics 

Quantum optics is a field of research that focuses on the application of quantum 

mechanics to the phenomena involving light and its interaction wi th matter. The 

term quantum optics was not customary i n the first part of 20th century as the re

search i n quantum mechanics was more focused on the properties of matter rather 

then light. This changed wi th the developments i n laser science in which quantum 

mechanics underlying the laser's principles was studied wi th the emphasis on the 

properties of light [1]. 

F rom 1950s the interest in quantum optics rose rapidly as J . Klauder , G . 

Sudarshan, R . J . G laube r 1 and L . Mande l presented a quantum description of 

electromagnetic field which provided better understanding of photodetection and 

photon statistics [2, 3]. This led to an introduction of the coherent state which 

approximately describes the output of a single-frequency laser and exhibits Pois-

sonian photon number statistics unlike the thermal light where the number of de

tected photons exhibits Bose-Einstein distr ibut ion. Other exotic quantum states, 

such as squeezed states of light [4] were subsequently discovered. Since develop

ment of the laser many areas of research i n the topic of quantum optics emerged. 

Development of short and ultrashort pulses achieved by Q-switching [5] and mode-

locking [6] techniques made the research of ultrashort processes possible [7].2 The 

study of mechanical forces of light on matter led to levitat ing and positioning 

cloud of atoms by optical trap and optical tweezers [8]. A very interesting ap

plicat ion of quantum optics and laser science is Doppler [9] and Sisyphus cooling 

[10] which was crucial for achieving the Bose-Einstein condensation. 3 Exper imen-

1 In 2005 R. J. Glauber received the Nobel price for his contribution to the quantum theory 
of optical coherence. 

2In 2018 G. Morou and D. Strickland received the Nobel price for their method of generating 
high-intensity, ultra-short optical pulses. This price was shared with A. Ashkin for his research 
in the optical tweezers and their application to biological systems. 

3 In 1997 S. Chu, C. Cohen-Tannoudji and W. D. Phillips were awarded the Nobel Prize for 
their work in laser cooling and atom trapping. 

1 
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ta l demonstration of quantum entanglement [11, 12], quantum teleportation [13, 

14] and the construction of quantum logical gates [15] achieved generally on the 

optical platform opened the way to the study of quantum information processing 

and quantum communications. This progress led for example to the possibility 

for quantum algorithms [16, 17] and information-theoretic secure communications 

[18-20]. 

The study of quantum physics and using the quantum laws of nature for our 

benefit already d id bring us better understanding of the workings of our universe 

and innovations which would be hard to give up. Nevertheless there are s t i l l many 

questions unanswered and the possibili ty for improvement of our technology is 

almost limitless. 

1.2 Quantum information processing 

Quantum information processing (QIP) is diverse and interdisciplinary field of 

research including quantum information theory, quantum communications, quan

t u m computation, quantum algorithms and their complexity and quantum con

trol . It relies on the use of laws of quantum physics to improve the above men

tioned areas of quantum information science wi th respect to their classical coun

terparts [21]. 

The basis for these improvements is the information encoding. W h i l e current 

classical computers encode information into bits which are binary, quantum com

puters encode information into qubits [22] which can exist i n superposition. This 

and other phenomena of quantum physics 4 potentially enable quantum computers 

to solve certain problems much faster then any classical computer. 

For instance, a well known example of a quantum algori thm that, i n principle, 

runs faster then it would be possible w i th known classical approach is the Shor's 

algori thm [17]. It is theoretically capable to factorize the product of large prime 

numbers i n polynomial time, almost an exponential speed-up compared to known 

classical factoring algorithms. There have been several experimental demonstra

tions of the Shor's algori thm [23, 24], although these were able to factorize only 

double-digit numbers. 5 

Nevertheless, the potential efficiency of quantum algorithms is so significant 

that they pose a threat to commonly used classical cryptographic methods. It is 

again quantum mechanics that provides possible solution to these security con

cerns. The so-called quantum cryptography [19, 20] makes use of quantum me

chanical properties of quantum states such as the impossibil i ty of perfect cloning 

[18] to provide information-theoretic secure dis tr ibut ion of information. 

4such as quantum entanglement 
5 In 2012 two groups demonstrated the factorization of numbers 15 and 21. 
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However, no-cloning theorem also makes the dis tr ibut ion of quantum informa

t ion (qubits) over long distances not an easy task. It is due to signal degradation 

wi th in the quantum channel [25]. Therefore, a quantum approach to overcome 

transmission loss is required. Solution can be provided by the quantum entan

glement, a phenomenon achievable between at least two qubits. Devices based 

on the entanglement swapping protocol [26] such as quantum relay or repeater i n 

principle split the transmission distance into smaller segments lowering the error 

probabil i ty [25, 27]. There are many challenges involved in the development of 

quantum relays or repeaters as they are complex systems requiring sophisticated 

quantum devices and routines such as quantum memories [28, 29] and entangle

ment dis t i l la t ion [30, 31]. 

Q I P schemes can be realized on several physical platforms including trapped 

ions, nuclear magnetic resonance, cavity quantum electrodynamics and linear op

tics [32-34, A l ] . The platforms where information is stored i n the properties of 

electrons or ions is better suited for quantum computing, complex logical gates or 

quantum memory. The linear optics platform on which qubits are encoded into 

properties of light (photons) seems part icularly suitable for quantum communica

tions as photons are fast, well controllable and mostly unaffected by environment 

[35-38]. A s this area of research is very promising many quantum communica

tions protocols and Q I P schemes, including those presented i n this theses, are 

being proposed and experimentally implemented. 

1.3 Quantum machine learning 

Machine learning is study of data analysis techniques that use computat ional 

methods to learn (seek patterns i n empirical data) without relying on a predeter

mined expl ici t ly formulated model . The learning algorithms are based on min i 

mizing a constrained multivariate function, where the result of this opt imizat ion 

is a decision function that maps input points to output points. In other words, 

machine learning algorithms bui ld a mathematical model based on training data 

in order to make predictions or decisions without being expl ici t ly programmed to 

do so. Machine learning has become a key technique for solving complex tasks 

involving large amount of data and lots of variables. Such as email filtering, face 

and speech recognition, self-driving cars and algorithmic t rading [39]. 

The term quantum machine learning most often refers to machine learning 

algorithms for the analysis of classical data, where the whole task or just compu

tat ionally difficult subroutines are outsourced to quantum device, i.e. quantum-

enhanced machine learning [40-42]. Computa t ional complexity of an algorithm 

is defined as the amount of resources (time, memory, number of arithmetic op

erations) required to solve a problem. In computer science, the computat ional 

complexity is standardly described in terms of the B i g O notation [43]. It is used 
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Figure 1.1: Four different approaches to combine the disciplines of quantum 
computing and machine learning. 

to classify algorithms according to the growth of requirements w i th respect to 

the growth of the inputs . 6 It has been already demonstrated that by quantum 

approach one can reduce the complexity of several algorithms used as subrou

tines in machine learning [44-47]. One can also consider convexity which is often 

desired in machine learning. Convex opt imizat ion problems are not sensitive to 

in i t ia l conditions and do not fail due to local extrema. F ind ing the min imum 

of a loss function is then relatively fast, simple and less computat ionally inten

sive. However, many opt imizat ion problems such as neural networks are generally 

non-convex [48]. Even though some of these problems are differentiable, meaning 

that they can be decomposed to a number of convex problems, there are some 

non-convex opt imizat ion algorithms, such as evolutionary algorithms, which show 

several advantages for learning. For instance, sparser models ensure better gen

eralization performance, and non-convex objective functions are less sensitive to 

noise and outliers [49]. For this reason, non-convex opt imizat ion algorithms seem 

to be gaining more and more recognition in the machine learning community. 

This approach to opt imizat ion might prove easier and faster to solve by quantum 

computing as quantum algorithms look for the op t imum through different, more 

physical, process and are not bound by convexity restrictions [40]. 

1.4 Outline 

The main part of this thesis consists of three genuine Q I P experiments realized 

on the linear optical platform. These experiments were performed at the Joint 

Laboratory of Optics of Pa l acký Universi ty and Czech Academy of Sciences. The 

Quantum Optics group at this inst i tut ion has a lot of experience and rich history 

of research i n quantum information processing [50-52]. 

6For example, notation 0(x2) states that requirements of a certain algorithm grow quadrat-
ically as x —> oo. 
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1.4.1 E x p e r i m e n t 1: M e a s u r e m e n t of a non- l inear entanglement 

witness by hyper -en tang l ing two-qubi t states 

Based on Vojtěch Trávniček, Karol Bartkiewicz, Antonín Černoch, and Karel Lemr 

Phys. Rev. A 98, 032307 (2018). 

The first experiment presented i n this thesis discusses the problem of entangle

ment detection. Quan tum entanglement is one of the key phenomenon in quantum 

physics [53, 54]. It plays a crucial role i n quantum communications and quantum 

computing, therefore, it is the subject of intense investigation [15, 55]. In the 

experiment we demonstrate that non-linear entanglement witnesses can be made 

part icularly useful for entanglement detection in hyper-entangled or multi level 

states. 

For the purposes of demonstrating this concept, one of the less complex non

linear entanglement witnesses known as the collect ibi l i ty was selected. The orig

inal technique which was proposed by Rudnick i et al. [56, 57] allows to detect 

entanglement i n large number of two-qubit states. The collectibil i ty measurement 

of systems entangled i n one degree of freedom requires to perform the collective 

measurements on two identical copies of the investigated state. This was later 

experimentally realized by Lemr et al. [58]. The presented experiment shows 

that collectibil i ty can be measured directly on a single multi level state where a 

two-qubit state is copied across two degrees of freedom. This approach was tested 

for three characteristic two-qubit quantum states. The experiment was performed 

in 2017 and published year later. 

1.4.2 E x p e r i m e n t 2: M e a s u r e m e n t of the H i l b e r t - S c h m i d t dis

tance between two-qubi t states 

Based on Vojtěch Trávniček, Karol Bartkiewicz, Antonín Černoch, and Karel Lemr 

Phys. Rev. Lett. 123, 260501 (2019). 

The second experiment addresses distance measurements in Hilber t space. The 

measurement of distance between quantum states is an important tool for the 

field of quantum communications, where the transmission channel accuracy can 

be determined by measuring distances between transmitted and received states. 

These distance measures are also essential for certain classification algorithms as 

the common method is to perform distance measurements among sample vec

tors [40]. The most prominent distance measures include Uhlmann-Jozsa fidelity 

(Bures metrics), trace distance and Hilbert-Schmidt distance [59, 60, A2] . 

The experiment aims to demonstrate the measurement of Hilber t -Schmidt dis

tance between characteristic two-qubit states. It shows that the new method for 

measuring distances in Hilber t space is far less complex than reconstructing den-
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sity matrices and that it can be applied i n quantum-enhanced machine learning 

to reduce the complexity of calculating Eucl idean distances between mult idimen

sional points. The results are also a novel example of applying mixed states i n 

quantum information processing. Usual ly working wi th mixed states is undesired. 

but here it gives the possibili ty of encoding extra information i n the coherence be

tween given two dimensions of the density matr ix . The experiment was performed 

in 2019 and published in the same year. 

1.4.3 E x p e r i m e n t 3: Diagnost ics of entanglement swapp ing by a 

col lect ive entanglement test 

Based on Vojtěch Trávniček, Karol Bartkiewicz, Antonín Černoch, and Karel 

Lemr, Phys. Rev. Applied, 14, 064071 (2020). 

The th i rd experiment discusses the diagnostics of entanglement swapping pro

tocol [26] by means of collective entanglement witness [56, 57]. Since entangle

ment swapping is a key procedure for quantum repeaters [25], quantum relays 

[27], device-independent quantum communications or entanglement assisted error 

correction [61, 62], this can aid in faster and practical resolution of quality-of-

transmission related problems as this approach requires fewer measurements then 

other means of diagnostics. 

In this experiment we make use of similarities shared between a non-linear 

entanglement witness and an entanglement swapping device. B y measuring in

dividual quantities used to calculate this non-linear witness, we simultaneously 

obtain useful data that allow to identify any imperfections in the entanglement 

swapping. 

The experiment demonstrates that this approach is suitable to detect distur

bances occurring in the preparation of quantum states, quantum communicat ion 

channel and imperfect Bell-state projection. The experiment was performed i n 

2019 and published in 2020. 



Chapter 2 

Methods and tools 

2.1 Hilbert space 

A state of a physical system is i n quantum mechanics represented by a vector 

in Hilber t space (T~L) [63]. The term Hilber t space often refers to an infinite-

dimensional complex vector space wi th inner product that is complete or closed. 

However, in quantum information processing it is also used i n context of finite-

dimensional spaces, where the condit ion of completeness is automatically satis

fied.1 The vectors i n 7i are i n quantum mechanics usually denoted using Dirac 

notation as \v) called a ket, where v is the "name" of the vector. The inner product 

is then defined as (u\v), where (u\ is called a bra which is a hermit ian conjugate 

(conjugate transpose) to \u). A collection of linearly independent vectors 

forms a basis of % if every element of % ( I V ' ) )
 c a n be wri t ten as linear combination 

of these vectors as 
d 

|V) = 5 > k > , (2.1) 
i, 

where d is dimension of T~L. Par t icular ly useful are basis vectors that are orthogonal 

and complete w i th following properties 

(vi\vj) = 6ij, (2.2) 

d 

I > ' M U ' I = 1 ' (2-3) 
i. 

1This is true when one encodes information into individual physical objects such as photons. 

7 
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where 5ij is the Kronecker delta. It is often convenient to th ink of kets and bras 

as column and row vectors respectively 

(2.4) 

Note that the numbers Cj and c* depend on the choice of basis, while the inner 

product is independent. 

2.1.1 K e t s a n d phys ica l propert ies 

Two vectors and CIV'); where is a scalar mult ipl icat ion of \tp) by a non-zero 

complex number £, have in quantum mechanics the same physical significance. 

