
B R N O UNIVERSITY O F T E C H N O L O G Y

Faculty of Electrical Engineering

and Communication

B A C H E L O R ' S T H E S I S

Brno, 2020 Jaromír Bača

T
BRNO UNIVERSITY DF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

END-TO-END ENCRYPTION PROTOCOL FOR IEEE

802.15.4
PROTOKOL S KONCOVÝM ŠIFROVÁNÍM PRO IEEE 802.15.4

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR Jaromír Bača
AUTOR PRÁCE

SUPERVISOR Ing. Ondřej Krajsa, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2020

T VYSOKÉ UČENÍ FAKULTA ELEKTROTECHNIKY
TECHNICKÉ A KOMUNIKAČNÍCH
V BRNĚ TECHNOLOGIÍ

Bakalářská práce
bakalářský studijní obor Informační bezpečnost

Ústav telekomunikací

Student: Jaromír Bača ID: 133372

Ročník: 3 Akademický rok: 2019/20

NÁZEV TÉMATU:

Protokol s koncovým šifrováním pro IEEE 802.15.4

POKYNY PRO VYPRACOVÁNÍ:

Navrhněte a implementujte protokol pro bezpečnou výměnu klíčů pro šifrovací algoritmus AES128. Tento protokol
bude pro komunikaci využívat linkový protokol standardu IEEE802.15.4 a síťový protokol Atmel LighWeight Mesh.
Implementaci navrženého protokolu a také linkového síťového protokolu proveďte na mikrokontroléru AVR
ATMega128RFA1. Změřte časy nutné pro výměnu klíče a časy nutné pro šifrování a dešifrování informace.
V rámci práce proveďte bezpečnostní analýzu navrženého protokolu a porovnání s obdobnými technikami. Dále
proveďte analýzu a návrh výměny klíče mezi bezdrátovým uzlem a prvkem v síti internet využívající navržený
protokol.

DOPORUČENÁ LITERATURA:

[1]LAVANYA, M. a V. NATARAJAN. Lightweight key agreement protocol for loT based on IKEv2. Computers and
Electrical Engineering [online]. Elsevier, 2017, 64 [cit. 2019-09-16]. DOI: 10.1016/j.compeleceng.2017.06.032.
ISSN 0045-7906.

[2] THAMES, Lane a Dirk SCHAEFER. Cybersecurity for Industry 4. 0: Analysis for Design and Manufacturing.
Cham: Springer, 2017. DOI: 10.1007/978-3-319-50660-9. ISBN 9783319506593.

Termín zadání: 3.2.2020 Termín odevzdání: 25.8.2020

Vedoucí práce: Ing. Ondřej Krajsa, Ph.D.

prof. Ing. Jiří Mišurec, CSc.
předseda oborové rady

UPOZORNĚNÍ:

Autor bakalářské práce nesmí při vytváření bakalářské práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným

způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského

zákona č. 121/2000 S b . , včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku

č.40/2009 S b .

Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně / Technická 3058/10 / 616 00 / Brno

ABSTRACT
This thesis explores the topic of encryption of communication between low-voltage de
vices that are controlled by microcontrollers. Two deRFnod development boards were
used in the work, which were equipped with AVR ATmega 128 RFA1 chips, which en
able wireless communication. The application was developed and tested on these devices.
The final output of the work is the design of an application for asymmetric key exchange,
which is based on elliptic curves. This application is implanted in Atmel LightWeight,
where the issue of mutual communication between communicating points is also ad
dressed. The generated key is also used to propagate communication using the AES
encryption algorithm, which is already implemented in the used LightWeigt protocol.
This encryption allows not only encryption of endpoints, but also of the communication
tunnel. Such protection provides users with anonymity of data and makes it impossible
or very difficult for potential attackers to physically locate devices based on knowledge
of data routing on the network.

KEYWORDS
Microcontrollers, Internet of Things, lightweight mesh, asymetry cryptpgraphy, elliptic
curves, AES

ABSTRAKT
Tato práce se zabývá problematikou šifrování komunikace mezi nízkonapěťovými zaří
zeními, které jsou ovládány pomocí mikrokontrolerů. V rámci práce byly používány dvě
vývojové desky deRFnod, které byly osazeny čipy AVR ATmega 128 RFA1, které umož
ňují bezdrátovou komunikaci. Na těchto zařízeních probíhal vývoj a testování aplikace.
Finálním výstupem práce je návrh aplikace pro asymetrickou výměnu klíčů, která je
založena na eliptických křivkách. Tato aplikace je implantována v Atmel LightWeight,
kde je i řešena otázka vzájemné komunikace mezi komunikujícími body. Vygenerovaný
klíč je dále použit pro širfování komunikace pomocí šifrovacího algoritmu AES, který je
již implementován ve využitém LightWeigt protokolu. Toto šifrování umožňuje nejenom
šifrování koncových bodů, ale i komunikačního tunelu. Taková ochrana poskytuje uži
vatelům anonymitu dat a znemožňuje nebo velmi znesnadňuje potenciálním útočníkům
zařízení fyzicky lokalizovat na základě znalosti směrování dat v síti.

K L Í Č O V Á SLOVA
Mikrokontroléry, internet věcí, lightweight síť, asymetrická kryptografie, eliptické křivky,
AES

BAČA, Jaromír. Protokol s koncovým šifrováním pro IEEE 802.15.4. Brno, Rok, 44 p.
Semestral Project. Brno University of Technology, Fakulta elektrotechniky a komu
nikačních technologií, Ústav telekomunikací. Advised by Ing. Ondřej Krajsa, Ph.D.

Typeset by the thesis package, version 3.05; ht tp: / / la tex.feec.vutbr .cz

http://latex.feec.vutbr.cz

R O Z Š Í Ř E N Ý ABSTRAKT
Tato práce se zabývá problematikou šifrování komunikace mezi nízkonapěťovými za
řízeními, které jsou ovládány pomocí mikrokontrolerů. V rámci práce byly používány
dvě vývojové desky deRFnod, které byly osazeny procesory A V R ATmega 128 R F A l ,
které umožňují bezdrátovou komunikaci. Na těchto zařízeních probíhal vývoj a
testování aplikace. Finálním výstupem práce je návrh aplikace pro asymetrickou
výměnu klíčů, která je založena na eliptických křivkách. Tato aplikace je im
plantována v Atmel LightWeight, kde je i řešena otázka vzájemné komunikace
mezi komunikujícími body. Vygenerovaný klíč je dále použit pro širfování komu
nikace pomocí šifrovacího algoritmu AES, který je již implementován ve využitém
LightWeigt protokolu. Toto šifrování umožňuje nejenom šifrování koncových bodů,
ale i komunikačního tunelu. Taková ochrana poskytuje uživatelům anonymitu dat a
znemožňuje nebo velmi znesnadňuje potenciálním útočníkům zařízení fyzicky lokali
zovat na základě znalosti směrování dat v síti.

