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ABSTRACT 
This master thesis deals with an implementation of Diffie-Hellman protocol on smart 
card which is based on MULTOS OS. Defines the smart cards based on MULTOS OS 
and their usage. Output of this thesis are applications for a smart card and for a client 
using Diffie-Hellman protocol for establishing of a secret key between two communication 
sides through unsecured communication channel. 

KEYWORDS 
Elecronic ID cards, smart cards, Asymmetric cryptography, Elliptic curves, Diffie-
Hellman, MULTOS, SmartDeck 

ABSTRAKT 
Diplomová práca sa venuje implementácii protokolu Diffie-Hellman na smart karte beži­
acej na operačnom systéme MULTOS. Definuje smart karty a ich použitie. Výstupom 
práce sú dve aplikácie, jedna pre kartu a druhú pre klienta na obsluhu karty. Tieto apliká­
cie sú založené na protokole Diffie-Hellman, ktorý slúži k ustanoveniu tajného spoločného 
kľúča pri komunikácii medzi dvomi stranami cez nezabezpečený komunikačný kanál.. 
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Elektronické doklady, Smart karty, Asymetrická kryptografie, Eliptické krivky, Diffie-
Hellman, MULTOS, SmartDeck 
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I N T R O D U C T I O N 
From the beginning of the century, people are using cards every day - for paying, 
withdrawing money, proving an identity and eligibility, compensating a key and so 
on. Naturally, since the cards are carrying more and more significant data, the 
priority is imposed for security. The main aim of manufacturers of the cards is clear 
- to keep the contain of the cards genuine and trusted. 

Nowadays, when the trend of digitalization affects a wide spectrum of a life, 
it is absolutely a standard to pay with credit cards, to use keyless cards and tags 
to enter into a room or to record arrivals at work. Since the electronic signature 
has been established, a new doors for digital revolution are open. Typically, to 
sign the documents with electronic signature and prove an identity, the vision of 
usage of electronic personal identification documents such as ID cards is aroused. 
There are many other ideas how to use authentication of a person during using 
an electronic documents such as keyless opening of a car with N F C 1 (Near Field 
Communication) or B L E 2 (Bluetooth Low Energy)technology, to use a health card 
with medical records data. Generally, to use electronic documents it means to load 
a specific information onto a card (or similar, portable and energetically efficient 
wireless device). To keep those information in safe and trusted, the electronic ID 
cards must be effectively secured. This master thesis solves this problematic of 
electronic ID cards ID card (Identification Card) and brings the solution how to 
implement cryptographic protocol while using such a card. 

X NFC is a technology and a set of communication protocols that enable two electronic devices, 
one of which is usually a portable device such as a smartphone, to establish a wireless communi­
cation by bringing them within 4 cm of each other. 

2 B L E is a wireless personal area network technology designed and marketed by the Bluetooth 
Special Interest Group. Compared to Classic Bluetooth, Bluetooth Smart is intended to provide 
considerably reduced power consumption and cost while maintaining a similar communication 
range. 
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1 C R Y P T O G R A P H Y 
Cryptography is the study of mathematical techniques related to aspects of in­
formation security such as confidentiality, data integrity, entity authentication, and 
data origin authentication. Cryptography is not the only means of providing infor­
mation security, but rather one set of techniques. Cryptography as a discipline has 
very obvious targets: 

1. Confidentiality is a service used to keep the content of information from all 
but those authorized to have it. There are numerous approaches to providing 
confidentiality, ranging from physical protection to mathematical algorithms 
which render data unintelligible. 

2. Data integrity is a service which addresses the unauthorized alteration of data. 
To assure data integrity, there must be the ability to detect data manipulation 
by unauthorized parties. Data manipulation includes such things as insertion, 
deletion, and substitution. 

3. Authentication is a service related to identification. This function applies to 
both entities and information itself. Two parties entering into a communication 
should identify each other. Information delivered over a channel should be 
authenticated as to origin, date of origin, data content, time sent, etc. For 
these reasons this aspect of cryptography is usually subdivided into two major 
classes: entity authentication and data origin authentication. Data origin 
authentication implicitly provides data integrity (for if a message is modified, 
the source has changed). 

4. Non-repudiation is a service which prevents an entity from denying previous 
commitments or actions. When disputes arise due to an entity denying that 
certain actions were taken, a means to resolve the situation is necessary. For 
example, one entity may authorize the purchase of property by another en­
tity and later deny such authorization was granted. A procedure involving a 
trusted third party is needed to resolve the dispute. 

Following the mentioned goals above, a major role of cryptography is to appropri­
ately address these four areas in both theory and practice. Cryptography is focused 
on the prevention and detection of cheating and other malicious activities. To pro­
vide such services, it uses the cryptographic tools - primitives. Examples of such 
primitives are: encryption schemes, hash functions, digital signature schemes, etc. 
Parameters for consideration of a strength of cryptographic parameters and a rele­
vance of its usage in specific cases are: 

• Level of security This is usually difficult to quantify. Often it is given in terms 
of the number of operations required (using the best methods currently known) 
to defeat the intended objective. Typically the level of security is defined by 
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an upper bound on the amount of work necessary to defeat the objective. This 
is sometimes called the work factor. 

• Functionality Primitives will need to be combined to meet various information 
security objectives. Which primitives are most effective for a given objective 
will be determined by the basic properties of the primitives. 

• Methods of operation Primitives, when applied in various ways and with var­
ious inputs, will typically exhibit different characteristics; thus, one primitive 
could provide very different functionality depending on its mode of operation 
or usage. 

• Performance This refers to the efficiency of a primitive in a particular mode of 
operation (For example, an encryption algorithm may be rated by the number 
of bits), per second which it can encrypt. 

• Ease of implementation This refers to the difficulty of realizing the primitive in 
a practical instantiation. This might include the complexity of implementing 
the primitive in either a software or hardware environment. 

A n importance of these criteria depend on the application and mostly on available 
resources, e.g. computing power. Cryptography is closely related to the disciplines 
of cryptology and cryptanalysis. Cryptology is the discipline, such as number theory, 
and the application of formulas and algorithms. Cryptanalysis refers to the study of 
ciphers, ciphertext, or cryptosystems (that is, to secret code systems) with a view 
to finding weaknesses in them that will permit retrieval of the plaintext from the 
ciphertext, without necessarily knowing the key or the algorithm. This is known as 
breaking the cipher, ciphertext, or cryptosystem. [1] [8] 

1.1 Asymmetric cryptography 

Asymmetric cryptography is based on asymmetric ciphers and uses one pair of 
keys - public key of a receiver of a message for encryption and private key of a 
receiver of a message for decryption, unlike symmetric cryptography, which is purely 
based on one private key (for both encryption and decryption). The public key in 
asymmetric cryptography can be given to anyone, trusted or not, while the private 
key must be kept secret - just like the key in symmetric cryptography. The keys are 
simply large numbers which that have been paired together, but are not identical 
(they are asymmetric). Considering a complexity of these two different approaches 
of cryptography, it is obvious symmetric cryptography is more simple and therefore 
faster, but the risk of disclosure is much higher in comparison to two keys usage. 