For this reason, one might say that the state of a physical system is not repre

sented by a vector, but rather by a ray defined as a collection of al l the complex 

multiplications of the given vector. 

The complex number £ can always be chosen so that the quantum state \tp) 

representing the physical system is normalized 

(V#> = 1- (2.5) 

Working wi th normalized vectors is often convenient as i n quantum mechanics 

one usually looks for probabilities of finding a physical system described by \tp) 

in some quantum state e.g., \<p). This probabil i ty is defined by the inner product 

of these two vectors as 

(2.6) 

where the normalizat ion condit ion ensures that the inner product has dimension 

of probability. Note that one can mul t ip ly normalized vector by a phase etip. 

where ip is real without changing the normalizat ion or physical meaning. Thus 

normalizat ion does not produce a unique vector representation of a given physical 

system. 

Keep in m i n d that just because \ip) and have the same physical signifi

cance does not mean that one can mul t ip ly a vector inside a linear combination 

by a constant without changing the physical interpretation. Note that \<p) + \tp) 

and \(f>) — \tp) do not, i n general, represent the same physical system. 

2.2 Qubit 

In classical information theory the basic unit of information is called a bit (binary 

digit) . A s the name suggests the bit represents a logical state wi th one of two 
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possible values usually represented by numbers "0" and " 1 " . Physically, the bits 

are most commonly encoded into electrical voltage, current or light intensity. The 

most important fact about the bit from the quantum physics point of view is that 

it theoretically possesses the logical value "0" or " 1 " wi th absolute certainty [64]. 

Th is is not the case wi th the qubit, which is a unit of quantum information 

[22]. It is due to one of the fundamental principle of quantum physics, which is 

the quantum superposition. The principle states that i f a physical system may be 

in one of mult iple configurations then the most general pure state of the system 

is a linear combination of al l these possibilities. For instance, for a pure quantum 

state of a qubit w i th two orthonormal basis states |0) and |1) the most general 

state would be 

| * ) = « | 0 ) + / 3 | 1 ) . 

The coefficients a, (3 are generally complex numbers associated wi th probabil i ty 

amplitudes, therefore, they obey the normalizat ion constrained 

\a\2 + \(3\2 = l. 

Qubi t is then formally defined as normalized vector i n a two-dimensional Hilbert 

space. Note that the state of the qubit in superposition is not somewhere i n 

between the basis states, rather, when measured, the qubit is w i th probabil i ty 

\a\2 {\p\2) found i n state |0) ( | 1 » [21]. 

In order to physically encode a qubit, one requires an object that supports 

a two-level quantum system. This object might be an electron, ion, Josephson 

junct ion or a photon. A qubit can be encoded into the state of photons in multiple 

ways, however, there are two distinct approaches. First ly, it is individual photon 

encoding such as polarizat ion (e.g., [14, 65]), spatial mode (e.g., [50, 66]) and 

t ime-bin encoding (e.g., [67]). These are also known as discrete variables. The 

second approach uses collective mult iphoton states and is often related to the 

so-called continuous variables for example light quadratures [68, 69]. Note that 

in hereby presented experiments qubits were encoded into the discrete variables 

namely into polarization and spatial modes. 

Encoding into polarizat ion degree of freedom is widely used especially in Q I P 

realized in bulk optics. The mapping of qubit state onto polarization state of a 

photon is quite straightforward as they both occupy the same two-dimensional 

Hilber t space. It is useful to visualize polarizat ion state of a photon using the 

B loch sphere, where horizontal and vertical polarizations sit on the poles, mean

while their balanced superpositions are situated on the equator (see Figure 2.1). 

It is customary to associate horizontal and vertical polarizations wi th logical qubit 

states |0) and |1) respectively. Due to equivalent representations of states v i a the 

B loch diagram, any state on the surface of the B loch sphere can be wri t ten as 

I*) = cos | + sin f | F ) . 
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| H > ~ | 0 > 

|A> 

|D> 

I V > ~ l l > 

Figure 2.1: Visual iza t ion of the B loch sphere. Horizontal polarizat ion state 
\H) represents logical qubit state |0) while vertical polarization state \V) corre
sponds to logical qubit state |1). The depiction also includes positions of balanced 
superposition states situated on the equator. Diagonal and anti-diagonal linear 
polarization states are labeled \D) and \A). Right-hand and left-hand circular 
polarization states are denoted \R) and \L) (see Table 2.1). 

Another degree of freedom that can be employed to encode quantum infor

mation are the spatial modes of a photon. Here, the presence of a photon on a 

certain path is designated logical state |0) or |1) (see Figure 2.2). Note that using 

a general fiber coupler one can also prepare a superposition of the two modes. 

Spatial mode encoding is predominantly used i n fiber-optical setups as polariza

t ion state of a photon is prone to change during propagation i n a standard optical 

fiber. 

Viab le option is also to encode mult iple qubits into mult iple degrees of freedom 

of a single photon [ A l , A3] . This approach allows one to encode more information 

into the available number of photons, however, it makes bui lding the desired Q I P 

scheme more challenging. A n example of this mixed encoding is presented i n 

the first two experiments included i n this thesis. In both cases polarization and 

spatial degree of freedom were used to encode two qubits of information into a 

single photon. 

2.3 Photons for quantum information processing 

Quantum information processing schemes realized wi th indiv idual discrete pho

tons and linear optics rely on photon interference for the desired photonic interac

tions to take place. This means that the photons should be close to ideal Fock |1) 

states and highly indistinguishable i n their wavelength, polarization, spatial mode 



2.3. PHOTONS FOR QUANTUM INFORMATION PROCESSING 11 

Figure 2.2: Schematic depiction of spatial encoding. Photon i n the upper path 
represents logical qubit state |1) while photon i n the lower path logical qubit state 
|0). 

and time of arrival. Therefore, it is evident that preparation of suitable photons 

is a necessary condit ion for experimental implementation of the Q I P schemes. 

This sections provides a brief description of the principle of the photon source 

employed in the later presented experiments. 

The source is based on a non-linear process commonly known as spontaneous 

parametric down conversion ( S P D C ) observable under certain conditions i n a 

medium wi th a %(2) optical non-linearity pumped by strong optical field [70, 71]. 

The interaction between the pump beam and the medium might result i n decay 

of a pump photon (p) into a pair of t ime correlated photons called signal (s) 

and idler (i) of lower energy. The spectral properties and spatial geometry of 

the generated photons are determined by the conservation laws of energy and 

momentum (phase-matching condition) 

Huip = huis + huii, hkp = hks + hk{, (2-7) 

together wi th the configuration and characteristics of the medium. The phase-

matching condit ion has dramatic effect on the efficiency of the S P D C process and 

therefore, should be maintained for the entire length of the medium. However, it 

is very difficult to fulfill the phase-matching condit ion i n homogeneous isotropic 

materials. It is due to chromatic dispersion where the interacting waves experience 

different index of refraction which causes phase mismatch 

|AJfe| = \kp\ - \ks\ - \h\ / 0. (2.8) 

One way how to mitigate the phase mismatch is to use birefringent materials, 

typical ly LHO3 or /3-BaE>204 ( B B O ) , where the refractive index not only depends 

on frequency, but also on the polarization and direction of the light propagating 

through the crystal . The phase matching condit ion is then fulfilled by suitable 

polarization of the waves and orientation of the crystal . There are several types 
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Figure 2.3: Simplified scheme of a source of photon pairs based on the S P D C 
process: The pumping beam is focused by a lens (L) and impinges on the non
linear crystal ( N L C ) , where a pumping photon (p) might decay into a pair of 
t ime correlated photons called signal (s) and idler (i). These photons are then 
collected by couplers into single-mode optical fibers ( S M F ) . In order to ensure 
the wavelength indinstinguishabil i ty of the generated photons and to prevent the 
diffracted pumping photons from entering the fibers, cut-off or interference filters 
(IF) are positioned in front of the couplers. 

of birefringent phase matching that differ i n polarization states of the input and 

output photons. In the presented experiments only the non-collinear type I phase 

matching was used, where extraordinary polarized pumping photon generates two 

photons wi th ordinary polarizat ion that leave the crystal on opposite sides of a 

cone centered around the pumping beam (see Figure 2.3). A s it was mentioned 

earlier, the photons must be highly indistinguishable this requires precise posi

t ioning of photon couplers, single-mode optical fibers and spectral filtering by 

cut-off or interference filters. 

Note that the source generates t ime correlated photon pairs whose polarizat ion 

state can be in an ideal case described by a pure separable state, for instance 

\HH). A l though separable states are suitable for many Q I P schemes, there are 

Q I P protocols, such as quantum teleportation or quantum repeater, that rely on 

entangled photon states. 

2.3.1 G e n e r a t i o n of entangled p h o t o n pairs 

One non-linear crystal wi th type I phase matching can not directly produce polar

ization entangled photon pairs. Indirect polarizat ion entanglement is achievable 

afterwards by means of post-selection [72]. This approach however, requires the 

post-selection to be compatible w i th the rest of the Q I P scheme which is not al

ways feasible. One can generate polarization entangled photons directly by means 
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Figure 2.4: Simplified scheme of a source of polarization entangled photon pairs 
based on the K w i a t source: The pumping beam is focused by a lens (L) and im
pinges on two non-linear crystals ( N L C ) mutual ly rotated by 90° . The directions 
of the optical axes of the crystals are represented by red and black stripes. Due 
to indistinguishable point of origin of the photon pair and generally el l ipt ical po
larization of the pumping beam the polarization state of the two photons is in the 
form E q . (2.9). The photons then pass through cut-off or interference filters (IF) 
to ensure the wavelength indinstinguishabil i ty and are collected by couplers into 
single-mode optical fibers ( S M F ) . The polarization state of the pumping beam is 
tuned by half-wave plate ( H W P ) and quarter-wave ( Q W P ) plate in front of the 
crystals. 

of type II phase matching [14]. Dur ing this process extraordinary polarized pump

ing photon decays into two photons wi th orthogonal polarizations. The generated 

photons leave the crystal in a direction of two cones (one for each polarization) 

which are symmetrical to the pumping beam. The amount of overlap between 

the cones depends on the orientation of the crystal (orientation of it 's optical 

axis) and the angle of incidence of the pumping beam. Polar izat ion entangled 

photon pairs then can be observed at the cross-section of the two cones. Due 

to the orthogonal polarizations of the signal and idler photons there are effects 

known as walk-off that reduce the quali ty of the entanglement. The polarizat ion 

dependent refractive indices cause the separation of the signal and idler beams 

called transversal walk-off meanwhile different group velocities cause longitudinal 

walk-off. This negative effects can be mitigated by compensation optics [70]. 

A photon source that produces polarization entangled photon pairs and does 

not have problems wi th walk-off was realized by K w i a t et al. [73]. The source, 

depicted in Figure 2.4, consists of two non-linear crystals cut for type I phase 

matching mutual ly rotated by 90° . Hence, the down-converted photons created 

in one crystal have orthogonal polarizat ion wi th respect to the photons created i n 



14 CHAPTER 2. METHODS AND TOOLS 

the other crystal . Note that i f the pumping beam is polarized so that both hori

zontal and vertical polarizat ion components are non-zero either of the crystals is 

capable of down-conversion. In order to prepare an entangled state, the couplers 

must collect photon pairs from both crystals simultaneously. Th is is achieved 

by combination of several aspects such as the thickness of the crystals 2 and the 

angle between propagation direction of the pumping beam and generated pho

tons. 3 Thinner crystals and tighter angles improve spatial overlap of the photons 

generated from both crystals. However, they also lower the probabil i ty of down-

conversion event and make the manipulat ion wi th the couplers more difficult as 

the couplers are now closer to the pumping beam. The later can be mit igated by 

increasing the distance between the crystals and the couplers. 4 Combin ing these 

aspects ensures that paths of the generated photons from both crystals are almost 

identical, therefore, the couplers can not distinguish in which crystal the photon 

pair originated. This makes the polarizat ion state of the photon pair a coherent 

superposition of separable states \HH) and | V V ) . 

The K w i a t source generally produces polarizat ion entangled two-photon states 

in the form of 

|V>) = c o s ( a ) | t f t f ) + e i 9 s i n ( a ) | F F ) , (2.9) 

where the parameters a, 9 are connected to the polarization state of the pumping 

beam. The ratio between the \HH) and \VV) components is affected by pa

rameter a which can be modified by rotat ing a half-wave plate in the pumping 

beam. Parameter 9 affects the phase between the components. The phase can 

be changed by t i l t ing a quarter-wave plate i n front of the crystals. Note that for 

a = 7r/2 both crystals are pumped equally and the source generates maximal ly 

entangled states. 

2.4 Linear optical toolbox 

Manipu la t ion wi th the photons and thus processing the information stored i n their 

states is achieved by a series of linear optical tools [1, 74]. This section describes 

several of these optical elements employed i n the presented experiments. 

2.4.1 B e a m spl i t ter 

One of the most important tools for Q I P realized on the platform of linear optics 

is presumably the beam splitter. Physically, it usually takes the form of a semi-

transparent mirror which transmits only a certain por t ion of the incident light 

2 i n our case 0.6 mm 
3 In the presented experiments the angle between the pumping beam and the photons was 

about 4°. 
4 in our case 1 m 
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Figure 2.5: Conceptual scheme of a cube beam splitter: Opt ica l fields i n the 
input ports characterized by annihilat ion operators d and b are being coherently 
mixed according to the beam splitter transformation described in E q . (2.11) 

while reflecting the rest. There are several beam splitter constructions, for in 

stance, cube and plate beam splitters for bulk optics or fiber beam splitter ( F B S ) 

for fiber optics. In classical description, beam splitter transforms incident light 

w i th amplitude E into the transmitted and reflected beams which amplitudes are 

given by 

where t\ and r\ are the transmission and reflection amplitudes respectively. In 

quantum theory the amplitudes of the field are replaced by Heisenberg annihila

t ion operators E —>• a, Et —>• c, Er —>• d [2]. To make sure that these annihilat ion 

operators fulfill commutat ion relations, one needs to consider both input ports 

of the beam splitter even if one of the ports is in vacuum state (Fock state |0)). 

