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Abstract
This thesis describes the development of a flexible system for automatically categorising
and extracting content from web pages, with a focus on the darknet environment. We have
designed a highly adaptable and scalable system capable of handling any type of content,
while taking great care in considering the overall architecture, database structure, and pro-
cessing pipeline. Using the state-of-the-art language model trained on the natural language
inference task, we demonstrate the model’s potential to categorise content effectively in a
zero-shot environment. We also conduct an analysis of the performance of various hypothe-
sis templates. To further enhance the data extraction process, we have integrated a named
entity recognition model and templating methodology for content extraction and proposed
an automated segmentation approach using OpenAI’s ChatGPT model. In addition, we
have developed a user-friendly web client application to enhance the system’s accessibility
and ease-of-use, evaluated the achieved results, and identified areas for further research and
development in this field.

Abstrakt
Tato práce popisuje vývoj flexibilního systému pro automatickou kategorizaci a extrakci
obsahu z webových stránek, se zaměřením na prostředí darknetu. Navrhli jsme vysoce
přizpůsobitelný a škálovatelný systém, který dokáže zpracovávat různorodý typ obsahu,
přičemž jsme dbali na kvalitu návrhu celkové architektury, struktury databáze a samotného
algoritmu pro zpracování dat. Použitím nejmodernějšího jazykového modelu trénovaného na
úkolu inference přirozeného jazyka demonstrujeme potenciál modelu efektivně kategorizovat
obsah v zcela neznámém prostředí, přičemž jsme provedli analýzu výkonu daného modelu
za použití různých hypotetických šablon. Dále jsme do systému integrovali model pro
rozpoznávání pojmenovaných entit a metodologii šablonování pro extrakci obsahu, přičemž
jsme navrhli automatizovaný přístup k segmentaci obsahu webových stránek za pomocí
modelu ChatGPT od společnosti OpenAI. V neposlední řadě jsme vyvinuli uživatelsky
přívětivou webovou aplikaci pro zlepšení dostupnosti a snadné použití systému, zhodnotili
dosažené výsledky a navrhli možnosti pro další výzkum a vývoj v dané oblasti.
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Chapter 1

Introduction

This thesis focusses on the crucial task of automatic webpage content categorisation and
extraction, which holds significant importance in today’s world where the majority of in-
formation is sourced from the web. With the tremendous surge in information available
online, there is a growing need to automatically classify and extract information from web
pages, especially from highly niche domains.

In general, webpage categorisation involves assigning a category or label to its content.
This can be useful for tasks such as web search and information retrieval, where it is essential
to quickly and accurately classify content into relevant categories that best suit the query
of the user.

Automatic extraction involves extracting specific information or entities from a webpage,
such as a title, author, or any other potentially interesting data and entities. This can be
useful for creating data sets and knowledge bases that can be used for further analysis and
evaluation of the content present on the web.

In order to solve the above-mentioned tasks effectively, it is necessary to use various
natural language processing techniques, machine learning, and deep learning algorithms
that use highly sophisticated methods to process textual content. By leveraging these
cutting-edge techniques, it is possible to analyse and process the text data on entire web
pages and to train language models that can precisely categorise and extract information
from the content.

The subject of automatic webpage categorisation and extraction is an important and
challenging topic, and this thesis will provide a detailed analysis of the methods and tech-
niques that can be used to achieve satisfying results. In addition, our goal is to create
a modular and scalable system called WebCat, which provides tools for analysing content
from the web pages and the large web archives. With the use of natural language processing
techniques, this system will be able to accurately analyse content and search for specific
entities, anomalies, or categories. The modular and distributed design of the system will
allow it to be easily adapted and extended for different applications and use cases, and
its scalable architecture will handle large volumes of data, making it suitable for use in
real-world scenarios.

Overall, our goal is to create a powerful tool that can help improve the efficiency and
effectiveness of categorisation and information extraction from web pages, especially in
challenging environments such as darknet forums and markets, or other domains that are
highly unconventional and niche.
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Chapter 2

Natural Language Processing

The study of natural language processing (NLP) is a subfield of computer science and
artificial intelligence that focusses on the development of algorithms and techniques for the
analysis, processing and generation of natural language data, such as text and speech. This
field plays a crucial role in enabling computers to understand, interpret, and communicate
with humans in a natural and intuitive way [15]. Using the principles of NLP, researchers
and developers can create systems that can automatically analyse, understand, and generate
human language, making it possible to develop a wide range of applications in areas such
as machine translation, dialogue systems, information extraction, and many more.

Depending on the specific task and the type of data that are being analysed, various
techniques and algorithms can be used. Some common techniques used in NLP include
tokenization, lemmatisation, stemming, named entity recognition, topic modelling, and
much more [30]. These techniques can be applied to a wide range of data sources, including
text documents, social media posts, and speech recordings, to extract valuable information.
In recent years, the construction of language models has shifted more from the classical
statistical methods, such as the usage of the Naive Bayes and Hidden Markov Chains,
towards the methods based on training deep neural networks. The main difference between
these two approaches is how they analyse, process, and learn from natural language data.

Statistical methods use mathematical and statistical techniques to analyse data. These
methods typically involve creating a statistical model of the language from the input data
and using the model to make predictions or generate text. For example, a statistical model
might use Hidden Markov Chains or Naive Bayes to learn a probability distribution of the
language or topic and generate text based on the patterns and structure of the language
data [32].

In contrast, neural network-based methods use artificial neural networks, which involves
training a neural network on a large natural language data set and using the trained net-
work to perform various downstream tasks. These methods are often more complex and
computationally intensive than statistical methods, but they can provide more accurate
and sophisticated results.

The choice between statistical methods or neural networks depends on the specific tasks
and types of data analysed. Although statistical methods are often simpler and more
efficient in calculation, they may not be as accurate as methods based on neural networks.
Neural network-based methods are often more complex and computationally intensive, but
can provide more accurate results, especially in some highly complex tasks.

Overall, NLP is an important and rapidly evolving field of computer science, mostly
due to recent advances in artificial intelligence (AI), and has a wide range of applications in
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many different areas. By using highly sophisticated techniques and algorithms, it is possible
to gain valuable insights and information from natural language data and to develop more
intelligent and human-like computer systems.

2.1 Common Terminology and Techniques
In order to make understanding NLP problems in the coming chapters more intuitive, it is
important to have a basic understanding of the common terminology and techniques used in
this field. This chapter will provide an introduction to some of the key terms and concepts,
as well as an overview of the most commonly used techniques and algorithms.

Corpus

In the context of natural language processing, a corpus is a digital collection of text data
that is used to train and evaluate NLP algorithms and models. A corpus typically includes
a large number of text documents, such as news articles, books, or social media posts, and
can be used to represent a specific language, domain, or topic. It can also provide valuable
information on the characteristics and patterns of a specific language or domain. When
selecting a corpus for creating a language model, it is important to consider several key
properties [33], including

• Size: The corpus should be large enough to provide a sufficient amount of data.

• Variety: The corpus should include a diverse range of text types, including genres,
styles, and formats that are ideally evenly distributed.

• Annotations: The corpus should be annotated with relevant labels, such as part-
of-speech tags, named entities, or categories, to support more advanced NLP tasks.
However, the selection of the annotation type depends on the task that is being solved.

• Quality: The corpus should be free of errors and inconsistencies and should be
carefully curated to ensure its accuracy and reliability.

In general, a corpus is an essential tool for many tasks, as it provides a large and
representative data set that can be used to train and evaluate algorithms and models.

Vocabulary

Vocabulary is a list of words that are used in a given text or corpus. The process of creating
a vocabulary typically involves extracting words from the text data and organising them
into a list, while each word appears only once. These distinct items in a vocabulary are
also called ”word types“ [38].

By creating a vocabulary from the text data, it becomes possible to represent the text
data using a fixed and finite set of words or tokens, which can simplify the analysis and
processing of the data. The finite property of the vocabulary also allows for indexing, which
can be used to transform words into numeric representations that can further serve as input
to the language models.

Many NLP techniques and algorithms work with the vocabulary. For example, a com-
mon technique is to build a statistical model based on the vocabulary of a corpus, which
can then be used to classify new pieces of text or to generate text that is similar to the
samples in the corpus, preserving the same style of writing.
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Tokenization

Tokenization is the process of breaking a piece of text into smaller pieces, called tokens
[26]. These tokens can be words or symbols and serve as basic building blocks for many
NLP tasks. This process is typically done using a combination of rules-based and statis-
tical methods. There are several types of tokenizers used in natural language processing,
including

• Word tokenizers: For splitting the text into individual words.

• Sentence tokenizers: The text is split into individual sentences.

• Regex tokenizers: These tokenizers use regular expressions to identify patterns in
text and split them into tokens based on those patterns.

• Character tokenizers: For splitting the text into individual characters.
Tokenization is an important preprocessing step for any NLP task, as it allows the text

to be represented in a more structured and manageable form. Breaking the text into smaller
pieces makes it easier to analyse and process the data and extract useful information and
insights from the text. Individual tokens can be indexed using the vocabulary to create a
numerical representation of the input; however, new or unseen tokens that are not present
in the vocabulary are often replaced by a special token [UNK].

Stemming and Lemmatisation

Both stemming and lemmatisation are processes to reduce inflected (or sometimes derived)
words to their stem, base, or root form of the word [26]. This is typically done by removing
the suffixes or prefixes of words that are used to indicate a grammatical function, such as
tense, gender, or plurality. The difference between these two processes is that stemming
is a heuristic process that removes the ends of words, while lemmatisation is based on
morphological analysis and vocabulary-based algorithms [26]. The example of stemming
can be seen in Figure 2.1, while lemmatisation is shown in Figure 2.2.

𝑐𝑜𝑜𝑘𝑒𝑑, 𝑜𝑣𝑒𝑟𝑐𝑜𝑜𝑘𝑒𝑑, 𝑐𝑜𝑜𝑘𝑖𝑛𝑔 =⇒ 𝑐𝑜𝑜𝑘

Figure 2.1: Example of words ’cooked’, ’overcooked’, and ’cooking’ being processed by
stemming and resulting in the word ’cook’.

𝑎𝑚, 𝑎𝑟𝑒, 𝑖𝑠 =⇒ 𝑏𝑒

Figure 2.2: Example of words ’am’, ’are’, and ’is’ being lemmatized and resulting in the
word ’be’.

This processing can be useful for tasks such as text classification, where the exact form
of a word may not be important, but its basic meaning or concept is. When words are
reduced to their root form, it becomes easier to group and classify words based on their
underlying meaning, rather than their specific inflected form. The root form of words can
also be used to construct a robust and compact vocabulary for algorithms based on the
frequency of the term, which will be discussed in the next chapters.

Overall, stemming and lemmatisation are important preprocessing steps in many natural
language processing tasks, as they can help to reduce the complexity of the text data and
make it more applicable for analysis and processing by NLP algorithms.
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2.2 Word Representation
Word representation refers to the way words are represented in a numerical or structured
form. This representation is important, as it allows words to be input to the NLP algo-
rithms, which require numbers as their input rather than a sequence of bytes representing
characters, in which way words are being represented in today’s computers. The most suf-
ficient form of word representation for natural language processing tasks is a vector, as it
allows the capture of properties of words across many dimensions that a simple scalar value
is not capable of. Furthermore, any linear operation can be applied to these vectors, which
makes it possible to measure similarity between pairs of words or construct higher-level
representations of entire contexts, such as paragraphs or documents themselves. There are
two main categories of word representations:

• Local representations (can also be referred to as one-hot), where every word in a fixed
vocabulary of size 𝐷 is represented by a binary vector �⃗� ∈ {0, 1}|𝑆|. Each dimension
of the vector �⃗� corresponds to one word in the vocabulary, and only one value in this
vector will be set to one, depending on the word it should represent [29].

• Distributed representations, where each word is represented by a vector �⃗� ∈ R|𝑘|,
where �⃗� can be sparse or dense (hand-made features or latent representation) [29]. In
common terminology, these representations are referred to as embeddings.