Navržený algoritmus na výměnu klíčů, je založen na obecné teorii eliptických
křivek, která je popsána v kapitole 4.1. Návrh algoritmu je realizován v jazyce C a
v průběhu vývoje byl implementován a testován na vývojový deskách od německ
ého výrobce Dresden Elektronik, GmbH. Vývoj aplikace probíhal v prostředí edi
toru Code::Block a následně byl přenášen do prostředí editoru Atmel Studiu, který
umožňuje testování běhu algoritmu přímo na vývojové desce. Implementace vlast
ního algoritmu do síťového protokolu LightWeight není zcela úspěšná. Nepodařilo se
sestavit úspěšnou komunikaci mezi dvěma komunikačními body. Ačkoliv jednotlivé
komponenty algoritmu na výměnu klíčů byly v průběhu návrhu vývoje úspěšně
testovány. Na důkaz tohoto tvrzení byly jednotlivé komponenty algoritmu vytvořeny
jako spustitelné soubory ve fromátu .exe a jsou součástí přílohy této práce.

DECLARATION

I declare that I have written the semestral project titled "Protokol s koncovým šifrováním

pro IEEE 802.15.4" independently, under the guidance of the advisor and using exclusively

the technical references and other sources of information cited in the project and listed

in the comprehensive bibliography at the end of the project.

As the author I furthermore declare that, with respect to the creation of this semestral

project, I have not infringed any copyright or violated anyone's personal and/or ownership

rights. In this context, I am fully aware of the consequences of breaking Regulation § 11

of the Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of

any breach of rights related to intellectual property or introduced within amendments to

relevant Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009

Coll., Section 2, Head VI, Part 4.

Brno

author's signature

A C K N O W L E D G E M E N T

Firstly, I would like to thank my thesis supervisor, Ing. Ondrej Krajsa, PhD., for his

professional guidance. Without his tips and deep patience, this thesis would not never

be completed.

Contents

Introduction 8

1 Hardware 9
1.1 Mirocontrollers 9
1.2 deRFnode 1TNP2 D B T 9
1.3 Atmel Studio IDE 11

2 Standard 802.15.4 12
2.1 Topology 13

2.1.1 Star 13
2.1.2 Mesh (Peer-to-peer) 14

2.2 Atmel lightweight Mesh 14

3 IKEv2 - Internet Key Exchange 15

4 Elliptic-curve Diffie Hellman 16
4.1 Theory of elliptic curve 17

5 Key exchange algorithm 20
5.1 Phase A 20
5.2 Phase B 24
5.3 Phase C 25
5.4 Overview of E C D H function 26

6 Implementation E C D H on L W M 31
6.1 TaskHandler 31
6.2 Definition of payload 33

6.3 Data receiving 36

Conclusion 39

Bibliography 40

List of acronyms 42

List of appendices 43

Introduction
The future belongs to automation. We have all come across concepts such as smart
cities, self-driving cars, or fully-automated factories that do not need human beings
to operate them. These things, which sounded like science fiction 20 years ago, are
becoming a reality today. In addition, due to falling hardware prices, automation
is not just a privilege for large corporations but is becoming increasingly common
place.

One of the pillars of automation is the collection and flow of data, which intro
duces a new concept—the Internet of Things. Under this term, we can imagine a
large number of small devices that are often not even connected to the mains and are
powered by batteries or solar panels. They use wireless networks to communicate
with the environment, and they use wireless networks that are specially designed
for these small devices due to their limited power options.

Each new technology brings advantages and disadvantages. The main problem
of wireless networks is their vulnerability to attacks. Input or output data can be
both tapped and altered, which can result in a number of situations, from unpleas
ant to fatal. The logical response is to use some kind of network security, but given
the fact that most small devices are dedicated to and built on microcontrollers, it is
necessary to use an adequate lightweight solution.

Structure of the thesis
This bachelor's thesis is divided into theoretical and practical parts and concludes
with a summary of what results were achieved. Microcontrollers are generally de
scribed in the theoretical part. The next chapter is devoted to deRFnode develop
ment boards, which were used during the work and in the Atmel Studio environment,
which was used to implement the design of the key exchange algorithm. The next
chapter of the theoretical section is a brief introduction to network theory for low-
power devices and the Lightweight Mesh protocol, which serves as a basis for the
implementation of the algorithm. The theoretical part concludes with chapters that
discuss the possibility of key exchange according to the IKEv2 standard and the
theory of elliptic curves, which also describes the calculation methodology.

8

1 Hardware
This thesis is practically oriented and uses several special software and hardware
instruments. In this chapter, the microcontrollers, which form the core of the used
deRFnode 1TNP2 D B T boards, are described in detail. The conclusion of the chap
ter deals with the Atmel Studio 7 development environment.

1.1 Mirocontrollers

In today's world, we are surrounded by various small smart devices that can record,
for example, ambient temperature, or simple machines that perform one or a limited
number of defined activities. A l l of these devices work thanks to the small, built-in
mini-computers we call microcontroller units (MCUs).

Although MCUs look like the processors known from P C assemblies, they are
fully functional computers. In the case of computational operations, no other pe
ripheral input and output devices can be used. It is sufficient to provide them with
electricity. In addition to the C P U itself, they include R A M and E E P R O M to store
the code that the computer executes. In this thesis, the ATmegal28RFR2 chip is
used, which is directly embedded in the deRFnode 1TNP2 D B T development board.

They are equipped with serial ports for basic communication with peripherals,
which may be other MCUs or electronic devices such as sensors or servomotors. Se
lected ports are grouped into interfaces, such as a Serial Peripheral Interface (SPI),
which allows full-duplex data communication between two microcontrollers. On one
side, there is a master that controls the slave microcontroller on the other. This
interface can be used for computer-to-MCU communication, but it requires a spe
cial converter. Another well-known interface is the I 2 C, also known as a Two-Wire
Interface (TWI), which allows two devices to be connected in a series with two wires
at a time and communicate using address data.

Among the world's leading manufacturers of MCUs are companies such as Texas
Instruments, Microchip Company (formerly Atmel), Intel Corp., and Fujitsu.

1.2 deRFnode 1TNP2 DBT

This is a development board that includes a radio module and an ATmegal28 chip.
This board is designed for low-energy data networks such as 802.15.4. The board

9

has a number of interfaces such as USB, J T A G 1 , or TWI. In addition to being pow
ered via a USB cable connected to a computer, the board can be powered with a 5V
DC plug. The board is also equipped with a battery pack for three A A A batteries,
which allow the board to operate without the need to connect to the power grid.

The board is produced in two variants: deRFgateway and deRFnode. The first
is equipped with an Ethernet interface. This board can be used as a network coor
dinator that collects data from other nodes and sends it to a different network, in
this case, to an 802.3 Ethernet network. The second type, deRFnode, can serve as
a coordinator within a W S N 2 network or as a reduced-function device node. The
board contains sensors that measure acceleration, temperature, and luminosity.