Thus in quantum mechanical description the beam splitter is characterized by 

transmission tj and reflection amplitudes in two input ports (see Figure 2.5). 

A phase shift between the transmission and reflection introduced at the interface 

is usually associated only wi th one of the beams. Let transmission coefficient 

be a real number, thus the information about the relative phase shift is carried 

by the reflection coefficient r^e*^. T h e n the action of lossless beam splitter can 

be described in matr ix formalism by 

Et — t\E Er = nE (2.10) 

(2.11) 
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where the transformation matr ix U has to be unitary in order to ensure the 

val idi ty of commutat ion relations for the Heisenberg operators. Assuming = 

1*21: | n I = 17*21 leads to 

[ / » ( / = ( t 2 + r \ ' = ' ' I (2-12) 
' tr(e1^ + e " ^ 2 ) t 2 + r 2 / \ 0 1 ' 

It is evident that for a lossless beam splitter t2 + r 2 = 1. Also from 

e i v i + e - i ^ 2 _ 2ei(Vi-V2)/2 c o s jgi + ^ = ^ ^ 2 _ 1 3 j 

one concludes that + ^ 2 = TT where the consensus is to set y>\ = \ and ipi = § 

(Beam splitter wi th symmetrical phase shift). Then the transformation matr ix 

takes the form of 

It is the linear relation E q . (2.11) for the operators that makes the linear optics 

called "linear". 

2.4.2 P o l a r i z a t i o n sensitive b e a m spl i t ter 

Q I P schemes based on the popular polarizat ion encoding require optical compo

nents that are sensitive to the polarizat ion state of the incident photons. It is 

needed for controll ing the polarizat ion degree of freedom of individual photons i n 

order to process the quantum information. One of these components is a polariza

t ion sensitive beam splitter ( P S B S ) which exhibits different reflection coefficients 

for horizontal and vertical polarization components of the incident light. This 

complicates the mathematical description of an ideal P S B S as both polarizat ion 

components require separate input and output modes (see Figure 2.6) 

(th 0 o \ 

Cv 0 0 irv av 

dh irh 0 0 

\dv) v ° 0 ty ) 

(2.15) 

where indices h and v denote horizontal and vertical polarizat ion in relation to 

the plane of incidence. In the experiments presented in later chapters cube P S -

BSs were used. The cube is often made of two triangular glass prisms that are 

attached by a transparent resin or cement. The polarization sensitive beam split

ters were used as polarizators ( P B S ) for which the typical values of transmission 

and reflection coefficients are | t h | 2 > 90% and | r v | 2 > 99.5%. The action of P B S 

then separates the two polarization components by reflecting one of them wi th 

dielectric coating which is applied to the hypotenuse of one of the prisms. C o n -
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dh= 4 bh + irh dh dv= U bv + in dv 

. j 
dv y c v = U dv + in bv 

dh —• 
i c — 

c h = 4 dh + irh bh 

SI 

t 
P S B S 

1 
h 

s\ 

by 

Figure 2.6: Conceptual scheme of a polarizat ion sensitive beam splitter cube: 
Generally, the orthogonal polarization components do not experience the same 
spli t t ing ratio. This is due to polarizat ion sensitive reflection coating which in
troduces different reflection coefficients for the two polarization components of 
the incident light. Note that in a spatial case P S B S can act as polarizing beam 
splitter. 

struction of the cube P B S ensures a 90° separation between the horizontal and 

vertical polarizat ion and a min ima l transverse offset of the transmitted beam. 

Note that the action of P B S can be used for spatial encoding which is described 

in the previous Section 2.2. 

2.4.3 B e a m displacer 

Beam displacer ( B D ) is similar to a P B S in separating incident light into two or

thogonally polarized beams, however, there are few important differences. Unl ike 

P B S , the beam displacer used i n the conducted experiments was manufactured 

from birefringent material such as calcite. Due to it 's birefringent nature, light 

polarized perpendicular to a plane defined by the optical axis and direction of 

propagation experiences a different index of refraction than light which is polar

ized parallel to the plane. Moreover due to the fact that the optical axis is not 

parallel or perpendicular to the incident spatial mode, a walk-off effect is observed 

for one polarizat ion. Therefore, the incident light is laterally separated into two 

orthogonally polarized beams that exit the crystal by the same side. For refer

ence see Figure 2.7. The displacement (d) of the two polarization states can be 

calculated as 

d = Ltan(a), (2.16) 



18 CHAPTER 2. METHODS AND TOOLS 

B D 

Figure 2.7: Conceptual scheme of a beam displacer: The beam displacer sep
arates horizontal and vertical polarizat ion components of the incident light by 
birefringence and orientation of an optical axis. Note that optical field i n the 
displaced path is polarized parallel to the plane defined by the optical axis and 
direction of propagation while optical field in the unchanged path is polarized 
perpendicularly. 

tan(a) = (1 - 4) ^ , (2-17) 
V n\) i + 4 t a n 2 ( 0 ) 

where n Q and n e are the ordinary and extraordinary refraction indices respectively. 

Typ ica l distance between the outgoing beams is for commercially available calcite 

beam displacers in a range of few millimeters. Depending on the construction and 

material of the B D the outgoing beams might be parallel or divergent. 

2.4.4 W a v e plates 

Another polarizat ion controll ing devices are birefringent wave plates, or retarda

t ion plates. These optical elements transmit light and modify its polarization state 

without attenuating, deviating, or displacing the beam. 5 They are extremely use

ful when one needs to manipulate the polarizat ion of light wi th in a single spatial 

mode. A wave plate is a th in wafer of a uniaxial crystal , typical ly quartz, which 

is cut in a way that the plane of the wafer contains the fast and slow optical axis. 

In this case the opt ical axis is perpendicular to the designated incident spatial 

mode. Light polarized along fast axis encounters lower index of refraction and 

travels faster through wave plate than light polarized along the slow axis. Thus, 

the wave plate introduces a relative phase T between those two components, which 

is related to the birefringence A n = n e — n Q and the thickness L of the crystal by 

the formula 
„ 2irAnL 
r = ^ — , (2.18) 

5This is a case for zero angle of incidence. 
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Table 2.1: Jones vectors and matrices for polarized light and wave plates. 

Polar izat ion ket notation Jones vector 

horizontal \H) 

vertical | V) 

diagonal \D) = j-(\H) + \V)) ± (j) 

anti-diagonal \A) = j.(\H) - \V}) ± 

right-hand circular \R) = ^(\H) - i\V)) ± 

left-hand circular | L) = ^ (| H) + i \ V)) 7 s ( i ) 

Optical element T , . 
r r , . , , . , , Jones matr ix (last axis w.r.t. horizontal axis) 

H W P @ 0 ° e " 
1 0 
0 - 1 

J I W P C 1 5 ° <rs- | ^ 

Q W P @ 0 ° e—r ( . 
\0 i 

Q W P @ 9 0 ° e f ( J ° . 

where Ao is the vacuum wavelength of the light. The most common wave plate de

signs include the so-called half-wave plate ( H W P ) and quarter-wave plate ( Q W P ) . 

These retarders impose relative phases T = IT and T = ^ between polarizations 

along their fast and slow optical axis respectively. 

In optics, change i n polarizat ion can be described using the Jones calculus, 

where polarized light is represented by a Jones vector and optical elements such as 

wave plates are represented by matrices (see Table 2.1). The action of an optical 

element on a polarized light is then calculated by applying corresponding matr ix 

to a Jones vector. 
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2.4.5 Interference filter 

A s it was discussed in previous Section 2.3, the photons for Q I P are often required 

to be indistinguishable i n several characteristics. The indist inguishabil i ty i n wave

lengths among involved photons is achieved by spectral filtering often realized by 

interference filters. 

The construction of bandpass interference filter is modeled after a Fabry-Perot 

interferometr which consists of two part ial ly transparent mirrors separated by an 

air gap [75]. The principle of wavelength selection relies on the interference of 

multiple reflected beams inside the resonator. It is evident that the construction 

ensures an even number of reflections for the transmitted waves. If there is no 

phase difference between emerging waves the interference is constructive, there

fore, the transmission is maximal . This is dependent on the optical path difference 

which for maximal transmission should be integral mult iple of the desired wave

length. The constructive interference condit ion allows the central wavelength of 

the resonator together w i th small bend of wavelengths to either side, to be trans

mit ted effectively. The F W H M (full w id th at half maximum) of the transmission 

peaks is influenced by reflectance of the mirrors, where higher reflectance produces 

narrower peaks [76]. Wavelengths that do not obey this condit ion are suppressed 

by destructive interference and thus reflected toward a source. However, the 

blocked bands around the central wavelength are quite narrow. It is due to other 

allowed wavelengths that meet the condit ion and the reduced reflectance outside 

the central wavelength. In order to broaden the range of blocked wavelengths, 

materials w i th wide absorption spectra (e.g., colored glass filters) should be part 

of the interference filter. 

In commercially available bandpass interference filters the air gap is replaced 

by a dielectric spacer layer w i th optical thickness n ^ , where n is a integer and 

A the central wavelength 6 , which can be made of colored glass to enhance the 

blocking range of the filter. The highly reflected mirrors are made of several 

stacks separated by the aforementioned spacer layer. The stacks are composed 

of a number of th in (j) dielectric layers wi th alternating low and high indices 

of refraction. The assembly of a half-wave spacer layer sandwiched between two 

quarter-wave stacks is called a cavity. A bandpass interference filter can be formed 

by mult iple of these cavities, where the advantages of mult i-cavity filters are 

steeper band slopes and improved near-band rejection. Final ly , the bandpass 

interference filters based on Fabry-Perot design are often designated for use at 

zero angle of incidence. Th is is because transmission band w i l l be shifted i n 

wavelength and might be reduced i f other angle of incidence is used [77]. 

Theoretically any type of filter (low-pass, high-pass, band-pass, neutral den

sity, etc.) can be constructed wi th this technique. In the presented experiments 

6wavelength with the highest transmittance 
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narrow band-pass interference filters (IF) of F W H M 5 n m and 10 n m were used. 

2.5 Quantum state analysis 

A s i n many Q I P schemes and all experiments presented i n later chapters, the 

information is encoded into the state of single photons. Therefore, i n order to 

read the information stored wi th in the qubits one needs to perform a quantum 

state analysis and also be able to detect the individual photons. 

There is a number of detectors that posses single-photon sensitivity. For in 

stance, avalanche photo-diodes i n Geiger mode, photomultipliers or array detec

tors such as i C C D (intensified C C D ) and E M - C C D (electron mul t ip ly ing C C D ) . 

There are also rather exotic single-photon detectors e.g., transition-edge sen

sors ( T E S ) or nanowires. These detectors have excellent quantum efficiencies 

but require intensive cooling [78]. In hereby presented experiments silicon based 

avalanche photo-diodes i n Geiger mode were used. The quantum efficiency for the 

near infrared wavelengths employed i n the experiments was around 60%. Note 

that even though this type of detector is sensitive enough to detect individual 

photons, it is unable to resolve how many photons have actually been absorbed 

by the detector wi th in the detection window. The photon number resolution can 

however be achieved by other types of detectors (e.g, T E S ) or by t ime or space 

mult iplexing [74, 79]. A specially designed fiber loop that splits incoming optical 

pulse into a number of segments each containing ideally a single photon is an 

example of time mult iplexing. 

Note that i n Q I P schemes that include two or more photons instead of single-

photon detections, the experimentalist records coincidence detections i.e., s imul

taneous detection events by two or more detectors. 

The full quantum state analysis also know as quantum state tomography 

(QST) is required if one wishes to fully characterize the quantum state. The anal

ysis consists of a number of repeated measurements designed to obtain enough 

data to reconstruct the density matr ix . In the case of polarization encoding, these 

measurements are composed of al l the mutual combinations of single photon po

larization projections (i.e., l-ff"), \V), \D), \A), \R), \L)) implemented by polarizers 

and half- and quarter-wave plates. Then from the coincidence rates under various 

projections one can estimate the density matr ix belonging to the in i t ia l quan

t u m state. In our workflow, max imum likelihood algori thm is used to find such 

a physically val id density matr ix that best fits the observed coincidence counts 

under the above-mentioned projection settings [80]. Note that in order to reveal 

or confirm some property (e.g, entanglement) of the quantum state one does not 

have to resort to Q S T . This is because the density matr ix might contain more 

information then is required. Therefore, a subset of the projection measurements 

can be sufficient for the detection of the property. The reduction in the number 
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of measurements does not come for free. For instance, one needs to know some 

a priori information about the investigated quantum state or requires a second 

identical quantum state which interacts w i th the in i t ia l state. 

2.6 Entanglement witness 

Since 1935 when Einstein, Podolsky and Rosen published their seminal paper 

[81], the scientific community was caught i n a dispute between the supporters 

and critics of quantum theory that lasts to this date. In the heart of the debate 

is the quantum mechanical principle of superposition that necessarily leads to 

the concept of quantum entanglement. Phenomenon that is frowned upon by the 

advocates of local realism who call it the "spooky action at a distance" [82, 83]. In 

1964 John B e l l created a theorem i n which he expressed this philosophical dispute 

in a form of mathematical inequality 

C h ( a , c) - C h ( 6 , a) - Ch(b, c) < 1, (2.19) 

where denotes correlations as predicted by local hidden variable ( L H V ) theories 

and a, b and c refer to three arbitrary measurement settings [84]. The inequality 

sets a upper bound on the quantum correlations between measurements preformed 

on a quantum system. L H V theories satisfy these inequalities for any quantum 

system. O n the other hand quantum mechanics predicts for some systems vio

lat ion of the inequalities. Exper imental verification of the violat ion would state 

that nature can not be described by local realism and that quantum mechanics is 

complete. However experimental realization of the original Be l l inequality was not 

applicable due to technical difficulties. Those issues were overcome by Clauser, 

Home, Shimony and Holt who modified the B e l l inequalities making experimen

ta l testing possible [85]. These modified inequalities are called C H S H inequalities 

and can be wri t ten as 

\S\ < 2, (2.20) 

where 

S = E(a, b) - E(a, b') + E(a', b) + E(a', b'), (2.21) 

where a, a' and b, b' are measurement settings. The terms E(a, b) represent quan

t u m correlations between the particles. For further information see comprehensive 

review on Be l l non-locality by Brunner et al. [86]. 

