
T 

BRND UNIVERSITY DF TECHNOLOGY 
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ 

FACULTY OF ELECTRICAL ENGINEERING AND 
COMMUNICATION 
FAKULTA ELEKTROTECHNIKY 
A KOMUNIKAČNÍCH TECHNOLOGIÍ 

DEPARTMENT OF TELECOMMUNICATIONS 
ÚSTAV TELEKOMUNIKACÍ 

OPTIMIZING OF CYBER SECURITY OF PRECISION TIME 
PROTOCOL (PTP) ON ETHERNET FOR ARM BASED CPU 
OPTIMIZING OF CYBER SECURITY OF PRECISION TIME PROTOCOL (PTP) ON ETHERNET FOR ARM 
BASED CPU 

MASTER'S THESIS 
DIPLOMOVÁ PRÁCE 

AUTHOR Be. Borivoje Latinovič 
AUTOR PRÁCE 

SUPERVISOR prof. Ing. Zdenék Smékal, CSc. 
VEDOUCÍ PRÁCE 

BRNO 2024 



T B R N O F A C U L T Y OF E L E C T R I C A L 

U N I V E R S I T Y E N G I N E E R I N G 

OF T E C H N O L O G Y A N D C O M M U N I C A T I O N 

Master's Thesis 
Master's study program Commun ica t ions and Networking (Double-Degree) 

Department of Telecommunications 

Student: Be. Bořivoje Latinovič ID: 222948 

Year of 
2 Academic year: 2023/24 

study: 

TITLE O F THESIS : 

Optimizing of cyber security of Precision Time Protocol (PTP) on Ethernet for 

ARM based CPU 

INSTRUCTION: 

Test the behaviour of the P T P protocol on an Ethernet network in the mode of operation without applied cyber 

security and in the mode of applied cyber security (encryption) and compare the results. Subsequently, optimize 

the cyber security mode so that the differences in the behaviour of the P T P protocol are as small as possible. 

Consider in an Ethernet network with the operation of endpoints, built on the H W architecture of A R M . 

R E C O M M E N D E D L I T E R A T U R E : 

[1] R F C 8173 Precision Time Protocol Version 2 (PTPv2) 

[2] i.MX 8X S E C O H S M vs. FIPS 140-2 Non-Proprietary Security Policy, N X P 02/22 

Date of project 
5.2.2024 

specification: 
Supervisor: prof. Ing. Zdeněk Smékal, C S c . 

Consultant: Ing. Rudolf Procházka 

doc . Ing. Jiří Hošek, Ph .D. 

Chair of study program board 

Deadline for 
21.5.2024 

submission: 

W A R N I N G : 

The author of the Master's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or 

property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an 

infringement of provisions as per Section 11 and following of Act No 121/2000 Co l l . on copyright and rights related to copyright and on 

amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as 

resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Col l . 

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10/616 00 / Brno 



ABSTRACT 
Th is thesis provides the selection and implementat ion of different security protocols to 
be used with Precision T ime Pro toco l ( P T P ) . The thesis further tests the behavior of 
P T P under different security protocols, using an automat ized measurement too l , and 
analyses the effect on P T P in order to determine the most opt imal security protocol. 

KEYWORDS 
Precision T i m e Protoco l ( P T P ) , Synchronizat ion, T im ing , Encrypt ion, Encapsulat ion, 
Linux 

Typeset by the t h e s i s package, version 4.07; h t t p : / / l a t e x . f e e c . v u t b r . c z 

http://latex.feec.vutbr.cz


L A T I N O V I C , Borivoje. Optimizing of cyber security of Precision Time Protocol (PTP) 

on Ethernet for ARM based CPU. Brno: Brno University of Technology, Faculty of 

Electr ical Engineering and Commun ica t ion , Department of Telecommunicat ions, 2024, 

112 p. Master 's Thesis. Advised by prof. Ing. Zdenek Smeka l , C S c . 



Author's Declaration 

Author: Be. Borivoje Lat inovic 

Author's ID: 222948 

Paper type: Master 's Thesis 

Academic year: 2023 /24 

Topic: Opt imiz ing of cyber security of Precision 

T i m e Protoco l ( P T P ) on Ethernet for 

A R M based C P U 

I declare that I have writ ten this paper independently, under the guidance of the advisor 

and using exclusively the technical references and other sources of information cited in 

the paper and listed in the comprehensive bibl iography at the end of the paper. 

A s the author, I furthermore declare that, with respect to the creation of this paper, 

I have not infringed any copyright or violated anyone's personal and /o r ownership rights. 

In this context, I am fully aware of the consequences of breaking Regulat ion § 11 of the 

Copyright Ac t No. 121 /2000 Co l l . of the Czech Republ ic, as amended, and of any breach 

of rights related to intellectual property or introduced within amendments to relevant 

Ac ts such as the Intellectual Property Ac t or the Cr iminal Code, Ac t No . 40 /2009 Col l . 

of the Czech Republ ic, Sect ion 2, Head VI , Part 4. 

Brno 

author 's signature* 

*The author signs only in the printed version. 



Contents 

Introduction 11 

1 Precision Time Protocol ( P T P ) 12 

1.1 Overview of t iming protocols 12 

1.2 Description 12 

1.2.1 Concepts 13 

1.2.2 Operations 15 

1.2.2.1 Best master clock algorithm 16 

1.2.2.2 Time synchronization in End-to-end delay mode . . . 18 

1.2.2.3 Time synchronization in Peer-to-peer delay mode . . 21 

1.2.3 Network properties 23 

1.2.3.1 Encapsulation properties 23 

1.2.3.2 U D P / I P encapsulation 23 

1.2.3.3 Ethernet encapsulation 24 

1.2.3.4 P T P header structure 26 

1.2.3.5 P T P message structure 28 

1.3 Use case scenarios and applications 29 

2 Security protocol selection 33 

2.1 Security protocols for P T P over U D P 33 

2.1.1 Wireguard overview 34 

2.1.1.1 Wireguard underlying operations and properties . . . 34 

2.1.2 IPsec overview 35 

2.1.2.1 IPsec underlying protocols 35 

2.2 Security protocols for P T P over Ethernet 37 

2.2.1 M A C s e c overview 37 

2.2.2 Ethernet over IP 38 

3 Implementation 40 

3.1 Embedded Linux for A R M 40 

3.1.1 Addi t ional configuration 42 

3.1.2 Networking 43 

3.2 P T P for L inux 45 

3.2.1 System properties 45 

3.2.2 P T P driver tools 47 

3.2.2.1 ptp41 48 

3.2.2.2 pmc 52 



3.2.2.3 phc2sys 53 

3.3 Network security on Linux 54 

3.3.1 Wireguard-go encryption 55 

3.3.1.1 Configuration for P T P 56 

3.3.2 StrongSwan encryption 58 

3.3.2.1 Configuration for P T P 59 

3.3.3 Macsec encryption 61 

3.3.3.1 Configuration and optimization for P T P 62 

4 Measurements 66 

4.1 Automatizat ion and measurement tool 66 

4.2 Results 70 

4.2.1 Visual izat ion 71 

4.2.1.1 Methods 71 

4.2.1.2 No encryption 71 

4.2.1.3 W i t h encryption 76 

4.2.2 Numerical data analysis 80 

4.2.2.1 Methods 80 

4.2.2.2 Hardware timestamping 83 

4.2.2.3 Software timestamping 85 

4.2.3 Selection of the most optimal security protocol 87 

Conclusion 89 

Bibliography 91 

Symbols and abbreviations 99 

List of appendices 101 

A Additional measrument results 102 
A . l Ptp41 calculated path delay, Hardware timestamping 102 

A.2 Ptp41 calculated path delay, Software timestamping 103 

B Software versions used in the project 106 

C Encryption algorithms used by security protocols 107 

D Content of the electronic attachment 108 



List of Figures 
1.1 B M C A Negotiation 17 

1.2 Synchronization in E 2 E delay mode 19 

1.3 Synchronization in P 2 P delay mode 22 

1.4 P T P encapsulated in U D P 24 

1.5 Ethernet header 24 

1.6 P T P header structure 26 

1.7 Synchronization 29 

1.8 Simple topology with all clock types 30 

1.9 Topology wi th multiple layers of synchronization 32 

2.1 E S P encapsulation 36 

2.2 E S P and A H encapsulation 37 

2.3 M A C s e c frame 38 

3.1 Poky Yocto layer 41 

3.2 Linux P T P scheme 46 

4.1 No encryption; Multicast; L2 encapsulation; Hardware timestamping 72 

4.2 No encryption; Unicast; U D P encapsulation; Hardware timestamping 73 

4.3 No encryption; Multicast; L2 encapsulation, Software timestamping . 74 

4.4 No encryption; Unicast; L2 encapsulation, Software timestamping . . 74 

4.5 No encryption; Unicast; L2 encapsulation, Software timestamping -

packet deltas 75 

4.6 Comparison, No encryption, Software timestamping, (removed init ial 

outliers) 76 

4.7 Comparison, IPsec encryption, Hardware timestamping, (removed 

init ial outliers) 77 

4.8 Comparison, Macsec encryption, Hardware timestamping, (removed 

init ial outliers) 77 

4.9 Comparison, IPsec encryption, Software timestamping, (removed ini

t ia l outliers) 78 

4.10 Comparison, Macsec encryption, Software timestamping, (removed 

init ial outliers) 79 

4.11 Comparison, Wireguard encryption, Software timestamping, (removed 

init ial outliers) 80 

4.12 Topology wi th multiple layers of synchronization and encryption . . . 88 



List of Tables 
1.1 P T P B M C A Parameters 16 

4.1 P T P possibilites 70 

4.2 Outlier detection criteria 82 

4.3 Master to Slave time offset statistics, No encryption, Hardware times-

tamping 83 

4.4 Master to Slave time offset statistics, IPsec encryption, Hardware 

timestamping 84 

4.5 Master to Slave time offset statistics, Macsec encryption, Hardware 

timestamping 84 

4.6 Master to Slave time offset statistics, No encryption, Software times

tamping 85 

4.7 Master to Slave time offset statistics, IPsec encryption, Software 

timestamping 86 

4.8 Master to Slave time offset statistics, Macsec encryption, Software 

timestamping 86 

4.9 Master to Slave time offset statistics, Wireguard encryption, Software 

timestamping 87 

A . l Master to Slave path delay statistics, No encryption, Hardware times

tamping 102 

A . 2 Master to Slave path delay statistics, IPsec encryption, Hardware 

timestamping 102 

A.3 Master to Slave path delay statistics, Macsec encryption, Hardware 

timestamping 103 

A.4 Master to Slave path delay statistics, No encryption, Software times

tamping 103 

A . 5 Master to Slave path delay statistics, IPsec encryption, Software 

timestamping 104 

A.6 Master to Slave path delay statistics, Macsec encryption, Software 

timestamping 104 

A . 7 Master to Slave path delay statistics, Wireguard encryption, Software 

timestamping 105 

B . l Versions of used software 106 

C . l Encrypt ion algorithms used by security protocols 107 



Listings 
3.1 Create build directory 40 

3.2 Install packages 41 

3.3 Bitbake image 42 

3.4 Flashing image 42 

3.5 Cross-compile wireguard-go 43 

3.6 Set IPv4 address 44 

3.7 N T P connection 44 

3.8 Network interface timestamping information 47 

3.9 Ptp41 initializatoin 49 

3.10 Ptp41 listening 49 

3.11 Tshark capture P T P v 2 Announce 50 

3.12 Synchronization between two nodes 51 

3.13 Pmc wi th ' C U R R E N T _ D A T A _ S E T ' 52 

3.14 Pmc wi th ' P R I O R I T Y 1 ' 53 

3.15 Synchronization of system clock wi th hardware clock using phc2sys . 54 

3.16 Key creation 55 

3.17 Multicast configuration 56 

3.18 P T P configuration file and synchronization throught the virutal in

terface 57 

3.19 Swanctl child specification 59 

3.20 Unicast Slave configuration 61 

3.21 Macsec interface creation 61 

3.22 Macsec transmission security association 62 

3.23 Macsec before patching 63 

3.24 Macsec kernel driver function created according to V L A N driver . . . 65 

4.1 Measurment tool options 66 

4.2 Synchronization and parsing methods extracted from PtpReader . . . 69 



Introduction 
The cyber security is a very broad concept, which encapsulates many different tech

nologies. In the context of the thesis, the cyber security is meant as a cryptographic 

encryption of Precision Time Protocol ( P T P ) data transported over the network. 

One of the big vulnerabilities of the P T P is that by itself it does not provide any pos

sibility for data encryption. In order to make communication of P T P cryptograph-

ically secure and adhere to cyber security standards an external security protocol 

must be selected, configured for P T P and tested. However in order to optimize the 

cyber security of P T P to the furthest extent, multiple different protocols must be 

considered and it should be determined which is the most optimal. However, before 

continuing with the aforementioned topics, some introductory information should 

be provided. 

The need for correct t iming and synchronization of applications has become sig

nificantly important in many of today's use cases. W i t h the increasing demands 

of various industries, such as monitoring systems, control systems, manufacturing 

devices, and many others, the complexity and the number of used devices have in

creased as well, and wi th that, the need to properly synchronize all the components. 

B y ensuring that the t iming is precise and correct in all the nodes in a given time do

main, it can be ensured that all the specific requirements are fulfilled at the correct 

time, and correctly from the perspective of the whole system. 

The P T P is a networking t iming protocol that was developed specifically for 

this reason. W i t h P T P applied, much higher time accuracy and precision can be 

achieved as compared to its predecessors. The first standardized version of P T P 

was described in I E E E 1588-2002. This standard was however surpassed by the 

I E E E 1588-2008, which is forward-compatible wi th the latest standardization I E E E 

1588-2019. 

The network security protocols generally work by implementing cryptographic 

algorithms, in order to encrypt the traffic and prevent the unauthorized elements 

from accessing the confidential information. There are many options in regard to 

security protocols and each may function differently and may have different crypto

graphic properties. Each of the security protocols may also have a different effect 

on the efficiency of the network and the underlying encrypted applications. W i t h 

that in mind, the correct security protocol must be selected, in consideration of the 

use scenario and the effect on the P T P precision. 

A l l implementations in the thesis shall be done on the devices running on the 

Linux operating system and all the utilized software shall be open-source. 

11 



1 Precision Time Protocol (PTP) 

1.1 Overview of timing protocols 

Before diving into specifics about P T P protocol, it would be advisable to provide the 

reader wi th a brief explanation and meaning behind the network t iming protocols. 

A l l the computers keep track of time using an internal oscillator. Computer oscil

lators commonly use internal crystals, to which the voltage is applied and thus the 

required frequency is produced [2]. This frequency is used to generate the clock sig

nal in the computer system. However, due to various reasons, such as internal crystal 

degradation or temperature effects, the internal computer time wi l l inevitably start 

to shift. In scenarios, where the computers are required to provide t iming precision 

in nanoseconds, the correct t iming is crucial. If per se, the computers were running 

unsynchronized in an interconnected system, many errors and inconsistencies would 

occur, due to the fact that each computer would rely solely on its own time, which 

would inevitably start to drift from the reference time, especially in cases where 

cheaper oscillators are used. This is why the t iming protocols are used. 

The basics of the t iming protocols can be explained wi th the help of Network 

Time Protocol ( N T P ) . The N T P protocol, which belongs to one of the oldest inter

net protocols, was init ial ly designed to provide an accuracy of about several hundred 

milliseconds of Coordinated Universal Time ( U T C ) time [3]. The goal of network 

t iming protocols is to ensure synchronized time across all participating network 

nodes. This application is especially crucial in many practical domains such as 

telecommunications, finance, industrial automation, monitoring devices, and many 

others. In all these cases, it is essential to provide correct t iming with great preci

sion, since many devices in these domains are bound to the clock in order to fulfill 

the required tasks within the broader system and provide correctly timestamped 

outputs. The core function of the t iming protocols is often similar in that, that 

reference time is sent over the network, from some sort of reference clock device to 

the end nodes. 

1.2 Description 

The P T P , is a network protocol for the first time defined in the I E E E 1588 standard, 

of which the implementation was led by John Eidson. A s described in the Request 

for Comments ( R F C ) document, wi th the serial number 8173, the main idea behind 

12 



the development of the I E E E 1588 was to provide clock accuracies not feasible by 

Network T ime Protocol ( N T P ) , to devices wi th restricted or no G P S access [1]. 

The P T P protocol uses a master-slave system to provide time synchronization to 

the end nodes in packet-based network systems. The P T P standard was designed in 

order to allow multicast or unicast communication, or both at the same time [4]. The 

synchronization to the Grandmaster clock can be achieved within the microsecond 

to nanosecond range while using up a minimum amount of network and computing 

resources. The information provided in the individual data frames allows the end 

nodes to derive specific U T C time, as well as other time scales that are typically 

used. 

1.2.1 Concepts 

In this section, there shall be described various definitions that are provided in the 

I E E E 1588-2019 standard as a way to outline the P T P . 

Accuracy is a commonly referenced parameter when describing t iming proto

cols. This parameter determines the mean difference between the value obtained at 

the end node and the reference clock value. The lower the difference between the 

measured time and the reference time, the higher the accuracy of the provided time. 

Considering that, the formula for P T P accuracy can be specified as seen in 1.1. 

Accuracy = 100 - \ R e ^ ~ M e s ^ . 1 0 0 | [%] (1.1) 
Reft 

The Ref_t stands for a reference time in an arbitrary time unit, Mes_t stands 

for a measured time in an arbitrary time unit. From this formula, the percentage 

accuracy of the measured time can be determined, considering that the measurement 

itself is accurate. 

The clock, generally in the t iming protocol context, can be specified as a time 

that has passed since the beginning of a defined epoch. The clock can be either 

physical or mathematical, where each of them is modeled differently [4]. There are 

other clocks in this case related to the concept of P T P , however, these types of 

clocks are not the same as the one specified above. A l l of the described clocks, 

however, operate with the clock described above. The Master clock is the main 

source of time in the network. This is the type of clock that usually obtains a signal 

from an external time source, which is for example the Grandmaster clock [5]. The 

Master clock is used to synchronize Slave clocks that are part of the same network 

or domain. The Slave clock is a type of clock that synchronizes wi th the Master 

clock and is not meant to provide t iming to any other clock on the side where it 

13 



communicates wi th the Master clock. Bo th the Master and the Slave clock are 

concepts used in all t iming protocols. It should also be noted that Master and Slave 

are relative concepts, meaning that the same node may have multiple functionality 

based on its configuration. 

Moving on, to more P T P specific clocks, the Transparent clock shall be discussed. 

The Transparent clock can be described as a device that can be used to route the 

t iming messages wi thin the network [5]. One of its main functionalities is to correct 

a timestamp in the transmitted message, on its way to the end nodes. This is one of 

the ways for network delay to be calculated. Transparent clocks may have different 

functionality in the E 2 E and P 2 P delay modes. They are usually implemented 

within network switches or any other devices, which must support P T P and be 

non-blocking. A non-blocking switch is a type of switch that can handle a number 

of ports without interrupting the rest of the traffic. The network properties of the 

P T P shall be discussed more deeply in the later sections of the thesis. 

The Boundary clock is a type of P T P clock that can take the functionality 

of both the Slave and Master clock [5]. It obtains a Sync message from the Master 

or Grandmaster clock, which contains the time. It then calculates the delay and 

adjusts the t iming, creates a new packet, and sends it to a network. This way the 

number of nodes directly talking to the Master or Grandmaster clock is greatly 

reduced while the Sync message is recreated the same way as it would come directly 

from the Grandmaster clock. 

The Grandmaster clock could be described as a main distributor of t iming, to 

which other clocks in the network are synchronized. Grandmaster clock receives time 

directly from the external source, such as G N S S or G P S , and should be therefore 

considered as the first and only t iming source in a network. 

The P T P domain is described as a "logical grouping of P T P instances" [4, p. 

17], where P T P is used to synchronize all the clocks in this domain to "Grandmaster 

Clock of the domain, but are not necessarily synchronized to the Local P T P Clocks in 

another domain" [4, p. 17]. Domains are a very important concept in P T P and other 

t iming protocols, as they allow the specification of all P T P devices within a given 

network. This can be very useful when designing time-synchronized applications. 

A P T P port or P T P interface is a communication endpoint for PTP-re la ted 

messages on a given device. A single device can have multiple P T P ports and it is 

possible for each P T P port on a single device to fulfill the role of different types of 

P T P clocks. 

The following concepts are not strictly PTP-re la ted but shall be mentioned 

throughout the work, it is therefore important to explain them. A bit is defined as 

14 



the smallest unit used as an increment of data in a computer [6]. The value of bit 

can be either 0 or 1, which from the electronics point of view means either on or off. 

Bits may also be mentioned when referring to a certain position wi thin a byte. A 

byte is the second smallest unit after bit. A byte is simply a group of eight bits. A n 

octet is a term that can be used interchangeably wi th a byte. The usage of both 

terms can be seen in different literary sources. The indexing of bits in byte/octet 

starts wi th 0 and ends wi th 7. 

Another important concept that is commonly used in this thesis is the T C P / I P 

five-layer network model. This model describes and differentiates technologies used 

for data transmission in physical and logical networks. The original T C P / I P model, 

as opposed to the older OSI model, consists of only four layers. However for the sake 

of clarity, a new version of this model shall be used in this thesis, which contains fiver 

different layers. The layers are hierarchically lined up based on their functionality. 

Starting from the lowest layer to the highest layer, the layers are as follows: Physical 

Layer, Data Link Layer, Network Layer, Transport Layer, Application 

Layer [7]. The Physical Layer is concerned wi th signal transmission using either 

physical wire or a wireless medium. The Data L ink Layer is concerned wi th creating 

frames wi th Medium access control ( M A C ) , that are always transmitted between 

adjacent devices or in the Local Area Network ( L A N ) with the help of Data-Link 

switches [7]. The Network Layer creates logical groupings called networks, where the 

connected nodes are differentiated by IP address, which determines how should be 

the messages sent to the destination nodes. The Transport Layer is concerned wi th 

the management of the message transfer itself. The Appl icat ion Layer is the upper 

layer which is used by the applications requiring the network connection [7]. Each of 

these layers is encapsulated into each other, starting from the lowest to the highest, 

and each interacts differently in the process of communication. Knowledge of all 

T C P / I P layers is important for understanding the described concepts. Throughout 

the thesis, more concepts may be mentioned, which are either very specific for given 

applications or are considered to be general knowledge. 

1.2.2 Operations 

The principle of P T P operations is based on sending special timestamp messages, to 

and between entities communicating within a specific P T P domain. Synchronization 

in networks is based on the measurement of time shift caused by message propaga

tion delay [8]. However, before the synchronization process itself is described, it is 

important to explain how the Slave clock determines its time source in case there is 

more than one Master or Grandmaster clock available. 

15 



Tab. 1.1: P T P B M C A Parameters 

Parameter Explanat ion 

priority 1 The primary parameter for selecting 

the clock source based on priority [9]. 

W i t h a lower value, the priority is 

higher. 

clock class Quali ty of the clock source. W i t h a 

lower value, the quality is better. 

clock accuracy Accuracy of the clock source in parts 

per bi l l ion (ppb) unit. W i t h a lower 

value, the accuracy is better. 

P T P variance Variat ion in the clock source's fre

quency over time. W i t h a lower value, 

the stability is better. 

priority2 The secondary parameter for selecting 

a clock source based on priority. W i t h 

a lower value, the priority is higher. 

clock identity Identifies the clock source. Dis t in

guishes between the clock in the net

work. 

distance (number of boundary clocks) Number of boundary clocks that are be

tween the Master clock and the Slave 

clock. W i t h a lower value, the distance 

is smaller 

1.2.2.1 Best master clock algorithm 

The hierarchical position of the Master clock as a time source in the network topology 

can be either configured in a statical way or it can be generated using Best Master 

Clock Algorithm ( B M C A ) as defined in I E E E 1588. This algorithm runs in a separate 

manner on each node in a P T P domain. This means that nodes do not negotiate 

the hierarchical position of each P T P instance between each other, instead, they 

only compute the state for their own P T P port [9]. It is also important to note that 

the Best Master Clock Algor i thm runs on each node continuously so that eventual 

changes wi thin the P T P network can be reflected to P T P instances immediately, in 

case they were to occur [9]. 