The main advantage of these boards is their variability. The radio module is
removable from the board and can be replaced with another compatible type from
Dresden Elektronik Verkehrstechni, GmbH. Another optional part is the software
used; we can choose between different network stacks from the manufacturer or
external developers.

Fig. 1.1: deRFgateway and deRFnode board (without radio modules) [2]

1 Joint Test Action Group - industry standardized connector
2 Wireless Sensor Network

10

1.3 Atmel Studio IDE

The software part of this term paper was realized in the Atmel Studio 7 integrated
development environment (IDE). This development environment is intended for the
development and debugging of applications written in C and C++ languages. The
Studio allows the programming of over 500 supported A V R and S A M microcon
trollers via USB programmers, for example, Atmel ICE.

Advanced Nods LWM_MSSV_dcRF - AtmdStudio

File Edfc View VAssisiX ASF Project Build Debug Tools Window help

I © - > | © - «H • - £] H d - | X 3 r J j ~ | - I H 3» I • Nl D^ug - Debug Browser - - | ^ appinit

j M B • | -» " • | &> 1 "? h | He> *g | 3 - _ i r=! EH S :J M - J fcal |w| | M - I «»ATmega128RFA1 f JTAG on JTAGICE mkll (090000007CA5)

I Uuick Launch (Clrl+U) P | - £

^ I 51 f* tt E «I «ä '

jirLWM_MSSY_deRF'l
'_ LWM_MSSY_deRF

l l Dppcnripnrip';
M Output Files

Libraries
_J Stack
L 3 USB_Stack
c ADC_lib.c
h ADCJib.h
li config.ri

mssy functions.c
mssyjunctions.h

iL C:\..s=rAjarom\Desk:cp\LWM31SSYJeR^LWM_ySSY_deRPiLm
static void appSendData(void)j

.a;Le:
49 static App5 ta te_ t appState = APP_STATE_INITIAL;
56 static SYS_Timer_t appTime";
51 static NWK_DataReq_t appDataReq;
52 static bool appDataReqEusy = false;
53 static uint8_t appDataReqBuffer[APP_BUFFER_SIZE];
54 static uint8_t appUartEuffer[APP_BJFFER_SIZE]•
55 static uintS_t appUartBufferPtr = 3;
56
57 FILE usb_stream = FDEV_SETUP_STREAM(usb_putz_stä, usb_getc_std]_FDEV_5ETUP_RW);

69 /*- Implementations •

64 B s t a t u dd appDataConf(NWK DataRsg t *req)

Fig. 1.2: Atmel Studio 7 IDE

11

2 Standard 802.15.4
The main motivation for the design of IEEE 802.15.4 was to create a communication
standard for W P A N networks that would be optimized for low-energy devices for
use in industrial automation. This standard serves as a basis for higher protocols,
such as ZigBee, WirelessHard, and 6L0WPAN. The OSI model defines the link and
physical layer parameters. Higher layer protocols are not specified.

Application layer APL

Network layer N W K

Media Acces Control M A C

Physics layer PHY

ZigBee, WirelessHard, 6 L 0 W P A N

802.15.4

Fig. 2.1: Lyers of 802.15.4 and higher protocols

The physical layer
The general task of the physical layer is to transmit data. This layer defines the
frequency band and modulation used. Within the physical layer, we distinguish a
total of three frequency bands with different transmission speeds and a number of
channels.

. Europe 868.0 - 868.8 MHz - pouze jeden kanál (0), 20 - 250kbit/s

. North America 902 - 928 MHz - 13 channels (1-14)

. Worldwide 2400-2483.5 MHz - 16 channels

Data link layer
The link layer ensures the correct addressing of forwarded data. Other tasks include,
for example, synchronization according to the beacon frame, which it transmits at
regular intervals and thus informs the user about the network presence.

12

2.1 Topology

The standard uses star and mesh topologies. Topologies consist of two basic types
of devices: full-function device (FFD) and reduced-function device (RFD).
F F D (Fully Function device)
This device can serve either as a network coordinator, a terminal coordinator, or a
terminal only. In the case of the first role, the device acts as a router and, in ad
dition to network management, can forward data to other networks based on other
standards, such as Ethernet or W i F i .

R F D (Reduced Function device)
A n R F D device is a feature with reduced functionality and only works as an endpoint
that receives or sends data to its coordinator, not to another point on the network.

2.1.1 Star

This type of topology consists of one network coordinator to which F F D or R F D
devices can be connected but only communicate with the network coordinator.

Fig. 2.2: Topologies Star and Mesh (Peer-to-peer) [1]

13

2.1.2 Mesh (Peer-to-peer)

If there is no requirement for the peer-to-peer topology to send data to other net
works, there is no need to include a network coordinator. The advantage of this
solution is the possibility of building a network with a higher range than the net
work coordinator radio module in the star topology. This is made possible by the ad
hoc capability where the data packet is forwarded from the sender to the recipient
through several intermediate nodes. However, this solution has a negative effect on
the energy consumption of the system.

2.2 Atmel lightweight Mesh

For our protocol design, Atmel's Lightweight Mesh SDK was used in a low-power
wireless network. It can be applied to any system or development board that
works with an M C U with the hLow Power transceiver for 802.15.4, such as the
ATmegal28RFAl used in the deRFnode 1TNP2 D B T board. It is possible that,
based on this protocol, it could theoretically have up to 65,635 nodes [1].

14

3 IKEv2 - Internet Key Exchange
The purpose of this protocol is to secure communication between the two parties,
not only by securing the forwarded data but also by securing the communication
channel. Communication is thus secured against data theft or usage of fraudulent
data.

The principles of the IKEv2 are depicted in Figure 3.1. The protocol is divided
into three main parts. In the first part, there is a mutual exchange of keys based
on the Diflie-Hellman algorithm. Side A proposes various combinations of security
associations (SAs), which are a set of algorithms used to encrypt and authenticate
the subscribers, to side B. Side B chooses the most appropriate combination of SAs
based on its capabilities. In the second phase of the protocol, authentication of the
parties, key exchange, and activation of the agreed encryption algorithm according
to the selected SA take place. In the third phase, both parties receive an identifica
tion tag (SPI), which confirms the identity of the forwarded data. The key exchange
is then used again to encrypt the transmitted data.