Instead of B e l l inequality measurements which are used mainly for testing the 

theory of quantum mechanics in relation to the concepts of locali ty and realism, 

entanglement witnesses (EWs) are specifically tuned for the detection of entangled 

states. E W s are functionals of density matrices of investigated states and as such 

they are experimentally measurable quantities. Generally, an observable W is an 
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entanglement witness i f its mean value is non-negative 

(2.22) 

for al l separable states and negative 

( W ) p e n t < 0 (2.23) 

for at least one entangled state. For further information on the properties of 

entanglement witnesses see the excellent reviews [54, 87]. 

Entanglement witness is linear i f it is a linear functional of density mat r ix or 

the mathematical expression of the witness does not include any non-linear terms 

of expectation values. In such case one needs to know some information about 

the investigated state to optimize performance of the witness. 

There are also non-linear entanglement witnesses which can be further dif

ferentiated into two classes. Fi rs t class being non-linear entanglement witnesses 

which add non-linear terms of expectation values to existing linear witnesses im

proving on the set of entangled states that can be detected [88-90]. Second class 

of non-linear entanglement witnesses are non-linear functionals of density matr ix 

which also detect larger set of entangled states then linear witnesses but rely on 

joint measurements on mult iple copies of an investigated state [91, 92]. For this 

reason they are known as collective entanglement witnesses ( C E W s ) . Two of the 

experiments presented in later chapters employ a collective entanglement witness 

also known as collectibility, which was introduced by Rudn ick i et al. [56, 57]. 
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Chapter 3 

Measurement of a non-linear 
entanglement witness by 
hyper-entangling two-qubit states 

Text adopted from Vojtěch Trávniček, Karol Bartkiewicz, Antonín Černoch, and 

Karel Lemr, Phys. Rev. A 98, 032307 (2018) [A3]. 

3.1 Introduction 

There are two commonly used methods for entanglement characterization. The 

first method is based on quantum state tomography and density-matrix recon

struction [80, 93-95]. The advantage of this strategy is that one does not have 

to possess any a priori information about the input state. O n the other hand, 

executing a full state tomography is a t ime demanding process especially for mul t i 

level quantum states. The number of required measurements grows exponentially 

wi th the dimension of the investigated state which makes both the necessary 

measurement and the related data processing very t ime consuming [96]. 

The second method is based on the already mentioned entanglement witnesses 

(EWs) . Measuring simple linear E W s requires performing a set of suitable local 

measurements which are direct products of projections applied on each subsystem 

separately. These projections are chosen based on some a priori information about 

the investigated state. Correlations of these local measurements across involved 

parties then reveal the entanglement [85]. 

The second class of E W s encompasses the non-linear (collective) entanglement 

witnesses [91, 97, 98] which removes the need for a priori information about a 

given state, but requires simultaneous measurements on at least two copies of 

the state. Th i s idea has been experimentally demonstrated in a seminal paper 

by Bovino et al. [99]. In fact, a number of non-linear E W s [56, 57, 92, 100-

106] have been devised for various classes of quantum states. Moreover, univer-

25 
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sal experimental optical approaches to measuring or detecting the entanglement 

of an arbitrary two-qubit state have been reported [107-109]. These universal 

approaches require using up to four copies of the state. W i t h two copies o n l y 

the E W s are considerably easier to implement, but fail to detect some entangled 

states or require larger numbers of distinct measurements. 

This chapter describes the benefits of entanglement detection by means of a 

non-linear E W on hyper-entangled states (HESs) . A H E S is a quantum state 

entangled i n more than one degree of freedom (d.o.f.) and can be wri t ten in the 

form 

where subscripts p and s stand for two independent d.o.f. These states are an 

invaluable resource for quantum information protocols. They can be used for 

increasing channel capacity [110], efficient quantum key dis tr ibut ion [111], two-

qubit teleportation [111], or serve as a powerful safeguard against eavesdropping 

[112]. Therefore, their quick detection and diagnosis is of paramount importance 

for practical implementation of the mentioned protocols. For instance, B e l l state 

preparation and discrimination using hyper-entanglement was reported by Barb i -

eri and co-workers [113, 114]. A n E W on H E S s was achieved by Walborn et al., 

however, this witness operates only on pure states and their experimental setup 

cannot be simply modified to generate and test mixed states [100]. 

B y hyper-entangling only a single photon pair instead of preparing multiple 

copies of a polarization-entangled pair of photons, we measure a non-linear E W 

on this single pair of hyper-entangled photons. For the purposes of demonstrating 

this concept, one of the less complex non-linear E W s known as the collectibil i ty 

was selected [56, 57]. 

The original technique proposed by the authors of Refs. [56, 57] allows one to 

detect two-qubit entanglement i n a large number of entangled states without the 

need for any a priori information about the investigated state. The collectibil i ty 

measurement of two-qubit systems entangled i n one d.o.f. requires to perform the 

collective measurements on two identical copies of the investigated state [58]. O n 

the other hand collect ibi l i ty can be measured directly on a single multi level state 

where a two-qubit state is copied across two d.o.f. forming a H E S . Generating two 

independent copies of a two-qubit state might seem easier, but properly managing 

their interaction is highly demanding even on the platform of linear optics. Note 

that in such case, ultrashort pumping together w i th narrow spectral filtering is 

required to assure proper synchronization [58, 97]. Further, a typical four-photon 

generation rate is about l O m H z while w i th the hyper-entangled states of two 

photons, one obtains hundreds of events per second. The collective measurements 

of H E S s consists of local and non-local projections. Loca l and non-local in this 

concept stand for projections implemented separately respectively across the two 

P H E S = P (3.1) 
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d.o.f. This method of entanglement detection is tested on three characteristic 

two-qubit quantum states encoded twice into two separate d.o.f. of a photon pair. 

These states are Be l l state, pure separable state, and maximal ly mixed state. 

3.2 Theoretical framework 

A hyper-entangled state is, e.g., a system composed of two quantum particles 

(subsystems A and B) each encoding two qubits, one qubit per d.o.f. A pair 

of photons wi th polarizat ion (p) and spatial (s) d.o.f. is an example of such a 

system. For the purpose of our analysis we consider only identical states encoded 

into both d.o.f., i.e., p^ = p(s\ where (P^ = f>Ax,Bx for x = p, s. 

The collectibil i ty of such system is defined in terms of five different local pro

jections, where four of these projections are implemented simultaneously wi th one 

non-local projection [58]. One subsystem (A) of the H E S is measured wi th sepa

rable projections, the other (B) wi th an entangled projection. The entanglement, 

in terms of collective non-linear entanglement witness W(p), is then derived from 

correlations between coincidence rates observed for these projections. The cor

relations between coincidence rates of indiv idual projections labeled pij can be 

expressed in terms of joint projection probabilities 

Indices X p and X s mark the relevant d.o.f. for subsystem X = A , B , whereas 

indices i,j = 0 ,1 , + represent projections on qubit states |0), |1), and |+) = (|0) + 

l ) ) / \ / 2 expressed in the computat ional basis. The projection (\ip~)(ip~\)BP,BS 

stands for projecting the subsystem B onto a singlet state across the d.o.f. p and 

s, where 

Using the notat ion from Ref. [58] and Eqs. (3.2), the collective non-linear entan

glement witness can be formulated as 

Pij = T V n « ® n < £ ® ( I V - X V ' - Q B P . B S P H E S (3.2) 

| V - ) B P , B S = ^ ( | 0 1 ) - | 1 0 ) ) Bp,Bs • (3.3) 

W(p) =-[v + P 2 ( l - poo) + (1 - P)\l ~ P i i ) 

+ 2 P ( l - P ) ( l - p o i ) - l ] , 
(3.4) 

where 

a] = 16P(1 - P)v / PoÖPiT + 4p++ (3.5) 

and P = p r o b ( | 0 ) A P ) = prob( |0)As) is the probabil i ty of observing subsystem A 

in state | 0 ) A P ( |0)AS) independently of the state of subsystem B . 
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Figure 3.1: Exper imental setup for measuring collect ibi l i ty of photonic two-qubit 
states by hyper-entangling the input photons. B D : beam displacer; H W P : half-
wave plate; P B S : polarization beam splitter; Q W P : quarter-wave plate; IF : 10 n m 
interference filter; F B S : fiber beam splitter; D E T : single-photon detector; C C : 
coincidence counter. Spatial modes are labeled by numbers 1-4. 

3.3 Experimental implementation 

The experimental implementation was realized on a platform of linear optics 

w i th a hyper-entangled pair of photons encoding the same two-qubit state i n 

both polarizat ion and spatial d.o.f. A horizontally polarized photon (i.e., sub

system X = A , B) encodes the logical state | 0 )x P , a vertically-polarized photon 

state | l )xp- Similarly, spatial modes 1 and 3 encode logical state |0)AS and | 0 ) B S ! 

modes 2 and 4 logical state |1)AS a n d |1)BS- Thus, the relation between the states 

encoded i n the computat ional basis and in the states used in the experiment can 

be expressed as 

\mn)Ap,As = \fim,iV + 5mfiH)i+n 

(3.6) 
| & 0 B P , B S = \Sk,iV + SkjQH)3+i, 

where 5 stands for the Kronecker's delta, indices m,k = 0,1 mark the single-

photon polarizat ion states, and indices n, I = 0,1 the spatial modes 1 + k and 

3 + 1. 

The experimental setup consists of a two-photon source powered by pulsed 

Paladine (Coherent) laser at A = 355 n m wi th 300 m W of mean optical power and 

repetition rate of 120 M H z . 

Polarization-entangled photon pairs at A = 710 n m are generated i n non-

collinear type I spontaneous parametric down-conversion ( S P D C ) process in a 

B B O (/3-BaB204) crystal cascade (known as the K w i a t source [73]). Th is type of 

light source i f pumped by a generally polarized pumping beam generates pairs of 
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horizontally and vertically polarized photons. Generation rates of these photons 

as well as their mutual phase shift can be tuned by adjusting the polarizat ion 

of pumping beam. This way one can prepare states wi th various amount of en

tanglement. Each photon from the generated pair is coupled into a single-mode 

optical fiber and brought to one input port of the experimental setup depicted i n 

Figure 3.1. 

The beam displacers ( B D ) transform polarization entanglement into spatial 

entanglement and the two photons can interact on a polarizing beam splitter 

( P B S ) where they get entangled i n polarization again. Thus, a given H E S is 

prepared. 

The H E S is consequently subjected to separable and entangled polarizat ion 

projective measurements. The photon leading to the detector through fiber beam 

splitter ( F B S ) is subjected to separable projections flp^ <g> I l i J ' > for i,j = 0,1 as 

described i n section 3.2. For example projection 1 1 ^ <g) f t ^ corresponds to a 

projection onto a state | 0 0 ) A P , A S or, by using E q . (3.6), \H)i. The other photon is 

projected on state | V ' _ ) B P , B S or equivalently [see Eqs. (3.3) and (3.6)] ^ ( 1 - ^ ) 4 — 

| V ) s ) . B o t h projections are implemented by means of half-wave plates ( H W P ) , 

quarter-wave plates ( Q W P ) and polarizing cubes ( P B S ) . The photons are then 

filtered by 10nm interference filters (IF), coupled into single-mode optical fibers 

and brought to single-photon detectors. Motor ized translations (not depicted) 

ensure temporal overlap of the photons on P B S and F B S . 

3.4 Measurement and results 

The collectibil i ty was measured for three characteristic quantum states: (i) |V>i) = 

^5(100) + 111>) (Bel l state), (ii) \tp2) = |10> (pure separable state), (iii) p3 = \i 

(maximally mixed state), which were encoded twice i n the following H E S s 

| * X ) H E S = |V 'x )Ap,Bp <8> | V ' X ) A S , B S for x = 1, 2, 

P 3 , H E S = JQ lAp ,Bp ,As ,Bs -

States (3.7) generated in the experiment can be expressed v ia E q . (3.6) as 

(3.7) 

| * I ) H E S = \{\HH)^ + \HH)2A + \VV)lß + \VV)2A) 

| * 2 ) H E S = \VH)2ß, (3.8) 

P 3 , H E S = JQ 
1 f(p) 0 1(B) _ 

In order to prepare the state | ^ I ) H E S ) one needs to set the pumping beam polar

ization to diagonal orientation, rotate H W P s i n front of the P B S to 22.5° w.r.t. 

horizontal axis and ensure the photon overlap on P B S . The state | ^ 2 ) H E S W A S 

prepared by setting the pump beam to horizontal polarization, therefore, only 
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Bel l state separable state mixed state 

Figure 3.2: Exper imental results and theoretical values of entanglement witness 
for three characteristic quantum states. Note that measurement values are i n 
good agreement wi th the theoretically predicted values. A s expected, the witness 
gives a clearly negative values only in the case of the B e l l state. 

Table 3.1: Measured values of collectibil i ty W and its theoretical predictions Wt^ 
obtained for the states defined in E q . (3.8). 

