BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGIi

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
USTAV POCITACOVE GRAFIKY A MULTIMEDIi

AUTOMATIC TRAFIC SCENE ANALYSIS USING
IMAGE PROCESSING

AUTOMATICKA ANALYZA SCENY V DOPRAVE PROSTREDNICTViM ZPRACOVANI OBRAZU

BACHELOR'S THESIS

BAKALARSKA PRACE

AUTHOR LUKAS VALEK
AUTOR PRACE

SUPERVISOR prof. Dr. Ing. PAVEL ZEMCIK

VEDOUCI PRACE

BRNO 2020

Brno University of Technology
Faculty of Information Technology

Department of Computer Graphics and Multimedia (DCGM) Academic year 2019/2020

Bachelor's Thesis Specification |||||\\||2|l|!L|l\||||||\|

Student: Valek Lukas
Programme: Information Technology

Title: Automatic Trafic Scene Analysis Using Image Processing
Category: Image Processing
Assignment:

1. Study the available literature and solutions of automatic traffic scene analysis using image
processing; study also libraries of functions suitable for traffic scenes analysis.
2. Select suitable methods for detection of vehicles, their tracking, and analysis of anomalies in
their motion (turning around, obstacle avoidance, etc.)
3. Propose an implementation of the selected methods and discuss the features, advantages,
and disadvantages of such implementation.
4. Implement the selected methods and demonstrate the results on some feasible example of
traffic scene.
5. Discuss the achieved results and a possible future work.
Recommended literature:
e Dle pokyn(vedouciho
Requirements for the first semester:

e |ltems 1 to 3.
Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Zemdéik Pavel, prof. Dr. Ing.
Head of Department: ~ Cernocky Jan, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: May 28, 2020
Approval date: May 26, 2020

Bachelor's Thesis Specification/20774/2019/xvalek15 Page 1/1

https://www.fit.vut.cz/study/theses/

Abstract

This thesis deals with the issue of scene analysis using computer vision methods. The
aim of this work is to create a system capable of automatically detecting anomalies found
in video recordings. The present thesis discusses object-detection and object-tracking sys-
tems. It also pursues graphical user interface and violation-detecting algorithm of user-
defined rules. As a result of the present thesis, a web application is created that allows
users to manage their videos, to define rules for scenes, to start the anomaly detection
as well as display the results of the analysis. The system operates in real-time, notifies
users when the operation is finished and stores the analysis results for further processing.

Abstrakt

Tato prace se zabyva problematikou analyzy scény pomoci metod pocitacového vidéni.
Cilem této prace je vytvorit systém schopny automaticky detekovat anomalie nachézejici
se ve video zaznamech. Prace se zabyva systémy pro detekci a sledovani objekt v obraze,
tvorbou grafického uzivatelského rozhrani a algoritmem pro detekci poruseni uzivatelem
definovanych pravidel. Vysledkem prace je webova aplikace, kterd uzivateli umoznuje
spravu videozaznamu, definovani pravidel pro scény, zahajeni detekce anomaélii a zobrazeni
vysledkt analyzy. Systém pracuje v realném Case, upozornuje uzivatele o dokonceni operace
a uchovava vysledky analyzy pro dalsi zpracovani.

Keywords

Image Recognition, Machine Learning, Python, Flask, YOLO, DeepSORT, Web Applica-
tion, Object detection, Object tracking, Computer Vision

Klicova slova
Rozpoznavani obrazu, Strojové uc¢eni, Python, Flask, YOLO, DeepSORT, Webové aplikace,
Detekce objektu, Sledovani objektu, Pocitacové Vidéni

Reference

VALEK, Lukés. Automatic Trafic Scene Analysis Using
Image Processing. Brno, 2020. Bachelor’s thesis. Brno University of Technology, Faculty
of Information Technology. Supervisor prof. Dr. Ing. Pavel Zemcik

Rozsireny abstrakt

V poslednich letech zaznamenaly bezpecnostni kamery obrovsky narust popularity az do té
miry, ze se dnes vyskytuji témét vSude a produkuji miliony hodin videozdznamt. Tato videa
vyzaduji veliké mnozstvi Glozisté a ¢asu na zpracovani. Ve svété existuje mnoho pracovnich
pozic pro operatory, jejichz hlavni naplni prace je sledovat tyto zaznamy a hledat v nich
predméty zdjmu nebo anomadlie. V posledni dobé vyviji mnoho spole¢nosti systémy, které
tento proces automatizuji a eliminuji tim potfebu lidskych operatort.

Tyto systémy se do znacné miry spoléhaji na metody pocitacového vidéni a obvykle
vyzaduji extrémné vysokou vypocetni silu k provedeni analyzy videa. Cilem této prace
je prozkoumat Sirokou skalu metod pocitacového vidéni pro sledovani a detekci objekti.
Prace se také snazi o vytvoreni algoritmu schopného detekovat poruseni pravidel, ktera
byla definovana uzivateli. Daéle se prace zabyva tvorbou systému, ktery se podoba sys-
témum velkych spole¢nosti. Tyto systémy umoznuji takovu definici vlastnich pravidel, aby
bylo jejich vyuziti co nejsirsi. Nékteré spole¢nosti nabizeji vlastni hardwarové vybaveni, jako
jsou vlastni IP kamery a servery, jiné zase nabizi pouze softwarové reseni. Tyto systémy
se predevsim vyuzivaji pro zajiSténi bezpecnosti ve méstech, budoviach a na soukromych
pozemcich. Daéle se pouzivaji pro zpétné vyhledavani objekti ve videozaznamech. Sys-
témy obvykle dokazi upozornit uzivatele na objeveny problém zpusoby, jako je napiiklad
upozornéni e-mailem a SMS, vyskakovaci upozornéni a nebo kontaktovani bezpec¢nostnich
sil.

Pri navrhu aplikace byl kladen duraz na vybér vhodného systému pro detekovani a sle-
dovani objektd v obraze, aby systém fungoval dostate¢né rychle a presné. Déle byly
navrhnuty algoritmy pro extrahovani trajektorii vozidel, pro tvorbu uzivatelsky defino-
vanych pravidel a pro detekci poruseni téchto pravidel. Systém byl také rozsifen o webovou
aplikaci, kterda uzivateli umoznuje graficky pracovat s celym systémem. Uzivatelé jsou
schopni nahravat a spravovat vlastni videozdznamy, vytvaret pro né pravidla a spoustét
pro né analyzu, jejiz vystupy mohou prohlizet.

Systém byl prevazné implementovam v jazyce Python. Déle byl pouzit jazyk JavaScript
pro implementaci aplikace, které slouzi k vytvoreni uzivatelkych pravidel. Webova aplikace
vyuziva framework Flask, SQLAlchemy a databazi Postgres. Algoritmus pro extrahovani
trajektorii z videozdznamt vyuzivd metodu YOLOv3 pro detekci vozidel a metodu Deep-
SORT pro jejich nasledné sledovani.

Cilem prace bylo vytvorit systém, ktery automaticky detekuje anomalie ve videozaz-
namech dopravni scény. Tento cil byl splnén. Vysledkem préace je program pro analyzu
videa, ktery kombinuje YOLOv3 pro detekci objekti, DeepSort pro sledovani objekti, al-
goritmus pro extrakci trajektorii a algoritmus pro porovnani trajektorii vozidel a uzivatelsky
definovanych pravidel. Byla také vytvorena webova aplikace, kterd uzivatelim umoznuje
definovat pravidla pro scény, nahravat a spravovat videozaznamy, spoustét pro né analyzu
a také umoznuje vystupy analyzy prohlizet.

Automatic Trafic Scene Analysis Using
Image Processing

Declaration

I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Mr. prof. Dr. Ing. Pavel Zemcik. I have listed all the literary
sources, publications and other sources, which were used during the preparation of this
thesis.

Lukas Valek
May 28, 2020

Acknowledgements

I would like to thank my supervisor prof. Dr. Ing. Pavel Zemcik for his kind guidance,
patience and valuable advice. I would also like to thank my dear ones for their endless
support.

Contents

Introduction

Object Detection And Tracking Methods Summary

2.1 Object Detection Methods Overview
2.2 Object Tracking Methods Overview
2.3 PyTorch Machine Learning Framework
2.4 TensorFlow Machine Learning Framework
2.5 Keras Machine Learning Framework
2.6 Scikit-learn Machine Learning Framework

Object Detection and Tracking Solutions Summary

3.1 Certicon Company Offerings
3.2 IntelliVision Company Offerings
3.3 Avigilon Company Offerings,
3.4 Agent Vi Company Offerings,
3.5 AxxonSoft Company Offerings

State-of-the-Art Analysis and Specification of Assignment

4.1 Existing Software Offerings Analysis
4.2 Objectives and requirements for the resulting solution
4.3 Technical Specification of the Resulting System

System And Components Outline

5.1 Object Detection Method Selection
5.2 Object Tracking Method Selection
5.3 Anomaly Detection Algorithm Outline
5.4 Graphical User Interface Outline
5.5 Programming Language And Frameworks Selection
5.6 Trajectory Analysis Method Outline
5.7 User-Defined Rule Creator Outline

Proposed System Implementation

6.1 Object Tracker and Object Detector Implementation
6.2 Trajectory Analyser Implementation
6.3 Rule Creator Implementation
6.4 Rule Violation Analysis Implementation
6.5 Web Application Implementation
6.6 System Overview

11
16
16
17
17

18
18
19
20
21
22

24
24
25
26

27
28
29
29
29
32
32
32

6.7 System Testing L
7 Conclusions
Bibliography

Appendices
List of Appendices

A Links to Mentioned Technologies
B Complete Graphical User Interface Outline

C Complete Web Application Implementation

48

49

52
53

54

56

61

Chapter 1

Introduction

In recent years, security cameras have seen a huge spike in popularity up to the point
that nowadays, they are almost everywhere and produce millions of hours of video footage.
These require a lot of storage and time to be processed. In the world, there are many work
positions for operators whose main job is to watch hours of real-time or playback video
footage and to find objects of interest or anomalies in them. Recently, many companies
have been developing systems which automate this process of finding objects of interest
in the video footage and eliminate the need of human operators.

These systems rely heavily on computer vision methods and they usually require ex-
tremely high computational power to perform the video analysis. This might have been
a problem just a few years back but nowadays, it is not due to fast progress in GPU research.

The thesis aims to explore a wide variety of computer vision methods for object tracking
and object detection. It also seeks to create an algorithm capable of detecting the violation
of user-defined rules. Finally it strives to create a system similar to the ones produced
by large companies.

In the thesis, I aimed to offer a solution to the problem mentioned above. I have chosen
this task because I am interested in Computer Vision industry and I want to learn new
information from this industry. Also, I intend to further pursue Computer Vision in my
Master Degree studies.

The thesis is organised as follows. Chapter 2 introduces the field of object detec-
tion and tracking and it further summarises popular and historically significant methods
in the field. Chapter 3 pursues the existing solutions of automated video analysis. Chapter
4 analyses the existing solutions and it sets the technical goals of the thesis. Chapter 5
proposes the final system architecture. Chapter 6 moves on to explore the implementation
details of the system. Section 6.7 deals with the testing of the system. Finally, chapter
7 presents the accomplishments and it also discusses the possibilities of further extending
the work.

Chapter 2

Object Detection And Tracking
Methods Summary

In this chapter, the state-of-the-art of object detection and tracking is summarised. Various
methods for object detection and object tracking are discussed. This chapter mainly focuses
on methods which pursue these tasks; however, due to the scope of the thesis it is not
possible to mention every available method.

2.1 Object Detection Methods Overview

Object Detection is a Computer Vision task which deals with locating and identifying
objects which belong to a certain class. The object location can be interpreted in multiple
ways [9]. Two most notable interpretations are:

e Bounding boxes - a rectangle around the found object

e Segmentation - marking every pixel that belongs to the found object
Objects detectors discussed in this section are:

e R-CNN

e Fast R-CNN
Faster R-CNN

¢ F-RCN
e YOLOvV3
e SSD
These methods are explained in more detail below.
R-CNN
R-CNN is one of the state-of-the-art CNN based Deep Learning methods for object de-
tection. In an ideal scenario, there would be a bounding box for every possible position

in the image which would be classified by the R-CNN [25]. This approach would be compu-
tationally impossible so a different approach must be used. Instead, the algorithm generates

around 2000 region proposals of various sizes and aspect ratios which are then classified
[25].

Figure 2.1: Region selection of the R-CNN detector!

Figure 2.1 illustrates the sliding window (left) and different aspect ratios (right). Bounding
boxes are drawn around the detected objects and the algorithm ends. There are problems
with this algorithm. Training of the CNN takes a very long time because each picture has
to be detected 2000 times [25].

Image & Detections
search space with score

Image

Dis_card unli_kely Discard unlikely
object locations object locations

Figure 2.2: R-CNN detector algorithm?”

!Taken from https://medium.com/analytics-vidhya/beginners-guide-to-object-detection-algorithms-
6620fb31c375

The architecture of this method can be seen in figure 2.2. This method cannot be imple-
mented in real-time because each frame, using the current hardware, would take more than
30 seconds to process. The algorithm that detects region proposal is fixed and cannot be
trained [25].