For the purpose of Best Master Clock Algor i thm, the special type of source ad-

16 



vertisement message is defined, which is called the Announce message. This message 

contains data used for advertising the Grandmaster clock in regards to preferability 

[10]. Based on the information, received from this advertisement message, it is up 

to the end node to determine which clock is to be the Master clock. The pref

erence settings for the P T P clock, when selecting the best potential Grandmaster 

clock, as defined in I E E E 1588, is based on these parameters: priorityl, clock class, 

clock accuracy, PTP variance, priority2, clock identity, distance (number of bound

ary clocks) [11]. A n explanation of each parameter can be seen in the table 1.1. 

The selection of the parameters may however be modified depending on the specific 

needs of the P T P clock. 

After the P T P node receives multiple Announcement messages from different 

Master clocks, it looks at the values as specified in the table 1.1. A s described in 

the I E E E 1588, the data set comparison in the B M C A works on the principle, that 

values provided by two Announce messages are sequentially compared. If the values 

in parameters match or are within a tolerance, the comparison function moves to 

another value. Once one attribute in the Announce message has a better value, 

than the ones provided by different Master clocks, the clock that sent that specific 

message is chosen by the P T P node as the Master clock. The lower value usually 

means the better quality of the clock. 

F ig . 1.1: Messaging between P T P Slave and master clocks [11] 

17 



In figure 1.1, the situation can be seen where the Slave clock communicates 

wi th two different Master clocks. A s can be seen, the P T P node sends a multicast 

request for an announcement, which is basically just a Sync message, to which are 

the Master clocks required to reply wi th the Announce message. Alternatively, the 

Slave clock simply listens on a specific port unti l some Master clock advertises itself. 

The Master clock can either periodically send Announce, Sync, and Follow_Up 

messages to multicast address, or it can wait for a request from the Slave clock. 

When the Slave clock obtains from the Master clock the Announce message, which 

contains all the specific parameters needed for the B M C A , a P T P node can run the 

algorithm and determine the best Master clock as a time source. Once the best time 

source is determined, the synchronization process can begin. 

1.2.2.2 T i m e synchronization in End-to-end delay mode 

A s was described in the Concepts (1.2.1) subchapter, clocks in the P T P network, 

have a predefined hierarchy where each type of clock has a different role in the time-

synchronized network. This subchapter focuses specifically on the End-to-end delay 

mode, where the delay is calculated between the starting and ending devices, that is 

between the Grandmaster clock, which is here denominated as a Master clock and 

the P T P end-node, that is to be synchronized, which is here described as a Slave 

clock. In E 2 E delay mode, all the possible delays between the Master clock and 

the Slave clocks are accounted for. It can be even assumed that devices, which are 

between the Master and Slave clock, may not support P T P . In comparison to Peer-

to-Peer mode, the End-to-end delay mode may however suffer from lower precision 

regarding offset determination. 

The most important is, for clock synchronization, the Sync message. This mes

sage is sent to multicast from the Master clock to all Slave clocks which are part 

of the given P T P domain and are to be synchronized wi th the Master clock. The 

interval of Sync messages is determined in configuration, but usually, it is something 

between 1 to 65 messages per second [10]. Synchronization begins when the Sync 

message is sent from the Master clock to the Slave clock. Hardware or software 

created timestamp tl, is used to mark down the time when the Sync message is 

transmitted. The moment the Sync message is received on the Slave clock side, the 

timestamp t2 is created, which contains the specific time when the message arrived 

[4]-

If a one-step synchronization mode is to be used, just a Sync message would 

be sent and other messages would be disregarded on the receiver side. In this 

case, the timestamp tl, would be part of the Sync message itself. This would 

18 



require very high precision hardware processing, as it would require the master 

clock to create timestamp tl at the time of sending and at the same time insert it 

into a Sync message [4]. In two-step synchronization mode Follow_up messages 

are sent right after the Sync message. The Follow up message contains time tl, 

which was previously created when Sync was sent. This way, tl is conveyed wi th 

the same accuracy but two different messages are used. The issue wi th two-step 

communication may be the greater communication overhead, caused by the greater 

number of messages. 

Communication continues by the Slave clock sending the Delay_Req message 

to the Master Clock. This message is usually sent to the Master clock in periodic 

intervals [13]. Similarly to the Sync message, the timestamp t3 is created on the 

Slave clock side when the Delay_Req message is sent to Master. After receiving the 

message, the Master clock creates timestamp t4, which notes the time when was the 

Delay_Req message received. F ina l ly the Delay_Resp message, which contains the 

timestamp t4, is sent from a Master clock side to the Slave clock [9]. The whole 

process of the above-described communication can be seen on the figure 1.2. Note 

that "t-ms" as seen in the figure means the time from Master to Slave and "t-sm" 

means the time from Slave to Master. 

M a s t e r 
L ime 

Slave t i m e 

t - m s 

t - s m 

1 imes tamps 
known by 

slave 

' t 2 t z 

U , t 2 

. t 3 
t l , t 2 , t 3 

-.2. -.-

ľ 

F ig . 1.2: P T P synchronization process in E2E[13] (t is same as t) 

After all messages are exchanged, the end P T P node has all the previously saved 

timestamps, tl, t2, t3 and t4- These can be afterwards used in order to calculate 

the delay and offset between the Master clock and the Slave clock. 

19 



The sum of the bidirectional delay between the Master clock and the Slave 

clock is calculated on the Slave clock side that has all the required timestamps 

[13]. This delay represents Round-trip time, which is the time of how long it takes 

for a network request to go "from a starting point to a destination and again to a 

starting point" [14]. B y using the equation 1.2, the exclusive delay which is caused 

by the transmission link, not the time offset, can be determined. In this case, it is 

assumed that delay is symmetric, in other words, that time t between sending of tl 

and marking of t2 equals to time t between sending of t3 and marking of t4-

Bidirectional delay = (£4 - t l ) - (tS - t2) (1.2) 

The unidirectional delay on the link between the Master and Slave clock devices 

can be described the same way as the previous formula [13], however, the calculated 

delay is divided by two, considering that it is now only a single direction delay, which 

does not take into account the time taken for a reply to come back. The formula 

can be seen in 1.3. 

Bidirectional delay 
Unidirectional delay = (1.3) 

Unidirectional delay could be expressed using other formulas as well [9]. B y 

using the formula 1.4, the same results would be obtainable as with the equation 

above. Therefore it is completely arbitrary which implementation for delay calcula

tion would be used. Some materials may specify either the equation defined above 

or the one below, however, they can be used interchangeably. 

Unidirectional delay = - 1" = 1" (1.4) 

The offset could be described as a time difference between the Master and the 

Slave clock, considering that all times are measured at the same instant [9]. B y 

knowing the specific offset value, the Slave clock can determine how much it is 

supposed to correct the time to match the Master clock. If times tl and t2 were 

taken as example times and delay would be added, the resulting formula would be 

as seen in 1.5. 

Offset — t2 — tl — Unidirectional delay (1.5) 

Based on the determined offset value, the internal clock of a computer is read

justed so that it matches wi th the Master clock. Readjusting of the internal clock 

may depend on the specific P T P software of hardware implementation, and how it 

20 



manages its internal time. If the offset equals to zero it means that the Master and 

Slave clocks are perfectly synchronized. 

It should also be noted that if the Transparent clock is placed in the network 

path between the Master and the Slave clock, the Correction field mechanism can be 

applied. This mechanism works by subtracting the arrival time on the Transparent 

clock t2 from the departure time tl, and adding the result value to the Correc

tion field value in the Sync packet itself. The Correction field value is afterwards 

subtracted from the final time at the Slave clock side. This way the delay can be 

determined wi th greater precision considering that Transparent clocks provide de

lay information themselves. This method is however more relevant in the P 2 P delay 

mode, which is described in the following sub-chapter. 

1.2.2.3 T i m e synchronization in Peer-to-peer delay mode 

The synchronization with Peer-to-Peer or Peer delay mode works in many ways same 

as wi th E 2 E mode wi th the main difference being the fact that delay is calculated 

between each adjacent device in the network, considering that there are only devices 

in the network which are PTP-enabled, which means that they act as a Transparent 

clock, and they al l use the same delay mechanism. In Peer delay mode, the delay 

calculation is done wi th a set of specialized messages, which are unrelated to the 

Synchronization process itself as it was in the previous case, but are used solely for 

the calculation of delay between two adjacent nodes. Peer delay determination can 

be initialized by either a Master or a Slave clock, thus in this case nodes shall be 

denoted simply as Node 1 and Node 2 [13]. 

The process starts wi th Node 1 sending the PDelay_Req message to Node 2 and 

marking the time of sending as tl. The arrival time of the PDelay_Req message to 

Node 2 is marked down as t2, and this time is subsequently added to the message 

data. The Node 2 afterwards responds wi th PDelay_Resp message marks down the 

time of sending t3 and includes it to the message if the one-step mode is used. Node 

1 upon arrival of PDelay_Resp message, marks down the time t4- In the case that 

a two-step mode is used, one more additional message is sent from Node2 called 

PDelay_Resp_Follow_Up, which contains the previously created time t3. 

The result from this operation is that Node 1 has all the relevant timestamps 

and is able to calculate unidirectional and bidirectional delay the same way as it was 

done in E 2 E mode [13]. Considering that delay is calculated between each node on 

the network, it is much easier to determine which nodes are behind the asymmetry 

of the delay and which nodes have the biggest delay between them. Also since the 

peer delay messages are sent only between the neighbouring nodes, the Master clock 

21 



devices are not unnecessarily overwhelmed [15]. 

N o d e 1 
t i m e 

N o d e 2 
t i m e 

t -ms 

t -sm 

Fig . 1.3: P T P synchronization process in P2P[13] (t is same as t) 

A s was said before, the above-described process is unrelated to the clock syn

chronization itself and serves solely for the purpose of delay calculation between the 

P 2 P Transparent clocks. Synchronization still needs to be done the same way as was 

described in E 2 E mode, with the exception that only Sync and Follow_up messages 

are required to be recognized by the network and Delay_Req and Delay_Resp are 

not needed [4]. This means that once both Node 1 and Node 2 exchange the set 

of messages as seen in figure 1.3, the Master clock sends the Sync message in order 

to Synchronize with the Slave clock. Note that "t-ms" as seen in the figure means 

the time from Master to Slave and "t-sm" means the time from Slave to Master. 

It should be also noted that Delay estimation can be done both for downlink and 

uplink communication [13]. 

When the Sync message passes through the node, which is a Transparent clock, 

the calculated delay is added to the value in the Correction field, in addition to the 

difference between the departure time and arrival time to the Transparent clock [4]. 

The following process is done for every Transparent clock device, considering that 

wi th each passing, the uplink node becomes Node 1 and downlink node becomes 

Node 2 and so on. Once the Sync message arrives at the Slave clock, the Correction 

field is subtracted from the arrival time t2, as well as tl, which is in this case 

only value needed for offset determination, considering that the Correction field 

mechanism is in the P 2 P delay mode guaranteed to be precise. 

22 



1.2.3 Network properties 

In the previous sections, data communication between nodes was described simply 

as messages, for the sake of simplicity. These messages, however, have certain prop

erties and hold a certain form. The messages can be transmitted using different 

layers of the network, as described by I E E E 1588, which allows different P T P en

capsulation modes. In the following section, the different methods of P T P message 

encapsulation as well as their structure shall be explained. 

1.2.3.1 Encapsulation properties 

P T P messages need to be encapsulated into another protocol, which could serve as 

a transport protocol for the P T P information within the network. The common 

means of transport for P T P messages is a Transport Layer protocol called User 

Datagram Protocol ( U D P ) . However wi th the newer implementation of the P T P , as 

described in the I E E E 1588v2, the P T P messages can be encapsulated within the 

Data L ink Layer using Ethernet protocol. 

The main difference in the above-specified modes is the performance and conve

nience. Considering that the Ethernet encapsulation mode is closer to the Physical 

Layer than U D P encapsulation mode, it can be expected to have better performance, 

considering the lower overhead of the messages. 

1.2.3.2 U D P / I P encapsulation 

The encapsulation of the P T P messages into U D P , is a method to be used when a 

P T P packet is to be transversed inside or between IP-based networks [16]. The U D P 

packet containing the P T P message can be encapsulated in IPv4 or IPv6, allowing 

P T P to be used outside of Local Area Network on devices that do not necessarily 

support over-the-ethernet transport for P T P . The port numbers that are used for 

U D P / P T P messages are 319 for Event messages and 320 for General messages sent 

either through Unicast or Multicast [4]. Figure 1.4, shows the structure of the data 

encapsulation within the IP packet, which remains the same for IP versions 4 and 

6. 

B y default, P T P messages shall use the following addresses for multicast com

munication. In the IPv4 network for Peer delay messages, the network address 

224.0.0.107 is used, and for all the other messages 224.0.1.129 address is used [9]. 

In the IPv6 network Peer delay messages, the network address FF0X:0:0:0:0:0:181 

is used, and for al l the other messages FF02:0:0:0:0:0:0:6B address is used [9]. 

23 



Etilem et Header User Data Field EthernetFCS Ethernet Frame 

IP Header IF 'Mi, IPv4 Datagram 

UDP Header UDPData JDP Datagram 

PTP Packet 

F ig . 1.4: P T P encapsulation in U D P / I P [16] 

1.2.3.3 Ethernet encapsulation 

Encapsulation of P T P data in an Ethernet header is the preferred mode of encap

sulation since, apart from the potential performance benefit already mentioned, the 

deployment is significantly easier compared to P T P over U D P / I P [17]. The usage 

of the Ethernet as a transport protocol for P T P allows only communication within 

one Local Area Network, where all nodes in the P T P network function as some type 

of clock, described in the chapter 1.2.1. 

The Ethernet frame, as defined in I E E E 802.3, is used for a l l Medium access 

control communications. The header consists of several parts, each wi th a specific 

size, see figure. The most relevant ones in regards to P T P packet transportation are 

however: EtherType, destination M A C , source M A C , and payload. 

Preamble Destination Source Type Data C R C 
M A C M A C 

Address Address 

8 bytes 6 bytes 6 bytes 2 bytes 46-1500 4bytes 

bytes 

F ig . 1.5: Ethernet header [18] 

The EtherType is a specific Ethernet header field that specifies the type of pro-

24 



tocol that is encapsulated in the Ethernet frame payload. In this field, which is two 

bytes long, are usually specified most common network protocols, such as IPv4 or 

IPv6. However, in the following case type is defined as 0x88F7, which stands for 

P T P over I E E E 802.3 [4]. 

The M A C , which is used in the following two fields in the Ethernet header, is a 

specific number identifier used for Data L ink Layer communication within the Local 

Area Network [19]. The M A C address itself is a 48 or 64-bit hexadecimal number 

in the given form X X - X X - X X - X X - X X - X X , where the first 3 bytes represent 

Organizational Unique Identifier approved by I E E E , and the rest is given by the 

device manufacturers [19]. The manufacturer also assigns M A C addresses to Network 

interface controller (NIC) , of the device. These addresses are considered permanent 

for each N I C , and each device in the network should have completely unique M A C 

address. 

Moving back to the Ethernet header structure, the destination M A C address 

field in the Ethernet frame determines the destination device for the given Ethernet 

frame. In relation to that the source M A C address defines the source device of 

the given Ethernet frame. A s the frame travels through the local network, the 

destination of the device always remains the same, if it is considered that as a 

destination only multicast P T P addresses are used. If that frame would transverse 

through the router in Local Area Network, upon leaving the router, the source M A C 

address would become that of a router. 

For communication over Ethernet, P T P uses two specific multicast addresses, 

similarly as in the case of P T P communication over U D P / I P . These addresses are 

understood by all PTP-enabled devices in the network, and each determines the 

different behavior of the devices interacting wi th the P T P packet. The first multicast 

address 01-1B-19-00-00-00, is a "standard Ethernet M A C address that is expected 

to be flooded by all types of Ethernet bridges and switches and also by a large number 

of base station vendors" [17]. This first 3-byte part of this address represents O U I 

given by I E E E , and the rest of the address is derived from the "pool of multicast 

addresses within that given space" [4, p. 387]. Frames wi th this destination address 

can be forwarded even by devices that do not necessarily support P T P . Therefore, 

this multicast address can be used for all P T P delay-related messages, except Peer 

delay messages. The second multicast M A C address 01-80-C2-00-00-0E, is derived 

from the pool of multicast addresses given by the I E E E 802.1Q standard. Frames 

wi th this destination address are required to not be forwarded to other ports of 

interfaces, as this address is meant only to be used in the case of Peer delay mode-

related messages [17] [4]. 

25 



The final important field in the Ethernet header is the payload or data part. 

This field can be up to 1500 bytes in size, and it contains the P T P message. The 

structure of the P T P message itself wi l l be described in the following section. 

1.2.3.4 P T P header structure 

A l l messages related to P T P have a common header structure [4]. This means 

that al l messages have the same fields within the header, unrelated to what type 

of message is being sent. It also remains the same whether the P T P message is 

encapsulated into U D P or Ethernet. Apar t from the header, there is also a message 

body and suffix, of which more shall be described later. 

A s can be seen in the figure 1.6 taken from the I E E E 1588 standard document, 

there is a number of header fields, where each of them occupies a fixed number of 

bytes/octets. B y summing all the sizes of the fields, the total size of the header 

itself is 34 bytes. The values in the Octets column describe the total size of the 

field or fields in bytes/octets located on the same row as the value. The Offset in 

the header is a value that is used to indicate the index of the field in the header, 

based on the assigned size in bytes. The Bi ts in the header determine the specific 

position of the field within the byte that is in size less than one octet. This means 

that messageType starts on the first bit wi th index zero and majorSdoId starts on 

the fifth bit wi th index four. 

Bits 
Octets Offset 

7 6 5 4 3 2 1 « 
Octets Offset 

majorSdoId messageType 1 0 
minorVersionPTP versionPTP 1 1 

messageLength 2 2 
domainNumber 1 4 

minorSdoId 1 5 
flagField 2 6 

correctionField 8 8 
messageTypeSpecific 4 16 

sourcePortldentity 10 20 
sequenceld 2 30 
controlField 1 32 

logMessagelnterval 1 33 

Fig . 1.6: P T P header structure [4] 

The first field in the P T P header, majorSdoID together wi th minorSdoId consists 

of the sdold, which provides isolation of P T P Instances between different Qualified 

26 



standards development organizations [4]. The messageType field describes which 

specific type of message is contained within the header. A s was previously mentioned 

several times throughout the thesis, there are several types of messages, and each 

fulfills its own function in different P T P processes. The numbering is in hexadecimal 

format. Taking into account the number of messages, including the reserved spaces, 

the first hexadecimal number is 0 and the last is F . The messages are further divided 

into the Event class and the General, which are determined by the most significant 

bit [9] of the message. 

The fields versionPTP and minorVersionPTP represent which version of the 

P T P protocol is used by devices on the network, so compatibility can be ensured. 

The messageLength represents the number of bytes that are used to represent the 

message, which includes the header, body, and suffix [21]. The domainNumber, 

is used to identify which P T P domain the P T P message belongs to. This means 

that P T P messages shall only be exchanged among clocks that belong to the same 

domain as specified in the message. The flagField, represents various conditions or 

settings, which differ based on the message type. The specific function of the flag 

is determined based on which octet and which bit in the given octet is set, as well 

as which type of P T P message is used. The correctionField, contains the correction 

value represented in the nanosecond scale. This value is determined by the time the 

packet spends in the Transparent clock and is used for the delay calculation [21]. In 

case the value of the correction field value is too large to be represented, it contains 

ones in all bits except the most significant bit. The messageTypeSpecific field is 

solely for the internal usage of the P T P protocol within the components outside of 

the main P T P synchronization process [4]. 

The sourcePortldentity field is used to identify the source P T P port that sent the 

message. The sequenceld field contains the sequence number for individual types of 

P T P messages [21]. The sequenceld value in each consecutive P T P message of the 

same type is always increased by one. This means, that each P T P port maintains se

quenceld pool for each type of P T P message in use [9]. There are however exceptions 

for selected types of messages, for which the pool is not maintained. A s described 

in the I E E E 1588, these messages are P d e l a y R e s p , Follow Up , Delay _Resp , Pde-

l a y _ R e s p _ F o l l o w _ U p and P T P management messages. The controlField is related 

to the hardware compatibility of the P T P devices. However, in the newer imple

mentations, this field is to be considered obsolete. The last field in the P T P header 

is logMessagelnterval. This value represents the second logarithm of the interval 

for sending of P T P message. This value may however vary based on which type of 

message is used. 

27 



Apart from the header, the P T P packet consists of the P T P payload, which 

shall be described in the following subchapter, and the suffix. The suffix in the P T P 

packet consists of Type Length Values ( T L V ) . These can be described as "manage

ment messages, which are used to configure the protocol settings" [22]. There is a 

possibility to use T L V as an authentication method, in order to increase the secu

rity of the P T P implementation. However, in case the addition of T L V , would cause 

frame size to exceed its maximum limit the T L V would not be added to the P T P 

packet [9]. 

1.2.3.5 P T P message structure 

The P T P message itself comes after the header and before the suffix. The message 

contains the main part of the desired P T P functionality. To start from the simplest 

P T P messages first, Sync and Follow U p messages shall be described. The Sync 

message apart from the header contains originTimestamp field. The originTimes-

tamp is a ten-byte field that contains the precise time of the creation of the packet 

in nanoseconds. Similarly, the F o l l o w _ U p message contains a ten-byte preciseOrig-

inTimestmap field, which is used in the case that the originTimestamp value in the 

Sync message is not included. 

The D e l a y R e q message consists of a ten-byte originTimestamp field and a ten-

byte reserved field. The originTimestamp has the same meaning as in the Sync 

message. The reserved field is there for a reason so that the total length of the 

P T P message is the same as that of D e l a y R e s p message [4]. The D e l a y R e s p 

message consists of a ten-byte receiveTimestamp field, which contains the time at 

which was the D e l a y R e q message received on the slave device, and a ten-byte re-

questingPortldentity field, which contains the port identity of the P T P port which 

sent the D e l a y R e q message. The P d e l a y R e q has the same structure as the De-

l a y R e s p message. The P d e l a y R e s p contains the ten-byte requestReceiptTimes-

tamp field which contains the time at which was the D e l a y R e q message received by 

the device which sends the P d e l a y R e s p message. The P d e l a y R e s p F o l l o w _ U p 

message consists of the ten-byte response OriginTimestamp and the ten-byte request-

ingPortldentity fields. The responseOriginTimestamp field contains the timestamp 

of when the P D e l a y R e s p message was sent, in case the requestReceiptTimestamp 

value is not included in P D e l a y R e s p . The requestingPortldentity field has the 

same meaning as in the previous messages. The context and functionalities of the 

above-mentioned messages are closely described in the chapter 1.2.2.2 and the sub

chapters after that related to the synchronization process. 

The Announce message, which is related to B M C A , consists of considerably more 

28 



fields than the previous messages. The ten-byte originTimestamp field is either value 

zero or an estimate of no less precise than one second of when the Announce message 

was transmitted [4]. The two-byte currentUtcOffset field specifies the offset of the 

clock, sending the Announce message, from the U T C [9]. The one-byte fields grand-

masterPriorityl and grandmaster*Priority2 correspond to values priorityl and pri

ority 2, which are explained in the table 1.1. The four-byte grandmasterClockQuality 

and eight-byte grandmasterldentity fields correspond to clock class and clock iden

tity respectively, which are explained in table 1.1. The two-byte stepsRemoved field, 

contains the number of how many P T P Communication Paths were passed between 

the Grandmaster clock and the slave device, with the ini t ial value being zero [9]. 

The final one-byte timeSource field describes the time source that is used by the 

Grandmaster clock. 