Quantum state W 

Bel l state ( | * I ) H E S ) -0.21 ± 0.03 -0.25 
Separable state ( | ^ 2 ) H E S ) -0.01 ± 0.03 0.00 

M i x e d state ( / ^ H E S ) 0.69 ± 0.06 0.75 

one of the B B O crystals was capable of dawn conversion, generating pairs of ver

t ical ly polarized photons. Then by rotating a H W P (not depicted) in front of the 

beam displacer ( B D ) to 45° , one prepares the state \VH)2$- In the case of the 

state / 93 5 HES) which was not prepared directly, the outcome of each projection was 

obtained by accumulating coincidence rates associated wi th four B e l l states. 

For the B e l l and mixed state, the probabil i ty P was set to P = 0.50, and for 

the separable state to P = 0.01. The values of P are adjusted using purely single-

photon detection events and as a result the uncertainties of P are negligible i n 

comparison wi th the uncertainty of two-photon coincidence detections. Obtained 

experimental and theoretically calculated values of collectibil i ty W{p) for the 

states from (3.8) are summarized in Table 3.1 and visualized in Figure 3.2. 

Further, we have investigated the collectibil i ty of Werner states which up to 

local unitary transformations can be expressed in the form of a weighted sum of 

maximal ly entangled and maximal ly mixed state, 

pw = p | * i ) ( * i | + qP3, (3.9) 
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separability detection 
threshold threshold 

0.0 0.2 0.4 0.6 0.8 1.0 
parameter p 

Figure 3.3: Exper imental results and theoretical prediction of collectibil i ty for 
the Werner states as a function of parameter p. The solid green line depicts the 
observed experimental results, the dashed black line is the theoretical prediction 
and the light green area corresponds to the measurement uncertainty. 

where 0 < p < 1 and q = 1 — p. It follows from E q . (3.9) that p2 (q2) is the 

probabil i ty of observing the maximal ly entangled (mixed) state simultaneously i n 

both d.o.f. The cross probabil i ty 2pq corresponds to observing entangled state i n 

one d.o.f. and mixed state i n the other d.o.f. It can be directly shown that for 

a mixed state encoded into one d.o.f., the projection probabilities pij and p++ 

are independent of the state encoded into the other d.o.f. A s a consequence, to 

obtain the values of collectibil i ty for Werner states, one can s imply interpolate 

the results for \^>i) and p% w i th effective weights of p2 and 1 — p2, respectively 

[58]. Note that the collective entanglement witness is able to detect entanglement 

only for p > ^ although Werner states are already entangled for any p > ^ [58, 

97, 99, 115]. Obtained experimental and theoretical values of collectibil i ty W(p) 

as a function of the parameter p are summarized i n Table 3.2 and visualized i n 

Figure 3.3. 

In the experiment, collectibil i ty of Werner states has been measured by prop

erly combining (adding wi th proper weights) coincidence counts corresponding to 

three configurations of the setup: (i) the triplet state l ^ i ) , (ii) the mixed state 

\ (101)(011 + 110)(10|) in both polarizat ion and spatial modes and (iii) the mixed 

state \ (|00)(00| + |11)<11|) again i n both polarization and spatial modes. In case 

of the triplet state | \ l / i ) positions of motorized translations were set so that the 

photons interfere on P B S and F B S . In case of the mixed states these translations 

have been deliberately detuned so that the photons become distinguishable and 

hence would not interfere. To switch between generation of the (ii) and (iii) state, 

we have used a half-wave plate inserted into spatial modes 1 and 2 behind the 

P B S together wi th relabeling of modes 3 f > 4 . Note that our experimental setup 
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Table 3.2: Assorted results obtained for Werner states defined in E q . (3.9), where 
W is the observed value of entanglement witness and Wth is its theoretical pre
dict ion. 

p w 

0.0 0.69 ± 0.06 0.75 
0.2 0.65 ± 0.06 0.71 
0.4 0.55 ± 0.06 0.59 
0.6 0.37 ± 0.06 0.39 
0.8 0.11 ± 0.06 0.11 
1.0 -0.21 ± 0.03 -0.25 

allows to directly generate mixed states of the form of 

h = P | * l > < * l | + (1 - p ) | * 5 ><*5 | With (3.10) 

|*5> = l(\HH)li3-\HH)2A-\VV)li3 + \VV)2A). 

The parameter p is tuned by deliberate misplacement of the translations. This 

makes the photons part ia l ly distinguishable and thus the resulting state part ial ly 

mixed. 

3.5 Quick quality check of H E S 

Here, we demonstrate that collectibil i ty can be used to quickly check the quality 

of hyper-entanglement. H E S transmission through a noisy channel can result i n 

decreased puri ty independently i n both d.o.f. (i.e., in general p^ and p^ are 

different). This effect non-tr ivial ly affects the collectibil i ty measurement. We 

obtained p^ and p^ states of different purities experimentally by intentionally 

detuning temporal overlap between the photons using motorized translations. The 

puri ty of the tested states does not affect the values of pij [see E q . (3.2)] that 

corresponds to local projections onto states | i ? ) 1 ( 2 ) , | V ) 2 [see E q . (3.6)]. The only 

difference is observed for which is measured by local projection ^(\H)i + 

I V ) i + \H)2 + 1 ^ ) 2 ) . Due to interference, this measurement is sensitive to phase 

difference between spatial modes 1 and 2. We define the ratio R as function of 

this phase shift, 

R = ° ^ , (3.11) 

where c c m a x and c c m i n stand for max imum and m i n i m u m coincidences rates. The 

measurement was implemented by combining pure and mixed states p^ w i th 

pure and mixed states p^. The observed experimental values are summarized i n 

Table 3.3 and visualized i n Figure 3.4. 
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Table 3.3: Measured values of entanglement witness W and its theoretically pred
icated values Wth for the quali ty analysis of H E S s for Werner states. 

f$ Pw w Wth 

pure pure -0.21 ± 0.03 -0.25 
pure mixed 0.71 ± 0.06 0.75 

mixed pure 0.70 ± 0.06 0.75 
mixed mixed 0.69 ± 0.06 0.75 

Figure 3.4: Exper imental values of the ratio R [see E q . (3.11)] obtained for the 
quality analysis of H E S s for Werner states. The solid green (dashed black) curve 
corresponds to the fitting. Note that R —>• oo for ideal experimental conditions. 
The collectibil i ty has been measured for the encircled states. 

Note that i f a H E S becomes disentangled i n one d.o.f., the ratio R goes to 1 

(as seen in Figure 3.4). The value of p++ is then | and W(p) is positive. O n 

the other hand, when both p^ and p^ are sufficiently pure and entangled, W(p) 

becomes negative. Hence, this method is a quick and easy way to diagnose H E S 

distr ibution. 

3.6 Conclusions 

We have reported on experimental measurement of collective non-linear entangle

ment witness known as the collectibil i ty on a single copy of a H E S . The obtained 

results are in good agreement w i th theoretical predictions. The collectibil i ty wit

ness for hyper-entangled B e l l state (—0.21 ± 0.03) is negative wi th sufficient cer

tainty and also close to its theoretical value. A s expected, the observed results 

of W{p) for the separable and mixed state are non-negative and wi th in one stan

dard deviation from theoretically calculated values. We have interpolated the 

collectibil i ty witness for several Werner states. These experimental results con-
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form wi th theoretically predicted connection between collectibil i ty witness and 

the Werner states parameter p. The method for diagnostics of H E S s developed 

in this experiment is not as robust (fails on some part ial ly entangled states) as 

quantum state tomography but can be appealing for applications that need fast 

verification whether the quantum system is sufficiently hyper-entangled. The ex

perimental accessibility of our method makes it suitable for further development 

of other non-linear E W s requiring more than two copies of the measured state 

[107-109] or it can be easily adapted to measure a class of two-copy based E W s 

studied i n Ref. [97]. The experience based on the currently presented experi

ment and the experiments implemented on two independent photon pairs [58, 97] 

shows that it is of similar difficulty to assure preparation of two identical two-

qubit states i n both cases. In the presented experiment, it was however much 

easier to implement mutual interaction between these states. 



Chapter 4 

Measurement of the 
Hilbert-Schmidt distance 
between two-qubit states 

Text adopted from Vojtěch Trávniček, Karol Bartkiewicz, Antonín Černoch, and 

Karel Lemr, Phys. Rev. Lett. 123, 260501 (2019) [A l ] . 

4.1 Introduction 

In quantum communications the quali ty of a transmission channel is crucial . It is 

due to security reasons, where imperfections of the communicat ion channel lead 

to signal degradation known as noise. This noise can be subsequently exploited 

by potential eavesdroppers [116, 117]. Therefore, tools for the diagnostics of the 

transmission channels are i n demand. In quantum communications theory one 

can quantify the accuracy of a signal transmission by measuring the distance 

in the Hilber t space between the transmitted and received states. The most 

prominent distance measures include the Uhlmann-Jozsa fidelity (Bures metrics), 

trace distance, and the Hilbert-Schmidt distance (HSD) (for overviews, see, e.g., 

[59, 60, A2] . 

These distance measures are also essential for a field of quantum machine 

learning. Where a common method for classification algorithms (e.g., fc-means) 

is to perform a distance measurement among M sample vectors of dimension 

N. This procedure is a core subroutine for other machine learning algorithms, 

e.g., supervised and unsupervised nearest-neighbor algorithms. Quan tum machine 

learning emerges as a new field of research in quantum information processing 

wi th linear optics, where the benefits of applying this platform are unaffected by 

unavoidably non-deterministic implementation of a universal set of gates [118]. It 

has been already demonstrated that by using quantum resources one can reduce 

the complexity of the fc-means algori thm from 0[poly(MN)] to ö\k>g(MN)] [42, 

35 
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Photon A Photon B 

Figure 4.1: Conceptual scheme for measuring the Hilber t -Schmidt distance be
tween two-qubit states. In general two different states pi and p2 are encoded into 
polarization and spatial modes of photon A and B respectively. Photons A and B 
are then simultaneously measured by P O V M s / and S, where the two degrees of 
freedom are addressed holist ically at the same time. The operators / and S are 
the identity and singlet state projection where S = \iff~)($f~\. 

44, 118]. It was also shown in Ref. [Al] that by measuring the distance between 

a pair of points in terms of H S D one obtains the complexity of the distance-

measuring algori thm 0[log(iV)] by using a different approach from that in Ref. 

[44]. 

The H S D is defined as 

£>HS(/3I , /3 2 ) = V M P I - A J ) 2 ] , (4-1) 

where pi and p2 are the density matrices representing the two quantum, i n general 

mixed, states. The H S D is a Riemann metrics, which makes it appropriate for 

applying in machine learning problems. Moreover, in contrast to trace distance, 

H S D is non-increasing under decoherence [59, 60]. For Z?-dimensional Hilbert 

space a density matr ix contains (D2 — 1) independent parameters. Th is fact 

makes the complete quantum state tomography a very challenging problem, as it 

requires an exponentially large number of measurements in relation to the number 

of qubits consti tuting the composite system (see, e.g., [42, 94, 119]). However, this 

otherwise problematic feature also opens a new possibil i ty to encode iV = D2 — 1 

parameters i n a Z?-dimensional density matr ix (i.e., the Hilber t -Schmidt space). 

Note, that for pure states the number of independent parameters is much lower, 

i.e., iV = 2D — 1. In this way, by using mixed instead of pure states one can encode 

quadratically more features into a given state. Once the encoding is performed 

for M states a constant number of times, each distance can be measured in only 

three steps. This is because the H S D can be expressed by first-order overlaps 

0(pi,pj) as described i n Refs. [120, 121] [A2] 

DHS(PI,P2) = VoljhJh) + 0(p2,p2) - 20(pi,p2), (4.2) 
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where the directly measured observables are defined as 0(pi,f>j) = Tr(pipj). 

4.1.1 T w o - p h o t o n over lap 

The density matr ix of a single qubit can be expressed using B loch representation 

and making use of Einste in summation convention as (see. Ref. [122]) 

P = ^RmOO~m, (4.3) 

where 

Rmo = Tr(/5(Tm) (4.4) 

are elements of the B loch vector defined by Pau l i matrices a m (m = 0 ,1 ,2 ,3 ) . 

where &Q = I is the identity operator. The density matr ix for two-qubit system 

can be wri t ten in the similar way as 

p = \RmnO-m <8> crn, (4.5) 

where 

Rmn = Tr[/5((Tm ® on)} (4.6) 

are elements of the correlation matr ix and m,n = 0 , . . . ,3 . Then the first-order 

overlap defined as 

0(p1,p2) = Tt(Plp2) (4.7) 

can be for two-qubit states calculated directly as 

0(pi,p2) = ±R&lR$Tr[(vm*n) ® {dkoi)\ (4.8) 

where 

Rill = Tr [ (<T m ®(T n ) /5 i ] , (4.9a) 

R$n = Tv[(am ® an)p2] (4.9b) 

are the correlation matrices of indiv idual two-qubit states. Further form commu

tat ion and anti-commutation relations for the Pau l i matrices one can compactly 

describe their mul t ip l icat ion as 

didj = ieijkd-k + Sijao, (4-10) 

where i is the imaginary unit, L e v i - C i v i t a symbol and 5ij Kronecker delta. 

Because the Pau l i matrices are traceless except of do the trace of their mul t ip l i 

cation is then 

Tr((T m a- n ) = 25mn (4.11) 
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and the E q . (4.8) simplifies to 

0(fa,fa) 
1 

R.W R(2) (4.12) 
4 

Then by using Eqs. (4.9a,4. 9b) one gets 

0(fa,fa) \Tr[{am ®an®am® an)(fa ® fa)] 

\Tx[(am <g) am) <g) (an <g) an)(fa <g) fa)'] 

\Ti[{Vaia2 ®Vblb2)(pi®fa)'], (4.13) 

where V = a m <8> cr, 2 / - 4 | ^ " ) ( ^ " | , | ^ " ) is the singlet state, and (fa® fa)' 

^a2bi(fa® fa)^a2b1, where £ a 2 &i = J<g)E<8>I is unitary matr ix swapping modes b\ 

and <i2- W i t h i n this framework it is possible to introduce the Hermi t ian overlap 

operator O measured on fa ® fa, i.e, 

Measuring the puri ty or first-order overlap can be performed by measuring a 

product of two V operators that can be experimentally implemented wi th in the 

framework of linear optics, this was shown i n Ref. [122]. 