The common fact for every word representation method is that they are crafted or
trained based on words that occur in some training corpora. One of the key issues includes
the representation of words which were not present in the reference corpus. It is unrealistic
for models to include every word which exists in the language, furthermore, new words are
being introduced continuously, which would require creating new embeddings on regular
basis. For this purpose, only a subset of the most frequent terms are included in the
vocabulary, together with the special [UNK] symbol, which stands for any word outside of
the vocabulary.

Word Embeddings

Word embeddings are numerical representations of words that capture their semantic and
syntactic properties. These representations are typically created by training a neural net-
work on large corpora and using the trained network to generate numerical representations
of words. Once the model is trained, the transition of the word index in the vocabulary
space can be directly mapped to the vector space. There are also highly effective classical
methods for creating embeddings, often classified into two main families [35]:

• Local context window methods, for example, skip-gram model [27].

• Global matrix factorisation methods, for example, LSA (latent semantic analy-
sis) [8].

Embeddings made in such a way can then be used to represent words in a more sophisticated
and accurate way and are often used for most of the tasks in the NLP domain. The desirable
feature of high-quality embeddings includes capturing semantic similarities between words
themselves. As mentioned above, the magnitude of these similarities can be measured
using the distance metric 𝐹 (𝑤1, 𝑤2) = 𝑠, where 𝐹 is a function (for example, the cosine
similarity function), 𝑤1 and 𝑤2 are embeddings of two different words and 𝑠 is the measured
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Figure 2.3: The 3D projection of the K-dimensional latent space of the embeddings.

similarity. Figure 2.3 shows a latent space of the embeddings projected in the 3D space
with the vocabulary
𝑉 = {𝑎𝑝𝑝𝑙𝑒,𝑚𝑜𝑛𝑘𝑒𝑦, 𝑘𝑖𝑛𝑔, 𝑞𝑢𝑒𝑒𝑛}. As can be seen, the words ”king“ and ”queen“ are
semantically more similar than the rest of the words in the vocabulary and thus their
vectors are much closer to each other.

Word2vec

Word2vec is based on the idea that the meaning of a word can be inferred by the words
that frequently appear near it in a text [28].

This approach to creating word embeddings uses a shallow neural network to learn
the vector representation of words from large corpora. One way in which word2vec can
be trained is that the model takes a word as input and tries to predict the surrounding
words in the context of the sentence. This is known as the continuous skip-gram model.
Alternatively, the model can be trained to predict the original input word while knowing
the surrounding words, which is known as the continuous bag-of-words (CBOW) model.

This approach has been shown to produce high-quality word embeddings that capture
both the semantic and syntactic properties of words, and it is a popular and effective method
for preprocessing textual data in many different NLP applications.

GloVe

GloVe (Global Vectors for Word Representation) is a global log-bilinear regression method
to train word embedding models [35]. It is similar to Word2Vec but uses a different approach
to learning word vectors. Instead of predicting surrounding words, GloVe learns word
vectors by directly modelling the co-occurrence probabilities of words in a corpus of text.
The training process involves constructing a co-occurrence matrix, which counts how often
each word co-occurs with every other word in the corpus. The rows and columns of this
matrix represent words, and the elements in the matrix represent the number of times each
pair of words co-occurs. This matrix is then factorised using a technique called singular
value decomposition, which yields the word vectors.
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2.3 Document Representation
The document can be seen as the highest linguistic unit of the natural language [24]. The
goal is to create a fixed size representation d, which contains information about the content,
which is typically composed of words 𝐷 = {𝑤1, 𝑤2, 𝑤3, ..., 𝑤𝑛}, where 𝐷 is the document. As
with the word representations described in Section 2.2, the division into categories follows
the same pattern as the representations of words:

• Local representation (one-hot), typically bag-of-words, or representation based
on term frequencies. The order of tokens in the document is not preserved, and the
methods rely on the meaning of individual words alone, especially nouns.

• Distributive representation, typically transforming context into a latent space of
dimensionality much smaller than the size of the vocabulary, with the help of neural
network architectures capable of encoding sequences of tokens.

Bag of Words

The bag-of-words (BOW) technique is a method of representing textual data in natural
language processing. It involves representing a piece of text as a fixed-length vector of word
counts, where each dimension of the vector corresponds to a specific word in the text.

To create a bag-of-words representation of a document, the first step is to define a
vocabulary 𝑉 = [𝑤1, 𝑤2, 𝑤3, ..., 𝑤|𝑉 |] that contains a fixed number of the most frequent
words that are present within a document, or by using a predefined list of words. The
hot representation of each word is 𝑤 = [0, 0, ..., 1, 0, ..., 0], as defined in 2.2. The resulting
bag-of-words representation can be defined as

𝑑 =
𝑙∑︁

𝑘=1

𝑤𝑖,

where 𝑙 is the length of the document. It is clear that this representation alone only counts
the word frequencies in the document, and in real-world scenarios, bag-of-words is being
used as a tool to generate word count features [24].

TF-IDF

The TF-IDF (term frequency-inverse document frequency) is a numerical representation of
a word’s importance in a document or a collection of documents. It is commonly used in
information retrieval tasks [29].

In TF-IDF, the term frequency (TF) of a word is the number of times that word appears
in a document, which corresponds to the output representation of the bag-of-words method.
The inverse document frequency (IDF) of a word is a measure of how rare or common that
word is in a collection of documents. The product of these two values is used to represent
the importance of a word in a given document. The relative frequency of the term 𝑇𝐹 is
calculated as

𝑇𝐹 (𝑡, 𝑑) =
𝑓𝑡,𝑑∑︀

𝑡′∈𝑑 𝑓𝑡′ ,𝑑
,

where 𝑓𝑡,𝑑 is the raw count of the term 𝑡 in the document 𝑑, and the denominator is the
sum of all terms in the document 𝑑. The part of IDF can be calculated as

𝐼𝐷𝐹 (𝑡,𝐷) = log
𝑁

1 + |{𝑑 ∈ 𝐷 : 𝑡 ∈ 𝐷}|
,
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where 𝑁 is the total number of documents in corpus 𝐷. The denominator in this case
counts the number of documents in which the term 𝑡 appeared at least once. The final
equation is the product of the TF and IDF parts:

𝑇𝐹 -𝐼𝐷𝐹 (𝑡, 𝑑,𝐷) = 𝑇𝐹 (𝑡, 𝑑) · 𝐼𝐷𝐹 (𝑡,𝐷)

The idea behind TF-IDF is that words that are more common in a given document
are considered more important, while words that are common across all documents are
considered less important. This allows the representation to capture the relevance of a
word to a particular document, while also taking into account the overall context of the
corpus. This concept is especially important, as words with high frequencies across all
documents (e.g. ”the“, ”a“, ”more“, etc.) are being penalised and considered less relevant.

This form of representation is often used in NLP tasks such as document classification,
clustering, and search, as it can provide a more accurate representation of a document’s
content compared to other methods that only consider the raw frequency of words.

Neural Representation

Distributive representation of documents using neural autoencoders refers to the process of
learning a low-dimensional, dense vector representation of a document while preserving its
syntactic and semantic information. The motivation behind this approach is to overcome
the limitations of traditional bag-of-words models, which fail to capture the meaning and
context of a document [22].

The architecture of a neural autoencoder for document representation consists of two
main components, an encoder and a decoder. The encoder maps the input document to a
low-dimensional vector and the decoder generates a reconstruction of the input document
from this vector. The training objective of the autoencoder is to minimise the reconstruction
error between the input document and the output generated by the decoder. Mathemati-
cally, this can be formulated as minimising the following objective function:

min
𝜃

|𝐷 − 𝑔𝜃(𝑓𝜃(𝐷))|2,

where 𝜃 are the parameters of the encoder and decoder, 𝑓𝜃(𝐷) is the encoding function,
and 𝑔𝜃(𝑓𝜃(𝐷)) is the decoding function. Note that concrete implementations of both encoder
and decoder parts can vary depending on the selected neural network architecture and
the form of input data. Figure 2.4 shows the general high-level overview scheme of this
architecture.

The training can be done in an unsupervised fashion, hence the corpus does not need to
contain annotations for input data. Once trained, the autoencoder can be used to obtain
distributed representations of new documents by passing them through the encoder and
using the resulting vector as a representation of the document. This representation can
later be used for various NLP tasks, such as classification or summarization.
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Figure 2.4: The general encoder-decoder architecture, where 𝑝𝑛 is an element from the
input sequence in the form of word/paragraph embedding vector and 𝑝

′
𝑛 stands for the

predicted word/paragraph embedding vector from the decoder.

2.4 Artificial Neural Networks for NLP
Artificial neural networks (ANNs) have become a popular tool in natural language pro-
cessing due to their ability to automatically learn complex patterns in data. ANNs are a
type of machine learning model that is inspired by the structure and function of the brain,
consisting of a large number of interconnected processing nodes, or neurons. In NLP, these
neurons can be trained to process and analyse linguistic data, such as words, sentences, and
paragraphs, to perform tasks such as language translation, text classification, or sentiment
analysis. In this chapter, we will explore the basic principles of ANNs and how they can
be applied to NLP tasks.

Neuron

A neuron, also known as a ”node“ or ”unit,“ is a basic building block of a neural network.
It receives input from other neurons, processes this input using a set of mathematical
operations, and produces an output that can be passed on to other neurons or used as the
final prediction of the network [1]. Neurons are organised into layers, with the input layer
receiving the raw data and the output layer producing the final prediction, and the layers
in between being called ”hidden layers“. The computation performed by a node is typically
a simple mathematical operation, such as a dot product of the input with a set of weights
and an optional bias term, followed by an activation function. The base scheme is shown
in Figure 2.5.

Activation Function

The activation function is a fundamental component of artificial neural networks. It is a
mathematical function that is applied to the output of each neuron in the network, and
its primary purpose is to introduce non-linearity into the network, which is crucial for the
network’s ability to learn and model complex patterns in data [1]. Common examples of
activation functions that are widely used in neural networks include the hyperbolic tangent
function, the sigmoid function (Figure 2.6b), and the rectified linear unit (ReLU) function
(Figure 2.6a). Sometimes, the activation function is also known as the squashing function,
as it can be used to limit the amplitude of the output [12]. These functions are chosen
based on the specific requirements of the network and the nature of the input data.
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Figure 2.5: An example of a single neuron, the base unit of neural network models, where
𝑥𝑛 are input values (they could be produced by other connected neurons), 𝑤𝑛 are weights,
𝑥 is an element-wise product (

∑︀𝑛
𝑖=1 𝑥𝑖𝑤𝑖) + 𝑏. The activation function is denoted as 𝐴 and

its output as 𝑦.

Training Process

The training process of a neural network involves adjusting the weights of the network to
make predictions that are as accurate as possible on a given data set. This is typically done
using a backpropagation algorithm [1]. This algorithm starts by performing a forward pass
through the network, where the input is passed through the network to obtain the predicted
output. The error (also called loss) is then calculated by comparing the predicted output
with the desired output, also called the ”ground truth“. The loss is then propagated back
through the network and the weights are adjusted in order to reduce the overall error. This
process is repeated for a number of iterations until the error converges to a minimum.

There are many error functions that can be used for various tasks. For example, one of
the typically used error functions for a regression problem can be the mean squared error
(MSE) function. MSE measures the squared Euclidean distance between the predicted and
desired output and is defined as

(a) ReLU Function (b) Sigmoid Function
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𝐸𝑀𝑆𝐸 =
1

2𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑡𝑖)
2

where 𝑛 is the number of training examples, 𝑦𝑖 is the output predicted for the 𝑖𝑡ℎ training
example and 𝑡𝑖 is the desired output for the 𝑖𝑡ℎ training example.

The weights are adjusted using the gradients of the error function with respect to the
weights, computed using the chain rule of differential calculus. Gradients are computed in
the backward direction, starting from the output node, which is called the backward phase
of the algorithm. The detailed description of the entire gradient computation process can
be further studied in [1].