Asymmetric cryptography has two primary use cases: authentication and confi­
dentiality. Using asymmetric cryptography, messages can be signed with a private 
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key, and then anyone with the public key is able to verify that the message was cre­
ated by someone possessing the corresponding private key. This can be combined 
with a proof of identity system to know what entity (person or group) actually owns 
that private key, providing authentication. The most common asymmetric encryp­
tion algorithm is RSA. Asymmetric keys have typically length 1024 or 2048 bits. 
However, keys smaller than 2048 bits are no longer considered safe to use. 2048-bit 
keys have enough unique encryption codes that we won't write out the number here 
(it's 617 digits). Though larger keys can be created, the increased computational 
burden is so significant that keys larger than 2048 bits are rarely used. To put it 
into perspective, it would take an average computer more than 14 billion years to 
crack a 2048-bit certificate. 

Bob 

E n c r y p t * 

I 
6 E B 6 9 5 7 0 
0 8 E 0 3 C E 4 

Alice 
S e c r e t k e y 

Fig. 1.1: Asymmetric cryptography principle 

In asymmetric key encryption scheme (figure 1.1), anyone can encrypt messages 
using the public key, but only the holder of the paired private key can decrypt. 
Security depends on the secrecy (length) of the private key. 
[2] [11] [12] 

1.2 Ell ipt ic curve cryptography 
Elliptical curve cryptography is a public key encryption technique based on 
elliptic curve theory that can be used to create faster, smaller, and more efficient 
cryptographic keys. E C C generates keys through the properties of the elliptic curve 
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equation instead of the traditional method of generation as the product of very large 
prime numbers. The technology can be used in conjunction with most public key en­
cryption methods, such as RSA and Diffie-Hellman. According to some researchers, 
E C C can yield a level of security with a 164-bit key that other systems require a 
1024-bit key to achieve. Because E C C helps to establish equivalent security with 
lower computing power and battery resource usage, it is becoming widely used for 
mobile applications. 

p 

-R 

Q 

.R = P+Q 

Fig. 1.2: Points on eliptic curve 

The properties and functions of elliptic curves have been studied in mathematics 
for 150 years. Their use within cryptography was first proposed in 1985, (sepa­
rately) by Neal Koblitz from the University of Washington, and Victor Miller at 
I B M . A n elliptic curve is not an ellipse (oval shape), but is represented as a looping 
line intersecting two axes (lines on a graph used to indicate the position of a point 
as dispalyed in the figure 1.2). E C C is based on properties of a particular type of 
equation created from the mathematical group (a set of values for which operations 
can be performed on any two members of the group to produce a third member) 
derived from points where the line intersects the axes. Multiplying a point on the 
curve by a number will produce another point on the curve, but it is very difficult 
to find what number was used, even if you know the original point and the result. 
Equations based on elliptic curves have a characteristic that is very valuable for 
cryptography purposes: they are relatively easy to perform, and extremely difficult 
to reverse. This characteristics is therefore perfectly suitable for cryptographic al­
gorithm. The following section 1.3 introduces such an algorithm based on elliptic 
curve cryptography. 
[13] 
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1.3 Diffie-Hellman 
Diffie-Hellman is the first asymmetric encryption algorithm (or protocol1), in­
vented in 1976, using discrete logarithms in a finite field. Allows two users to 
exchange a secret key over an insecure medium without any prior secrets. This 
process is in cryptography defined as conference keying. A conference keying is a 
generalization of two-party key establishment2 to provide three or more parties with 
a shared secret key. General requirements for conference keying include that distinct 
groups recover distinct keys (session keys); that session keys are dynamic (except­
ing key pre-distribution schemes); that the information exchanged between parties 
is non-secret and transferred over open channels; and that each party individually 
computes the session key. A n obvious method to establish a conference key K is to 
arrange that each party share a unique symmetric key with a common trusted party. 
Consequently the trusted party may choose a new random key and distribute it by 
symmetric key transport individually to each member of the conference group. 

private key: a private key: b 

secret key K A secret key K B 

Fig. 1.3: Diffie-Hellman algorithm principle 

X A protocol is a multi-party algorithm, defined by a sequence of steps precisely specifying the 
actions required of two or more parties in order to achieve a specified objective. 

2 Key establishment is a process or protocol whereby a shared secret becomes available to two 
or more parties, for subsequent cryptographic use. 
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Diffie-Hellman (DH) is a widely used key exchange algorithm. In many crypto­
graphic protocols, two parties wish to begin communicating. However, let's assume 
they do not initially possess any common secret and thus cannot use secret key cryp-
tosystems. The key exchange by Diffie-Hellman protocol remedies this situation by 
allowing the construction of a common secret key over an insecure communication 
channel. It is based on a problem related to discrete logarithms, namely the Diffie-
Hellman problem. This problem is considered hard, and it is in some instances as 
hard as the discrete logarithm problem. The Diffie-Hellman protocol is generally 
considered to be secure when an appropriate mathematical group is used. In partic­
ular, the generator element used in the exponentiations should have a large period 
(i.e. order). Usually, Diffie-Hellman is not implemented on hardware. 

1.3.1 Establishment of a key using Diffie-Hellman protocol 

The implementation of the protocol uses the multiplicative group of integers modulo 
p, where p is prime, and g is a base. Both of these parameters are non-secret. Let's 
have two communication parties, Alice and Bob: 

1. At first, Alice and Bob establish a modulus p = 23 and base g = 5 (which is 
a primitive root modulo 23). 

2. Alice chooses a secret integer a = 6, then sends Bob A = ga mod p 
• A = 5 6 mod 23 = 8 

3. Bob chooses a secret integer b = 15, then sends Alice B = gb mod p 
. B = 5 1 5 mod 23 = 19 

4. Alice computes KA = BA mod p 
. KA = 196 mod 23 = 2 

5. Bob computes KB = A B mod p 
. KB = 8 1 5 mod 23 = 2 

6. If KA = KB, then K was established. 
Naturally, much larger values of a, b, and p would be needed to make this example 
secure, since there are only 23 possible results of n mod 23. However, if p is a 
prime of at least 600 digits, then even the fastest modern computers cannot find a 
given only g, p and ga mod p. Such a problem is called the discrete logarithm 
problem. Nowadays, for modulo p with length 2048 and more bits is not possible to 
find an exponent in reasonable time, what enables to make Diffie-Hellman algorithm 
trusted. 
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1.3.2 Discrete logarithm problem 

A security of Diffie-Hellman protocol is based on a mathematical problem, which is 
called Discrete logarithm problem: 

The ordinary logarithm problem example - given a base b and a number x, find 
y such that by = x. So, e.g., the logarithm to base 2 of 128 is 7. This is usually done 
by calculating the logarithm of x to base 10, and dividing that by the logarithm of 
b to base 10. 

It is possible to do this in modular arithmetic too. Assuming to know, for a 
particular choice of n,x,b, that there is a y such that by — x (mod n); then finding 
that y is the Discrete logarithm problem modulo n. 

This will not be possible for all n,x,b, but (for instance) if n is a prime number, 
there is always a b that makes the problem solvable for every x other than 0. 

The problem generalizes further. The integers modulo a prime number p form a 
finite field; there are other finite fields (exactly one of size pk for each prime p and 
positive integer k), and we can pose the same sort of problem in any of them. The 
fields of size 2k are particularly nice to work with using computers. 

