
B R N O U N I V E R S I T Y O F T E C H N O L O G Y
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

A U T O M A T I C T RAFIČ S C E N E A N A L Y S I S U S I N G
I M A G E P R O C E S S I N G
A U T O M A T I C K Á A N A L Ý Z A SCÉNY V DOPRAVĚ P R O S T Ř E D N I C T V Í M Z P R A C O V Á N Í OBRAZU

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR LUKÁŠ VÁLEK
AUTOR PRÁCE

SUPERVISOR prof. Dr. Ing. PAVEL ZEMČÍK
V E D O U C Í PRÁCE

BRNO 2020

Brno University of Technology
Faculty of Information Technology

Department of Computer Graphics and Multimedia (DCGM) Academic year 2019/2020

Bachelor's Thesis Specification |||||||||||||||||||||||||
20774

Student: Válek Lukáš
Programme: Information Technology
Title: Automatic Trafic Scene Analysis Using Image Processing
Category: Image Processing
Assignment:

1. Study the available literature and solutions of automatic traffic scene analysis using image
processing; study also libraries of functions suitable for traffic scenes analysis.

2. Select suitable methods for detection of vehicles, their tracking, and analysis of anomalies in
their motion (turning around, obstacle avoidance, etc.)

3. Propose an implementation of the selected methods and discuss the features, advantages,
and disadvantages of such implementation.

4. Implement the selected methods and demonstrate the results on some feasible example of
traffic scene.

5. Discuss the achieved results and a possible future work.
Recommended literature:

• Dle pokynů vedoucího
Requirements for the first semester:

• Items 1 to 3.
Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Zemčík Pavel, prof. Dr. Ing.
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: May 28, 2020
Approval date: May 26, 2020

Bachelor's Thesis Specification/20774/2019/xvalek15 Page 1/1

https://www.fit.vut.cz/study/theses/

Abstract
This thesis deals w i th the issue of scene analysis using computer vision methods. The
a im of this work is to create a system capable of automatical ly detecting anomalies found
in video recordings. The present thesis discusses object-detection and object-tracking sys
tems. It also pursues graphical user interface and violation-detecting algori thm of user-
defined rules. A s a result of the present thesis, a web applicat ion is created that allows
users to manage their videos, to define rules for scenes, to start the anomaly detection
as well as display the results of the analysis. The system operates i n real-time, notifies
users when the operation is finished and stores the analysis results for further processing.

Abstrakt
Tato p r á c e se zabývá problematikou ana lýzy scény p o m o c í metod poč í t ačového vidění .
Cí lem t é t o p ráce je vy tvo ř i t s y s t é m schopný automaticky detekovat a n o m á l i e nacházej íc í
se ve video z á z n a m e c h . P r á c e se zabývá s y s t é m y pro detekci a s ledování o b j e k t ů v obraze,
tvorbou grafického už iva te lského r o z h r a n í a algori tmem pro detekci p o r u š e n í už iva te lem
definovaných pravidel . Výs ledkem p r á c e je webová aplikace, k t e r á uživatel i umožňu je
sp r ávu v i d e o z á z n a m ů , definování pravidel pro scény, zahá jen í detekce anomál i í a zobrazen í
výs ledků ana lýzy . S y s t é m pracuje v r e á l n é m čase, upozorňu je už iva te le o dokončen í operace
a uchovává výs ledky a n a l ý z y pro dalš í zpracovaní .

Keywords
Image Recognit ion, Machine Learning, Py thon , Flask, Y O L O , D e e p S O R T , Web App l i ca
t ion, Object detection, Object tracking, Computer V i s i o n

Klíčová slova
R o z p o z n á v á n í obrazu, S t ro jové učení , Py thon , Flask, Y O L O , D e e p S O R T , Web o v á aplikace,
Detekce ob jek tů , Sledování ob jek tů , Poč í t ačové Viděn í

Reference
V Á L E K , L u k á š . Automatic Trafic Scene Analysis Using
Image Processing. Brno , 2020. Bachelor's thesis. Brno Univers i ty of Technology, Facul ty
of Information Technology. Supervisor prof. D r . Ing. Pavel Zemčík

Rozšířený abstrakt
V pos ledn ích letech zaznamenaly b e z p e č n o s t n í kamery ob rovský n á r ů s t popular i ty až do té
míry, že se dnes vysky tu j í t é m ě ř v š u d e a p r o d u k u j í mil iony hodin v i d e o z á z n a m ů . Tato videa
vyžadu j í veliké m n o ž s t v í ú ložiš tě a času na zpracován í . Ve svě tě existuje mnoho p racovn ích
pozic pro ope rá to ry , jej ichž h l avn í n á p l n í p r á c e je sledovat ty to z á z n a m y a hledat v nich
p ř e d m ě t y z á j m u nebo anomá l i e . V pos ledn í d o b ě vyvíjí mnoho spo lečnos t í sys témy, k te ré
tento proces a u t o m a t i z u j í a el iminují t í m p o t ř e b u l idských o p e r á t o r ů .

T y t o s y s t é m y se do z n a č n é m í r y spoléhaj í na metody poč í t ačového v iděn í a obvykle
vyžadu j í e x t r é m n ě vysokou v ý p o č e t n í sílu k p roveden í a n a l ý z y videa. C í lem t é t o p ráce
je prozkoumat š i rokou šká lu metod poč í t ačového v iděn í pro s ledování a detekci ob jek tů .
P r á c e se t a k é snaž í o v y t v o ř e n í algori tmu schopného detekovat po rušen í pravidel , k t e r á
byla def inována uživate l i . Dá le se p r á c e zabývá tvorbou sys t ému , k t e r ý se p o d o b á sys
t é m ů m velkých společnos t í . T y t o s y s t é m y umožňu j í takovu definici v l a s tn ích pravidel , aby
bylo jejich využ i t í co nejširší . N ě k t e r é společnos t i nabízej í v l a s tn í h a r d w a r o v é vybaven í , jako
jsou v l a s tn í IP kamery a servery, j iné zase nab íz í pouze softwarové řešení . T y t o s y s t é m y
se p ř e d e v š í m využívaj í pro zaj iš tění b e z p e č n o s t i ve měs tech , b u d o v á c h a na s o u k r o m ý c h
pozemcích . Dá le se používaj í pro z p ě t n é vyh ledáván í o b j e k t ů ve v ideozáznamech . Sys
t é m y obvykle dokáž í upozornit už ivate le na objevený p r o b l é m způsoby, jako je n a p ř í k l a d
u p o z o r n ě n í e-mailem a S M S , vyskakovací u p o z o r n ě n í a nebo k o n t a k t o v á n í b e z p e č n o s t n í c h
si l .

P ř i n á v r h u aplikace by l kladen d ů r a z na v ý b ě r v h o d n é h o s y s t é m u pro de tekován í a sle
dování o b j e k t ů v obraze, aby s y s t é m fungoval d o s t a t e č n ě rychle a p řesně . Dá le byly
navrhnuty algori tmy pro e x t r a h o v á n í t r a j ek to r i í vozidel, pro tvorbu už iva te l sky defino
vaných pravidel a pro detekci p o r u š e n í t ě c h t o pravidel . S y s t é m b y l t a k é rozš í řen o webovou
aplikaci , k t e r á uživatel i umožňu je graficky pracovat s ce lým s y s t é m e m . Uživate lé jsou
schopni n a h r á v a t a spravovat v l a s tn í v ideozáznamy, v y t v á ř e t pro ně pravidla a s p o u š t ě t
pro ně ana lýzu , jejíž v ý s t u p y mohou prohl íže t .

S y s t é m by l p ř evážné i m p l e m e n t o v á m v jazyce Py thon . Dá le b y l použ i t jazyk JavaScript
pro implementaci aplikace, k t e r é slouží k vy tvo řen í už iva te lkých pravidel . Web o v á aplikace
využ ívá framework Flask, S Q L A l c h e m y a d a t a b á z i Postgres. Algor i tmus pro e x t r a h o v á n í
t r a j ek to r i í z v i d e o z á z n a m ů využ ívá metodu Y O L O v 3 pro detekci vozidel a metodu Deep-
S O R T pro jejich nás l edné sledování .

Cí lem p r á c e bylo vy tvo ř i t sys t ém, k t e r ý automaticky detekuje a n o m á l i e ve v ideozáz
namech d o p r a v n í scény. Tento cíl by l sp lněn . Výs ledkem p r á c e je program pro a n a l ý z u
videa, k t e r ý kombinuje Y O L O v 3 pro detekci ob jek tů , DeepSort pro s ledování o b j e k t ů , al
goritmus pro extrakci t r a j ek to r i í a algoritmus pro p o r o v n á n í t r a j ek to r i í vozidel a už iva te l sky
definovaných pravidel . B y l a t a k é v y t v o ř e n a webová aplikace, k t e r á u ž i v a t e l ů m umožňu je
definovat pravidla pro scény, n a h r á v a t a spravovat v ideozáznamy, s p o u š t ě t pro ně a n a l ý z u
a t a k é umožňu je v ý s t u p y ana lýzy prohl íže t .

A u t o m a t i c T r a f i c S c e n e A n a l y s i s U s i n g

I m a g e P r o c e s s i n g

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of M r . prof. D r . Ing. Pavel Zemcik. I have listed a l l the l i terary
sources, publications and other sources, which were used during the preparation of this
thesis.

L u k á š Válek
M a y 28, 2020

Acknowledgements
I would like to thank my supervisor prof. D r . Ing. Pavel Zemcik for his k ind guidance,
patience and valuable advice. I would also like to thank my dear ones for their endless
support.

Contents

1 Introduction 3

2 Object Detection A n d Tracking Methods Summary 4
2.1 Object Detect ion Methods Overview 4
2.2 Object Tracking Methods Overview 11
2.3 P y T o r c h Machine Learning Framework 16
2.4 Tensor F low Machine Learning Framework 16
2.5 Keras Machine Learning Framework 17
2.6 Scikit- learn Machine Learning Framework 17

3 Object Detection and Tracking Solutions Summary 18
3.1 Cer t icon Company Offerings 18
3.2 Inte l l iVis ion Company Offerings 19
3.3 Avig i lon Company Offerings 20
3.4 Agent V i Company Offerings 21
3.5 AxxonSoft Company Offerings 22

4 State-of-the-Art Analysis and Specification of Assignment 24
4.1 Ex i s t i ng Software Offerings Analysis 24
4.2 Objectives and requirements for the resulting solution 25
4.3 Technical Specification of the Resul t ing System 26

5 System A n d Components Outl ine 27
5.1 Object Detect ion M e t h o d Selection 28
5.2 Object Tracking M e t h o d Selection 29
5.3 A n o m a l y Detect ion A l g o r i t h m Out l ine 29
5.4 Graphica l User Interface Out l ine 29
5.5 Programming Language A n d Frameworks Selection 32
5.6 Trajectory Analysis M e t h o d Out l ine 32
5.7 User-Defined Rule Creator Out l ine 32

6 Proposed System Implementation 34
6.1 Object Tracker and Object Detector Implementation 34
6.2 Trajectory Analyser Implementation 35
6.3 Rule Creator Implementation 36
6.4 Rule V io l a t i on Analys is Implementation 38
6.5 Web App l i ca t ion Implementation 39
6.6 System Overview 43

1

6.7 System Testing 44

7 Conclusions 48

Bibl iography 49

Appendices 52

Lis t of Appendices 53

A Links to Ment ioned Technologies 54

B Complete Graphica l User Interface Outline 56

C Complete W e b Appl icat ion Implementation 61

2

Chapter 1

Introduction

In recent years, security cameras have seen a huge spike i n popular i ty up to the point
that nowadays, they are almost everywhere and produce mill ions of hours of video footage.
These require a lot of storage and time to be processed. In the world, there are many work
positions for operators whose ma in job is to watch hours of real-time or playback video
footage and to find objects of interest or anomalies in them. Recently, many companies
have been developing systems which automate this process of finding objects of interest
in the video footage and eliminate the need of human operators.

These systems rely heavily on computer vision methods and they usually require ex
tremely high computat ional power to perform the video analysis. Th is might have been
a problem just a few years back but nowadays, it is not due to fast progress i n G P U research.

The thesis aims to explore a wide variety of computer vision methods for object tracking
and object detection. It also seeks to create an a lgor i thm capable of detecting the violat ion
of user-defined rules. F i n a l l y it strives to create a system similar to the ones produced
by large companies.

In the thesis, I aimed to offer a solution to the problem mentioned above. I have chosen
this task because I a m interested i n Computer V i s i o n industry and I want to learn new
information from this industry. A l so , I intend to further pursue Computer V i s i o n i n my
Master Degree studies.

The thesis is organised as follows. Chapter 2 introduces the field of object detec
t ion and tracking and it further summarises popular and historically significant methods
in the field. Chapter 3 pursues the existing solutions of automated video analysis. Chapter
4 analyses the existing solutions and it sets the technical goals of the thesis. Chapter 5
proposes the final system architecture. Chapter 6 moves on to explore the implementat ion
details of the system. Section 6.7 deals w i th the testing of the system. Final ly , chapter
7 presents the accomplishments and it also discusses the possibilities of further extending
the work.

3

Chapter 2

Object Detection A n d Tracking
Methods Summary

In this chapter, the state-of-the-art of object detection and tracking is summarised. Various
methods for object detection and object t racking are discussed. This chapter main ly focuses
on methods which pursue these tasks; however, due to the scope of the thesis it is not
possible to mention every available method.

2.1 Object Detection Methods Overview

Object Detect ion is a Computer V i s i o n task which deals w i th locat ing and identifying
objects which belong to a certain class. The object locat ion can be interpreted in multiple
ways [9]. Two most notable interpretations are:

• Bounding boxes - a rectangle around the found object

• Segmentation - marking every pixel that belongs to the found object

Objects detectors discussed i n this section are:

• R - C N N

• Fast R - C N N

• Faster R - C N N

• F - R C N

• Y O L O v 3

• S S D

These methods are explained in more detail below.