Fast R-CNN

Fast R-CNN works similarly to R-CNN but instead of classifying around 2000 proposed
regions, the whole image is fed to CNN resulting in a feature map. Proposal region is
extracted from the feature map, reshaped to squares and resized to a fixed size using Rol
Pooling. Rol feature vectors are used as an input for a softmax layer to predict classes
of the proposed regions and their bounding boxes coordinates [25].

softmax regressor
Rol FC FC
pooling I
=1
projection J !
Conv Rol feature
feature map VECtOr o esch v
1. Input image 2. ROI Pooling 3. Classification and bounding 4. Final results
box regression

Figure 2.3: Fast R-CNN detector architecture®

The architecture of this method can be seen in figure 2.3. This method is way faster than
the previous method because there are fewer proposed regions generated and the convolu-
tional operation is done only once per image [25].

Faster R-CNN

Faster R-CNN is in a way similar to Fast R-CNN as it also feeds the whole image to CNN
to extract a feature map. Instead of using a selective search algorithm for the proposed
regions, it uses a special Region Proposal Network to get the proposed regions. These
regions are then resized using Rol Pooling and fed to a classifier to get the object class
and predicted bounding boxes for the given regions [25].

Taken from https://medium.com/analytics-vidhya/beginners-guide-to-object-detection-algorithms-
6620fb31c375

3Taken from https://medium.com/analytics-vidhya,/beginners-guide-to-object-detection-algorithms-
6620fb31c375

classifier

proposals i ;
| 2k scores ‘ I 4k coordinates I <mm kanchor boxes
cls layer reg layer .
Region Proposal Networ \ ’
”sature maps
t intermediate layer

-]

conv layers
y / sliding window.

— conv feature map

B
3

Figure 2.4: Faster R-CNN detector architecture®

The architecture of this method can be seen in figure 2.4. This method is very precise but
due to its slow performance not suitable for real-time systems [25].

R-FCN

R-FCN just like R-CNN and its faster variants belongs to the two-stage detector category.
It also uses RPN (region proposal network) to generate region proposals [25]. But fully
connected layers after ROI pooling are removed. Instead, most of the major calculations
are done before ROI pooling to generate the score maps. These score maps are used
to perform average voting which greatly increases performance [15].

“Taken from https://medium.com/analytics-vidhya/beginners-guide-to-object-detection-algorithms-
6620fb31c375

RPN

Rols

conv Average Voting

f

9 f

&’ “E conv, | conv,
)
gy

2 1

feature

maps

Score Maps

Figure 2.5: R-FCN detector architecture®

This results in a faster method than Faster R-CNN with similar mAP [29]. The architecture
of this method can be seen in figure 2.5. Still, this method is not suitable for a real-
time object detection due to its slow performance compared to SSD and YOLO which are
discussed in the following sections.

YOLO

YOLO (You Only Look Once) is an extremely fast single CNN object detector. It predicts
multiple bounding boxes and class probabilities for those boxes. YOLO is trained on full
images and has optimised object detection performance. It runs at 45FPS (on Nvidia
Titan X) while being more accurate than methods such as Fast R-CNN or DPM [25].
Unlike region proposal techniques, YOLO has the whole context of the image available.
This means that YOLO makes fewer background errors when compared to region-based
methods which only see a part of the object at once [25]. YOLO partitions the whole image
into SxS grid. If the centre of an image falls into a grid cell that the grid cell is responsible
for the detection of that object. Each grid cell predicts B bounding boxes and confidence
score for those boxes. If there is an object in the grid cell the confidence score should be
equal to IOU between the predicted box and the ground truth [22]. Each bounding box
consists of 5 predicted values: z,y,w, h and confidence score. x and y represent the centre
of the bounding box relative to the grid cell. w and h represent the size of the bounding
box [22]. Each grid cell also predicts C conditional class probabilities. Only one conditional
class probability is predicted per grid cell. At test time the conditional class probability
is multiplied by the individual box confidence as such: Pr(Classi|Object) x PR(Object) *
I0U = PR(Classi) * IOU which computes a class-specific confidence score for each box.

STaken from https://towardsdatascience.com/review-r-fcn-positive-sensitive-score-maps-object-
detection-91cd2389345¢

https://towardsdatascience.com/review-r-fcn-positive-sensitive-score-maps-object-

These scores indicate both the probability of the class appearing in the box and how the box
fits the object [22].

Bounding boxes + confidence

s !-""..'.

S x S grid on input Final detections

)
g o
s

Class probability map

Figure 2.6: YOLO detector algorithm®

The algorithm of this method can be seen in figure 2.6. Because each grid cell only predicts
two bounding boxes and one class, this method struggles with small objects which appear
or objects which appear in groups such as flocks of birds [22].

SSD

Single Shot MultiBox Detector was released in 2016 and reached records in both speed
and accuracy. Just like YOLO, both classification and localization happen in a single
forward pass of the network. SSD consists of two main parts: the backbone model and SSD
head [3]. The backbone model is a regular CNN which the fully connected layers were
removed from . It is used as a feature extractor to gather the semantic meaning of the picture
while maintaining a spacial structure at a cost of resolution degradation. The SSD head
consists of another convolutional layer of different sizes which predict the bounding boxes
and classes of objects in the spacial location [3]. This architecture can be seen in figure 2.7.

5Taken from https://medium.com/analytics-vidhya/beginners-guide-to-object-detection-algorithms-
6620fb31c375

oomvd_x COMVS_x '. J

SSD Layers

| Original Prediction layer |

Figure 2.7: SSD detector architecture”

These layers separate the image into grid cells which contain default bounding boxes of dif-
ferent sizes and aspect ratios. Each layer separates the image into a different number
of cells. These default bounding boxes are determined during the model training [13].
These bounding boxes can be seen in figure 2.8.

Yy

Figure 2.8: SSD detector bounding box selection®

Higher-resolution feature maps (layers) are responsible for the detection of small objects
while lower resolution ones are used to detect larger objects. SSD predictions are classified
as positive or negative matches. If the default bounding box has IoU greater than 0.5 with
the ground truth, it is classified as a positive match. Otherwise, it is a negative match [13].

"Taken from https://developers.arcgis.com/python/guide/how-ssd-works/
8Taken from https://medium.com/@jonathan_hui/ssd-object-detection-single-shot-multibox-detector-
for-real-time-processing-9bd8deac0e06

10

https://developers.arcgis.com/python/guide/how-ssd-works/
https://medium.com/@jonathan

SSD is performing worse than Faster R-CNN for small-object detection but is consid-
erably faster (around 8 times). It is around the same level in terms of speed and accuracy
as YOLOv3 which makes it very suitable for real-time detection tasks [25, 13].

2.2 Object Tracking Methods Overview

Object tracking is a Computer Vision task which deals with reidentifying objects through-
out multiple frames and about figuring out where the object is headed [1]. A tracking
algorithm is initialised with a frame of a video and a bounding box to indicate the location
of the object. It then attempts to keep track that object in consequent frames and output
the bounding box for it. The task is quite difficult due to various obstacles like occlusion,
orientation change, scale, and lighting variations [1]. Object tracking is used in applications
such as video surveillance, human-computer interaction, robot navigation, activity recogni-
tion, anomaly detection, virtual reality, object navigation, and path detection. It is a great
way to automate and optimize those processes [1]. Object trackers are divided into multiple
categories:

e Detection based and Detection Free:

— Detection Based trackers use a pre-trained object detector to initialise the track-
ing. This kind of tracker can detect objects which appear in the middle of track-
ing and immediately recognise when the object disappears from the frame. These
methods either normally use the object detector, only use the tracking when
the detection fails or they run the object detector every n-th frame to correct
the tracking error. The latter variant is used for a long continuous tracking [26].

— Detection Free trackers need a manual initialisation of the object which needs

to be tracked. The tracker then localises those objects in the consequent frames.
New objects which enter the frame after the initialisation are not tracked [26].

e Single and Multiple Object trackers:

— Single Object trackers only track a single object in the frame even when
there are multiple trackable objects in the frame. The object to be tracked is
determined at the initialisation [26].

— Multi Object trackers track every object which is found in the frame. If
a detection-based tracker is used it also tracks each new object that appears
after the initialisation [26].

e Online and Offline trackers:

— Online trackers are used when there is not a possibility to predict the move-
ment of the object from the future frames (eg. live video feed) [26].

— Offline trackers are used for tracking objects in a recorded video. It uses future
frames to predict the movement more accurately and minimise errors [26].

e Based on Learning strategy:

— Online Learning Trackers use one or more frames during the initialisation
phase to learn about the object. These trackers are more general-purpose because
they do not need any pre-training and can learn to track any object on the fly
[26].

11

— Offline Learning trackers need to be trained before trying to detect any object
because they do not learn anything about the object during the runtime. These
trackers can reach higher accuracy because they can be trained on thousands
of examples [26].

This task requires detection based online multi-object tracker with offline training. Fol-
lowing text pursues some of the object trackers which are available in the OpenCV A
framework.

Tracking methods of the OpenCV framework

BOOSTING tracker:

This classifier is trained at runtime with positive and negative examples of the object.
The initial positive example is set by the user or another object classifier. The negative
examples are selected in the parts of the image which are outside of the found bounding box
[18]. The classifier is run for each frame on every pixel in the proximity of the previously
found location. Each pixel is also assigned a value by the classifier. The next location is
selected based on the highest score of the pixel. This new location is also used as a positive

example for the classifier. This method is very old and does not recognise when the tracking
fails [18].

MIL tracker

Multiple instance learning is similar in function to a BOOSTING tracker but instead of feed-
ing the classifier with one positive example and many negative ones, it puts the positive
example and other possible positive examples in the proximity to a positive ’bag’. When
the current location of the tracked object is not accurate, there is a high chance that
the ’shifted’ location corresponds with some examples in the positive ’bag’ This results
in a better tracking performance than the BOOSTING tracker and also works if the object
is partially occluded [18].

KCF tracker
Kernel Correlation Filter further improves on the two previously mentioned methods. This
method takes advantage of the fact that a lot of the examples in the positive ’bag’ over-

lap to make the tracking more accurate and faster. This is currently the go-to method
in the OpenCV framework [18].

TLD tracker
This tracker separates the term ’tracking’ into 3 smaller parts.

e Tracking - The tracker follows the object from frame to frame.
e Detection - Detector locates the object and corrects the tracker if necessary.

e Learning - Learning estimates the detector’s error and updates it to prevent errors
in the future.

This tracker can deal with a lot of occlusions but due to a high number of false positives,
it is almost unusable [18].

12

MEDIANFLOW tracker

This method tracks the object in both forward and backward direction and measures the dis-
crepancies between these two directions. This approach enables the method to detect track-
ing failures. MEDIANFLOW tracker works best with small and predictable movements.
[18].

GOTURN tracker

Generic Object Tracking Using Regression Networks takes advantages of the CNN (Convo-
lutional Neural Network) trackers while being faster because of the offline training and no
online fine-tuning. GOTURN receives the centred previous frame and the current frame
(in which the object is most likely not centred) [18].

Previous frame Neural Lt
Network

Frozen weights Current frame
tracking output

Current frame

Figure 2.9: GOTURN tracker method’

As seen in figure 2.9 the tracker is given the bounding box of the object in the first frame
and then tracks it throughout the video [19]. GOTURN doesn’t handle occlusion but is
very robust to viewpoint and lighting changes and various deformations. The performance
of this tracking method is around 165FPS on a single Titan X. Both the previous and current
frames are cropped and used as an input to the first 5 layers of the CafeeNet architecture
[23]. The architecture of this method can be seen in figure 2.10.

9Taken from https://www.learnopencv.com/goturn-deep-learning-based-object-tracking/

13

https://www.learnopencv.com/goturn-deep-learning-based-object-tracking/

Current frame Conv Layers
Search Region

Crop

-—=> Fully-Connected

Layers

0y

Al Predicted location
of target
within search region

: What to track
Previous frame Conv Layers

Figure 2.10: GOTURN tracker architecture'’

The outputs of these convolutional layers are concatenated into a vector of the size of 4096.
This vector is then used as an input to 3 Fully-Connected Layers which output 4 coordinates
of the bounding box [11].

Other tracking methods

ROLO tracking method

ROLO stands for Recurrent YOLO and is an offline, single object tracker. It uses a CNN
called YOLO to extract features of the tracked object and a bounding box of the object.
Those features are used as input for the LSTM (Long Short Term Memory) which is an RNN
(Recurrent Neural Network) [17].

10Taken from https://www.learnopency.com/goturn-deep-learning-based-object-tracking/

14

https://www.learnopencv.com/goturn-deep-learning-based-object-tracking/

Spatial Temporal

Input Sequnce Visual Features onsraint Constraint T rediction
(i N0 I e B e N O I S
| [I [
| voLo |.l1_ldetection| | I L] location
I | I 1 [
| Regl'elssion I 1 Regr’eksicm
b | - [
| . | | [:
- - 1 -sldetection “H location

- detection

|

|

I

I

| :

|

1

I

I |l :
L LsT™ S location
| [

L

Figure 2.11: ROLO tracker architecture'!

The architecture of this method can be seen in figure 2.11. The tracker deals well with
occlusion and motion blur. As it is a single object tracker, it is not suitable for the goal
of this thesis [21].