The Discrete logarithm problem is useful in cryptography, for the following rea­
son: suppose n is large; then given n,b,y it is easy to find x, but no algorithm is 
known that, given n,b,x, will efficiently find y. So the function that takes y to x 
seems to be a "one-way function", much like the one that takes two prime num­
bers and yields their product. One-way functions are an essential building block for 
public-key cryptography. The difficulty of solving the discrete logarithm problem 
is essential for the security of the Diflie Hellman key exchange protocol and the 
ElGamal cryptosystem. 
[3] [1] [14] 
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2 E L E C T R O N I C ID C A R D S 
Electronic ID cards as a form of personal identification documents are based on 
an electronic identification solution of citizens or organizations, for example in view 
to access benefits or services provided by government authorities, banks or other 
companies. Apart from online authentication many electronic ID documents also 
give users the option to sign electronic documents with a digital signature. 

Electronic ID card is basically a physical identity card that can be used for on­
line and offline personal identification or authentication. The electronic ID card is 
a smartcard in ID-1 format of a regular bank credit card, with identity informa­
tion printed on the surface (such as personal details and a photography) and in 
an embedded RFID microchip or chip with contact pad. The format and physical 
characteristics of identification cards: 

• physical dimensions (85,60 x 53,98 mm; thickness of 0.76 mm), 
• resistance to bending, flame, chemicals, temperature and humidity, 
• toxicity, 
• resistance to heat, 

are defined by international standard ISO/IEC 7810. 

Si mm 

R =3.16 mm 

-*Hh*- 0,76 mm 

Fig. 2.1: A n illustration of ISO/IEC 7810 card in ID-1 format. 

The chip stores the information printed on the card (e.g. the holder's name and 
date of birth) and the holder's biometric photo. It may also store the holder's finger­
prints. The card may be used for online authentication, such as for age verification 
or for e-government applications. A n electronic signature, provided by a private 
company, may also be stored on the chip. 

Electronic ID cards are sequentially provided by all governments in European 
Union. Countries that have already accepted government issued electronic ID cards 
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are Belgium, Bulgaria, Estonia, Germany, Italy, Latvia, Lithuania, Luxembourg, 
Malta, the Netherlands, Portugal, Romania, Slovakia, Spain. 

2.1 Smart cards 

Smart card is any electronic ID card that has embedded integrated circuits. De­
pending on technical solution of a card, smartcard is either contact or contactless. 
There are several types of smart cards, these thesis is focused on those with chips. 

Characteristics of smart cards 

Every smart card consists of: 
E E P R O M - memory for storing applications and data; momery size is in kB 
R O M - memory which contains OS running on a card; memory size is in kB 
R A M - volatile memory used by microprocessor 
C P U - processor of chip card; usual frequency in MHz 

A n advanced form of smart cards are multi application cards. Those cards sup­
port an option to load more application on a card and use them for more purposes. 
There is OS running on such cards, which provides memory management, appli­
cation run, cryptographic functions and ensure a security. The most relevant and 
used multi application platforms are JavaCard and MULTOS. This master thesis 
deals with a card from UBM21-Z family and is developed by external company, 
nonetheless is running on MULTOS OS. 

POWER 

Fig. 2.2: Communication between a chip card and card reader 

Communication between user and chip card is resolved by IFD - terminal (reader) 
for chip cards connected to P C . A part of IFD is also to power and control the com­
munication between user's P C and card (figure2.2). 
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2.1.1 Anatomy of Smart Cards with chip 

Manufacture of smart card with chip consists of bringing layers from different ma­
terials properly together. Nowadays, the cards are made from P V C , Polyester or 
Polycarbonate. The card layers are printed first and then laminated in a large press. 
The next step in construction is the blanking or die cutting. This is followed by 
embedding a chip and then adding data to the card. In all, there may be up to 30 
steps in constructing a card. The total components, including software and plastics, 
may be as many as 12 separate items; all this in a unified package that appears to 
the user as a simple device. [7] 

0 
Active Chip Side 

Chip 

Chip Adhesive 
Metal Contacts 

• Encapsulation 
Card Body Substrate Hotmelt 

Bond Wire 

Fig. 2.3: A cross sectional view of the structure and packaging of a smart card chip. 

2.1.2 ISO 7816 standard 

co je ISO strucne Below are the most significant: 

ISO 7816-1 

Deals with physical physical characteristics of electronic ID cards, sets up limits 
for x-ray or U V based beams, electromagnetic fields or temperature of surrounded 
environment. Then determines parameters such as resistance against fold. This 
paragraph of ISO 7816 standard is important mostly for developers of electronic ID 
cards. 

ISO 7816-2 

Defines position, dimensions and functions of contacts on a chip. Electrical contacts 
located on the surface of the card are connected to a card reader when the card is 
inserted. This connector is bonded to the encapsulated chip in the card (picture 2.4). 

Definition of Chip pinout: 
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Fig. 2.4: A chip card[6] 

• V c c : Power supply 
• RST: Reset signal (to reset the card's communication) 
• C L K n : Clock signal (data communication timing) 
• R F U : Reserved pin 
• GND: Ground (reference voltage) 
• Vpp : Programming voltage 
• I/O: Serial input and output 

ISO 7816-3 

Specifies a communication between electronic ID card and card reader on low level 
(how are parameters for communication established). Then defines communication 
protocols used by electronic ID cards. States technical specification independently 
on used physical technology (for contact or contactless cards). 

ISO 7816-4 

Specifies data structures used during communication between electronic ID cards 
and card readers and defines an approach to data stored on cards. Solves options 
secured way of exchange of messages and safety card architecture. //pridat citaciu 
nejaku o el. ID kartach 

2.1.3 Smartcard with MULTOS OS 

Multos smart cards are working with applications which are sent and loaded to these 
cards by Multos utility - M U T i l . Each application is identified and selected by its 
application identifier (AID). AID and the naming convention of files in which 
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Contact Plate 

Smart Card 

Fig. 2.5: A structure of smart card[6] 

are applications kept are defined in ISO 7816. AID is a sequence of bytes and its 
length is between 5 and 16 bytes. The part of AID are: 

• National registered application provider - known as a RID, its length is fixed 
at five bytes 

• Proprietary application identifier extension - known as a PIX, its length is 
between zero and eleven bytes 

The assignment of RIDs is controlled and delegated by ISO and must be unique. 
The assignments of PIXs is managed by companies using AID. A n example of AID 
consisting of RID and PIX: 

. RID: AO 01 02 03 04 (5 bytes) 

. PIX: 00 01 (2 bytes) 

Communication with a card 

The process of a communication between an electronic ID card and card reader is 
defined as answer to reset. After the card is inserted to a card reader and power 
supply is on or receiving RESET signal, card sends IFD chain called as ATR. A T R 
consists of two parts - interface characters and historical characters. Interface 
characters define parameters of a communication while the connection with IFD is 
initializing. Those parameters are supported transport protocols or frequency of an 
hourly impulse. Historical characters are may be specific for every single card and 
may contain information, for instance about manufacturer of the card or a balance 
on electronic wallet. MULTOS OS enables two types of A T R - primary, which is 
sent when a card is inserted to a card reader and power supply is on, and secondary, 
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which is received when the RESET signal is confirmed as obtained. 
For execution of every application are required commands. Commands are for­

matted and transmitted in the form of application protocol data units (APDU). 
APDUs represent the way how a card and a card reader communicate and are com­
pletely defined in ISO 7816. During the communication between a card and a reader, 
there are two kinds of APDUs recognized - a command A P D U (C-APDU) and 
a response A P D U (RAPDU). C - A P D U is the command sent to a card and 
R A P D U returns the execution result of the command to a reader. These versions 
of A P D U are exchanged alternately, based on request-response principle. C - A P D U 
consists of a mandatory header with length four bytes and variable-length condi­
tional body: 

• C L A - - Class of instruction. A mandatory single byte that indicates the 
structure and format for a category of command and response APDUs. 