Endpoint A
State: INIT_REQUEST
• Intial IKEv2 request
• Proposa l of SA
• Send a nonce f r om DH

State: WAIT INIT RESPONSE

3

State: SEND_AUTH_RESPONSE
• Ca lcu la te o w n DH
• Send Au then t i ca t ion
• Send p a r a m e t r s f o r CHILD_SA

State: WAIT AUTH RESPONSE

5

S
8

State: SEND_CHILD_SA_REQUEST
• Request to SPI
• Ca lcu la te new DH
• Send a new nonce f r om DH

State: WAIT CHILD SA RESPONSE

State: START_CHILD_SA_PROTECTION
• Calcu la te n e w DH
• Create a new SA

Endpoint B
State: WAIT_INIT_REQUEST

State: SEND_INIT_RESPONSE
• Se lect ion a proposa l
• Us ing a ob ta in nonce DH
• Ca lcu la te o w n DH
• A d d SPI tag (for tunnel ing)

>• State: WAIT_AUTH_REQUEST

State: SEND_INIT_RESPONSE
• A u t h . of the Endpo in t A
• A g r e e m e n t CHILD_SA
• Ac t i va te traff ic p ro tec t ion
• Send CHILD_SA paramete rs

*• State: WAIT_CHILD_SA_REQUEST

State: SEND_CHILD_SA_RESPONSE
• Recognise change of SPI
• Ca lcu la te n e w DH
• Send a n e w nonce f r om DH
• Send CHILD_SA paramet rs

State: START CHILD SA PROTECTION

Fig. 3.1: IKEv2 key exchange [5]

15

4 Elliptic-curve Diffie-Hellman
The previous chapter described the methodology of key exchange. The key exchange
itself is realized by asymmetric cryptography, where both parties independently de
termine the secret key from which they calculate the public key, using a one-way
mathematical function. With a one-way function, it is easy to calculate the public
key from the secret key, but to recalculate the secret key from the public key is
mathematically very difficult. This method was discovered by Whitfield Diffie and
Martin Hellman in the 1970s. Although it was later revealed that the method had
been invented a few years earlier by the British intelligence and security organization
GCHQ, this fact remained a secret until the 1990s, which is why this key exchange
protocol is known as the Diffie-Hellman protocol.

Tab. 4.1: Key size comparison between Diffe-Hellman algorithm and E C H D [5]

Key Size in bits
(by NIST reccomenditation)

Diffie-Hellman algorithm
(modulus size on bits) ECC size

80 1024 160

112 2048 224

128 3072 256

192 7680 384

256 15360 512

This protocol can be used with different key lengths, as described in 4.1. Among
other things, a key size equivalent is added for a better overview, as recommended by
the National Institute of Standards and Technology (NIST). However, the key sizes
in the classic Diffie-Hellman protocol are unsuitable for application on low-power
devices because of the transmission of larger amounts of data, which negatively
affects power consumption and the need for more storage space. A n elliptic curve-
based algorithm can be used to solve this problem. This algorithm's main advantage
is a smaller key size when compared to the classic Diffie-Hellman algorithm, but
it maintains the same level of security. For example, a 224-bit key created by
an elliptical curve-based algorithm provides security equivalent to a 2048-bit key
generated by the Diffie-Hellman algorithm.

16

4.1 Theory of elliptic curve

This part of the thesis briefly describes the theory of elliptic curves. Although there
are other theories and computational methods, we confine ourselves to describing
an elliptic curve on the GF(p) type of division ring that uses modular arithmetic.
The theory described here is based on publications [8]. This theory was used as a
basis for creating a key exchange algorithm in this term paper.

A n elliptic curve is a plane algebraic curve defined by equation 4.1, where the
values x a y represent the Cartesian coordinates of the chosen starting point, and a
and b are the curve parameters.

y

2 = x3 + ax + b (4.1)

However, before calculating the other points on the curve, it is necessary to verify
that the proposed point lies on the curve. This can be easily verified using modified
equation 4.2, using modular arithmetic. If the right and left calculations are the
same, then it is confirmed that the point lies on the curve. The value p is a prime.
This verification was carried out within the framework of this term paper and im
plemented by software; it is included in the appendices.

(y2)modp = (x 3 + ax + b)modp (4.2)

The points on the elliptical curve are made up of an additive group; each addi
tional point arises by adding the previous point and the starting point. It means,
logically, that there are two different methods to sum the two points accordingly,
whether the added points are the same or different.

Addition of two identical points
This method, also known as doubling, is usually used to calculate the second point in
a sequence within a group, where the starting point is added to itself. The graphical
solution of this method is shown in Figure 4.1.

3xP

2 + a
b = modp (4.3)

VP

XR = s2 — 2xp~modp (4.4)

VR = s(xP - xR) - ypmodp (4.5)

17

Using these formulas, we can calculate a common point. By calculating the first
equation, we obtain the slope of the curve S. We then use this value to calculate the
coordinates XR and

Fig. 4.1: Doubling [8

18

Addition of two different points
As in the previous case, we must first calculate the slope of the curve S and then
coordinates xR and yR. The figure below shows the graphical method of finding a
common point.

Fig. 4.2: Addition point [8]

19

5 Key exchange algorithm
In this chapter, we gradually describe the operation of the key exchange algorithm.
The algorithm is based on elliptic curves and the Weierstrass calculation method,
which was described in Chapter 4. The application is written in C language, and
its development took place simultaneously on the platform Code::Blocks and Atmel
Studio IDE, where the application was also tested on development boards equipped
with A V R ATmegal28RFAl MCUs. The individual parts of the algorithm are de
scribed here by generalized flowcharts, which present the function of the described
application, not the exact form. More detailed development diagrams are included
in the appendix. They are inserted into one sheet in pdf format and can be searched
using the entered term.

The key exchange is divided into three phases, which are illustrated in the figure
5.1. The task of the first phase is a random selection of input values; from these
values, this phase is further calculated by the group generator and its order. These
values are used for a successful key exchange between communicating points. The
second phase is responsible for the selection of the key, which is again selected in a
pseudo-random way; based on this key, the phase calculates a point on the elliptic
curve, which is used for sharing. The third phase of the key exchange can calculate
the common key from the received data, resp. a common point that serves as a key
in the future or an input value to the AES encryption block within the Lightweight
stack.

5.1 Phase A

This phase only works on the initiator side of the communication. Its task is to
select suitable values, which then go through several stages of testing to verify their
suitability. Furthermore, the algorithm is designed as a system of several loops that
run until all tests run properly and until the generated values are clearly usable for
a successful asymmetric key exchange.