SORT tracking method

Simple Online and Realtime Tracking method is capable of tracking multiple objects in a
video in real-time speed. It relies on an object detector to detect objects in the frame
and associates them with previously detected objects based on the coordinates of detection
results [20]. This means that this method can track objects of any type. It uses math-
ematical heuristics such as the IOU (Intersection-Over-Union) metrics between bounding
boxes in neighboring frames. The assignment of those boxes is solved by the Hungarian
Algorithm [6]. When the object which was present in the frame is not present in the current
one, it assumes that the object has left the frame [20]. The result and speed of this tracker
are dependent on the quality of the object detector which is used to find bounding boxes
and classes of the objects. Due to this tracker not taking the object’s visual features into
the account, it is not suitable for video analysis in this thesis [6].

Deep SORT tracking method

This tracked, based on the SORT tracking method, is one of the most popular and used
methods in the MOT (multiple object tracking) tasks. Deep SORT uses Kalman filtering
to estimate the position of the object in the current frame based on the previous detections.
The assignment is solved the same way as in the SORT method, using the Hungarian

"Taken from https://arxiv.org/pdf/1607.05781v1.pdf

15

https://arxiv.org/pdf/1607.05781vl.pdf

algorithm. It uses Mahalanobis distance to incorporate the uncertainties from the Kalman
filter. To further improve the tracking quality, another metric based on the appearance
of the object is added [17]. A classifier with the final classification layer stripped is used
to extract the features of the object in the bounding box. All bounding boxes of the detected
objects in the image are passed to this classifier to get a vector of values for each object which
represents the appearance of the object [33]. The distance metric is: D = AxDy+(1—A)xD,
Where) is a weighting factor, Dy, is the Mahalanobis distance and D, is the cosine distance
between the appearance feature vectors. This tracker is a perfect fit for this thesis because
it extracts the features of the object which results in the ability to track the object across
distant frames [33].

2.3 PyTorch Machine Learning Framework

PyTorch is a Python-based scientific computing package which takes advantage of the GPU
as an accelerator for the computation. It was released in January 2016 and has been gaining
a lot of attention since then. Nowadays it is one of the most used frameworks, right next
to the TensorFlow by Google. On GitHub, it has over 35 000 starts and almost 9 000 forks
[24]. PyTorch is also being used by large companies like Facebook, Twitter, NVIDIA, Uber
for Natural Language Processing, machine translation, image recognition, neural networks
and other AT areas [28]. PyTorch is mainly used to accelerate tensor computations with both
CPU and GPU acceleration support and easy deep neural networks building. It contains
many routines to accelerate scientific computations such as reductions, math operations,
linear algebra, slicing and indexing. Among the things mentioned above, PyTorch is also
getting a lot of popularity because of its simple interface, very Pythonic syntax and dy-
namic computational graphs [28]. PyTorch supports a technique called reverse-mode auto-
differentiation which allows users to quickly modify the way the neural network behaves
which creates a great environment for experimentation. PyTorch was not built as a Python
binding into a monolithic C++ framework but as a part of the Python language. It can be
easily combined with other popular scientific frameworks like NumPy A, SciPy A, scikit-
learn 2.6 and others. PyTorch is even compatible with Python compilers such as Cython A
or Numba A to further improve the already fast performance. PyTorch has various acceler-
ation libraries such as cuDNN and NCLL from NVIDIA or Intel MKL integrated, making
it as fast as the current hardware allows it to be [24].

2.4 TensorFlow Machine Learning Framework

TensorFlow is an open-source machine learning framework originally developed by Google
Brain team. It first publicly appeared in late 2015 while the first stable release arrived
in 2017. It runs on a variety of platforms like Windows, Linux, macOS, cloud services,
i0S, Android and many others [10]. Currently, it is the most popular machine learning
framework on GitHub with over 76 000 commits, 140 000 stars and 79 000 forks. It pro-
vides both Python and C++ APIs, as well as APIs for other languages but the framework
logic is written in C+-+ to ensure the best possible performance while Python is used
as a high-level wrapper of the C++ implementation [31]. TensorFlow contains tools for im-
age recognition, word embeddings, recurrent neural networks, natural language processing,
partial differential equations, based simulation and others. The biggest benefit to Tensor-
Flow is that it provides an abstraction to the machine learning development. It enables

16

developers to only focus on the application logic without worrying about small implementa-
tion details [10]. In October 2019, TensorFlow 2.0 was released further simplifying the use
while improving the performance. Support for Keras 2.5 API for model training and exper-
imentation was added. TensorFlow also supports distributed training across multiple GPUs
and even multiple machines. Google has created its custom TPU(TensorFlow Processing
Unit) accelerator which users can access through Google Cloud. Compared to competi-
tors like PyTorch, TensorFlow has an advantage in large scale projects but lacks in fast
prototyping and projects that need to go to production quickly [34].

2.5 Keras Machine Learning Framework

Keras is a high-level neural networks API, allowing its users to focus on fast experimenta-
tion. On GitHub, it has over 5000 commits, almost 50 000 stars and almost 20 000 forks
[16]. The framework is written in Python and runs on top of other machine-learning frame-
works like TensorFlow 2.4, Theano A or CNTK A. Recently, after the release of TensorFlow
2.0, Keras is only developed with TensorFlow in mind to allow tighter integration and uses
TensorFlow as a default back-end. Keras supports both convolutional neural networks
and recurrent neural networks and its combinations. It also supports GPU acceleration
to speed up the training [30]. As mentioned above, Keras uses a backend for all low-level
operations like tensor manipulation, convolutions and others. Keras is mostly used with
TensorFlow as a back-end. The reason for the creating of Keras is to decrease the bar-
rier of entry for newcomers, to ease model building, to enable fast model experimentation
and to increase the production of researchers [12].

2.6 Scikit-learn Machine Learning Framework

Scikit-learn is a free machine learning library for Python which depends on other scientific
modules for Python like NumPy, Pandas, iPython, Sympy and Matplotlib. This framework
focuses on traditional machine learning algorithms and is a part of a module called SciPy
A. As of today, Scikit-learn has over 25 000 commits on GitHub, almost 40 000 stars and al-
most 19 000 forks which makes it one of the most popular scientific modules for Python [27].
Scikit-learn was developed in 2007 by David Cournapeau as a project in Google Summer
of Code. The first public release was made in the first half of 2010 and the stable release
was made in May of 2019. The module contains many well-known algorithms for Regression
- Logistic and Linear Regression, Clustering - K-Means, K-Means++-, Preprocessing - Min
to Max Normalization, Classification - K-Nearest Neighbors and others [2]. Scikit-learn
focuses on machine learning so it does not support data loading, data handling, data ma-
nipulation and data visualisation. For that Scikit-learn has a very neat integration with
other Python modules which handle these operations, especially NumPy [2].

17

Chapter 3

Object Detection and Tracking
Solutions Summary

In this chapter, existing solutions for vehicle tracking and trajectory analysis are explored.
This chapter mainly focuses on solutions which pursue these tasks; however, due to the scope
of the thesis it is not possible to mention every available solution. Both Czech and foreign
solutions were explored.

3.1 Certicon Company Offerings

Certicon is a Czech company dealing with innovation and development of software and hard-
ware solutions for automotive, aerospace, telecommunication and healthcare industry. Cer-
ticon has a worldwide reach and tight cooperation with universities throughout Europe.
The company was created in 1996 as a CVUT project spin-off. Since then it has re-
ceived many international rewards and gained the reputation of a cutting edge scientific
and technical company of the 21st-century [7]. One of their main products is called Cer-
tiConVis(CCV). CCV is a software which analyses and processes camera feed in real-time
or pre-recorded camera footage. The system recognises objects and situations in the scene
and informs users about set events. It is used to secure public areas, to analyse traffic
situations, to gather marketing statistics and to streamline the manufacturing process [7].
Users define objects and their behaviours which they want to track and let the system work
independently from then on. An example of such behaviour is a car turning to the opposite
direction which the system detects and informs users about the event. The system was,
for instance, implemented in a SPEL’s parking lot for 90 cars. The company has defined
parking places in the video footage and the system detected whether the spot was free
or occupied and the employees did not have to drive throughout the parking lot [8].

18

;".F’,;;"::—'

_D01,s_D02gs_D03ms_D04 gus_DO5gs_D06;ys_D07;s
i '

Figure 3.1: Parking assistance software

The picture 3.1 shows a usage of the parking assistance software. Each parking spot has
an identifier assigned to it which, if the slot is free, is shown to the employees looking
for a parking spot.

3.2 IntelliVision Company Offerings

IntelliVision is a company which specializes in Al and Deep Learning-based video analysis
software. The company was founded in 2002 and is headquartered in California with offices
in the USA, Asia and Furope. Their software was deployed in over 5 million cameras for over
50 customers worldwide [14]. They provide solutions to smart homes, smart buildings, smart
cities, smart retail applications and driver assistance. IntelliVision’s Al adds intelligence
to video cameras by analysing the video footage and alerting users in real-time. The analysis
process can be integrated into cameras, on-premise servers or in the cloud. Their Video
Cloud software provides management solutions and allows uploading the event data from
a camera to the cloud and accessing it from a mobile device [14].

Smart City solution enables intelligent video motion detection like intrusion detection,
pedestrian crossing set line, suspicious objects being left in the scene, crowd detection,
loitering, vehicle and people counting, face recognition, license plate recognition, video
search, video summary and many others [14].

Smart Transportation is a suite of video analysis products used in over 3000 intersections
and many parking lots. It replaces expensive specialised solutions such as traffic light vehicle
detection and inductive loops embedded into road. The system supports traffic analysis like
congestion monitoring, vehicle speed, length and type, automatic plate recognition, people
and vehicle counting, zone detection, zone intrusion and many others [14].

Smart Auto is a camera-based solution for OEMs and integrators. The analysis software
turns a simple camera, mounted on a windshield of any vehicle, into a drivers assistance
utility. The system is customisable and can also be built into dashcams. As of today,
it supports forward collision detection, lane departure warning, pedestrian collision warning,
driver monitoring, road sign detection and night vision enhancements while blind-spot
detection and smart mirror features are coming [14].

!Taken from https://www.certiconvis.cz/pripadove-studie/pripadova-studie-2/

19

https://www.certiconvis.cz/pripadove-studie/pripadova-studie-2/

Figure 3.2: Smart Transportation system’

The picture 3.2 is an example of the Smart Transport system. Users only need to define
traffic lanes and the system can automatically count vehicles and gather information about
them like length and velocity [14].

3.3 Avigilon Company Offerings

Avigilon is a company with a specialization on both hardware and software security so-
lutions. The company was created in 2004 and its headquarters is located in Vancouver,
Canada. Avigilon sales and distribution are based on a business-to-business model with
Avigilon usually selling its products to integrators and dealers. Avigilon products include
features such as electronic access control, automatic event detection, self-learning capa-
bilities, pattern-based analysis, object search, appearance search and remote viewing via
mobile devices [4].

Avigilon hardware products are usually capable of running their video analysis software
which makes the analysis decentralised and puts less strain on servers. Avigilon Video
Analytics software is capable of classifying and tracking over 50 objects, even when they
are stationary. It can not only analyse people but also cars, trucks, buses, motorcycles
and bicycles. It allows for a search for people and vehicles in both indoor and crowded
environment. Due to its self-learning nature, the system is less prone to analysis errors
and is more general [4].

Avigilon Appearance Search is a refined deep-learning search engine for video footage.
It allows to easily process large quantities of video files to locate a particular object, be
it a person or a vehicle. Operators can search for a person by specifying physical descriptors
like the colour of the clothing, gender, age or even facial characteristics. This allows the sys-
tem to track a person throughout multiple feeds of cameras even from different cameras.
This feature helps with an investigation by enabling operators to compile evidence, create
a powerful narrative of events, find out an objects route or last-known location [4].

2Taken from https://www.intelli-vision.com /smart-city/

20

https://www.intelli-vision.com/smart-city/

Unusual Motion Detection (UMD) is a technology, that allows even more automation
in the security department. The system learns what a typical movement in the scene looks
like and detects anomalies which are then flagged. This helps to speed up the process
of filtering through hours of mundane footage [4].

6 PM 9 AM 12 AM 6 PM 9 12AM

(T T I W NTNTENT —HE
Y O NI O LY - — -
S 11V I O YRV [
Indicates only recorded motion events
Indicates all recorded motion events that are unusual for a particulor time
(a) Timeline without UMD enabled (b) Timeline with UMD enabled

Figure 3.3: Comparison of a timeline with and without UMD enabled®

Figure 3.3 shows that the usage of UMD greatly reduces the number of events that
the operators need to filter through.

Avigilon Licence Plate Recognition automatically reads license plate data from vehicles
and saves it for later utilization. Operators can then specify a license plate information
and the system will automatically find all occurrences of a given vehicle. A watch list can
be created to automatically alert when a target vehicle is detected. The system can detect
the license plate of most countries [4].

3.4 Agent Vi Company Offerings

Agent Vi is world-wide known company specialising in video analytics solutions. Agent Vi’s
systems offer real-time video analysis, business intelligence and video search, all of which
easily integrates with a variety of 3rd party systems and can be deployed either like a cloud-
based System as a Service (SaaS) or on-premise installations [32]. Agent Vi was created
in 2003 and is headquartered in Rosh Ha’ayin, Tel Aviv District. Agent Vi’s system en-
ables automated video analysis which detects and alerts for the events of interest, searches
through the video for a given target and gathers statistical information [32].