• INS — Instruction code. A mandatory single byte that specifies the instruc­
tion of the command. 

• PI and P2 — Instruction parameters. Two mandatory single-byte parameters 
that provide qualifications to the instruction. 

• Lc — Length of command data. A n optional single byte indicating the number 
of bytes present in the data field of the command. 

• Data field. A n optional sequence of Lc bytes in the data field of the command. 
• Le Length of expected response. A n optional single byte indicating the 

maximum number of bytes expected in the data field of the response to the 
command. 

C L A I N S P 1 P 2 D A T A L E 

i 
• 

J i j 

h e a d e r Body 
(mandatory) (optional) 

Fig. 2.6: C A P D U structure 

R A P D U consists of a variable-length conditional body and a two-byte mandatory 
trailer: 

• Data field. A n optional sequence of bytes received in the data field of the 
response. 

• SW1 and SW2 — Status words. Two mandatory single-byte values that denote 
the processing state in the card. 

Applications reply to each A P D U command with a status word indicating the 
result of the operation, and optionally with data. To activate an application on 
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D A T A S W 1 S W 2 

Body Trialer 

Fig. 2.7: R A P D U structure 

Tab. 2.1: MULTOS status words with a description 
Status Word Description 
90 00 Successful processing 

61 xx Successful processing where xx bytes of unexpected data are returned 

6C xx Successful processing, but Le value and La value are different. Send the command again with an Le value of xx. 

6A 82 File not found 

6A 83 Record not found 

6B 00 Wrong parameter P1P2 

6D 00 Instruction not supported 

6E 00 Class not supported 

6F 00 Unknown error 

a Multos smart card is necessary to insert S E L E C T command. After receiving 
S E L E C T command follows the process of searching for the application whose AID 
matches the one specified in the command. If there is a match, the application 
is getting prepared to be selected (in a case the application is already selected, 
Multos deselects it). When an application is selected, Multos forwards all subsequent 
A P D U commands (including further S E L E C T commands) to the application. In 
the main method, the application interprets each incoming command A P D U and 
performs whatever is requested by the command. For each command A P D U sent, 
the application responds by sending back a response A P D U . C I T E The command-
and-response dialogue continues until a new application is selected or the card is 
removed from the reader. Once the application is deselected, it becomes inactive 
until it is selected the next time. 

Technical specification: 
• Power 3 ~ 5 V 
• External clock 1 ~ 10 MHz 
• Application Header: 48K Bytes 

• Total temporary space per protected A L U : 16 Bytes 

[4] [?] 
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3 M U L T O S 
MULTOS is a multi-application smart card operating system, that enables a smart 
card to carry a variety of applications, from chip and pin application for payment 
to on-card biometric matching for secure ID and ePassport. MULTOS is an open 
standard whose development is overseen by the MULTOS Consortium - a body 
composed of companies which have an interest in the development of the OS and 
includes smart card and silicon manufacturers, payment card schemes, chip data 
preparation, card management and personalization system providers, and smart 
card solution providers. There are more than 30 leading companies involved in the 
consortium. 

One of the key differences of MULTOS with respect to other types of smart card 
OS, is that it implements a patented public key cryptography-based mechanism by 
which the manufacture, issuance and dynamic updates of MULTOS smartcards in 
the field is entirely under an issuer's control using digital certificates rather than 
symmetric key sharing. This control is enabled through the use of a Key Manage­
ment Authority ( K M A ) , a special kind of certification authority. The K M A provides 
card issuers with cryptographic information required to bind the card to the issuer, 
initialize the card for use, and generate permission certificates for the loading and 
deleting of applications under the control of the issuer. 

Application providers can retrieve and verify the public key certificate of an indi­
vidual issuer's card, and encrypt their proprietary application code and confidential 
personalisation data using that card's unique public key. This payload is digitally 
signed using the private key of the application provider. The K M A , on request from 
the card issuer, signs the application provider's public key and application code has 
and creates a digital certificate (the Application Load Certificate) that authorises 
the application to be loaded to an issuer's card or group of cards. Applications are 
therefore protected for integrity and confidentiality and loaded to a card without any 
party sharing symmetric keys and therefore needing to trust any other party sharing 
the card platform - including the card issuer. Both the Application Provider and 
Card Issuer know that only specific, authorised applications from authorised parties 
can be loaded to any specific card. 

Hundreds of millions of MULTOS smart cards have been issued by banks and 
governments all around the world, for projects ranging from contactless payment, In­
ternet authentication and loyalty, to national identity with digital signature, ePass­
port with biometrics, health care and military base and network access control. 

[9] 
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3.1 Memory structure 
While developing an application using MULTOS OS, it is fundamental to get un­
derstand how memory on ID card works and what is the approach to it. Every 
application on a card has its own memory space, which is secured by a firewall -
it does not approach directly to physical memory, but through A A M (Application 
Abstract Machine). It allows to ensure the application on a card cannot approach 
to other application's memory space. A card's memory space is divided into two 
independent parts - code space and data space. 

3.1.1 Code space 

Code Space refers to the memory space occupied by the application's code, which 
can not be accessed to read or write, but rather can only be interpreted by the 
A A M . Physically the code space is a block of memory that consists of up to 64KB 
of contiguous, non-volatile memory. 

Fig. 3.1: Application code space[6] 

Segment addresses within the code space are always relative to the application. 
So, the starting offset is always zero and, furthermore, application execution always 
starts from the first byte. Now, when an instruction is being executed the Code 
Pointer register contains the code address of the next instruction to be executed. The 
value that is held in this register is affected when using program flow instructions 
such as Jump, Branch, Call and Return instructions. However, the code pointer 
value is not available for manipulation by an application. [6] 

3.1.2 Data space 

Data Space contains all of the data that is addressable by the application and consists 
of three distinct memory areas. Those 

1. non-volatile Static memory, 
2. R A M based Public memory, 
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3. R A M based Dynamic data. 
The latter can be composed of application specific session data and the stack. Data 
Space can be no more than 64KB in size and is addressed from 0 using tagged 
addresses. 