The product of V operators can be expressed in terms of the 4 P O V M s as 

where S = |^")(^"|. 

If pi = fa, one measures pur i ty as discussed, e.g., i n Refs. [58, 99, 122]. Each 

overlap or other functions of overlaps can be measured directly by ut i l iz ing mul-

tiparticle interactions between copies of the investigated states [A2, 97, 120, 122-

126]. In contrast, by applying full quantum tomography (see, e.g., [127]) (D2 — 1) 

measurements are required to calculate the value of H S D . For technical reasons we 

measure each overlap by ut i l iz ing four positive-valued measures ( P O V M s ) . For 

D = 4 this amounts to 12 P O V M s for obtaining a single value of -DHS-

4.2 Experimental setup 

This section describes the measurement of H S D i n a linear-optical experiment w i th 

photons as information carriers. Here, the H S D is measured for two-qubit states 

by simultaneous interaction between four qubits. A straightforward approach uses 

four photons and only one degree of freedom (d.o.f.) such as polarization (see, 

e.g., Ref. [120]), however, this setup utilizes two d.o.f. (polarization and spatial) 

to encode two qubits (see Figure 4.1), therefore, only two photons were needed. 

This way one achieves much higher detection rates which make the experiment 

O — S a 2 f , 1 V ^ 1 a 2 Vbib2^a,2bi- (4.14) 

V\2 = 4i(g>i-8S®i-8I(g>S + 165 <g> S, (4.15) 
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Figure 4.2: Exper imental setup for measuring Hilber t -Schmidt distance between 
two two-qubit states. H W P : half-wave plate; B D : beam displacer; P B S : polariza
t ion beam splitter; Q W P : quarter-wave plate; IF : 5 n m interference filter; D E T : 
single-photon detector; C C : coincidence counter. Spatial modes are labeled by 
numbers 1-4. 

considerably faster. The photons are labeled A and B , meanwhile their polariza

t ion and spatial modes are labeled p and s. There are horizontal (H) and vertical 

(V) polarization modes, and four spatial modes: 1-4 (see scheme i n Figure 4.2). 

Horizontal ly polarized photons were associated wi th a logical state |0), vertically 

polarized photons wi th a logical state |1). Similarly, spatial modes 1 and 3 were 

associated wi th a logical state |0), modes 2 and 4 wi th a logical state |1). For 

example, photon A encodes state 100) i f its polarization is made horizontal and it 

is placed i n a spatial mode 1, i.e., in this notation \H\). 

The two photons are generated i n a crystal cascade (known as the K w i a t source 

[73]) pumped by pulsed Paladine (coherent) laser a A = 355 n m wi th 200 m W of 

mean optical power and a repetit ion rate of 120 M H z . The source consists of 

two B B O (/3-BaB204) crystals and generates polarization-entangled photon pairs 

at A = 710nm, i.e., = cos(a)\HH) + etds\n{a)\VV). The rates and mutual 

phase shift between horizontally and vertically polarized photons can be tuned 

by adjusting the pump beam polarizat ion or by t i l t ing one of the beam displacers 

( B D i or BD2 i n Figure 4.2). B y doing so one can prepare states wi th various 

amounts of entanglement. Each photon from the generated pair is coupled into a 

single-mode optical fiber and brought to one input port of the experimental setup. 

The photons then pass through beam displacers where the in i t ia l polarizat ion 

encoding is transformed into spatial encoding. Afterwards the photons interact on 
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the polarizing beam splitter ( P B S ) where a second, in principle different, quantum 

state is encoded into polarizat ion d.o.f. A s a result, two, i n principle different, 

two-qubit states are encoded into the two d.o.f. The two states are then subjected 

to projective measurements (discussed below) and accompanied by postselection. 

The photons are filtered by 5 n m interference filters, coupled into single-mode 

optical fibers and brought to single-photon detectors. Motor ized translation (not 

depicted) ensures temporal overlap of the photons on P B S . To demonstrate the 

versatility of this approach, the H S D was measured between four B e l l states, four 

separable states, Werner states, and between Werner and Horodecki states. 

To measure the H S D between any two states ( p i , p 2 ) the first-order overlap 

has to be measured in three configurations, i.e., 0 ( p i , p i ) , 0 ( p 2 , p2) and 0 ( p i , p<i). 

The first two configurations correspond to the situation when p i ( p 2 ) is encoded 

into both d.o.f. Dur ing the last configuration p i and p 2 are encoded each in one 

d.o.f. Measurement of each first-order overlap 0 ( p i , p 2 ) is split into a measure

ment of 4 P O V M s on each photon across its d.o.f., i.e., I\®IB, S\®IB, I A ® <SB ; 

and S A <8> 5 B , w h e r e the I stands for identity and the S for singlet state projection 

that were implemented by suitable rotation of half-wave plates ( H W P ) behind the 

P B S . For example, the P O V M / A ® IB consists of al l combinations of local projec

tions, i.e., \HI,H3)A,B, \H2,H3)A,B, I V 2 , V 4 ) A , B , while the S A <8> <§B consists of 

projections -73(|#2) - | V I ) ) A and ^ 5 ( ^ 4 ) - \ V 3 ) ) B - B o t h of these P O V M s (I,S) 

can be implemented i n a single step, but i n this experiment they were implemented 

as a series of von Neumann projections. The coincidence rates corresponding to 

specific P O V M s are labeled fxy, where x, y G {I, S}, where x and y are associated 

wi th photon A and B , respectively. These values are obtained by summing up 

the coincidence rates associated wi th respective von Neumann projections. The 

mean value of the overlap operators relates to these rates as 

0 ( p i , h ) = 1 " 2(f§i + ffs ~ Vss)/fiT (4-16) 

Note that P O V M s associated wi th measures photon rate and is needed for 

normalization. In case of a stable photon source and know setup parameters this 

value is constant and state-independent. The same is true for P O V M s I A and IB 

separately. 

4.3 Results 

Firs t , distances between four B e l l states = ^/=(|00) ± 111)) and I * 1 * 1 ) = 

^ ( | 0 1 ) ± 110)) have been measured. Encoding of the states into the d.o.f. was 

implemented by a suitable choice of pump beam polarization, rotation of the 

H W P s , and by t i l t ing one of the beam displacers ( B D i ) . For instance, the state 

$ + ) was encoded into the polarization and spatial modes by setting the H W P s i n 
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Table 4.1: Settings of H W P s and beam displacer for the preparation of B e l l states 
in polarization and spatial d.o.f. B D - m a x (BD-min) stands for maximizat ion 
(minimization) of coincidence events during SA <8> <SB projection by t i l t ing one 
of the beam displacers. The term Switch (+) represents change i n measurement 
basis of one of the H W P s immediately behind P B S (0° «->• 45°) . 

H W P s (front of B D s ) H W P s (front of P B S ) B D Switch 

!$+)!$+) 0°,0° 22.5°,22.5° max 
| $ + ) | $ - ) 0°,0° 22.5°,22.5° min 
| $ - ) | $ - ) 0°,0° - 2 2 . 5 ° , - 2 2 . 5 ° max 

i * - > i < n 0°,0° - 2 2 . 5 ° , - 2 2 . 5 ° max + 
! * - ) $ + ) 0°,0° - 2 2 . 5 ° , - 2 2 . 5 ° min + 

| * - ) | * + ) 0°,45° - 2 2 . 5 ° , - 2 2 . 5 ° max 

l * - ) l * " > 0°,45° - 2 2 . 5 ° , - 2 2 . 5 ° max 
l*+>l*+) 0°,45° 22.5°,22.5° max + 
l*+>l*+) 0°,45° 22.5°,22.5° max 

0°,45° - 2 2 . 5 ° , - 2 2 . 5 ° min 

front of the beam displacers to 0° w.r.t horizontal axis and H W P s i n front of P B S 

to 22.5° . Also B D i was t i l ted so there was max imum coincidence events while 

projecting both photons on a singlet state ( S A ® < S B ) - For the preparation settings 

of other states see Table 4.1. We have decided to plot a second power of the H S D 

denoted -D^s s o ^ 1 S n n e a r i n terms of the physically measured quantities. The 

obtained experimental and theoretically calculated values of the second power of 

H S D between B e l l states are shown in Figure 4.3(a). Next, we have measured the 

H S D between separable states 100), |11), 101) and |10). The obtained values are 

visualized i n Figure 4.3(b). In the th i rd part of the experiment, the values of 

- ^ H S between Werner states have been calculated. A Werner state can be up to 

local uni tary transformation expressed i n a form of a weighted sum of maximal ly 

entangled and maximal ly mixed state 

pw=P\$+)($+\ + l ( l - P ) i . (4.17) 

In the case of the mixed state, the outcome of each von Neumann projection 

was obtained by accumulating coincidence rates associated wi th four B e l l states, 

i.e., making use of the identity pi <g> p2 = \(\^+){^+\ + |*~)(*~| + |$+)($+| + 

$ ~ ) ( $ ~ | ) = Subsequently, the values of D^s have been calculated for var

ious values of the weight parameter p. The results are visualized i n Figure 4.4(a). 

Final ly , the -D^s between Werner and Horodecki states have been calculated. 

Horodecki states can be expressed i n the form of a weighted sum of the maxi -
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Figure 4 . 3 : Exper imental results of the second power of Hilber t -Schmidt distance 
- ^ H S between: (a) Be l l states, (b) separable states. The axis represent polarizat ion 
and spatial encoding (see Figure 4 . 1 ) . Note that the theoretical value of the 
second power of Hilber t -Schmidt distance between identical states (situated i n 
the diagonal) is 0 , whereas Z ? ^ s reaches its upper theoretical l imi t of 2 between 
orthogonal states. 

mally entangled and separable state 

A H = ( Z | $ - ) < $ - | + ( 1 - ( Z ) | 0 1 ) . ( 4 . 1 8 ) 

Therefore, one has to measure the overlap between states | $ + ) ( l^? - )) and 101) 

encoded in polarizat ion and spatial mode, respectively. The rest of the necessary 

overlaps were calculated in the same way as explained above. The values of - D ^ s 
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qforq\$-){$-\ + (l-q)\HV) 

Figure 4.4: Exper imental ly obtained values of - D ^ s (a) between two Werner 
states and (b) between Werner and Horodecki states for various weight parameters 
(px,Py) or (p, q) are represented by a corresponding light-shaded contours slightly 
shifted wi th respect to the labeled black contours representing the theoretical 
values of D^. The vertical and horizontal axis represent polarizat ion and spatial 
encoding respectively (see Figure 4.1). 

between Werner and Horodecki states for various weight parameters p and q are 

visualized in Figure 4.4(b). 

4.3.1 P e r f o r m a n c e of the /c-means a l g o r i t h m 

In order to analyze the impact of the measurement error on the performance of 

the fc-means algori thm two numerical simulations were performed, where 2 x 10 4 

points were divided into 2 clusters. These simulations calculated the distance 

between the points exactly or by introducing a relative error of 15% of the cal

culated distance. In the numerical simulations the points were sampled from two 
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Gaussian distributions of equal variance. The error i n distance estimation results 

in approximately 4% (on average) of points being assigned to different clusters 

than assigned by the simulation wi th the exact distance calculation. The results 

of our simulations are summarized i n Figure 4.5. 

4.4 Conclusions 

This work reports on the experimental measurement of the Hilber t -Schmidt dis

tance between two-qubit states by the method of many-particle interference. The 

method allows to measure the H S D between two two-qubit density matrices by 

performing three overlap measurements (four P O V M s per overlap). The scheme 

works for both mixed and pure states, however, using the former is more desirable 

for machine learning. This is because for a system of a fixed dimension D we can 

encode quadratically more features in a mixed state than i n a pure state. This 

approach to measuring Eucl idean distance between a pair of points i n space of 

dimension iV = D2 — 1 exhibits a reduced complexity of C ( l o g N) in comparison 

to the standard approach of the complexity C ( p o l y i V ) . The obtained experimen

ta l results are i n good agreement wi th theoretical predictions. To demonstrate 

the versatili ty of this approach H S D was measured between assorted two-qubit 

states. The H S D between identical Be l l states is sufficiently close to theoretical 

values. O n the other hand, distances between orthogonal B e l l states do not de

viate from theoretical values by more than 15%. This error is par t ia l ly caused 

by the l inearization of E q . (4.1) and by phase instabil i ty in the relatively com

plex interferometer. Further, part ia l dist inguishabil i ty between photons causes 

an imperfect bunching that leads to part ia l impurities of the states, therefore, in 

creasing the error. However, this discrepancy is implementation specific and not 

a fundamental l imi t . To assess the impact of measurement errors on the shape 

of two clusters created using a k-means algori thm wi th and without introducing 

a max imum error of 15% in distance measurement we performed numerical sim

ulations. The in i t ia l sets of points were created using Gaussian distributions (see 

[41]). The clusters created for the range of distances between the Gaussians vary

ing from 0 to 6 standard deviations differ on average by 4% of the points. Similar 

measurement results were obtained for the separable states, however, the devia

t ion from the theoretical prediction is not as high due to the lower complexity of 

the states. The H S D s between Werner states and between Werner and Horodecki 

states for various values of the weight parameters were also interpolated. The 

results are i n good agreement wi th theoretical values represented by the contours 

in Figure 4.4. We believe that these results can motivate subsequent research on 

the topic of quantum channel characterization and quantum machine learning. 