Agent Vi’s product SavVi is an on-premise video analytics system which provides various
functionalities using a single platform that is integrated with existing or new surveillance
systems. SavVi features tools like real-time event detection, video search and business
intelligence, all of which are demanded by multiple markets. These tools increase the pro-
ductivity of operators who no longer have to filter through the whole video footage or watch
the live video footage [32]. SavVi Real-Time Event Detection eliminates the need to rely
on the alertness of the system’s operator. The operator just needs to define the events of in-
terest in advance and react to potential alerts in case of their occurrence [32]. SavVi Video
Search offers an automatic retrieval and analysis of the recorded video by enabling users
to define objects of interest, eliminating the need for tedious manual searches [32]. SavVi
Business Intelligence automatically gathers statistics of traffic volumes, movement trends
and motion patterns, helping business owners to make educated decisions [32]. SavVi offers
two deployment options, optimised and flexible. Optimised offer means that the analysis
system is integrated into the IP camera or an encoder device. On the contrary, the flexible

3Taken from https://www.avigilon.com/products/ai-video-analytics/umd

21

http://www.avigilon.com/products/ai-video-analytics/umd

offering is used in combination with devices which have not undergone integration with
savVi, so the analysis system is implemented on a proxy PC [32].

el ah i Rl Y

e) CEND | C CD CN gmn | — —t—

Wi Porirms. (Wi fmr [l "y b e |] e S i e

Figure 3.4: Interface of Agent Vi’s savVi system”

Figure 3.4 shows the interface of Agent Vi’s SavVi system analysing video footage
of a traffic scene.

Another Agent Vi’s product is called InnoVi. InnoVi is a video analysis solution powered
by deep learning algorithms which can differentiate between people, cars, motorcycles,
bicycles, buses, trucks and static objects. It transforms any camera into a smart video
device helping to reveal otherwise hidden information [32]. InnoVi is a Software as a Service
solution offering automatic real-time detections of security breaches, anomaly detections
and other safety concerns in cities, public spaces and private facilities. InnoVi offers a united
web interface accessible from any desktop or mobile computer, scalable service supporting
an unlimited number of cameras and high service availability with automatic backups [32].

3.5 AxxonSoft Company Offerings

AxxonSoft is a company focusing on smart integrated security and video surveillance sys-
tems. AxxonSoft was founded in 2003 and its headquarters are located in Fremont, Califor-
nia. AxxonSoft’s portfolio contains over 150 000 projects with 2.5 million cameras installed.
The company cooperates with more than 5800 partners in over 100 countries which per-
form around 1500 installations per month [5]. AxxonSoft closely cooperates with IP camera
manufacturers worldwide to offer integrations for over 10 000 devices. AxxonSoft is a big
inventor in Forensic Search A technologies for recorded video and relies on them for their
product line. AxxonSoft also develops video analytics based on deep learning. The com-
pany’s neural networks are trained to perform customer-specific tasks from footage obtained
from the customer’s facility [5].

“Taken from https://www.agentvi.com/products/savvi/savvi-video-search/

22

https://www.agentvi.com/products/savvi/savvi-video-search/

Axxon Next is a video surveillance system used for security assurance and preven-
tion of problems. Axxon Next is capable of basic features like a synchronous playback
of video footage from several cameras, audio and video analytics, event-driven scenarios such
as recording, alarm generation, notification generation, multi-level user rights and many
more. Also, the system supports some special features like multiple criteria forensic search,
face and license plate search, visual scene synopsis, reviewing hours of recorded video in min-
utes, merging multiple feeds of cameras into a panoramic one and more [5]. The system
is highly scalable since there is no limit to the total number of servers per deployment.
There are also no limits to the number of clients simultaneously connected to the system,
the number of camera views displayed simultaneously, the number of license plate recogni-
tion channels and face recognition channels. The number of simultaneously tracked objects
are limited to up to 25. Axxon Next is capable of running on personal computers and servers
[5].

Axxon Intellect Enterprise is a security information management system which combines
video analysis and event-driven automation in a single environment. The main features
of the system include universality, simplicity, scalability, intelligence, cost-effectiveness,
modularity and reliability. Just like Axxon Next, Axxon Intellect Enterprise supports
a wide variety of smart or basic cameras. The system is implemented in C++ and is from
the ground up designed as an object-oriented system. Users do not need to worry about
the type of the camera, how it is connected or where it is mounted. They control each
component the same way [5]. The system supports many video analytics features. Video
detection tools process video and detect events which match defined criteria. These events
can envoke actions like starting the recording, sending a notification, displaying the event
on a separate screen or starting a custom script. Forensic search allows for quick look up
of a video matching set criteria. People counting tools calculate how many people enter
and leave an area. Queue management tools allow for the counting of people specifically
waiting in line. Heat map tools determine where visitors stop and measure their lingering
time in a specific area [5].

Axxon Traffic Control Suite is a small subset of AxxonSoft’s product stack, containing
only features relevant to monitoring and securing transport areas. Traffic Control Suite
can recognise license plates on both stationary and moving vehicles, interacts with traffic
lights and other barriers, monitors parking lots and public transportation areas and easily
integrates with existing hardware and software [5].

23

Chapter 4

State-of-the-Art Analysis
and Specification of Assignment

In this chapter, the aforementioned state-of-the-art software solutions are analysed. Also,
a technical specification is made. This chapter also separates the research and the imple-
mentation part of the thesis.

4.1 Existing Software Offerings Analysis
Software offerings analysis:
e Certicon develops comercial products which offer:

— both real-time and pre-recorded footage processing;

user notification about events;

— user rule definition;

public area security, traffic situations analysis, marketing statistics gathering.

e IntelliVision develops comercial products which offer:

real-time footage processing;
— user notification about events;
— user rule definition;

— smart homes, smart buildings, smart cities, smart retail and driver assistance
solutions;

— mobile access;

dashcamera integration.
e Avigilon develops comercial products which offer:

— both real-time and pre-recorded footage processing;

user notification about events;

user rule definition;

— indoor and outdoor surveillance;

24

— both hardware and software solutions;

self-learning system;

mobile access;

person or vehicle search in video footage.
e Agent Vi develops comercial products which offer:

— both real-time and pre-recorded footage processing;
— user notification about events;

— user rule definition;

— city, public spaces and private facilites security;

— cloud and local installations;

— object search in video footage;

— both hardware and software solutions.
e AxxonSoft develops comercial products which offer:

— pre-recorded footage processing;
— user notification about events;
— user rule definition;

— multiple criteria forensic search;

— vehicle and traffic surveillance.

All of the companies mentioned in chapter 3 have developed object tracking systems
to make cities smarter and more secure, to analyse vehicle and customer movement patterns
and to detect suspicious behaviours. They allow a definition of custom rules to match every
possible use case, making their systems highly flexible. Some of the companies offer (or
need) custom hardware equipment like custom IP cameras and servers. The systems offer
both online and offline processing, each with its use cases. Online processing is more
suitable for real-time smarter cities, surveillance systems, driving assistants whereas offline
processing is more suitable for the gathering of marketing statistics, the creation of heat
maps and traffic analysis. The systems notify users about a discovered problem in various,
predefined or custom ways like email and SMS notifications, pop-up alerts and contacting
security forces.

4.2 Objectives and requirements for the resulting solution

Based on the analysis made in the previous section 4.1 I have proposed a system which
automatically detects anomalies in a video feed of a traffic scene. The system will be
similar to the ones described in the state-of-the-art solutions chapter 3 but will be freely
available for the public. Also, I wanted to reveal which methods are suitable for such tasks.

The system should offer a software solution to a computer vision task of object detection
and object tracking. The system should, based on the user-defined rules, detect violations
of these rules and make them easily accessible for end-users. The goal of the system is
to automate and quicken the process of traffic scene recordings analysis with better accuracy
than a human operator could achieve.

25

4.3 Technical Specification of the Resulting System

Based on the analysis of state-of-the-art solutions we have agreed on the following specifi-
cation:

e The implementation language of the system will be Python due to its wide variety
of machine learning frameworks and popularity

e The object detector method used will be able to work in real-time

e The object tracker method used will be able to work in real-time

e The system will support a graphical creation of custom scene rules

e The scene rules will only need to be created once

e The system will automatically detect violations of the aforementioned rules
e The violations will be easily accessible for end-users

e Users will be notified when the analysis is done

The system needs to be tested to verify that the desired functionality is met. Also,
verifying that the system is stable and runs fast enough is necessary. The following tests
must be performed:

e performance test - the system needs to analyse input video in a shorter time span
than the length of the video itself

e stability test - the system needs to work without any crashes for at least a month

e functionality test - the system has to precisely detect objects and find anomalies
in the video footage

e usability test - the system has to be usable by average users

In upcoming chapter 5, individual components of the system are explained in detail.

26

Chapter 5

System And Components Outline

The proposed system is composed of 4 main parts (blue in figure 5.1):

e object detector which will detect vehicles in the scene - Vehicle Detection block in Fig-
ure 5.1

e object tracker which will track vehicles in the scene - Vehicle Tracking block in Figure
5.1

e rule violation detection algorithm which detects rule violations in the video footage -
Anomaly Detection block in Figure 5.1

e graphical user interface which enables users to quickly create scene rules, start the anal-
ysis and view the analysis result - GUI block in Figure 5.1

Coordinates of detected objects

e
-

- Main - Secondary
Components Components

Figure 5.1: Outline of the system

27

The whole system will be controlled within the GUI without the need to tinker with
command-line interface. Users will be able to upload own video footage which will be
reformatted into internal codec and resolution, create scene rules for the said footage, man-
age uploaded videos and rules, start video analysis and observe the result. Data will be
persisted on the local filesystem of the machine that runs the system and information about
the files, users and settings will be stored in a relational database. After starting the analysis
a new Python process will start in the background to process the video and find rule viola-
tions. When the analysis is done, users will be notified via e-mail used in the registration
form. User can then inspect and manage found anomalies.

5.1 Object Detection Method Selection

This section discusses 'Vehicle Detection’ block in Figure 5.1. As mentioned in section 2.1
there are many object detection methods available each with its advantages and drawbacks.
From research, the best method currently seems to be YOLOv3 due to its combination
of high performance and accuracy.

38 ® YoLOv3
—@- RetinaNet-50
| RetinaNet-101
36 @ Method mAP time
[B] SSD321 28.0 61
i [C] DSSD321 280 85
& 34 [D] R-FCN 299 85
o F [E] SSD513 312 125
O bl [F] DSSD513 332 156
[G] FPN FRCN 362 172
E RetinaNet-50-500 325 73
0l 5 RetinaNet-101-500 344 90
RetinaNet-101-800 37.8 198
YOLOV3-320 282 22
| YOLOV3-416 31.0 29
28 YOLOV3-608 33.0 51
| | | |
50 100 150 200 250

inference time (ms)

Figure 5.2: Object detection methods comparison

Figure 5.2 shows that YOLOv8-416 strikes the perfect balance between mAP (mean average
precision) and time to detect an image. While RetinaNet based detectors and FPN FRCN
detector have noticeably higher mAP values they are too slow for the goal of this thesis.
YOLOwv3 is implemented in multiple frameworks but the variant made in PyTorch 2.3 under
the MIT A license will be used for this thesis because it also supports DeepSort tracking
method. For further information see section 5.2.

28

5.2 Object Tracking Method Selection

This section discusses *Vehicle Tracking’ block in Figure 5.1. There are many object tracking
methods available each suitable for different tasks. This assignment requires a multi-object
tracker to be able to reliably track all vehicles in the scene. From research made in section
2.2, the best currently available methods seems to be DeepSort which combines the Sort
algorithm with a neural network to take visual features of the object into the account.

MOTA+ MOTP+ MT+ ML| ID| FM| FP| FN| Runtime~

KDNT [16]* BATCH 68.2 79.4 41.0% 19.0% 933 1093 11479 45605 0.7Hz
LMP_p [17]* BATCH 71.0 80.2 46.9% 21.9% 434 587 7880 44564 05Hz
MCMOT_HDM [18] BATCH 62.4 78.3 31.5% 242% 1394 1318 9855 57257 35Hz
NOMTwSDP16 [19] BATCH 62.2 79.6 32.5% 31.1% 406 642 5119 63352 3Hz
EAMTT [20] ONLINE 52.5 78.8 19.0% 349% 910 1321 4407 81223 12Hz
POI [16]* ONLINE 66.1 79.5 34.0% 20.8% 805 3093 5061 55914 10Hz
SORT [12]* ONLINE 59.8 79.6 254% 22.7% 1423 1835 8698 63245 60 Hz
IDeep SORT (Ours)* ONLINE 61.4 79.1 32.8% 18.2% 781 2008 12852 56668 40Hz ‘

Figure 5.3: Object tracking methods comparison

Figure 5.3 shows that even though the DeepSort tracker is one of the fastest methods
tested and it also has one of the best tracking accuracies. While being a little slower than
the SORT algorithm it has an additional feature in a form of visual features extraction
which can be used to reidentify vehicles which have been lost for a large number of frames.