Data Space 

tj I == <ansB 
High Security Hulli-appll 
Operatlnfl S u s t r ™ — T , , l i 

tj I == <ansB 
High Security Hulli-appll 
Operatlnfl S u s t r ™ — T , , l i 

RAM 

6 I 
EEPROM 

Stack 

Session 

Public 

Static 

Registers 
Dyn Top 
Local Base 
Dyn Bottom 
Public Top 
Public Bottom 
Static Top 
Static Bottom 

Fig. 3.2: Application data space[6] 

Static memory 

Static data is the non-volatile memory of the MULTOS Card. Static memory is 
private to the application and cannot be accessed by the terminal or other appli­
cations. Therefore it is used as a storage of private data of applications such as 
encryption keys. Static memory is usually implemented by E E P R O M memory. It 
is important to avoid corrupting static memory. There is a limited amount of space 
for applications and corrupted memory can render an application useless. There are 
two OS supplied mechanisms that eliminate this problem: data item protection and 
transaction protection. Data Item Protection is always used. MULTOS guarantees 
that in executing an instruction that writes data to static memory it will either be 
completely updated or not updated at all. Transaction Protection is controlled us­
ing the Set Transaction Protection primitive - this is an OS supplied mechanism for 
caching a number of writes to memory. They can then be committed or discarded. 
MULTOS guarantees that once a commit has started then all affected writes are all 
made. This behaviour holds even if there is a loss of power during the writing of 
the data. [6] 
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Public memory 

The Public memory area is the R A M resident input / output buffer for applications. 
Incoming A P D U are held in Public and any outgoing status word (SW), LA and data 
are placed here. This buffer is also used to pass information from one application 
to another when delegation is used. As an I/O buffer it is visible to IFD. During 
the command-response dialogue MULTOS passes an A P D U to an application the 
A P D U is written into Public memory. The A P D U Header appears at the top of 
Public, and command data appears at the bottom of public. When a MULTOS 
Application wishes to pass a response back to the terminal then the response A P D U 
is written into Public and MULTOS sends the response to the terminal. MULTOS 
guarantees that data in Public remains private to the application until it exits or 
delegates to another application. So, public may be used as temporary workspace. 
MULTOS will automatically clean up the public area if the application terminates 
abnormally, but will not do so otherwise. This means that any data held in Public 
that an application does not wish to reveal after exiting should be explicitly erased. 
[6] 

Dynamic memory 

Dynamic data is volatile and held in the R A M memory of the MULTOS Card. Like 
the other areas, dynamic memory is behind a firewall and private to the application. 
Unlike the other areas, this memory can consist of two parts: session data and 
the stack. Session Data is R A M based application variables, which are available 
to any function used in the application. The size of the session data area is fixed 
when an application is loaded onto a MULTOS Card and will always appear at 
the bottom of the dynamic area. Session Data, however, is not mandatory and if 
none is used, then none will be present. The stack is an application's work area. A 
MULTOS chip is a stack machine, which means that this memory area is used to 
perform many functions. For example, most primitives and many instructions use 
stack-based values as input. 

3.2 SmartDeck 

SmartDeck is an application development system for Multos, which enables to code 
applications using C and assembler programming languages. These applications 
run on the Multos smart card operating system under high security. SmartDeck, 
as a programming extension, runs strictly on Microsoft Windows operating system 
and is based around the Eclipse IDE. Programs which are prepared on these host 
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machines using the tools in the SmartDeck package are not executed on a host, but 
on a Multos smart card. 

Credibility of an implementation of SmartDeck in C programming language is 
guaranteed by the ANSI and ISO standards. Basically, Multos SmartDeck environ­
ment brings enhancements and improvements to extend authentic C programming 
language. SmartDeck also contains assembly language. As well as providing a 
cross-compilation technology, SmartDeck provides a PC-based simulation which is 
interfaced with the Eclipse IDE allowing to debug application quickly. A set of 
tools for generating standard application load units and facility for loading and 
deleting applications on Multos smart cards provide the final stage of the software 
development life-cycle. [5] 

3.2.1 SmartDeck components 

SmartDeck includes a several programs which are separated but at the end work 
together through proprietary files and create a chain for developing and testing the 
applications for smart cards. Multos uses various file formats. 

File formats used by SmartDeck: 

• .hzo - Object files - contain compiled program code 
• .hza - Library files - collections of object files 
• .hzx - Executable files - fully linked executable program 
• .ale - ALC files - contain Application Load Certificate 
• . adc - ADC files - contain Application Delete Certificate 
• .alu - ALU files - contain Application Load Unit 

Object files can be created: 
• From assembly language source code using the has program 
• From C source code using the hec program 

Library files are created using the har program. Object and library files are linking 
together using the hid program to create an executable file. Executable files can 
be loaded and debugged on the MULTOS debugger/simulator programs mdb and 
hsim. Executable files can also be loaded onto MULTOS cards using the hterm 
program. MULTOS application load units can be generated from executable files 
using the halugen program. The use of the C compiler, assembler, linker, and even 
the archiver is coordinated by the compiler driver, hcl.exe so you won't need to use 
these programs directly. 
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Tab. 3.1: The supported formats used by MULTOS 
hcl.exe C o m p i l e r driver: provides a useful way to get files compiled, assembled and linked 

hcc.exe C compiler : compiles modules written in C 

mdb.exe Ecl ipse g d b / m i debugger: Provides the debugging interface between Eclipse and the M U L T O S simulator. 

has.exe M U L T O S Assembler : assembles modules written in assembly language 

hld.exe L inker : Required for linking compiled and assembled files 

hsim.exe M U L T O S Simulator : used in conjunction with mdb but can also be used stand-alone. 

hterm.exe Loader: Used to load and delete application from M U L T O S cards 
har.exe Arch ive r : Consolidates multiple object files into a single, object code library 

hls.exe Object file lister: displays useful information held in unlinked files and linked executables. 

hkeygen.exe R S A key pair generator: creates a private and public RSA key pair 

halugen.exe A L U generator: creates a standard M U L T O S application load unit. 

melcertgen.exe A L C / A D C generator: creates load and delete certificates for developer cards. 
meldump.exe M U L T O S file list: outputs contents of standard M U L T O S files. 

hex.exe Ex t r ac to r u t i l i ty : used to prepare images in various formats 

3.2.2 MUtil 

The MULTOS Utility application - MUt i l provides a single application that handles 
the different functions needed when working with MULTOS cards. The latest release 
(version 2.9.1) includes the following features: 

• Loading and deleting of applications for developer cards 
• Loading and deleting of applications for live cards 
• Creating an M C D ID list for enrollment data/MSM Control Data requests 
• Enable cards using K M A supplied M S M Control Data 
• Exchanging APDUs 
• Running of scripts from the command line 
. MULTOS 4.4 / 4.5 support 
• Optional output of a trace file 
• INI file for settings 

During a development of the application for smart card, Mutil was used mainly for 
loading the applications on the smart card and testing A P D U commands (see the 
screenshots in the pictures3.3 and3.4). 

MUt i l supports developing cards as well as "live cards" and is able to load and 
delete applications using A L C and A D C certificates. It is recommended to use 
just one tool for uploading of applications - either hterm as a part of SmartDeck or 
MUti l . Whereas it may come to inconsistency and accidentally the same application 
would be loaded twice, hterm is not then able to delete that application or to load 
another one with the same AID. A solution of this issue is to search for all loaded 
applications on a card using "FindFirst" and "FindNext" functions on "Delete Test" 
tab in MUt i l . Since the application is found in the way of comparing all possible 
AIDs, it is possible to delete the selected application. 