Once the gradients are computed, it is necessary to somehow update the weights. Taking
into account the simple perceptron, whose parameters correspond to 𝑊 = (𝑤1, ..., 𝑤𝑛), the
simple technique called gradient descent can be applied as follows:

𝑊 ⇐ 𝑊 − 𝛼(
𝜕𝐸

𝜕𝑤1
, ...,

𝜕𝐸

𝜕𝑤𝑛
) ⇔ 𝑊 ⇐ 𝑊 − 𝛼

𝜕𝐸

𝜕𝑊

where 𝐸 is an error (loss) function and 𝛼 is a learning rate parameter that determines the
significantness of the updates. The notation above shows an update for only one neuron
in the entire network, and to update the entire model, this update has to be done for all
neurons.

Transfer Learning and Fine-tuning

Transfer learning refers to the idea of using knowledge or information learnt by a model on
a task to improve the performance of the model on a different but related task. This can
involve using the weights and biases of a pre-trained model as the starting point for training
a new model on a different data set, or it can relate to using the learnt features from the
pre-trained model as input to a new model. Transfer learning can be a powerful tool in
deep learning since it allows models to leverage the knowledge learnt from previous tasks to
improve their performance on new tasks and can often lead to better results than training
a model from scratch. This approach can also be used when annotated data for certain
domains are not available, but highly effective models for the same task have already been
trained in different domains [2].

Fine-tuning is a type of transfer learning that refers to the process of adapting a pre-
trained model to a new task or data set, by adjusting the weights and biases of the model
and adding additional layers to the network. Fine-tuning is a common approach in deep
learning, where pre-trained models are often used as the starting point for developing new
models since it can save a significant amount of time and resources compared to training a
model from scratch. There is a broad underlying theory on transfer learning that can be
further studied in [34].
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Architecture Types

There are a few popular types of neural network architecture that can be used for NLP
tasks, and the best one to choose can depend on the specific problem to be solved or the
environment in which it has to work. For NLP tasks, in general, the input of the neural
network is commonly a sequence of tokens or vectors (embeddings). For this purpose,
architectures capable of processing sequences were designed, and nowadays some of the
most used architectures are [40]:

1. Recurrent neural networks (RNNs), which are well suited to processing sequential
data, such as text. RNNs can be unrolled in time to process long sequences and can
include variations such as long-short-term memory (LSTM) and gated recurrent units
(GRUs) that help improve their ability to learn long-term dependencies.

2. Convolutional neural networks (CNNs), which are designed to process data with
a grid-like structure, such as images or text represented as a sequence of words in a
sentence. CNN’s use convolutional layers, which apply a set of filters to the input
data, to extract local features and create a hierarchical representation of the data.

3. Deep contextualised language models, which try to capture the context of the en-
tire input sequence. One of the proposed methods was ELMo (Embeddings from Lan-
guage Model), which was constructed from bidirectional LSTMs to produce context-
rich embeddings [40]. Another successful proposal was BERT (Bidirectional Encoder
Representations from Transformers), which is a type of neural network architecture
based on self-attention mechanisms. These types of language model are considered
highly universal, and their pre-trained variants are often fine-tuned for many different
downstream tasks [4].

Recurrent Neural Networks

A recurrent neural network is a type of artificial neural network that is well suited for
processing data with sequential dependencies, such as time series or natural language.
Unlike a traditional feedforward neural network, which maps a fixed input to a fixed output,
an RNN takes a variable-length input and produces a variable-length output, allowing it
to make predictions for various sequence-to-sequence tasks, such as machine translation or
text generation [1].

At the core of an RNN is the recurrent unit, which processes a single element of the
input sequence and maintains a hidden state that captures information about the elements
that have been processed so far. This hidden state is passed from one recurrent unit to the
next, allowing the model to use the information it has learnt from previous input elements
to make more informed predictions about the next element in the sequence.

One of the key advantages of RNNs is that they can learn temporal dependencies in the
data, allowing them to make predictions based on information that is far away from the
current input element. This makes them well-suited for tasks such as language modelling,
where the meaning of a word can depend on the words that come before and after it in a
sentence. In the standard RNN architecture, the information is passed forward, meaning
that one input in a sequence has context only from its predecessors. To also gain context
from successors, a modified version of RNN called Bidirectional RNN can be used to capture
context from both sides. However, this modification greatly increases the computational
time needed to perform both passes throughout the network.
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There are also some difficulties when it comes to training. One of the main challenges
with the training process is the problem of vanishing/exploding gradients, where the gra-
dients computed during backpropagation tend to become smaller/greater with each time
stamp as they are propagated back through time, making it difficult for the network to
learn long-term dependencies [1]. This can be addressed using techniques such as gradient
clipping or long-short-term memory (LSTM) units, which use gates to control the flow of
information through the network and help prevent the gradients from vanishing.

Convolutional Neural Networks

A convolutional neural network (CNN) is a type of artificial neural network that is designed
to process data with a grid-like structure, such as an image or a sequence of words. CNNs
use convolutional layers, which apply a set of filters to input data, to extract local temporal
features [1].

The convolutional layers operate on small patches of the input data, applying the same
set of filters at each location to create a feature map. These feature maps are then combined
using a nonlinear function, such as ReLU, to create a new set of feature maps that capture
more complex patterns in the data. This process is repeated multiple times, each successive
layer of CNN learning to extract more abstract and higher-level features from the input
data. In the context of NLP, processing text data in this way can be called the N-Gram
feature detector [48], as the convolutional filter can be viewed as a local context window.

In addition to convolutional layers, CNNs also typically include pooling layers, which
are used to downsample feature maps and reduce the spatial dimensions of the data. This
can help reduce the computational complexity of the network and make it more robust to
small translations or deformations in the input data.

Transformers

Transformers are a type of neural network architecture that was introduced in the paper

”Attention is All You Need“ [43]. Unlike traditional RNNs, which process input sequentially
in a way that is difficult to parallelise, transformers are more parallelisable, which makes
them particularly well suited for tasks that involve large-scale training.

At the core of the transformer architecture is the self-attention mechanism [43] which
allows the model to ”attend“ to different parts of the input sequence at different times,
weighting the different input elements based on their relevance to the current output pre-
diction. This allows the model to learn dependencies between input elements that are far
apart in the sequence, and to create a more global representation of the input data.

In addition to the self-attention mechanism, transformer models also use multi-head
attention [43], which allows the model to learn multiple different representations of the input
data in parallel, and feedforward layers, which map the input data to a higher-dimensional
space before making predictions.

BERT

Bidirectional Encoder Representations from Transformers (BERT) is a language represen-
tation model that uses unlabelled text data to produce embeddings, while capturing the
context from the left and right directions of the input text [9]. It is based on the Transformer
architecture and can be fine-tuned on a variety of downstream natural language processing
tasks, such as question answering, sentiment analysis, and named entity recognition, to
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achieve state-of-the-art performance [9]. In addition, several extensions of BERT have been
developed that use different pre-training strategies such as RoBERTa [23], ALBERT [17],
DeBERTa [13], ELECTRA [7] and others, to further improve its performance.

BERT uses the masked language modelling (MLM) objective during the pre-training
process. The idea behind this objective is to randomly mask the input tokens by replacing
the original token with a special [MASK] token, and let the model predict the original tokens
according to the context [9]. Using this technique, the model can learn highly complex
general language representations to generate embeddings that can be used to fine-tune the
new model on any downstream task. In addition to MLM, the model is also jointly trained
on the next sentence prediction (NSP) objective. At training time, the input sequence
consists of two sentences, separated by the [SEP] token, while the second sentence may
or may not be the following of its predecessor. The goal is to predict whether the second
sentence follows the first. For this purpose, the special [CLS] token has been introduced,
which is present at the beginning of each input sequence. The output representation of
the [CLS] token can be used as input for downstream tasks that require a general encoded
context of the entire input sequence, for example, sentiment analysis or categorisation task.
More details about BERT can be found in [9], the original BERT paper.

2.5 Text Classification
Text classification is the task of assigning predefined categories or labels to a given text. It
is a fundamental problem in natural language processing and has various applications, such
as sentiment analysis, spam detection, topic categorisation, or named entity recognition.
In general, there are multiple scopes for classification, as the task can be performed at the
following levels [16]:

1. Document level: In document-level classification, the task is to assign categories or
labels to a given complete document. For example, documents can be classified by
its type to distinguish among academic articles, news articles, legal documents, etc.

2. Paragraph level: In paragraph-level classification, the task is to assign categories or
labels to a given paragraph within a document. Examples include classifying customer
reviews or identifying the main topic of a paragraph within an article.

3. Sentence level: In sentence-level classification, the task is to assign predefined cat-
egories or labels to a given sentence within a paragraph. This context could be used
for use cases such as sentence-level grammar checking.

4. Sub-sentence level: In sub-sentence level classification, the task is to assign cate-
gories or labels to specific parts of a given sentence or the tokens themselves. Examples
include named entity recognition, part-of-speech tagging, and coreference resolution.

The task can be divided into multiple pipeline stages that are followed to create a model.
General steps include text preprocessing, feature extraction, classification, and evaluation.
The following is a brief overview of each step in the pipeline [16]:

1. Text preprocessing: This step involves cleaning and preparing the text data for
further processing. The techniques used in this step include removing stop words,
stemming, and lemmatisation, and removing special characters and numbers.
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2. Feature extraction: This step involves extracting features from the text data that
will be used for classification. Techniques used in this step include bag-of-words,
term frequency-inverse document frequency (TF-IDF), and word embeddings such as
word2vec and GloVe. In state-of-the-art approaches, the encoder part of a transformer
can be used to extract these features.

3. Classification: This step involves using the extracted features to classify the text
data into different categories. Classical techniques include decision trees, the Naive
Bayes Classifier (NBC), the Support Vector Machine (SVM), or the k-nearest neigh-
bours clustering algorithm. Deep neural methods include convolutional neural net-
works (CNNs), recurrent neural networks (RNNs), or transformer-based architectures,
such as BERT or RoBERTa with a classification layer (head).

4. Evaluation: This step involves measuring the performance of the classification model
using metrics such as precision, recall, and the F1 score, which are common metrics
for any classification task.

The following sections will discuss in more detail the relevant approaches we used in
our work with respect to the specific tasks we focused on. The problem domains described
in Sections 2.6 and 2.7 are specific cases of text classification.

2.6 Content Categorisation
In this chapter, we describe the common methods for the content categorisation task. The
first and second methods are a common approach to classification in many domains that
work with artificial neural networks, while the third is unique to NLP.

Softmax Classifier

The softmax classifier is a commonly used classification method in machine learning that
involves combining a neural network model (in our use case, the encoder) with a classifi-
cation head that uses a softmax function to produce the final prediction. The encoder is
responsible for transforming the input data into a lower-dimensional representation, while
the classification head is responsible for predicting the class labels based on the encoded
features. The encoder can be any neural network architecture, but we focus mainly on
state-of-the-art encoders based on the BERT architecture described in Section 2.4.

Once the encoder has been pretrained, a classification head is added to the network.
The classification head typically consists of a fully connected layer followed by a softmax
activation function, however, the head itself can be even more complex neural network on
its own. The fully connected layer takes the encoded features as input and maps them to
a set of class probabilities, while the softmax function normalises the class probabilities to
ensure that they sum to 1. The class that has the highest probability is then considered
the final prediction. More information on softmax itself or other functions used for output
distributions can be found in [11].

During training, the optimiser adjusts the weights of the model according to a cross-
entropy loss function, which measures the difference between the predicted class probabili-
ties and the true class labels. There are two important properties of this type of classifiers
to consider:
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1. Fixed labels: The model will learn to predict a concrete number of labels depending
on the size of the final output layer.

2. Supervised training: In order to train this type of classifier, a suitable data set has
to exist in the desired domain that includes examples for all the required classes.