5.3 Anomaly Detection Algorithm Outline

This section discusses ’Anomaly Detection’ block in Figure 5.1. The anomaly detector

needs to be able to recognise if any of the vehicles in the video footage have violated any
of the user-defined rules. It will compare the vehicle trajectory obtained by the trajectory
analyser 5.6 and user-defined rules created in 5.7.

As mentioned above, the input for the anomaly detection will be a file containing user-
defined rules and a file consisting of trajectories of vehicles found in the video footage.
The system will then iterate over vehicle coordinates and check if it corresponds to any
of the user-defined rules. If any of the vehicle coordinates are inside the ’Entry Forbidden’
type rule, the vehicle is marked as a rule violator. This also applies to the rule type
'Direction Allowed’ where a trajectory of the vehicle will be calculated and if it will not
match the set direction of the rule (with deviation) the video will also be marked.

After determining which vehicles violated the user-defined rules, a small clip of the in-
cidents will be acquired and saved in the database.

This algorithm will run in parallel and each process will be responsible for trajectories
of a single vehicle. This will yield better resource utilization and faster detection.

5.4 Graphical User Interface Outline

This section discusses 'GUI’ block in Figure 5.1. A graphical user interface needs to offer
a simplistic way of video manipulation and output observing. It will be implemented

29

in Flask A on the server-side and Bootstrap 4 A for the interface design. SQLAlchemy A
will be used to translate class models into a relational database. Graphical User interface
will be divided into multiple segments: Manage Users, Manage Videos, Manage Video,
Manage Rules, Manage Rule.

Manage Users

Admins will in terms of user management be able to change permissions of other users,
create new accounts, and change their profile settings. Users will have the option to change
their passwords, e-mails, names and notification settings.

Manage Videos

Users will be able to upload new videos and find the already uploaded ones. By clicking
on the existing videos, users will be redirected to a more detailed page about the particular
video footage. Users will only see videos which were uploaded by them and will not be able
to in any way manipulate videos they do not 'own’.

et To e

VID_534152345.mp4 VID_534152346.mp4 VID_534152347.mp4 VID_534152345.mp4 VID_534152346.mp4 VID_534152347.mp4

VID_534152345.mp4 VID_534152346.mp4 VID_534152347.mp4 VID_534152345.mp4 VID_534152346.mp4 VID_534152347.mp4

Figure 5.4: Outline of the web page for video upload

Figure 5.4 shows the outline of the web design. On the top of the page, users can click
the white button to open a file explorer and select videos to upload or drag-and-drop them
into the area. Below the upload section, all videos uploaded by signed users are displayed.
Clicking those videos redirects users to a more detailed view with options to view and edit
them. This page is discussed in paragraph Manage Video 5.4.

Manage Video
This page will allow users to see the detailed view of a particular video, edit its information
and start the rule violation detection for the particular video.

30

VID_234124123.mp4

Rules Assigned: Parking Slot
State: Analysed

Description: Normal vidzo of parking lot

mm

Anomalies in the video:

VID_534152345.mp4 VID_534152346.mp4 VID_534152347.mp4

Figure 5.5: Outline of the web page for video manipulation

Figure 5.5 shows the design outline of the said page. At the top of the page, a video
player will be located. Users will be able to view the whole video, fast forward it and
maximise the video player window. Below the video player, there will be a column with
information about the video like its name, description, rule it is assigned to and its state.
Below the information, there will be buttons which can remove the video from the system,
allow for modification of the information, redirect to the rule creator page and start the rule
violation analysis. At the bottom of the page, there will be a list of all anomalies found
in the particular video. They will only appear after the rule violation analysis is complete
and will be removed if the rules for the video change.

Manage Rules
This page will be responsible for displaying existing user-defined rules, redirecting users
to a particular rule and redirecting users to the rule creator 5.7.

More detailed information about the outline is availabe in appendix B.

Manage Rule

This page will be graphically similar to the Manage Video 5.4 one but instead of managing

a particular video, it will control a particular scene rule. It will also enable users to edit

the rule information and start the rule violation detection for every video assigned to it.
More detailed information about the page is availabe in appendix B.

31

http://VID_534152347.IT.p4

5.5 Programming Language And Frameworks Selection

There are many programming languages suitable for machine learning nowadays but some
of them have the edge whether for the variety of available frameworks, the execution speed
or the comfort of use. The three main languages which meet some or all of these criteria are
Python, C++ and C#. Python is extremely easy and safe to use due to its high level of ab-
straction and lack of pointers. Also, most of the main machine learning and computer vision
frameworks like TensorFlow 2.4, PyTorch 2.3, Keras 2.5, Scikit-Learn 2.6 and OpenCV A
are available for Python and are implemented as a C or a C++4 module. As many of these
popular frameworks are natively implemented in C or C++ and Python implementation
acts as a wrapper for the code, there is no need to use C++ directly since the feature set
and execution speed are equal while Python is more pleasant to use.

As mentioned above there are many scientific frameworks available for Python. The choice
of the machine learning framework depends mostly on the available implementation of
the most suitable object detectors and trackers since this thesis does not deal with the im-
plementation of these methods and is discussed in section 5.1 and 5.2.

OpenCV is a framework of choice for video manipulation and visualisation of vehicle
detection and vehicle tracking results.

Flask is a framework of choice when it comes to small-sized web sites as it provides
plenty of tools which simplify web development.

Postgres A and SQLAlchemy A will be used for the database layer as it allows for seam-
less conversion of Python classes to SQL tables and vice versa.

5.6 Trajectory Analysis Method Outline

The trajectory of each vehicle in the scene will be persisted to perform the rule violation
detection, which is done after the trajectory analysis, as mentioned in chapter 5.

The trajectory of each detected vehicle will be internally saved in a Python dictionary
data structure periodically (each frame, every other frame, etc.). The position of a vehicle
and identifiers of a vehicle will be obtained by the tracker which will return two = coordinates
and two y coordinates indicating the position of the vehicle in the frame. The position
used from this rectangle will be its centre coordinate or a different coordinate if testing
reveals a more suitable one. The first and last appearance of each vehicle will also be
stored for the creation of clips of vehicles that cause a rule violation. After the analysis
of the whole video, the internal structure will be converted into a file on the servers filesystem
and the path will be saved into the database.

5.7 User-Defined Rule Creator Outline

The user-defined rule creator will be a web application using Javascript and PaperJS A
to draw on the top of the canvas, dynamically process user input and dynamically display
feedback and changes to the user.

The outline of the user interface can be seen in figure 5.6. The left top part of the screen
will be occupied by the canvas displaying a frame of an uploaded video, right part will be
used for the selection of the drawing mode and bottom part below the canvas will host
buttons for video upload, rule naming and rule manipulation.

32

000

user-Defined Rule Creator

Select Video

‘ Rule Nome 1 Delete Rules

‘ Save Kules\l

C] Draw Rectangle

3 praw Circle

(¥ Prow Line

(O Mark as Forbidden Entry
(O prow Alowed Direction
O pelete Rue

Figure 5.6: Outline of the rule creator

Drawing will be done by clicking and dragging on the canvas with a drawing mode
selected. Each shape will be represented in the PaperJS A object and will have a rule
(Direction allowed, Forbidden access) assigned to it. Clicking the Save Rules button will
convert the PaperJS objects into JSON A file and it will send it to the main web application.

33

Chapter 6

Proposed System Implementation

In this chapter, the implementation of the proposed system is described. It consists of sec-
tions about an object tracker and object detector implementation 6.1, trajectory analyser
implementation 6.2, rule creator implementation 6.3, graphical user interface implementa-
tion 6.5, system overview 6.6 and system testing 6.7.

6.1 Object Tracker and Object Detector Implementation

Object Detector Implementation

As a foundation of the system, an already existing solution of an object detector was
used. The solution implements YoloV3 object detector in Python’s framework Pytorch 2.3
and wraps it in a class called [YOLOv3|. It supports CUDA acceleration which results
in much faster inference time than using a CPU. The detector takes an image in NumPy
array form and returns bounding boxes and object class identifiers. The detector is trained
on a COCO dataset and can distinguish between eighty common objects. The existing
solution has a public GitHub repository [35].

The object detector is used in the class VideoTracker located in the file
VideoTracker.py. It is initialised in the constructor __init__ of the class with con-
figuration and uses CUDA, if available in the system. Configuration and pre-trained
weights for the detector are stored in the files detector/YOLOv3/cfg/* and detector/Y-
OLOv3/weights/*. Which configuration files and pre-trained weights are used is deter-
mined by the configuration file configs/yolov3.yaml which needs to be supplied to the sys-
tem at the start-up of each analysis. When the detector is initialised, an input video is
loaded by the OpenCV framework. The run method starts the video analysis and cycles
through each z frame in the video, where x is passed as a parameter when running the video
analysis. Each cycle, a frame of the video is retrieved and converted into a NumPy array:

_, ori_im = self.vdo.retrieve()
im = cv2.cvtColor(ori_im, cv2.COLOR_BGR2RGB)

Then the image array is passed as an argument to YOLOv3 to do the detection. The de-
tector returns found bounding boxes, class configuration and class identifiers of the found
classes:

bbox_xywh, cls_conf, cls_ids = self.detector(im)

If there were any objects found in the frame, they are filtered to keep only the objects
of interest which include bicycles, cars, motorbikes, buses and trucks. This filtered ar-

34

ray of found objects of interest is then passed to the object tracker, which is discussed
in the paragraph below.

Object Tracker Implementation
As a foundation of the system, an already existing solution of an object tracker was used.
The solution implements DeepSORT object tracker in Python’s framework Pytorch 2.3
and wraps it in a class called DeepSort. It supports CUDA acceleration which results
in much faster inference time. The tracker takes found bounding boxes as well as class
probabilities and the original image as an input and returns identified bounding boxes.
The object detector is used in the class VideoTracker located in the file
VideoTracker.py. It is initialised in the constructor __init__ of the class with config-
uration and uses CUDA, if available in the system. Configuration is stored in the file
configs/deep__sort.yaml and pre-trained weights for the tracker are stored in the file
deep__sort/deep/checkpoint/ckpt.t7. The configuration file needs to be passed to the system
at start-up. Each time objects in the video frame are detected by the object detector, they
are passed to the object tracker:

outputs = self.deepsort.update(bbox_xywh, cls_conf, im)

The tracker compares the newly found object positions and tries to reidentify the vehicles
in the frame. If there is a new vehicle in the frame a new identifier is assigned to it. After
the reidentification, if the system was able to detect any vehicle, the trajectory analysis
starts 6.2.

6.2 Trajectory Analyser Implementation

The trajectory analysis is responsible for storing information about the vehicle positions
throughout the whole video footage. It is implemented as a Python dictionary where the ve-
hicles identifier, the one assigned to it by the object tracker, is used as a key to the dictio-
nary. The value of an item is a list of coordinates that represent the position of the vehicle
in the video. The algorithm is implemented in the method run of the class VideoTracker
located in the file VideoTracker.py. The trajectory analysis happens after the tracking
of the objects is done; in other words when the vehicles in the frame have an identifier
assigned to them. The algorithm also needs to remember when the vehicles have appeared
for the first time and the last time. This information is used later for the extraction
of the vehicle from the video during the anomaly detection.

The algorithm is run for every vehicle identified in the current frame. If a particu-
lar vehicle has already been detected by the system, its ,last seen” attribute is updated
to the index of the current frame, otherwise its ,first seen“ attribute is updated:

if identity not in self.trajectories:
self.trajectories[identity] = []
self.vehicle_occurence[identity] = {"first": idx_frame,
"last": idx_frame}
else:
self.vehicle_occurence[identity] ["last"] = idx_frame

Then a coordinate which represents the position of the vehicle in the frame is calculated.
The most accurate representation of the position of the vehicle is the centre of the bounding

35

box’s x axis and two-thirds of the bounding box’s y axis from the top. Subsequently,
the calculated coordinate is added to the trajectory of the vehicle.

if idx_trajectory % self.args.trajectory_interval ==
box = bbox_xyxy[il]
current_position = (int((box[0] + box[2]) // 2),
int (box[3] - abs(box[1] - box[3]) // 3))
if len(self.trajectories[identity]) != O:
if not self.is_too_close(self.trajectories[identity] [-1],
current_position):
self.trajectories[identity] .append(current_position)
else:
self.trajectories[identity] .append(current_position)

Two modifications have been done to the algorithm:

The first one helps to smooth out the trajectory by only taking into account every x
frame. The problem was that sometimes the detector, especially on slowly moving vehicles,
inaccurately detected the vehicle, so it seemed that the vehicle suddenly changed direction.
This caused a lot of problems in the rule violation analysis where many false positives
occurred. Therefore, the parameter trajectory interval was added.

The second modification was not of a correctness nature but rather a performance
one. When there were many idle vehicles in the scene, typically vehicles in the parking
lot or in intersections, each time a coordinate was captured it was almost identical. This
resulted in a performance issue during the rule violation analysis because the system had
to unnecessarily calculate with the same coordinates. A method is_too_close solves this
issue by comparing the previous and current coordinates of the vehicle. The threshold which
decides if the vehicle has moved enough or not is calculated as 1% of the video resolution.
As an example with 1280x720 resolution, the vehicle has to move at least 12 pixels on the z
axis and 10 pixels on the y axis for the coordinate to be captured.