[10] 
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= M U t i l 2 . 8 : 

Exchange A P D U Create MCD ID List Setup 
Load Test Delete Test Enable Load Live Delete Live 

Filename: |C:\LJsefs\Developer\DesJttop\ecc_diff ie_helmanVresh_ecc.alu 

AID: | ABCDEFFEDC123456 

Known AIDs 

Session Data Size: 

Additional Static nj-

Siie (blocks): 

~3 

e Hex 

r Dec 

Reload 

3.3: A feature of Mutil for loading the applications on the smart card 

M U t i l Z . 8 : 

Load Test Delete Test Enable Load Live Delete Live 

Exchange A P D U Create MCD ID List | Setup 

I 
CLA:|ÖÖ" |NS:|Ä4~ pi:|Ö4~ P2:|5T Lc:(ÖT Le:(ÖÖ~ T A l 

Command: 

A 3 C D E F F E D C 1 2 3 4 5 6 

Response: 

* 

w 

S W 1 S W 2 : I 
Load Save Transmit | 

A T R 
Affected AMD ID Codelet List 

Loaded 
Applications 

Open MEL Exit S H E L L 
M K D _ P K C Mode Build Number 

Reset and Get All Details 

M U L T O S Manufacturer M U L T O S Remaining x_value 
Data Data Version E2£ize y_value 

M K D _ P K C 

Supported Chip 
Primitives Manufacturer 

Show Details 

3.4: A feature of Mutil for loading the applications on the smart card 
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4 P R A C T I C A L R E S U L T S 
This chapter is focused on practical application and implementation of the crypto­
graphic protocol based on E C C - Diffie-Hellman. Hereby is demonstrated, that this 
algorithm is confident to establish a reciprocal secret key between two users. For 
these purposes, the applications in language C and language Java had to be built. 

Fig. 4.1: The smart card UBM21-Z48 and the terminal. 

For physical connection of the card to a PC , the card reader for chip smart cards 
was used (picture 4.1). The connection of the reader to P C is through USB cable 
with standard USB 3.0 connector. Thanks to this, the reader is powered from the 
P C . 

4.1 Card application 

The application running on the smart card is written in language C and uses some 
MULTOS functions from header file multos .h as displayed in C code definition part: 

#include <multos.h> 
#include <string.h> 
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As stated in section 1.3.1, it is obvious that principle of Diffie-Hellman algorithm 
is demonstrated by using mathematical operations based on modular arithmetic. 
However, Diffie-Hellman algorithm is based on E C C , therefore during the imple­
mentation and development of the application in programming language C it uses 
scalar multiplication for its operations as it is showed in the picture 4.2 It was men-

Fig. 4.2: Diffie-Hellman operation scheme 

tioned in the section 2.1.3 that every single application running on the card must 
be represented by its name - AID. The AID is implemented in the beginning of the 
code as well as set up of the log in DIR: 

#pragma attribute("aid", "ABCDEFFEDC123456") 
#pragma attribute("dir", "61 lc 4f 04 AB CD EF FE DC 12 34 56 50 14 
43 52 33 31 32 20 45 43 43 20 50 72 69 6d 69 74 69 76 65 73") 

4.1.1 Parameters of elliptic curve 

The definition of the elliptic curve created for an application running on the smart 
card is characterized by these parameters, which are firmly fixed: 

OxAC, 0x75, OxCF, 0x35, 0x99, 0x88, 0x5A, 0x6A, 0x26, 0xB2, 
OxOF, 0x52, 0x71, OxAB, 0x95, 0xA3, OxFO, 0xD2, 0x4B, 0x74, 
0x37, 0x21, 0x46, OxCC, OxDB, OxAO, 0x5F, 0xA9, // P 
0x93, 0x62, 0xE8, 0xF2, 0x7B, OxDC, 0xA9, 0x6F, 0x81, 0xE6, 
OxBF, 0xA6, 0x79, 0x5E, 0x10, 0x60, 0xA9, 0x69, 0xD2, OxOD, 
0x9F, 0x88, 0x2E, 0xB4, 0xD8, 0xE8, 0xD4, 0x20, // A 
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0x89, 0xD8, 0x66, 0x9D, 0x59, 0x20, 0x5C, OxB4, 0xA3, 0x6E, 
OxEC, 0x01, 0x22, 0xC6, 0x49, OxlC, 0x92, 0xB6, 0x18, 0xB8, 
OxFC, 0x09, 0xB6, 0xD6, 0xF3, 0x24, OxAA, OxCA, // B 
0x2E, OxDA, 0x6A, 0x9C, 0xE8, 0x53, 0x3B, OxBC, 0xB8, OxlD, 
0x49, OxF4, 0x69, 0xB5, 0x43, 0x95, 0xD3, OxlA, 0x64, 0xB8, 
0x14, 0x8B, 0x92, 0xB3, 0x6B, OxCO, 0x23, 0x00, // Gx 
0x84, OxDA, 0x69, 0x9D, 0xF7, 0x56, OxBF, 0x58, 0xC9, 0x50, 
0x76, 0x7A, 0xD7, 0xF8, 0x84, 0x62, OxlE, 0x2F, 0x5C, OxFC, 
0x28, 0x25, 0x97, 0x99, 0x14, 0x05, 0xB2, Ox4D, // Gy 
OxOF, OxAD, 0x9E, 0x79, 0x3C, 0x80, 0xC2, 0x66, OxBD, 0xB3, 
0x18, OxAA, 0x67, 0x6C, 0x9E, OxDB, Ox4F, 0xB6, 0x53, OxCF, 
Ox4F, 0x67, 0x92, 0x37, 0x13, 0x37, 0x56, OxAl, // N 

The stated parameters are: 
• P the characteristics of a prime number 
• A the characteristics of a point A lying on the curve 
• B the characteristics of a point B lying on the curve 
• Gx - the characteristics of x axis of a base 
• Gy - the characteristics of y axis of a base 
• N - the characteristics of an order of the curve 

The length of the curve is 28 bytes and every byte is characterized in hexadecimal 
numeral system (according low-level programming in plain C language and data 
representation on the smart card). A strength of the cryptographic functions and 
primitives depends on the length of curve. However this length is preferred as a 
good compromise between the strength and application size. 