Sigmoid Classifier

The sigmoid classifier is a classification method that can be used when a sample can belong
to multiple classes at the same time. The methodology is the same as with the softmax
classifiers, as the difference is in the handling of the final output layer of the classification
head. Unlike softmax, each label is treated independently and a separate sigmoid activation
function is used for each class to produce a probability that the class is present. During
training, the optimiser adjusts the weights of the model according to a binary cross-entropy
loss function for each class. Note that this approach can be easily converted to a simple
binary classification problem, when the output contains only a single class.

Natural Language Inference

Natural Language Inference (NLI) is a fundamental task in natural language processing that
involves determining the relationship between two given text fragments. The goal of NLI
is to infer whether the relationship between the two text fragments is one of contradiction,
entailment, or neutrality.

The two given text fragments are typically referred to as the ”premise“ and the ”hypothesis.“
The premise is the first text fragment that provides context or information, while the hy-
pothesis is the second text fragment that contains an assertion or claim that is being
evaluated in relation to the premise.

To perform NLI, a machine learning model is trained on a large data set of text pairs,
each labelled with one of the three possible relationships. The model learns to identify
the linguistic features and semantic relationships that are indicative of each relationship
and then applies this knowledge to new pairs of texts to make predictions. The common
data set used to train these models is the Standford Natural Language Inference (SNLI)
Corpus [5], which includes triplets of the premise, hypothesis, and label for each entry.
For each premise in the data set, there are a total of 3 premise-hypothesis pairs for each
of the following labels: (𝑒𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡, 𝑛𝑒𝑢𝑡𝑟𝑎𝑙, 𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛). In Table 2.1, there are all 3
hypotheses for the premise ”Two doctors perform surgery on patient.“ that has been taken
directly from the SNLI1 data set.

Hypothesis Label
Doctors are performing surgery. Entailment
Two doctors are performing surgery on a man. Neutral
Two surgeons are having lunch. Contradiction

Table 2.1: An example of the training sample taken directly from SNLI data set for premise

”Two doctors perform surgery on patient.“.

If the hypothesis is cleverly constructed, the model can serve as a classifier to predict
the categories. An example of a classifier made of this type of model can be seen in Figure

1https://nlp.stanford.edu/projects/snli/
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2.7. However, this approach has some specific drawbacks caused by the properties of the
training objective. Although the common softmax classifier would contain a part called
classification head, which contains the outputs of all defined categories, the NLI method
can output the prediction for only one category at a time. This leads to the fact that the
classification of a single premise requires inference to be made 𝑁 times, where 𝑁 is the
number of categories. This drawback is compensated for the ability to choose any desired
label and even change categories at run-time when needed.

Figure 2.7: An example of a classifier made from the model trained on the NLI task.

2.7 Named Entity Recognition
Named Entity Recognition (NER) is a fundamental task in natural language processing
that involves identifying and categorising named entities in text, such as names of people,
organisations, locations, and other trained categories. It belongs to tasks recognised as a
sequence tagging [14], which is a form of text classification performed at the sub-sentence
level, as already divided in the section 2.5. Figure 2.8, visualises the example output of the
NER model.

Figure 2.8: An example of NER performed on a piece of text from the darknet market
domain. The words ”guns“ and ”Agora“ were classified as entities belonging to the product
and corporation categories respectively.
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The goal of NER is to correctly label each word or phrase in a given text with its
corresponding entity category. This requires a machine learning model that can learn to
recognise the patterns and features that are indicative of each category of entities. Such
models typically use techniques such as conditional random fields (CRF) [14], support vector
machines (SVM) [10], or deep neural networks, such as LSTM [14] or BERT [9] to perform
classification. In our work, we focus mainly on state-of-the-art approaches that use models
based on the transformer architecture, namely BERT.

2.8 Webpage Content Extraction
Webpage content extraction is the process of automatically identifying and extracting rel-
evant content from web pages, which can include textual information, such as headlines,
body text, and metadata, as well as multimedia elements, such as images, videos, and audio
files. Extracted content can be used for a variety of applications, including web search, data
analysis, and content curation.

Web pages are typically created using an XML-based markup language, such as HTML,
and the structure of a web page is defined by the Document Object Model (DOM), which
represents the page as a hierarchical tree of elements. To extract content, various techniques
and tools are available, such as regular expressions, XPath, CSS selectors, and machine
learning-based approaches. In this chapter, we explore the fundamentals of how webpages
are defined and structured and what tools are available for extracting their content.

HTML

HTML (HyperText Markup Language) is a markup language that is used to structure and
format the content of web pages. It employs a system of tags and attributes to define various
elements on a webpage, such as headings, paragraphs, images, and links. These elements
can be styled and arranged using CSS (Cascading Style Sheets) to control the webpage’s
appearance and layout. Web browsers parse the HTML code to display its content to the
user.

The language was first officially released in 1991 [47] as a way to format and structure the
content of web pages. Since then, it has become the standard language for web development
and is used by virtually all websites. The current standard is HTML5, which introduced
numerous quality of life features such as audio and video support, new semantic tags, basic
rendering with <canvas>, validation of forms, and more [25].

HTML consists of a set of tags and attributes that can be used to define different
elements. These elements define different components of a webpage, such as paragraphs,
images, and hyperlinks. Typically, an element includes a start tag, inner content, and
an end tag. For instance, the <p> and <div> tags are examples that follow this pattern.
However, there are also exceptions that do not contain any content and do not require
an end tag. These are referred to as empty elements, such as the <br> and <img> tags
[46]. Although the <img> tag is used to display an image, information about the image is
provided through its attributes.

The attributes are used to provide more information about an element and always
appear in the starting tag. Typically, an attribute is composed of a name/value pair [44].
For instance, the <img> tag requires a link to the image and an optional description, which
appears instead of the image when it fails to load. An example can be seen in Figure 2.9.

19



<img src="../images/cat.png" alt="Cat sitting on a mat.">

Figure 2.9: An example of an HTML <img> tag that is used to insert an image into a
webpage. The tag includes the src attribute that specifies the location of the image file.
The alt attribute provides alternative text that is displayed if the image does not load.

Tags can be combined and nested to create complex and structured web pages, as shown
in Figure 2.10. In addition to defining the structure and content of a web page, HTML
can also be used to add interactivity using technologies such as JavaScript. This allows
developers to create dynamic and interactive web experiences that can respond to user
input and change over time. We will not describe these interactive elements any further as
it is out of the scope of this work and irrelevant to the context of the content extraction
problem.

<html>
<head>

<title>My Webpage</title>
</head>
<body>

<h1>Header 1</h1>
<p>This is some text in a paragraph tags.</p>
<div>

<ul id="myList">
<li>List item 1</li>
<li>List item 2</li>
<li>List item 3</li>

</ul>
</div>

</body>
</html>

Figure 2.10: A minimal example of a webpage defined by the HTML code. The html tag is
a root element of the webpage that contains head and body child elements. The purpose of
the head element is to provide metadata about the webpage, while body encapsulates the
visible content to the user.

Document Object Model

The W3C (World Wide Web Consortium) Document Object Model (DOM) is a standard-
ised way to work with XML-like documents and is supported by most modern web browsers
and programming languages [37]. It defines a set of interfaces, methods, and properties that
can be used to interact with the document. This standard can be separated into three parts:

• Core DOM - shared among all document types.

• XML DOM - specification for XML documents.
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• HTML DOM - specification for HTML documents.

Since we are mostly interested in the content extraction from web pages, in the following
section, we will focus particularly on the HTML DOM standard.

HTML DOM

HTML DOM is a programming API for HTML documents that defines all elements as
objects and organises them into a tree structure. The root of the tree is the document,
which contains all other nodes appearing on the webpage [37]. The HTML DOM standard
defines three main categories [45]:

• Properties of all HTML elements.

• Methods to access all HTML elements.

• Events for all HTML elements.

Every element in the document is represented by a node in the tree, with an element
node potentially having child nodes, which can be other element nodes or text nodes. The
attributes of an element are also represented as separate nodes. The example of Figure 2.10
visualised as a DOM tree can be seen in Figure 2.11.

Figure 2.11: Visualisation of the HTML DOM tree, based on the code from Figure 2.10.
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html/body/div/ul/li[position() > 1]

Figure 2.12: An XPath query that addresses all items except the first one in the list from
Figure 2.10. The output of this query are two <li> elements with the values ”List item 2“
and ”List item 3“.

XPath

XPath refers to the XML Path Language, which uses non-XML syntax to address various
parts of the XML documents [31]. It can be used as a powerful way of navigating through
the DOM of any XML-like language, including HTML. XPath uses a path notation, similar
to URLs, to move through the hierarchical arrangement of an XML file. To enable it to
be used in URIs and XML attribute values, it adopts a syntax that is different from XML
itself [31].

XPath also has a number of useful features that make it a popular choice for XML
processing. For example, it supports a wide range of operators and functions and makes it
easy to perform complex XML data queries. An example can be found in Figure 2.12.

Available Tools

Various tools are available for parsing and scraping websites using almost every modern
programming language. Typically, these tools allow access to web pages, parsing them into
a DOM tree following the W3C standard, and providing useful methods for searching and
extracting content from the DOM. As Python programming language is widely used for
deep learning, we have decided to focus mainly on the technological stack based around the
Python ecosystem. The following libraries can be used to parse web pages in the Python
programming language:

• BeautifulSoup2: A Python library to pull data from HTML and XML files. It is a
simple and powerful tool to extract data from web pages and is commonly used for
scraping and data extraction. However, the BeautifulSoup library does not support
XPath expressions for document navigation, which can be a disadvantage in certain
scenarios.

• html5lib3: The pure Python library that is focused on the HTML5 standard, pro-
viding a simple and easy API for parsing up-to-date web pages.

• lxml4: Python library for parsing and processing HTML and XML documents. It is
a binding of the libxml2 and libxslt C libraries and offers a powerful and highly
efficient way to extract data from web pages.

All of these libraries provide useful features for parsing web pages in Python. However,
given the requirements for high processing speed and XPath support, most operations
regarding the DOM manipulation will be done using the lxml library. The explanation of
the need for XPath support will be further discussed in later chapters.

2https://beautiful-soup-4.readthedocs.io/en/latest/
3https://html5lib.readthedocs.io/en/latest/
4https://lxml.de/
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Chapter 3

System Design

Until this point we have covered key topics that are necessary to build the automatic content
categorisation and extraction system of web pages. In this chapter, we outline the basic
structure of the proposed system. When designing the system, it is important to keep in
mind the flexibility, maintainability, and performance of the system, as it should handle
the wide range and amount of web pages with different structure and content types.

3.1 Requirements Analysis
The main purpose of the system will be the categorisation of content from web pages,
specialised in darknet forums and marketplaces. Content analysis will be performed at the
level of posts or comments, and extracted entities and topic categories will be stored in
the database. While crawling these websites on the TOR network can be a difficult task
by itself, the system will not be responsible for scraping web pages, but will work mainly
with already crawled and archived data. However, it is important to allow for a possible
extension of the system in this regard.

The archived forums typically contain a series of snapshots from different time periods
and many files, each representing a webpage accessible from any other element in the
website structure. Given the nature of the data, the system must be scalable to process
such quantities of data in a reasonable time. Furthermore, many pages crawled in this way
will not be useful for the analysis, as not all pages contain the interaction between users or
the content of interest. In fact, when analysing large-scale archives such as Darknet Market
Archives1, most of the files produced by the crawler are not usable for this task at all.

For the analysis task, state-of-the-art deep learning NLP methods will be used. However,
these methods are highly computationally expensive and require a significant amount of
resources. Therefore, it is necessary to plan the distribution of the computing power wisely
and split the entire processing pipeline into the following phases:

1. Finding valuable files: The system will iterate over each file and mark potentially
valuable files for further processing.

2. Processing valuable files: Files marked as valuable will be further subjected to a
more complex and expensive analysis.

These phases could be viewed as two separable map-reduce tasks, which would allow the
system to use computational resources in an effective and distributive manner.

1https://www.gwern.net/DNM-archives
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3.2 General Architecture
The general architectural pattern used to build this system is client-server architecture.
This pattern allows for the construction of highly flexible and performant applications,
which can be easily deployed in both local environments and cloud environments with
scalable computing resources on demand. The basic scheme of this architecture can be seen
in Figure 3.1.