When the trajectory analysis is done, the dictionary is converted into a JSON file.
The file also contains information about the video footage like its resolution, path on the
filesystem and name.

6.3 Rule Creator Implementation

The rule creator is a Javascript application which allows users to define custom scene
rules. It uses PaperJS framework which handles the creation of objects that represent
shapes. The applications implementation is located in files AnomalyDetectorFront/stat-
ic/rule__creator/canvas__manipulation.js and AnomalyDetectorFront/static/rule_ creator/
controls.js. The first file handles HTML canvas manipulation, key presses and shapes ob-
ject creation while the second file takes care of the control buttons like switching a drawing
mode, removal of all rules, conversion of PaperJS objects to JSON file.
The application supports six types of input:

e Draw a line
e Draw a box

e Draw a circle

36

e Draw an allowed direction for the shape/rule
e Forbid an entry for the shape/rule
e Delete the shape/rule

The polygons are internally represented as PaperJS objects. The canvas has a set size
of 1280x720 pixels which makes the coordinates consistent across different display resolu-
tions and web browsers. The aim was to have an image from the input video as a background
of the canvas and to draw shapes on top of it using PaperJS. Unfortunately, either a pic-
ture or a PaperJS layer can be visible at the same time so there are two different canvases
stacked on the top of each other. The bottom one shows a frame of the video footage
and the top one serves as the drawing layers. The bottom canvas is controlled by functions
in the file AnomalyDetectorFront/static/rule__creator/controls.js. When users select a video
using a file picker, the video is loaded into a video hidden HTML tag. By moving the slider,
a different frame is selected from the video so that users can find a situation which represents
the scene the best. This file also takes care of all the control buttons on the page. Pressing
the save button, the user-defined rules are converted into a JSON format by the saveRules
function. This function also sends the converted JSON file to the web application which
saves the file on the server’s filesystem and adds it to the database.

Anomaly Detector Home Manage Users Manage Videos Manage Rules Profile | Log Out

Choose video file Browse Enter Rule Name

Reset Rilbs

Figure 6.1: Final design of the Rule Creator

As can be seen in figure 6.1, users can select a particular input mode on the right
side of the web page. The most flexible drawing mode is the 'Draw a line’ one because
it enables users to define precise shapes to fit any situation. The 'Draw a line’ mode helps
users to easily close the polygon by snapping the last line to the starting point if the mouse
cursor moves too close to it. If the previous input mode was 'Draw a line’, the polygon was
not closed and users switch to a different one, the shape is automatically finished. Each
rule has a random colour assigned to it to visually differentiate the created rules.

37

6.4 Rule Violation Analysis Implementation

The rule violation analysis is responsible for the detection of vehicles which break the user-
defined rules in video footage. It accomplishes that by comparing the file containing
the user-defined rules created in 6.3 and the file containing trajectories of the vehicles
occurring in the video created in 6.2. The analysis is implemented in the class AnomalyDe-
tector in the file AnomalyDetectorBack/AnomalyDetector.py. The rule violation analysis is
started by the web interface of which implementation is discussed in section 6.5.

When the analysis is run, it first analyses the input videos using the systems discussed
in sections 6.1 and 6.2. This is implemented in the method traffic_scene_analysis. Each
input video is processed in a separate process using Python’s built-in multiprocessing tool
Pool. To prevent overloading of the system only cpu core amount / 2 number of processes
can run at the same time. Before the start of the video analysis and once it finishes,
the system notifies the web application which uses the information to update its database.
When the video analysis is done and a file containing trajectories is generated, the method
detect_anomalies is called.

Trajectory files are processed sequentially but the particular vehicle trajectories are
processed in parallel. The method anml_dtc_proc_spawner first loads up all the neces-
sary files, parses the rule file and corrects the coordinates from the rule file (Rule Creator
works in 1280x720 resolution while videos have variable resolution). For each trajectory,
a process for method anomaly_detector_process is created which has user-defined rules
and a particular vehicles trajectories at the input. This method iterates over the coordi-
nates and checks if any of them have entered the used-defined rule. If the entered rule
is of an ,Entry forbidden“ nature, the vehicle is marked as a rule violator. However,
the entered rule is of a ,Direction Rule* type, the trajectory of the vehicle is calculated
and compared to the allowed one. If it deviates from the allowed value too much, the vehicle
is marked as a rule violator:

for _, rule in rules[’direction_rules’].items():
if inside_polygon(coordinate[0], coordinate[l1], np.array(rule[’rules’])):
current_direction = calculate_direction(trajectory[0], trajectory[1])
if math.fabs(current_direction - rule[’direction’]) > MAX_DEVITATION:
queue.put(vehicle_id)
for _, rule in rules[’entrance_rules’].items():
if inside_polygon(coordinate[0], coordinate[l1], np.array(rule[’rules’])):
queue.put (vehicle_id)

The inside_polygon method checks whether the vehicle is inside the polygon of the rule.
It takes the vehicles « and y coordinates and the coordinates of the rule’s polygon. It returns
true if the vehicle’s coordinate is located inside the rule’s polygon, otherwise it returns
false. The calculate_direction method is called when the vehicle enters the ,Direction
Allowed* type of rule. The method returns the angle difference of two line segments with
the origin in [0, 0] and ending the coordinates passed to the method. If this angle is greater
than the allowed deviation, which reduces false positives, the vehicle is marked as a rule
violator. When all of the trajectories are analysed and vehicles which broke the user-
defined rules are found, a clip of the rule violation is created for each vehicle. The clip
is then reformated, using ffmpeg A program, into an MP4 format with H264 CODEC,
which results in a smaller size and ability to play the clip in the web application (OpenCV
high-quality formats can not be played on the web). When the reformatting is done,

38

the web application is notified to store the clips into the database. Users are notified when
the analysis is done by an e-mail.

The output clips of the analysis can be viewed in the web application and is further
discussed in paragraph 6.5.

6.5 Web Application Implementation

The web application is responsible for enabling users to explore the different parts of the sys-
tem which were mentioned in previous sections. It enables users to control the whole system,
to upload videos, to create rules and to start the rule violation analysis. The application is
built in Python’s web framework Flask A, uses Postgres and SQLAlchemy for the database
layer and utilises Docker for the deployment of the database. Bootstrap 4 is used for styling
most of the HTML tags.

An existing solution was used as a base for the web application. Some generic functions
and templates for user manipulation, login system and forms were reused from the IIS
school assignment. My colleagues have allowed me to use the code of the assignment. Files
that contain the reused code are marked in the header.

The website is separated into multiple pages, each providing different functionality.
The functions which handle redirecting and template rendering are located in the file
AnomalyDetectorFront/routes.py.

Manage Videos Page
Function related to this web page are:

e manage_videos - Queries for all videos uploaded by logged-in users and shows them
in a grid layout with basic information.

o upload_video - Handles the video upload.

e upload__complete - Saves the video information to the database and reformats it if
needed.

39

Anomaly Detector Home Manage Users Manage Videos Manage Rules Profile| Log Out ‘

Files:

Choose Files | No file chosen

DJI_0731_x265.mp4 short.mp4 long.mp4
Rules: Road next to a forrest Rules: Parking lot and Rules: Parking lot and
State: Anomalies Detected crossroad crossroad
State: Not Detected State: Mot Detected

Figure 6.2: Final design of the Manage Videos page

As can be seen in figure 6.2, users can use the top part of the page to upload new
videos into the system by drag-and-dropping them to the dashed line or by using the file
selection pop-up window. When users upload a video, its format is checked and the video
is reformated if the resolution is higher then FullHD or the CODEC is not H264. Also,
each video uploaded by users, after the reformatting is done, is displayed in a grid layout
with basic information attached to it. Clicking on the video thumbnail or the information
below it, users are redirected to a more detailed view of the particular video.

Manage Video Page
Functions related to this web page are:

e manage_video - Queries for a particular video uploaded by a logged-in user and ren-
ders the page with information about the video.

e edit_video - Renders and changes information about a particular video uploaded
by a logged-in user.

e remove_video - Removes a particular video and all related files from the system.

40

Anomaly Detector Home Manage Users Manage Videos Manage Rules Proﬂle| Log Out |

DJI_0731_x265.mp4

» T 0:0041:57

Name: DJI_0731_x265.mp4

State: Anomalies Detected

Rules: Road next to a forrest
Description:

Edit Video Information Create Rules for Video Detect Anomalies

Anomalies Found In The Video:

anomaly_vehicl
e_2.mpd

Figure 6.3: Final design of the Manage Videos page

The page shows all available information about a particular video and allows users to man-
age the video.

As shown in figure 6.3, the top of the page is used to display and play the video
while interesting information about the video is below the media player. Below the section
containing the video information, there are buttons which from the left:

41

e remove the video with all its connected files

e allow the information editing

e redirect users to a rule creator page for that particular video
e start the rule violation detection if possible

At the bottom of the page, anomalies found in the video are displayed. Clicking on these
anomalies redirects users to a detailed page about a particular anomaly.

Manage Rules Page

The button at the top of the page redirects users to the rule creator page. Below
the button, there are rules created by a logged-in user displayed in a grid layout with basic
information about the particular rule. Clicking them redirects users to a detailed view
of the particular rule.

More detailed information about the page is availabe in appendix C.

Manage Rule Page

The top of the page contains a picture of the scene used during the creation of the rule.
Information about the rule and buttons are located beneath the picture. The first button
deletes the rule with all associated files. The second one redirects users to a page for in-
formation editing. The last button starts the rule violation analysis for all assigned videos
to the particular rule.

More detailed information about the page is availabe in appendix C.

Manage Anomaly Page

This page is very similar to the manage video one. The top of the screen is occupied
by the media player which allows users to observe found anomaly. Information about
the anomaly and the remove button are located below the media player.

More detailed information about the page is availabe in appendix C.

User management pages

These pages allow users and admins to manage user accounts. They are all based
on basic forms where some fields are mandatory and some optional. The e-mail assigned
to the user’s account is used for notification when the video uploading, video reformatting
or rule violation analysis is finished. Users can only edit their profile while admins can
manage every account.

More detailed information about the page is availabe in appendix C.

Database layer

The models which represent database tables are located in files in the AnomalyDetector-
Front/models folder. These models are automatically converted by SQLAlchemy to re-
lational tables in the Postgres database. Items only use integer values as primary keys
to the database. Video thumbnails and video footage is stored on the server filesystem

42

of the server while their paths are stored in the database. Working with the database
works as follows:

admin = RegisteredUser (name=’admin’, email=’admin@admin.cz’,
phone_num=’123456678’, user_type=’admin’)

admin.set_password(’admin’)

db.session.add(admin)

db.session.commit ()

First, an SQLAlchemy object has to be created. Secondly, a password is set for the user.
When the add method is called, SQLAlchemy converts the objects to a relational repre-
sentation and inserts it to the database. The commit method confirms the changes made
in the database. This way each object is added to the database or updated.

The removal of the items from the database is done similarly:

user = RegisteredUser.query.filter_by(email=email).first()
if user is None:

return redirect(url_for(’index’))
db.session.delete(user)
db.session.commit ()

Firstly, the item has to be retrieved from the database. Secondly, using the delete method,
the item is removed from the database. Lastly, the changes made in the database are
confirmed. This way each object is removed from the database.

6.6 System Overview

The system is separated into multiple folders and files based on the functionalities it im-
plements. Systems backend components:

e AnomalyDetectorBack/detector/YOLOuv3 - a folder containing YOLOv3 implementa-
tion, configuration and pre-trained weights

e AnomalyDetectorBack/deep__sort - a folder containing DeepSORT implementation,
configuration and pre-traied weights

e AnomalyDetectorBack/configs - a folder containing information about filepaths needed
for object detector and tracker

e AnomalyDetectorBack/utils - a folder containing functions used for parsing, displaying
detected images, web requests

e AnomalyDetectorBack/AnomalyDetector.py - a file containing an implementation of the
user-defined rules violation detector

e AnomalyDetectorBack/Video Tracker.py - a file containing an implementation of ve-
hicle detector, vehicle tracker and trajectory analysis

e AnomalyDetectorBack/requirements.txt - a file containing dependencies needed to run
the backend system

Systems frontend components:

43

e AnomalyDetectorFront/models - a folder containing database models

e AnomalyDetectorFront/static - a folder containing static files like pictures, css styles,
Javascript code, uploaded video footage

e AnomalyDetectorFront/templates - a folder containing html templates for the web
application

e AnomalyDetectorFront/DetectorState.py - a file responsible for manipulation the state
of the system

e AnomalyDetectorFront/forms.py - a file containing forms for the web application

e AnomalyDetectorFront/routes.py - a file containing routing and business logic of the
web application

e AnomalyDetectorFront/utils.py - a file containing utility functions for checking if a file
is a video, e-mail sending, path manipulation

Deployment components:

e docker/docker-compose.yml - a file containing instruction about the deployment of the
system

e include/flask__permissions - a folder containing an edited version of flask_ permissions
module for Python

e migrations - a folder containing migrations of the database
e anomaly__detector.py - a file that needs to be run by flask to run the system
e config.py - a file containing configuration for the flask application

e Dockerfile - a file responsible for building the Docker image of the application

6.7 System Testing

It is necessary to test that the system can quickly and precisely analyse large quantities
of video footage. Unfortunately, both of these criteria are variable as the precision of the rule
violation detection is dependent on how accurately are the scene rules created. The perfor-
mance is also dependent on the model of the GPU if it is even available. What can be tested
is the precision of the vehicle detector and the vehicle tracker as well as the performance
of the system using one specific GPU which I have available. Another criterion for testing
is the stability of the system because it is meant to be installed on a remote powerful server
and users should not be able to access the server. Lastly, the web application has to be
working on major web browsers.