Especial ly i n the latter, measuring distances between mult idimensional points ef

ficiently can reduce the computat ional complexity of supervised and unsupervised 
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machine learning. Thus, the results can be inspiring for near term quantum tech

nologies which would exhibit speedup i n comparison to the best currently known 

classical solutions. The results are also a novel example of applying mixed states 

for quantum information processing. Usual ly working wi th mixed states is not de

sired, but here it gives the possibil i ty of encoding extra information as the degree 

of coherence between the given two dimensions of the density matr ix . 
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Fraction of misassigned points for two sets of 104 

points sampled from 2D symmetric Gaussians 
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Figure 4.5: The influence of distance calculation errors on the performance of 
the fc-means algori thm investigated by means of Monte-Car lo simulations. The 
fc-means algori thm works best for finding symmetric clusters of similar size. Thus, 
the 2D points (in total 2 x 10 4) were selected to be divided into 2 clusters (clus
ters represented by dark green and red dots, and their centroids marked wi th 
black dots) by sampling from two 2D symmetric Gaussian distributions of equal 
variances (10 4 points per Gaussian). This way one can test the algori thm in the 
regime in which it performs correctly. The only variable is the distance between 
the central points (/ii and 1x2) of the Gaussians. The fraction of miss assigned 
clusters w i th and without accounting for the distance calculation errors is given 
in the central plot. Note that for the shaded range the average fraction is hard to 
estimate as the choice of the clusters for a finite number of points becomes more 
arbitrary wi th the distance between the Gaussians approaching 0. However, i n 
this regime the numerically estimated average value was approximately 0.11. 



Chapter 5 

Diagnostics of entanglement 
swapping by a collective 
entanglement test 

Text adopted from Vojtěch Trávniček, Karol Bartkiewicz, Antonín Černoch, and 

Karel Lemr, Phys. Rev. Applied, 14, 064071 (2020) [A4]. 

5.1 Introduction 

The exchange of quantum information between parties connected through a quan

t u m network [35, 36] can become the inherently secure transmission of information 

[19, 20] or provide an improved transmission rate [110, 128]. However, none of the 

transmission med ia 1 is lossless which results in errors that influence the quality 

of the transmission. Dur ing quantum communications i n free space the optical 

signal is attenuated due to geometrical losses such as diffraction and atmospheric 

extinction including absorption and scattering [129]. In an optical fiber the scaling 

of probabil i ty for a photonic qubit being absorbed, depolarized, or dephased grows 

exponentially w i th the length of the channel and remains the major obstacle to 

practical long-distance quantum communications [25]. This does not only restrict 

feasible lengths of quantum channels, but also represents a security threat as the 

errors could be exploited for a potential attack on the communication protocol 

[116, 117]. 

To combat these l imitations, quantum repeaters and relays were proposed [25, 

27]. A l though the working principles of quantum repeaters and relays somewhat 

differ, they both operate by spl i t t ing the communicat ion channel into segments, 

therefore, lowering the error probability. A t their core, quantum repeaters and 

relays apply the entanglement-swapping (ES) protocol [26]. This involves tele-

portat ion of a quantum state of a particle that shares entanglement wi th at least 
1e.g. optical fiber, free space (atmosphere) 

47 
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(a) 
Bel l State 

Measurement 

Entanglement 
Bob 

3 
Figure 5.1: (a) Conceptual diagram of the E S protocol. Two entangled quantum 
states (e.g., two pairs of photons) are generated in E P R sources. One particle from 
each pair is subjected to a Bell-state measurement. This results i n projecting the 
other two particles, which are sent to Al i ce and Bob, onto an entangled state, 
(b) Conceptual scheme for measurement of a C E W . To witness entanglement of 
a general two-qubit state pi, a copy pjj is prepared. Simi lar ly to E S , one particle 
from each pair is subjected to a Bell-state measurement, while the remaining two 
particles are subjected to a set of individual local projections R(9, 4>). The C E W 
is then calculated from the rates of fourfold simultaneous detections observed for 
a specific set of local projections. 

one other particle. Thus, E S allows the establishment of entanglement between 

particles that have never interacted directly. B y properly posit ioning the en

tanglement sources ( E P R ) and measurement devices across the communicat ion 

channel, one can distribute entanglement without physically sending the indi 

v idual quantum-correlated information carriers through the entire channel [see 

Figure 5.1(a)]. The E S is also applied in device-independent quantum communi

cations or entanglement-assisted error correction [61, 62]. 

In previous demonstrations of E S , quantum repeaters, and relays, the authors 

used various methods to demonstrate successful operation of their schemes. For 

instance, L i et al. [130] used quantum-state tomography, P a n et al. [26] and de 

Riedmat ten et al. [55] observed interference vis ibi l i ty and Jennewein et al. [131], 

Zhao et al. [132], and Y u a n et al. [133] tested B e l l inequality on the resulting 

state. Th is chapter discuses a practical method for diagnostics of E S by means 

of a collective entanglement witness ( C E W ) [91, 97-99]. We make use of the fact 

that the geometry of E S shares the layout of C E W (see Figure 5.1), bo th protocols 

require simultaneous preparation of two copies of a given potentially entangled 

state and a Bell-state projection. In particular, we adopt the collectibil i ty witness 

originally proposed by Rudnick i et al . [56, 57]. Th is approach is preferable to 

diagnostics by other means as the method requires only six measurement config-
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Figure 5.2: Exper imental setup for diagnostics of the E S protocol. H W P : half-
wave plate; Q W P : quarter-wave plate; P B S : polarization beam splitter; P D L : 
polarization dispersion line; IF : interference filters; F B S : fiber beam splitter; D E T : 
single-photon detector; C C : coincidence counter. 

urations to calculate collectibil i ty of a two-qubit state. A number that is smaller 

especially when compared to complete quantum state tomography [93, 94, 119]). 

5.2 Experimental implementation 

This idea is experimentally demonstrated on a linear-optical platform, where two 

independent EPR-s t a t e sources are constructed wi th an E S device l ink ing them 

together. Qubi ts are encoded into polarizat ion states of individual photons. Po

larizers and wave plates are used to implement errors occurring in three dis

t inct quantum-information channels, i.e., (a) a depolarizing channel, (b) a phase-

damping channel, and (c) an ampli tude-damping channel. In this experiment, 

both E P R pairs are subjected to the identically prepared damping channels (see 

Figure 5.2). 

A frequency-doubled 413 n m femtosecond pulsed-laser beam is used to pump 

spontaneous parametric down-conversion in a /3-BaB204 ( B B O ) crystal cascade 

[73]. A t first, the pump polarizat ion is made diagonal. Next , the beam travels 

through a polarizat ion dispersion line ( P D L ) to counter subsequent polarizat ion 

dispersion of the B B O material . This laser beam impinges on the crystal cascade 

twice, i.e., after it passes the crystals for the first time, it gets reflected on a 

mirror and pumps the crystals in the opposite direction. O n both occasions, w i th 
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some probability, a pair of photons i n the B e l l state | $ + ) = 4 j (\HH) + \ VV)) is 

generated, where H and V denote horizontally and vertically polarized photons, 

respectively. Using mirrors, pairs of photons generated by both the forward and 

backward propagating pumping beam are directed towards fiber couplers that lead 

them to single-photon detectors v i a single-mode optical fibers. These couplers are 

equipped wi th 10 n m interference filters i n the case of photons 1 and 3 and by 

5 n m interference filters i n the case of photons 2 and 4. Typ ica l four-photon 

detection event occurs about once per 4 m i n depending on the adjusted quantum 

state and polarization projection. The coincidences are accumulated for 10 h to 

collect about 150 events. The errors are calculated assuming Poisson statistics of 

the counts and using the Monte Car lo simulation. W h i l e polarization of photons 

2 and 4 is projected locally on four states selected using combinations of half-

and quarter-wave plates followed by polarizers, the other two photons (1 and 3) 

are projected onto a singlet state by means of a balanced fiber coupler ( F B S ) and 

postselected onto coincident detection at bo th its output ports. 

The four specific settings of local projections sufficient to estimate collectibil i ty 

[57] are \HH), \HV), \VV) and | + +), where letters indicate state projections 

on the two locally projected photons, respectively, and |+) = 4^ (\H) + \ V)). 

We denote pXy ( X Y G { H H , H V , V V , + + } ) the probabil i ty that both locally 

projected photons pass the projections conditioned on the other two photons being 

projected onto a singlet Be l l state. However, due to non-removable j i t ter between 

generation of the first and the second pair of photons, probabil i ty of two-photon 

overlap is decreased. Note that this j i t ter originates from the uncertainty i n the 

moment in t ime when a pair is generated as the pumping pulse traverses the B B O 

crystal. It affects only interference of photons from two different pairs (forward 

and backward generated photon pairs) and is proportional to the length of the 

pumping pulse. Its effect on the observed interference vis ibi l i ty scales inversely 

wi th the coherence length of the generated photons, which can be extended by 

spectral filtering at the expense of losses [134, 135]. The imperfect temporal 

overlap between the photons caused by the aforementioned j i t ter is seen as noise, 

which can be estimated and subtracted from the genuine coincidences. In order 

to estimate the noise level both photon 1 and photon 3 are prepared in the same 

polarization state (\H)) and the achievable Hong-Ou-Mandel ( H O M ) bunching 

effect is measured conditioned on detection of photon 2 and 4 (used as heralds). 

The observed H O M dip depth in this configuration is 43 % (perfect interference 

would result i n 100% dip depth). To compensate for the non-interacting photons, 

all projections are measured in two regimes: (a) adjusted for overlap between 

photons 1 and 3 and (b) wi th a completely detuned overlap so that the photons 

can not interfere. We then subtract 57% of the coincidence counts obtained 

in bo th regimes and calculate the corrected H O M dip depth as their ratio. A 

more detailed account on this procedure is described in Ref. [58]. Measuring the 
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probabilities pxy, collectibil i ty is calculated using formula 

W{p) ±[77 + - 2 p H H ) + (1 - P H ) 2 ( 1 - 2 p w ) 

+ 2 P H ( 1 - P H ) ( 1 - 2 P H V ) - 1 ] , 
(5.1) 

where r\ = 16pn( l — P H ) V ^ H H F V V + and pn is the probabil i ty of local 

projection of photon 1 or 3 onto horizontal polarizat ion \H) independently of the 

singlet Bell-state projection. 

For each measurement of the PXY probabilities there was 16 setup configura

tions of wave plates for photons 2 and 4. It should be emphasized that six local 

projections at most are required to estimate collectibili ty. The 16 configurations 

mentioned above are needed to measure al l these six collectibil i ty projections for 

all state transformations required to implement the noisy channels described be

low. For example, projection onto a | + +) state on photons 2 and 4 together w i th 

a phase flip transformation imposed to both these photons effectively requires 

measuring them in a I ) state ( | - ) = l/V2(\H) - \V}). However, one should 

clearly distinguish the projections needed to measure collectibil i ty from the state 

transformations imposed to deliberately implement various noisy channels. The 

latter would obviously not be performed when diagnosing a given entanglement-

swapping device. Wave plates used for local polarizat ion projections are used 

simultaneously to introduce disturbances typical for a given type of noisy quan

t u m channel. A s a result 16 x 60 sequences of fourfold coincidences are obtained. 

Depending on the simulated quantum channel a sequence is randomly wi th some 

bias selected and placed into a new array CCXY, which i n the end contained 60 

randomly chosen sequences. The bias is dependent on the type of noisy quantum 

channel and on the chance for error to occur. The probabil i ty pxy is then cal

culated by summation of CCXY, normalizat ion and correction on non-interacting 

photons. For the scheme of the experimental process see Figure 5.3. 

Here, we experimentally investigate noisy channels studied theoretically i n the 

context of quantum teleportation i n Ref. [136]. In this experimental demonstra

t ion, we assume that noisy channels acting on both photons 2 and 4 are symmetric. 

In principle, these photons might be subject to different sources and amounts of 

noise. Our numerical analysis indicates that this effect would not generate any 

qualitatively new results. For the purposes of this proof-of-principle experiment, 

we are therefore l imited to symmetric noisy channels. 

We acquire the theoretical predictions for the below-described noisy channels 

by mathematical s imulation of the collectibil i ty measurement, where the in i t ia l 

B e l l state | $ + ) is subjected to Kraus operators for various damping values ob

taining the transformed state p. Two copies of the transformed state are used to 
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16 wave plate configurations for each pX\ 
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Figure 5.3: Scheme of the experimental process of simulating noisy quantum 
channels. 

calculate the probabilities pn, PXY 

m = Tr[\H)(H\í2p], (5.2) 

Tr[\X)(X\*-)(*-\Y)(Y\ß<8)ß] 
PXY = (5.3 

Tr[\X)(X\U\Y)(Y\p®p] 

and subsequently the collectibility. 

5.2.1 D e p o l a r i z i n g channe l 

Qubits transmitted through a depolarizing channel are randomly subjected to 

three types of transformations causing decoherence. These transformations are bit 
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flip, phase flip, and a combination of bit flip and phase flip. It is the randomness 

and impossibil i ty to predict these transformations that is the effective cause of 

errors. The action of a depolarizing channel expressed by Kraus operators [21] 

reads 

where dp, is the depolarization probability, / stands for the identity operator and 

a, are Pau l i matrices. W h e n propagating through such channel, a B e l l state is 

randomly transformed into one of the other three B e l l states wi th equal probabil

i ty dp,/3. The implementation of depolarizing channel, was realized by randomly 

switching half-wave plates and quarter-wave plates between two positions: 0° and 

45° for the H W P s and 0° and 90° for the Q W P s . Using the procedure described 

in the previous paragraph we are able to measure the collectibil i ty of a Be l l state 

propagating through depolarizing channel for several values of the depolarization 

probabil i ty dp,- The observed collectibil i ty and its theoretical prediction are de

picted in Figure 5.4(a). A s expected, collectibil i ty reaches its max imum value 

for dD = 3/4, W(p) = 0.80 ± 0.09 (theoretical prediction: W(p) = 0.75). This 

corresponds to a maximal ly depolarizing action causing the transmitted state to 

fully decohere to pp, = 1/4. Meanwhile, i n an ideal channel (dp = 0) the Be l l 

state is propagating undisturbed which coincides wi th the value of collectibil i ty 

being W(p) = - 0 .24 ± 0.06 (theoretical prediction: W(p) = -0 .25) . 