B P r e c i s i o n Time Protocol ( I E E E 1 5 6 8 ) 
B 0000 .... = t r a n s p o r t s p e c i f i c : 0x00 

...0 .... = VI c o m p a t i b i l i t y : False 
.... 0000 = messageld: sync Message (0x00) 
.... 0010 = versionPTP: 2 
messageLength: 44 
subdomainNumber: 0 

B f l a g s : 0x0200 
0 - PTP_SECURITY: False 
. 0 - PTP p r o f i l e s p e c i f i c 2: False 
. . 0. - PTP p r o f i l e s p e c i f i c 1: False 

. 0. . . - PTP_UNICAST: False 

.. 1. . - PTP_TWO_STEP: True 

. . . 0 . - PTP_ALTERNATE_MASTER: False 
.0 - FREQUENCY_TRACEABLE: False 
. . 0 -TIME_TRAC E A B L E : F a l s e 
... 0... - P T P _ T I M E S C A L E: False 
... .0.. - PTP_UTC_REASOMABLE: Fa l s e 

0. - P T P _ L I_59: False 
0 - P T P _ L I _ 6 1 : False 

B c o r r e c t i o n : 14775.000000 nanoseconds 
c o r r e c t i o n : Ns: 1477 5 nanoseconds 
correctionsubNs: 0.000000 nanoseconds 

c l o c k l d e n t i t y : 0x001d9cfffebfe8fd 
sourcePortlD: 2 
sequenceld: 47957 
c o n t r o l : sync Message (0) 
1ogMessagePeriod: 0 
originTimestamp (seconds): 14-36270307 
originTimestamp (nanoseconds): 967907700 

Fig . 1.7: P T P Sync packet example [20] 

1.3 Use case scenarios and applications 

A s was mentioned before, P T P finds its use case in many fields and applications that 

rely on precise time synchronization. How exactly are the timestamps delivered in 

P T P messages used may differ significantly from industry to industry. In the man

ufacturing industry, P T P may be used in many different tasks, such as log-keeping 

29 



or machine coordination and synchronization. When P T P is used for surveillance 

purposes there wi l l be a need to precisely synchronize the audio and video streams. 

However, for the sake of simplicity, this subchapter shall focus mainly on depicting 

the topology, which would be used in real-case scenarios. 

Slave 
clock 

3randmaster 
clock 

Boundary 
clock 

Slave 
clock 

Slave 
clock 

Slave 
clock 

Fig . 1.8: Simple topology wi th all clock types 

Looking at the very basic scenario in figure 1.8, it can be seen that all clock 

types were used in this case. Let us consider that the Grandmaster clock sends 

a Sync message to a l l the P T P devices via multicast, assuming that end-to-end 

synchronization mode is to be used. Looking at the figure from top to bottom, once 

the Slave clock, receives the Sync message the standard synchronization procedure 

follows. The first Slave clock is connected directly to the Grandmaster clock, from 

the P T P point of view, therefore no extra factors in the path need to be considered. 

In the case of the second Slave clock, the connection to the Grandmaster goes 

through the Transparent clock. The Transparent clock wi l l simply replicate the 

Sync message to its outgoing ports and add the value of time the packet spent on 

the Transparent clock device to the Sync message correction field, which is to be 

used later in delay calculation. More information can be found in the section 1.2.2.3, 

which is concerned wi th this topic. 

The last two Slave clocks are connected to the Boundary clock instead of the 

Grandmaster clock itself. The Boundary clock in this case acts as a Master clock 

to all the Slave clocks which are connected to it. This way it is ensured that the 

30 



Grandmaster clock is not overburdened and the network is more scalable. The 

Boundary clock however acts as a Slave device to the Grandmaster clock and its 

time is also being synchronized. In contrast to the Transparent clock, the Boundary 

clock can provide a use case in scenarios when different V L A N s are needed to be 

used on different ports [23]. Using too many boundary clocks may however lead to 

inaccuracies as the precision of the Boundary clock always depends on the Master 

clock which provides synchronization [23] 

Now, let us consider a little bit more complex scenario as seen in figure 1.9, which 

involves a greater number of devices. In this case, the Peer delay synchronization 

mode is used. Seeing that there is more than one Grandmaster clock available, the 

B M C A wi l l need to be used in order to determine the most suitable Master clock. 

In the current scenario, there are only ten Slave clock devices, however with a higher 

number of devices the network could become easily overburdened if each device were 

to run its own instance of B M C A . The Boundary clock wi l l act as a Slave device, 

outside of the local network, and negotiate the most suitable Grandmaster clock, 

using B M C A as described in the sub-chapter 1.2.2.1. The second Grandmaster 

clock can be however used as a backup, in case the primary time source fails. This 

means that the Boundary clock is being synchronized to one of the Grandmaster 

clocks, while it acts as the Master clock inside the local network. The B M C A can 

be therefore disabled on the end-node Slave clocks. 

Considering that the delay mode is Peer-to-Peer, the delay calculation begins 

between the Boundary clock and each of the Transparent clocks. Also, the delay 

is calculated between the Transparent clock and each Slave clock, using the Peer 

delay mechanism calculation. When synchronization itself is to be done, the Sync 

message is sent through the Transparent clocks. Note, that there may be used 

more Transparent clocks than is shown in the topology, wi th significantly more 

Slave clocks. When the Sync message passes through the Transparent clocks the 

calculated delay is added to the Sync message correction field, together with the 

passage time. Once the Sync message arrives to each Slave clock the time can be 

corrected based on the final offset. More information on Peer-to-Peer mode can be 

found in sub-chapter 1.2.2.3. 

The above-described topology can be considered to be a standard scenario in 

many industrial settings. Of course, there might be even more synchronization lay

ers, using Boundary clocks, than in the current scenario, however, the idea remains 

the same. The Boundary clock can be also connected directly to Slave clocks for 

better management, however with the increasing number of Boundary clocks, time 

management and error-safety might prove to be more difficult. It would be therefore 

31 



Slave 
clocks 

Grandmaster 
clock 

Grandmaster 
clock 

Boundary 
clock Transparent 

clock 

Transparent 
clock 

kmkki 
Slave 
clocks 

Fig . 1.9: Topology wi th multiple layers of synchronization 

recommended to use Transparent clocks if better accuracy is needed while prevent

ing unnecessary layering wi th the Boundary clocks. The Boundary clock is better to 

be used in order to lighten the load from the Grandmaster clock or the Master clock 

in the given network. If for example there were too many devices connected to the 

Boundary clock in the topology seen in figure 1.9, it would be optimal to connect 

another Boundary clock which would act as a Master in its own domain, and would 

lessen the burden on the previous Boundary clock. Another issue, that needs to be 

considered is of course the cost and performance of the devices. This would however 

depend on the specific industry and the budget of the implementation. 

32 



2 Security protocol selection 
Network security is a vast topic, however, this chapter shall be concerned mainly 

wi th the encryption of specific communication channels. Considering the scenario 

where the physical network is shared wi th other subjects or is public, it is very much 

needed that secure communication channels are established in order to convey P T P 

messages and other related traffic. Generally speaking, the traffic, which needs to 

be encrypted is encapsulated in a network security protocol, which takes care of the 

secure transfer of communication. Considering that P T P itself can be encapsulated 

under different layers of a network, a different security protocol needs to be consid

ered for each use case. Each protocol wi l l encrypt only the data that are located 

on the same layer of a network and the layers above them. The performance of 

the applications may also differ based on which protocol is used. This chapter shall 

concern itself wi th the description of security protocols and other security-related 

aspects. 

2.1 Security protocols for PTP over UDP 

When the P T P is encapsulated inside the U D P transport protocol, the security 

protocol which can be used to encrypt the communication, needs to operate either 

on the Transport Layer or the Network Layer. Even though these protocols can 

provide sufficient protection against external attacks, their biggest l imitation is the 

potential effect that they have on the P T P ' s efficiency and accuracy. Due to the fact 

that the encryption itself happens on the Network Layer, the intermediate devices 

are not able to access the contents of the P T P message. This essentially disables 

the functionality of the Transparent clocks, which aren't able to interact with the 

P T P messages, unless they are able to decrypt the packet payload. For this reason, 

only the synchronization with E 2 E delay mode can be used, unless the Transparent 

clock device is appropriately configured as well. [24]. 

Speaking about the implementation, one of the simplest ways to encrypt the 

general traffic between two points in the network is by creating an encrypted network 

tunnel for communication. A l l the devices which connect to Virtual private network 

( V P N ) , are perceived as if they were inside the local private network. In this sub

chapter, we shall look at the different security protocols, which are suitable to be 

used when the P T P communicates over U D P . 

33 



2.1.1 Wireguard overview 

There is a significant number of V P N protocols and services that are able to provide 

specific needed functionality, however, for the sake of the thesis the Wireguard has 

been chosen as one of them, due to its simplicity, reliability, and popularity. The 

Wireguard is an open-source V P N protocol, created as a replacement for O p e n V P N 

and IPsec, which works by encapsulating the traffic in an additional encrypted U D P 

header under the IP header [25], thus making the whole communication connec

tionless. This means that there is no need for communication to go through the 

connection establishment process before it starts. This attribute can be considered 

to be a very useful feature, especially in cases where the network connection is not 

stable. However, in scenarios where the network is stable, this does not play any sig

nificant role. The encryption options wi th Wireguard are l imited compared to other 

services, considering that Wireguard enforces only the default encryption protocol. 

2.1.1.1 Wireguard underlying operations and properties 

For Wireguard in order to communicate wi th other devices using V P N a separate 

vir tual interface needs to be created. This interface acts as a standard network inter

face and can be managed that way. Note that for any PTP-re la ted communication, 

the vir tual interface would have to be used in order for traffic to be encrypted. 

The user identification is done strictly using the 32-byte public key, given by 

the elliptic curve Curve25519 [26]. The virtual interface has an assigned IP address 

belonging to the V P N network address range and an open U P D port. It also has 

assigned private and public key pairs, where the private key is used for decryption 

and the public key for identification. The algorithm which encrypts the payload 

is called ChaCha20 [26]. The Wireguard interface must also know the public key 

of the host wi th which the interface communicates. Because accepted IP addresses 

are linked to known public keys, the Wireguard interface wi l l not accept any com

munication coming from devices that do not have their IP address linked to any 

known public key [26]. The vir tual interface wi l l also use the known public keys to 

encrypt the outgoing communication, based on the destination device. The public 

keys of known devices can be added manually to the vir tual interface or they can be 

securely exchanged through the network. In case that the destination IP address, 

of a packet that would be sent through the vir tual interface, does not match any 

known public key, the packet is dropped [26]. 

However, before any encrypted communication starts the initialization must be 

performed. The starting handshake is done in a single R T T using Noise lK handshake 

34 



based on the Noise protocol, which is based on the Diffie-Hellman key exchange al

gorithm [27]. These are the steps that must be secured before an actual PTP-re la ted 

communication happens. A l l the packets which are to be sent, before the encrypted 

communication channel is established, are queued. The process of establishing an 

encrypted channel through the vir tual network interface is done when init iating and 

receiving nodes exchange a set of messages. 

2.1.2 IPsec overview 

In contrast to Wireguad, IPsec is not a single protocol or a V P N service. It can be 

rather described as a set of open-source protocols used for establishing encrypted 

secure connections between connected devices. The IPsec can be either VPN-based 

on policy-based, depending on the specific implementation. It is also generally 

more complex to manage and implement, considering the much bigger codebase 

and much broader encryption options, which requires the user to have a knowledge 

of cryptography standards in order to make sure that the chosen settings do not 

compromise the security [25]. The IPsec, unlike Wireguard, is connection-based, 

meaning that for devices in order to communicate securely using IPsec encryption, 

a connection has to be established using connection-establishing mechanisms, or 

if the connection is interrupted, it has to be re-established. This however poses 

no problem if the network connection is stable. The IPsec encapsulation of data 

depends on which IPsec mode is to be chosen. 

2.1.2.1 IPsec underlying protocols 

There are several underlying protocols that create the functional IPsec [29]. The 

first protocol is Internet Key Exchange ( IKE) . This protocol is used to exchange the 

required security parameters for secure communication to be established [29]. To 

be more specific the I K E , does the following tasks: negotiates IPsec configuration 

parameters, authenticates secure key exchange, and provides mutual peer authen

tication and identity protection [30]. I K E can use the Diffie-Hellman algorithm in 

order to exchange the cryptographic keys between the devices or alternatively the 

keys can be entered manually [30]. There are two versions of I K E ; I K E - 1 and I K E -

2, of which the I K E - 2 is the preferred one, due to improvements compared to the 

previous version. 

Another protocol used by the IPsec is Authentication Header ( A H ) . The A H 

protocol is used in order to authenticate the data source and integrity of IP packets. 

The A H is however not designed to provide the encryption of the packet payload. 

35 



It works as a header that is added to the existing IP header and is used to check 

the integrity of the whole IP packet [29]. In standard Transport mode, the A H adds 

only its header under the IP header and authenticates the whole packet which is 

done by verifying the value of the calculated hash I C V on the receiver side [28]. 

In Tunnel mode, the A H header is added on top of the existing IP header, and on 

top of that the additional IP header is added. This allows packets to be routed as 

needed, however without any encryption [28]. In case the A H protocol would be 

used together wi th E S P , the A H would be the one to encapsulate first. Note that 

usage of A H is optional, and is not required for correct functioning of IPsec. 

Orig ina l IP Packet 

TCP Header 

ESP Tunne l M o d e 

New IP Header ESP Header ESP Trailer ESPAuth 

- E n c r y p t e d -
- A u t h e n t i c a t e d -

Fig . 2.1: E S P encapsulation in tunnel mode [28] 

The last of the protocols used in the IPsec is the Encapsulating Security Payload 

(ESP) , which is the most extensive one. The E S P protocol serves for encryption of 

data while at the same time, it can provide IP header authentication depending on 

which mode is used [29]. The E S P can be used together wi th A H , where the A H 

would be used as an additional layer of authentication or alternatively, if header 

authentication is disabled in E S P . The E S P can operate, similarly as A H , in two 

separate modes, the Transport mode and the Tunnel mode. The Transport mode 

does not authenticate or encrypt the IP header, which makes them vulnerable to 

any potential attacks [31]. Only the payload of the IP packet would be encrypted 

and authenticated. However, the benefit of using the E S P in Transport mode is 

potentially reduced overhead, compared to the Tunnel mode. The Tunnel mode in 

E S P , both encrypts and authenticates the original IP header. A s can be seen in 

figure 2.1, the E S P adds its own header on top of the existing IP header, which is 

then encrypted together wi th the payload. Also, the E S P packet trailer is appended 

to the encrypted payload. The E S P then adds an additional IP header on top of 

the E S P header and an optional authentication data field to the end of the packet, 

which contains I C V [31]. 

In case A H and E S P were to be used together, the situation would become 

slightly more complex, depending on which modes are used in both of these pro-

36 



AH + ESP Tunnel M o d e 

N e w IP Header I AH Header ESP Header I IP Header 

- E n c r y p t e d -
- A u t h e n t i c a t e d -

Fig . 2.2: E S P and A H encapsulation [28] 

tocols. Combined encapsulation can be seen in figure 2.2. This way the complete 

authentication of all data and headers can be achieved. However, considering all the 

added data fields, the total added packet overhead is quite significant. 

2.2 Security protocols for PTP over Ethernet 

When the P T P uses Ethernet encapsulation as a communication medium, the stan

dard security protocols that would be considered in other cases cannot be used. 

Instead, only the protocols that can ensure secure communication for Ethernet traf

fic can be applied, or alternatively, if the devices do not support secure Ethernet 

implementation, the P T P over Ethernet as a whole would be encapsulated in a differ

ent protocol. Encrypt ion of P T P over Ethernet may be more difficult to implement, 

compared to previous P T P over U D P , considering that hardware support may be 

needed and the security protocols working on the Data L ink Layer may not be as 

common as protocols that work on Network or Transport Layer. Nevertheless, the 

Data L ink Layer encryption can be the best one in terms of efficiency, considering 

that the encryption is done closer to the physical level. 

2.2.1 MACsec overview 

The Medium access control security (MACsec) or I E E E 802.1AE is a network se

curity protocol that works by encrypting the payload which would be in a regular 

Ethernet header or the whole Ethernet frame. The encryption algorithm used by 

Macsec is A E S - G C M , wi th a 128-bit key length. Unlike with V P N , the encrypted 

communication can happen only between two devices or wi thin the local area net

work, where the Ethernet is used as a Data L ink Layer protocol. The M A C s e c 

mostly contains the same fields as an Ethernet header, which can be seen in the 

figure 1.5, wi th addition to the M A C s e c Security Tag field and the Integrity Check 

Value ( ICV) [32] as can be seen on the figure 2.3. M A C s e c can either function on 

a hop-by-hop decryption and encryption basis [24] or alternatively, it can be done 

solely on the end-devices. 

37 



Priority 

MACsec 
Eth erType 
0x6GE5 

+ 

VLAN TAG User Data 

MACsec 
Eth erType 
0x6GE5 

+ 

I MACsec 
Eth erType 
0x6GE5 

+ 

User Data 
MACsec 

Eth erType 
0x6GE5 

+ \ 
Destination Source _ ' 

Address Address bec^AO, Secure Data ICV 

MAC Addressee —*- "* Frame data 

Fig . 2.3: M A C s e c frame wi th encrypted V L A N frame [33] 

In the scenario that none of the switches in the network topology support M A C 

sec, the encrypted frames wouldn't be able to be encrypted or decrypted. The 

switches, however, would be able to forward the frames to the hosts based on the 

source and destination M A C address [34]. This would, however, have the same effect 

on the Transparent clocks as was already mentioned in the section 2.2, that being 

the fact that the Transparent clocks would not be able to interact wi th the P T P 

message, thus potentially lessening the precision and accuracy. It also needs to be 

considered that some switches may not behave as expected if they do not recognize 

the M A C s e c Security Tag field. 

Looking at the different scenarios, where the switches in the network do support 

M A C s e c , the hop-by-hop mechanism would be used. This means that all the frames 

upon arrival at the switch port would be decrypted. In case there is a running 

Transparent clock instance on the switch, it would be able to interact wi th the P T P 

message ordinarily. Therefore, after replicating the message and adding the value 

to the Correction field in the P T P message, the switch would encrypt it and send it 

further down the network based on its destination M A C address. It should also be 

noted that M A C s e c can be optionally enabled only on some switch ports. Meaning 

that, if the M A C s e c is not enabled on the specific port, that port wi l l process the 

frames gular switch [34]. 

2.2.2 Ethernet over IP 

This can be considered rather an unconventional method, considering that commu

nication is done by conveying the unencrypted Ethernet frame, which would nor

mally be communicating on the Data L ink Layer, using Ethernet over IP (EoIP). 

To provide the needed level of security, EoIP would need to be used together wi th 

38 



some security protocol described in section 2.1, which would additionally encapsu

late the Ethernet frame [35]. This solution would not be optimal for standard use 

case scenarios, considering the massive overhead, which would be part of the whole 

encapsulation and decapsulation process. However, if part of the network is being 

synchronized using the P T P over Ethernet, this method could be used to communi

cate the Ethernet frame wi th the P T P packet to different parts of a network, while 

keeping the necessary security requirements. 

39 



3 Implementation 
This chapter shall concern itself wi th the description of the technical implementation 

of the concepts described in the previous chapters. Note that most of the configura

tion wi l l be done using Linux Command-line interface (CLI) , which is often referred 

to as a terminal. Many commands are executed wi th superuser privileges which is 

denoted as root, and the device name is after @ sign. 

3.1 Embedded Linux for ARM 

The devices used for the implementation of P T P in this thesis, run on A R M Cortex 

processors, produced by N X P semiconductors, designed to be used in industrial 

settings. Due to the proprietary character of the real-world application, which is 

the Powerdynax company in charge of, further specifications of the used devices 

cannot be revealed. The operating system used on these devices is custom Linux for 

embedded systems. This means that the Linux instance is made for the specific A R M 

device with a specific use case. This is done wi th the help of the Yocto project which 

offers a set of various tools that are used to create customized images. A l l needed 

software packages and binaries are built together with the Linux itself. The building 

or "baking" process is done using Bi tBake , which consists of layers and allows for 

the specification of exact tasks to be done. The manufacturers of the specific boards 

often provide Board Support Package (BSP) that can be applied when creating a 

Linux image for recommended device [36]. Addi t ional ly to that different Yocto layers 

may be provided by various developers, that describe additional hardware-specific 

packages [37]. The layers can also be added by the user, that specify packages that 

have not been provided by the manufacturers of the board. The figure 3.1 shows 

the configuration and build process of the Poky, which serves as a reference system 

build, using Yocto tools [39]. 

The build directory is first created by executing a command as seen in 3.1 in a 

Linux terminal. 

Lis t ing 3.1: Create bui ld directory 

me@my_pc:~/my_project$ s o u r c e _ d i r o e - i n i t - b u i l d - e n v b u i l d _ d i r 

The Bi tBake executed from the created bui ld directory looks into the existing 

poky layers and tries to create a Linux image based on them. The user may specif

ically define, which layers are to be included in the build process and which are to 

be excluded, in layer configuration files. Again , due to the proprietary character of 

40 



Source Directory (e.g. poky directory) 

b i t bake 
bui ld — 
d o c u m e n t a t i o n 
m e t a 
m e ta -poky 
me ta -se l f t es t 
m e t a - s k e l e t o n 
m e t a - y o c t o - b s p 
Sc r ip t s 

o e - s e t u p - b u i l d d i r 

oe - in i t -bu i l d -env 

U s e r Con f i gu ra t i on 
Edi ts 

~ ~ * I 

Build Directory y 

c o n f 

b b l a y e r s . c o n f 
l oca l . con f 
s i t e . con f 
au to .con f 

oe - in i t - bu i l d -env 

Fig . 3.1: Poky Yocto layer [38] 

the used devices, more information in regard to specific Yocto layers and configu

rations, used for this device, cannot be provided. However, for the purpose of the 

thesis, only the description of the installation of the required tools is needed. For 

this the IMAGE_INSTALL_append variable in a local, conf file would be used. The 

local, conf file specifies packages that are to be installed wi th Linux image, together 

wi th the additional behavior of the operating system [38]. A s can seen in the 3.2, 

some of the packages needed for the purpose of the thesis were specified to be built. 

Lis t ing 3.2: Install packages 

IMAGE_INSTALL_append = = " \ 

e t h t o o l \ 

t s h a r k \ 

l i n u x p t p \ 

w i r e g u a r d - t o o l s \ 

i p r o u t e 2 \ 

strongswan \ 

The bblayers.conf specifies which layers, that include the packages specified in 

the layers, conf should be read by Bi tBake. Once the configuration is done, the 

Linux image can be created using bitbake utility. Bitbake allows for the specification 

of different types of images, which may have different properties, however for the 

current use-case, the core-image-full-cmdline suffices [40]. The building process 

is started by executing 3.3. Note that the process of Linux image building may 

41 



take several hours, depending on the available resources of the device that runs the 

compilation. 

Lis t ing 3.3: Bitbake image 

me@my_pc:~/my_project/build_dir$ b i t b a k e core - image - f u l l -

cmdline 

Once the customized Linux image is created, it can be found in trap/'deploy/im

ages directory, located in the previously created build_dir [41]. The Linux image 

must be then loaded to A R M devices in order to be used. This can be done using 

a U S B flash disk, or memory card, to which the image can be loaded, and from 

which the A R M device can also boot the operating system. Loading of the image 

into the removable device is done by dd L inux uti l i ty as seen 3.4, where the if spec

ifies the source, and of specifies the destination, which is the removable disk device 

[42]. Note that the resulting created image may be compressed by Bi tBake , it wi l l 

therefore need to be extracted based on the used compression format. Image can 

also be flashed from the removable disk device directly into the internal memory of 

the A R M device using the same principle as seen in the 3.4, where the destination 

would be the internal disk, which overwrites all existing data. Note that embedded 

devices often use their own preinstalled bootloader. If the new system was to be run 

from the memory card, it must be specified in the bootloader environment, what 

partition it should boot into. The bootloader used in the current instance is U-boot, 

which can be accessed directly at the beginning of the boot process. Once the U -

boot environment is accessed, the variable which specifies the boot parti t ion must 

be changed so that the destination parti t ion is that of a removable device. The 

U-boot environment is then saved to a separate memory partition, located apart 

from that of a regular filesystem memory. 

Lis t ing 3.4: Flashing image 

me@my_pc:~/my/path$ dd i f = core - i m a g e - f u l l - c m d l i n e . m y _ f o r m a t 

of =/dev/sda 

3.1.1 Additional configuration 

It must be noted that in the current case, some tools cannot be compiled using 

Yocto, due to kernel compatibility issues. There is therefore a need to cross-compile 

these tools for A R M architecture on a different computer and then move them to the 

destination A R M device. This is the case wi th Wireguard, where the latest imple

mentation does not support the kernel version used on the current devices. For this 

42 



reason, the alternative Wireguard implementation written in the Go programming 

language must be used. The compilation of the Wireguard-go wi l l be done as seen 

in 3.5, and the resulting binary file wi l l be moved to the destination device. Note 

that the wireguard-tools package specified in the Yocto local, conf file contain only 

the tools used for the configuration of Wireguard, not its implementation. 