R - C N N

R - C N N is one of the state-of-the-art C N N based Deep Learning methods for object de
tection. In an ideal scenario, there would be a bounding box for every possible posit ion
in the image which would be classified by the R - C N N [25]. Th is approach would be compu
tat ional ly impossible so a different approach must be used. Instead, the a lgori thm generates

4

around 2000 region proposals of various sizes and aspect ratios which are then classified
[25].

Figure 2.1 illustrates the sl iding window (left) and different aspect ratios (right). Bounding
boxes are drawn around the detected objects and the a lgori thm ends. There are problems
wi th this algori thm. Tra in ing of the C N N takes a very long time because each picture has
to be detected 2000 times [25].

Image

Discard unlikely
object locations

Image &
search space

Detections
with score

Discard unlikely
object locations

Figure 2.2: R - C N N detector a lgor i thm 2

1Taken from https: //mediumxom/analytics-vidhya/beginners-guide-to-object-detection-algorithms-
6620fb31c375

5

The architecture of this method can be seen in figure 2.2. This method cannot be imple
mented in real-time because each frame, using the current hardware, would take more than
30 seconds to process. The algori thm that detects region proposal is fixed and cannot be
trained [25].

Fast R - C N N
Fast R - C N N works s imilar ly to R - C N N but instead of classifying around 2000 proposed
regions, the whole image is fed to C N N resulting i n a feature map. Proposal region is
extracted from the feature map, reshaped to squares and resized to a fixed size using R o l
Pool ing . R o l feature vectors are used as an input for a softmax layer to predict classes
of the proposed regions and their bounding boxes coordinates [25].

Deep ^ \

Rol

1. Input image

pro jec t ior tV

Cönv
feature map

2. ROI Pooling

Rol feature
v e c t o r

3. Classification and bounding
box regression

A . Final results

Figure 2.3: Fast R - C N N detector architecture'^

The architecture of this method can be seen i n figure 2.3. Th is method is way faster than
the previous method because there are fewer proposed regions generated and the convolu-
t ional operation is done only once per image [25].

Faster R - C N N
Faster R - C N N is i n a way similar to Fast R - C N N as it also feeds the whole image to C N N
to extract a feature map. Instead of using a selective search algori thm for the proposed
regions, it uses a special Region Proposal Network to get the proposed regions. These
regions are then resized using R o l Pool ing and fed to a classifier to get the object class
and predicted bounding boxes for the given regions [25].

2Taken from https: //medium.com/analytics-vidhya/beginners-guide-to-object-detection-algorithms-
6620fb31c375

3Taken from https: //medium.com/analytics-vidhya/beginners-guide-to-object-detection-algorithms-
6620fb31c375

(i

classifier w
Rol pooling

The architecture of this method can be seen i n figure 2.4. T h i s method is very precise but
due to its slow performance not suitable for real-time systems [25].

R - F C N
R - F C N just like R - C N N and its faster variants belongs to the two-stage detector category.
It also uses R P N (region proposal network) to generate region proposals [25]. B u t fully
connected layers after R O I pool ing are removed. Instead, most of the major calculations
are done before R O I pool ing to generate the score maps. These score maps are used
to perform average voting which greatly increases performance [15].

4Taken from https: //mediumxom/analytics-vidhya/beginners-guide-to-object-detection-algorithms-
6620fb31c375

7

This results i n a faster method than Faster R - C N N wi th similar m A P [29]. The architecture
of this method can be seen i n figure 2.5. S t i l l , this method is not suitable for a real
t ime object detection due to its slow performance compared to S S D and Y O L O which are
discussed in the following sections.

Y O L O
Y O L O (You O n l y Look Once) is an extremely fast single C N N object detector. It predicts
mult iple bounding boxes and class probabilit ies for those boxes. Y O L O is trained on full
images and has optimised object detection performance. It runs at 4 5 F P S (on N v i d i a
T i t a n X) while being more accurate than methods such as Fast R - C N N or D P M [25].
Unl ike region proposal techniques, Y O L O has the whole context of the image available.
Th is means that Y O L O makes fewer background errors when compared to region-based
methods which only see a part of the object at once [25]. Y O L O partit ions the whole image
into SxS gr id. If the centre of an image falls into a gr id cell that the grid cell is responsible
for the detection of that object. Each grid cell predicts B bounding boxes and confidence
score for those boxes. If there is an object i n the grid cell the confidence score should be
equal to I O U between the predicted box and the ground t ru th [22]. E a c h bounding box
consists of 5 predicted values: x, y, w, h and confidence score, x and y represent the centre
of the bounding box relative to the grid cell , w and h represent the size of the bounding
box [22]. E a c h grid cell also predicts C condit ional class probabilit ies. O n l y one condit ional
class probabil i ty is predicted per gr id cell . A t test t ime the condit ional class probabil i ty
is mul t ip l ied by the ind iv idua l box confidence as such: Pr(Classi\Object) * PR(Object) *
IOU = PR(Classi) * IOU which computes a class-specific confidence score for each box.

5Taken from https://towardsdatascience.com/review-r-fcn-positive-sensitive-score-maps-object-
detection-9 lcd2389345c

8

https://towardsdatascience.com/review-r-fcn-positive-sensitive-score-maps-object-

These scores indicate both the probabil i ty of the class appearing i n the box and how the box
fits the object [22].

ri iu . : is i

Mm
Bounding boxes + confidence

i j •

\

Final detections

Class probability map

Figure 2.6: Y O L O detector a lgor i thm 6

The a lgori thm of this method can be seen i n figure 2.6. Because each grid cell only predicts
two bounding boxes and one class, this method struggles wi th smal l objects which appear
or objects which appear i n groups such as flocks of birds [22].

S S D
Single Shot M u l t i B o x Detector was released in 2016 and reached records in both speed
and accuracy. Just like Y O L O , both classification and localizat ion happen in a single
forward pass of the network. S S D consists of two main parts: the backbone model and S S D
head [3]. The backbone model is a regular C N N which the fully connected layers were
removed from . It is used as a feature extractor to gather the semantic meaning of the picture
while maintaining a spacial structure at a cost of resolution degradation. The S S D head
consists of another convolutional layer of different sizes which predict the bounding boxes
and classes of objects in the spacial location [3]. Th is architecture can be seen i n figure 2.7.

Taken from
6620fb31c375

https: //mediumxom/analytics-vidhya/beginners-guide-to-object-detection-algorithms-

9

These layers separate the image into grid cells which contain default bounding boxes of dif
ferent sizes and aspect ratios. E a c h layer separates the image into a different number
of cells. These default bounding boxes are determined during the model t ra ining [13].
These bounding boxes can be seen i n figure 2.8.

Figure 2.8: S S D detector bounding box selection 8

Higher-resolution feature maps (layers) are responsible for the detection of smal l objects
while lower resolution ones are used to detect larger objects. S S D predictions are classified
as positive or negative matches. If the default bounding box has IoU greater than 0.5 wi th
the ground t ruth , it is classified as a positive match. Otherwise, it is a negative match [13].

7Taken from https://developers.arcgis.com/python/guide/how-ssd-works/
8Taken from https://medium.com/@jonathan hui/ssd-object-detection-single-shot-multibox-detector-

for-real-time-processing-9bd8deac0e06

10

https://developers.arcgis.com/python/guide/how-ssd-works/
https://medium.com/@jonathan

SSD is performing worse than Faster R - C N N for small-object detection but is consid
erably faster (around 8 times). It is around the same level in terms of speed and accuracy
as Y O L O v 3 which makes it very suitable for real-time detection tasks [25, 13].

2.2 Object Tracking Methods Overview

Object t racking is a Computer V i s i o n task which deals w i th reidentifying objects through
out mult iple frames and about figuring out where the object is headed [1]. A tracking
algori thm is ini t ial ised wi th a frame of a video and a bounding box to indicate the location
of the object. It then attempts to keep track that object in consequent frames and output
the bounding box for i t . The task is quite difficult due to various obstacles like occlusion,
orientation change, scale, and l ighting variations [1]. Object tracking is used in applications
such as video surveillance, human-computer interaction, robot navigation, act ivi ty recogni
t ion, anomaly detection, v i r tua l reality, object navigation, and path detection. It is a great
way to automate and optimize those processes [1]. Object trackers are divided into multiple
categories:

• Detect ion based and Detect ion Free:

— Detection Based trackers use a pre-trained object detector to initialise the track
ing. Th i s k ind of tracker can detect objects which appear i n the middle of track
ing and immediately recognise when the object disappears from the frame. These
methods either normal ly use the object detector, only use the t racking when
the detection fails or they run the object detector every n-th frame to correct
the t racking error. The latter variant is used for a long continuous tracking [26].

— Detection Free trackers need a manual ini t ia l isat ion of the object which needs
to be tracked. The tracker then localises those objects i n the consequent frames.
New objects which enter the frame after the ini t ia l isat ion are not tracked [26].

• Single and Mul t ip l e Object trackers:

— Single Object trackers only track a single object in the frame even when
there are mult iple trackable objects in the frame. The object to be tracked is
determined at the ini t ia l isat ion [26].

— M u l t i Object trackers track every object which is found in the frame. If
a detection-based tracker is used it also tracks each new object that appears
after the ini t ia l isat ion [26].

• Onl ine and Offline trackers:

— Online trackers are used when there is not a possibil i ty to predict the move
ment of the object from the future frames (eg. live video feed) [26].

— Offline trackers are used for t racking objects in a recorded video. It uses future
frames to predict the movement more accurately and minimise errors [26].

• Based on Learning strategy:

— Online Learning Trackers use one or more frames during the ini t ia l isat ion
phase to learn about the object. These trackers are more general-purpose because
they do not need any pre-training and can learn to track any object on the fly
[26].

11

— Offline Learning trackers need to be trained before t ry ing to detect any object
because they do not learn anything about the object dur ing the runtime. These
trackers can reach higher accuracy because they can be trained on thousands
of examples [26].

This task requires detection based online multi-object tracker w i th offline t raining. Fo l
lowing text pursues some of the object trackers which are available i n the O p e n C V A
framework.

T r a c k i n g m e t h o d s of the O p e n C V framework

B O O S T I N G tracker:
This classifier is trained at runtime wi th positive and negative examples of the object.
The in i t i a l positive example is set by the user or another object classifier. The negative
examples are selected i n the parts of the image which are outside of the found bounding box
[18]. The classifier is run for each frame on every pixel i n the proximi ty of the previously
found location. Each pixel is also assigned a value by the classifier. The next locat ion is
selected based on the highest score of the pixel . Th is new location is also used as a positive
example for the classifier. Th is method is very old and does not recognise when the tracking
fails [18].

M I L tracker
M u l t i p l e instance learning is similar in function to a B O O S T I N G tracker but instead of feed
ing the classifier w i th one positive example and many negative ones, it puts the positive
example and other possible positive examples i n the proximi ty to a positive 'bag'. W h e n
the current locat ion of the tracked object is not accurate, there is a high chance that
the 'shifted' locat ion corresponds wi th some examples i n the positive 'bag'. Th i s results
i n a better t racking performance than the B O O S T I N G tracker and also works if the object
is par t ia l ly occluded [18].

K C F tracker
Kerne l Correla t ion F i l t e r further improves on the two previously mentioned methods. This
method takes advantage of the fact that a lot of the examples i n the positive 'bag' over
lap to make the tracking more accurate and faster. Th i s is currently the go-to method
in the O p e n C V framework [18].

T L D tracker

This tracker separates the term ' t racking' into 3 smaller parts.

• Tracking - The tracker follows the object from frame to frame.

• Detect ion - Detector locates the object and corrects the tracker if necessary.

• Learning - Learning estimates the detector's error and updates it to prevent errors
in the future.

This tracker can deal w i th a lot of occlusions but due to a high number of false positives,
it is almost unusable [18].

12

M E D I A N F L O W tracker
This method tracks the object i n both forward and backward direction and measures the dis
crepancies between these two directions. Th is approach enables the method to detect track
ing failures. M E D I A N F L O W tracker works best w i th smal l and predictable movements.
[18].

G O T U R N tracker
Generic Object Tracking Using Regression Networks takes advantages of the C N N (Convo-
lut ional Neura l Network) trackers while being faster because of the offline t ra ining and no
online fine-tuning. G O T U R N receives the centred previous frame and the current frame
(in which the object is most l ikely not centred) [18].

C u r r e n t f r a m e

Figure 2.9: G O T U R N tracker me thod 9

A s seen i n figure 2.9 the tracker is given the bounding box of the object i n the first frame
and then tracks it throughout the video [19]. G O T U R N doesn't handle occlusion but is
very robust to viewpoint and l ighting changes and various deformations. The performance
of this t racking method is around 165FPS on a single T i t a n X . B o t h the previous and current
frames are cropped and used as an input to the first 5 layers of the CafeeNet architecture
[23]. The architecture of this method can be seen in figure 2.10.

9Taken from https://www.learnopencv.com/goturn-deep-learning-based-object-tracking/

13

https://www.learnopencv.com/goturn-deep-learning-based-object-tracking/

Current frame Conv Layers

The outputs of these convolutional layers are concatenated into a vector of the size of 4096.
This vector is then used as an input to 3 Ful ly-Connected Layers which output 4 coordinates
of the bounding box [11].

O t h e r t r a c k i n g m e t h o d s

R O L O tracking method
R O L O stands for Recurrent Y O L O and is an offline, single object tracker. It uses a C N N
called Y O L O to extract features of the tracked object and a bounding box of the object.
Those features are used as input for the L S T M (Long Short Term Memory) which is an R N N
(Recurrent Neura l Network) [17].

1 0Taken from https://www.learnopencv.com/goturn-deep-learning-based-object-tracking/

14

https://www.learnopencv.com/goturn-deep-learning-based-object-tracking/

The architecture of this method can be seen in figure 2.11. The tracker deals well w i th
occlusion and mot ion blur. A s it is a single object tracker, it is not suitable for the goal
of this thesis [21].