The parameters P, A , B and N are used on background, other parameters are 
are actively used. According Diffie-Hellman operation scheme of scalar multiplica­
tion (section 4.2), it is conspicuous an addition parameter is required - multiplier. 
The multiplier presents the private key in the Diffie-Hellman operation scheme and 
is generated randomly and must be smaller than order N: 

GenerateRandomNumberLessThan(order, (BYTE *)private_key); 
EccMultiplyPointByScalar(domain_params, generator_point, 

/*multiplier=*/private_key, 
/*result=*/public_key); 

ReturnResponse(2*ECC_LEN+l, public_key, ERR_0K); 
break; 

The multiplier could be possibly firmly fixed in the code as well, but regarding the 
tendency to set up the highest achievable security of the private key, implemented 
solution is preferred. 
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4.1.2 Functions 

To obtain desired results from the smart card, some MULTOS functions had to be 
used. To generate the secret key on side of the card, the GENERATE_SHARED_SECRET_INS 
is called: 

case GENERATE_SHARED_SECRET_INS: 
i f (!CheckCase(3)) multosExitSW(ERR_BAD_INS); 

GenerateSharedSecret(apdu_data); 
ReturnResponse(0, NULL, ERR_0K); 
break; 

This functions uses scalar multiplication to multiply required parameters with pri­
vate or public key: 

void GenerateSharedSecret(BYTE *other_public_key) { 
EccMultiplyPointByScalar(domain_params, other_public_key, 

private_key, shared_secret); 

After the secret key is established, this key is supposed to use and therefore it 
must be kept in private and non-readable for others. For this purpose mathematical 
operation X O R was used as a demonstration of such a security. This has to be 
implemented on the application card as well: 

case ECHO_INPUT_INS: 
i f (!CheckCase(4)) multosExitSW(ERR_BAD_INS); 
EncryptSymmetrically(apdu_data, Lc, result); 

ReturnResponse(Lc, result, ERR_0K); 
break; 

The operation X O R is implemented very simple hereby: 

void XorMessage(BYTE *msg, WORD len, BYTE *shared_secret, 
WORD shared_secret_len, BYTE *result) { 

int i ; 
for ( i = 0; i < len; ++i) { 

result[i] = msg[i] ~ shared_secret[i % shared_secret_len]; 
} 

} 

4.1.3 Supported primitives 

This master thesis deals with the card UBM21-Z48, which supports specific prim­
itives and because of that it was necessary to adjust the code in SmartDeck. The 
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primitives listed in attachment A of this thesis are those that are included in the tar­
get specification. As it is obvious, the card UBM21-Z48 does not support the Multos 
GenEccKeyPair primitive and therefore it was crucial to generate the private and 
public key. 

4.2 Client application 

The application for the communication with the card is written in Java programming 
language. This application physically connect to the smart card and exchange the 
A P D U messages between a client and smart card. This application demonstrates 
all implemented functions on the smart card. 
The source file of client application contains of three Java files: 

1. DiffieHellmanMain.java - main code 
2. ApduSender.java - code for sending and exchanging A P D U messages 
3. RawDataSender.java -code for sending raw data 

The client application consists of several methods and functions, its main role is to 
connect to the card, communicate with the card using A P D U messages and receive 
and display the answer from the application loaded on the card. 
This application written in Java language shows the result of the code after it was 
run in the console as it is stated in section below. 

4.2.1 Result 

After the Java code is debugged and built, the console displays this result: In 

ESTABLISHING CONNECTION WITH THE CARD 
T e r m i n a l s : [PC/SC t e r m i n a l Gemplus USB S m a r t C a r d deader 0] 
S e l e c t e d T e r m i n a l : PC/SC t e r m i n a l Gemplus USB S m a r t C a r d deader • 
A I R : 3 3 £ J D D D D ? : 3 H D £ 3 ? 4 ; I : ^ D 7 D : ; ; ; S S S S 3 ; ; ; S 

C a r d i n f c : PC/SC c a r d i n Gemplus USB S m a r t C a r d deader 0 r p r c t c c c l 1=0 r s t a t e OK 
APDU » > . OOA4040003ABCDZFFEDC123455 
APDU < « z 3000 SW =9000 
I t t o o t 112117322 n a n o s e c o n d s to e x e c u t e t h e APDU. 
GENERATING PRIVATE KEZ 
GENERATING PRIVATE/PUBLIC KET PAIR ON CARD 
APDU » > z BQ01000000 
APDU « < : 0 4 1 3 0 A B C 4 F A B 8 £ C 1 2 F B 4 2 A 5 3 D A F D 3 1 7 A D 3 3 3 3 7 £ Z 0 7 0 3 1 A E F B 7 A 5 F 2 D 1 A F 7 C 5 2 7 0 7 B D F 5 4 3 3 F 8 A 3 2 C B 3 5 0 4 2 3 D D E 0 5 7 4 3 E 3 3 A O C E C F C 5 0 E 3 B 8 2 7 F 1 5 3 0 0 0 SW =3000 
I t t o o t €82233723 n a n o s e c o n d s to e x e c u t e t h e APDU. 
GENERATING LOCAL SHARED SECRET 
S e n d i n g command t c c a r d t c g e n e r a t e s h a r e d s e c r e t 
APDU » > : 3 0 0 2 0 0 0 0 3 3 0 4 1 7 5 5 3 2 7 7 £ 0 2 7 D 3 C C F 3 A 0 3 3 5 5 F O £ O D 4 2 2 A 5 D 5 0 D B 3 D 4 1 C 4 3 D 1 B 4 8 3 3 3 D F 0 3 3 5 8 3 E D C F 1 3 8 4 C A D F A 3 F 3 F 5 A C 5 D 1 C C 8 D 2 5 A C 7 2 5 0 3 5 7 D C B Z 4 7 5 3 B B 1 3 
APDU 3000 SW =3000 
I t t c c t 172342551 n a n c a e c c n d a t c e x e c u t e t h e APDU. 
V e r i f y i n g a h a r e d a e c r e t u a i n g random a t r i n g . 
S e n d i n g a random a t r i n g z c r e n c r y p t i o n . 
APDU » > : 3 0 0 3 0 0 0 0 1 4 7 4 C 3 3 E 3 0 A D Z 0 1 5 8 A 3 0 c B B 2 £ 7 E 3 5 8 D 2 C 3 C 4 5 F O £ B D 
APDU « < : 7 0 3 E 3 0 4 D 3 C 1 4 C C A £ 5 E 7 c F 5 C Z 5 F E 4 A 7 0 3 D D 1 1 1 8 1 £ 3 0 0 0 SW =3000 
I t t c c t 443784540 n a n c a e c c n d a t c e x e c u t e t h e APDU. 
SUCCESS: R e t u r n e d e n c r y p t e d a t r i n g a z t e z d e c r y p t i o n e q u a l a t h e c r i g i n a l cne 

Fig. 4.3: Output of the client application 

the very first step, client sends the C - A P D U message with AID of the application. 
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Naturally, client must know in advance which application wants to use and therefore 
this information is mandatory to input. After the application with given A P D U is 
found, client receives R - A P D U message from the smart card with SW 9000. This 
means application was found and the communication is established. 
Then, to calculate shared secret key, it is necessary to generate the private key. As 
mentioned above, the private key is generated randomly and to obtain it from the 
smart card, client sends C - A P D U 80 01 00 00 00 and receives generated private key. 
After the private key is generated on both sides (card and client), a counting of 
the shared secret key can be launched. This is happening again on both sides. 
When the client receives R - A P D U 9000 from the client, then the shared secret 
keys are compared. A value of the secret key is not displayed in console purposely, 
because this information is considered as a top secret. Generated secret keys must 
be compared and therefore the X O R operation is used to secure the transfer of these 
keys between both sides. It is recommended to use symmetric cryptography to send 
established shared secret key to make sure it will remain secret after it was created.1 

The final output from console is: Returned encrypted string after decryption 
equals the original one and proves, that the common secret key is the same on 
both sides. 