Lis t ing 3.5: Cross-compile wireguard-go 

me@my_pc:-/wireguard-go$ G00S=linux GOARCH=arm CGO_ENABLED=0 

go b u i l d -v -o wireguard-go 

In the case of Macsec, its compilation must be enabled directly in the ker

nel configuration file, which is usually specified by having defconfig in its name. 

If done through Yocto there needs to be created a patch, which adds the C O N -

F I G _ M A C S E C = y item to the specified configuration file to bui ld a Macsec as a 

static driver. Alternatively, the Macsec can be built as a module, by specifying the 

"m" option. The building process continues as specified before, wi th the difference 

that the whole kernel may be rebuilt again. 

The Strongswan, which is to be used as an implementation of IPsec, for its proper 

function requires additional configuration of the kernel configuration file defconfig 

as well. In regular Linux distributions the selected kernel configuration options may 

be enabled by default, however considering the character of the A R M device, in this 

case, it has to be done manually. A l l requirements can be seen in the electronic 

appendix. 

What should be also noted is the fact that the versions provided by the existing 

layers may not have all the features needed for the correct configuration of the 

system. In this case, it is the ptplinux, strongswan and iproute2 for which additional 

.bb recipes must be made in the custom layer, which specifies the newer version 

that is provided by the existing layers. The relevant part of Yocto layer structure 

used in this bui ld can be seen in Appendix listings, where layers that describe 

iproute2, linuxptp and strongswan, were taken from the latest existing OpenEmbeded 

framework and modified so that they would be compatible wi th current Yocto version 

[46], [47], [48]. 

3.1.2 Networking 

Once all to-be-used A R M devices are up and running, the networking needs to be 

set up. This can be done in a standard way by using ip address add command. For 

testing purposes, the IPv4 network range to be used in the current implementation 

on physical interfaces wi l l be TEST-NET-1: 192.0.2.0/24, a s recommended by R F C 

43 



5737 [43]. Therefore, setting an address on the Grandmaster clock device network 

interface ethl is done by executing 3.6. The IPv4 address on all other network 

interfaces used in the local network is done in the same manner, just wi th different 

addresses. If networking is not set, the device would have to be accessed by means 

of a serial interface or multimedia interface. 

Lis t ing 3.6: Set IPv4 address 

root@ptp_deviceA:/# ip a a 192.0.2.1/24 dev ethl 

Another aspect that needs to be set for the Grandmaster clock device is syn

chronization wi th the external time source. Normally the P T P Grandmaster would 

be synchronized wi th G P S or directly wi th the atomic clock. Considering the un

availability of these means, the N T P protocol wi l l be used instead. In order to syn

chronize the Grandmaster wi th the external network source using N T P , the chrony 

and chronyc packages are required, which can be installed the same way as seen in 

the 3.2. The external N T P server, which must provide time for the Grandmaster 

clock wi l l be specified by adding specific information to the chrony. conf file located 

in etc directory. In the added line the pool specifies that a pool of servers can be 

used. The ntp.nic.cz specifies a public N T P server used in the region [45], and the 

iburst specifies the init ial burst of requests to speed up N T P synchronization [44]. 

Upon modifying the chroy.conf file, chronyd service must be restarted in order 

for specified settings to take effect. This can be done by systemctl restart followed 

by the name of the systemd service. To verify that the device is being synchronized 

wi th the external N T P server the chronyc command can be issued as seen in 3.7. 

The meaning of the N T P parameters shall not be further explained, as this is not 

the primary focus of the thesis, however by seeing the specified ntp.nic.cz in the list 

of active servers, it can be confirmed that the N T P connection is active. 

Lis t ing 3.7: N T P connection 

root@ptp_deviceA:/# systemctl restart chronyd 

root@ptp_deviceA:/# chronyc sources 

MS Name/IP address Stratum P o l l Reach LastRx Last sample 

~* n t p . n i c . c z 1 6 377 50 -128us[ -142us] 

+/- 2688us 

It should also be noted that the used devices have two network interfaces, of 

which the ethO on the Grandmaster clock device is used for communication wi th 

the N T P server and SSH connections, and ethl which is to be used for the purposes 

of P T P and encryption. The user should also make sure that there are no layers 

44 

http://ntp.nic.cz
http://ntp.nic.cz
http://nic.cz


that would create unneeded systemd services as they would add additional load to 

the system unnecessarily. 

3.2 PTP for Linux 

The P T P support for the Linux kernel was implemented by Richard Cochran in 2010 

[49]. The P T P infrastructure for Linux works together wi th S O _ T I M E S T A M P I N G 

Linux socket option which allows for hardware timestamping of the arrived packets 

[50]. The P T P for L inux works on the basis of a clock driver, which is kernel-based, 

and a class driver which is userspace-based [49]. 

3.2.1 System properties 

The previously mentioned S O T I M E S T A M P I N G is a Linux socket interface option 

based in the Linux user space. The socket is used as a C programming language 

function based on its use case. The socket function may provide many function

alities based on which option is set by setsockopt, which is another function [51]. 

The S O T I M E S T A M I N G socket option provides support for timestamp generation 

from multiple sources [50]. It should not be confused wi th the S O T I M E S T A M P , 

which generates timestamps only for incoming messages. The S O T I M E S T A M I N G 

generates timestamps for both the reception and transmission of messages over a 

network. The source of timestamps provided by S O T I M E S T A M P I N G is deter

mined by what bit is set in setsockopt function [50]. In the case of P T P , it would be 

optimal that timestamps are generated directly by the network adapter, considering 

that it is supported by the device. This way the timestamps, in previous chapters 

described as tl, t2, t3, t4 can be created. 

The P T P infrastructure for Linux defines basic clock operations as Setting the 

time, Gett ing the time, Shifting the clock by a given offset, and Adjustment of clock 

frequency [49]. In the white paper provided by Renesas semiconductor manufacturer, 

the P T P implementation of the Slave clock consists of four main components [52] 

which can be seen in the figure 3.2, and are described as follows: 

1. The user space drivers, which implement the protocol according to I E E E 1588, 

and the clock servo algorithm used for readjusting the internal clock [52]. 

2. L inux kernel and its drivers, interacting directly wi th the hardware. 

3. The unit which is capable of providing hardware timestamps, integrated wi th 

the network interface. In figure 3.2 denoted as T S U . 

4. The hardware clock that generates the time and provides it to the unit, which 

is controlled by the servo algorithm. In figure 3.2 denoted as P H C . 

45 



PTP Slave Clock 

Fig . 3.2: L inux P T P scheme wi th G P L - 2 Linux kernel license [52] 

The clock servo is an algorithm that allows for the clock to be readjusted based 

on the calculated time offset while avoiding the re-setting of an existing value of the 

clock [53]. The example reason why the correct time value cannot be simply set 

as a replacement for the current time is that if the Slave clock time was too much 

ahead compared to the Master clock, the time-back could happen [53]. A similar 

problem would occur if the Slave clock was too behind compared to the Master 

clock. Inconsistencies and disturbances among other system processes would very 

likely start occurring. This is why the servo algorithm was introduced into P T P to 

gradually correct the t iming error over a certain period of time. 

It should also be noted that the default timescale used by the P T P hardware 

clock is International Atomic Time (TAI) , which is different from the typical system 

timescale which is in U T C [54]. The T A I at the time of wri t ing is currently diverged 

by 37 seconds from the U T C , meaning that U T C is 37 seconds behind the T A I 

[55]. Due to the fact that the Grandmaster clock may not have the means to obtain 

precise T A I , the hardware clock may allow the usage of an arbitrary timescale. This 

behavior can be however configured directly from the user space driver. 

A s has been mentioned before, the official Linux specification defines clock 

drivers, which are kernel-based, and those that are userspace-based. Note that user 

space in Linux is an environment for the execution of application software, while 

the kernel deals with system calls and is able to interact directly wi th the hardware. 

The clock kernel driver is registered to a class driver, meaning that all the hardware 

clocks can be managed from the user space. Implementation of the clock drivers 

may differ, considering the properties of the hardware. 

46 



The user space implementation of P T P on Linux is done by The Linux P T P 

Project software. This project provides a set of tools and daemons that manage 

specific clock operations [54]. Note that a daemon is software designed to run as a 

background process. The ptpJ^l is a daemon that synchronizes the P T P hardware 

clock from the network interface [54]. The phc2sys is a daemon that synchronizes 

the P T P hardware clock and the system clock [54]. The pmc is the tool used to 

configure ptpJ^l in run-time. 

A s mentioned previously, the P T P timestamps its messages directly at a network 

interface. It is therefore important to determine which timestamping options are 

supported by the network interface in question. This can be determined by using the 

ethtool, which is a Linux uti l i ty used to "query or control network driver and hard

ware settings" [56]. Using the ethtool command in the Linux terminal, the required 

properties of the network interface in use can be determined. Upon inspection of all 

available options wi th command ethtool -help, it can be determined that the correct 

option for showing the timestamping possibilities of a given network interface is -

show-time-stamping, which can be alternatively used as a -T [56]. Therefore after 

issuing the command ethtool -T into the Linux terminal, with a specific network 

interface as an argument, the output as seen in 3.8 can be observed. 

3.2.2 PTP driver tools 

List ing 3.8: Network interface timestamping information 

root@ptp_deviceA:/# ethtool -T ethl 

Time stamping parameters f o r e t h l : 

C a p a b i l i t i e s : 

h a r d w a r e - t r a n s m i t (SOF_TIMESTAMPING_TX_HARDWARE) 

s o f t w a r e - t r a n s m i t (S0F_TIMESTAMPING_TX_SOFTWARE) 

h a r d w a r e - r e c e i v e (S0F_TIMESTAMPING_RX_HARDWARE) 

s o f t w a r e - r e c e i v e (S0F_TIMESTAMPING_RX_SOFTWARE) 

s o f t w a r e - s y s t e m - c l o c k (S0F_TIMESTAMPING_SOFTWARE) 

hardware-raw-clock (SOF_TIMESTAMPING_RAW_HARDWARE) 

PTP Hardware C l o c k : 0 

Hardware Transmit Timestamp Modes: 

o f f (HWTSTAMP_TX_OFF) 

on (HWTSTAMP_TX_ON) 

Hardware Receive F i l t e r Modes: 

none (HWTSTAMP_FILTER_NONE) 

a l l (HWTSTAMP_FILTER_ALL) 

47 



Upon the inspection of available capabilities, it can be determined which times-

tamping sources are available for the network interface ethl. For the hardware 

timestamping the following flags are the most important, for which the definitions 

are taken directly from the Linux kernel documentation [50]. 

. S O F _ T I M E S T A M P I N G _ T X _ H A R D W A R E - request transmission timestamp 

created by the network interface 

. S O F _ T I M E S T A M P I N G _ R X _ H A R D W A R E - request reception timestamp 

created by the network interface 

. S O F _ T I M E S T A M P I N G _ R A W _ H A R D W A R E - report hardware timestamps 

when available 

For the software timestamping the following flags are important [50]. 

. S O F _ T I M E S T A M P I N G _ T X S O F T W A R E - request transmission timestamp 

created by the driver; timestamp is created when data leaves the kernel 

. S O F _ T I M E S T A M P I N G _ T X S O F T W A R E - request reception timestamp 

created by the driver; timestamp is created when data enters the kernel 

. S O F _ T I M E S T A M P I N G _ S O F T W A R E - report any software timestamps when 

available 

The P T P Hardware Clock parameter describes which hardware clock is cur

rently in use. A s seen in 3.8, the selected clock is the one denominated with index 

0. The H W T S T A M P T X O F F option disables the hardware timestamping for 

to-be-transmitted packets [50]. The H W T S T A M P T X O N enables the hardware 

timestamping for to-be-transmitted packets [50]. The Fil ter modes would be used 

to indicate which incoming messages are to be timestamped. However in this case 

there are only H W T S T A M P F I L T E R N O N E and H W T S T A M P F I L T E R A L L 

options that determine if either no timestamp for any received packet should be 

provided or all receiving packets should be timestamped. 

3.2.2.1 p t P 4 l 

After it has been established that P T P timestamping is supported on a network 

interface, it can be proceeded further wi th the usage of P T P tools. The ptp4l 

util i ty can be either used explicitly from the terminal, or it can be configured as a 

systemd service, running in the background wi th the start of the system. In order to 

determine which configuration settings are to be used, the ptp^l -h command can be 

issued in the system terminal or the documentation [57] can be consulted. B y issuing 

the command ptpJ^i -m -i ethl in the Linux terminal, the ptpJ^i daemon is started, 

where -m specifies that all messages should be written into standard output (stdout) 

and -i is used to specify the network interface [57]. Note that no other attributes 

48 



were specified, therefore other options shall be interpreted as defaults, meaning that 

P T P messages are to be encapsulated inside U D P and IPv4 protocols, the delay 

mode is E 2 E and the timestamping is done by hardware if available. 

Lis t ing 3.9: Ptp41 initializatoin 

root@ptp_deviceA:/# ptp^l ~m ~i ethl 

ptp41 [36.136] : s e l e c t e d / d e v / p t p l as PTP c l o c k 

ptp41 [36 . 141] : p o r t 1: INITIALIZING to LISTENING on 

INIT_COMPLETE 

ptp41 [36 . 142] : p o r t 0: INITIALIZING to LISTENING on 

INIT_C0MPLETE 

A s observed in 3.9, the ptp4l automatically selected /dev/ptpl clock for hardware 

timestamping, which belongs to selected ethl interface. The following messages 

indicate that the port had been put into a listening state, meaning that the port is 

waiting for the Master clock to send an Announce message. If an Announce message 

was to be received, the B M C A would be performed. 

Lis t ing 3.10: Ptp41 listening 

ptp41 [43.682] : p o r t 1: LISTENING to MASTER on 

ANNOUNCE_RECEIPT_TIMEOUT_EXPIRES 

ptp41 [43.682] : s e l e c t e d l o c a l c l o c k 9 1 b 7 1 1 . f f f e . e c e 4 0 d as 

best master 

ptp41 [43.682] : assuming the grand master r o l e 

A s can be seen in 3.10, in this case, the device did not receive any Announce 

message after a period of time, meaning that standard B M C A is not performed. 

Instead, ptpJ^l selects the local clock as the most suitable provider of time and 

assumes the role of the Grandmaster clock on a selected network interface. A l l the 

devices that are in the same network wi l l receive messages, which are sent from the 

address of the configured device to the multicast group, which are all interfaces wi th 

initialized ptpJ^l part of. 

The brief output from packet-capture uti l i ty tshark, which can be seen in 3.11, 

shows all the packets captured on the network interface ethl, which is again specified 

by -i parameter. B y using option -Y ptp, only the packets related to P T P are 

displayed. The source IPv4 address 192.0.2.1 is that of a Master clock device 

and the destination is a multicast address 224-0.1.129 used by P T P devices. The 

number after the protocol name describes the size of the message in bytes. The ptp41 

in multicast mode sets the behavior of the Master clock so that it does not wait for 

49 



the Slave clocks to request advertisement, but simply periodically sends Announce 

messages together wi th Sync and Follow Up that are needed for synchronization. 

Lis t ing 3.11: Tshark capture P T P v 2 Announce 

r o o t @ p t p _ d e v i c e A /# tshark - i ethl -Y ptp 

C a p t u r i n g on ' e t h l ' 

1 0.000000000 192.0.2.1 ? 224 . 0 . 1 . 129 PTPv2 106 Announce 

Message 

2 0.999038000 192 .0.2.1 ? 224 . 0 . 1 . 129 PTPv2 86 Sync 

Message 

3 1.000302500 192.0.2.1 ? 224 . 0 . 1 . 129 PTPv2 86 Follow_Up 

Message 

The ini t ial setup of P T P for a specific network interface using ptp41 is rather 

simple assuming that all predispositions are fulfilled. Let us consider the scenario 

where to the existing device called ptp_deviceA, another device called ptp_deviceB 

is connected directly v ia the Ethernet cable. The IP address of the ptp_deviceB is 

set so that it is in the same subnetwork as ptp_deviceA. Therefore the address of 

ptp_deviceB would be 192.0.2.2/24. 

Once the configuration is done the ptp41 command is executed the same way as 

in 3.10, with the addition of -s flag, which indicates that the device wi l l only act 

as a Slave clock. Note that wi th this flag added, the device may still indicate that 

the local clock was selected as a most suitable provider, however, it may not act as 

a Master clock on any network interface, instead, it wi l l only listen for Announce 

message on a specified network interface. 

A s can be seen in 3.12, after ptp41 has been executed, the initialization is the 

same as in 3.9. What can be noticed at first is that the ptp_deviceB does not select 

its own clock as the best Master clock but instead determines that the most suitable 

Master clock is 91b711.fffe.ece40d, which belongs to ptp_deviceA. Upon determin

ing the Master clock the ptp_deviceB changes the port state from L I S T E N I N G to 

U N C A L I B R A T E D , meaning that the Slave clock is already communicating wi th 

the Master clock device, however, it is st i l l not synchronizing. The P T P port in 

this state is init ial izing the servo algorithm and preparing to start creating clock 

adjustments [4]. Once the state changes from U N C A L I B R A T E D to S L A V E the 

clock adjustments are started to be performed based on the P T P port from which it 

is being synchronized [4]. The state of the servo itself is indicated by sO, si, and s2 

flags [58]. The sO indicates an unlocked state, meaning that changes to be done to 

the clock are sti l l being calculated, but not applied. The si indicates the clock step 

state, meaning that the clock can be changed without l imitation. The final state 

50 



s2 indicates the locked state, meaning that the clock cannot be changed drastically 

but is slowly adjusted to match the Master clock. The process of synchronization 

and change of states may take significantly longer wi th the software timestamping, 

considering that system resources are also used by other applications, which require 

their own C P U time. 

List ing 3.12: Synchronization between two nodes 

root@ptp_deviceB:/# ptp^l -m -s -i ethl 

ptp41 [158.813] 

ptp41 [158.813] 

ptp41 [161.814] 

ptp41 [154.812] : p o r t 1: new f o r e i g n master 9 1 b 7 1 1 . f f f e . e c e 4 0 d 

-1 

s e l e c t e d best master c l o c k 9 1 b 7 1 1 . f f f e . e c e 4 0 d 

port 1: LISTENING to UNCALIBRATED on RS_SLAVE 

master o f f s e t -209846025 sO f r e q +0 path 

d e l a y -155 

ptp41 [163.815] : p o r t 1: UNCALIBRATED to SLAVE on 

MASTER,CLOCK.SELECTED 

ptp41 [164.815] : master o f f s e t -1076 s2 f r e q +12550 path 

d e l a y -155 

The master offset value indicates the offset of the Slave clock from the Master 

clock, as was described in the theoretical chapter 1.2.2.2. The offset values shown in 

the output are in nanoseconds. A s can be noticed in the provided output, the ini t ial 

offset between the Slave and Master is enormous. This is due to the fact that the de

vice ptp_deviceB was not, prior to establishing a P T P connection, connected to any 

external time source, thus starting at zero, from the U N I X time epoch perspective. 

Once the servo algorithm in state si jumps the clock to a time closer to the Master 

clock, the following offset is much smaller than the ini t ial one and the clock is being 

slowly readjusted. The freq value describes the servo frequency adjustment of the 

clock in Parts Per Billion (ppb) unit [58]. The path delay represents the calculated 

delay between Master and Slave as described in the theoretical chapter 1.2.2.2. 

If ptp4l instance on both ptp_deviceA and ptp_deviceB would be used with -S 

option, the results would likely be significantly worse, due to the overhead caused 

by software timestamping. 

The configuration of ptp^l can be done through a file, using - / parameter, or pmc, 

which provide much more in-depth options than command line flags. The common 

practice is to set ptpJ^l as a systemd service, which operates ptp^l in the background 

wi th all the options specified in .conf file. 

51 



3.2.2.2 pmc 

W i t h the pmc management client, more detailed information can be provided re

garding the P T P synchronization. It can also be used to set additional options 

for the existing P T P instance. Therefore, in order to use pmc, the ptpJ^l must be 

active. The pmc is executed the same way as the ptpJ^l. The pmc reads standard 

input (stdin), meaning that specific actions need to be queried from pmc in order to 

obtain needed data [59]. The action used to obtain data is G E T and the action used 

to set data is S E T . These actions are followed by specific M A N A G E M E N T IDs 

that describe the information that is to be queried [59]. In order to communicate 

wi th the existing ptpJ^l process, the -u flag needs to be specified, which specifies 

Un ix Domain Socket as a communication method [59]. Un ix Domain Socket is used 

for communication between processes running on the same system, and each process 

has assigned its own endpoint where as the default is specified that of a ptpJ^l process 

[59]. Another option used wi th pmc is -b, which specifies the number of boundary 

hops [59]. Therefore in order to display information about the local clock, which 

acts as a Slave clock, and the adjacent clock, wi th which it communicates, the -b 1 

would be used. In order to display only the local clock, the -b 0 option is used. The 

output when using pmc wi th C U R R E N T D A T A S E T id can be observed in 3.13. 

Lis t ing 3.13: Pmc with ' C U R R E N T D A T A S E T ' 

root@ptp_deviceB:/# pmc -u -b 1 'GET CURRENT_DATA_SET ' 

s e n d i n g : GET CURRENT_DATA_SET 

5 7 c 0 3 9 . f f f e . f 9 7 b 5 2 - 0 seq 0 RESPONSE MANAGEMENT 

CURRENT_DATA_SET 

stepsRemoved 1 

o f f s e t F r o m M a s t e r 3.0 

meanPathDelay 453 . 0 

The stepsRemoved variable describes the number of nodes passed in the commu

nication path [58]. The offsetFromMaster describes the last measured offset from 

the Master clock and the meanPathDelay describes the mean value of path delay 

between the Slave and Master clock [58]. 

To get more precise information about the clock itself, the T I M E S T A T U S N P 

would be used, of which the parameters are described as follows. The master_offset 

variable has the same meaning as above described offsetFromMaster. The ingress_time 

is a U N I X timestamp in nanoseconds of when was the last P T P message received 

[61]. The other important variable is lastGmPhaseChange which describes when the 

phase of the Grandmaster clock changed. The gmPresent variable is true if the clock 

52 



is synchronized to the Grandmaster clock. If the clock is Grandmaster itself then 

the value is false [58]. The gmldentity specifies the identity of the Grandmaster 

clock. In order to change specific variables using pmc, action would be performed 

as seen in 3.14. The B M C A - r e l a t e d priority 1 value was changed from default 128 

to 1 on the Master clock device, meaning that all the devices running B M C A wi l l 

select this clock as the first option. A l l the other parameters, described in 1.1 can 

be configured the same way. 

Lis t ing 3.14: Pmc with ' C U R R E N T D A T A S E T '  

root@ptp_deviceA:/# pmc -u -b 0 'SET PRIORITYl 1' 

s e n d i n g : SET PRIORITYl 

91b 7 1 1 . f f f e . e c e 4 0 d - 0 seq 0 RESPONSE MANAGEMENT 

PRIORITYl 

p r i o r i t y l 1 

A s was previously mentioned the P T P hardware clock by default uses T A I 

timescale which is diverged by 37 seconds from the U T C timescale used by the 

system clock [55]. To obtain the correct system time on Slave clock devices, this off

set must be accounted for, when using phc2sys the timescale can be set to arbitrary 

by setting ptpTimescale and currentUtcOffset to zero using pmc wi th G R A N D M A S -

T E R _ S E T T I N G S _ N P M A N A G E M E N T _ I D . Note that when the intention is to 

change even a single variable, the pmc wi l l require that all other variables are also 

specified in the same S E T action. 

3.2.2.3 phc2sys 

The phc2sys is used to synchronize two different clocks on the same device, usually 

the system clock to the P T P hardware clock used on the network interface. The 

phc2sys is required because ptpJ^l does not automatically synchronize the P T P hard

ware clock to the system clock that is used by the system. Note that if ptpJ^l uses 

software timestamping, the phc2sys does not need to be in place considering that 

the P T P software timestamps are already provided by the system clock. When syn

chronizing hardware and system clock, from the time synchronization perspective, 

the system clock becomes the Slave clock and the P T P hardware clock becomes the 

Master clock, where all the communication happens only wi thin the device system. 