S O R T tracking method
Simple Onl ine and Real t ime Tracking method is capable of t racking mult iple objects i n a
video i n real-time speed. It relies on an object detector to detect objects i n the frame
and associates them wi th previously detected objects based on the coordinates of detection
results [20]. Th is means that this method can track objects of any type. It uses math
ematical heuristics such as the I O U (Intersection-Over-Union) metrics between bounding
boxes in neighboring frames. The assignment of those boxes is solved by the Hungar ian
A l g o r i t h m [6]. W h e n the object which was present i n the frame is not present i n the current
one, it assumes that the object has left the frame [20]. The result and speed of this tracker
are dependent on the quali ty of the object detector which is used to find bounding boxes
and classes of the objects. Due to this tracker not tak ing the object's visual features into
the account, it is not suitable for video analysis i n this thesis [6].

Deep S O R T tracking method
This tracked, based on the S O R T tracking method, is one of the most popular and used
methods in the M O T (multiple object tracking) tasks. Deep S O R T uses K a l m a n filtering
to estimate the posit ion of the object i n the current frame based on the previous detections.
The assignment is solved the same way as i n the S O R T method, using the Hungar ian

"Taken from https://arxiv.org/pdf/1607.05781vl.pdf

15

https://arxiv.org/pdf/1607.05781vl.pdf

algori thm. It uses Mahalanobis distance to incorporate the uncertainties from the K a l m a n
filter. To further improve the tracking quality, another metric based on the appearance
of the object is added [17]. A classifier w i th the final classification layer str ipped is used
to extract the features of the object i n the bounding box. A l l bounding boxes of the detected
objects in the image are passed to this classifier to get a vector of values for each object which
represents the appearance of the object [33]. The distance metric is: D = A * D f c + (l —A)*D a

Where A is a weighting factor, is the Mahalanobis distance and Da is the cosine distance
between the appearance feature vectors. This tracker is a perfect fit for this thesis because
it extracts the features of the object which results in the abi l i ty to track the object across
distant frames [33].

2.3 PyTorch Machine Learning Framework

P y T o r c h is a Python-based scientific computing package which takes advantage of the G P U
as an accelerator for the computat ion. It was released i n January 2016 and has been gaining
a lot of attention since then. Nowadays it is one of the most used frameworks, right next
to the TensorFlow by Google. O n G i t H u b , it has over 35 000 starts and almost 9 000 forks
[24]. P y T o r c h is also being used by large companies like Facebook, Twitter , N V I D I A , Uber
for Na tu ra l Language Processing, machine translation, image recognition, neural networks
and other A I areas [28]. P y T o r c h is mainly used to accelerate tensor computations w i t h both
C P U and G P U acceleration support and easy deep neural networks bui lding. It contains
many routines to accelerate scientific computations such as reductions, math operations,
linear algebra, sl icing and indexing. A m o n g the things mentioned above, P y T o r c h is also
getting a lot of popular i ty because of its simple interface, very Py thon ic syntax and dy
namic computat ional graphs [28]. P y T o r c h supports a technique called reverse-mode auto-
differentiation which allows users to quickly modify the way the neural network behaves
which creates a great environment for experimentation. P y T o r c h was not buil t as a P y t h o n
binding into a monoli thic C + + framework but as a part of the P y t h o n language. It can be
easily combined wi th other popular scientific frameworks like N u m P y A , S c i P y A , scikit-
learn 2.6 and others. P y T o r c h is even compatible w i th P y t h o n compilers such as C y t h o n A
or N u m b a A to further improve the already fast performance. P y T o r c h has various acceler
ation libraries such as c u D N N and N C L L from N V I D I A or Intel M K L integrated, making
it as fast as the current hardware allows it to be [24].

2.4 TensorFlow Machine Learning Framework

TensorFlow is an open-source machine learning framework originally developed by Google
B r a i n team. It first publ ic ly appeared i n late 2015 while the first stable release arrived
in 2017. It runs on a variety of platforms like Windows, L inux , macOS, cloud services,
i O S , A n d r o i d and many others [10]. Currently, it is the most popular machine learning
framework on G i t H u b wi th over 76 000 commits, 140 000 stars and 79 000 forks. It pro
vides both P y t h o n and C + + A P I s , as well as A P I s for other languages but the framework
logic is wri t ten i n C + + to ensure the best possible performance while P y t h o n is used
as a high-level wrapper of the C + + implementat ion [31]. TensorFlow contains tools for im
age recognition, word embeddings, recurrent neural networks, natural language processing,
par t ia l differential equations, based simulation and others. The biggest benefit to Tensor
F low is that it provides an abstraction to the machine learning development. It enables

16

developers to only focus on the applicat ion logic without worrying about smal l implementa
t ion details [10]. In October 2019, TensorFlow 2.0 was released further simplifying the use
while improving the performance. Support for Keras 2.5 A P I for model t ra ining and exper
imentation was added. TensorFlow also supports distr ibuted t ra ining across mult iple G P U s
and even mult iple machines. Google has created its custom T P U (T e n s o r F l o w Processing
Uni t) accelerator which users can access through Google C l o u d . Compared to competi
tors like P y T o r c h , TensorFlow has an advantage i n large scale projects but lacks i n fast
prototyping and projects that need to go to product ion quickly [34].

2.5 Keras Machine Learning Framework

Keras is a high-level neural networks A P I , al lowing its users to focus on fast experimenta
t ion. O n G i t H u b , it has over 5000 commits, almost 50 000 stars and almost 20 000 forks
[16]. The framework is wri t ten i n P y t h o n and runs on top of other machine-learning frame
works like TensorFlow 2.4, Theano A or C N T K A . Recently, after the release of TensorFlow
2.0, Keras is only developed wi th TensorFlow in mind to allow tighter integration and uses
TensorFlow as a default back-end. Keras supports both convolutional neural networks
and recurrent neural networks and its combinations. It also supports G P U acceleration
to speed up the t ra ining [30]. A s mentioned above, Keras uses a backend for a l l low-level
operations like tensor manipulat ion, convolutions and others. Keras is mostly used wi th
TensorFlow as a back-end. The reason for the creating of Keras is to decrease the bar
rier of entry for newcomers, to ease model bui lding, to enable fast model experimentation
and to increase the product ion of researchers [12].

2.6 Scikit-learn Machine Learning Framework

Scikit- learn is a free machine learning l ibrary for P y t h o n which depends on other scientific
modules for P y t h o n like N u m P y , Pandas, iPy thon , Sympy and Matp lo t l i b . Th is framework
focuses on t radi t ional machine learning algorithms and is a part of a module called S c i P y
A . A s of today, Scikit- learn has over 25 000 commits on G i t H u b , almost 40 000 stars and al
most 19 000 forks which makes it one of the most popular scientific modules for P y t h o n [27].
Scikit- learn was developed in 2007 by D a v i d Cournapeau as a project in Google Summer
of Code. The first public release was made in the first half of 2010 and the stable release
was made in M a y of 2019. The module contains many well-known algorithms for Regression
- Logist ic and Linear Regression, Cluster ing - K - M e a n s , K - M e a n s + + , Preprocessing - M i n
to M a x Normal iza t ion , Classification - K-Nearest Neighbors and others [2]. Scikit- learn
focuses on machine learning so it does not support data loading, data handling, data ma
nipulat ion and data visualisation. For that Scikit- learn has a very neat integration wi th
other P y t h o n modules which handle these operations, especially N u m P y [2].

17

Chapter 3

Object Detection and Tracking
Solutions Summary

In this chapter, existing solutions for vehicle t racking and trajectory analysis are explored.
This chapter mainly focuses on solutions which pursue these tasks; however, due to the scope
of the thesis it is not possible to mention every available solution. B o t h Czech and foreign
solutions were explored.

3.1 Cert icon Company Offerings

Cert icon is a Czech company dealing wi th innovation and development of software and hard
ware solutions for automotive, aerospace, telecommunication and healthcare industry. Cer
t icon has a worldwide reach and tight cooperation wi th universities throughout Europe.
The company was created in 1996 as a C V U T project spin-off. Since then it has re
ceived many international rewards and gained the reputation of a cut t ing edge scientific
and technical company of the 21st-century [7]. One of their main products is called Cer-
t i C o n V i s (C C V) . C C V is a software which analyses and processes camera feed i n real-time
or pre-recorded camera footage. The system recognises objects and situations in the scene
and informs users about set events. It is used to secure public areas, to analyse traffic
situations, to gather marketing statistics and to streamline the manufacturing process [7].
Users define objects and their behaviours which they want to track and let the system work
independently from then on. A n example of such behaviour is a car turning to the opposite
direction which the system detects and informs users about the event. The system was,
for instance, implemented i n a S P E L ' s parking lot for 90 cars. The company has defined
parking places i n the video footage and the system detected whether the spot was free
or occupied and the employees d id not have to drive throughout the parking lot [8].

18

The picture 3.1 shows a usage of the parking assistance software. Each parking spot has
an identifier assigned to it which, if the slot is free, is shown to the employees looking
for a parking spot.

3.2 IntelliVision Company Offerings

Inte l l iVis ion is a company which specializes i n A I and Deep Learning-based video analysis
software. The company was founded i n 2002 and is headquartered i n Cal i fornia w i th offices
in the U S A , A s i a and Europe. The i r software was deployed i n over 5 mi l l ion cameras for over
50 customers worldwide [14]. They provide solutions to smart homes, smart buildings, smart
cities, smart retai l applications and driver assistance. Intel l iVision's A I adds intelligence
to video cameras by analysing the video footage and alerting users in real-time. The analysis
process can be integrated into cameras, on-premise servers or i n the cloud. Thei r Video
C l o u d software provides management solutions and allows uploading the event data from
a camera to the cloud and accessing it from a mobile device [14].

Smart C i t y solution enables intelligent video mot ion detection like intrusion detection,
pedestrian crossing set line, suspicious objects being left i n the scene, crowd detection,
loitering, vehicle and people counting, face recognition, license plate recognition, video
search, video summary and many others [14].

Smart Transportat ion is a suite of video analysis products used i n over 3000 intersections
and many parking lots. It replaces expensive specialised solutions such as traffic light vehicle
detection and inductive loops embedded into road. The system supports traffic analysis like
congestion monitoring, vehicle speed, length and type, automatic plate recognition, people
and vehicle counting, zone detection, zone intrusion and many others [14].

Smart A u t o is a camera-based solution for O E M s and integrators. The analysis software
turns a simple camera, mounted on a windshield of any vehicle, into a drivers assistance
util i ty. The system is customisable and can also be buil t into dashcams. A s of today,
it supports forward collision detection, lane departure warning, pedestrian collision warning,
driver monitoring, road sign detection and night vision enhancements while blind-spot
detection and smart mirror features are coming [14].

1Taken from https://www.certiconvis.cz/pripadove-studie/pripadova-studie-2/

19

https://www.certiconvis.cz/pripadove-studie/pripadova-studie-2/

I Oft 1
| : U] I 53

V;I8

The picture 3.2 is an example of the Smart Transport system. Users only need to define
traffic lanes and the system can automatical ly count vehicles and gather information about
them like length and velocity [14].

3.3 Avigilon Company Offerings

Avigi lon is a company w i t h a specialization on both hardware and software security so
lutions. The company was created i n 2004 and its headquarters is located i n Vancouver,
Canada. Avig i lon sales and dis t r ibut ion are based on a business-to-business model w i th
Avig i lon usually selling its products to integrators and dealers. Avig i lon products include
features such as electronic access control, automatic event detection, self-learning capa
bilities, pattern-based analysis, object search, appearance search and remote viewing v i a
mobile devices [4].

Avig i lon hardware products are usually capable of running their video analysis software
which makes the analysis decentralised and puts less strain on servers. Avig i lon Video
Analy t ics software is capable of classifying and tracking over 50 objects, even when they
are stationary. It can not only analyse people but also cars, trucks, buses, motorcycles
and bicycles. It allows for a search for people and vehicles i n both indoor and crowded
environment. Due to its self-learning nature, the system is less prone to analysis errors
and is more general [4].

Avig i lon Appearance Search is a refined deep-learning search engine for video footage.
It allows to easily process large quantities of video files to locate a part icular object, be
it a person or a vehicle. Operators can search for a person by specifying physical descriptors
like the colour of the clothing, gender, age or even facial characteristics. Th is allows the sys
tem to track a person throughout mult iple feeds of cameras even from different cameras.
This feature helps w i t h an investigation by enabling operators to compile evidence, create
a powerful narrative of events, find out an objects route or last-known locat ion [4].

2Taken from https://www.intelli-vision.com/smart-city/

20

https://www.intelli-vision.com/smart-city/

Unusual M o t i o n Detect ion (U M D) is a technology, that allows even more automation
in the security department. The system learns what a typica l movement in the scene looks
like and detects anomalies which are then flagged. This helps to speed up the process
of filtering through hours of mundane footage [4].

6 PM 9 F|M

I 1
Ill

III
minim

II • H i l l I I I I I I B ^ H I I III I III I I I I I 11

Indicates ai! recorded motion events

(a) Timeline without UMD enabled

6 P M

1 1 1 1 1

9f
1 1 1

VI

1 1

12 A M

l l l l
I • • • • !

• II
II • •

1 II
II
II

llll 1
llll 1
llll II

Indicates only recorded motion events
that are unusual for a particular time

(b) Timeline with UMD enabled

Figure 3.3: Compar ison of a timeline w i th and without U M D enabled'^

Figure 3.3 shows that the usage of U M D greatly reduces the number of events that
the operators need to filter through.

Avig i lon Licence Pla te Recognit ion automatical ly reads license plate data from vehicles
and saves it for later u t i l iza t ion. Operators can then specify a license plate information
and the system w i l l automatical ly find a l l occurrences of a given vehicle. A watch list can
be created to automatical ly alert when a target vehicle is detected. The system can detect
the license plate of most countries [4].

3.4 Agent V i Company Offerings

Agent V i is world-wide known company specialising in video analytics solutions. Agent V i ' s
systems offer real-time video analysis, business intelligence and video search, a l l of which
easily integrates w i th a variety of 3rd party systems and can be deployed either like a cloud-
based System as a Service (SaaS) or on-premise installations [32]. Agent V i was created
in 2003 and is headquartered i n Rosh Ha ' ay in , Tel A v i v Dis t r ic t . Agent V i ' s system en
ables automated video analysis which detects and alerts for the events of interest, searches
through the video for a given target and gathers statist ical information [32].