4.3 Measurement 

To evaluate the application of the implemented code on the smart card, the speed 
testing of cryptographic protocol Difne-Hellman was performed. The measuring 
was implemented in the client application in Java and several values are captured: 
G E N _ N E W _ K E Y P A I R _ I N S : 640ms, 529ms, 701ms, 599ms, 640ms 
G E N E R A T E _ S H A R E D _ S E C R E T _ I N S : 568ms, 530ms, 580ms, 610ms, 530ms 
E C H O _ I N P U T _ I N S : 272ms, 268ms, 240ms 290ms, 288ms 
E N C R Y P T _ I N S : 288ms, 248ms, 233ms, 266ms, 217ms 
The measuring was focused on end-to-end communication, so it means that mea­
sured values involves the latency of the data transfer and other factors. The client 
application measures the time of these primitives after every run, because of that 
this measurement may differ and stated data represents values measured five times 
in a row. 

4.4 Problems and issues 

During the development of the applications, some issues appeared: 
1For instance DES or SHA cipher. 
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1. MULTOS SmartDeck is compatible just with Windows 7 32-bit OS, therefore it 
was necessary to install a virtual machine and run this version of MS Windows. 

2. After the smart card is plugged in the card terminal, an installation of drivers 
starts in MS automatically. The problem occurred when the P C wanted to 
install the driver of the smart card - unsuccessfully. The specific driver is not 
publish publicly on internet and it looked like there will be a problem with 
the communication. However Muti l does not require the driver for the com­
munication with the card, so at the end it did not influence the development 
of the application. 

3. It is very important to study the technical parameters of the smart card, 
especially memory size and supported primitives. If a memory size is exceeded 
or a unsupported primitive is used, it might be difficult to find where the 
problem is, because MULTOS does not inform a developer about all errors 
and usually returns just very general status words (in some cases it even does 
not return any error status word). 

4. By the SmartDeck manual, the application should be developed in the Eclipse 
and to generate .hzx file developer is supposed to debug the code all the 
time. It takes too much time and it is not so practical for development of the 
application, which has to loaded using external software. Therefore, the much 
better solution is to use command line programs from MULTOS and create 
scripts. Then a developer does not have to debug the code and can use some 
other software for writting the code, for instance Notepad++. 

Nonetheless, all mistakes and issues have been resolved and development was suc­
cessful. 
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5 C O N C L U S I O N 
The role of this master thesis was to implement chosen cryptographic protocol on the 
smart card and its further usage for electronic ID cards. As preferable protocol was 
used Diffie-Hellman, which was theoretically described and characterized in detail as 
well as was graphically displayed its arithmetic principle. Diffie-Hellman is based on 
E C C , the very first chapter covers also this problematic together with an overview 
of asymmetric cryptography. 

The goal was to implement such a cryptographic protocol on a specific smart 
card based on MULTOS OS. For better understanding how does this OS influence 
the development of the application for smart cards, the second chapter describes 
smart cards and the third chapter shows the MULTOS principle. 

Practical part of this thesis is focused on the implementation of Diffie-Hellman 
protocol based on E C C and running on MULTOS OS. The output of this imple­
mentation is a software, specifically two codes from two different programming envi­
ronments - Java (client application) and C (card application). The implementation 
was successful in the final and was tested in a console application of Java. A l l source 
files are included to this project. 

At the end, testing of a time of partial primitives used in this thesis was provided, 
processed and analyzed. Therefore, all targets of this master thesis are considered 
as schieved. 
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LIST O F S Y M B O L S , P H Y S I C A L C O N S T A N T S 
A N D A B B R E V I A T I O N S 

A A M Application Abstract Machine 

A D C Application Delete Certificate 

AID Application identifier 

A L C Application Load Certificate 

ANSI American National Standards Institute 

A P D U Application Protocol Data Unit 

B L E Bluetooth Low Energy 

E C C Elliptic Curve Cryptography 

E E P R O M Electrically Erasable Programmable Read-Only Memory 

ID card Identification Card 

IFD Interface Device 

ISO International Organization for Standardization 

I/O Input/Output 

kB kilo Bytes 

LA Length of actual data 

MS Microsoft 

NFC Near Field Communication 

OS Operation System 

P C Personal Computer 

R A M Random Access Memory 

X O R exclusive OR 

ZIP newer compression algorithms 
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LIST O F A P P E N D I C E S 

A Attachments 45 

B Contain of attached C D 47 
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A A T T A C H M E N T S 
The following tables displays the supported primitives of used smart card based on 
Multos OS: 

Primitive Supported Optional/Mandatory 

AddBCDN Yes 

B itkl a n i p u 1 a te Byte Yes 

BitManipulateWord Yes 

CallCardBlock Yes 

CallCodelet Yes 

CheckCase ves 

Checksum Yes 

Contra lAutoResetWWT Yes 

Delegate Yes 

DESECBDecipher Yes 

DESECBEncipher Yes 

DivideN Yes 

EccAdd Yes 

EccConvert Yes 

EccEqual Yes 

Ecclnv Yes 

EccMult Yes 

EccVerily Yes 

Exchang*Dat3 No 

GenerateAsymmetricHashGeneral Yes 

GenerateAsymmetricSignatureGenera Yes 
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GenerateDESCBCSignature Yes 

GenerateRandomPrime Yes 

GenerateTripleDESCBCSignature Yes 

GetData Yes 

GetDelegatorAID Yes 

GetDIRFileRecord Yes 

GetFileControllnfo Yes 

GetManufacturerData Yes 

GetMemoryReliability Yes 

GetMULTOSData Yes 

GetPurseType Yes 

GetRandomNumber Yes 

L o a d C C R Yes 

Lookup Yes 

Memory Compare Yes 

Memory Compare Fixed Length Yes 

Memory Copy Yes 

Memory Copy Fixed Length Yes 

MemoryCopy Yes 

Modular Exponentiation Yes 

Modular Exponentiation CRT Yes 

Modular Inverse Yes 

ModularMultiplication Yes 

ModularRedudion Yes 

MultiplyN Yes 

QueryO, Queryl, Query2 Query3 Yes 

QueryChannel No 

QueryCodelet Yes 

QuerylnterfaceType Yes 

ResetSessienData Yes 

ResetWWT Yes 

ReturnFromCodelet Yes 

SEEDECBDecipher Yes 

SEEDECBEnc ipher Yes 

SetAFI No 

SetATRFileRecord Yes 

SetATRHistChars Yes 

SetATSHistCtiars No 

SetFCIRecord Yes 

Se tSe lec tSW Yes 

SetTransaction Protection Yes 

SHA-1 Yes 

ShiftLeft Yes 

StiittRight Yes 

StoreCCR Yes 

SubtractBCDN Yes 
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B C O N T A I N O F A T T A C H E D C D 
The final applications for the smart card and client are saved on the attached CD 
and are situated in diplomka_Jinal folder. This folder contains two sub folders 
- client and card. The client folder contains one folder SmartCardTerminal and 
one ZIP file with the same name1 The card folder contains the source c code -
ecc_diffie_hellman.c, the header file - multos.h, generated hzx and alu files and 
script, which enables to generate such files - build.bat. Recommended software to 
open the C code is Eclipse IDE with SmartDeck platform and NetBeans to open 
and run the Java code. 

1Because some environments support importing of Java project in ZIP format, for example 
NetBeans, the client folder contains both ziped and unziped forms. 
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