Performance Testing

The system analyses videos at 40-60 FPS depending on the number of vehicles in the scene.
The analysis of one-minute long video takes about 30-45 seconds. The system was run
on Nvidia GTX 1070 GPU. Also, the video reformatting is about 2.7 times faster than
the real-time playback of the video which results in one-minute long video being reformated

44

in about 22 seconds. The reformatting is done on the CPU which in this case was Intel
i7-7700k running at 4.8Ghz. The performance information can be seen in the terminal
output of the system during the analysis.

Web Application Testing

The web application was tested on 3 popular web browsers. These are Firefox, Google
Chrome and Chromium. The design looked identical on each browser. There was a dif-
ference in fluidity in the video playback and scrollbar in the rule creator. When the op-
erating system of the user was Windows 10 rather than a Linux distribution, the video
seemed smoother. This does not affect functionality in any way and it is probably caused
by the lack of GPU acceleration in Linux browsers.

Video Analysis Testing
The system was tested with video footage of parking lots from the top and the side per-
spective'.

An example of a frame of the video with a top-down perspective is shown in figure
6.4. The system was unable to detect any vehicles in this perspective. This is caused
by the object detector which is not pre-trained on images of the roofs of vehicles. This
limitation could be resolved by the training of the object detector on thousands of annotated
pictures of roofs of vehicles.

Figure 6.4: Top view of a parking lot

The frame is from the testing video with a side perspective and it is shown in figure
6.5. In the video, there are 20 unique vehicles but the system detected 24 vehicles (the last

!Taken from: https://data.kitware.com/#collection/56f56db28d777f753209ba9f /folder/
56f581ce8d777f753209ca43

45

https://data.kitware.eom/%23collection/56f56db28d777f753209ba9f/folder/

vehicle is next to a tree on the bottom right of figure 6.5). This is caused by the vehicle
identified by the number ’18’ in figure 6.5. This vehicle is stationary throughout the whole
video and is partly occluded by another vehicle and a street lamp. The object detector
was unable to consistently identify this vehicle which caused assigning of new identifiers
to the vehicle.

Figure 6.5: Last frame of the testing video footage

Figure 6.6 shows rules created for the testing video. It checks if vehicles follow their
traffic lane. Only one rule violation was found which was caused by the bus in figure 6.5.
The trajectory of the bus has exceeded the allowed deviation of the allowed direction. This
was also caused by the object detector which sometimes detects bounding boxes which do
not perfecly define the vehicles.

46

Anomaly Detector Home Manage Users Manage Videos Manage Rules Profile | Log Out

Figure 6.6: User Rules for the testing video footage

Both presented examples show situations in which the system has problems to function
correctly. A more precise object detector and a different dataset need to be used to mitigate
these issues.

System Stability Testing

The stability of the system was due to a limited time only tested for a day. The system was
responsive throughout the whole day and never crashed. If the system were to be publicly
and commercially released, extensive stability testing would need to be carried out.

47

Chapter 7

Conclusions

The goal of the thesis was to create a system which automatically detects anomalies
in the video footage of a traffic scene. This goal was accomplished.

I have studied literature and the state-of-the-art solutions and my gained knowledge is
discussed in chapter 2. Then, I have analysed the state-of-the-art solutions and compared
them in chapter 4. The outline of the system was created which is described in chapter 5.
The outlined system was implemented and is covered in chapter 6. Lastly, the system was
tested which is discussed in section 6.7.

The outcome of the thesis is a video analysis program which combines YOLOv3 for ob-
ject detection, DeepSort for object tracking, an algorithm for trajectory extraction, and an al-
gorithm for a comparison of vehicle trajectories and user-defined rules. This program takes
a video file and user-defined rules as an input, analyses the video file to extract the vehicle
trajectories and detects if any of the vehicles violated any of the user-defined rules. A web
application was also created which encloses the analysis program, enabling users to de-
fine scene rules, upload and manage video footage, start the aforementioned video analysis
program and view the output of the analysis was created.

During the elaboration of this work, I learned a lot of new information about machine
learning, computer vision and web application development industry. Especially, I have
improved coding in Python, explored scientific libraries like NumPy, PyTorch, Scikit-learn,
OpenCV and learned about modern computer vision methods and techniques.

Future work includes adding more features to the user-defined rules creator to further
expand the possibilities of the system. Also, a faster and more precise detection and tracking
methods could be used to eliminate some of the drawbacks of the current system. Moreover,
the web application could be improved to be more seamless to use, to offer more features
and to provide more clear feedback on user actions. Lastly, the web API could be rewritten
with authentication in mind.

The systems similar to the one described in the thesis will only gain in popularity as will
rise the number of surveillance cameras which monitor every human step.

48

Bibliography

1]

S

AGREN, S. Object tracking methods and their areasof application: A meta-analysis.
Umea, Sweden, None. Masters Thesis. UME AUniversity. Available at:

http://www8.cs.umu.se/education/examina/Rapporter/SannaAgrenFinal.pdf.

AMIGOS MAKER. What is scikit learn? [online]. DEV Community, november 2019
[cit. 2020-5-15]. Available at:

https://dev.to/amigosmaker/what-is-scikit-learn-5ddl.

ARCGIS. How single-shot detector (SSD) works [online]. Arcgis, 2019 [cit. 2020-5-15].
Available at: https://developers.arcgis.com/python/guide/how-ssd-works/.

AVIGILON. Know what is happening. Act with certainty. [online]. January 2020 [cit.
2020-5-15]. Available at: https://www.avigilon.com/.

AXXONSOFT. AxzonSoft Video Surveillance and Security Solutions [online]. 2020 [cit.
2020-5-15]. Available at: https://www.axxonsoft.com/.

BEWLEY, A., GE, Z., OTT, L., Ramos, F. and UpcrorT, B. SIMPLE ONLINE
AND REALTIME TRACKING [online]. July 2017 [cit. 2020-5-15]. Available at:
https://arxiv.org/pdf/1602.00763v2.pdf.

CERTICON. CertiCon ¢lenem Svazu primyslu a dopravy CR [online]. 2020 [cit.
2020-5-15]. Available at: https://www.certicon.cz/.

CERTICON. Uvodni strdnka [online]. 2020 [cit. 2020-5-15]. Available at:

http://www.certiconvis.cz/.

GANESH, P. Object Detection : Simplified [online]. Towards Data Science, october
2019 [cit. 2020-5-15]. Available at:

https://towardsdatascience.com/object-detection-simplified-e07aa3830954.

GURU99. What is TensorFlow? Introduction, Architecture & Ezample [online]. [cit.
2020-5-15]. Available at: https://www.guru99.com/what-is-tensorflow.html.

HELD, D., THRUN, S. and SAVARESE, S. Learning to Track at 100 FPS with Deep
Regression Networks [online]. 2016 [cit. 2020-5-15]. Available at:

http://www8.cs.umu.se/education/examina/Rapporter/SannaAgrenFinal.pdf.

HELLER, M. What is Keras? The deep neural network API explained [online].
InfoWorld, january 2019 [cit. 2020-5-15]. Available at: https://www.infoworld.com/
article/3336192/what-is-keras-the-deep-neural-network-api-explained.html.

49

http://cs.umu.se/education/examina/Rapporter/SannaAgrenFinal.pdf
https://developers.arcgis.com/python/guide/how-ssd-works/
https://www.avigilon.com/
https://www.axxonsoft.com/
https://www.certicon.cz/
http://www
http://iconvis.cz/
https://www.guru99.com/what-is-tensorflow.html
http://cs.umu.se/education/examina/Rapporter/SannaAgrenFinal.pdf
https://www.infoworld.com/

[13]

[16]

[17]

[21]

[22]

[24]

[25]

Hui, J. SSD object detection: Single Shot MultiBox Detector for real-time processing
[online]. December 2018 [cit. 2020-5-15]. Available at:
https://medium.com/Q@jonathan_hui/ssd-object-detection-single-shot-multibox-

detector-for-real-time-processing-9bd8deac0e06.

INTELLIVISION. Al Video Analytics - Face Recognition, ALPR/ANPR, Retail
Analytics, Traffic [online]. December 2019 [cit. 2020-5-15]. Available at:

https://www.intelli-vision.com/.

JONATHAN, H. Understanding Region-based Fully Convolutional Networks (R-FCN)
for object detection [online]. Medium, Apr 2019 [cit. 2020-5-15]. Available at:
https://medium.com/@jonathan_hui/understanding-region-based-fully-
convolutional-networks-r-fcn-for-object-detection-828316£07c99.

KERAS TEAM. Keras: Deep Learning for humans [online]. November 2019 [cit.
2020-5-15]. Available at: https://github.com/keras-team/keras.

MaAr1va, S. R. DeepSORT: Deep Learning to track custom objects in a video [online].
AT & Machine Learning Blog, april 2020 [cit. 2020-5-15]. Available at:
https://nanonets.com/blog/object-tracking-deepsort/#multiple-object-tracking.

MALLICK, S. Object Tracking using OpenCV (C' /Python) [online]. Feb 2017 [cit.
2020-5-15]. Available at:

https://www.learnopencv.com/object-tracking-using-opencv-cpp-python/.

MALLICK, S. GOTURN : Deep Learning based Object Tracking [online]. Jul 2018 [cit.
2020-5-15]. Available at:

https://www.learnopencv.com/goturn-deep-learning-based-object-tracking/.

NIKOLENKO, S. and GAYDASHENKO, A. Tracking Cows with Mask R-CNN and
SORT [online]. July 2018 [cit. 2020-5-15]. Available at: https://medium.com/

neuromation-blog/tracking-cows-with-mask-r-cnn-and-sort-fcd4ad68ec4f.

NING, G., ZHANG, Z., HUANG, C. and HEA, Z. Spatially Supervised Recurrent
Convolutional Neural Networks for Visual Object Tracking [online]. Columbia: [b.n.],
june 2016 [cit. 2020-5-15]. Available at: https://arxiv.org/pdf/1607.05781v1.pdf.

OPEN DATA SCIENCE, O. Querview of the YOLO Object Detection Algorithm
[online]. Medium, Sep 2018 [cit. 2020-5-15]. Available at: https://medium.com/@0ODSC/
overview-of-the-yolo-object-detection-algorithm-7b52a745d3e0.

OPENCV. Cv::TrackerGOTURN Class Reference [online]. OpenCV, Oct 2019 [cit.
2020-5-15]. Available at:
https://docs.opencv.org/3.4/d7/d4c/classcv_1_1TrackerGOTURN.html

PYTORCH. Pytorch/pytorch [online]. May 2020 [cit. 2020-5-15]. Available at:
https://github.com/pytorch/pytorch.

REMANAN, S. Beginner’s Guide to Object Detection Algorithms [online]. Medium,
april 2019 [cit. 2020-5-15]. Available at: https://medium.com/analytics-vidhya/
beginners-guide-to-object-detection-algorithms-6620£fb31c375.

50

http://intelli-vision.com/
https://github.com/keras-team/keras
http://www.learnopencv.com/object-tracking-using-opencv-cpp-python/
http://www.learnopencv.com/goturn-deep-learning-based-object-tracking/
https://medium.com/
https://arxiv.org/pdf/1607.05781vl.pdf
https://medium.com/00DSC/
https://docs.opencv.org/3.4/d7/d4c/classcv_l_lTrackerG0TURN.html
https://medium.com/analytics-vidhya/

[26] SACHAN, A. A Quick Guide to Object Tracking: MDNET, GOTURN, ROLO
[online]. April 2019 [cit. 2020-5-15]. Available at:
https://cv-tricks.com/object-tracking/quick-guide-mdnet-goturn-rolo/.

[27] ScIKIT LEARN. Scikit-learn [online]. May 2020 [cit. 2020-5-15]. Available at:
https://github.com/scikit-learn/scikit-learn.

[28] SHETTY, S. Tracking Cows with Mask R-CNN and SORT [online]. September 2018
[cit. 2020-5-15]. Available at:
https://hub.packtpub.com/what-is-pytorch-and-how-does-it-work.

[29] Sik Ho, T. Positive-Sensitive Score Maps (Object Detection) [online]. Towards Data
Science, may 2019 [cit. 2020-5-15]. Available at: https://towardsdatascience.com/

review-r-fcn-positive-sensitive-score-maps-object-detection-91cd2389345c.

[30] TEAM, K. Simple. Flexible. Powerful. [online]. [cit. 2020-5-15]. Available at:
https://keras.io/.

[31] TENSORFLOW. TensorFlow [online]. May 2020 [cit. 2020-5-15]. Available at:
https://github.com/tensorflow/tensorflow.

[32] V1, A. Agent Vi’s Comprehensive Video Analytics Range [online]. 2020 [cit. 2020-5-15].
Available at: https://agentvi.com/.