Agent V i ' s product S a v V i is an on-premise video analytics system which provides various
functionalities using a single platform that is integrated wi th existing or new surveillance
systems. S a v V i features tools like real-time event detection, video search and business
intelligence, a l l of which are demanded by mult iple markets. These tools increase the pro
duct iv i ty of operators who no longer have to filter through the whole video footage or watch
the live video footage [32]. S a v V i Rea l -T ime Event Detect ion eliminates the need to rely
on the alertness of the system's operator. The operator just needs to define the events of in
terest i n advance and react to potential alerts in case of their occurrence [32]. S a v V i Video
Search offers an automatic retrieval and analysis of the recorded video by enabling users
to define objects of interest, e l iminat ing the need for tedious manual searches [32]. S a v V i
Business Intelligence automatical ly gathers statistics of traffic volumes, movement trends
and mot ion patterns, helping business owners to make educated decisions [32]. S a v V i offers
two deployment options, optimised and flexible. Opt imised offer means that the analysis
system is integrated into the I P camera or an encoder device. O n the contrary, the flexible

3Taken from littps://www.avigilon.com/products/ai-video-analytics/umd

21

http://www.avigilon.com/products/ai-video-analytics/umd

offering is used in combinat ion wi th devices which have not undergone integration wi th
savVi , so the analysis system is implemented on a proxy P C [32].

Figure 3.4 shows the interface of Agent V i ' s S a v V i system analysing video footage
of a traffic scene.

Another Agent V i ' s product is called I n n o V i . I n n o V i is a video analysis solution powered
by deep learning algorithms which can differentiate between people, cars, motorcycles,
bicycles, buses, trucks and static objects. It transforms any camera into a smart video
device helping to reveal otherwise hidden information [32]. I n n o V i is a Software as a Service
solution offering automatic real-time detections of security breaches, anomaly detections
and other safety concerns i n cities, public spaces and private facilities. I n n o V i offers a united
web interface accessible from any desktop or mobile computer, scalable service supporting
an unl imi ted number of cameras and high service availabil i ty w i th automatic backups [32].

3.5 AxxonSoft Company Offerings

AxxonSoft is a company focusing on smart integrated security and video surveillance sys
tems. AxxonSoft was founded i n 2003 and its headquarters are located in Fremont, Califor
nia. AxxonSof t ' s portfolio contains over 150 000 projects w i th 2.5 mi l l ion cameras installed.
The company cooperates w i t h more than 5800 partners i n over 100 countries which per
form around 1500 installations per month [5]. AxxonSoft closely cooperates w i th I P camera
manufacturers worldwide to offer integrations for over 10 000 devices. AxxonSoft is a big
inventor i n Forensic Search A technologies for recorded video and relies on them for their
product line. AxxonSoft also develops video analytics based on deep learning. The com
pany's neural networks are trained to perform customer-specific tasks from footage obtained
from the customer's facility [5].

4Taken from https://www.agentvi.com/products/savvi/savvi-video-search/

22

https://www.agentvi.com/products/savvi/savvi-video-search/

A x x o n Next is a video surveillance system used for security assurance and preven
t ion of problems. A x x o n Next is capable of basic features like a synchronous playback
of video footage from several cameras, audio and video analytics, event-driven scenarios such
as recording, a larm generation, notification generation, multi- level user rights and many
more. Also , the system supports some special features like mult iple cri teria forensic search,
face and license plate search, visual scene synopsis, reviewing hours of recorded video i n min
utes, merging mult iple feeds of cameras into a panoramic one and more [5]. The system
is highly scalable since there is no l imi t to the to ta l number of servers per deployment.
There are also no l imits to the number of clients simultaneously connected to the system,
the number of camera views displayed simultaneously, the number of license plate recogni
t ion channels and face recognition channels. The number of simultaneously tracked objects
are l imi ted to up to 25. A x x o n Next is capable of running on personal computers and servers
[5].

A x x o n Intellect Enterprise is a security information management system which combines
video analysis and event-driven automation i n a single environment. The main features
of the system include universality, simplicity, scalability, intelligence, cost-effectiveness,
modular i ty and reliability. Just like A x x o n Next , A x x o n Intellect Enterprise supports
a wide variety of smart or basic cameras. The system is implemented i n C + + and is from
the ground up designed as an object-oriented system. Users do not need to worry about
the type of the camera, how it is connected or where it is mounted. They control each
component the same way [5]. The system supports many video analytics features. Video
detection tools process video and detect events which match defined criteria. These events
can envoke actions like start ing the recording, sending a notification, displaying the event
on a separate screen or start ing a custom script. Forensic search allows for quick look up
of a video matching set cri teria. People counting tools calculate how many people enter
and leave an area. Queue management tools allow for the counting of people specifically
wait ing i n line. Heat map tools determine where visitors stop and measure their lingering
t ime in a specific area [5].

A x x o n Traffic Cont ro l Suite is a smal l subset of AxxonSoft ' s product stack, containing
only features relevant to monitor ing and securing transport areas. Traffic Cont ro l Suite
can recognise license plates on both stationary and moving vehicles, interacts w i t h traffic
lights and other barriers, monitors parking lots and public transportat ion areas and easily
integrates w i t h existing hardware and software [5].

23

Chapter 4

State-of-the-Art Analysis
and Specification of Assignment

In this chapter, the aforementioned state-of-the-art software solutions are analysed. A l so ,
a technical specification is made. This chapter also separates the research and the imple
mentation part of the thesis.

4.1 Exist ing Software Offerings Analysis

Software offerings analysis:

• Cer t icon develops comercial products which offer:

— both real-time and pre-recorded footage processing:

— user notification about events:

— user rule definition:

— public area security, traffic situations analysis, marketing statistics gathering.

• In te l l iVis ion develops comercial products which offer:

— real-time footage processing:

— user notification about events:

— user rule definition:

— smart homes, smart buildings, smart cities, smart retai l and driver assistance
solutions:

— mobile access:

— dashcamera integration.

• Avig i lon develops comercial products which offer:

— both real-time and pre-recorded footage processing:

— user notification about events:

— user rule definition:

— indoor and outdoor surveillance:

24

— both hardware and software solutions:

— self-learning system:

— mobile access:

— person or vehicle search in video footage.

• Agent V i develops comercial products which offer:

— both real-time and pre-recorded footage processing:

— user notification about events:

— user rule definition:

— city, public spaces and private facilites security:

— cloud and local installations:

— object search in video footage:

— both hardware and software solutions.

• AxxonSoft develops comercial products which offer:

— pre-recorded footage processing:

— user notification about events:

— user rule definition:

— mult iple criteria forensic search:

— vehicle and traffic surveillance.

A l l of the companies mentioned in chapter 3 have developed object t racking systems
to make cities smarter and more secure, to analyse vehicle and customer movement patterns
and to detect suspicious behaviours. They allow a definition of custom rules to match every
possible use case, making their systems highly flexible. Some of the companies offer (or
need) custom hardware equipment like custom IP cameras and servers. The systems offer
both online and offline processing, each w i t h its use cases. Onl ine processing is more
suitable for real-time smarter cities, surveillance systems, dr iv ing assistants whereas offline
processing is more suitable for the gathering of marketing statistics, the creation of heat
maps and traffic analysis. The systems notify users about a discovered problem i n various,
predefined or custom ways like email and S M S notifications, pop-up alerts and contacting
security forces.

4.2 Objectives and requirements for the resulting solution

Based on the analysis made i n the previous section 4.1 I have proposed a system which
automatical ly detects anomalies i n a video feed of a traffic scene. The system w i l l be
similar to the ones described i n the state-of-the-art solutions chapter 3 but w i l l be freely
available for the public . Also , I wanted to reveal which methods are suitable for such tasks.

The system should offer a software solution to a computer vision task of object detection
and object t racking. The system should, based on the user-defined rules, detect violations
of these rules and make them easily accessible for end-users. The goal of the system is
to automate and quicken the process of traffic scene recordings analysis w i th better accuracy
than a human operator could achieve.

25

4.3 Technical Specification of the Resulting System

Based on the analysis of state-of-the-art solutions we have agreed on the following specifi
cation:

• The implementat ion language of the system w i l l be P y t h o n due to its wide variety
of machine learning frameworks and popular i ty

• The object detector method used w i l l be able to work i n real-time

• The object tracker method used w i l l be able to work in real-time

• The system w i l l support a graphical creation of custom scene rules

• The scene rules w i l l only need to be created once

• The system w i l l automatical ly detect violations of the aforementioned rules

• The violations w i l l be easily accessible for end-users

• Users w i l l be notified when the analysis is done

The system needs to be tested to verify that the desired functionality is met. A l so ,
verifying that the system is stable and runs fast enough is necessary. The following tests
must be performed:

• performance test - the system needs to analyse input video in a shorter t ime span
than the length of the video itself

• s tabil i ty test - the system needs to work without any crashes for at least a month

• functionality test - the system has to precisely detect objects and find anomalies
in the video footage

• usabil i ty test - the system has to be usable by average users

In upcoming chapter 5, ind iv idua l components of the system are explained i n detail .

26

Chapter 5

System A n d Components Outline

The proposed system is composed of 4 m a i n parts (blue in figure 5.1):

• object detector which w i l l detect vehicles i n the scene - Vehicle Detect ion block in F i g
ure 5.1

• object tracker which w i l l track vehicles i n the scene - Vehicle Tracking block in Figure
5.1

• rule viola t ion detection algori thm which detects rule violations i n the video footage -
A n o m a l y Detect ion block i n Figure 5.1

• graphical user interface which enables users to quickly create scene rules, start the anal
ysis and view the analysis result - G U I block i n Figure 5.1

£
•

GUI
Vehicle Detection Frame

•

GUI (YOLOv3) ' /
Video

Footage

Scene rules
file

Coordinates of detected objects

Anomaly
Detection

i
Clipping anomaly

K from a video K
/ Output of /

K
/the analysis/

Vehicle Tracking Saving vehicle
(DeepSORT) trajectory

-Yes
Annotated

video footage

Main
Components

Secondary
Components

Figure 5.1: Out l ine of the system

27

The whole system w i l l be controlled wi th in the G U I without the need to tinker w i th
command-line interface. Users w i l l be able to upload own video footage which w i l l be
reformatted into internal codec and resolution, create scene rules for the said footage, man
age uploaded videos and rules, start video analysis and observe the result. D a t a w i l l be
persisted on the local filesystem of the machine that runs the system and information about
the files, users and settings w i l l be stored in a relational database. After start ing the analysis
a new P y t h o n process w i l l start i n the background to process the video and find rule viola
tions. W h e n the analysis is done, users w i l l be notified v i a e-mail used i n the registration
form. User can then inspect and manage found anomalies.

5.1 Object Detection Method Selection

This section discusses 'Vehicle Detect ion ' block in Figure 5.1. A s mentioned i n section 2.1
there are many object detection methods available each wi th its advantages and drawbacks.
F rom research, the best method currently seems to be Y O L O v 3 due to its combination
of high performance and accuracy.

Y O L O V 3

28 \B\ \C\

50 100 150
inference time (ms)

-# -Ret inaNet -50
-4 -Ret inaNet-101

Method mAP time
[B] SSD321 28.0 61
[C] DSSD321 28.0 85
[D] R-FCN 29.9 85
[E] SSD513 31.2 125
[F] DSSD513 33.2 156
[G] FPN FRCN 36.2 172
RetinaNet-50-500 32.5 73
RetinaNet-101-500 34.4 90
RetinaNet-101-800 37.8 198
YOLOV3-320 28.2 22
YOLOv3-416 31.0 29
YOLOV3-608 33.0 51

200 250

Figure 5.2: Object detection methods comparison

Figure 5.2 shows that YOLOv3-J^16 strikes the perfect balance between m A P (mean average
precision) and t ime to detect an image. W h i l e RetinaNet based detectors and FPN FRCN
detector have noticeably higher m A P values they are too slow for the goal of this thesis.
YOLOv3 is implemented i n mult iple frameworks but the variant made i n P y T o r c h 2.3 under
the M I T A license w i l l be used for this thesis because it also supports DeepSort t racking
method. For further information see section 5.2.

28

5.2 Object Tracking Method Selection

This section discusses 'Vehicle Tracking ' block in Figure 5.1. There are many object tracking
methods available each suitable for different tasks. Th is assignment requires a multi-object
tracker to be able to reliably track a l l vehicles in the scene. F r o m research made i n section
2.2, the best currently available methods seems to be DeepSort which combines the Sort
algori thm wi th a neural network to take visual features of the object into the account.

MOTAf MOTP t MT f M L I ID J F M ; FP J, F N 4 Runtime "

KDNT [16]* BATCH 68.2 79.4 41.0% 19.0% 933 1093 11479 45605 0.7 Hz
LMP_p [17]* BATCH 71.0 80.2 46.9% 21.9% 434 587 7880 44564 0.5 Hz
MCMOT_HDM [18] BATCH 62.4 78.3 31.5% 24.2% 1394 1318 9855 57257 35 Hz
NOMTwSDPlö [19] BATCH 62.2 79.6 32.5% 31.1% 406 642 5119 63352 3 Hz

EAMTT [20] ONLINE 52.5 78.8 19.0% 34.9% 910 1321 4407 81223 12Hz
POI [16]* ONLINE 66.1 79.5 34.0% 20.8% 805 3093 5061 55914 10Hz
SORT [12]* ONLINE 59.8 79.6 25.4% 22.7% 1423 1835 8698 63245 60 Hz
|Deep SORT (Ours)* ONLINE 61.4 79.1 32.8% 18.2% 781 2008 12852 56668 40 Hz

Figure 5.3: Object t racking methods comparison

Figure 5.3 shows that even though the DeepSort tracker is one of the fastest methods
tested and it also has one of the best t racking accuracies. W h i l e being a l i t t le slower than
the S O R T algori thm it has an addi t ional feature i n a form of visual features extraction
which can be used to reidentify vehicles which have been lost for a large number of frames.