Assuming that the ptp^l is already running, the phc2sys can be executed as seen 

in 3.15. The -s flag specifies the clock that wi l l take the role of the Master clock 

in the operating system, which is in this case the P T P hardware clock on the spec

ified network interface [62]. The -c flags specify the clock to act as a Slave clock 

53 



within the system [62]. In this case, this would be C L O C K R E A L T I M E , which 

is the system clock. Note that the roles of ethl and C L O C K R E A L T I M E could 

be arbitrarily exchanged as phc2sys does not l imit which device clocks synchronize 

wi th each other. The -S 1 parameter specifies that servo can be returned to si 

mode if needed, considering that if some sudden time changes were to occur, due 

to misconfiguration for example, it would take too long for servo to readjust the 

clock while in s2 mode. The -w specifies that phc2sys should wait unti l ptpJ^l is in a 

synchronized state, and then synchronizes the system clock according to currentUt-

cOffset which is specified in the Grandmaster clock settings, which can be displayed 

by pmc. Alternatively, the U T C offset can be provided manually with -O option 

and a specific number to adjust for the divergence. In the case of T A I the value -37 

would be used. 

List ing 3.15: Synchronization of system clock with hardware clock using phc2sys 

root@ptp_deviceB:/# phc2sys -m -s ethl -c CL0CK_REAL TIME -S 1 

-0 -37 

phc2sys [4118.673] : CLOCK_REALTIME phc o f f s e t 37007191239 sO 

f r e q +0 d e l a y 3875 

The Grandmaster clock wi th hardware timestamping must also have its time 

source. Considering that different service already provides t iming to ptp_devicaA, 

the system time can be used as a time source for the P T P hardware clock on the 

Master. This can be either done automatically, by specifying -a autoconfiguraiton 

command with -r option used twice to specify system clock as a time source [62], 

or manually by simply setting the network interface wi th hardware clock as a Slave 

and the C L O C K R E A L T I M E as a Master. 

Notice that the delay between two clocks on the same device can be larger than 

between two directly connected clocks on the network. This is due to the fact that 

the system clock is software-based, therefore phc2sys has to fight for the C P U time 

wi th other processes. 

3.3 Network security on Linux 

There are many different tools that can be used to cryptographically protect the net

work traffic in the Linux operating system. These tools often differ in the complexity 

of implementation, as well as the difference in the setup process. 

54 



3.3.1 Wireguard-go encryption 

The original implementation of the Wireguard was written to be run from the kernel 

of the operating system. However, as was mentioned in the 3.1.2, the standard Wire-

guard cannot be compiled using Yocto, due to kernel compatibility issues. Because 

of this, an alternative written in Go must be used. The most crucial difference com

pared to the standard Wireguard version is that Wireguard-go runs from the user 

space. Generally speaking, the speed of processes executed in the kernel or user 

space is the same. The main culprit of slow-down for the userspace applications 

comes when the system calls need to be made. For each system call the user space 

applications need to switch to supervisor mode, which takes additional resources and 

C P U time [63]. Nevertheless, the configuration process of the Wireguard remains 

the same. The first step that needs to be done is the creation of a vir tual interface, 

which wi l l be used for routing the encrypted network traffic. This can be done by 

simply executing the wireguard-go binary file, wi th the specified interface name as 

an argument. 

Once the vir tual interface is created an IPv4 address that is to be used as a 

point for encrypted communication, must be assigned. The IPv4 address w i l l be 

assigned the same way as described in the 3.1.2, with the selected IPv4 range being 

TEST-NET-2: 198.51.100.0/24 as recommended by R F C 5737 [43]. Note that 

these addresses wi l l serve only for the encrypted communication between the vir tual 

network interfaces. However once traffic comes out of the selected physical interface, 

the source IP address becomes that of the physical network interface. In order to 

communicate wi th other peers, every vir tual interface needs to have assigned a public 

and private key. These can be generated using wg tool, which was compiled in the 

previously mentioned wireguard-tools package. Using wg genkey command allows for 

the generation of a private key and a public key, which is derived from the private 

key. Once these keys are created they can be assigned to the vir tual interface by 

using wg set command [26] as seen in the 3.16. When the keys are assigned to the 

interface, it can be rendered active using ip link command. 

Lis t ing 3.16: K e y creation 

root@ptp_ devi c e A ~# wg genkey > private_keyA 

root@ptp_ devi c e A ~# wg pubkey < private_keyA > public_keyA 

root@ptp_ devi c e A ~# wg set wgO private-key ./private_keyA 

After each device is configured, the peers wi th which encrypted communication 

is to be done must be explicitly specified for the vir tual interface. This can be 

done again using wg tool. Every Wireguard interface is identified by its public key, 

55 



therefore this public key must be also known by the opposite interfaces which are 

to communicate with each other. Additionally, both IP addresses of the vir tual and 

physical interfaces must be specified, including the network port number of the peer 

Wireguard instance. This is done by executing wg set wgO wi th the addition of peer 

keyword followed by the public key of a peer device. In addition to that the IP 

address of a vir tual interface of a peer device is set by allowed-ips keyword, and an 

address of an endpoint, which is in this case address and port number of a physical 

interface of a peer device, is specified by endpoint keyword. Once everything is 

set, the configuration of all vir tual interfaces can be verified by using the wg show 

command. Note that each vir tual interface on the same device can have different 

configuration settings, meaning that each vir tual interface can be set up so that it 

communicates wi th different peers. 

Additionally, the tshark can be used to verify how the traffic is being handled. 

When issuing ping command to the IP address of a vir tual interface of a peer, and 

then observing the traffic coming out of the current device vir tual interface, it wi l l 

be seen that it is unencrypted. However, when looking at the physical interface of 

the same device, the traffic is already encapsulated and encrypted. 

3.3.1.1 Configuration for P T P 

For P T P implementation this means that the network interface that is to be specified 

when using ptpJfl ut i l i ty must be the one that is created by wireguard-go, if the user 

wants the P T P traffic to be encrypted. There are however some additional steps 

that must be performed in order for P T P to function over Wireguard. Multicast 

communication is not natively supported by Wireguard, for this reason, the config

urations to the vir tual interface must be made. That is done by setting multicast 

with ip link set command on a specified vir tual interface as in 3.17. Additionally, 

the multicast addresses that the Grandmaster clock uses for communication have to 

be added to allowed-ips to the specified peer, on all devices. 

Lis t ing 3.17: Multicast configuration 

root@ptp_deviceA:/# ip link set dev wgO multicast on 

root@ptp_deviceA:/# wg set wgO peer 'cat public_keyB ' allowed 

-ips 198.51.100.1/32,224-0.1.129/32,224-0.0.107/32 

The crucial issue when configuring a V P N tunnel is that there is no M A C address 

assigned to the Wireguard virtual interface. That means that P T P cannot generate 

the clock identification value as it would wi th the regular network interface and 

instead it uses a default value 000000.fffe. 000000. This means that the Slave clock 

56 



cannot be synchronized to the Master, due to the fact that both have assigned the 

same default clock identification value. The ptp4l is not able to distinguish between 

different clocks if they do not have a unique identity. That can be fixed by reas

signing the clockldentity value for the given P T P instance through the configuration 

file, for each device in use, where the new values can be completely arbitrary. Once 

it is ensured that each clock in the encrypted network has its own clockldentity the 

synchronization can proceed the standard way. The output 3.18 shows both the 

contents of the configuration file for device ptp_deviceB and the start of synchro

nization on the vir tual interface. Note that some of the earlier versions of P T P for 

Linux do not support the changing of clock identity. Therefore the custom layer 

needs to be made for the Yocto project, in order to specify the suitable version of 

ptp4l to be built into the Linux image. 

Lis t ing 3.18: P T P configuration file and synchronization throught the virutal inter

face 

root@ptp_deviceB:-# cat settings. cfg 

[ g l o b a l ] 

# PTP clock identity for ptp_deviceB 

c l o c k l d e n t i t y 000000.0000.000002 

root@ptp_deviceB:-# ptp4l ~s -m -i wgO -S -f settings, cfg 

Another fact that needs to be considered is that due to the Wireguard network 

interface being virtual , the hardware timestamping is not supported, which can again 

be verified by ethtool - T, wi th the selected vir tual interface as an argument. A s was 

mentioned before, software timestamping brings a significant increase in path delay, 

compared to hardware timestamping, which is in this case increased even more due 

to the encryption. It should be noted that the total increase in the path delay is 

rather significant. The exact values shall be shown and analyzed in the part of the 

thesis that concerns itself wi th the practical measurement. 

The creation of the Wireguard vir tual interface is done by creating a T U N kernel 

vir tual network device used for reception and transmission of packets from the user 

space [64]. It creates a vir tual network within the device itself where the packets 

are created in the user space and afterwards routed to the physical interface. T U N 

operates on the Network Layer, which is also related to a T A P device, which operates 

on the Data L ink Layer. 

Nevertheless, upon inspecting the kernel driver for T U N , it can be determined 

that there is indeed no pointer that would indicate a link to the physical underlying 

device that would provide hardware timestamps. Due to this fact, there is no feasible 

57 



solution for the implementation of hardware timestamping on a T U N type of network 

interface. 

3.3.2 StrongSwan encryption 

There are many different implementations of the IPsec protocols, and each has its 

own specifications. The StrongSwan has been chosen as it has verified support for the 

A R M devices which are used in this thesis. The StrongSwan project is a descendant 

of the previous F r e e S / W A N project and is maintained by the part of developers who 

contributed to the original project. The configuration of the StrongSwan is a little 

bit more extensive than other protocols described in this thesis as it requires keeping 

track of configuration files which are used on each peer device. The newest version 

of StrongSwan makes use of swanctl utility, which can be used however only when 

the corresponding systemd service is active. To verify if the strongswan service is 

active, the systemctl status command can be used with the name of the service as 

an argument. 

In order to initiate the encrypted connection between two hosts, the previously 

mentioned configuration file needs to be created in the path used by swanctl utility, 

that is /etc/swanctl/conf.d. The configuration file uses a JSON-l ike format, where 

multiple different connections can be described and each section describes different 

properties of the described connection. The first section of the configuration file con

cerns itself with the specification of the I K E protocol parameters, that is local_addrs 

and remote_addrs, which is to be used for I K E operations. These addresses are of 

course those of ptp_deviceA and ptp_deviceB. The authentication basis is usually 

performed wi th the use of certification authorities and public keys, however for the 

sake of simplicity only P S K shall be used, which is specified by adding auth field as 

psk for both local and remote subsections in the file. The public and private keys 

could be used as well if needed certificate structure was to be provided, including 

the certification authority. 

The most important part of the IPsec configuration is the subsection children, 

which defines C h i l d Security Associations. The C H I L D S A is any Security Associ

ation, which was negotiated by I K E protocol and defines how is input and output 

traffic treated based on the defined selectors [65]. B y default, all traffic is treated 

dynamically meaning that selectors are determined based on the existing traffic 

[66]. However, to ensure the most predictable behavior, it is best to define selectors 

for outgoing and incoming traffic manually. The traffic matching is however sup

ported only for the Network Layer, meaning that only packets wi th IP headers are 

matched. The implication for P T P is that due to the fact that IPsec is not able to 

58 



match Data L ink Layer packets by policy, all P T P messages sent in L2 mode would 

be unencrypted. 

The C H I L D S A also allows specification of the cryptographic algorithm which is 

to be used. The algorithm can be defined for E S P and A H protocols. Unfortunately, 

StrongSwan does not currently support simultaneous usage of E S P for encryption 

and A H for authentication. A l l the proposed cryptographic algorithms must be 

supported by the Linux kernel and the StrongSwan must be built wi th adequate 

plugins. The encapsulation mode used by default is tunnel, however, it can be 

changed to transport wi th mode parameter. The example child configuration can be 

seen in the 3.19. Note that all proposed selectors and algorithms must be accepted 

by all sides before the connection can be initiated. Additionally, the physical network 

interface may be specified. 

Lis t ing 3.19: Swanctl child specification 

ptp-conn { 

ptp-- conn - c h i l d { 

l o c a l _ t s = 192 .0.2.0/24 

remote.ts=192.0.2.0/24 

i n t e r f a c e = e t h l 

esp_proposals=aes256gcml28 

> 

Another completely separate field called secrets has been defined in the same 

file, which would contain P S K that is to be used for the I K E verification. The key 

may be generated with the help of /dev/urandom, which is also mentioned in the 

Macsec configuration chapter. 

Management of the plugins that are to be used with the swanctl ut i l i ty is done in 

the /etc/strongswan. conf file, however for the very basic connection no extra plugins 

other than default ones are needed. Finally, once the configurations are set on all 

peer devices, strongswan service must be restarted wi th systemctl restart command. 

The Security association is established with swanctl -i -child followed by the name 

of the C H I L D S A , which also establishes the I K E Security association. 

3.3.2.1 Configuration for P T P 

The attempt at enabling standard P T P for Linux may be more complicated than ex

pected. This is due to the fact that P T P uses multicast for communication, which is 

59 



not natively supported by many IPsec implementations, including the StrongSwan. 

To enable transmission of multicast messages in StrongSwan additional experimen

ta l plugin would need to be installed called forecast [67], which requires manual 

additions to the Yocto recipe that configures the StrongSwan build. The forecast 

plugin, then would be specified in the mentioned strongswan.conf file wi th the P T P 

multicast groups as arguments. The multicast groups then would need to be added 

to traffic selectors on both devices. Additionally, specifications of netfilter marks 

would have to be added to the child configuration of the Master clock device [67]. 

After performing the above-mentioned steps the Master clock device can send the 

standard multicast messages to all peers. This would, however, work only in tunnel 

mode as transport mode does not support multicast at all . The major issue how

ever shows when trying to synchronize wi th the Master clock from the Slave device. 

The Slave clock devices also communicate with multicast, which unfortunately does 

not work wi th StrongSwan as the same multicast configuration on both the Master 

and Slave clock causes traffic to become unencrypted due to policy failures. The 

two-way multicast communication is not possible wi th IPsec. Due to this multicast 

synchronization cannot be securely encrypted using IPsec, as the stability issues are 

very much prevalent. 

To make the P T P synchronization work over IPsec, the unicast Slave would 

need to be used. The P T P unicast Slave clock works by specifying the Master 

clock statically by IP address or M A C address in the configuration file that can be 

seen in 3.20. The ptp4l daemon does not look for multicast Announce messages 

coming from the Master or Grandmaster clock, but instead, it starts to synchronize 

directly by sending the unicast Announce to the Master. This is done for all the 

Master clocks specified in the configuration file. The issue may be the fact that 

B M C A cannot be performed with any other potential Master clocks, meaning that 

synchronization options are l imited to what is specified in the configuration. The 

B M C A is not however a crucial factor needed to perform required measurements. 

To avoid any misconfiguration, the Master clock is also set to unicast mode when 

operating over IPsec, wi th the unicast slave. It should also be noted that the delay, 

when synchronizing v ia unicast messages may be in nanoseconds higher, due to 

additional processing used when determining the packet route when departing. 

60 



List ing 3.20: Unicast Slave configuration 

[ u n i c a s t _ m a s t e r _ t a b l e ] 

t a b l e _ i d 1 

UDPv4 192 .0.2.1 

[ e t h l ] 

u n i c a s t _ m a s t e r _ t a b l e 1 

What should also be noted is that if the tshark were not be run on the physical 

interface while StrongSwan is active in tunnel mode, one would see that incoming 

packets are showing twice, as "ESP packets and unencrypted as plaintext packets. 

However, for outgoing traffic, only E S P packets show up" [69]. A s mentioned in the 

StrongSwan documentation, this is "a peculiarity of the Linux kernel" [69]. 

3.3.3 Macsec encryption 

The Macsec security protocol as Layer 2 security protocol was defined by the I E E E 

standard, however, L inux kernel driver implementation and support was done by 

Sabrina Dubroca in 2015. Unlike wi th the previous instances of the security proto

cols, the implementation of the Macsec communication channel is rather straightfor

ward. What on the other hand is significantly more difficult is the enabling of P T P 

timestamping for the Macsec vir tual interface, which requires direct patching of the 

kernel source code, of which more shall be explained in the following subsection. A s 

mentioned, the Macsec security protocol operates through a vir tual interface which 

can be created wi th the help of a standard collection of utilities called iproute2. The 

creation of the Macsec network interface is rather straightforward. It is done by ex

ecuting ip link as would be done when creating any other vir tual network interface, 

wi th the addition of macsec-specific options, as seen in the 3.21. 

Lis t ing 3.21: Macsec interface creation 

root@ptp_deviceA:-# ip link add link ethl macsecO type macsec 

encrypt on 

Once the interface is created on both corresponding devices, the secure associa

tions can be specified [70]. B y secure associations, in this meant the shared 

cryptographic properties between peer devices ptp_deviceA and ptp_deviceB. The 

system allows the usage of ip macsec command, which is used to specify the transmit 

secure association, only if the Macsec vir tual interface exists. The transmit secure 

association specifies the init ial packet number and the private key that is used by 

the current device. The private key, compatible with ip tool is generated with the 

61 



help of urandom character special device [71]. The key can be generated either 

directly in the terminal, as seen in the 3.22, or with the help of a different program

ming language, such as Python. The process of key generation and setting of the 

transmission security association is also done for the other device ptp_deviceB. 

List ing 3.22: Macsec transmission security association [72] 

root@ptp_ deviceA:~# dd if=/dev/urandom count=16 bs=l 2> /dev/ 

null 1 hexdump -e '1/2 "%02x"' > private_keyA 

root@ptp_ deviceA:~# ip macsec add macsecO tx sa 0 pn 100 on 

key 01 'cat private_keyA ' 

What also needs to be configured is a receive channel and receive security asso

ciation [70] Here it is required to specify the information of the peer device, that 

is M A C address and a private key that was generated for the device ptp_deviceB. 

Arguments that are used are very similar to those used to configure the receive 

security association, wi th the difference that the M A C address of the security asso

ciation has to be specified, which is ptp_deviceB, as well as the private key of that 

device. The keys are in the current deployment exchanged wi th the help of a mea

surement script, as there is no other protocol employed to perform this task. Once 

again, the same process has to be done for the corresponding peer device, where the 

specified information is that of the device ptp_deviceA. F ina l ly the vir tual macsecO 

interface can be set to up state using ip link command and the IP addresses, which 

can be those belonging to TEST-NET-3 address range [43], can be configured using 

ip a command. The configuration of the properties of the Macsec interface can be 

verified wi th the command ip macsec show. 

The Macsec encapsulates everything, which is on the same layer as the Data 

L ink Layer or above, therefore encrypting P T P messages in any operational mode 

should not be an issue. 

3.3.3.1 Configuration and optimization for P T P 

A s was mentioned before the Macsec vir tual interface does not by default support 

either software or hardware timestamping. To put matters more in perspective, the 

ethtool is used by ptpJ^l to determine if the given interface supports all the required 

timestamping modes used for the P T P synchronization. However considering that 

the Linux kernel implementation of Macsec does not by default provide sufficient 

pointers to the underlying physical interface to the ethtool function, the ethtool 

assumes that the timestamping is not supported by Macsec kernel driver and reverts 

to default values, as seen in the 3.23. Due to the fact that default values do not 

62 



specify any possibility of timestamping for transmission packets, it is not possible 

for ptp4l to function at al l , either as a Master or a Slave clock. 

List ing 3.23: Macsec before patching 

Time stamping parameters f o r macsecO: 

C a p a b i l i t i e s : 

s o f t w a r e - r e c e i v e (SOF_TIMESTAMPING. .RX_SOFTWARE) 

software - system - c l o c k (SOF_TIMESTAMPING. .SOFTWARE) 

PTP Hardware C l o c k : none 

Hardware Transmit Timestamp Modes: none 

Hardware Receive F i l t e r Modes: none 

Upon further inspection, it has been determined that this very crucial issue must 

be fixed by directly patching the source code of the Macsec driver. What needed 

to be done is an addition of C structures and functions to the Macsec kernel driver 

itself, which would provide the correct information to the ethtool when called on the 

interface created by macsec. 

In the first implementation of kernel driver optimization, the custom static C 

structure macsec_ethtool_ops, of type ethtool_ops is defined, wi th four designated 

initializers to which are assigned functions that would provide all the required infor

mation to the ethtool, when called within ptp4l daemon. The ethtool_op_get_link, 

which is called from ethtool kernel drivers, returns a boolean value based on whether 

the specified interface is up or down. Another ethtool kernel driver function eth-

tool_op_get_ts_info, provides adequate information about the timestamping capa

bilities, independent of the device, which would allow for usage of ptp4l, however 

only with software timestamping options. The following two required functions that 

need to be defined by the user are macsec_ethtool_get_link_ksettings, which returns 

kernel helper again defined in ethtool driver [73], and macsec_ethtool_get_drvinfo 

which returns the version of the driver. 

To implement the complete hardware timestamping capabilities specifically for 

the Macsec kernel driver new complex functions would need to be written from 

scratch. However, considering that the Macsec kernel driver points to real_dev 

structure, which represents the underlying physical interface, in several other func

tions, the same structure could also be used in order to obtain the timestamping 

capabilities of the physical interface, which can also provide hardware timestamps. 

This however requires replacement of the ethtool_op_get_ts_info wi th a different 

custom function, which can be called macsec_get_ts_info that can be seen in 3.24. 

This function would return pointers to the members of the real_dev structure, from 

which the timestamping possibilities can be determined. Additionally, a function 

63 



macsec_dev_ioctl must be added, which would handle all relevant ioctl calls and 

would set function pointers and call them with passed ioctl calls. 

A very similar implementation of the above-specified requirements has for the 

most part already been done in kernel driver for V L A N [74]. This means that parts 

of relevant C structures and functions can be taken from the vlan_dev kernel driver 

and put into functions of the Macsec kernel driver described above. What needs 

to be added or changed are the pointers to the Macsec driver-specific structures, 

which refer to the underlying physical network interface, and Macsec driver-specific 

datatypes. Note that a l l above-specified function names starting with macsec, were 

named as such just for the sake of comprehension, however, the function names can 

be completely arbitrary. 

Once the code is modified, the patch file can be created and added to the custom 

Yocto layer. The Yocto then re-compiles the kernel source code and creates all 

necessary links. Once the kernel is rebuilt, the standard configuration process for 

the creation of the macsecO interface can be done. The Macsec vir tual interface 

now shall have al l the same timestamping capabilities as the underlying physical 

interface. Upon executing ethtool -T macsecO, the output shall be identical to 3.8 

and ptp4l niay be used as with regular physical interface. 

64 



List ing 3.24: Macsec kernel driver function created according to V L A N driver [74] 

s t a t i c i n t mac s e c _ g e t _ t s _ i n f o ( s t r u c t n e t _ d e v i c e *dev, 

s t r u c t e t h t o o l t s i n f o * i n f o ) 

{ 

const s t r u c t macsec_dev *macsec = m a c s e c _ p r i v ( d e v ) ; 

const s t r u c t e t h t o o l _ o p s *ops = macse c - > r e a l _ d e v - > e t h t o o l _ o p 

s t r u c t p h y _ d e v i c e *phydev = macsec->real_dev->phydev; 

i f (phydev && phydev->drv && phy d e v - > d r v - > t s _ i n f o ) { 

r e t u r n p h y d e v - > d r v - > t s _ i n f o ( p h y d e v , i n f o ) ; 

} e l s e i f ( o p s - > g e t _ t s _ i n f o ) { 

r e t u r n o p s - > g e t _ t s _ i n f o ( m a c s e c - > r e a l _ d e v , i n f o ) ; 

} e l s e { 

i n f o - > s o _ t i m e s t a m p i n g = 

SOF_TIMESTAMPING_TX_SOFTWARE | 

SOF_TIMESTAMPING_RX_SOFTWARE | 

SOF_TIMESTAMPING_SOFTWARE; 

in f o - > p h c _ i n d e x = -1; 

r e t u r n 0; 

} 

65 



4 Measurements 

4.1 Automatization and measurement tool 

For the purpose of the P T P measurements and data visualization, a specific testing 

tool was written in Py thon programming language, which sets the correct environ

ment for all possible testing scenarios and performs measurements, based on the 

values parsed from the ptpJ^l logs. This also includes many necessary configura

tions which were described in the previous chapters. The measurement script is 

executed by running python setup_and_measure, wi th additional options that can 

be obtained by using -h argument, as seen in 4.1. Addi t ional parameters, such as 

IP addresses, directory for data saving, measurement timer, and others must be 

specified in confdata.yml file. 