5.2.2 P h a s e - d a m p i n g channe l 

The effect of phase damping causes decoherence between two basis qubit states 

without, however, causing any bit flip transformation. Such channel can be de

scribed by two Kraus operators 

where dp is the dephasing probability. Simi lar ly to the previous case, the phase-

damping effect was implemented by randomly switching quarter-wave plates be

tween two positions: 0° and 90° . The resulting collectibil i ty as a function of 

dp is presented in Figure 5.4(b). Exper imental value of collectibil i ty at dp = 1 

reaches W(p) = 0 . 3 2 ± 0 . 0 9 (theoretical prediction: W(p) = 0.25) as the B e l l state 

propagating through this channel becomes pp = ^(\HH)(HH\ + | V V ) ( V V | ) . 

5.2.3 A m p l i t u d e - d a m p i n g channe l 

Typical ly , amplitude damping causes lossy transmission of qubits through the 

channel. The overall losses are t r iv ia l to detect as they decrease the overall number 

of coincident detections. Apa r t from that, white (state-independent) losses do not 

for i G {x, y, z} (5.4) 

(5.5) 
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Figure 5.4: Measured collectibil i ty after the E P R pairs pass through: (a) de
polarizing channel (b) phase-damping channel (c) ampli tude-damping channel 
parameterized by parameter dn, dp and d\ respectively. 

change the collectibil i ty because the measurement relies solely on successful four-

photon detections. It is, therefore, more interesting to analyse state-dependent 

(polarization sensitive) losses that cause disturbance i n superposition of horizontal 

and vertical polarizations of the state. One can describe this channel by an 

effective matr ix transformation 

1 0 
p -»• EApEA, EA=[^ U " . ] . (5.6) 

Here, in contrast to the above-described channels, the entangled state remains 

pure but its entanglement decreases. This corresponds to the B e l l state being less 

entangled •^====(\HH) + (1 — dA)\VV)) and eventually becoming separable pA = 

\HH)(HH\ as d\ —>• 1, where the value of collectibil i ty reaches W(p) = —0.05 ± 

0.09 (theoretical prediction: W(p) = 0). Col lec t ib i l i ty allows this transit ion to be 
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captured as shown in Figure 5.4(c). Note that the C E W for pure states can serve 

as an entanglement measure [56, 57]. 

To simulate the effect of amplitude damping on the pu probabil i ty the fourfold 

coincidences outside of the H O M dip (without Bell-state measurement) were mea

sured while projecting photons 2 and 4 onto H H and V V polarizations. Note that 

PHH /PW probabil i ty outside of dip is equal to p\ / ( l — pn)2- B o t h projections 

consisted of 74 measurements each taking l O m i n . G iven the four-photon detec

t ion rate and length of the time, the number of coincidences detected in each of 

the 74 sequences fluctuated from 0 to about 5. The 74 sequences of coincidences 

were then organized in a decreasing and increasing order for the H H and V V 

polarizations, respectively. The ratio R was introduced as 

v ^ N ( \ 2 
^ r C C H H n

 = * w = N G [ 1 ' 7 4 ] ( 5 - 7 ) 

E„=i<xvv(7i) (i- Pa) 
from which the probabil i ty pu was obtained by solving the quadratic equation 

E q . (5.7). 

5.2.4 C h a n n e l characterist ics 

Measurement of collectibil i ty is a powerful tool that allows detection of distur

bance occurring in the channel. However, i n order to promote this method even 

further, analysis of characteristic effects of the three types of noisy channels was 

performed. B y detailed analysis of the individual probabilities used for collectibil

i ty calculation one can identify which type of damping is inflicted. Five proba

bilities are measured to calculate collectibil i ty pxy for X Y G { H H , H V , V V , ++}, 

and pn- The experimental and theoretical values of these quantities for three 

tested channels and a reference perfect channel are visualized in Figure 5.5. The 

exact results are then summarized in Table 5.1. For a perfect channel the overall 

state of the system is 

|$+)|$+) = \[{\HH) + \VV)){\HH) + I V V ) ) ] , (5.8) 

which after projecting the photons 1 and 3 onto a singlet state collapses also to a 

singlet state 

l * + > l * + > l « - (5-9) 

Hence, the only conditioned projection that one observes is the \HV) projection 

wi th probabil i ty pnv of 1/2. It follows from the E q . (5.8) that the probabil i ty pa 

of uncondit ional projection \H) is also 1/2. In a fully depolarizing channel the 

state of the system becomes maximal ly mixed 

(5.10) 



56 CHAPTER 5. DIAGNOSTICS OF ENTANGLEMENT SWAPPING 
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Figure 5.5: Characterist ic channel signatures allowing to identify type of er
rors from the individual measurements that constitute collectibility. G ray and 
blue bars represent theoretical predictions and experimentally obtained values 
respectively. The uncertainty of the unconditioned probabil i ty pu is negligible, 
therefore, is not visualized. 

Therefore, al l of the condit ional projections are equally likely w i th probabilities 

of 1/4. The probabil i ty pn of uncondit ional projection \H) stays at 1/2. Phase 

damping transforms the in i t ia l Be l l state into a pp. The final state of the photons 

2 and 4 is then 

pP ® pP ^ 3 > ( ^ 3 l > \{\H2V4)(H2V4\ ft \V2HA)(V2HA\). (5.11) 

The probabil i ty of observing a conditional \HV) projection is 1/2, however, due 

to the phase flip transformation we also observe signal in | + +) projection w i t h 

probabil i ty p++ of 1/4. The uncondit ional projection \H) happens wi th probabil

ity 1/2. In an ampli tude-damping channel wi th attenuated vertical polarization, 

the not normalized state of the photons 2 and 4 becomes 

|$+)|$+) M a l ^ ^ 0 ^ ( 1 ^ 2 ) 1 ^ 4 ) - \V2)\H,)). (5-12) 

Post-selection of photons 1 and 3 onto a singlet Be l l state, steers the state of 

photons 2 and 4 onto a perfect B e l l state independently of the amplitude damping 

parameter d\ hence the probabilities pxy remain unchanged. O n the other hand, 

the d\ parameter affects the probabil i ty of successful post-selection of photons 

1 and 3 onto a singlet state as well as the local probabil i ty pn- In case of a 

completely damping channels d\ = I, pu becomes 1 and the collectibil i ty W 

becomes 0 as correctly expected for a separable state of photons 1 and 2 and 3 

and 4 respectively. 

5.2.5 Imperfect Bel l - s tate measurement 

To expl ici t ly demonstrate that imperfect Bell-state projection also has a measur

able effect and can be detected, we calculated the probabilities pxy without the 
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Table 5.1: Exper imental results and theoretical prediction (in parenthesis) of 
the pxv and pa probabilities and collectibil i ty obtained for the perfect, fully 
depolarizing, fully phase-damping and fully amplitude-damping channel. The 
uncertainty of condit ional probabilities pxy and uncondit ional probabil i ty J?H is 
4 % and less than 1% respectively. The uncertainty of collectibil i ty measurement 
is ± 0 . 0 9 . 

perfect depolarizing phase-dam. amplitude-dam. 
channel channel channel channel 

P H H ( % ) 1(0) 20 (25) 1 (0 ) 1 (0 ) 

P H V ( % ) 50 (50) 21 (25) 50 (50) 50 (50) 

P w ( % ) 3 (0 ) 20 (25) 3 ( 0 ) 3 ( 0 ) 

P++(%) 1(0) 32 (25) 28 (25) 0 ( 0 ) 

P H ( % ) 50 (50) 50 (50) 50 (50) 100 (100) 
W(/5) -0.22 (-0.25) 0.81 (0.75) 0.33 (0.25) -0.01 (0.00) 

compensation for non-interacting photons. This is specific to the linear-optical 

platform, where Bell-state projection is implemented by two-photon interference. 

The obtained values are J?HH = 0 . 2 9 , puy = 0 . 4 9 , pvv = 0 . 2 7 and p++ = 0 . 2 9 , 

w i th typical uncertainty of 0 . 0 3 . The resulting collectibil i ty reads W = 0 . 7 5 ± 0 . 0 6 . 

These results prove that imperfect Bell-state projection by a balanced beam split

ter is also detected by our method and addit ionally manifests a unique signature: 

the probabil i ty pnv should mainta in a value of 0 .5 as in the case of a perfect 

channel, whereas the remaining probabilities should uniformly increase their val

ues from 0 (perfect Bell-state projection) up to 0 .5 (Bell-state projection replaced 

by completely non-interfering photons). Consequently, the imperfections in Be l l -

state projection can be distinguished from the channel imperfections. Our exper

imental results reflect the fact that the Bell-state measurement is imperfect only 

to some degree. The por t ion of non-interacting photons i n the Hong-Ou-Mandel 

cross-pair interference is 5 7 % . 

5.3 Conclusions 

This work reports on the experimental diagnostics of entanglement swapping by 

ut i l iz ing four part ia l measurements applied for determining C E W (collectibili ty). 

W i t h this approach one can capitalize on the s imilar i ty between the geometry 

of the E S protocol and the layout for measurement of C E W . This method al

lows detection of disturbance i n a channel by measuring four probabilities pxy 

and estimating the collectibil i ty making it a preferable method as the number 

of measurement configurations is lower than i n other means of diagnostics. The 
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collectibil i ty was measured for three noisy channels: depolarizing channel, phase-

damping channel, and amplitude-damping channel. The obtained experimental 

data is i n a good agreement wi th theoretical predictions. Addi t ional ly , by anal

ysis of the measured pxy probabilities, one can determine which type of error is 

occurring i n a given experimental setting for al l three damping channels. The 

experiment also demonstrate that this approach is able to detect imperfections 

in Bell-state measurement and is capable of distinguishing them from previously 

mentioned faulty channels. A real-world channel may constitute a combination of 

typical noisy channels (depolarizing, dephasing) and hence the observed channel 

characteristics reflected i n the measured probabilities pxy would be a combination 

of characteristics of the part icipat ing types of noise. This effect, however, does 

not change quali tat ively any of the presented results and drawn conclusions. We 

believe that these results can contribute to the field of quantum communications 

and mainly represent a practical instrument for future deployment of quantum 

networks or engineering of complex multi level quantum systems. 



Chapter 6 

Conclusions 

A s described i n the introduction, quantum information processing realized on the 

platform of linear optics represents a perspective area of research. In recent years 

it accomplished several milestones such as controlled and long-distance quan

t u m teleportation or secure quantum key distr ibut ion. Nevertheless, there are 

st i l l many concepts that need to be theoretically investigated and experimentally 

demonstrated. 

In this thesis, three original Q I P experiments were presented. They were mo

tivated by recent developments i n the field and by our believe that they might 

contribute to the advancement of quantum information processing. The focuses of 

these experiments were the detection of entanglement i n hyper-entangled states, 

characterization of errors that could occur during an entanglement swapping and 

a distance measure between quantum states. To our satisfaction, al l of our re

sults were published i n journals wi th an impact factor. In one case the results 

were deemed important enough to warrant publicat ion in the prestigious Physical 

Review Letters. These results were also promoted to general public v ia several 

media [137-139]. 

The first experiment, presented in Chapter 3, successfully demonstrated the 

detection of entanglement i n a hyper-entangled state by a non-linear entanglement 

witness. The original technique which was proposed by Rudn ick i et al. allows 

to detect entanglement in large number of two-qubit states. The collectibil i ty 

measurement of systems entangled i n one degree of freedom requires to perform 

the collective measurements on two identical copies of the investigated state. Here 

the collectibil i ty was measured directly on a single multi level state where a two-

qubit state is copied across two degrees of freedom. Advantage of the mixed 

encoding is that one needs fewer information carriers (photons) therefore, the 

detection events are more frequent and the whole measurement is considerably 

faster. Further to that, complete Be l l analysis is feasible w i th linear optics when 

two degrees of freedom are involved. 

The fourth Chapter presents the second experiment which was focused on 

59 
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the measurement of Hilber t -Schmidt distance between two two-qubit states. The 

experiment demonstrates that our method for measuring Hilber t -Schmidt dis

tance is far less complex than reconstructing density matrices and that it can 

be applied in quantum-enhanced machine learning to reduce the complexity of 

calculating Eucl idean distances between mult idimensional points. The results are 

also a novel example of applying mixed states in quantum information processing. 

Usual ly working wi th mixed states is undesired, but here it gives the possibility 

of encoding extra information as coherence between given two dimensions of the 

density matr ix . 

The th i rd experiment is discussed i n Chapter 5. It aimed at the diagnostics 

of entanglement swapping protocol by means of collectibility. The experiment 

successfully demonstrated that our approach is suitable to detect disturbances 

occurring i n the preparation of quantum states, quantum communicat ion chan

nel and imperfect Bell-state projection. Advantage of this method is that there 

is considerable s imilar i ty between the geometry of the entanglement swapping 

protocol and the layout for collectibil i ty measurement. 

In addit ion to the three experiments described i n this thesis, the author is also 

a co-author of other two publications. One is related to the distance measures 

in Hilber t space [A2], the other to the characterization of photon-number noise 

in Rari ty-Tapster-Loudon-type interferometers [A5] published as a summary of 

authors Master 's thesis. The first paper is a theoretical study into direct mea

surement of quantum state distances investigated during the author's research 

visit to prof. K a r o l Bartkiewicz at A d a m Mickiewicz Universi ty in Poland. 

There are s t i l l many compell ing topics and concepts whether related or un

related to the discussed experiments that deserve some attention. The author 

believes that he might pursue some of them in his future work. 
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