5.3 Anomaly Detection Algor i thm Outline

This section discusses 'Anoma ly Detect ion ' block i n Figure 5.1. The anomaly detector
needs to be able to recognise i f any of the vehicles i n the video footage have violated any
of the user-defined rules. It w i l l compare the vehicle trajectory obtained by the trajectory
analyser 5.6 and user-defined rules created in 5.7.

A s mentioned above, the input for the anomaly detection w i l l be a file containing user-
defined rules and a file consisting of trajectories of vehicles found i n the video footage.
The system w i l l then iterate over vehicle coordinates and check if it corresponds to any
of the user-defined rules. If any of the vehicle coordinates are inside the 'En t ry Forbidden '
type rule, the vehicle is marked as a rule violator. This also applies to the rule type
'Direct ion Al lowed ' where a trajectory of the vehicle w i l l be calculated and i f it w i l l not
match the set direction of the rule (with deviation) the video w i l l also be marked.

After determining which vehicles violated the user-defined rules, a smal l cl ip of the in
cidents w i l l be acquired and saved in the database.

This a lgori thm w i l l run in parallel and each process w i l l be responsible for trajectories
of a single vehicle. This w i l l y ie ld better resource ut i l iza t ion and faster detection.

5.4 Graphical User Interface Outline

This section discusses ' G U I ' block i n Figure 5.1. A graphical user interface needs to offer
a simplist ic way of video manipulat ion and output observing. It w i l l be implemented

29

in F lask A on the server-side and Bootstrap 4 A for the interface design. S Q L A l c h e m y A
w i l l be used to translate class models into a relational database. Graph ica l User interface
w i l l be divided into mult iple segments: Manage Users, Manage Videos, Manage Video ,
Manage Rules, Manage Rule.

Manage Users
Admins w i l l i n terms of user management be able to change permissions of other users,
create new accounts, and change their profile settings. Users w i l l have the option to change
their passwords, e-mails, names and notification settings.

Manage Videos
Users w i l l be able to upload new videos and find the already uploaded ones. B y clicking
on the existing videos, users w i l l be redirected to a more detailed page about the part icular
video footage. Users w i l l only see videos which were uploaded by them and w i l l not be able
to in any way manipulate videos they do not 'own'.

Choo;efVideoToUpload VID_J131J3731.mp4

256x180 256x180 256x180 256x180 256x130 256x180

VID_534152345.mp4 VID_534152346.mp4 VID_534152347.mp4 VID_534152345.mp4 VID_534152346.mp4 VID_534152347.mp4

256x130 256x180 256x180 256x180 256x180 256x130

VID_534152345.mp4 VID_534152346.mp4 VID_534152347.mp4 VID_534152345.mp4 VID_534152346.mp4 VID_534152347.mp4

Figure 5.4: Out l ine of the web page for video upload

Figure 5.4 shows the outline of the web design. O n the top of the page, users can click
the white but ton to open a file explorer and select videos to upload or drag-and-drop them
into the area. Below the upload section, a l l videos uploaded by signed users are displayed.
C l i ck ing those videos redirects users to a more detailed view wi th options to view and edit
them. This page is discussed i n paragraph Manage Video 5.4.

Manage Video
This page w i l l allow users to see the detailed view of a part icular video, edit its information

and start the rule v iola t ion detection for the part icular video.

30

• jl *

• M « • » N

VID_234124123.mp4

Rules Assigned: Parking Slot

State: Analysed

Description Norm vid?o :;f park rg lo:

Anomalies in the video:

256x180 256x180 256x180

VID_534152345.mp4 VID_534152346.mp4 VID_534152347.IT.p4

Figure 5.5: Out l ine of the web page for video manipulat ion

Figure 5.5 shows the design outline of the said page. A t the top of the page, a video
player w i l l be located. Users w i l l be able to view the whole video, fast forward it and
maximise the video player window. Below the video player, there w i l l be a column wi th
information about the video like its name, description, rule it is assigned to and its state.
Below the information, there w i l l be buttons which can remove the video from the system,
allow for modification of the information, redirect to the rule creator page and start the rule
viola t ion analysis. A t the bot tom of the page, there w i l l be a list of a l l anomalies found
in the part icular video. They w i l l only appear after the rule viola t ion analysis is complete
and w i l l be removed if the rules for the video change.

Manage Rules
This page w i l l be responsible for displaying existing user-defined rules, redirecting users

to a part icular rule and redirecting users to the rule creator 5.7.
More detailed information about the outline is availabe in appendix B .

Manage Rule
This page w i l l be graphically similar to the Manage Video 5.4 one but instead of managing

a part icular video, it w i l l control a part icular scene rule. It w i l l also enable users to edit
the rule information and start the rule viola t ion detection for every video assigned to it.

More detailed information about the page is availabe i n appendix B .

31

http://VID_534152347.IT.p4

5.5 Programming Language A n d Frameworks Selection

There are many programming languages suitable for machine learning nowadays but some
of them have the edge whether for the variety of available frameworks, the execution speed
or the comfort of use. The three main languages which meet some or a l l of these cri teria are
Py thon , C + + and C # . P y t h o n is extremely easy and safe to use due to its high level of ab
straction and lack of pointers. A l so , most of the main machine learning and computer vision
frameworks like TensorFlow 2.4, P y T o r c h 2.3, Keras 2.5, Scik i t -Learn 2.6 and O p e n C V A
are available for P y t h o n and are implemented as a C or a C + + module. A s many of these
popular frameworks are natively implemented i n C or C + + and P y t h o n implementat ion
acts as a wrapper for the code, there is no need to use C + + directly since the feature set
and execution speed are equal while P y t h o n is more pleasant to use.

A s mentioned above there are many scientific frameworks available for P y t h o n . The choice
of the machine learning framework depends mostly on the available implementat ion of
the most suitable object detectors and trackers since this thesis does not deal w i t h the im
plementation of these methods and is discussed i n section 5.1 and 5.2.

O p e n C V is a framework of choice for video manipulat ion and visualisation of vehicle
detection and vehicle t racking results.

Flask is a framework of choice when it comes to small-sized web sites as it provides
plenty of tools which simplify web development.

Postgres A and S Q L A l c h e m y A w i l l be used for the database layer as it allows for seam
less conversion of P y t h o n classes to S Q L tables and vice versa.

5.6 Trajectory Analysis Method Outline

The trajectory of each vehicle in the scene w i l l be persisted to perform the rule viola t ion
detection, which is done after the trajectory analysis, as mentioned in chapter 5.

The trajectory of each detected vehicle w i l l be internally saved i n a P y t h o n dict ionary
data structure periodical ly (each frame, every other frame, etc.). The posit ion of a vehicle
and identifiers of a vehicle w i l l be obtained by the tracker which w i l l return two x coordinates
and two y coordinates indicat ing the posit ion of the vehicle i n the frame. The posit ion
used from this rectangle w i l l be its centre coordinate or a different coordinate if testing
reveals a more suitable one. The first and last appearance of each vehicle w i l l also be
stored for the creation of clips of vehicles that cause a rule violat ion. After the analysis
of the whole video, the internal structure w i l l be converted into a file on the servers filesystem
and the path w i l l be saved into the database.

5.7 User-Defined Rule Creator Outline

The user-defined rule creator w i l l be a web applicat ion using Javascript and PaperJS A
to draw on the top of the canvas, dynamical ly process user input and dynamical ly display
feedback and changes to the user.

The outline of the user interface can be seen i n figure 5.6. The left top part of the screen
w i l l be occupied by the canvas displaying a frame of an uploaded video, right part w i l l be
used for the selection of the drawing mode and bot tom part below the canvas w i l l host
buttons for video upload, rule naming and rule manipulat ion.

32

j P e l e

Figure 5.6: Out l ine of the rule creator

Drawing w i l l be done by cl icking and dragging on the canvas wi th a drawing mode
selected. E a c h shape w i l l be represented i n the PaperJS A object and w i l l have a rule
(Direction allowed, Forbidden access) assigned to i t . C l i ck ing the Save Rules but ton w i l l
convert the PaperJS objects into J S O N A file and it w i l l send it to the ma in web applicat ion.

33

Chapter 6

Proposed System Implementation

In this chapter, the implementation of the proposed system is described. It consists of sec
tions about an object tracker and object detector implementat ion 6.1, trajectory analyser
implementation 6.2, rule creator implementat ion 6.3, graphical user interface implementa
t ion 6.5, system overview 6.6 and system testing 6.7.

6.1 Object Tracker and Object Detector Implementation

Object Detector Implementation
A s a foundation of the system, an already existing solution of an object detector was
used. The solution implements Y o l o V 3 object detector i n Python ' s framework P y t o r c h 2.3
and wraps it in a class called / Y O L O v 3 | . It supports C U D A acceleration which results
in much faster inference t ime than using a C P U . The detector takes an image in N u m P y
array form and returns bounding boxes and object class identifiers. The detector is trained
on a C O C O dataset and can distinguish between eighty common objects. The existing
solution has a public G i t H u b repository [35].

The object detector is used i n the class VideoTracker located i n the file
VideoTracker .py. It is init ial ised i n the constructor i n i t of the class w i th con
figuration and uses C U D A , if available i n the system. Configuration and pre-trained
weights for the detector are stored in the files detector/Y0L0v3/cfg/* and detector/Y-
OLOvS'/weights/*. W h i c h configuration files and pre-trained weights are used is deter
mined by the configuration file configs/yolov3.yaml which needs to be supplied to the sys
tem at the start-up of each analysis. W h e n the detector is init ial ised, an input video is
loaded by the O p e n C V framework. The run method starts the video analysis and cycles
through each x frame i n the video, where x is passed as a parameter when running the video
analysis. Each cycle, a frame of the video is retrieved and converted into a N u m P y array:

_, ori_im = self.vdo.retrieve()
im = cv2.cvtColor(ori_im, cv2.C0L0R_BGR2RGB)

Then the image array is passed as an argument to Y O L O v 3 to do the detection. The de
tector returns found bounding boxes, class configuration and class identifiers of the found
classes:

bbox_xywh, cls_conf, c l s _ i d s = self.detector(im)

If there were any objects found in the frame, they are filtered to keep only the objects
of interest which include bicycles, cars, motorbikes, buses and trucks. This filtered ar-

34

ray of found objects of interest is then passed to the object tracker, which is discussed
i n the paragraph below.

Object Tracker Implementation
A s a foundation of the system, an already existing solution of an object tracker was used.
The solution implements D e e p S O R T object tracker i n Python ' s framework Py to rch 2.3
and wraps it i n a class called DeepSort. It supports C U D A acceleration which results
i n much faster inference t ime. The tracker takes found bounding boxes as well as class
probabilities and the original image as an input and returns identified bounding boxes.

The object detector is used i n the class VideoTracker located i n the file
VideoTracker .py. It is ini t ial ised in the constructor i n i t of the class w i t h config
urat ion and uses C U D A , i f available i n the system. Configurat ion is stored i n the file
configs/deep_sort.yaml and pre-trained weights for the tracker are stored i n the file
deep_sort/'deep/'checkpoint/'ckpt.t7. The configuration file needs to be passed to the system
at start-up. E a c h t ime objects i n the video frame are detected by the object detector, they
are passed to the object tracker:

outputs = self.deepsort.update(bbox_xywh, cls_conf, im)

The tracker compares the newly found object positions and tries to reidentify the vehicles
in the frame. If there is a new vehicle i n the frame a new identifier is assigned to i t . After
the reidentification, if the system was able to detect any vehicle, the trajectory analysis
starts 6.2.

6.2 Trajectory Analyser Implementation

The trajectory analysis is responsible for storing information about the vehicle positions
throughout the whole video footage. It is implemented as a P y t h o n dict ionary where the ve
hicles identifier, the one assigned to it by the object tracker, is used as a key to the dictio
nary. The value of an i tem is a list of coordinates that represent the posit ion of the vehicle
in the video. The algori thm is implemented i n the method run of the class VideoTracker
located i n the file VideoTracker .py. The trajectory analysis happens after the tracking
of the objects is done; i n other words when the vehicles i n the frame have an identifier
assigned to them. The algori thm also needs to remember when the vehicles have appeared
for the first t ime and the last t ime. This information is used later for the extraction
of the vehicle from the video dur ing the anomaly detection.

The a lgori thm is run for every vehicle identified i n the current frame. If a part icu
lar vehicle has already been detected by the system, its „last seen" at tr ibute is updated
to the index of the current frame, otherwise its „first seen" at tr ibute is updated:

i f identity not i n s e l f . t r a j e c t o r i e s :
s e l f . t r a j e c t o r i e s [identity] = []
self.vehicle_occurence [identity] = { " f i r s t " : idx_frame,

" l a s t " : idx_frame}
else:

self.vehicle_occurence[identity]["last"] = idx_frame

Then a coordinate which represents the posit ion of the vehicle i n the frame is calculated.
The most accurate representation of the posit ion of the vehicle is the centre of the bounding

35

box's x axis and two-thirds of the bounding box's y axis from the top. Subsequently,
the calculated coordinate is added to the trajectory of the vehicle.

i f idx_trajectory % self.args.trajectory_interval == 0:
box = bbox_xyxy[i]
current_position = (int((box [0] + box[2]) / / 2) ,

int(box [3] - abs(box[l] - box [3]) / / 3))
i f l e n (s e l f . t r a j e c t o r i e s [i d e n t i t y]) != 0:

i f not s e l f . i s _ t o o _ c l o s e (s e l f . t r a j e c t o r i e s [i d e n t i t y] [- 1] ,
current_position):

self.trajectories[identity].append(current_position)
else:

self.trajectories[identity].append(current_position)

Two modifications have been done to the algori thm:
The first one helps to smooth out the trajectory by only taking into account every x

frame. The problem was that sometimes the detector, especially on slowly moving vehicles,
inaccurately detected the vehicle, so it seemed that the vehicle suddenly changed direction.
This caused a lot of problems i n the rule v iola t ion analysis where many false positives
occurred. Therefore, the parameter trajectory_interval was added.