Lis t ing 4.1: Measurment tool options 

me@MyPc:~$ python setup_and_measure/ -h 

usage: a n a l y z e r _ m a i n [-h] [-a] [-sw] [-hw] [-nenc] [-enc] [-

s t a t ] [-mes ] [-packets] [-ntp] [ - p u l l ] 

C o n f i g u r a t i o n , Measurement and A n a l y s i s t o o l ; S p e c i f y 

a d d i t i o n a l o p t i o n s i n c o n f d a t a . y m l 

o p t i o n s : 

-h, - - h e l p show t h i s h e l p message and e x i t 

-a Enable e v e r y t h i n g 

-sw Enable measurement with software timestamping 

-hw Enable measurement with hardware timestamping 

-nenc Enable measurement with no e n c r y p t i o n 

-enc Enable measurement with a l l s e c u r i t y p r o t o c o l s 

- s t a t Do s t a t i s t i c s and p l o t comparisons (There must 

be e x i s t i n g data i n d i r ) 

-mes Do measurements on p r o v i d e d Master & Slave 

d e v i c e s 

-packets Run packet a n a l y s i s & p l o t t i n g 

-ntp Enable NTP s y n c h r o n i z a t i o n on Master 

- p u l l P u l l and cross - compile n e c e s s a r y packages 

The very core of the measurement script assumes that all Master clock and Slave 

clock devices are able to communicate via Secure Shell Protocol (SSH). The SSH 

creates a secure connection between the host and the destination device, allowing 

66 



the user to remotely log in and operate on the device based on the login privileges. 

In Python, this can be done wi th the help of Paramiko l ibrary that allows full usage 

of all features provided by Linux ssh ut i l i ty wi thin the Python framework [75]. The 

Paramiko essentially works by creating a Python object based on the SSH connection 

parameters, which are: IP address, username and password, and allowing different 

actions to be performed on the remote device, based on the methods provided by the 

Paramiko object. The provided method called, exec_command allows for execution 

of L inux commands on the remote machine, where the feedback can be obtained from 

the standard output [76]. For the sake of simpler configuration and measurement, 

an additional Python class called MySSHClient was written, which inherits from the 

parent Paramiko class and provides two separate methods for reading long or short 

standard outputs. This is initialized as an object with the Master clock device and 

Slave clock device parameters. 

For each security protocol, a different separate child class is initialized, which 

initializes the protocol and verifies the connection between the Master and the Slave 

device, based on the requirements of the given protocol. This includes key generation 

and key exchange, setting of the vir tual interface and addressing, mode selection, 

and other configurations described in the 3.3. A l l initialized classes working wi th 

security protocols inherit from the same parent class Seclltils, from which many 

similar methods can be used. When the method, belonging to an object that works 

wi th a specific security protocol, do() is called, all the configuration, for the Master 

clock and Slave clock device is performed and is considered ready to be used for 

P T P communication. Note that this can be done only if all the installations and 

kernel requirements, described in the 3.1.2, are fulfilled. 

The reading of P T P log data is done with the use of Python standard library 

re, concerned wi th regular expression operations. This allows for the parsing of logs 

returned by the ptp4l daemon on the Slave clock device. The separately initialized 

class called PtpReader provides method do(), which executes ptp4l commands based 

on the predefined parameters on both Master and Slave devices and parses numerical 

data from the returned logs. The methods extracted from PtpReader show the use-

case of parallel iteration, as can be seen in 4.2. The data are parsed by lines and 

are yielded to another function which saves data into buffers. The buffers which are 

in the form of pandas library DataFrames, must contain always a fixed number of 

values in all columns before they are to be further processed. This is done to ease 

the load on the system and prevent complete loss of data in case of failure in long-

duration measurement scenarios. The PtpReader initializes another class called 

PTPSinglePlotter, which inherits from the PlotUtils, and uses matplotlib Py thon 

67 



l ibrary for data plotting. Plot t ing is always performed from values contained in a 

given buffer, and the mean value is always actively calculated for a given set of data. 

This allows the user to observe a graphical representation of data in a real-time, as 

well as the mean value for the plotted data. The values from buffers are also at the 

same time saved into csv files, which are to be used by a different function for the 

creation of statistics and comparison plots. Tshark tool is also started on the Slave 

clock device, wi th the call of do() method and created capture files are afterward 

sent back to the user system via scp for later analysis. 

After each measurement, the initialized security protocol is disabled so as not to 

hinder any further measurement operations. Once all measurements are performed 

the do() method from previously initialized class StatMakerComparator is called 

and further analysis and plotting of collected data is performed. The StatMak

erComparator contains various methods that allow for statistics table generation, 

comparison plot generation, packet statistics plot generation, and other operations. 

In the post-measurement analysis, all the data are obtained from the previously 

saved csv files. 

A l l operational modes for P T P measurements are predefined in a Py thon dic

tionary that is imported from vardata.py module. The previously mentioned PT-

PReader is initialized wi th this dictionary and reads the specific ptp^l operational 

modes. The vardata.py also imports directly the configuration specified, by the user, 

such as IP addresses, directories for data saving, and other specifications. 

68 



List ing 4.2: Synchronization and parsing methods extracted from PtpReader 

def _ _ r u n _ s y n c ( s e l f , ptp_cmd_master, p t p _ c m d _ s l a v e ) : 

f o r line_m , l i n e _ s in z i p ( 

s e l f . s s h _ m a s t e r . r u n _ c o n t i n o u s ( p t p _ c m d _ m a s t e r , 

s e l f . t i m e r ) , 

s e l f . s s h _ s l a v e . r u n _ c o n t i n o u s ( p t p _ c m d _ s l a v e , 

s e l f . t i m e r ) , 

) : 

data = s e l f . _ _ p a r s e _ l i n e s ( l i n e _ s ) 

l o g _ t i m e = 0 

i f d a t a : 

i f l o g _ t i m e != 0: 

a s s e r t data ["ptp41_runtime"] == ( l o g _ t i m e 

+ 1) 

y i e l d data 

def _ _ p a r s e _ l i n e s ( s e l f , l i n e ) : 

t m p_dict = {} 

nums = [] 

matches = r e . f i n d a l l ( s e l f . p a t t e r n , l i n e ) 

i f s e r v o _ s t a t e := l i s t ( s e l f . s e r v o _ s t a t e s 

& set(mat ches ) ) : 

a s s e r t l e n ( s e r v o _ s t a t e ) == 1 

s e r v o _ s t a t e = s e r v o _ s t a t e [0] 

ma t c h e s . r e m o v e ( s e r v o _ s t a t e ) 

f or i in r a n g e ( l e n ( m a t c h e s ) ) : 

i f matches [ i ] == " + " or m a t c h e s [ i ] == " - " : 

m a t c h e s [ i + 1] = (matches [ i ] + 

matches [ i + 1]) 

e l s e : 

nums.append(float(matches [ i ] ) ) 

n u m s . a p p e n d ( i n t ( s e r v o _ s t a t e [-1])) 

i f len(nums) == l e n ( s e l f . l a b e l s ) : 

f o r i in r a n g e ( l e n ( s e l f . l a b e l s ) ) : 

t m p _ d i c t [ s e l f . l a b e l s [ i ] ] = nums [ i ] 

r e t u r n tmp_dict 

69 



4.2 Results 

Upon performing measurements by using the script described in the previous section 

a number of results can be obtained for analysis. However, before that is done, it 

should be made clear which operational modes described in the previous chapters 

are supported. The complete overview of compatible operational modes can be seen 

in 4.1. 

Encrypt ion mode Timestamping Encapsulation Communication 

- S W H W U D P L2 Multicast Unicast 

No encryption / / / / / / 

Wireguard-go / X / X / / 

IPsec - tunnel / / / X X / 

IPsec - transport / / / X X / 

Macsec / / / / / / 

Tab. 4.1: P T P possibilites 

Another important fact that must be addressed is that due to the availability 

of only two PTP-enabled devices for measurement purposes, all measurements wi l l 

be performed solely in E2E mode, as P2P mode has no uti l ization unless there are 

more than three devices available. The type of synchronization is two-step mode. 

The unencrypted state for P T P is considered to be the desired operational state, 

assuming that P T P messages should not be affected by any external factors. How

ever, in order to optimize the cybersecurity of P T P to the furthest extent, it must 

be determined which security protocol is most optimal and has the least effect on 

the synchronization process. Data that are to be used to determine this factor were 

collected by running the script described in the section 4.1, for a 45-minute time pe

riod for each supported mode. The total measurement time was therefore around 17 

hours. The specific values that are to be considered in the performance analysis are 

master offset, servo change frequency, path delay, and the servo stabilization state. 

A l l these are collected from the Slave clock side when the PTP is synchronized in 

one of the supported modes while operating either unencrypted or under security 

protocol. 

A s to the physical connection, the Slave and Master clock devices were connected 

directly by a standard Cat 5e Ethernet cable of approximately 30 cm in length. It 

must be noted that due to the fact that all measurements are performed in a point-to-

point connection, the showcased behavior may not reflect the behavior in a switched 

network. Note that the process of synchronization is associated with a certain level 

70 



of randomness, such as packet jitter or delays caused by processing. The factors of 

randomness can be observed especially in scenarios where significantly small values 

are being measured, such as nanoseconds or ppb. 

4.2.1 Visualization 

4.2.1.1 Methods 

The scatter plots in this section show the output generated in real-time by the script 

described in the 4.1, where the plot updates were always reoccurring by buffers 

of data wi th the predefined sizes. The mean values were also calculated in real

time, by taking the mean value of the single buffer, adding it to the means of 

existing same-size buffers, and finally returning the mean of means. The x-axis 

in the provided plots always represents data taken from a single ptp4l log, which 

corresponds approximately to one second. Other plots were generated also using 

the same script, but not in real-time. The y-axis describes the values of a specific 

parameter, wi th the unit in square brackets. The names of the parameters are 

connected with the underscore. The offset values are described as master_offset, 

the change of servo frequency is described as servo^freq, the delay is described 

as path_delay, and the servo state is described as state. A l l measurements were 

performed numerous times in order to verify the consistency of the results. 

Regarding the plotting of comparisons between different operational modes, all 

values that precede before the servo state is changed to locked are removed, includ

ing an additional twenty values after the locking of the servo. The twenty-sample 

cut-off value was specified due to the fact that even after servo locking, other pa

rameters may take some time to stabilize. From multiple observations, it could be 

determined that complete normalization of values happens before the tenth sample. 

However, for the sake of complete sureness, an additional removal of ten data sam

ples was performed. This is done to eliminate ini t ial outliers in data and provide 

more relevant data visualization for comparison plots. The different operational 

modes in comparison plots are visualized in various colors, where each is described 

in the disclosed legend. 

Only some selected results are showcased in this section. The rest of the results 

can be viewed in the electronic appendix. 

4.2.1.2 No encryption 

A s can be seen in the figure 4 .1, the ini t ial sudden change of the Master clock offset 

corresponds to the change of state of the servo algorithm, which changes its values 

71 



to 2, meaning that it becomes locked. This also correlates to the servo frequency 

that becomes stabilized after the ini t ial spike and stays stabilized for the duration 

of the measurement. It should be noted that even though init ial spikes are visually 

observable, they can be considered negligible when taking into account that actual 

changes in values are rather small. 

! a m
t
 master offset mean 

-150 
500 10 00 r . 1500 20 

t i m e [s] 
00 25 00 

• m 
servo_freq_mean . 

0 K 0 10 00 r . 15 
t i m e [s] 

00 20 00 25 00 

Fig . 4.1: No encryption; Multicast; L2 encapsulation; Hardware timestamping 

A very similar behavior, wi th only marginal differences, can be observed in all 

other scenarios where P T P communicates wi th no additional encryption. The servo 

stabilization also happens very quickly in all cases, as can be seen by observing the 

change of servo state, from unlocked to locked. Figure 4.2 demonstrates a histogram, 

where the stability of all parameters, can be observed through the consistency of 

bin distribution. 

This concludes that communication and encapsulation modes of P T P messages, 

seem to have little impact on the actual clock synchronization parameters in point-

to-point communication, where the hardware timestamping is used. This behavior 

is also expected to be reflected in scenarios where security protocols are applied. 

72 



mastpr_of"set [ns] 

I 11 II 11 l | i 
Fig . 4.2: No encryption; Unicast; U D P encapsulation; Hardware timestamping 

Very different behavior is however observable in scenarios where the software 

timestamping is used. A s seen in the 4.3, not only does the servo stabilize after a 

longer time, but also path delay values are significantly higher. A s for the master 

offset and servo frequency values, occasional spikes in data occur even once the servo 

is stabilized. It can also be noticed that wi th the instantaneous change of the master 

offset, an immediate change in the servo frequency is observed as well. The servo 

algorithm tries to adjust the Slave clock according to the instantaneous offset value 

in order to mitigate the time difference between the Master and the Slave clock as 

fast as possible. It can also be noticed that irregularities start to occur in the latter 

half of the measurement, after the 1500-second mark. In the case where the P T P 

messages are encapsulated in U D P , very similar results wi th similar irregularities 

are observable, however rather sparsely. 

This behavior seems to be even further intensified when changing the communi

cation mode to unicast. A s observed in the 4.4, the spikes are much more prominent 

in all stages of measurement. Curiously, the sudden changes in offset and servo fre

quency do not seem to be reflected in path delay values. 

73 



-200300 

-400300 

— master offset mean 

" J 

i 

• 
• 

t i m e [s] 

servo_freq_mean 

i i 
A 

1 

1 

le6 
0 1000 r . 1500 2000 2500 

t i m e [s] 

b — - J • S — pathdelay mean 

1 
servo mean 

Fig . 4.3: No encryption; Multicast; L2 encapsulation, Software timestamping 

- » - > r-f—T 1— 

T 1 *i Iii.1 • M i l T T I ' 
' i f ' . . ' 1 • — r 

- í - f *—• i 1—• m 

• r.„ 
ster offset mean 

N M M K 

51 0 10 t ime [s] 00 20 00 25 00 

400300 

200000 

-200000 

-400000 

-600000 

Fig . 4.4: No encryption; Unicast; L2 encapsulation, Software timestamping 

74 



Additionally, by plotting the times between the captures of consecutive P T P 

packets for the same unicast communication mode, which can be seen in 4.5, it can 

be observed that there are no noticeable inconsistencies in packet arrival times during 

the whole duration of the measurement. The figure demonstrates that arrival times 

between messages are never higher than one second and that there are no noticeable 

inconsistencies. 

c -

0.2 

Fig . 4.5: No encryption; Unicast; L2 encapsulation, Software timestamping - packet 

time deltas 

The first assumption as to why such irregularities occur was that there is some 

sort of interference coming from active processes on either Master of Slave clock 

devices, such as chronyd service for N T P synchronization. Nevertheless, after dis

abling chronyd and other potentially disrupting processes, the irregularities when 

using the software timestamping, still seem to be prevalent. To determine the root 

cause of irregularities occurring in offset and servo frequency values further research 

would have to be conducted analyzing more deeply the behavior of P T P stack in 

Linux and the behavior of software timestamping. The comparison of modes wi th 

software timestamping can be seen in 4.6. 

It can be however assumed that additional processing done by the Linux network 

stack in combination with ptpJ^l causes inconsistencies when the software timestamp 

is delivered to the relevant process. It can be concluded that this behavior is also 

75 



Fig . 4.6: Comparison, No encryption, Software timestamping, (removed init ial out

liers) 

expected to be observable when communicating over a l l security protocols that use 

software timestamping. 

4.2.1.3 Wi th encryption 

B y analyzing the results of P T P operations under different security protocols it can 

be noticed that IPsec and Macsec had very little impact on the measured parameters 

when used with hardware timestamping. A s can be seen in the comparison plot 4.7, 

where IPsec was plotted in two different operational modes, the behavior is very 

similar to the scenarios where no encryption is in use. Note that even though in 

theory IPsec tunnel mode is expected to create more overhead due to the addition 

of a new IP header, in practice the effect on P T P parameters is not very significant. 

Similar results can be seen in figure 4.8 with Macsec encryption in use, where 

the results very much resemble those of P T P wi th no encryption. 

It should be however noted that due to the fact that in the configuration process 

of the security protocols, as a part of the measurement script, both Master and Slave 

already communicated wi th each other by issuing ping command, thus exchanging 

all the necessary security association information. This means that the servo stabi

lization period is significantly shortened, as compared to the situation where P T P 

76 



Fig . 4.7: Comparison, IP sec encryption, Hardware timestamping, (removed init ial 

outliers) 

Qj 10 -

o, o-

t r r t ^ T - T T " " " • " t i " " / i < ^ t ; " T
1

, T l T T T ^ , t " " r . ^ " T T . " ' . " • w . y v 

; 17500-

' 17490-

1 ; 

1.6 x 10° -

' 1.4 x 10° 

Fig . 4.8: Comparison, Macsec encryption, Hardware timestamping, (removed init ial 

outliers) 

77 



messages were to start being exchanged right away after security protocol configu

ration, which would significantly delay the init ial exchange of P T P messages. 

In regard to software timestamping, it could be previously observed in scenarios 

wi th no encryption that various inconsistencies in measured parameters occur, which 

are even more intensified when communicating via unicast. Figure 4.9 shows such a 

scenario, where spikes are even more prominent due to the fact that IPsec operates 

solely in the unicast mode. 

— ? — • ipsecencjinic 
. ipsec_enc_unit 

a stu d pswt ra nspo rt 
ast udp sw tunnel 

i 
• i 

i f l 
T a stu d pswt ra nspo rt 

1 - r " i ' — - | r - !
r

" 

1 
t i m e [s] 

• m J M • » ? _ • ipsec_enc_Liniost_udp_sw_transport 

T ^ k 4 0 K ^ 9 l A s A l&jJb - * fct » l k l rfwt m M. * • f t * - * A . a W J W J * ipsec_eic_unicast_udp_sw_tunnel 

T * 

4 
™ T * * " * « • • • 

500 1000 .. r - 1500 2000 2500 
t i m e [s] 

. 1.8 x 10c' 
1.6 x 10° 

Fig . 4.9: Comparison, IPsec encryption, Software timestamping, (removed init ial 

outliers) 

B y looking at figure 4.10 representing measurements with Macsec encryption, 

it can be observed that behavior remains very similar to that of a P T P with no 

encryption and software timestamping. Nevertheless, it does not seem that the 

Macsec security protocol causes any more significant instabilities than those already 

existing in a regular operational state, as all the deviations stay using the same 

range of values as in non-encrypted mode. 

Finally, by observing the measurements wi th Wireguard encryption in 4.11, it 

can be noticed that the impact on the P T P parameters is very significant. The base 

fluctuations of the seemingly stabilized state overcome even the spikes observed 

in other security protocols when unicast is used. Also, the spikes that occur, in 

Wireguarad when ptp4l operates in unicast, represent significantly higher values 

78 



Fig . 4.10: Comparison, Macsec encryption, Software timestamping, (removed init ial 

outliers) 

than observed in any other security protocols. Nonetheless, the worse performance 

for Wireguard was expected as the version written in the Go language operates 

entirely in the user space, therefore severe performance limitations are in place. 

79 



Fig . 4.11: Comparison, Wireguard encryption, Software timestamping, (removed 

init ial outliers) 

4.2.2 Numerical data analysis 

4.2.2.1 Methods 

This section shall look into the statistical properties of the data collected in real 

time. The statistics tables were generated by measurement script described in 4.1 

from all the collected values. 

Considering that differences in performance results of measurements wi th soft

ware and hardware timestamping are rather significant, they wi l l be analyzed sepa

rately to provide better insight into the properties of encryption protocols and P T P 

operational modes. Note that for the statistical analysis, all sample values before 

the servo became locked were removed, as well as the additional twenty samples 

after the locking of the servo. This is done in order to eliminate ini t ial outliners and 

ensure that all statistically analyzed parameters represent the behavior of P T P in a 

fully stabilized servo state, as was mentioned in the previous section. 

The exact statistical parameters used for analysis are mean, median, mean -

median, variance, standard deviation, absolute mean deviation, absoluted median 

deviation. Additionally, z-score and Interquartile range (IQR) statistical measures 

were used in order to calculate the probability of spikes in values. Both of these 

measures are used to determine the categorization of outliers in data and detect 

80 



them. Based on the number of outliers in the data, the total spike percentage can 

be calculated by using an empirical probability equation P(A) as seen in 4.1. 

P(A) 
Number of spikes 

(4.1) 
Total number of samples 

However before it is proceeded wi th a description of the spike detection methods, 

the probability distribution and its parameters must be described. Considering the 

nature of the behavior of all previously visualized ptp4l parameters, the probability 

distribution can be considered to be normal, due to tolerances introduced by the 

application use case scenario requirements. This is determined by visually observing 

the behavior of parameters in 4.2.1, where it can be noticed that the sample data 

always have a tendency to be distributed in the proximity of the mean value, wi th 

occasional spikes. Unless there are some major inconsistencies in the system the 

ptp4l and related processes always try to keep the time offset and servo frequency 

values as consistent as possible. A s for the path delay, point-to-point communication 

assures that there are no long-term inconsistencies that would cause the skewness 

of the distribution. This may however not be applicable in scenarios with switched 

networks, where path delays may show different tendencies. 

From a purely statistical perspective, the probability distribution is likely to be 

considered more left or right-skewed depending on the measurement results, which 

can be determined by the difference between mean and median. In case the resulting 

value of the difference is negative, the probability distribution is skewed to the left, 

if the resulting value is positive, the probability distribution is skewed to the right. 

The description of exact values is provided in the following sections. 

The parameters that are commonly used to describe probability distribution are 

the mean, denoted as /x, and standard deviation, denoted as a. The \i can be 

described as seen in 4.2, where each data sample is denoted as Xi and n describes 

the total number of data samples [77]. The a can be described as seen in 4.3 [77], 

where the same variables are used. If the square root were to be removed from the 

formula, the attribute would be called variance a2. 

The z-scores are calculated by taking the previously calculated mean value (//) 

of all data samples, taking the previously calculated standard deviation (a) of all 

data samples, and applying the formula 4.4 on a single data sample x [78]. The 

(4.2) 

(4.3) 

81 



z represents the z-score for a data sample x. Da ta samples which are then to be 

considered outliers are selected according to their z-score. 

The I Q R is calculated by rearranging all data samples from smallest to largest 

and then finding the first quartile {Ql) and third quartile (Q3) and then subtracting 

as seen in formula 4.5 [78]. 

IQR = Q3-Q1 (4.5) 

Lower and upper boundaries are then calculated as demonstrated in formulae 4.7. 

where the multiplier is selected according to the strictness of the measurement. The 

data samples that are to be considered outliers are either below the Lower_boundary 

or above the Upper_boundary. 

Lower_boundary = Ql — multiplier * IQR (4.6) 

Upper_boundary = Q3 — multiplier * IQR (4.7) 

These measures may yield slightly different results due to different statistical 

properties and different sensitivity to outlier detection. Considering the fact that 

spikes tend to be rather extreme, as could be observed in the measured data plots 

in 4.2.1, the parameters for these statistical measures were selected as seen in the 

table 4.2.2.1. 

Method Threshold 

I Q R Mult ip l ier 3.5 

Z-Score 3 

Tab. 4.2: Outlier detection criteria 

Only statistical measures for time offset, which is denoted as master_offset, are 

showcased in the following section, as it is the most representative parameter of 

P T P behavior. The rest of the results can be viewed in the appendix and electronic 

appendix. 

82 



4.2.2.2 Hardware t imestamping 

The statistical measures observed in table 4.3 show that all the operational modes 

provide very similar statistical parameters wi th only negligible differences. W i t h the 

mean value being close to zero and the median being zero in most cases, it can be 

determined that synchronization with the Master clock device is very precise. The 

multicast mode in Ethernet encapsulation shows a slight skewness tendency which 

is however negligible considering the values being in nanoseconds. The absolute 

mean and absolute median deviation indicate slight deviation from its respective 

parameters, which however stays under six nanoseconds. The standard deviation 

and variance show relatively low values, which serves as further proof of stability. 