The first part of this phase of the algorithm is the selection of a number that
represents a modulo value. According to the theory, it is given that this number must
be a prime number. The selection of a large prime number is realized through the
bdRandomSeeded function, which generates a pseudo-random number for us, which
is then tested using the bdRabinMiller function. These commands are taken from
a library that allows you to work with large numbers. Thanks to it, the selection
and control of random values is very effective. Similar commands for handling large
numbers occur throughout the our algorithm. If it finds that the number is not

20

Node A Node B

Establ ishment of E C D H
• random modulo p, parameters a and b
• primality and suitability test of parameters
• compute generator of group (the first point)
• compute order of group
• parity test of presence point on curve

Output: p, a, b, XFirst, Y First, Order

Send data Receive data
modulo p, parameters a and b modulo p, parameters a and b

Compute Generator of group
• used values from received payload
• use block of algorithm from Phase A

Input: p, a, b
Output: XFirst, Y First, Order

Pseudo- random select ion of Secret Key
• random number adjusted by modulo function

Input: Order
Output: Secret Key

Pseudo- random select secret key
random number adjusted by modulo function

Input: Order
Output: Secret Key

C o m p u
• selected SecreteKey i
point for exchange

Input: XFirst, Y Fi
Output: X, Y

te Point

3 used for compute a

st, a, p, SecretKey

C o m p u
• selected SecreteKey is
point for exchange

Input: XFirst, Y Fir
Output: X, Y

te Point
used for compute a

st, a, p, SecretKey

Compute Mutual Point
• recognizition SecretKey from obtain coordinates
• compute mutual key
• compute mutual point

Input: SecrefKey, XFirst, YFirst, X, Y,
p, a , Order
Output: MutualKey, MutualPoint

Compute Mutual Point
• recognizition SecretKey from obtain coordinates
• compute mutual key
• compute mutual point

Input: SecretKey, XFirst, YFirst, X, Y,
p, a , Order
Output: MutualKey MutualPoint

Fig. 5.1: Key exchange algorithm scheme

21

prime, the loop is repeated, i.e., re-selected and tested. If the selection is successful,
the selections of parameters a and b follow, representing the asymptotes of the
elliptic curve. Selected values are tested according to the equation:

(4* a 3 + 27*6)modp + 0. (5.1)

In the case of a negative test result, the loop is repeated until suitable values are
selected and until no equation results in zero. Both tests are designed as separate
blocks, which the main algorithm calls as needed. Figure 5.2 shows a run of an
application for testing a prime number, using a flowchart for illustration.

// psudo-random number

bdRandomSeeded(premod, 512, (const unsigned c h a r *) " " , 0,

RanodmNumber) ;

// Rabin-Miller - 10 rounds i t e r a t i o n

PrimeTest = bdRabinMiller(mod, 10);

Listing 5.1: Method of selection and verification the prime number

In the next part of this application phase, the coordinates of the first point, which
represent the group generator, are calculated. This step is mediated by a block of
code, marked TheFirstPointBIGD, and it is an essential element in assembling a
group of points. It is based on comparing values from two tables. The data from
these tables are outputs from separate XPart and YPart applications. Flowcharts
for these applications are included in the appendicies. The calculation method is
illustrated in Table 5.1 and listing of algorithm. If the first match is recorded, the
resulting coordinates are stored in variables Xfirst and Yfirst. These coordinates
represent the first point or group generator. TheFirstPoint computes the whole
group in the same way. Incremental value is added to the cycle, which increases
with each point found. The result of this value is the number of points, which
represents the order of the group.

The obtained coordinates are further tested. This test checks if the X and Y
coordinates lie on the curve. This solution was chosen due to problems during the
creation of the algorithm. Despite appropriately selected and tested input values, the
calculated groups of points were non-parity and, therefore, unusable for asymmetric
key exchange. , the coordinates of the first point and the order of the group. If this
test is not succesfull, the aplication returns to beginning.

22

TheFirstPointBIGD

call Y P a r t B I G D
(arrayA ofy values)

call X P a r t B I G D
(arrayB ofx values)

_ J
Preparation of iteration values
X iter = p -1
Y j t e r = ((p -1) / 2) + 1)

Intital value
Order = 0

True

Y e s

G e t t i n g tlie f irst p o i n t (generator)

XFirst = k

YFirst = i

N o

' 1

Order ++ r*

Fig. 5.2: Algorithm for compute the generator and order of the group

23

Tab. 5.1: Method of obtain generator (first point) of the group

y y 2 X x3 + ax + b y2 [X, Y], [X, Y]
0 0 0 4 4 ±2 [0, 21 [0, 3]

± 1 i

±2 4 1 1 1 ±1 [1, 1], [1, 4]

2 4 4 ±2 [2, 2]f [2, 3]

V = 5, 3 4 4 ±2 [3, 2]t [3, 3]
a = 1
b = 4 4 - - - -

DO 0

5.2 Phase B

This phase has the task of selecting the key and calculating the point that repre
sents the public key to be sent to the counterparty. The application is divided into
two subversions with respect to where it is used. When used on the communication
initiator side (Node A) , it contains only a block for generating a pseudo-random
secret key and calculating a sharing point (coordinates X and Y) . The version for
the communication recipient is essentially the same but also contains a block that
calculates the first point and order of the group by knowing the first number and
the asymptote of the curve. This solution was chosen due to save energy on the
development boards. For the exchange of the initial public parameters, it is enough
to send the recipient only the mentioned values of the module and parameters. This
calculation is not verified in any way. There is a confidence that the values received
from the initiator are usable for the calculation. If these values are forged, the key
exchange cannot be successful.

The secret key selection algorithm block works with a pseudo-random number
that is created by a generator that is based on the function bdRandomSeeded and
srandQ function which is already part of the Lightweight stack.. Within this block,
the pseudo-random number is adjusted using a known group order value, which is
generated in Phase A . This is because the key's value ranges from one to the group
order value. In addition, this block contains anti-risk treatment so that the resulting
key is not zero.

24

5.3 Phase C

The final phase of the algorithm follows the mutual exchange of points, which repre
sent the public keys. This application consists of two applications, PointCompBIGD
- see the flowchart bellow, and MagnifierBig. The entry to the PointComp applica
tion is our secret key and the point received from the second communication node.
The secret key represents the number of iterations and the point received here rep
resents the new generator of group. These applications are described in more detail
in chapter 5.4. The output of this phase is a 128-bit key. This key is then used to
encrypt the communication. The key is entered using a block taken from the L W M
stack.

I PointCompBIGD]

Due to rule 2P -
Xj = Xi

y.i = y.

Stored results n array
array[0] Xk

array[l] y'k

Fig. 5.3: The PointCompBIGD application

25

5.4 Overview of ECDH function

In this section, we will briefly introduce the blocks of the E C D H algorithm. These
blocks are based on mathematical operations, which are described in the chapter 4
and also make frequently use of functions from the BIGD library [12].

E C D H _ P hase_ A
In the case of the E C D H P P H A S E A B i g application, this is a summary of sev
eral sub-applications. The purpose of this application is to automatically select the
modulo value by usage a pseudo-random function and then use the Miller-Rabin
test to verify whether the selected value is really a prime number. In the next step,
this application again uses the psudorandom functions to select the values of asymp
totes, a and b. Subsequently, the first point of the group is calculated from these
three values, which will be used to calculate the remaining points in the group. The
E C D H P h a s e A application ends with a test of whether the selected point actu
ally lies on the curve. If this test is evaluated incorrectly, the FazeA application is
started again from the beginning. For more detail the flowchart of this phase is part
of the appendices.