The second modification was not of a correctness nature but rather a performance
one. W h e n there were many idle vehicles i n the scene, typical ly vehicles i n the parking
lot or in intersections, each t ime a coordinate was captured it was almost identical. This
resulted in a performance issue during the rule violat ion analysis because the system had
to unnecessarily calculate w i th the same coordinates. A method is_too_close solves this
issue by comparing the previous and current coordinates of the vehicle. The threshold which
decides i f the vehicle has moved enough or not is calculated as 1% of the video resolution.
A s an example wi th 1280x720 resolution, the vehicle has to move at least 12 pixels on the x
axis and 10 pixels on the y axis for the coordinate to be captured.

W h e n the trajectory analysis is done, the dict ionary is converted into a J S O N file.
The file also contains information about the video footage like its resolution, path on the
filesystem and name.

6.3 Rule Creator Implementation

The rule creator is a Javascript applicat ion which allows users to define custom scene
rules. It uses PaperJS framework which handles the creation of objects that represent
shapes. The applications implementat ion is located in files Anomaly'DetectorFront/'stat-
ic/rule_creator/canvas_manipulation.js and AnomalyDetectorFront/'static/rule__creator/
controls.js. The first file handles H T M L canvas manipulat ion, key presses and shapes ob
ject creation while the second file takes care of the control buttons like switching a drawing
mode, removal of a l l rules, conversion of PaperJS objects to J S O N file.

The applicat ion supports six types of input:

• Draw a line

• Draw a box

• Draw a circle

36

• Draw an allowed direction for the shape/rule

• Forb id an entry for the shape/rule

• Delete the shape/rule

The polygons are internally represented as PaperJS objects. The canvas has a set size
of 1280x720 pixels which makes the coordinates consistent across different display resolu
tions and web browsers. The a i m was to have an image from the input video as a background
of the canvas and to draw shapes on top of it using PaperJS . Unfortunately, either a pic
ture or a PaperJS layer can be visible at the same time so there are two different canvases
stacked on the top of each other. The bot tom one shows a frame of the video footage
and the top one serves as the drawing layers. The bo t tom canvas is controlled by functions
in the file AnomalyDetectorFront/static/rule_creator/controls.js. W h e n users select a video
using a file picker, the video is loaded into a video hidden H T M L tag. B y moving the slider,
a different frame is selected from the video so that users can find a si tuation which represents
the scene the best. Th is file also takes care of a l l the control buttons on the page. Pressing
the save button, the user-defined rules are converted into a J S O N format by the saveRules
function. Th is function also sends the converted J S O N file to the web applicat ion which
saves the file on the server's filesystem and adds it to the database.

Anomaly Detector Home Manage Users Manage Videos Manage Ri_h

c

Browse Enter Rule Name

Figure 6.1: F i n a l design of the Rule Creator

A s can be seen i n figure 6.1, users can select a part icular input mode on the right
side of the web page. The most flexible drawing mode is the 'Draw a l ine' one because
it enables users to define precise shapes to fit any situation. The 'Draw a l ine' mode helps
users to easily close the polygon by snapping the last line to the starting point i f the mouse
cursor moves too close to i t . If the previous input mode was 'Draw a line' , the polygon was
not closed and users switch to a different one, the shape is automatical ly finished. Each
rule has a random colour assigned to it to visual ly differentiate the created rules.

37

6.4 Rule Violat ion Analysis Implementation

The rule viola t ion analysis is responsible for the detection of vehicles which break the user-
defined rules i n video footage. It accomplishes that by comparing the file containing
the user-defined rules created in 6.3 and the file containing trajectories of the vehicles
occurring i n the video created i n 6.2. The analysis is implemented i n the class AnomalyDe-
tector i n the file AnomalyDetectorBack/'AnomalyDetector.py. The rule violat ion analysis is
started by the web interface of which implementat ion is discussed in section 6.5.

W h e n the analysis is run, it first analyses the input videos using the systems discussed
in sections 6.1 and 6.2. Th is is implemented i n the method traf f ic_scene_analysis. Each
input video is processed i n a separate process using Python ' s bui l t - in multiprocessing tool
Poo l . To prevent overloading of the system only cpu core amount / 2 number of processes
can run at the same time. Before the start of the video analysis and once it finishes,
the system notifies the web applicat ion which uses the information to update its database.
W h e n the video analysis is done and a file containing trajectories is generated, the method
detect_anomalies is called.

Trajectory files are processed sequentially but the part icular vehicle trajectories are
processed in parallel . The method anml_dtc_proc_spawner first loads up a l l the neces
sary files, parses the rule file and corrects the coordinates from the rule file (Rule Creator
works i n 1280x720 resolution while videos have variable resolution). For each trajectory,
a process for method anomaly_detector_process is created which has user-defined rules
and a part icular vehicles trajectories at the input . Th is method iterates over the coordi
nates and checks if any of them have entered the used-defined rule. If the entered rule
is of an „ E n t r y forbidden" nature, the vehicle is marked as a rule violator. However,
the entered rule is of a „Direc t ion Rule" type, the trajectory of the vehicle is calculated
and compared to the allowed one. If it deviates from the allowed value too much, the vehicle
is marked rule violator:

for _, rule i n rules['direction_rules'].itemsO:
i f inside_polygon (coordinate [0] , coordinated], np. array(rule ['rules'])) :

current_direction = calculate_direction(trajectory [0], trajectory [1])
i f math.fabs(current_direction - rule ['direction']) > MAX_DEVITATION:

queue.put(vehicle_id)
for _, rule i n rules['entrance_rules'].items():

i f inside_polygon(coordinate [0], coordinate [1], np.array(rule['rules'])):
queue.put(vehicle_id)

The inside_polygon method checks whether the vehicle is inside the polygon of the rule.
It takes the vehicles x and y coordinates and the coordinates of the rule's polygon. It returns
true i f the vehicle's coordinate is located inside the rule's polygon, otherwise it returns
false. The calculate_direction method is called when the vehicle enters the „Direc t ion
Al lowed" type of rule. The method returns the angle difference of two line segments wi th
the origin i n [0, 0] and ending the coordinates passed to the method. If this angle is greater
than the allowed deviation, which reduces false positives, the vehicle is marked as a rule
violator. W h e n a l l of the trajectories are analysed and vehicles which broke the user-
defined rules are found, a c l ip of the rule v iola t ion is created for each vehicle. The clip
is then reformated, using ffmpeg A program, into an M P 4 format w i th H264 C O D E C ,
which results i n a smaller size and abi l i ty to play the cl ip i n the web applicat ion (O p e n C V
high-quality formats can not be played on the web). W h e n the reformatting is done,

38

the web applicat ion is notified to store the clips into the database. Users are notified when
the analysis is done by an e-mail.

The output clips of the analysis can be viewed i n the web applicat ion and is further
discussed in paragraph 6.5.

6.5 Web Applicat ion Implementation

The web applicat ion is responsible for enabling users to explore the different parts of the sys
tem which were mentioned in previous sections. It enables users to control the whole system,
to upload videos, to create rules and to start the rule viola t ion analysis. The appl icat ion is
buil t in Py thon ' s web framework Flask A , uses Postgres and S Q L A l c h e m y for the database
layer and utilises Docker for the deployment of the database. Bootstrap 4 is used for styling
most of the H T M L tags.

A n existing solution was used as a base for the web applicat ion. Some generic functions
and templates for user manipulat ion, login system and forms were reused from the IIS
school assignment. M y colleagues have allowed me to use the code of the assignment. Files
that contain the reused code are marked i n the header.

The website is separated into mult iple pages, each providing different functionality.
The functions which handle redirecting and template rendering are located i n the file
Anomaly Detector Front/routes, py.

Manage Videos Page
Funct ion related to this web page are:

• manage_videos - Queries for a l l videos uploaded by logged-in users and shows them
in a gr id layout w i t h basic information.

• upload_video - Handles the video upload.

• upload_complete - Saves the video information to the database and reformats it i f
needed.

39

A n o m a l y D e t e c t o r Home Manage Users Manage Videos Manage Rules Profile Log Out

Files:

Choose Files No file chosen

Drag and Drop Files Here

Upload!

DJI_0731_x265.mp4

Rules: Road next to a forrest

State: Anomalies Detected

short. mp4

Rules: Parking lot and

crossroad

State: Not Detected

long mp4

Rules: Parking lot and

crossroad

State: Not Detected

Figure 6.2: F i n a l design of the Manage Videos page

A s can be seen in figure 6.2, users can use the top part of the page to upload new
videos into the system by drag-and-dropping them to the dashed line or by using the file
selection pop-up window. W h e n users upload a video, its format is checked and the video
is reformated i f the resolution is higher then F u l l H D or the C O D E C is not H264. A l so ,
each video uploaded by users, after the reformatting is done, is displayed in a gr id layout
w i th basic information attached to i t . C l i ck ing on the video thumbnai l or the information
below it, users are redirected to a more detailed view of the part icular video.

Manage Video Page
Functions related to this web page are:

• manage_video - Queries for a part icular video uploaded by a logged-in user and ren
ders the page wi th information about the video.

• edit_video - Renders and changes information about a part icular video uploaded
by a logged-in user.

• remove_video - Removes a part icular video and a l l related files from the system.

40

A n o m a l y Detector Home Manage Users Manage Videos Manage Rules Profile Log Out

Name: DJI_0731_x265.mp4

State: Anomalies Detected

Rules: Road next to a fairest

Description:

Remove Video I Edit Video Information I Create Rules tor Video I Detect Anomalies

Anomalies Found In The Video:

anomaly_vehicl
e_2.mp4

Figure 6.3: F i n a l design of the Manage Videos page

The page shows a l l available information about a part icular video and allows users to man
age the video.

A s shown in figure 6.3, the top of the page is used to display and play the video
while interesting information about the video is below the media player. Below the section
containing the video information, there are buttons which from the left:

41

• remove the video wi th a l l its connected files

• allow the information editing

• redirect users to a rule creator page for that part icular video

• start the rule violat ion detection if possible

A t the bo t tom of the page, anomalies found in the video are displayed. C l i ck ing on these
anomalies redirects users to a detailed page about a part icular anomaly.

Manage Rules Page

The but ton at the top of the page redirects users to the rule creator page. Below
the but ton, there are rules created by a logged-in user displayed in a gr id layout w i t h basic
information about the part icular rule. C l i ck ing them redirects users to a detailed view
of the part icular rule.

More detailed information about the page is availabe i n appendix C .

Manage Rule Page

The top of the page contains a picture of the scene used during the creation of the rule.
Information about the rule and buttons are located beneath the picture. The first but ton
deletes the rule w i th a l l associated files. The second one redirects users to a page for in
formation edit ing. The last but ton starts the rule viola t ion analysis for a l l assigned videos
to the part icular rule.

More detailed information about the page is availabe i n appendix C .

Manage A n o m a l y Page

This page is very similar to the manage video one. The top of the screen is occupied
by the media player which allows users to observe found anomaly. Information about
the anomaly and the remove but ton are located below the media player.

More detailed information about the page is availabe i n appendix C .

User management pages

These pages allow users and admins to manage user accounts. They are a l l based
on basic forms where some fields are mandatory and some optional . The e-mail assigned
to the user's account is used for notification when the video uploading, video reformatting
or rule violat ion analysis is finished. Users can only edit their profile while admins can
manage every account.

More detailed information about the page is availabe i n appendix C .

Database layer
The models which represent database tables are located i n files in the Anomaly^Detector-

Front / models folder. These models are automatical ly converted by S Q L A l c h e m y to re
lat ional tables i n the Postgres database. Items only use integer values as pr imary keys
to the database. Video thumbnails and video footage is stored on the server filesystem

42

of the server while their paths are stored i n the database. Work ing w i t h the database
works as follows:

admin = RegisteredUser(name =)admin J, email = ,admin@admin.cz',
phone_num='123456678', user_type='admin')

admin.set_password('admin*)
db.session.add(admin)
db.session.commit()

Firs t , an S Q L A l c h e m y object has to be created. Secondly, a password is set for the user.
W h e n the add method is called, S Q L A l c h e m y converts the objects to a relational repre
sentation and inserts it to the database. The commit method confirms the changes made
i n the database. This way each object is added to the database or updated.

The removal of the items from the database is done similarly:

user = RegisteredUser.query.filter_by(email=email).first()
i f user i s None:

return redirect(url_for('index'))
db.session.delete(user)
db.session.commit()

Firs t ly , the i tem has to be retrieved from the database. Secondly, using the delete method,
the i tem is removed from the database. Lastly, the changes made i n the database are
confirmed. This way each object is removed from the database.

6.6 System Overview

The system is separated into mult iple folders and files based on the functionalities it im
plements. Systems backend components:

• AnomalyDetectorBack/detector/YOLOv3 - a folder containing Y O L O v 3 implementa
t ion, configuration and pre-trained weights

• AnomalyDetectorBack/deep_sort - a folder containing D e e p S O R T implementation,
configuration and pre-traied weights

• AnomalyDetectorBack/configs - a folder containing information about filepaths needed
for object detector and tracker

• AnomalyDetectorBack/utils - a folder containing functions used for parsing, displaying
detected images, web requests

• AnomalyDetectorBack/AnomalyDetector.py - a file containing an implementat ion of the
user-defined rules viola t ion detector

• AnomalyDetectorBack/VideoTracker.py - a file containing an implementat ion of ve
hicle detector, vehicle tracker and trajectory analysis

• AnomalyDetectorBack/requirements.txt - a file containing dependencies needed to run
the backend system

Systems frontend components:

43

Anomaly'DetectorFront/models - a folder containing database models

• Anomaly'DetectorFront/'static - a folder containing static files like pictures, ess styles,
Javascript code, uploaded video footage

• Anomaly'DetectorFront/templates - a folder containing h tml templates for the web
application

• AnomalyDetectorFront/Detector'State.py - a file responsible for manipula t ion the state
of the system

• AnomalyDetectorFront/forms.py - a file containing forms for the web applicat ion

• Anomaly DetectorFront/routes, py - a file containing routing and business logic of the
web applicat ion

• AnomalyDetectorFront/utils.py - a file containing u t i l i ty functions for checking i f a file
is a video, e-mail sending, path manipulat ion

Deployment components:

• docker/docker-compose, yml - a file containing instruction about the deployment of the
system

• include/flask_permissions - a folder containing an edited version of flask_permissions
module for P y t h o n

• migrations - a folder containing migrations of the database

• anomaly_detector.py - a file that needs to be run by flask to run the system

• config.py - a file containing configuration for the flask applicat ion

• Dockerfile - a file responsible for bui lding the Docker image of the applicat ion

6.7 System Testing

It is necessary to test that the system can quickly and precisely analyse large quantities
of video footage. Unfortunately, bo th of these criteria are variable as the precision of the rule
viola t ion detection is dependent on how accurately are the scene rules created. The perfor
mance is also dependent on the model of the G P U if it is even available. W h a t can be tested
is the precision of the vehicle detector and the vehicle tracker as well as the performance
of the system using one specific G P U which I have available. Another cri terion for testing
is the stabil i ty of the system because it is meant to be installed on a remote powerful server
and users should not be able to access the server. Lastly, the web appl icat ion has to be
working on major web browsers.