Figure 3.1: Client-server architecture.

Microservice Architecture

One of the modern architectures based on the client-server pattern is a microservice archi-
tecture, also known as microservices. Microservices is a structure that models an application
as a series of services that can be independently deployed, are loosely coupled, are organised
around business capabilities, and are owned by a small team [36]. Each of these services
can be viewed as a small application that is responsible for a single function or process
that can be easily described and understood. These services can communicate with each
other to cooperate and perform more complex tasks. Communication is typically done
through well-defined APIs2 over the network [39]. An illustrative example of an application
composed of multiple microservices can be seen in Figure 3.2.

Figure 3.2: Illustrative example of a microservice architecture.
2Application Programming Interfaces
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We propose using this architecture to build our system, because it is easily maintainable,
scalable, and can be deployed anywhere with the help of containerisation technologies, such
as Docker3.

The initial design of the system modelled as a component diagram can be seen in Figure
3.3. At a high level, the system can be viewed as a collection of multiple easily manageable
components, where each component has clear and simple responsibilities for certain tasks
and uses other components to achieve a common goal. The analogy with the microservice
architecture is naturally achieved as each component can be seen as a single independent
service.

1. Client: The client application is responsible for sending requests to the back-end
server and visualising the processed data to the user. The client can be almost
anything that can construct an HTTP request and send it over the network to the
API.

2. Backend Server (API): The back-end server can serve clients, providing them with
data, and accepting requests for processing.

3. Coordinator: The coordinator is responsible for managing the workload and the
workers. Data will be split into batches and sent to workers for processing. After
processing is complete, the coordinator must retrieve all the results and ensure that
the results are stored in the database.

4. Worker: Workers take orders from the coordinator and use the NLP engine with the
parser to perform content categorisation and data extraction.

5. NLP Engine: Provides access to deep learning models for content analysis and other
features based on NLP methods.

6. Parser: Parse files into a manageable format suitable for further analysis.

7. Database: Handles requests for data storage and serves as an information provider
for the back-end server and his clients.

3.3 Database Structure
The database is a key component of the system and must be versatile enough to handle
a variety of web page data. The data will be almost exclusively textual content that is
included within the elements that make up the entire web page. These elements can be
grouped together in a free way to compose more complex and meaningful pieces of content.
For example, if the subject of interest is forum posts, the main content of each post will
most likely be composed of the author’s username, title, and message. In general, any set of
elements can represent an atomic piece of content, which means that the user must not be
limited to the content structure or format to be parsable by the system itself. Furthermore,
not all elements may contain data that contribute to categorisation analysis in any way.
For example, the username does not include information relevant for categorisation, but
can be useful for filtering content based on their authors.

3https://www.docker.com/
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Figure 3.3: The overall architecture of the proposed system, modeled as a component
diagram.

Entity Relationship Diagram

To achieve the required properties, the Entity Relationship Diagram 3.4 has been proposed
to serve as the basis for the database structure. Based on the requirements of the system
and the database, we have identified the following entities:

1. Content: In terms of the system, it is the main unit of information. The content
entity groups all elements of interest together and links them to a specific file. Fur-
thermore, the property hash is introduced to prevent storing redundant pieces of
content that were already parsed and analysed in the past. The hash should be cal-
culated from the overall structure and textual content of all linked elements. This
can potentially happen while parsing large web archives, which contain snapshots of
the sites in a time series.

2. Attribute: A single attribute is equivalent to the node (or a subtree) in the DOM
tree structure. The main properties of an attribute entity are content and tag. The
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content property stores the textual content extracted from the node, and tag is
an auxiliary property that can be used for different purposes, such as enumeration of
paragraphs, analysis errors for the concrete element, etc. Each attribute can also have
named entities and categories associated with them, and it knows its type determined
by the Attribute Type entity.

3. Attribute Type: An entity that determines the type of Attribute entity. Properties
tag and name represent machine-friendly and user-friendly names, respectively.

4. Named Entity: The named entity represents a concrete entity found within some
attribute’s content. It is a product of the analysis process called Named Entity Recog-
nition. Each named entity belongs to an attribute entity and knows its type.

5. Named Entity Type: The type of named entity defined by the properties name and
tag, representing user-friendly and machine-friendly names, respectively.

6. Category: Available category in which the attribute can be categorised. The relation-
ship between Attribute entity and Category must contain the relation Confidence
Score associated with a certain category, which emerges as a product of the categori-
sation analysis part.

7. File: Represents a file that has been parsed by the system.

3.4 Design Summary
So far, we have made important design choices for the system that aims to categorise the
content of the web pages. Using state-of-the-art deep learning NLP methods, a user can
perform content analysis and extract entities and categories that are stored in a database.
The system works with data already crawled and archived, and the architecture is designed
to be scalable to handle large amounts of data in a reasonable time.

The system architecture is based on the client-server pattern and the proposed design
uses microservices. The system is composed of multiple components, each component hav-
ing clear and simple responsibilities for certain tasks and using other components to achieve
a common goal. Components include a client, a back-end API server, a coordinator, worker,
NLP engine, parser, and database.

The database must be versatile enough to handle a variety of web page data, and the
data will be almost exclusively textual content that is included within elements that make
up the entire web page. These elements can be grouped together in a free way to compose
more complex and meaningful pieces of content.

In conclusion, the proposed system is designed to provide a scalable, efficient, and
flexible solution for content analysis and categorisation of darknet forums and marketplaces,
or any other web page content from other domains. The microservice architecture is ideal
for this task, and the proposed design provides a clear and simple approach to achieving
the goals of the system.
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Figure 3.4: The entity relational diagram for the system database.
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Chapter 4

System Implementation

In this chapter, concrete implementation choices are described in more detail, covering
minor changes and the expansion of the system capabilities. The system is implemented
in an object-oriented manner, following the object oriented principles, which allows for the
usage of the object-oriented design patterns. These patterns are used to implement the
components of the system, as they help to keep the code simple and reusable.

4.1 Environment and Tools
The main programming languages used for implementation are Python and Typescript.
Python is used for the server-side implementation, while Typescript is used for the client-
side implementation. The server-side implementation is based on the Flask1 framework,
while the client-side implementation is based on the React2 framework. We use an open-
source relational database implementation called PostgreSQL3, and the database is accessed
using the SQLAlchemy4 object relational mapping (ORM), which is a technique that maps
data between an object-oriented programming language and a relational database. To make
the development process feasible in an iterative manner, we use Alembic5 tool for database
migrations to enable comfortable upgrade and fix of the database scheme.

For deployment and orchestration, Docker is used to containerise the system components
and Docker Compose to orchestrate the containers. This enables the system to be deployed
on any machine that has Docker installed and allows the system to be orchestrated as a
microservice architecture, where each component is deployed as a separate container.

Regarding the versioning of the source code, we use Git6 to manage and track changes
made to our codebase. Git is a popular distributed version control system that allows
efficient collaboration and easy management of different code versions. Our Git repository
is hosted on GitHub7, which is a Git hosting platform that provides a variety of useful
features for managing software development projects.

1https://flask.palletsprojects.com/
2https://react.dev/
3https://www.postgresql.org/
4https://www.sqlalchemy.org/
5https://alembic.sqlalchemy.org/en/latest/
6https://git-scm.com/
7https://github.com/
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4.2 Project Structure
The project directory consists of the following main files and directories:

• README.md: Includes additional information about the project and files or di-
rectories that are not specifically listed here.

• config.py: A configuration file used to initialise the Flask application. It is shared
across all microservices to provide a connection string for the database.

• docker-compose.cpu.yaml and docker-compose.gpu.yaml: A Docker Compose
files for running the project on a CPU and GPU machine, respectively.

• docker-compose.cpu.debug.yaml and docker-compose.gpu.debug.yaml: A Docker
Compose files to run the project on a CPU and GPU machine with the support for
external debugging. This allows for easy and comfortable attachment of any external
debugger (for the VS Code IDE, see the .vscode/launch.json configuration with
already predefined attach options for all services).

• webcat: A package containing the code for the main logic of the system. It includes
sub-packages for the analyser, database, model_repository, parser, pipeline
and template_engine. This package is available to all services.

• webcat_api: A directory containing the code for gateway API.

• webcat_client: A directory containing the code for web client.

• webcat_scheduler: A directory containing the code for scheduler service.

• webcat_worker: A directory containing the code for worker service.

• webcat_templates: A directory containing the code for templating service.

Every directory with the webcat prefix is a fully independent implementation of a mi-
croservice running in the Docker environment. The package webcat itself is distributed
among all these services, except client, which provides access to the implementation of
the business logic for each service. The client is implemented in the textttReact8 frame-
work, while api, scheduler and worker are Flask9 applications. It is worth mentioning
that the PostgreSQL10 database runs together with other services in the Docker environ-
ment, and its image is pulled from the Docker image registry while the project is being
orchestrated by the Docker Compose11 tool. The running application scheme can be seen
in Figure 4.1. Note that given the properties of the microservice architecture, multiple
workers can be instantiated to fully occupy available computational resources, which could
be beneficial in powerful cloud computing environments.

8https://react.dev/
9https://flask.palletsprojects.com/en/2.3.x/

10https://www.postgresql.org/
11https://docs.docker.com/compose/
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Figure 4.1: Scheme of the fully orchestrated WebCat application.

4.3 Services
This section will focus on each individual service and describe its purpose, responsibilities,
and cooperation with other services. Each service exposes the REST API, providing unique
functionalities for other services. Data exchange between services is always done with
JavaScript Object Notation (JSON) payloads.

As mentioned above, all services are run separately as containers in a Docker environ-
ment. The base images used to build the containers are as follows:

• python:3.11-slim12: Used by all Flask applications.

• node:18.1513: Used by the React web client service.

Gateway API

The gateway API is the main and only entry to the features of the system, as it is exposed by
the Docker environment to the public. As illustrated in Figure 4.1, the Gateway API service
communicates with all other services to achieve the desired results requested by clients. In
the majority of cases, this application serves as a proxy server whose responsibility is to
forward requests to other services hidden within the virtual network of the containerised
environment.

Currently, the API also provides direct access to processed content stored within the
database with the various filtering options. However, this functionality is planned to be
moved into its separate service, as it violates the facade principle, which we would like to
fully enforce eventually in the near future.

Interface

As was mentioned before, the gateway API serves as a proxy for most of the features. For
that reason, this section is split into 2 parts. The first part contains the list of all endpoints
that are only forwarded for other microservices and will be discussed further in more detail
in the sections dedicated to the specific service they belong to. The second part covers

12https://hub.docker.com/_/python
13https://hub.docker.com/_/node
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the unique feature for the gateway service itself, and thus is described in more detail. The
gateway API provides the following HTTP proxy endpoints for clients to use:

• POST /api/v1/webcat_interactive

• GET /api/v1/webcat_files_parser

• POST /api/v1/webcat_files_parser

• GET /api/v1/webcat_templates/templates

• POST /api/v1/webcat_templates/templates

• DELETE /api/v1/webcat_templates/templates

• POST /api/v1/webcat_templates/element_types

• GET /api/v1/webcat_templates/element_types

• DELETE /api/v1/webcat_templates/element_types

• POST /api/v1/webcat_templates/engine

• GET /api/v1/webcat_templates/engine

As mentioned above, the API also provides access to the results stored within the
database, while allowing for the construction of filtering queries.
GET /api/v1/webcat_data_provider

Description: Lists all categories and named entity types recognised by the system. This
information can be useful for clients to retrieve all categories and named
entity types that can further be used as filtering options.

Response: A JSON object containing the following keys:
• categories: An array of strings with names of all categories.
• entity_types: An array of strings with names of all named entity

types.

POST /api/v1/webcat_data_provider

Description: Provides access to the results in the database and accepts filtering options
for the required content.