The I Q R measure shows a zero percent probability of spikes, which can be considered 

a reliable factor. Even though the z-score measure shows a small probability of 

spikes, it must be taken into account that the z-score is much more sensitive to 

outliers, meaning that some values may be falsely detected as spikes. 

master_offset multicast udp multicast 12 unicast udp unicast 12 

mean [ns] -0.000764 -0.000382 0.001528 -0.000764 

median [ns -1.000000 0.000000 0.000000 0.000000 

mean - median ns 0.999236 -0.000382 0.001528 -0.000764 

abs. mean dev. ns 5.993082 5.506890 5.715135 5.743349 

abs. median dev. Hi 5.000000 4.000000 5.000000 5.000000 

standard dev. ns 7.306437 7.210917 7.109586 7.153827 

variance [ns2] 53.384027 51.997326 50.546216 51.177234 

spike prob. (Z-score) [%] 0.114635 0.305577 0.229183 0.152788 

spike prob. (IQR) [9 0.000000 0.000000 0.000000 0.000000 

Tab. 4.3: Master to Slave time offset statistics, No encryption, Hardware times

tamping 

83 



The statistical parameters for both IPsec tunnel and IPsec transport also indicate 

stability comparable to the modes wi th no encryption, as can be seen in 4.4. 

master_offset unicast udp_tunnel unicast udp transport 

mean [ns -0.000382 0.006114 

median [ns 0.000000 0.000000 

mean - median ns -0.000382 0.006114 

abs. mean dev. ns 5.870481 5.823810 

abs. median dev. ru 5.000000 5.000000 

standard dev. ns 7.244225 7.207284 

variance [ns2] 52.478792 51.944938 

spike prob. (Z-score) [% 0.152847 0.076423 

spike prob. (IQR) [9 0.000000 0.000000 

Tab. 4.4: Master to Slave time offset statistics, IPsec encryption, Hardware times-

tamping 

Finally, by looking at Macsec statistics in 4.5, where all P T P operational modes 

are supported, it can be noticed that properties are nearly identical to the case wi th 

no encryption. 

master_offset multicast udp multicast 12 unicast udp unicast 12 

mean [ns] 0.000000 -0.001146 0.008785 0.006875 

median [ns -1.000000 0.000000 0.000000 0.000000 

mean - median ns 1.000000 -0.001146 0.008785 0.006875 

abs. mean dev. ns 5.658387 5.787256 5.892278 5.877373 

abs. median dev. Hi 4.000000 5.000000 5.000000 5.000000 

standard dev. ns 7.218570 7.272419 7.340325 7.260878 

variance [ns2] 52.107757 52.888081 53.880366 52.720350 

spike prob. (Z-score) [%] 0.152847 0.267380 0.076394 0.152788 

spike prob. (IQR) [9 0.000000 0.000000 0.000000 0.000000 

Tab. 4.5: Master to Slave time offset statistics, Macsec encryption, Hardware times-

tamping 

Curiously it can be noticed that in all cases where multicast communication 

happens over U D P , the median offset value is -1. It should be implied that this 

is likely a coincidence wi th no further implication for P T P behavior. It can be 

therefore concluded that security protocols, when used wi th hardware timestamping, 

84 



have little to no impact on the time offset between the Master clock and the Slave 

clock in point-to-point communication. 

4.2.2.3 Software t imestamping 

The table 4.6 shows statistics for P T P operational modes wi th no encryption. A l 

ready by looking at mean and median, it can be noticed that values show signifi

cantly higher offset as compared to hardware timestamping. The difference between 

the median and indicates distribution skewness in al l scenarios, indicating lessened 

preciseness of synchronization between the Master and Slave clock. The most no

ticeable case can however be seen in the scenario where unicast communication wi th 

U D P encapsulation is used. The absolute mean and median deviations also indicate 

significant variability in all cases, where again measures wi th unicast communication 

mode show higher variability around the mean and median. This can be further ver

ified by looking at standard deviation and variability values, which are also higher, 

compared to multicast communication modes. This is caused by the spikes that 

occur significantly more in the unicast modes. It can be noticed that both z-score 

and I Q R measures also have a higher probability of spikes. 

master_offset multicast udp multicast 12 unicast udp unicast 12 

mean [ns] -76.626826 887.488470 -5663.757494 -409.686900 

median [ns 1500.000000 2514.500000 -938.000000 -1689.000000 

mean - median ns -1576.626826 -1627.011530 -4725.757494 1279.313100 

abs. mean dev. ns 12931.681166 12674.044938 19044.885933 20748.314841 

abs. median dev. Hi 9080.500000 9386.000000 10570.000000 12083.000000 

standard dev. ns 32563.671723 22930.234403 42333.245522 48443.222736 

variance [ns2] 1.060393e+09 5.257956e+08 1.792104e+09 2.346746e+09 

spike prob. (Z-score) [%] 0.307456 0.345888 1.268255 1.267768 

spike prob. (IQR) [9 0.499616 0.307456 2.843966 1.344602 

Tab. 4.6: Master to Slave time offset statistics, No encryption, Software timestamp

ing 

The measurement results where IPsec encryption is used, which can be seen in 

4.7, are mostly similar to scenarios with no applied encryption, U D P encapsulation, 

and unicast communication. Interestingly the the mean and median values seem 

lower when compared to scenarios with no encryption. However, when looking at 

the standard deviation and variance, these values seem to be considerably higher in 

IPsec tunnel mode, compared to scenarios wi th IPsec transport and no encryption. 

85 



This is likely caused by overhead due to the creation and addition of an additional 

IP header. However, it can be noticed that the spike probability is not increased. 

master_offset unicast udp_tunnel unicast udp transport 

mean [ns 685.627210 -242.541891 

median [ns 1454.500000 402.500000 

mean - median ns -768.872790 -645.041891 

abs. mean dev. ns 18388.892218 14032.873247 

abs. median dev. rii- 10450.500000 9612.000000 

standard dev. ns 57137.906324 25440.252987 

variance [ns2] 3.264740e+09 6.472065e+08 

spike prob. (Z-score) [% 0.807071 0.576480 

spike prob. (IQR) [9 1.844735 0.576480 

Tab. 4.7: Master to Slave time offset statistics, IPsec encryption, Software times-

tamping 

B y looking at the measures for the Macsec encryption scenario in 4.8, it can be 

seen that behavior in all modes comes very close to those wi th no encryption, wi th 

some differences that can be however attributed to randomness caused by packet 

jitter. 

master_offset multicast udp multicast 12 unicast udp unicast 12 

mean [ns] 24.118370 1223.571264 578.602766 52.556879 

median [ns 808.500000 2773.000000 559.000000 1624.500000 

mean - median ns -784.381630 -1549.428736 19.602766 -1571.943121 

abs. mean dev. ns 11831.190453 13208.535717 14025.511338 18278.241024 

abs. median dev. Iii- 9063.500000 9123.000000 8932.000000 10011.000000 

standard dev. HS 24703.901199 33211.815791 39382.458237 55527.100472 

variance [ns2] 6.102827e+08 1.103025e+09 1.550978e+09 3.083259e+09 

spike prob. (Z-score) [%] 0.153728 0.230503 0.806761 0.730208 

spike prob. (IQR) [9 0.153728 0.268920 1.383020 1.152959 

Tab. 4.8: Master to Slave time offset statistics, Macsec encryption, Software times-

tamping 

The statistics for P T P modes wi th Wireguard encryption, as seen in 4.9, show 

significantly higher values than any other operational modes. It can be noticed that 

the median is exponentially higher in both scenarios, as well as the skewness of 

86 



data. The standard deviation and variance also display quite a significant variation 

in values. It can be noticed that spike probabilities are lower than in other security 

protocols, however, it must be taken into account that calculated percentages are 

relative to existing values. Overall the Wireugard-go seems to provide the least 

stability in the case of P T P synchronization wi th P T P software timestamping. 

master_offset multicast udp unicast udp 

mean [ns] -4350.662183 18181.068793 

median [ns -77185.500000 -61637.500000 

mean - median ns 72834.837817 79818.568793 

abs. mean dev. ns 571390.851630 812345.643964 

abs. median dev. i i i - 455109.000000 666066.500000 

standard dev. ns 729749.326843 1.157275e+06 

variance [ns2] 5.325341e+ll 1.339286e+12 

spike prob. (Z-score) [%] 0.422752 0.461184 

spike prob. (IQR) [9 0.000000 0.230592 

Tab. 4.9: Master to Slave time offset statistics, Wireguard encryption, Software 

timestamping 

4.2.3 Selection of the most optimal security protocol 

Based on the analysis of security protocols using visual and statistical data it can be 

concluded that the Macsec security protocol is the most optimal security protocol 

as it shows very little difference in the behavior of P T P . It also supports all encap

sulation, communication, and timestamping modes, unlike the other two protocols. 

The biggest l imitat ion of Macsec is however the fact that it communicates solely 

on the Data L ink Layer, meaning that M A C addresses are used as communication 

endpoints and encrypted communication can happen only in L A N . This may pose 

a challenge to P T P as synchronization between different networks may be required. 

For this the IPsec protocol be used, however, it must be taken into account that only 

unicast communication is supported, meaning that util ization of B M C A is limited 

only to predefined Grandmaster clock devices. Based on these facts a new exam

ple network topology was designed, as can be seen in 4.12, based on the previous 

topologies described in 1.3. A l l devices located in L A N after the Boundary clock 

would be using a vir tual Macsec network interface, where the Transparent clock 

would receive messages through a vir tual interface closer to the Boundary clock, 

update the Correction field in the message, and send the message further through 

87 



the other vir tual interface. The Boundary clock would communicate via the IPsec 

tunnel directly wi th the Grandmaster clock or through other non-blocking interme

diate nodes. Assuming that hardware timestamping would be used, the impact on 

P T P precision would be very negligible. 

Slave 
clock 

/7 r 

IPsec 

Boundary 
clock 

| Macsec 

Transparent 
clock 

Macsec 

/7 r 

IPsec | Macsec 

Transparent 
clock 

Macsec 

Slave 
c ock 

Fig . 4.12: Topology wi th multiple layers of synchronization and encryption 

If software timestamping was to be applied, the devices in the network must 

consider the fact that stability is not always guaranteed, even if no security protocol 

is applied. 

Based on the results, the least optimal protocol to be used wi th P T P is Wire-

guard. Al though the easiest to configure and manage, Wireguard-go provided the 

worst results in all tested scenarios. A s was mentioned before, this is likely due to the 

fact that only the user space implementation could be used. If used for encryption 

of P T P , it should be considered only if there are no other options available. 

88 



Conclusion 
The Master's thesis focused on the explanation of P T P concepts and systems prop

erties, the selection of security protocols, their implementation over P T P and the 

determination of the most optimal security protocol based on the measurement re

sults obtained by using a specialized tool designed for P T P parameter measurement 

and analysis. 

In the first part of the thesis, the research was done as to explain the complete 

functionality of P T P , including its possibilities and operations. The focus was put 

specifically on the synchronization process and network properties as well as the 

possible use case scenarios. The following chapter provided a selection of possible 

security protocols which could be used to implement a cyber security of P T P , which 

is by default non-existent. The security protocols were analyzed primarily from the 

network attribute perspective, including the considerations for P T P operations. 

The following part of the thesis focused on further research of the practical 

implementation of previously described concepts in Linux. The creation of the 

custom Linux image for an embedded system wi th an A R M processor was required, 

including the addition of necessary layers and packages. The same chapter explained 

the t iming properties in the Linux kernel as well as the explanation and usage of 

the user space P T P driver tools. This was followed by practical implementation for 

each security protocol, where all protocols were configured to be PTP-compat ible . 

The Wireguard and IP sec security protocols were configured using tools provided 

by relevant drivers, where however some limitations were observed in regard to 

communication options and timestamping possibilities. The Macsec protocol had 

to be enabled by direct patching of the relevant kernel driver, in order to provide 

required core functionalities for ptp4l and make the synchronization process possible. 

The final part of the thesis was concerned wi th the measurement and result 

analysis. This involved the creation of a multifunctional tool for real-time raw data 

capture and visualization, including the automated test-case scenario creation and 

final result comparison and statistical data analysis. W i t h the help of this tool, a 

broad range of operational scenario tests could be performed and relevant data could 

be obtained. Upon the analysis of all the obtained data, it could be determined that 

neither IPsec nor Macsec security protocols have a noticeable impact on the P T P 

parameters if used wi th hardware timestamping. However, in the scenarios where the 

software timestamping is used, instabilities persisted across a l l operational modes. 

The user space implementation of Wireguard-go showed the worst results and can 

be deemed to be least suited for providing encryption for P T P . 

89 



It can be concluded that based on the provided results and possibilities of each 

security protocol, the Macsec, with the timestamping patch in the kernel driver, 

provides the most optimized security implementation for P T P , due to its possibility 

to work over all P T P operational modes as well as having almost no impact on the 

synchronization parameters. 

90 



Bibliography 
[1] Precision Time Protocol Version 2 (PTPv2) Management Information Base In

ternet Engineering Task Force (IETF), 2017, https://www.rfc-editor.org/ 

rfc/rfc8173.html, 8173, 2070-1721, 

[2] Crysta l Oscillator, Technopedia, 2015, https://www.techopedia.com/ 

def inition/2245/crystal-oscillator. [Online; accessed 24-October-2023]. 

[3] History of N T P , NTPsec, 2023, https : //docs. ntpsec. org/latest/history. 

html, [Online; accessed 24-October-2023]. 

[4] I E E E Std 1588-2019 (Revision of I E E E Std 1588-2008), IEEE Standard for 

a Precision Clock Synchronization Protocol for Networked Measurement and 

Control Systems, 2020, 10.1109/IEEESTD.2020.9120376. 

[5] What ' s the difference between types of clocks?, Tekron, 2023, https: 

//tekron. com/news/release/dif f erenttypesof clocks/#: ~ :text=What°/o 

20is%20ay
0
20boundaryy

0
20clock, toyo20passy

o
20downyo20they

o
20network., 

[Online; accessed 24-October-2023]. 

[6] What are bits, bytes, and other units of measure for digital information?, Uni

versity Information Technology Services, 2018, https : //kb. iu. edu/d/ackw#: 

~ : text=Ay„20bity„20isy„20ay„20binary, oney„20bity„20aty„20ay„20time. [On

line; accessed 9-January-2024]. 

[7] Introduction to T C P / I P (Part 2) - Five Layer Model and A p p l i 

cations, Microchip 2023, https://microchipdeveloper.com/xwiki/ 

bin/view/applications/tcp-ip/five-layer-model-and-apps/ 

#HTCP2FIPFive-LayerSof twareModelOverview. [Online; accessed 9-January-

2024]. 

[8] Synchronizace v dis t r ibuovaných řídicích systémech: Precision Time Protocol 

( P T P ) podle I E E E 1588 (in Czech), Časopis Automa - časopis pro automatiza

ční techniku, 2010, Roč. 2010, č. 02, s. 3. 

[9] I E C / I E E E 61588-2021, IEC/IEEE International Standard - Precision Clock 

Synchronization Protocol for Networked Measurement and Control Systems, 

2021, 10.1109/IEEESTD.2021.9456762. 

91 

https://www.rfc-editor.org/
https://www.techopedia.com/
https://microchipdeveloper.com/xwiki/


[10] Adaptive Computing Documentation Portal , AMD, 2023, https: //docs. 

xilinx. com/r/en-US/ugl602-ptp-user/How-PTP-Works, [Online; accessed 

24-October-2023]. 

[11] Nokia help, Nokia, 2023, https://infocenter.nokia.com/public/  

7705SAR.234R.lA/index. jsp?topic=%2Fcom.nokia. basic-system-guide"/ 

2Fbest-master-clock-algorithm.html, [Online; accessed 24-October-2023]. 

[12] P T P : T iming accuracy and precision for the future of computing, 

Engineering at Meta, 2023, https://engineering.fb.com/2022/ll/21/ 

production-engineering/future-computing-ptp/, [Online; accessed 24-

October-2023]. 

[13] Understanding 1588v2, Huawei, 2023, https://support. 

huawei.com/enterprise/br/doc/ED0C1100278756/835fea49/ 

understanding- 1588v2-g82751, [Online; accessed 24-October-2023]. 

[14] Wha t is round-trip time? | R T T definition | cloudflare, Cloudfare, 2023, https: 

//www.cloudflare.com/learning/cdn/glossary/round-trip-time-rtt/, 

[Online; accessed 24-Octobe-2023]. 

[15] E n d to E n d Versus Peer to Peer, Tekron, 2019, https://tekron.com/ 

news/release/end-to-end-versus-peer-to-peer/, [Online; accessed 11-

November-2023]. 

[16] Low Latency Ethernet 10G M A C Intel® F P G A IP User Guide, Intel, 

2023, https://www.intel.com/content/www/us/en/docs/programmable/ 

683426/18-l-18-l/about-ll-ethernet-10g-mac.html, [Online; accessed 

14-December-2023]. 

[17] P T P over Ethernet, Juniper, 2022, https://www.juniper.net/ 

documentation/us/en/software/junos/time-mgmt/topics/topic-map/ 

ptp-over-ethernet.html, [Online; accessed 14-December-2023]. 

[18] What Y o u Should Know about Ethernet Frame Format?, MiniTool, 2023, 

https ://www.minitool. com/lib/ethernet-f rame.html, [Online; accessed 

14-December-2023]. 

[19] M A C , Computer Hope, 2022, https://www.computerhope.com/jargon/rn/ 

mac.htm. [Online; accessed 16-December-2023]. 

92 

https://infocenter.nokia.com/public/
http://7705SAR.234R.lA/index
https://engineering.fb.com/2022/ll/21/
https://support
http://www.cloudflare.com/learning/cdn/glossary/round-trip-time-rtt/
https://tekron.com/
https://www.intel.com/content/www/us/en/docs/programmable/
https://www.juniper.net/
http://www.minitool
https://www.computerhope.com/jargon/rn/


[20] P tp , Wireshark Wiki, 2023, https://wiki.wireshark.org/Protocols/ptp. 

md. [Online; accessed 18-December-2023]. 

[21] Implemetning I E E E 1588v2 for use in the mobile backhaul, Caltex Solutions 

Ltd., 2009, https://opencores.org/websvn/filedetails?repname=hal588& 

path=
,

/,2Fhal588
,

/,2Ftrunk
,

/,2Fdoc
,

/,2Ftool
,

/,2Fptpv2_timing_analyzer
,

/
0 

2FCalnex_-_IEEE_1588v2_PTP.pdf [Online; accessed 18-December-2023]. 

[22] B E R D A N I , D . , T I P P E N H A U E R , N . , M E L I S A . , E T A L . , Time sensitive net

working security: issues of precision time protocol and its implementation, 2023, 

10.1186/s42400-023-00140-5, vol. 6, no. 8 

[23] Introduction to Precision Time Protocol ( P T P ) , NetworkLessons, 

2023, https://networklessons.com/cisco/ccnp-encor-350-401/ 

introduction-to-precision-time-protocol-ptp, [Online; accessed 

28-December-2023]. 

[24] A L G H A M D I W . , S C H U K A T M . , Precision time protocol attack strategies and 

their resistance to existing security extensions, 2021, 10.1186/s42400-021-00080-

y. vol. 4, no. 12, 

[25] IPsec vs. WireGuard , tailscale.com, 2024, https://tailscale.com/compare/ 

ipsec, [Online; accessed 28-December-2023]. 

[26] WireGuard : Next Generation Kernel Network Tunnel, wireguard.com, 

2020, https://wireguard.com/papers/wireguard.pdf, [Online; accessed 28-

December-2023]. 

[27] WireGuard : The Next-Gen V P N Protocol, KeySight, 2022, 

https://www.keysight.com/blogs/en/tech/nwvs/2022/09/22/ 

wireguard-the-next-gen-vpn-protocol. [Online; accessed 29-December-

2023]. 

[28] IPsec (Internet Protocol Security), NetworkLessons, 2023, 

https://networklessons.com/cisco/ccie-routing-switching/ 

ipsec-internet-protocol-security, [Online; accessed 8-January-2024]. 

[29] What Is IPsec?, Huawei, 2023, https://info.support.huawei.com/ 

info-finder/encyclopedia/en/IPsec.html, [Online; accessed 7-January-

2024]. 

93 

https://wiki.wireshark.org/Protocols/ptp
https://opencores.org/websvn/filedetails?repname=hal588&
https://networklessons.com/cisco/ccnp-encor-350-401/
http://tailscale.com
https://tailscale.com/compare/
http://wireguard.com
https://wireguard.com/papers/wireguard.pdf
https://www.keysight.com/blogs/en/tech/nwvs/2022/09/22/
https://networklessons.com/cisco/ccie-routing-switching/
https://info.support.huawei.com/


[30] Internet K e y Exchange, Juniper, 2023, https://www.juniper.net/ 

documentation/us/en/software/junos/vpn-ipsec/topics/topic-map/ 

security-ike-basics.html, [Online; accessed 8-January-2024]. 

[31] Encapsulating Security Payload, IBM, 2023, https ://www. ibm. com/docs/en/ 
i/7.4?topic=protocols-encapsulating-security-payload, [Online; ac

cessed 8-January-2024]. 

[32] Media Access Control Security M A C s e c Overview, Study CCNP, 2024, https: 

//study-ccnp.com/media-access-control-security-macsec-overview/, 

[Online; accessed 3-January-2024]. 

[33] M A C s e c frame format, Ruckus Wireless, 2024, https: //docs. 

ruckuswireless.com/fastiron/08.0.60/fastiron-08060-securityguide/ 

GUID-333630FE-363D-43F1-A4C9-0EDD0D0D53E2. html, [Online; accessed 

7-January-2024]. 

[34] M A C s e c : a different solution to encrypt network traffic, Red Hat De

veloper, 2016, https://developers.redhat.com/blog/2016/10/14/ 

macsec-a-dif f erent-solut ion- to-encrypt-network- traffic, [Online; 

accessed 7-January-2024]. 

[35] Ethernet over IP (EoIP), NetworkLessons, 2024, https://notes. 

networklessons . com/ethernet-over-ip-(eoip), [Online; accessed 8-

January-2024]. 

[36] Embedded Linux for i . M X Applications Processors, NXP, 2024, https: 

//www.nxp.com/design/design-center/software/embedded-software/ 

i-mx-software/embedded-linux-for-i-mx-applications-processors: 

IMXLINUX, [Online; accessed 12-February-2024]. 

[37] Yocto Project Compatible Layers, The yocto project, 2024, https://www. 

yoctoproj ect.org/development/yocto-proj ect-compatible-layers/, 

[Online; accessed 12-February-2024]. 

[38] Yocto Project Overview and Concepts Manual , The Yocto project, 

2024, https://docs.yoctoproj ect.org/2.6.1/overview-manual/ 

overview-manual.html, [Online; accessed 12-February-2024]. 

[39] Technical overview, The Yocto project, 2024, https ://www. yoctoproj ect. 

org/development/technical-overview/, [Online; accessed 12-February-

2024]. 

94 

https://www.juniper.net/
https://developers.redhat.com/blog/2016/10/14/
https://notes
http://www.nxp.com/design/design-center/software/embedded-software/
https://www
https://docs.yoctoproj


[40] Images, The Yocto project, 2024, https://docs.yoctoproject.org/ 

ref-manual/images .html, [Online; accessed 12-February-2024]. 

[41] Bui lding, The Yocto project, 2024, https://docs.yoctoproject.org/ 

ref-manual/building, html, [Online; accessed 12-February-2024]. 

[42] Creating Parti t ioned Images Using W i c , The Yocto project, 2024, https: 

//docs .yoctoproject. org/dev-manual/wic .html, [Online; accessed 12-

February-2024]. 

[43] IPv4 Address Blocks Reserved for Documentation, Internet Engineering 

Task Force (IETF), 2010, https://www.rfc-editor.org/rfc/rfc5737, 5737, 

2070-1721 

[44] chrony.conf(5) Manual Page, Chrony project, 2024, https ://chrony-project. 

org/doc/3.4/chrony.conf.html, [Online; accessed 12-February-2024]. 

[45] Přesný čas - veřejné N T P servery (in Czech), FinalTek.com, 2024, 

https : //shop. f inaltek. com/index. php/knowledgebase/57/P°/
0
C5°/

0 

99esny-°/
0
C4°/

0
8Das ve

0

/
0
C5

0

/
0
99e jne-NTP-servery.html, [Online; accessed 

12-February-2024]. 