E C D H _ P HAS E _ B A _ B ig
The task of this phase is to select the secret key, which is selected pseudo-randomly,
and then calculate the coordinates of the point that will be shared with the coun
terparty. This aplication works with obtained values from the previous application.
Part of this application is the SecreyKeyBIGD subapplication, which generates a
pseudo-random key. The randomness of the selection is controlled by adopted and
edited algoritm for generate pseudo-random number, where is added block of code
from L W M stack. This change ensures that each iteration of the block generates a
different number - see a listening of code bellow. This key is also adjusted to the size
of group. In the next step, the PointCompBIGD function is called, which iteratively
calculates the coordinates of the point which to be exchanged.

26

1 i n t RanodmNumber(unsigned char *bytes, s i z e _ t nbytes , const

unsigned char *seed, s i z e _ t seedlen){

2 unsigned int myseed;

3 s i z e _ t i ;

4 int o f f s e t ;

5

(i /* Use time - then blend in seed, i f any */

7 myseed = (unsigned)time(NULL);

8 i f (seed)

9 {

10 for (o f f s e t = 0 , i = 0; i < seedlen; i++, o f f s e t = (o f f s e t + 1)

7« sizeof (unsigned))

11 myseed ~= ((unsigned i n t) s e e d [i] << (o f f s e t * 8)) ;

12 }

13

14 //srand(myseed); // O r i g i n a l command

15 srand (PHY_R.andomR.eq ()) ; // Random number generator from LWM

mesh

16 while (nbytes--)

17 {

18 *bytes++ = randO & OxFF;

19 }

20

21 return 0;

22 }

23

24 // Generator of 128 bitsnumber and RandomNumber alg orithm

25 bdRandomSeeded(a, 128, (const unsigned c h a r *) " " , 0, RanodmNumber);

Listing 5.2: Generator pseudo-random numbers

E C D H _ P HAS E _ B B _ B ig
This application is purposefully and principally identical to the previous B A version.
This application is supplemented by the calculation of the first point and the order
of the group. This is due to the fact that during the first data exchange between
the boards, Node A sends only the modulo and asymptotes values to Node B.

E C D H _ P HAS E _ C _ B ig
After the second data exchange, when node A and node B exchange the coor
dinates of the points, phase C follows, which is summarized in the application
E C D H P H A S E C Big. This application works with our secret key and the point
received from the other communication node. Using the PointCompBIGD sub-
application we are able to compute a common point from these values.

27

http://PHY_R.andomR.eq

checkValABBIGD
This application is based on a formula 5.1 described in chapter 5. The task of the
application is to verify whether the tested X and Y coordinates actually lie on the
curve. The application uses functions with the BIGD library [12] and it is therefore
possible to test numbers with a bit value higher than 32 bits.

c h e c k V a l A B B I G D
Test of values a and b according to
the formula (see below), that must
not be equal to zero.

Input values: a, b, p

No

if Y

b =

No

•

Compute

(42 -a 3 + 2 7 - b 2)

•

| result = 1 (approval value)]

»| result = 2 (refusal value) J

- | result = 2 (refusal value)

J result = 2 (refusal value)

Fig. 5.4: The checkValABBIGD application

28

MagnifierKeyBig
When calculating the coordinates, t is possible that the points will not have the
required bit size. This problem is solved by application MagifierKeyBig. This
application will increase the received values to the size that is required.

SumTwoPointsBIGD
The purpose of this application is the sum of two points. The application contains
the RecogniserBIGD subroutine, which decides whether to use the method for cal
culating two identical points or the method for calculating two different points. The
output of this application is a common point.

RecogniserBIGD
According to the rules for counting points on elliptic curves, there can be two cases
where two identical or two identical points are added. This problem is solved by the
PointCompBIGD application, which recognizes points and returns the value that
the aplication for the sum points - PointCompBIGD, uses to select the appropriate
method.

RecognizerBIGD
This application dec ides
which method will be used
for the sum of points.

Inputs: Xi,yt,Xj,yj
Outputs: value of decis ion

return 66 (refusal value)

return 66 (refusal value)

return 66 (refusal value)

return 1 (will use Same method)

return 2 (will use Diff method)

Fig. 5.5: RecongnizerBIGD application

29

PointCompBIGD
This application is similar to SumTwoPointsBIGD. However, it is supplemented by
an iteration cycle that calculates a certain point in the group. This application needs
to be used wisely because the number of iterations is limited to a 32-bit number for
the for loop.

TheFirstPointBig
The task of this application is to calculate the proving point, as know as a group
generator. The function, including the mathematical background, is explained in the
chapter 5.1. The application consists of XPar tBIGD and YPar tBIGD applications,
which calculate the X and Y tables. The data from these tables are compared and
a group generator is obtained by this method.

30

6 Implementation ECDH on LWM
In this chapter, we will introduce our communication protocol solution, which is
based on the Light Weight Stack. During the development, the manufacturer's man
ual was used. The main task of this protocol is the transfer of data between the
individual phases of our key exchange algorithm.

We will gradually explain the individual parts of the protocol, which will be pre
sented here in the form of code listings. The first subchapter deals with the imple
mentation of the whole structure of E C D H , which corresponds to the scheme 5.1 in
the chapter 5. The next subchapter will explain the solution of data forwarding to
create a payload block

6.1 TaskHandler

The main part of the protocol that controls individual calls and terminations is the
A P P T a s k Handler block. This block is called from the main block in infinite loop
- see the listing 6.1. It was therefore necessary to design a method for switching
individual code sequences. This was done using by the switch command. The in
dividual states represent the individual phases of the key exchange application and
correspond to the flowchart 5.1 in the chapter 5.1.

1 int main(void)

2 {

3 // S e r i a l communication for use command p r i n t f for check

r e s u l t s

4 usb_ i n i t () ;

5

6 S Y S _ I n i t () ; // i n i c i a l i z a t i o n

7 while(1)

8 {

9 SYS_TaskHandler();

10

n // I n i c i a l i z a t i o n block which contains our a p p l i c a t i o n

12 APP_TaskHandler () ;

13

14 }

15 >

Listing 6.1: The main block

31

The initial state is A P P State Init, which starts the application and immediately
switches to state the A P P S T A T P h a s e A by changing the value of appState. At
that stage, there is already an application for selecting and computing the initial
values as modulo, a, b, etc.

Switching to phase B and phase C is realized by conditions which, using the value
comparison function, wait for the value to change at the output of the previous
application. This verified that the previous application was running and returned
specific values.