Parameters: The request body should contain a JSON object with the following keys
that specify the filtering options:

• categories: An array of the required categories. If no categories are
specified, all categories will be considered.

• cat_threshold: A floating number value between 0 and 1 that sets
the minimal confidence threshold assigned to a category to be retrieved
by the system.

• entity_types: An array of all the required named entity types that
must be present in the results. If not specified, these types will not
affect the filtering.
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• file_paths: An array of file paths from which the results should
originate. A special symbol * can be used anywhere in the path as a
wildcard, matching all files in the subpath.

• authors: Special option for filtering by authors. An array of authors
should be specified, and all content results containing an attribute
with subword *author* as the attribute’s type tag will be matched
against the list of authors. All names containing the author’s name as
a subword will be matched as well.

Response: A JSON array with serialised database results compliant with the specified
filtering options.

DELETE /api/v1/webcat_data_provider

Description: Removes a result entry from the database.
Parameters: The request body should contain a JSON object with the following keys:

• id: An identifier of the removed content entry.
Response: Status code of the operation.

Worker Service

The responsibility of the worker service is to handle any of the following requests:

• Interactive input: The user can send a raw text input for analysis that is handled
as a single content fragment and processed through the processing pipeline. This
feature can be useful for testing different hypotheses or labels and verifying the desired
outcomes in an interactive way.

• Processing files: The worker will process the given file or multiple files in the
directory. The processing pipeline will adjust different parsing strategies depending
on the file type.

The most important part of the worker is the processing pipeline, which has to be
configured and initialised depending on the configuration included within the incoming re-
quest. The worker has been designed with an emphasis on flexibility and expandability,
thus processing pipeline was split into multiple configurable sections that follows the strat-
egy pattern of the object-oriented design principles. Due to this approach, different parsing
strategies and models can be loaded and swapped for each request. In addition, other file
types, models, or preprocessing steps can be easily implemented and integrated into the
system. The processing pipeline and workflow are discussed further in Section 4.4.

Furthermore, the worker service can be instantiated as either a CPU-based or GPU-
based service. Although both types are inter-changable and capable of processing all sorts
of requests, for larger models, it is recommended to use a GPU-based variant that can speed
up the inference times significantly.
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Interface

POST /webcat_interactive

Description: This endpoint provides access to the interactive worker service that can be
used to analyse the input of raw text provided by the user.

Parameters: The request body should contain a JSON object with the following keys:
• hypothesis_template: A string with a hypothesis template.
• labels: An array of strings with categorisation labels.
• input: Raw text data that should be analysed.
• models: A JSON object that contains information on the selected

models.
Response: A JSON object containing information about categories and named entities

found within the text input.

GET /webcat_files_parser

Description: Lists all available models integrated by the system.
Response: A JSON object containing information about the available models for both

classification and NER tasks, containing name, description, size, model
repository path, task, and default flag for all available models.

POST /webcat_files_parser

Description: Sends a request to parse file(s) to the worker service.
Parameters: The request body should contain a JSON object with the following keys:

• hypothesis_template: A string with a hypothesis template.
• labels: An array of strings with categorisation labels.
• path: Path to the file(s) that should be analysed.
• recursive: Explore files inside sub-directories as well.
• save: Save the results to permanent storage (database).
• models: A JSON object that contains information on the selected

models.
Response: A JSON array containing all extracted content fragments with the assigned

categories and named entities.
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Templates Service

This service provides access to features related to templates, both their creation and their
management. A detailed description of the templating process and the use case of templates
will be further discussed in Section 4.5. This microservice can be split logically into main
three resources it provides:

• Templates Management: Provides a basic CRUD interface for templates.

• Element Types Management: Provides a basic CRUD interface for the element
types, which is the amotic part of each template. This enables the possibility to define
custom content attributes that can be used in the templates to extract specific parts
of content based on the needs of the user.

• Template Engine: Provides access to the templating engine, which implements an
automatic way of creating templates.

Interface

GET /templates

Description: Lists all available templates stored in the database.
Response: A JSON array containing all templates used by the system.

POST /templates

Description: Create a new template.
Parameters: The request body should contain a JSON object with the following keys:

• template: An object of the Template class created by the user or
template engine.

Response: Created object with the assigned identifier.

DELETE /templates

Description: Remove the template from the database.
Parameters: The request body should contain a JSON object with the following keys:

• id: An identifier of the template.
Response: Status code of the operation.

GET /element_types

Description: Lists all available element types stored in the database.
Response: A JSON array containing all the element types recognised by the system.
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POST /element_types

Description: Create a new element type.
Parameters: The request body should contain a JSON object with the following keys:

• name: User-friendly name for the created type.
• tag: Unique tag that will be used by the system internally.
• analysis_flag: Determines whether or not the content fragment as-

sociated with this type should be analysed by the models.
Response: Created object with the assigned identifier.

DELETE /element_types

Description: Remove the element type from the database.
Parameters: The request body should contain a JSON object with the following keys:

• id: Identifier of the removed element type.
Response: Status code of the operation.

GET /engine

Description: Lists all available template engines provided by the system.
Response: A JSON array of available template engine objects with the following keys:

• name: Name of the template engine.
• description: Description of the template engine.
• requires_key: A flag indicates whether the template engine requires

an access key or not (for example, to the remote API, such as the
OpenAI API).

POST /engine

Description: Creates a template proposal from the provided file.
Parameters: The request body should contain a JSON object with the following keys:

• engine: Name of the engine that should process the file.
• file_path: Path to file that is used for the template creation.
• key: If the engine requires keys, they must be provided.

Response: Template proposal object created by the template engine.
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Scheduler Service

The responsibility of the scheduler service is to manage access to the computational heavy
resources and keep records of the system usage. The managed resource is the worker
instances, which use language models that are computationally expansive. The scheduler
keeps track of all workers connected to the system and maintains the reservation table
stored within the database.

For now, the scheduling system is fairly simple and works on the first-in-first-out (FIFO)
principle. When the reservation request is received, the first available worker will be re-
served for the task. Note that it is the responsibility of the calling service to release the
reserved worker by calling an appropriate endpoint on the scheduler service when the task
is completed.

The capabilities and scheduling strategies can be easily expanded in the future, de-
pending on the additional requirements on the system. One possible improvement includes
smart reservations based on the requirements and complexity of the pipeline, which would
distinguish between the need for CPU-based or GPU-based workers.

Interface

GET /webcat_scheduler

Description: Lists all available workers connected to the system.
Response: A JSON array containing all workers and their statuses.

POST /webcat_scheduler

Description: Create a new reservation for the worker.
Parameters: The request body should contain a JSON object with the following keys:

• type: Either ”cpu“ or ”gpu“, determines the type of worker.
• file_path: Path to the file(s) that should be analysed.

Response: Status of the reservation request, together with the information about re-
served worker.

DELETE /webcat_scheduler

Description: Release the worker from the reservation table.
Parameters: The request body should contain a JSON object with the following keys:

• id: Identifier of the worker being released.
Response: Status code of the operation.
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Web Client Service

To provide a comfortable way to interact with the system, we have implemented a graphical
user interface (GUI) that provides natural access to all features provided by the gateway
API. As already mentioned, the client is implemented in the React framework which allows
for building responsive and dynamic user interface components. The React is a client-side
framework, which means that the entire application runs in the client’s web browser. The
app itself must be served by a web server, as for now we use the default development server,
but migration to a more production-suited web server implementation, such as NGINX14, will
be necessary in the near future. The web client is logically split into the following sections:

• Iteractive Parser: Provides access to the processing pipeline in an interactive way
that allows testing of different hypothesis templates, category labels, and different
models. The user can input any raw text data into the input window and inspect the
results produced by categorisation and NER models.

• Files Parser: This section provides the same functionality as the Interactive Parser,
but requires one to provide path to files instead of the raw input. When the processing
task is completed, the results are displayed together with summary statistics.

• Template Maker: This feature enables the creation of templates. The user can
choose between automatic and manual modes for template creation. The automatic
approach uses the template engine to automatically create templates from files, while
the manual mode allows users to load HTML files directly onto the website and
provides tools for content annotation.

• Template Manager: It is a template management tool that provides an overview
of the templates that are actively used by the parser.

• Data Viewer: A useful tool for inspecting the results processed. The user can choose
from a variety of filtering options and search within the results.

Screenshots of all sections are provided in the appendix A.

4.4 Data Processing Workflow
The data processing workflow of our system begins when the user interacts with the web
client application, which communicates with the API. The user provides the system with
the path to the file(s) to be processed and the configuration of the pipeline that will analyse
the content. If the path provided is a directory, the system automatically discovers all files
within that directory. The API then requests an url of a free worker from the scheduler
service, which keeps a table of worker statuses in the database. If a free worker is available,
the scheduler reserves the worker by changing its status from ”free“ to ”busy“ and returns
the URL of the worker with a success status code.

Once the worker reservation has been made successfully, the API sends a request to the
reserved worker, which loads a pipeline based on the configuration provided by the user.
The configuration contains information on the deep learning models that should be used for
processing, together with additional information, such as category labels, the hypothesis
template, and whether the final results should be stored in the database.

14https://www.nginx.com/
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The pipeline includes a parser that requires templates for content extraction to be
fetched from the database created by the templating engine, which will be discussed further
in the section on templating. The parser then parses the files in parallel using the Joblib
library and returns the fragments of the content found. The analyser component of the
pipeline first uses a deep learning model trained on the textual entailment task to categorise
each attribute of the content that is marked for analysis by the flag. Then it uses a named
entity recognition (NER) model to find named entities, and finally, the pipeline stores the
content in the database using ORM and returns a serialised response with the analysed
content in JSON format.

Once the job is completed, the API requests the release of the worker from the scheduler
service and returns the results to the client. The entire processing pipeline provided by the
worker can be seen in Figure 4.2.

Figure 4.2: Processing pipeline executed by the worker service.

4.5 Templating
Templating is a key method of our system’s data extraction process. To extract structured
data from unstructured sources such as web pages, we match them against predefined
templates. A template is a set of elements that must be present in the source file to be used
for extraction. These templates are stored in our database, and the parser will attempt to
match each template to the files that are being processed. The template entities stored in
the database can be described by the ER diagram in Figure 4.3.

The Template entity keeps the date of creation and the path to the origin file. Each
template contains at least one element, but for the system to work efficiently and accurately,
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Figure 4.3: ER diagram of the Template and associated entities.

it is highly anticipated to create templates with as many Element entities as possible. The
Element Type is an entity that tags an element with additional information about its
content. For example, Element Type can denote messages, titles, usernames, profile links,
etc. It also contains an analysis_flag attribute, which indicates whether the element’s
content should undergo further analysis or not.

In our system, templates can be created in multiple ways. The user can either create
templates manually with our special tool implemented in the client application or the system
can try to create a template in a fully automatic way.

Manual Template Creation

Creating templates manually is the easiest way to define templates because it allows the
user to annotate specific parts of the web pages to extract any pieces of information that
the user is interested in. We have implemented a tool in our web client which allows parsing
any HTML file and rendering the structure of a web page into an interactive window. Each
element of the original web page is expandable, and textual nodes are highlighted for better
clarity. Each element can be annotated by selecting the desired annotation type from the
selector above the interactive window and then clicking on the element which should get
annotated. The screenshot of our web client can be found in the Appendix A.4.

Automatic Template Creation

We tried to implement a convenient way of creating templates from HTML files without
the need for manual annotation. We focus only on the domain of web forums, where the
content is logically split into posts or messages. The main structure of the post is always
very similar to all other posts present on the web page. The key idea was to identify these
repeating structures and find patterns, which would indicate the parent tag wrapping the
repeating subtree with a high degree of similarity.