Performance Testing
The system analyses videos at 40-60 F P S depending on the number of vehicles i n the scene.
The analysis of one-minute long video takes about 30-45 seconds. The system was run
on N v i d i a G T X 1070 G P U . Also , the video reformatting is about 2.7 times faster than
the real-time playback of the video which results i n one-minute long video being reformated

44

in about 22 seconds. The reformatting is done on the C P U which i n this case was Intel
i7-7700k running at 4 .8Ghz. The performance information can be seen in the terminal
output of the system during the analysis.

W e b Appl icat ion Testing
The web applicat ion was tested on 3 popular web browsers. These are Firefox, Google
Chrome and C h r o m i u m . The design looked identical on each browser. There was a dif
ference i n fluidity i n the video playback and scrollbar in the rule creator. W h e n the op
erating system of the user was Windows 10 rather than a L i n u x distr ibut ion, the video
seemed smoother. Th is does not affect functionality i n any way and it is probably caused
by the lack of G P U acceleration i n L i n u x browsers.

Video Analysis Testing
The system was tested w i t h video footage of parking lots from the top and the side per
spective 1 .

A n example of a frame of the video wi th a top-down perspective is shown i n figure
6.4. The system was unable to detect any vehicles i n this perspective. Th is is caused
by the object detector which is not pre-trained on images of the roofs of vehicles. This
l imi ta t ion could be resolved by the t raining of the object detector on thousands of annotated
pictures of roofs of vehicles.

Figure 6.4: Top view of a parking lot

The frame is from the testing video wi th a side perspective and it is shown i n figure
6.5. In the video, there are 20 unique vehicles but the system detected 24 vehicles (the last

1 Taken from: https://data.kitware.eom/#collection/56f56db28d777f753209ba9f/folder/
56f581ce8d777f753209ca43

45

https://data.kitware.eom/%23collection/56f56db28d777f753209ba9f/folder/

vehicle is next to a tree on the bo t tom right of figure 6.5). Th is is caused by the vehicle
identified by the number '18' i n figure 6.5. Th is vehicle is stationary throughout the whole
video and is par t ly occluded by another vehicle and a street lamp. The object detector
was unable to consistently identify this vehicle which caused assigning of new identifiers
to the vehicle.

Figure 6.5: Last frame of the testing video footage

Figure 6.6 shows rules created for the testing video. It checks if vehicles follow their
traffic lane. O n l y one rule viola t ion was found which was caused by the bus i n figure 6.5.
The trajectory of the bus has exceeded the allowed deviation of the allowed direction. This
was also caused by the object detector which sometimes detects bounding boxes which do
not perfecly define the vehicles.

46

A n o m a l y Detector Home Manage Users Manage Videos Manage Rules Profile Log Out

Figure 6.6: User Rules for the testing video footage

B o t h presented examples show situations i n which the system has problems to function
correctly. A more precise object detector and a different dataset need to be used to mitigate
these issues.

System Stability Testing
The stabil i ty of the system was due to a l imi ted t ime only tested for a day. The system was
responsive throughout the whole day and never crashed. If the system were to be publ ic ly
and commercial ly released, extensive stabil i ty testing would need to be carried out.

47

Chapter 7

Conclusions

The goal of the thesis was to create a system which automatical ly detects anomalies
in the video footage of a traffic scene. This goal was accomplished.

I have studied literature and the state-of-the-art solutions and my gained knowledge is
discussed i n chapter 2. Then, I have analysed the state-of-the-art solutions and compared
them in chapter 4. The outline of the system was created which is described i n chapter 5.
The outl ined system was implemented and is covered i n chapter 6. Lastly, the system was
tested which is discussed i n section 6.7.

The outcome of the thesis is a video analysis program which combines Y O L O v 3 for ob
ject detection, DeepSort for object tracking, an algori thm for trajectory extraction, and an al
gor i thm for a comparison of vehicle trajectories and user-defined rules. This program takes
a video file and user-defined rules as an input, analyses the video file to extract the vehicle
trajectories and detects i f any of the vehicles violated any of the user-defined rules. A web
application was also created which encloses the analysis program, enabling users to de
fine scene rules, upload and manage video footage, start the aforementioned video analysis
program and view the output of the analysis was created.

Dur ing the elaboration of this work, I learned a lot of new information about machine
learning, computer vision and web applicat ion development industry. Especially, I have
improved coding in Py thon , explored scientific libraries like N u m P y , PyTorch , Scikit- learn,
O p e n C V and learned about modern computer vision methods and techniques.

Future work includes adding more features to the user-defined rules creator to further
expand the possibilities of the system. Also , a faster and more precise detection and tracking
methods could be used to eliminate some of the drawbacks of the current system. Moreover,
the web applicat ion could be improved to be more seamless to use, to offer more features
and to provide more clear feedback on user actions. Last ly, the web A P I could be rewrit ten
wi th authentication i n mind .

The systems similar to the one described i n the thesis w i l l only gain i n popular i ty as w i l l
rise the number of surveillance cameras which monitor every human step.

18

Bibliography

[1] A G R E N , S. Object tracking methods and their areasof application: A meta-analysis.
Umea, Sweden, None. Masters Thesis. U M E AUnivers i ty . Available at:
http ://www8. cs.umu.se/education/examina/Rapporter/SannaAgrenFinal.pdf.

[2] A M I G O S M A K E R . What is scikit learn? [online]. D E V Community , november 2019
[cit. 2020-5-15]. Available at:
https: //dev. to/amigosmaker/what-is-scikit-learn- 5ddl.

[3] A R C G I S . How single-shot detector (SSD) works [online]. Arcgis , 2019 [cit. 2020-5-15].
Available at: https://developers.arcgis.com/python/guide/how-ssd-works/.

[4] A V I G I L O N . Know what is happening. Act with certainty, [online]. January 2020 [cit.
2020-5-15]. Available at: https://www.avigilon.com/.

[5] A X X O N S O F T . AxxonSoft Video Surveillance and Security Solutions [online]. 2020 [cit.
2020-5-15]. Available at: https://www.axxonsoft.com/.

[6] B E W L E Y , A . , G E , Z . , O T T , L . , R A M O S , F . and U P C R O F T , B . SIMPLE ONLINE
AND REALTIME TRACKING [online]. Ju ly 2017 [cit. 2020-5-15]. Available at:
https: //arxiv.org/pdf/1602.00763v2.pdf.

[7] C E R T I C O N . CertiCon členem Svazu průmyslu a dopravy CR [online]. 2020 [cit.
2020-5-15]. Available at: https://www.certicon.cz/.

[8] C E R T I C O N . Úvodní stránka [online]. 2020 [cit. 2020-5-15]. Available at:
http://www. cert iconvis.cz/.

[9] G A N E S H , P . Object Detection : Simplified [online]. Towards D a t a Science, October
2019 [cit. 2020-5-15]. Available at:
https: //towardsdatascience.com/ob ject-detect ion-simplified-e07aa3830954.

[10] G U R U 9 9 . What is TensorFlow? Introduction, Architecture & Example [online], [cit.
2020-5-15]. Available at: https://www.guru99.com/what-is-tensorflow.html.

[11] H E L D , D . , T H R U N , S. and S A V A R E S E , S. Learning to Track at 100 FPS with Deep
Regression Networks [online]. 2016 [cit. 2020-5-15]. Available at:
http ://www8. cs.umu.se/education/examina/Rapporter/SannaAgrenFinal.pdf.

[12] H E L L E R , M . What is Keras? The deep neural network API explained [online].
Info Wor ld , January 2019 [cit. 2020-5-15]. Available at: https://www.infoworld.com/
art icle/3336192/what-is-keras-the-deep-neural-network-api-explained.html.

49

http://cs.umu.se/education/examina/Rapporter/SannaAgrenFinal.pdf
https://developers.arcgis.com/python/guide/how-ssd-works/
https://www.avigilon.com/
https://www.axxonsoft.com/
https://www.certicon.cz/
http://www
http://iconvis.cz/
https://www.guru99.com/what-is-tensorflow.html
http://cs.umu.se/education/examina/Rapporter/SannaAgrenFinal.pdf
https://www.infoworld.com/

[13] H u i , J . SSD object detection: Single Shot MultiBox Detector for real-time processing
[online]. December 2018 [cit. 2020-5-15]. Available at:
https: //medium. com/@jonathan_hui/ssd- object-detection- single-shot-multibox-
detector-for-real-time-processing-9bd8deac0e06.

[14] I N T E L L I V I S I O N . AI Video Analytics - Face Recognition, ALPR/ANPR, Retail
Analytics, Traffic [online]. December 2019 [cit. 2020-5-15]. Available at:
https: //www. intelli-vision.com/.

[15] J O N A T H A N , H . Understanding Region-based Fully Convolutional Networks (R-FCN)
for object detection [online]. M e d i u m , A p r 2019 [cit. 2020-5-15]. Available at:
https: //medium.com/@jonathan_hui/understanding-region-based-f u l l y -
convolutional-networks-r-fcn-for-object-detection-828316f07c99.

[16] K E R A S T E A M . Keras: Deep Learning for humans [online]. November 2019 [cit.
2020-5-15]. Available at: https://github.com/keras-team/keras.

[17] M A I Y A , S. R . DeepSORT: Deep Learning to track custom objects in a video [online].
A I & Machine Learning B log , apr i l 2020 [cit. 2020-5-15]. Available at:
https: //nanonets. com/blog/object-tracking-deepsort/#multiple-object-tracking.

[18] M A L L I C K , S. Object Tracking using OpenCV (C /Python) [online]. Feb 2017 [cit.
2020-5-15]. Available at:
https: //www.learnopencv.com/object-tracking-using-opencv-cpp-python/.

[19] M A L L I C K , S. GOTURN : Deep Learning based Object Tracking [online]. J u l 2018 [cit.
2020-5-15]. Available at:
https: //www.learnopencv.com/goturn-deep-learning-based-object-tracking/.

[20] N I K O L E N K O , S. and G A Y D A S H E N K O , A . Tracking Cows with Mask R-CNN and
SORT [online]. Ju ly 2018 [cit. 2020-5-15]. Available at: https://medium.com/
neuromation-blog/tracking-cows-with-mask-r-cnn-and-sort-f cd4ad68ec4f.

[21] N I N G , G . , Z H A N G , Z . , H U A N G , C . and H E A , Z . Spatially Supervised Recurrent

Convolutional Neural Networks for Visual Object Tracking [online]. Columbia : [b.n.],
June 2016 [cit. 2020-5-15]. Available at: https://arxiv.org/pdf/1607.05781vl.pdf.

[22] O P E N D A T A S C I E N C E , O . Overview of the YOLO Object Detection Algorithm

[online]. M e d i u m , Sep 2018 [cit. 2020-5-15]. Available at: https://medium.com/00DSC/
overview-of-the-yolo-object-detection-algorithm-7b52a745d3e0.

[23] O P E N C V . Cvr.TrackerGOTURN Class Reference [online]. O p e n C V , Oct 2019 [cit.
2020-5-15]. Available at:
https://docs.opencv.org/3.4/d7/d4c/classcv_l_lTrackerG0TURN.html.

[24] P Y T O R C H . Pytorch/pytorch [online]. M a y 2020 [cit. 2020-5-15]. Available at:
https: //github.com/pytorch/pytorch.

[25] R E M A N A N , S. Beginner's Guide to Object Detection Algorithms [online]. M e d i u m ,
apr i l 2019 [cit. 2020-5-15]. Available at: https://medium.com/analytics-vidhya/
beginners-guide-to-object-detection-algorithms-6620fb31c375.

50

http://intelli-vision.com/
https://github.com/keras-team/keras
http://www.learnopencv.com/object-tracking-using-opencv-cpp-python/
http://www.learnopencv.com/goturn-deep-learning-based-object-tracking/
https://medium.com/
https://arxiv.org/pdf/1607.05781vl.pdf
https://medium.com/00DSC/
https://docs.opencv.org/3.4/d7/d4c/classcv_l_lTrackerG0TURN.html
https://medium.com/analytics-vidhya/

[26] S A C H A N , A . A Quick Guide to Object Tracking: MDNET, GOTURN, ROLO
[online]. A p r i l 2019 [cit. 2020-5-15]. Available at:
https: / / cv-tricks.com/ob j ect-tracking/quick-guide-mdnet-goturn-rolo/.

[27] S C I K I T L E A R N . Scikit-learn [online]. M a y 2020 [cit. 2020-5-15]. Available at:
https: //github.com/scikit-learn/scikit-learn.

[28] S H E T T Y , S. Tracking Cows with Mask R-CNN and SORT [online]. September 2018
[cit. 2020-5-15]. Available at:
https: //hub.packtpub.com/what-is-pytorch- and-how-does-it-work.

[29] S I K H o , T . Positive-Sensitive Score Maps (Object Detection) [online]. Towards D a t a
Science, may 2019 [cit. 2020-5-15]. Available at: https://towardsdatascience.com/
review-r-fcn-positive-sensitive-score-maps-object-detection-91cd2389345c.

[30] T E A M , K . Simple. Flexible. Powerful, [online], [cit. 2020-5-15]. Available at:
https: //keras.io/.