[33] WOJKE, N., BEWLEY, A. and PAauLus, D. SIMPLE ONLINE AND REALTIME
TRACKING WITH A DEEP ASSOCIATION METRIC [online]. April 2017 [cit.
2020-5-15]. Available at: https://arxiv.org/pdf/1703.07402v1.pdf.

[34] YEGULALP, S. What is TensorFlow? The machine learning library explained [online].
InfoWorld, Jun 2019 [cit. 2020-5-15]. Available at:
https://www.infoworld.com/article/3278008/what-is-tensorflow-the-machine-
learning-library-explained.html.

[35] ZQPEL ZQPei/deep sort_pytorch [online]. May 2020 [cit. 2020-5-15]. Available at:
https://github.com/ZQPei/deep_sort_pytorch.

51

http://cv-tricks.com/
http://packtpub.com/what-is-pytorch-
https://towardsdatascience.com/
https://agentvi.com/
https://arxiv.org/pdf/1703.07402vl.pdf
http://infoworld.com/article/3278008/what-is-tensorflow-the-machine-

Appendices

52

List of Appendices

A Links to Mentioned Technologies
B Complete Graphical User Interface Outline

C Complete Web Application Implementation

53

54

56

61

Appendix A

Links to Mentioned Technologies

This chapter shows links to mention technologies in the thesis.

Links

Used existing solution
Used Solution

NumPy
NumPy

SciPy
SciPy

Cython
Cython

Numba
Numba

Theano
Theano

CNTK
CNTK

Forensic search
Forensic Search

OpenCV
OpenCV

PostgreSQL
PostgreSQL

54

SQLAlchemy
SQLAlchemy

MIT License
MIT License

Paper.js
Paper.js

JSON
JSON

Bootstrap 4
Bootstrap 4

Flask
Flask

FFmpeg
FFmpeg

55

Appendix B

Complete Graphical User Interface
Outline

A graphical user interface needs to offer a simplistic way of video manipulation and out-
put observing. It will be implemented in Flask A on the server-side and Bootstrap 4 A
for the interface design. SQLAlchemy A will be used to translate class models into a rela-
tional database. Graphical User interface will be divided into multiple segments: Manage
Users, Manage Videos, Manage Video, Manage Rules, Manage Rule.

Manage Users

Admins will in terms of user management be able to change permissions of other users,
create new accounts, and change their profile settings. Users will have the option to change
their passwords, e-mails, names and notification settings.

Manage Videos

Users will be able to upload new videos and find the already uploaded ones. By clicking
on the existing videos, users will be redirected to a more detailed page about the particular
video footage. Users will only see videos which were uploaded by them and will not be able
to in any way manipulate videos they do not ’own’.

56

Choose 2 Video To Upload

VID_534152345.mp4 VID_534152346.mp4 VID_534152347.mp4 VID_534152345.mp4 VID_534152346.mp4 VID_534152347.mp4

VID_534152345.mp4 VID_534152346.mp4 VID_534152347.mp4 VID_534152345.mp4 VID_534152346.mp4 VID_534152347.mp4

Figure B.1: Outline of the web page for video upload

Figure B.1 shows the outline of the web design. On the top of the page, users can click
the white button to open a file explorer and select videos to upload or drag-and-drop them
into the area. Below the upload section, all videos uploaded by signed users are displayed.
Clicking those videos redirects users to a more detailed view with options to view and edit
them. This page is discussed in paragraph Manage Video B.

Manage Video

This page will allow users to see the detailed view of a particular video, edit its information
and start the rule violation detection for the particular video.

57

VID_234124123.mp4

Rules Assigned: Parking Slot
State: Analysed

Description: Normal vidzo of parking lot

mm

Anomalies in the video:

VID_534152345.mp4 VID_534152346.mp4 VID_534152347.mp4

Figure B.2: Outline of the web page for video manipulation

Figure B.2 shows the design outline of the said page. At the top of the page, a video
player will be located. Users will be able to view the whole video, fast forward it and max-
imise the video player window. Below the video player, there will be a column with infor-
mation about the video like its name, description, rule it is assigned to and its state. Below
the information, there will be buttons which can remove the video from the system, allow
for modification of the information, redirect to the rule creator page and start the rule
violation analysis. At the bottom of the page, there will be a list of all anomalies found
in the particular video. They will only appear after the rule violation analysis is complete
and will be removed if the rules for the video change.

Manage Rules
This page will be responsible for displaying existing user-defined rules, redirecting users
to a particular rule and redirecting users to the rule creator 5.7.

58

http://VID_534152347.IT.p4

Home Manage Users

Manage Videos

Profil

LogOut

Create Rule

N\ / . e . e
N\ e N\ e . /
>< < >
~ RN RN
/ . - N\ e .
g N ~ N

v . / N\ e .

Parking Lot Rules Intersection Private Property

This rule covers the viceo footage of parcing lot. This rule covers the video footage of a city This rule covers the video footage of a private

State: Analysed intersection. property.

State: Analysed State: Not Analysed

Figure B.3: Outline of the web design for the rules management

Figure B.3 shows the outline of the design of the page. At the top of the page, there
will be a button that redirects users to the rule creator 5.7. Below the button, all the rules

created by users will be displayed with an icon and brief information about the rule. Clicking
Manage Rule

on a rule will redirect users to a more detailed view of that particular rule.

This page will be graphically similar to the Manage Video B one but instead of managing
a particular video, it will control a particular scene rule. It will also enable users to edit
the rule information and start the rule violation detection for every video assigned to it.

59

Home Manage Users Manage Videos Srofile Log Out

Parking Lot Scene

State: Analysed

Description: Scene rules for the parking lot

[— E— E—

Assigned Videos:

VID_534152345.mp4 VID_534152346.mp4 VID_534152312.mp4

Anomalies In The Video:

VID_534152685.mp4 VID_534152378.mp4 VID_534152358.mp4

Figure B.4: Outline of the web design for rule manipulation

As seen in figure B.4, the top of the page holds the image preview of the rule with addi-
tional information below that. The centre of the screen is occupied by the control buttons
which will remove the rule, enable the alteration of the information, enable the modifica-
tion of the rule and start the analysis for every video assigned to the rule. At the bottom
of the page, there will be a list of all videos assigned to a particular rule as well as a list
of all anomalies found in videos assigned to the given rule. Clicking any of these videos will
redirect users to a page where the video can be viewed and manipulated.

60

Appendix C

Complete Web Application
Implementation

The web application is responsible for enabling users to explore the different parts of the sys-
tem which were mentioned in previous sections. It enables users to control the whole system,
to upload videos, to create rules and to start the rule violation analysis. The application is
built in Python’s web framework Flask A, uses Postgres and SQLAlchemy for the database
layer and utilises Docker for the deployment of the database. Bootstrap 4 is used for styling
most of the HTML tags.

The website is separated into multiple pages, each providing different functionality.
The functions which handle redirecting and template rendering are located in the file
AnomalyDetectorFront/routes.py.

Manage Videos Page
Function related to this web page are:

e manage_videos - Queries for all videos uploaded by logged-in users and shows them
in a grid layout with basic information.

o upload_video - Handles the video upload.

e upload__complete - Saves the video information to the database and reformats it if
needed.

61

Anomaly Detector Home Manage Users Manage Videos Manage Rules Profile| Log Out |

Files:

Choose Files | No file chosen

DJI 0731 x265.mp4 short.mp4 long.mp4
Rules: Road next to a forrest Rules: Parking lot and Rules: Parking lot and
State: Anomalies Detected crossroad crossroad
State: Not Detected State: Not Detected

Figure C.1: Final design of the Manage Videos page

As can be seen in figure C.1, users can use the top part of the page to upload new
videos into the system by drag-and-dropping them to the dashed line or by using the file
selection pop-up window. When users upload a video, its format is checked and the video is
reformated if the resolution is higher then FullHD or the CODEC is not H264. Also, each
video uploaded by users, after the reformatting is done, is displayed in a grid layout with
basic information attached to it. Clicking at the video thumbnail or the information below
it, users are redirected to a more detailed view of the particular video.

Manage Video Page
Functions related to this web page are:

e manage_video - Queries for a particular video uploaded by a logged-in user and ren-
ders the page with information about the video.

e edit_video - Renders and changes information about a particular video uploaded
by a logged-in user.

e remove_video - Removes a particular video and all related files from the system.

62

Anomaly Detector Home Manage Users Manage Videos Manage Rules Proﬁle‘ Log Out |

DJI_0731_x265.mp4

g

P 0004157

Name: DJI_0731_x265.mp4

State: Anomalies Detected

Rules: Road next to a forrest
Description:

Edit Video Information Create Rules for Video

Anomalies Found In The Video:

anomaly_vehicl
e _2.mp4d

Figure C.2: Final design of the Manage Videos page

The page shows all available information about a particular video and allows users to man-
age the video.

As shown in figure C.2, the top of the page is used to display and play the video
while interesting information about the video is below the media player. Below the section
containing the video information, there are buttons which from the left:

e remove the video with all its connected files

63

e allow the information editing
e redirect users to a rule creator page for that particular video
e start the rule violation detection if possible

At the bottom of the page, anomalies found in the video are displayed. Clicking on these
anomalies redirects users to a detailed page about a particular anomaly.

Manage Rules Page
The function related to this web page is:

e manage_rules - Queries for all rules created by a logged-in user and displays them
in a grid layout with basic information.

Anomaly Detector Home Manage Users Manage Videos Manage Rules Proﬂle| Log Out |

Create Rule

Parking lot and crossroad Road next to a forrest
Desc: Parking slot in the Desc: Parking slot next to the
bottom right corner is not trees on the left side is not

allowed. allowed.

Figure C.3: Final design of the Manage Rules page

As can be seen in figure C.3, the button at the top of the page redirects users to the rule
creator page. Below the button, there are rules created by a logged-in user displayed
in a grid layout with basic information about the particular rule. Clicking them redirects
users to a detailed view of the particular rule.

Manage Rule Page
Functions related to this web page are:

e manage_rule - Queries for a particular rule created by a logged-in user and renders
the page with information about the rule.

e edit_rule - Renders and changes information about a particular rule created by a logged-
in user.

e remove_rule - Removes a particular rule and all related files from the system.

64

Anomaly Detector Home Manage Users Manage Videos Manage Rules Profile

Parking lot and crossroad

Id: 2
Name: Parking lot and crossroad
Description: Parking slot in the bottom right corner is not allowed.

Edit Rule Detect Anomalies

Files:

Choose Files | No file chosen
I S s s ———— b
i i
! Drag and Drop Files Here !
SR H

Videos Assigned To This Rule:

short.mpa long.mp4

State: Not Detected State: Not Detected

Figure C.4: Final design of the Manage Videos page

As can be seen in figure C.4, the top of the page contains the of information about the rule.
Buttons are located beneath the information. The first button deletes the rule with all
associated files. The second one redirects users to a page for information editing. The last
button starts the rule violation analysis for all assigned videos to the particular rule.

Manage Anomaly Page
Functions related to this web page are:

e manage__anomaly - Queries for a particular anomaly by id and renders the page with
video preview and information about the anomaly

e remove__anomaly - Removes a particular anomaly and all related files from the system.

65

Anomaly Detector Home Manage Users Manage Videos Manage Rules Profile

anomaly_vehicle_2.mp4

Id: 2
Name: anomaly_vehicle_2.mp4
Description:
Path: Istatic/uploads/7a0820af-3329-4863-b7b0-45db16ff8b61/DJI_0731_x265.mp4_out/anomalies/2. mp4
Thumbnail Path: Istatic/uploads/7a0820af-3329-4863-b7b0-45db16ff8b61/DJI_0731_ x265.mp4_out/anomalies/2.mp4.jpg

Figure C.5: Final design of the Anomaly Page

This page is very similar to the manage video one. As can be seen in figure C.5, the top
of the screen is occupied by the media player which allows users to observe found anomaly.
Information about the anomaly and the remove button are located below the media player.

User management pages
Functions related to this web page are:

e manage_users - Queries all registered users in the database for the admin users only.

e manage_one_user - Renders a profile of a particular registered user for the admin
users only.

e profile - Renders a profile page of for a registered user.
e edit_profile - Renders the form that enables users to edit their profile.

e [ogout - Logouts a logged-in user.

66

e [ogin - Renders a login page and allows users to log-in to the system.
e register - Renders the registration page and allows users to register to the system.

e add_user - Renders the registration page and allows the admin to register new users
to the system.

e edit_user - Renders the profile edit page and allows the admin to edit user’s profiles
in the system.

e remove_user - Allows the admin to remove a user profile from the system.

Anomaly Detector Home Manage Users Manage Videos Manage Rules Profile | Log Out |
Profile
Name: admin
Email: admin@admin.cz
Phone: 123456678
User type: admin

Edit Profile

Figure C.6: Final design of the user management pages

An example of the profile page can be seen in figure C.6. These pages allow users
and admins to manage user accounts. They are all based on basic forms where some
fields are mandatory and some optional. The e-mail assigned to the user’s account is used
for notification when the video uploading, video reformatting or rule violation analysis is
finished. Users can only edit their profile while admins can manage every account.

67

mailto:admin@admin.cz