[46] yoctoproject / poky, github.com, 2024, https://github.com/yoctoproject/ 

poky/commit/2e07f 1440f36d0efc304fldbe8cl, [Online; accessed 25-Apri l -

2024]. 

[47] openembedded / meta-openembedded, github.com, 2024, https ://github. 

com/openembedded/meta-openembedded/commit/el2d38e91efff3f, [Online; 

accessed 25-April-2024]. 

[48] openembedded / meta-openembedded, github.com, 2024, https: 

//github.com/openembedded/meta-openembedded/commit/5be2e20157f30, 

[Online; accessed 12-February-2024]. 

[49] P T P hardware clock infrastructure for Linux, The Linux Kernel, 2024, https: 
//docs.kernel.org/driver-api/ptp.html, [Online; accessed 25-April-2024]. 

[50] Timestamping, The Linux Kernel, 2024, https://docs.kernel.org/ 

networking/timestamping.html, [Online; accessed 23-January-2024]. 

[51] Socket(7) - - Linux manual page, man7, 2023, https://man7.org/linux/ 

man-pages/man7/socket.7.html, [Online; accessed 23-January-2024]. 

95 

https://docs.yoctoproject.org/
https://docs.yoctoproject.org/
https://www.rfc-editor.org/rfc/rfc5737
http://FinalTek.com
http://github.com
https://github.com/yoctoproject/
http://github.com
http://github.com
http://kernel.org/driver-api/ptp
https://docs.kernel.org/
https://man7.org/linux/


[52] Linux Kernel Support for I E E E 1588 Hardware Timestamping, 

Renesas, 2021, https://www.renesas.com/us/en/document/wrip/ 

linux-kernel-support-ieee-1588-hardware-timestamping, [Online; 

accessed 23-January-2024]. 

[53] W E I D O N G Y . , IEEE1588 Clock servo algorithm, 2009, 

10.1109/ICEMI.2009.5274861, pp. 1-341-1-344 

[54] Synchronizing Time wi th Linux* P T P Avnu Alliance, 2023, https://tsn. 

readthedocs. io/timesync .html, [Online; accessed 23-January-2024]. 

[55] Leap second and U T 1 - U T C information, NIST, 2023, https : //www. nist. gov/ 

pml/time-and-frequency-division/time-realization/leap-seconds#: 

~:text=The%20current%20difference%20betweeny„20UTCy„20andy„20TAiy„ 

20is°/„2037y„20seconds. °/„20 (&text=They„20tabley„20belowy„201istsy„20all, 

oryo20arey
o
20scheduledyo20toy

o
20occur., [Online; accessed 23-January-2024]. 

[56] ethtool(8) - - Linux manual page, manl, 2023, https://man7.org/linux/ 

man-pages/man8/ethtool.8.html, [Online; accessed 29-January-2024]. 

[57] ptp41(8) - L inux man page, die.net, 2024, https://linux.die.net/man/8Z 

ptp41, [Online; accessed 29-January-2024]. 

[58] Configuring P T P Using ptp41, Fedora Project Docs, 2024, 

https://docs.fedoraproject.org/en-US/fedora/latest/ 

system-administrators-guide/servers/Configuring_PTP_Using_ptp41/, 

[Online; accessed 5-February-2024]. 

[59] pmc(8) - L inux man page, die.net, 2024, https://linux.die.net/man/8/pmc, 

[Online; accessed 6-February-2024]. 

[60] pmc(8): ptp management client linuxptp project, 2024, https ://linuxptp. 

nwtime.org/documentation/pmc/, [online; accessed 6-february-2024]. 

[61] Software User Manual , Ouster, 2024, https://data.ouster.io/downloads/ 

software-user-manual/software-user-manual-v2. l.O.pdf, [online; ac

cessed 6-february-2024]. 

[62] phc2sys(8) - Linux man page, die.net, 2024, https://linux.die.net/man/8Z 

phc2sys, [online; accessed 6-february-2024]. 

96 

https://www.renesas.com/us/en/document/wrip/
https://tsn
https://man7.org/linux/
http://die.net
https://linux.die.net/man/8Z
https://docs.fedoraproject.org/en-US/fedora/latest/
http://die.net
https://linux.die.net/man/8/pmc
http://nwtime.org/documentation/pmc/
https://data.ouster.io/downloads/
http://die.net
https://linux.die.net/man/8Z


[63] ip-macsec(8) Linux manual page, Red Hat 

Blog, 2024, https : //www. redhat. com/en/blog/ 

architecting-containers-part-1-why-understanding-user-space-vs-kernel-space-

[online; accessed 20-february-2024]. 

[64] Universal T U N / T A P device driver, kernel.org, 2002, https://www.kernel. 

org/doc/Documentation/networking/tuntap .txt, [online; accessed 18-

february-2024]. 

[65] Introduction to strongSwan, strongSwan Documentation, 2024, https: // 

docs . strongswan. org/docs/5.9/howtos/introduction. html, [online; ac

cessed 27-february-2024]. 

[66] swanctl.conf, strongSwan Documentation, 2024, https://docs . strongswan. 

org/docs/5.9/swanctl/swanctlConf .html, [online; accessed 27-february-

2024]. 

[67] forecast Plugin, strongSwan Documentation, 2024, https: //docs. 

strongswan. org/docs/5.9/plugins/f orecast. html, [online; accessed 

27-february-2024]. 

[68] Unicast P T P , meinberg, 2024, https://blog.meinbergglobal.com/2014/04/ 

16/unicast-ptp/, [online; accessed 27-february-2024]. 

[69] Frequently Asked Questions (FAQ) , strongSwan Documentation, 2024, https: 

//docs.strongswan.org/docs/5.9/support/faq.html, [online; accessed 27-

february-2024]. 

[70] ip-macsec(8) — Linux manual page, manl, 2023, https://man7.org/linux/ 

man-pages/man7/socket.7.html, [Online; accessed 14-March-2024]. 

[71] urandom(4) - Linux man page die.net, 2024, https://linux.die.net/man/4Z 

urandom, [Online; accessed 14-March-2024]. 

[72] What ' s new in M A C s e c , Red Hat Blog, 2017, 

https://developers.redhat.com/blog/2017/06/28/ 

whats-new-in-macsec-setting-up-macsec-using-wpa_ 

supplicant-and-optionally-networkmanager, [online; accessed 18-May-

2024]. 

[73] ethtool kernel driver, googlesource. com, 2024, https : //gf iber. googlesource. 

com/kernel/quantenna/+/master/net/core/ethtool. c, [Online; accessed 

17-April-2024]. 

97 

http://kernel.org
https://www.kernel
https://docs
https://blog.meinbergglobal.com/2014/04/
https://man7.org/linux/
http://die.net
https://linux.die.net/man/4Z
https://developers.redhat.com/blog/2017/06/28/


[74] vlan kernel driver, bootlin.com, 2024, https://elixir.bootlin.com/linux/ 

v4.19.312/source/net/8021q/vlan_dev.c, [Online; accessed 17-April-2024]. 

[75] Paramiko, paramiko.org, 2024, https://www.paramiko.org/ [Online; accessed 

18-April-2024]. 

[76] Paramiko Documentation, paramiko.org, 2024, https://docs.paramiko.org/ 

en/latest/api/client .html [Online; accessed 22-April-2024]. 

[77] How to Calculate Standard Deviation (Guide) Scribbr, 2024, https://www. 

scribbr.com/statistics/standard-deviation/ [Online; accessed 18-May-

2024]. 

[78] Outliers Detection Using IQR Z-score L O F and D B S C A N , analyt-

icsvidhya.com, 2024, https://www.analyticsvidhya.com/blog/2022/10/ 

outliers-detect ion-us ing-iqr-z-s core-lof-and-dbs can/ [Online; ac
cessed 9-May-2024]. 

98 

http://bootlin.com
https://elixir.bootlin.com/linux/
http://paramiko.org
https://www.paramiko.org/
http://paramiko.org
https://docs.paramiko.org/
https://www
http://scribbr.com/statistics/standard-deviation/
http://icsvidhya.com
https://www.analyticsvidhya.com/blog/2022/10/


Symbols and abbreviations 
A H Authentication Header 

B M C A Best Master Clock Algor i thm 

B S P Board Support Package 

C L I Command-line interface 

E 2 E End-to-end 

EoIP Ethernet over IP 

E S P Encapsulating Security Payload 

G N S S Global Navigation Satellite System 

G P S Global Positioning System 

I C V Integrity Check Value 

I E E E Institute of Electrical and Electronics Engineers 

I K E Internet Key Exchange 

IP Internet Protocol 

IPsec Internet Protocol security 

I Q R Interquartile range 

L A N Local Area Network 

M A C Medium access control 

M A C s e c Medium access control security 

N I C Network interface controller 

N T P Network Time Protocol 

OSI Open Systems Interconnection 

O U I Organizational Unique Identifier 

P 2 P Peer-to-Peer 

99 



ppb Parts Per Bi l l ion 

P S K Pre-shared key 

P T P Precision Time Protocol 

Q S D O Qualified standards development organizations 

R T T Round-trip time 

R F C Request for Comments 

S S H Secure Shell Protocol 

stdin standard input 

stdout standard output 

T A I International Atomic Time 

T C P / I P Transmission Control Protocol/Internet Protocol 

T L V Type Length Values 

U D P User Datagram Protocol 

U T C Coordinated Universal Time 

V L A N Vir tua l local area network 

V P N Vir tua l private network 

100 



List of appendices 

A Additional measrument results 102 

A . l Ptp41 calculated path delay, Hardware timestamping 102 

A . 2 Ptp41 calculated path delay, Software timestamping 103 

B Software versions used in the project 106 

C Encryption algorithms used by security protocols 107 

D Content of the electronic attachment 108 

101 



A Additional measrument results 

A . l Ptp4l calculated path delay, Hardware timestamp-

ing 

path delay multicast udp multicast 12 unicast udp unicast 12 

mean [ns] 454.113107 453.933537 453.960275 454.028648 

median [ns 454.000000 454.000000 454.000000 454.000000 

mean - median ns 0.113107 -0.066463 -0.039725 0.028648 

abs. mean dev. ns 1.319782 1.446615 1.328928 1.327300 

abs. median dev. Hi 1.000000 1.000000 1.000000 1.000000 

standard dev. ns 1.691368 1.841757 1.716975 1.690179 

variance [ns2] 2.860726 3.392069 2.948002 2.856704 

spike prob. (Z-score) [%] 0.191058 0.267380 0.114591 0.000000 

spike prob. (IQR) [9 0.000000 0.000000 0.000000 0.000000 

Tab. A . l : Master to Slave path delay statistics, No encryption, Hardware times-

tamping 

path delay unicast udp_tunnel unicast udp transport 

mean [ns 453.964463 454.139855 

median [ns 454.000000 454.000000 

mean - median ns -0.035537 0.139855 

abs. mean dev. ns 1.394483 1.321878 

abs. median dev. rii- 1.000000 1.000000 

standard dev. ns 1.789206 1.681204 

variance [ns2] 3.201259 2.826448 

spike prob. (Z-score) [% 0.229270 0.267482 

spike prob. (IQR) [9 0.000000 0.000000 

Tab. A . 2 : Master to Slave path delay statistics, IPsec encryption, Hardware times-

tamping 

102 



path delay multicast udp multicast 12 unicast udp unicast 12 

mean [ns] 454.089415 454.057678 453.964477 453.908709 

median [ns 454.000000 454.000000 454.000000 454.000000 

mean - median ns 0.089415 0.057678 -0.035523 -0.091291 

abs. mean dev. ns 1.350923 1.334134 1.294966 1.431871 

abs. median dev. Hi 1.000000 1.000000 1.000000 1.000000 

standard dev. ns 1.719438 1.715686 1.712723 1.788383 

variance [ns2] 2.956468 2.943579 2.933421 3.198312 

spike prob. (Z-score) [%] 0.000000 0.267380 0.420168 0.267380 

spike prob. (IQR) [9 0.000000 0.000000 0.000000 0.000000 

Tab. A . 3 : Master to Slave path delay statistics, Macsec encryption, Hardware times-

tamping 

A.2 Ptp4l calculated path delay, Software timestamp-

ing 

path delay multicast udp multicast 12 unicast udp unicast 12 

mean [ns] 1.100064e+06 1.095549e+06 1.098648e+06 1.092712e+06 

median [ns 1.100063e+06 1.095704e+06 1.098612e+06 1.092796e+06 

mean - median ns 0.674865 -154.989623 36.456572 -83.591241 

abs. mean dev. ns 3160.049712 3064.749497 3230.511898 3158.760717 

abs. median dev. rii- 2661.000000 2519.500000 2797.500000 2541.000000 

standard dev. ns 3943.974344 3900.990038 4041.844647 4075.721799 

variance [ns2] 1.555493e+07 1.521772e+07 1.633651e+07 1.661151e+07 

spike prob. (Z-score) [%] 0.076864 0.576480 0.269024 1.037265 

spike prob. (IQR) [9 0.000000 0.000000 0.115296 0.000000 

Tab. A .4 : Master to Slave path delay statistics, No encryption, Software timestamp-

ing 

103 



path delay unicast udp_tunnel unicast udp transport 

mean [ns 1.097696e+06 1.097170e+06 

median [ns 1.097765e+06 1.097478e+06 

mean - median ns -68.958493 -308.159877 

abs. mean dev. ns 2983.542918 2975.457626 

abs. median dev. rii- 2595.500000 2353.000000 

standard dev. ns 3689.165854 3816.215386 

variance [ns2] 1.360994e+07 1.456350e+07 

spike prob. (Z-score) [% 0.076864 0.922367 

spike prob. (IQR) [9 0.000000 0.038432 

Tab. A . 5 : Master to Slave path delay statistics, IPsec encryption, Software times-

tamping 

path delay multicast udp multicast 12 unicast udp unicast 12 

mean [ns] 1.096709e+06 1.096480e+06 1.095627e+06 1.094645e+06 

median [ns 1.096952e+06 1.096579e+06 1.095687e+06 1.094828e+06 

mean - median ns -243.259416 -99.265847 -59.994237 -183.453497 

abs. mean dev. ns 3065.950005 2746.566042 2823.630742 2933.832196 

abs. median dev. rii- 2477.500000 2243.000000 2520.000000 2423.000000 

standard dev. ns 3941.093497 3516.332065 3516.498512 3721.557111 

variance [ns2] 1.553222e+07 1.236459e+07 1.236576e+07 1.384999e+07 

spike prob. (Z-score) [%] 0.499616 0.691510 0.691510 0.499616 

spike prob. (IQR) [9 0.000000 0.192086 0.000000 0.000000 

Tab. A .6 : Master to Slave path delay statistics, Macsec encryption, Software times-

tamping 

104 



path delay multicast udp unicast udp 

mean [ns] 3.037686e+06 3.148619e+06 

median [ns 3.037105e+06 3.160712e+06 

mean - median ns 580.997310 -12092.142583 

abs. mean dev. ns 151928.237884 231503.076855 

abs. median dev. i i i - 125753.000000 196881.500000 

standard dev. ns 193528.400297 289928.906398 

variance [ns2] 3.745324e+10 8.405877e+10 

spike prob. (Z-score) [%] 0.307456 0.230592 

spike prob. (IQR) [9 0.000000 0.000000 

Tab. A .7 : Master to Slave path delay statistics, Wireguard encryption, Software 

timestamping 

105 



Software versions used in the project 

Software Version 

Linux Kernel 4.19.35 

Ethtool 4.19 

Ptp41 4.1 

Iproute2 6.7.0 

Wireguard-go 0.0.20230223 

StrongSwan 5.9.13 

Macsec 4.19 

Tshark 3.0.3 

Tab. B . l : Versions of used software 

106 



C Encryption algorithms used by security pro
tocols 

Security Protocol Encrypt ion Algor i thm 

Wire Guard ChaCha20 

IPSec A E S - 1 2 8 - G C M 

M A C s e c A E S - 1 2 8 - G C M 

Tab. C . l : Encrypt ion algorithms used by security protocols 

107 



D Content of the electronic attachment 
The electronic attachment to this thesis contains a directory wi th a measurement 

script, a directory wi th meta layers, and a directory wi th measurement results and 

statistics. Pcap files are not included so as not to reveal proprietary device infor

mation. A l l png images were downsized so as not to exceed the electrical appendix 

submission criteria. README, md files were included as to provide additional clar

ification and sourcing. 

/ root of the attached archive 
_README.md 

meta-custom custom Yocto meta layers used for L i n u x image creation 
README.md 

meta-custom 

recipes-connectivity 

iproute2 

iproute2 

L 0001-libc-compat.h-add-musl-workaround.patch 

iproute2_6.7.0.bb 

linuxptp 

linuxptp 

0001-include-string.h-for-strncpy.patch 

0002-linuxptp-Use-CC-in-incdefs.sh.patch 

systemd 

phc2sys@.service.in 

_ ptp41@.service.in 

linuxptp_4.1.bb 

recipes-kernel 

linux 

linux-rt 

L my_kernel 

_ 0001_ethtool_macsec.patch 

_ 0002_debug_ethtool.patch 

_ 0003_crypto_kernel_reqs.patch 

linux-rt.bbappend 

wireguard 

L wireguard-tools_°/
0
. bbappend 

recipes-support 

L strongswan 

L strongswan_5.9.13.bb 

setup_and_measure python files 
_README.md 

confdata.yml measurment specification file 
requirements.txt 

setup_and_measure configuration and measurement script 

108 



main . py 

_ class_utils.py 

_ files_packages.py 

_logger.py 

networking.py 

ptp_config_files.py 

_ ptp_reader.py 

_ sec.py 

_ stats_compare.py 

vardata.py 

results a l l results generated by measurement script 
network-caps directory for .pcap files 
real-time-raw-plots plots updated i n real time 

_ ipsec_enc_unicast_udp_hw_transport.png 

_ ipsec_enc_unicast_udp_hw_tunnel.png 

ipsec_enc_unicast_udp_sw_transport.png 

ipsec_enc_unicast_udp_sw_tunnel.png 

macsec_enc_multicast_12_hw.png 

macsec_enc_multicast_12_sw.png 

_macsec_enc_multicast_udp_hw.png 

_macsec_enc_multicast_udp_sw.png 

_macsec_enc_unicast_12_hw.png 

macsec_enc_unicast_12_sw.png 

macsec_enc_unicast_udp_hw.png 

macsec_enc_unicast_udp_sw.png 

_no_enc_multicast_12_hw.png 

_no_enc_multicast_12_sw.png 

_no_enc_multicast_udp_hw.png 

no_enc_multicast_udp_sw.png 

no_enc_unicast_12_hw.png 

no_enc_unicast_12_sw.png 

_ no_enc_unicast_udp_hw.png 

_ no_enc_unicast_udp_sw.png 

_ wg_enc_multicast_udp_sw.png 

wg_enc_unicast_udp_sw.png 

real-time-raw-values data updated i n real time 
ipsec_enc_unicast_udp_hw_transport.csv 

_ ipsec_enc_unicast_udp_hw_tunnel.csv 

_ ipsec_enc_unicast_udp_sw_transport.csv 

_ ipsec_enc_unicast_udp_sw_tunnel.csv 

macsec_enc_multicast_12_hw.csv 

macsec_enc_multicast_12_sw.csv 

macsec_enc_multicast_udp_hw.csv 

_macsec_enc_multicast_udp_sw.csv 

_ macsec_enc_unicast_12_hw.csv 

_macsec enc unicast 12 sw.csv 

109 



macsec_enc_unicast_udp_hw.csv 

macsec_enc_unicast_udp_sw.csv 

no_enc_multicast_12_hw.csv 

no_enc_multicast_12_sw.csv 

no_enc_multicast_udp_hw.csv 

no_enc_multicast_udp_sw.csv 

no_enc_unicast_12_hw.csv 

no_enc_unicast_12_sw.csv 

no_enc_unicast_udp_hw.csv 

no_enc_unicast_udp_sw.csv 

wg_enc_multicast_udp_sw.csv 

wg_enc_tmicast_udp_sw.csv 

stats_plots_comparisons statistics created after measurment 
box box plots 

.ipsec_enc_unicast_udp_hw_transport_iqr_3.5.png 

_ ipsec_enc_unicast_udp_hw_tunnel_iqr_3.5.png 

_ ipsec_enc_unicast_udp_sw_transport_iqr_3.5.png 

_ ipsec_enc_unicast_udp_sw_tunnel_iqr_3.5.png 

macsec_enc_multicast_12_hw_iqr_3.5.png 

macsec_enc_multicast_12_sw_iqr_3.5.png 

macsec_enc_multicast_udp_hw_iqr_3.5.png 

macsec_enc_multicast_udp_sw_iqr_3.5.png 

.macsec_enc_unicast_12_hw_iqr_3.5.png 

.macsec_enc_unicast_12_sw_iqr_3.5.png 

_macsec_enc_unicast_udp_hw_iqr_3.5.png 

macsec_enc_unicast_udp_sw_iqr_3.5.png 

.no_enc_multicast_12_hw_iqr_3.5.png 

no_enc_multicast_12_sw_iqr_3.5.png 

_no_enc_multicast_udp_hw_iqr_3.5.png 

_no_enc_multicast_udp_sw_iqr_3.5.png 

.no_enc_unicast_12_hw_iqr_3.5.png 

no_enc_unicast_12_sw_iqr_3.5.png 

no_enc_unicast_udp_hw_iqr_3.5.png 

no_enc_unicast_udp_sw_iqr_3.5.png 

.wg_enc_multicast_udp_sw_iqr_3.5.png 

.wg_enc_unicast_udp_sw_iqr_3.5.png 

csvs numerical statist ical values for each parameter 
master_offset_statistics_hw.csv 

_master_offset_statistics_sw.csv 

path_delay_statistics_hw.csv 

.path_delay_statistics_sw.csv 

.servo_freq_statistics_hw.csv 

.servo_freq_statistics_sw.csv 

servo_statistics_hw.csv 

servo_statistics_sw.csv 

histograms histograms 

110 



_ ipsec_enc_unicast_udp_hw_transport_hist_rice.png 

_ ipsec_enc_unicast_udp_hw_tunnel_hist_rice.png 

_ ipsec_enc_unicast_udp_sw_transport_hist_rice.png 

ipsec_enc_unicast_udp_sw_tunnel_hist_rice.png 

macsec_enc_multicast_12_hw_hist_rice.png 

macsec_enc_multicast_12_sw_hist_rice.png 

_macsec_enc_multicast_udp_hw_hist_rice.png 

_macsec_enc_multicast_udp_sw_hist_rice.png 

_macsec_enc_unicast_12_hw_hist_rice.png 

macsec_enc_unicast_12_sw_hist_rice.png 

macsec_enc_unicast_udp_hw_hist_rice.png 

macsec_enc_unicast_udp_sw_hist_rice.png 

_no_enc_nnilticast_12_hw_hist_rice.png 

_no_enc_multicast_12_sw_hist_rice.png 

_no_enc_multicast_udp_hw_hist_rice.png 

no_enc_nmlticast_udp_sw_hist_rice.png 

no_enc_unicast_12_hw_hist_rice.png 

no_enc_unicast_12_sw_hist_rice.png 

no_enc_unicast_udp_hw_hist_rice.png 

_ no_enc_unicast_udp_sw_hist_rice.png 

_wg_enc_multicast_udp_sw_hist_rice.png 

_wg_enc_unicast_udp_sw_hist_rice.png 

packet _time_de It as plots depicting times between consecutive 
] >ackets / frames 

_ ipsec_enc_unicast_udp_hw_transport.png 

_ ipsec_enc_unicast_udp_hw_tunnel.png 

_ ipsec_enc_unicast_udp_sw_transport.png 

ipsec_enc_unicast_udp_sw_tunnel.png 

— macsec 
— macsec 
— macsec 
— macsec 
— macsec 
— macsec 
— macsec 
— macsec 
— no_enc 
— no_enc 
— no_enc 
— no_enc 
— no_enc 
— no_enc 
— no_enc 
— no_enc 
— wg_enc 
— wg_enc 

111 



combined 

combined 

combined 

combined 

combined 

combined 

combined 

combined 

combined 

combined 

t s _ a l l _ a l l . p n g 

ts_hw_all.png 

ts_hw_ipsec.png 

t s _hw_mac se c.png 

ts_hw_no_enc.png 

ts_sw_all.png 

ts_sw_ipsec.png 

ts_sw_macsec.png 

ts_sw_no_enc.png 

ts_sw_wg.png 

112 