1 switch (appState)

2 {

3 case APP_STATE_Init:

4 {

a p p l n i t () ;

6 appState = APP_STATE_FazeA;

7

8 } break;

9

i n case APP_STATE_FazeA :

i i {

ECDH_PHASE_A_BIGD(MOD, a_parameter, b_parameter, r e s u l t s A) ;

13 appState = APP_STATE_FazeB; // switch to phase B

14

15 } break;
16

17 case APP_STATE_FazeB :

1« {

iH if(comaparsionA != 0){ // check of r e c e i v i n g data

20 appState = APP_STATE_FazeC; // switch to phase C

21 >

22 } break;
23

24 case APP_STATE_FazeC :

25

26 if(comaparsionB != 0){ // check of successful completion

27 appState = APP_STATE_END; // switch to ending state

28 }

29

30 APP_STATE_END :
31 break ;

Listing 6.2: Management of phases

32

6.2 Definition of payload

Before we send the data, it is necessary to define the form of the sent payload. We
need to specify what data to send, what is the source of the message and what is
the target. A l l of these specification, and not just those, are addressed by this block
of code.

The block of code that we can see below 6.2 is used to transfer data from node
A to node B. The data here represent three values, namely the modulo value and
asymptotes of a curve. It is assumed that some values will be larger than a 32-bit
number, so in the first step, objects for transferring large numbers are activated us
ing the bdNewQ function. However, this is not a definition of variables. These are
defined hierarchically above in the program and thus behave as global variables. By
activating the block, a certain amount of memory will be reserved. At the end of the
process, it is advisable to deactivate unnecessary variables again. This eliminates
the risk of memory overflow.

In the next steps, the payload parameters are defined. These parameters include
the destination address to which the data will be sent. Next, we set the source and
target endpoints here. For example, if a NodeA receives data, it can send it to a
specific application in its memory, which is addressed by an endpoint number. In
the options item it is possible to activate transmission encryption, which is based on
the AES algorithm. The data parameter represents the input for the data we want
to send. A n important part of this block is NWK_DataReq_t , which ensures the
sending of data.

In the case of the second data exchange, when both communication nodes exchange
data with each other in the form of point coordinates, a similar method is used,
which we can see in the code listing 6.2.

33

7 for(uint8_ _t i = 0; i <= 5; i++){

8

9 d a t a [i] = bdNew();

10 }

11

12 // Insert data

13 data[0] = MOD ; // MOD

14 data[l] = a_parameter // A_parametr

15 data [2] = b_parameter // b_parametr

16 data [3] = resultsA[0] // Xf

17 data [4] = resultsA [1] // Yf

18 data [5] = resultsA [2] // Order

s t a t i c void SendDataToBB(void)

{

// temporary v a r i b l e for stored data as array

BB data [6] ;

// BIG blocks a c t i v a t i o n

// Send data from endpoint 1 to endpoint 2

appDataReq.dstAddr = OxFFFF;

appDataReq.dstEndpoint = 2;

appDataReq.srcEndpoint = 1;

appDataReq.options = NWK_OPT_ENABLE_SECURITY;

appDataReq.data = data;

appDataReq.size = 7;

appDataReq.confirm = appDataConf;

NWK_DataReq(feappDataReq);

appDataReqBusy = true;

// blocks d e a c t i v a t i o n

f o r (u i n t 8 _ t i = 0; i <= 5; i++){

bdFree(fedata[i]); // block d e a c t i v a t i o n

Listing 6.3: Payload for sending data to the Node B

34

s t a t i c void SendDataToC(void)

{

// temporary v a r i b l e for stored data as array

BB data [3] ;

f o r (u i n t 8 _ t i = 0; i <= 2; i++){

dat a [i] = bdNewO; // block DEactivation

}

data[0] = resultsBA; // X

data[l] = resultsBA; // Y

appDataReq.dstAddr = OxFFFF;

appDataReq.dstEndpoint = 3;

appDataReq.srcEndpoint = 2;

appDataReq.options = NWK_OPT_ENABLE_SECURITY;

appDataReq.data = data;

appDataReq.size = 4;

appDataReq.confirm = appDataConf;

NWK_DataReq(feappDataReq);

appDataReqBusy = true;

f o r (u i n t 8 _ t i = 0; i <= 2; i++){

bdFree(fedata[i]); // block DEactivation

}

Listing 6.4: Payload for sending data to the Node C

35

6.3 Data receiving

The procedure for receiving data is similar to that for sending them. In the
code listing below we can see the code, which consists of commands for activating
blocks for large numbers. There are also pointers that insert the received data to
the specified variables. This block includes, among other things, the application
which represents phase B, which is explained in more detail in the chapter 5.4. The
output values from this application are written to global variables. Before the end
of the block and deactivation of objects for large numbers, the output values are
checked to see if the output is greater than zero. This is proof that the application
generated a certain result. The resulting value of the comparison test changes the
appState variable - see variable 6.1 in the main block. This change will switch the
program to the next phase.

The block for receiving data from phase B is similar to the previous block, which
is used for receiving data from phase A . Its task is to take over the received data from
phase B and further process them using the application E C D H P H A S E _ C _ B I G D
and obtain a common key. This block is supplemented by a function that converts
the object to large numbers on char strings. It is further converted to an integer.
This value is inserted into a variable named key that enters the application as a key
- see listing below.

i void NWK_SetSecurityKey(uint8_t *key)

Listing 6.5: The variable containing the value of key

36

s t a t i c bool SendFromAToB_BB(NWK_DataInd_t

{

*ind) // Version BA

// Activate blocks

MOD = bdNew () ;

a_parameter = bdNew () ;

b_parameter = bdNewO;

resultsBB [0] = bdNewO;

resultsBB [1] = bdNewO;

ZEROB = bdNew () ;

// Set zero value

bdSetZero(ZEROB);

// data pointed

MOD = ind->data [0] ;

a_parameter = ind->data [1] ;

a_parameter = ind->data[2];

// Run the a p l i c a t i o n for Phase B

ECDH_PHASE_BB_BIGD(MOD, a_parameter, b_ parameter, resultsBB) ;

// Variable status control for switchin

comaparsionB = bdCompare(resultsBB[1],

g to the next phase

ZEROB);

}

// Deactivate block

bdFree(&M0D);

bdFree(&a_parameter);

bdFree(&b_parameter) ;

Listing 6.6: Block for receiving data from the Node A

37

s t a t i c bool ExchangePoint(NWK_DataInd_t *ind)

{

// BIG blocks a c t i v a t i o n

Xm = bdNew();

Ym = bdNew();

Xo = bdNew();

Yo = bdNew();

MOD = bdNew () ;

a_parameter = bdNew () ;

ZEROB = bdNew () ;

// Set zero for comparsion process

bdSetZero(ZEROB);

// BIG block a c t i v a t i o n

KEY = bdNew () ;

// Start a p p l i c a t i o n of Phase C

ECDH_PHASE_C_BIGD(Xm, Ym, Xo, Yo, MOD, a_parameter, KEY);

// check i f previous a p p l i c a t i o n get the key

comaparsionB = bdCompare(KEY, ZEROB);

// convert BIG var i a b l e KEY to char s

bdConvToDecimal(KEY, s, sizeof (s)) ;

// convert char to integer

key = ato i (s) ;

// BIG blocks d e a c t i v a t i o n

bdFree(&Xm);

bdFree(&Ym);

bdFree(&Xo);

bdFree(&Yo);

bdFree(&M0D);

bdFree(&a_parameter);

bdFree(&KEY);

}

Listing 6.7: Block for receiving data from phase B

38

Conclusion
The main tasks of this work were to design an algorithm for asymmetric key ex
change and implement it into the Lightweight mesh network stack. The output of
the work was an algorithm, which is divided into several phases and based on the
theory of cryptography on elliptic curves. It is completely autonomous in the se
lection of input values, which changes with each established communication. This
feature prevents an unauthorized third party from reusing an existing key. The al
gorithm is designed with the greatest possible modularity in mind. Thanks to this
philosophy, the resulting code is clear and very easy for future improvements. It will
not be necessary to implement the same function in more places; it will be enough
to modify only the inside of the block.