The experiments were carried out using clustering techniques, for example, the K-Mean
clustering method. We calculate these clusters by constructing the vocabularies of the
element tags and their classes 𝑉𝑡 and 𝑉𝑐. Then we define a feature vector

𝐹 = [𝑡, 𝐶,𝐷𝑡, 𝐷𝑐, 𝑑, 𝑛, 𝑙],

where 𝑡 is the index of the element tag in the vocabulary 𝑉𝑡, 𝐶 is a vector of indices of
elements classes of the vocabulary 𝑉𝑐, 𝐷𝑡 is a set of all descending tag indices from the
vocabulary 𝑉𝑡, 𝐷𝑐 is a set of all descending class indices from the vocabulary 𝑉𝑐, 𝑑 is the
depth of the element within the DOM tree, 𝑛 is the number of child elements, and 𝑙 is the
length of the text content present within the element, normalised by the text length from
the entire web page.
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I want you to act as a data extraction tool and extract post titles,
post authors, and post messages from raw text extracted from HTML
code of a forum website. The raw text is separated by newline characters
and the desired output is a JSON array of objects in the format
[{"post-title": "some title", "post-author": "some author",
"post-message": "some message"}]. Your task is to segmentate the
raw text and extract the required information from each segment. Do not
modify the input in any way, the output values must be identical with the
input lines.
The input is: [TEXT]

Figure 4.4: The prompt used by the ChatGPT-3.5 for performing the segmentation task
on the extracted text data. The [TEXT] token appearing at the end of the prompt is being
replaced by the extracted text.

While clustering methods are able to form clusters with one of them representing the
set of posts, without further validation and guidance from the user it is difficult to identify
the correct cluster and further segmentate the content without complex and highly biased
heuristics, which made this method unusable for practical cases.

4.6 ChatGPT-driven Template Creation
Given the recent advances in generative language models and the release of highly successful
OpenAI15 GPT-4 and ChatGPT-3.5 models, we carried out experiments on the effectiveness
of these language models in the analysis of textual data from unstructured data sources,
such as web pages.

The main focus was on content segmentation, as we strived to identify content fragments
and map them to specific HTML elements. After experimenting with the different prompts
and input data formats, we have come up with a satisfactorily working solution. Suprisingly,
passing the raw HTML code to the language model did not work, although we assumed
that it should be the most sufficient form, as it excels at overall code generation.

The working solution is based on passing the raw textual data extracted directly from the
parsed HTML, represented by DOM. We intentionally preserved only the newline characters
that denote the boundaries of the elements, while removing all newline characters from the
text content itself. The prompt we have used can be seen in Figure 4.4.

To further reduce the number of tokens and reduce the overall cost and inference time,
the context window has been introduced as part of the input preprocessing for the ChatGPT
model. To segmentate text and identify the repeating content fragments, such as posts
or messages, and their logical structure, it is not necessary to pass the entire content of
the webpage. In our method, we set a fixed maximum number of lines, as well as the
maximum limit for characters that each line can include. We will refer to these parameters
as MAX_LINES and MAX_CHARACTERS_PER_LINE respectively. In general, the starting lines
of text extracted in this way will include many unnecessary data, such as the names of the
navigation elements. To address this redundancy, we have decided to skip these lines to
further save more tokens and will refer to this parameter as INPUT_OFFSET. No particular

15https://openai.com/
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strategy for setting the offset has been used, as the resulting algorithm does not take the
location of the content into account. In general, we aim to identify the repeating content
fragments that can occur multiple times in the webpage, and thus the relative positioning
of these fragments does not matter. The resulting algorithm is described in Figure 4.5.

To provide more clarity about the input format that the model receives, we have pre-
pared the visualisation that can be seen in Figure 4.6. The entire red area is the raw textual
content extracted from a forum web page. The blank lines serve as a delimiter between
content that was part of a separate textual node. When formatting the text in this way,
we can instruct the language model to pay attention to these gaps, as they potentially
represent an important delimiter between some logical sections of content.

Parameters MAX_LINES and MAX_CHARACTERS_PER_LINE are subject to further testing
and optimisation to minimise the total token spend, leading to faster response times and
a lower cost of the overall process. In general, the goal is to provide enough clues for the
model so that it can annotate the content as accurately as possible.

4.7 Categorisation Model
One of the most important parts of our system are the deep learning models used for content
categorisation. We have focused on the natural language inference approach described in
Section 2.6. This method is suitable for the domain of our focus, the darknet environment,
as we lack a sufficient amount of annotated data. Since our work was mainly focused
on the design and implementation of the automatic system for content categorisation and
extraction, we have decided to outsource the models for now and constructed a flexible
framework that makes it easy to add any additional models in the future, allowing the
possibility for future research and development of custom models.

As for the models, we work mainly with the already pre-trained model of a Ph.D.
candidate researcher Moritz Laurer (VU Amsterdam) [20], which is based on the Microsoft
DeBERTA V3 architecture [13]. We have integrated two variants of the pre-trained models,
DeBERTA-v3-large16 and DeBERTA-v3-base17.

Another model of different architecture types that we integrated was bart-large-mnli18

based on the Facebook BART [21] architecture. However, given the poorer performance of
this model on the MNLI data set and significantly longer inference times, we have chosen
DeBERTA-v3-large as our base model for the categorisation task. For completeness, the
accuracy on the MNLI data set according to [19] and [21] is the following:

Model Accuracy MNLI_m (%) Accuracy MNLI_mm (%)

DeBERTa-v3-large 91.2 90.8
DeBERTa-v3-base 90.3 90.3

BART-large 89.9 90.1

Table 4.1: Comparison of Language Model Accuracy on the MNLI Dataset

16https://huggingface.co/MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli
17https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli
18https://huggingface.co/facebook/bart-large-mnli
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1. Extract all text from the webpage and remove all newline characters from the content
of elements. Save the mapping between the text and their corresponding HTML
elements.

2. Skip the first INPUT_OFFSET lines of extracted text.

3. Cut the number of lines to a maximum length of MAX_LINES.

4. Cut each line of text to a maximum length of MAX_CHARACTERS_PER_LINE.

5. Send the text data in the prompt from Figure 4.4 to OpenAI API and parse it using
the ChatGPT-3.5-turbo model.

6. Extract the identified segments from the model output.

7. If multiple entities were found, group values by segments. The segment refers to
the type of the value, for example, title, author or message.

8. For each identified segment:

8.1.1 Match the textual values annotated by the model with the corresponding HTML
element from the stored mapping.

8.2.2 Count the number of elements with equal XPath that were returned for current
segment.

8.3.3 Select the element with the highest number of occurences. If multiple elements
have the same count, keep all of them. These elements are referred to as can-
didate elements.

9. For each identified segment:

9.1.1 Use the stored XPath of each candidate element to retrieve all matching
elements from the entire web page.

9.2.2 The candidate element that was able to locate the highest number of nodes
is selected as the template element.

10. Construct the template proposal from all identified segments and their correspond-
ing template elements.

Figure 4.5: The algorithm for automatic content segmentation from HTML file, with the
usage of ChatGPT-3.5-turbo model.
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Figure 4.6: Visualization of the context window seen by the ChatGPT 3.5 model.

4.8 Named Entity Recognition Model
We have decided to add the NER model to our processing pipeline to enhance the data
extraction process, producing additional data that can be useful for further analysis. Fa-
miliarisation with the NER problem took place in Section 2.7.

For the NER model, we chose a similar path as with the categorisation models and
outsourced the pre-trained model. However, we had to consider a different approach to the
selection of the suitable model, as the NER task is not as flexible as NLI and the set of
entities that the model is capable of recognising had to be chosen carefully, as well as the
data domain it has been trained on.

We have found a promising and performant NER model19 provided by a tool T-NER
[41]. This model is based on the RoBERTa architecture and is trained on the specialised
TweetNER7 data set [42]. The TweetNER7 is made up of annotated posts (tweets) from
the Twitter social network. The annotations contain the following labels: corporation,
creative_work, event, group, location, product and person.

This data set is ideal for our use case of finding named entities within posts on the
darknet forums, as the domain is still different but quite similar in certain ways. One
challenge we encountered while testing other models was the inability to detect usernames,
which are quite different from the names of real people. Models fine-tuned on the domain
where usernames are commonly used naturally perform significantly better in classifying
usernames than other models trained on data sets containing annotations of the real names
only. Another advantage of the Twitter data set created by the authors is that it provides

19https://huggingface.co/tner/twitter-roberta-base-dec2021-tweetner7-random
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annotations for entities labelled product, which is not common for other conventional NER
data sets. The ability to detect certain products in conversations can be a great source of
information for further content filtering, especially in the market environment, where users
discuss or review products a lot.
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Chapter 5

Results

In this chapter we summarise the results and outline possible directions for further work.
The outcome of this work is a system called WebCat, which is a containerised application
that can be deployed nearly anywhere and can be used for categorisation and extraction
of the content located on the web pages. The source code and installation instructions are
included on the attached memory medium. More information about its content and the
link to NextCloud storage can be found in the Appendix B.

5.1 Comparison of Different Hypothesis Templates
The key component of the NLI classifiers for categorisation are the hypothesis templates.
The selection of the hypothesis can affect the results in a significant way, and we have
conducted experiments to search for the most suitable template that can be used for the
text categorisation task. We have chosen the DeBERTa_v3-large model as the base model
for our experiments, as the model performs the best of our inspected models in the NLI
task in general, as shown in Table 4.1.

In the absence of suitable data sets for the darknet market domain, the experiments were
carried out on a total of 2000 samples from the data set newsgroup1 that was introduced
in [18]. The newsgroup data set is a well-known benchmark data set that is used for text
classification tasks. It contains messages from various news groups posted in the early 1990s.
The data set includes more than 20.000 documents, classified into 20 different topics, such
as politics, sports, and religion.

We have modified this data set by selecting and aggregating categories into its supercat-
egories, whenever possible, to eliminate the overlap of categories. For example, categories
such as hardware, graphics, or ms-windows were merged into the computer super category,
as the overlap of the common domains causes noise in our evaluation process, since the
model can output multiple categories, but the data set contains only one ground truth
label for each sample. When the sample is classified into concrete category, but the model
also identifies some of the subcategories, the precision is negatively distorted. For this rea-
son, we have decided to split the data set only into the following diverse labels: medicine,
computer, religion, sport, motorcycles, guns, forsale, cars, and politics.

The evaluation of text classification algorithms often involves measuring the F1, Pre-
cision, and Recall scores. These scores are used to assess the performance of a model in
terms of its ability to correctly classify instances into their respective classes. F1 score is the

1https://huggingface.co/datasets/newsgroup
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harmonic mean of precision and recall, which makes it a balanced metric for models that
are good at either precision or recall but not both. Precision is the ratio of true positives to
the total number of predicted positives, while recall is the ratio of true positives to the total
number of actual positives. These scores can be calculated using the following formulas:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃 )

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)

𝐹1 = 2 * ((𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 *𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙))

where 𝑇𝑃 represents true positives, 𝐹𝑃 represents false positives and 𝐹𝑁 represents
false negatives.

# Hypothesis Template F1 Precision Recall
1 The text examines the topic of x in depth. 0.782 0.720 0.855
2 The topic of this text is x. 0.841 0.801 0.884
3 The text provides information about x. 0.804 0.707 0.933
4 The text discusses x. 0.838 0.771 0.917
5 The text contains information relevant to x. 0.650 0.489 0.969
6 The text provides insights into x. 0.694 0.553 0.931
7 The text sheds light on x. 0.755 0.638 0.924
8 The text explores x in detail. 0.796 0.722 0.888
9 This text covers the topic of x. 0.827 0.742 0.933
10 The central theme of this article is x. 0.789 0.736 0.850
11 The text provides a comprehensive analysis of x. 0.375 0.356 0.397
12 The text covers the topic of x extensively. 0.798 0.713 0.905
13 The primary subject matter of this article is x. 0.796 0.737 0.867
14 The text delves deeply into the topic of x. 0.813 0.726 0.925
15 The main idea presented in this text is x. 0.796 0.737 0.870
16 The example is about x. 0.823 0.773 0.880
17 The focus of this writing is on x. 0.811 0.753 0.879

Table 5.1: Performance of different hypothesis templates on a newsgroup data set for the
DeBERTa_v3-large model variant.