[31] T E N S O R F L O W . TensorFlow [online]. M a y 2020 [cit. 2020-5-15]. Available at:
https: //github.com/tensorf low/tensorf low.

[32] V i , A . Agent Vi's Comprehensive Video Analytics Range [online]. 2020 [cit. 2020-5-15].
Available at: https://agentvi.com/.

[33] W O J K E , N . , B E W L E Y , A . and P A U L U S , D . SIMPLE ONLINE AND REALTIME

TRACKING WITH A DEEP ASSOCIATION METRIC [online]. A p r i l 2017 [cit.
2020-5-15]. Available at: https://arxiv.org/pdf/1703.07402vl.pdf.

[34] Y E G U L A L P , S. What is TensorFlow? The machine learning library explained [online].
InfoWorld, Jun 2019 [cit. 2020-5-15]. Available at:
https: //www. infoworld.com/article/3278008/what-is-tensorflow-the-machine-
learning- l i b r a r y - explained.html.

[35] Z Q P E I . ZQPei/deep_sort_pytorch [online]. M a y 2020 [cit. 2020-5-15]. Available at:
https: //github.com/ZQPei/deep_sort_pytorch.

51

http://cv-tricks.com/
http://packtpub.com/what-is-pytorch-
https://towardsdatascience.com/
https://agentvi.com/
https://arxiv.org/pdf/1703.07402vl.pdf
http://infoworld.com/article/3278008/what-is-tensorflow-the-machine-

Appendices

52

List of Appendices

A Links to Ment ioned Technologies

B Complete Graphica l User Interface Outline

C Complete Web Appl icat ion Implementation

53

Appendix A

Links to Mentioned Technologies

This chapter shows l inks to mention technologies in the thesis.

Links

Used existing solution
Used Solut ion

N u m P y
N u m P y

Sc iPy
Sc iPy

C y t h o n
C y t h o n

N u m b a
N u m b a

Theano
Theano

C N T K
C N T K

Forensic search
Forensic Search

O p e n C V
O p e n C V

PostgreSQL
Pos tgreSQL

51

S Q L A l c h e m y
S Q L A l c h e m y

M I T License
M I T License

Paper .js
Paper.js

JSON
J S O N

Bootstrap 4
Boots t rap 4

Flask
Flask

F F m p e g
F F m p e g

Appendix B

Complete Graphical User Interface
Outline

A graphical user interface needs to offer a simplist ic way of video manipulat ion and out
put observing. It w i l l be implemented in F lask A on the server-side and Boots t rap 4 A
for the interface design. S Q L A l c h e m y A w i l l be used to translate class models into a rela
t ional database. Graph ica l User interface w i l l be divided into mult iple segments: Manage
Users, Manage Videos, Manage Video , Manage Rules, Manage Rule.

Manage Users
Admins w i l l i n terms of user management be able to change permissions of other users,
create new accounts, and change their profile settings. Users w i l l have the option to change
their passwords, e-mails, names and notification settings.

Manage Videos
Users w i l l be able to upload new videos and find the already uploaded ones. B y cl icking
on the existing videos, users w i l l be redirected to a more detailed page about the part icular
video footage. Users w i l l only see videos which were uploaded by them and w i l l not be able
to in any way manipulate videos they do not 'own'.

56

256x180 256x180 256x180 256x180 256x180 256x180

VID_534152345.mp4 VID_534152346.mp4 VID_534152347.inp4 UID_534152345.mp4 VID_534152346.mp4 VID_534152347.mp4

256x130 256x180 256x180 256x180 256x180 256x130

VID_534152345.mp4 VID_534152346.mp4 VID_534152347.mp4 VID_534152345.mp4 VID_534152346.mp4 VID_534152347.mp4

Figure B . l : Out l ine of the web page for video upload

Figure B . l shows the outline of the web design. O n the top of the page, users can click
the white but ton to open a file explorer and select videos to upload or drag-and-drop them
into the area. Below the upload section, a l l videos uploaded by signed users are displayed.
C l i ck ing those videos redirects users to a more detailed view wi th options to view and edit
them. This page is discussed i n paragraph Manage Video B .

Manage Video
This page w i l l allow users to see the detailed view of a part icular video, edit its information

and start the rule viola t ion detection for the part icular video.

57

• jl *

• M « • » N

VID_234124123.mp4

Rules Assigned: Parking Slot

State: Analysed

Description Norm vid?o of park rg lo:

Anomalies in the video:

256x180 256x180 256x180

VID_534152345.mp4 VID_534152346.mp4 VID_534152347.IT.p4

Figure B .2 : Out l ine of the web page for video manipulat ion

Figure B .2 shows the design outline of the said page. A t the top of the page, a video
player w i l l be located. Users w i l l be able to view the whole video, fast forward it and max
imise the video player window. Below the video player, there w i l l be a column wi th infor
mat ion about the video like its name, description, rule it is assigned to and its state. Below
the information, there w i l l be buttons which can remove the video from the system, allow
for modification of the information, redirect to the rule creator page and start the rule
viola t ion analysis. A t the bot tom of the page, there w i l l be a list of a l l anomalies found
in the part icular video. They w i l l only appear after the rule viola t ion analysis is complete
and w i l l be removed if the rules for the video change.

Manage Rules
This page w i l l be responsible for displaying existing user-defined rules, redirecting users

to a part icular rule and redirecting users to the rule creator 5.7.

58

http://VID_534152347.IT.p4

Figure B . 3 : Out l ine of the web design for the rules management

Figure B .3 shows the outline of the design of the page. A t the top of the page, there
w i l l be a but ton that redirects users to the rule creator 5.7. Below the button, a l l the rules
created by users w i l l be displayed wi th an icon and brief information about the rule. C l i ck ing
on a rule w i l l redirect users to a more detailed view of that part icular rule.

Manage Rule
This page w i l l be graphically similar to the Manage Video B one but instead of managing

a part icular video, it w i l l control a part icular scene rule. It w i l l also enable users to edit
the rule information and start the rule viola t ion detection for every video assigned to it.

59

Parking Lot Scene

Stale: Analyses

Description: Seen* '.i.e=.*or th= \y;\ kng lor

Assigned Videos:

256x180 256x180 256x180

VID_534152345.mp4 VID_534152346.mp4 VID_534152312.mp4

Anomalies In The Video:

256x180 256x180 256x180

VID_534152685.mp4 VID_534152378.mp4 VID_534152358.mp4

Figure B.4 : Out l ine of the web design for rule manipulat ion

A s seen in figure B .4 , the top of the page holds the image preview of the rule w i th addi
t ional information below that. The centre of the screen is occupied by the control buttons
which w i l l remove the rule, enable the alteration of the information, enable the modifica
t ion of the rule and start the analysis for every video assigned to the rule. A t the bot tom
of the page, there w i l l be a list of a l l videos assigned to a part icular rule as well as a list
of a l l anomalies found in videos assigned to the given rule. C l i ck ing any of these videos w i l l
redirect users to a page where the video can be viewed and manipulated.

60

Appendix C

Complete Web Applicat ion
Implementation

The web applicat ion is responsible for enabling users to explore the different parts of the sys
tem which were mentioned in previous sections. It enables users to control the whole system,
to upload videos, to create rules and to start the rule viola t ion analysis. The appl icat ion is
buil t in Py thon ' s web framework Flask A , uses Postgres and S Q L A l c h e m y for the database
layer and utilises Docker for the deployment of the database. Bootstrap 4 is used for styling
most of the H T M L tags.

The website is separated into mult iple pages, each providing different functionality.
The functions which handle redirecting and template rendering are located i n the file
Anomaly Detector Front/routes, py.

Manage Videos Page
Funct ion related to this web page are:

• manage_videos - Queries for a l l videos uploaded by logged-in users and shows them
in a gr id layout w i t h basic information.

• upload_video - Handles the video upload.

• upload_complete - Saves the video information to the database and reformats it i f
needed.

61

Anomaly Detector Home Manage Users Manage Videos Manage Rules Profile Log Out

Files:

;s No file chosen

Drag and Drop Files Here

Upload!

DJL0731_x265.mp4

Rules: Road nest to a forrest

State: Anomalies Detected

short. mp4

Rules: Parking lot and

crossroad

State: Not Detected

long.mp4

Rules: Parking lot and

crossroad

State: Not Detected

Figure C . l : F i n a l design of the Manage Videos page

A s can be seen i n figure C . l , users can use the top part of the page to upload new
videos into the system by drag-and-dropping them to the dashed line or by using the file
selection pop-up window. W h e n users upload a video, its format is checked and the video is
reformated if the resolution is higher then F u l l H D or the C O D E C is not H264. Also , each
video uploaded by users, after the reformatting is done, is displayed i n a gr id layout w i th
basic information attached to i t . C l i ck ing at the video thumbnai l or the information below
it, users are redirected to a more detailed view of the part icular video.

Manage Video Page
Functions related to this web page are:

• manage_video - Queries for a part icular video uploaded by a logged-in user and ren
ders the page wi th information about the video.

• edit_video - Renders and changes information about a part icular video uploaded
by a logged-in user.

• remove_video - Removes a part icular video and a l l related files from the system.

62

Anomaly Detector Home Manage Users Manage Videos Manage Rules Profile Log Out

DJI_0731_x265.mp4

Name:

State:

Rules:

Description:

DJI_073l_x265.mp4

Anomalies Detected

Road next to a farrest

Remove Video I Edit Video Information I Create Rules lor Video I Delect Anomalies

Anomalies Found In The Video:

anomaly_vehicl
e_2,mp4

Figure C .2 : F i n a l design of the Manage Videos page

The page shows a l l available information about a part icular video and allows users to man
age the video.

A s shown i n figure C.2 , the top of the page is used to display and play the video
while interesting information about the video is below the media player. Below the section
containing the video information, there are buttons which from the left:

• remove the video wi th a l l its connected files

63

• allow the information editing

• redirect users to a rule creator page for that part icular video

• start the rule violat ion detection if possible

A t the bo t tom of the page, anomalies found in the video are displayed. C l i ck ing on these
anomalies redirects users to a detailed page about a part icular anomaly.

Manage Rules Page
The function related to this web page is:

• manage_rules - Queries for a l l rules created by a logged-in user and displays them
in a gr id layout w i th basic information.

Anomaly Detector Home Manage Users Manage Videos Manage Rules Profile Log Out

Parking lot and crossroad

Desc: Parking slot in the
bottom right corner is not

allowed.

Road next to a torrest

Desc: Parking slat next to the
trees on the left side is not

allowed.

Figure C .3 : F i n a l design of the Manage Rules page

A s can be seen in figure C .3 , the but ton at the top of the page redirects users to the rule
creator page. Below the but ton, there are rules created by a logged-in user displayed
in a gr id layout w i th basic information about the part icular rule. C l i ck ing them redirects
users to a detailed view of the part icular rule.

Manage Rule Page
Functions related to this web page are:

• manage_rule - Queries for a part icular rule created by a logged-in user and renders
the page wi th information about the rule.

• edit_rule - Renders and changes information about a part icular rule created by a logged-
in user.

• remove_rule - Removes a part icular rule and a l l related files from the system.

64

Anomaly Detector Home Manage Users Manage Videos Manage Rules Profile Log Out

Parking lot and crossroad
Id:

Name:

Description:

Parking lot and crossroad

Parking slot in the bottom right corner is not allowed.

Remove Rule I Edit Rule I Detect Anomalies

Files:

Choose Files | No lie chosen

Drag and Drop Files Here

Upload'

Videos Assigned To This Rule:

Figure C.4: F i n a l design of the Manage Videos page

A s can be seen in figure C.4, the top of the page contains the of information about the rule.
But tons are located beneath the information. The first but ton deletes the rule w i th a l l
associated files. The second one redirects users to a page for information editing. The last
but ton starts the rule viola t ion analysis for a l l assigned videos to the part icular rule.

Manage A n o m a l y Page
Functions related to this web page are:

• manage_anomaly - Queries for a part icular anomaly by i d and renders the page wi th
video preview and information about the anomaly

• remove_anomaly - Removes a part icular anomaly and a l l related files from the system.

65

Anomaly Detector Home Manage Users Manage Videos Manage Rules Profile Log Out

an o m aly_ve h i c I e_2. m p4

Id: 2

Name: ancmaly_vehicle_2,mp4

Description:

Path: /static/uploadEf7a0320af-3329-4B63-b7b0-45dbiaff3b61fDJI_0731_x2e5.mp4_oul/anomalies;2.mp4

Thumbnail Path: /static/uploads/7aD82Daf-3329-4863-b7b0-45cibl6ff8b61/DJI_0731_>:265.mp4 outfanomaliesf2.mp4.jpg

Remove Video

Figure C.5 : F i n a l design of the A n o m a l y Page

This page is very similar to the manage video one. A s can be seen i n figure C.5, the top
of the screen is occupied by the media player which allows users to observe found anomaly.
Information about the anomaly and the remove but ton are located below the media player.

User management pages
Functions related to this web page are:

• manage_users - Queries a l l registered users in the database for the admin users only.

• manage_one_user - Renders a profile of a part icular registered user for the admin
users only.

• profile - Renders a profile page of for a registered user.

• edit_profile - Renders the form that enables users to edit their profile.

• logout - Logouts a logged-in user.

66

• login - Renders a login page and allows users to log-in to the system.

• register - Renders the registration page and allows users to register to the system.

• add_user - Renders the registration page and allows the admin to register new users
to the system.

• edit_user - Renders the profile edit page and allows the admin to edit user's profiles
in the system.

• remove_user - A l lows the admin to remove a user profile from the system.

Anomaly Detector Home Manage Users Manage Videos Manage Rules Profile Log Out

Profile
Name: admin

Email: admin@admin.cz

Phone: 123456678

User type: admin

Edit Profile

Figure C.6: F i n a l design of the user management pages

A n example of the profile page can be seen i n figure C.6. These pages allow users
and admins to manage user accounts. They are a l l based on basic forms where some
fields are mandatory and some optional . The e-mail assigned to the user's account is used
for notification when the video uploading, video reformatting or rule violat ion analysis is
finished. Users can only edit their profile while admins can manage every account.

67

mailto:admin@admin.cz