Unfortunately, the second task within this bachelor's thesis was not completely
realized. Although the design followed the available instructions and sample ex
amples, the issue of radio communication between the development boards was
not resolved by the time the work was submitted. The problem was likely in the
APPTaskHandle r block definition, which incorrectly calls the necessary functions
to transfer data between communicating points.

The main benefit of this work is acquaintance with microcontrollers and a solid
knowledge of the basics of the C language. None of these areas were known to
the author at the beginning of the work. The motivation for current and future
improvement in these areas is practical activities in everyday life or employment.

39

Bibliography
[1] ATmega256RFR2 ATmegal28RFR2 ATmega64RFR2 Datasheet, [online],

2014. In: . Atmel (now Microchip Corporation), s. 611 [cit. 2019-12-02].
Available from: http://wwl.microchip.com/downloads/en/DeviceDoc/Atmel-
8393-MCU_Wireless-ATmega256RFR2-ATmegal28RFR2-
ATmega64RFR2_Datasheet.pdf

[2] User manual - deRFnode / deRFgateway, 2014. Dres
den Elektronik, 56 s. Available from: https://www.dresden-
elektronik.de/funktechnik/uploads/media/deRFnode deRFgateway-BHB-
en_10.pdf

[3] M A N N , Burkhard, 2003. C pro mikrokontroléry: ANSI-C, kompilátory C, spojo
vací programy - linkery, práce s ATMEL AVR a MSC-51, príklady programování
v jazyce C, nástroje pro programování, tipy a triky ... Praha: B E N - technická
literatura. ISBN 80-730-0077-6.

[4] MATOUŠEK, David, 2006. Práce s mikrokontroléry ATMEL AT89C2051:
[měření, řízení a regulace pomocí několika jednoduchých přípravků]. Práce s
mikrokontroléry A T M E L A V R ATmegal6. Praha: B E N - technická literatura.
ISBN 80-730-0048-2.

[5] L A V A N Y A , M . and V . N A T A R A J A N , 2017. Lightweight key
agreement protocol for IoT based on IKEv2. 64, 580-594. DOI:
10.1016/j.compeleceng.2017.06.032. ISSN 00457906. Available from:
https: //linkinghub.elsevier.com / retrieve / pii / S0045790617319286

[6] H E R O U T , Pavel, 2011. Učebnice jazyka C. Dotlač 6. vyd. České Budějovice:
Kopp nakladatelství. ISBN 978-80-7232-383-8.

[7] LEVICKÝ, Dušan, 2016. Kryptografia a bezpečnost komunikačných sietí. Košice:
Elfa. ISBN 978-80-8086-254-1.

[8] B U R D A , Karel, 2015. Úvod do kryptografie. Brno: Akademické nakladatelství
C E R M , 66 s. ISBN 978-80-7204-925-7.

[9] Cybersecurity for industry 4-0, 2017. New York, N Y : Springer Berlin Heidelberg.
ISBN 978-331-9506-593.

[10] C Program for Extended Euclidean algorithms [online], In: . [cit. 2019-12-
19]. Available from: https://www.geeksforgeeks.org/c-program-for-basic-and-
extended-euclidean-algorithms-2/

40

http://wwl.microchip.com/downloads/en/DeviceDoc/Atmel-
https://www.dresden-
http://elektronik.de/funktechnik/uploads/media/deRFnode
http://elsevier.com
https://www.geeksforgeeks.org/c-program-for-basic-and-

[11] Secure Hash Algorithm (SHA-1) [online], In: . [cit. 2019-12-19]. Avail
able from: http://www.lioozi.com/post/b3mf9/secure-hasli-algoritlim-slia-l-
reference-implementation-in-c-c

[12] BigDigits multiple-precision arithmetic source code [online]. 2020 [cit. 2020-08-
07]. Available from: https://www.di-mgt.com.au/bigdigits.litml

41

http://www.lioozi.com/post/b3mf9/secure-hasli-algoritlim-slia-l-
https://www.di-mgt.com.au/bigdigits.litml

List of acronyms
AES Advanced Encrypt S
J T A G Joint Test Action Group
A V R Alf and Vegard's RISC processor
SHA Secure Hash Algorithm
I E E E Institute of Electrical and Electronics Engineers
ISP In System Programming
W S N Wireless Sensor Network
IoT Interner of Things
M C U Interner of Things
E E P R O M Electrically Erasable Programmable Read-Only Memory
ESP Encapsulating security protocol
N H C Next header protocol
A H Authentication header
L K A LightWeight key agreement
I S A K M P Internet Security Association and Key Management Protocol

42

List of appendices
Flowcharts
• A l l Flowcharts.pdf
. E C D H Equations.pdf
. E C D H _ P H A S E _ A _ B I G D . p d f
. E C D H _ P H A S E _ B A _ B I G D . p d f
. E C D H _ P H A S E _ B B _ B I G D . p d f
. E C D H _ P H A S E _ C BIGD.pdf
. checkValABBIGD.pdf
• MagnifierKeyBig.pdf
. PointCompBIGD.pdf
• RecogniserBIGD.pdf
. SecretKeyBIGD.pdf
. SumTwoPointsBIGD.pdf
. TheFirstPointBIGD.pdf
. VerifyOfPointBIGD.pdf
. XPartBIGD.pdf
. YPartBIGD.pdf
Flowcharts
• P H A S E A (EXE) autonomous.exe
. P H A S E A (EXE) manual.exe
Source of code
. ECDH_Phase_A_Big .c
. ECDH_Phase_BA_Big .c
. ECDH_Phase_BB_Big .c
. ECDH_Phase_C_Big .c
• checkValABBig.c
• LambdaDiffBig.c
• LambdaSameBig.c
• MagnifierKeyBig.c
• PointCompBig.c
• RecognizerBig.c
• SecretKey_Big.c
• SumTwoPoints_Big.c
• TheFirstPointBig.c
• VerifyOfPointBig.c
. XDiffBig.c
. XPartBig.c

43

XSameBig.c
YPartBig-c
YUniBig.c