As can be seen in Table 5.1, the selection of the hypothesis template can have a strong
influence on the behaviour of the classifier. In general, the metric considered should mainly
be the F1 score, as it provides the optimal balance between precision and recall metrics.
However, the preferred metric can also depend on the task and the environment itself. If
the main focus is on minimising the FP predictions (i.e., cases where the model does not
output the positive label at all), the preferred metric could be the recall. However, as can
be seen in Table 5.1, the hypothesis template with the highest recall performs much worse
than others in terms of precision. This observation indicates that the model predicts more
than two labels as positive on average, most likely producing unnecessary noise.

We recommend either the model with the highest F1 score or the recall depending on
the criteria described above. However, we are also interested in the #3 hypothesis with the
second-highest recall, as the general precision is much better compared to the #5 hypothesis
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for the only slight loss in the recall metric. For this reason, the #3 hypothesis has been
set as a default for the DeBERTa_v3-large model, but users are encouraged to try different
well-performing hypotheses to see which performs best in their domain of interest.

For comparison, we have also evaluated the performance on the identical set of hypoth-
esis templates of the DeBERTa_v3-base model and the results are shown in Table 5.2. The
results clearly demonstrate the general robustness and better performance of the large
variant, as none of the proposed templates used by the base model was able to outperform
or compete with the results in Table 5.1. Furthermore, the #1 and #11 examples show
the proneness of the base model to the inability to perform the categorisation task, when
certain unsuitable hypotheses are selected, demonstrating the generally better robustness
of the large model.

# Hypothesis Template F1 Precision Recall
1 The text examines the topic of x in depth. 0.225 0.213 0.239
2 The topic of this text is x. 0.744 0.645 0.880
3 The text provides information about x. 0.778 0.697 0.880
4 The text discusses x. 0.766 0.666 0.902
5 The text contains information relevant to x. 0.667 0.521 0.926
6 The text provides insights into x. 0.510 0.480 0.543
7 The text sheds light on x. 0.558 0.481 0.666
8 The text explores x in detail. 0.628 0.585 0.679
9 This text covers the topic of x. 0.764 0.667 0.894
10 The central theme of this article is x. 0.723 0.655 0.783
11 The text provides a comprehensive analysis of x. 0.006 0.006 0.006
12 The text covers the topic of x extensively. 0.542 0.501 0.591
13 The primary subject matter of this article is x. 0.727 0.678 0.783
14 The text delves deeply into the topic of x. 0.536 0.511 0.564
15 The main idea presented in this text is x. 0.743 0.680 0.818
16 The example is about x. 0.781 0.714 0.862
17 The focus of this writing is on x. 0.668 0.594 0.762

Table 5.2: Performance of different hypothesis templates on a newsgroup data set for the
DeBERTa_v3-base model variant.

5.2 Strengths and Limitations
As for the evaluation of system performance in our domain of interest, which is an environ-
ment of darknet forums, due to the lack of data sets that would be suitable for evaluation
purposes, we will identify and summarise the strengths, weaknesses, and behaviour in the
real environment based on our observations and experience gained while using the system.

We have tested the system in the environment of the dnmarchives [6] data set, par-
ticularly in the archives of darknet market forums such as Utopia, Bungee54, Abraxas,
Darkbay, or Greyroad. The concrete categories that we have used for testing purposes
were selected to represent the diverse controversial topics that are generally considered to
appear on the darknet. We have configured the processing pipeline to categorise forum
posts into following categories: drugs, hacking, fraud, cryptocurrency, shipment delivery,
weapons, counterfeit, childporn and cryptography.
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Some of the following examples contain highly sensitive and controversial topics, how-
ever, we believe that it is important to demonstrate how our system operates in the real
environment and its potential to detect malicious content in general. The example demon-
strating the operation of the classifier can be seen in Figure 5.1. We identified the mapping
between the text content and the categories and marked them with matching colours to
provide a better insight. We believe that the example shows both the strengths and limi-
tations of the categorisation process. In general, the classifier is highly prone to inferring
categories based on the occurrence of the words from the desired domain rather than con-
sidering the whole context. This can be clearly visible in the case of the detection of the
drugs category, where the word Dope, present within the username, is associated with this
category. Another frequently occurring anomaly is the association of the cryptocurrency
label with the numbers, dates, and hyperlinks in general. We have made an effort to pre-
process the text and remove all dates and hyperlinks from the text input. However, many
cases, such as the price tags, which are present within the example, are difficult to treat,
and the question of their processing is the subject of further research and development.

Figure 5.1: An example of a content (post in the forum thread) retrieved by the WebCat
system. The example was put into an interactive parser tool provided by the web client,
so we could analyse and identify the concrete mapping of categories and the relevant text
areas. Boxes matching the same colour indicate the corresponding mapping. When any of
the marked text is removed, the corresponding category is no longer being detected.

Another example presented in Figure 5.2 demonstrates the utility of the NER model
to extract useful information about the named entities that occurred in the content. We
have also identified the text areas that affect the classifier for cryptocurrency and coun-
terfeit categories, to address the problem mentioned above with the hyperlinks in regards
to cryptocurrency label, and to demonstrate the ability to classify challenging and niche
categories, such as counterfeit.

49



Figure 5.2: An example of a content (post in the forum thread) retrieved by the WebCat
system. Words highlighted with the blue colour in the text were tagged by the NER model
and classified as tokens with product label.

The last example shown in Figure 5.3 demonstrates the susceptibility of the classifier
to draw a wrong conclusion from the ambiguous sequence of words. This can be applied to
many different cases. For example, the reason behind the selection of the label shipment
delivery rather than delivery alone, was the fact of frequent association of the reference
to email communication with the delivery category, which was unintended and produced
unnecessary noise. This demonstrates the importance of selecting unambiguous labels and
testing these labels against representative samples to validate the intentions of the specific
category.

Overall, the examples presented suggest that more work needs to be done on the for-
mulation of labels and text pre-processing. Another space for improvement may be the
exploration and further evaluation of different hypothesis templates, as was discussed in
Section 5.1. In this regard, we will strive to create a curated data set for evaluation pur-
poses with the use of tools that we have developed, to support further research in this area,
particularly for the domain of the darknet environment.
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Figure 5.3: An example of a content (post in the forum thread) retrieved by the WebCat
system. This example represents the situation, where the classifier is confused by the
ambiguous meaning of the sequence.

5.3 Future Expansions and Improvements
The topic of this thesis is extensive and could be developed further in many different
directions. We have focused mainly on the design and implementation of the system for
automatic webpage content categorisation and extraction, however, many techniques and
features used in this work could be further expanded and improved. In the following
sections, we will explore and propose subjects for further research and development.

Templating

There are multiple ways that templating in general could be improved to make this tech-
nique faster and more robust. For now, the templates are highly generic and are not bound
to specific websites. If the complexity of the template object is too small, there is the pos-
sibility that the template will match a different website with a similar structure, resulting
in incorrect content mapping. Adding meta-data about the page into the templates might
solve this issue and further speed up the process of the correct template selection for the
parsed webpage.

In connection with the previous paragraph, resolving the template affiliation to the
specific web pages would also help to allow the system to be fully autonomous when parsing
large-scale web archives. At the moment, due to the possibility of conflicting templates,
the system is not reliable in processing many different websites at once. To implement
this feature, the templates have to be more robust and other mechanisms, such as webpage
candidate selection for the automatic template creation, must be further developed. Due
to these missing parts, the system is not yet able to use the ChatGPT-powered templating
engine to produce new templates for unknown web pages in a fully autonomous way.
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Support for Different Input Formats

The database structure was designed to store data of various content from unstructured
sources, primarily HTML webpages. This allows the possibility of expanding the pool of
supported file types accepted by the system, opening the way for different use cases. One
of the possible use cases might be the analysis of content from structured formats such as
CSV or JSON. The system could also contain a feature for exporting results into different
file types, or serve as an enrichment tool that would append analytical results to the files
directly.

Smart Scheduling

As was outlined in Section 4.3 about the scheduler service, the scheduling algorithm is
fairly simple and does not make full use of the system’s capabilities. One of the possible
improvements might include evaluating the complexity of the required processing pipeline
configuration and assigning the task to CPU or GPU-based workers based on the estimated
complexity.

Custom Deep Learning Models

Another important and specific modification for the domain of the darknet environment
could involve fine-tuning categorisation and NER models. Furthermore, in theory, any
demanded domain could be adapted by training our own models on data sets from different
domains, adapting the analysis to the specific needs of the user. The web client application
could also be modified to reflect the availability of different features tailored for specific
domains and use cases.

In terms of the domain of interest, the key challenge is to find suitable data sets that
could potentially improve the overall performance of the models. We have explored different
ways for potential synthesis or auto-labelling of the darknet domain data, such as exploita-
tion of the general language models (GLMs) such as OpenAI GPT-4, GPT-3 or some of its
open-source but much less performant variants, namely gpt4all [3] and ChatGLM [49]. We
believe that the transfer of knowledge from these language models by creating synthesised
data sets could potentially improve the quality of the analysis in many different domains.
However, this topic requires its own research and therefore is beyond the scope of this thesis.
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5.4 Summary
The subject of automatic webpage content categorisation and extraction is a vast and
multifaceted area of research. Our work is focused on the highly specialised domain of the
darknet environment, which presents unique challenges due to the scarcity of suitable data
sets. To tackle this issue, we have approached the problem with a highly adaptable and
universal methodology, intended to create a flexible system capable of handling any content
type and scalable to meet future development requirements.

The system we have designed is intended for general use and we have made critical
design decisions to create a system that is both agile and extensible. This includes careful
consideration of the overall architecture, database structure, and configurable pipeline of
the system.

As demonstrated in Section 5.2, the model trained on the natural language inference
data set has the potential to categorise content effectively, provided that the appropriate
hypothesis template is used. We have conducted an in-depth analysis of the performance
of various hypothesis templates, as detailed in Section 5.1.

To facilitate the data extraction process, we have integrated a named entity recognition
(NER) model into our processing pipeline. This model is capable of identifying named
entities that are stored in the database for further analysis. In addition, we have employed a
templating methodology to automate content extraction. This involves creating a template
and using it to process similar web pages in a consistent manner. Our templating methods
are described in Section 4.5.

Furthermore, we have proposed an automated approach to segmenting website content
using the OpenAI’s ChatGPT-3.5 model. This technique provides annotations that can
be used to generate templates and automatise the extraction process. The segmentation
process is described in Section 4.6.

In order to enhance the accessibility and ease-of-use of our system, we have developed
a web client application that offers a user-friendly graphical interface for interacting with
the system. Detailed screenshots of this application can be found in the appendices A.
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Appendix A

User Interface of the Web Client

Figure A.1: Screenshot of the Interactive Parser tool, provided by the Web client. This
tool provides an interface for interactive testing of different hypothesis templates, category
labels and models by providing option to pass raw textual data for processing.

58



Figure A.2: Screenshot of the Files Parser tool, provided by the Web client. This tool
provides the same options as the Interactive Parser, but accepts only files as the input for
processing.
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Figure A.3: Screenshot of the filtering options provided by the Data Viewer component.
This feature requests the data that are stored in the database. The construction of the
filtered query is handled by the API.
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Figure A.4: Screenshot of the Template Maker tool in the WebCat Client application. This
tool provides an easy way of creating templates directly from HTML files selected directly
from the file system. Once the file is loaded, the virtual representation of the webpage is
rendered and the user can manually annotate the content and create template.

Figure A.5: The WebCat application logo created with the aid of OpenAI’s DALL-E model.
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Appendix B

Attached Medium Contents

This thesis also includes a memory medium with the following contents:

• src/ ... Source code for the WebCat system.

• tex/ ... LaTeX source code for this thesis.

• xreinm00.pdf ... Copy of this thesis in PDF.

For the installation instructions, see the README.md file inside the src/ directory. The
attached contents were also uploaded to NextCloud1 storage of the Faculty of Information
Technology, Brno University of Technology.

1https://nextcloud.fit.vutbr.cz/s/5m87JSqXDgPJtmY
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