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Abstract 
This thesis describes the development of a flexible system for automatical ly categorising 
and extracting content from web pages, w i t h a focus on the darknet environment. We have 
designed a highly adaptable and scalable system capable of handling any type of content, 
while taking great care in considering the overall architecture, database structure, and pro­
cessing pipeline. Us ing the state-of-the-art language model trained on the natural language 
inference task, we demonstrate the model's potential to categorise content effectively i n a 
zero-shot environment. We also conduct an analysis of the performance of various hypothe­
sis templates. To further enhance the data extraction process, we have integrated a named 
entity recognition model and templat ing methodology for content extraction and proposed 
an automated segmentation approach using OpenAI ' s C h a t G P T model . In addit ion, we 
have developed a user-friendly web client appl icat ion to enhance the system's accessibility 
and ease-of-use, evaluated the achieved results, and identified areas for further research and 
development in this field. 

Abstrakt 
Tato p r á c e popisuje vývoj flexibilního s y s t é m u pro automatickou kategorizaci a extrakci 
obsahu z webových s t r á n e k , se z a m ě ř e n í m na p r o s t ř e d í darknetu. N a v r h l i jsme vysoce 
p ř i způsob i t e lný a šká lova te lný sy s t ém, k t e r ý dokáže zpracováva t r ů z n o r o d ý typ obsahu, 
p ř ičemž jsme dbal i na kval i tu n á v r h u celkové architektury, s t ruktury d a t a b á z e a s a m o t n é h o 
algori tmu pro zp racován í dat. P o u ž i t í m ne jmoderně j š ího j azykového modelu t r é n o v a n é h o na 
úkolu inference p ř i rozeného j azyka demonstrujeme p o t e n c i á l modelu efekt ivně kategorizovat 
obsah v zcela n e z n á m é m pros t ř ed í , p ř i čemž jsme provedli a n a l ý z u výkonu d a n é h o modelu 
za použ i t í r ůzných h y p o t e t i c k ý c h šab lon . Dá le jsme do s y s t é m u integrovali model pro 
rozpoznáván í p o j m e n o v a n ý c h entit a metodologii šab lonován í pro extrakci obsahu, p ř ičemž 
jsme navrhl i a u t o m a t i z o v a n ý p ř í s t u p k segmentaci obsahu webových s t r á n e k za p o m o c í 
modelu C h a t G P T od společnos t i O p e n A I . V nepos l edn í ř a d ě jsme vyv inu l i už iva te l sky 
př ívě t ivou webovou apl ikaci pro z lepšení dostupnosti a s n a d n é použ i t í sy s t ému , zhodnot i l i 
dosažené výs ledky a navrhl i možnos t i pro dalš í v ý z k u m a vývoj v d a n é oblasti . 
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Chapter 1 

Introduction 

This thesis focusses on the crucial task of automatic webpage content categorisation and 
extraction, which holds significant importance i n today's world where the majority of in ­
formation is sourced from the web. W i t h the tremendous surge i n information available 
online, there is a growing need to automatical ly classify and extract information from web 
pages, especially from highly niche domains. 

In general, webpage categorisation involves assigning a category or label to its content. 
Th is can be useful for tasks such as web search and information retrieval, where it is essential 
to quickly and accurately classify content into relevant categories that best suit the query 
of the user. 

Automat ic extraction involves extracting specific information or entities from a webpage, 
such as a t i t le, author, or any other potential ly interesting data and entities. Th i s can be 
useful for creating data sets and knowledge bases that can be used for further analysis and 
evaluation of the content present on the web. 

In order to solve the above-mentioned tasks effectively, it is necessary to use various 
natural language processing techniques, machine learning, and deep learning algorithms 
that use highly sophisticated methods to process textual content. B y leveraging these 
cutting-edge techniques, it is possible to analyse and process the text data on entire web 
pages and to t ra in language models that can precisely categorise and extract information 
from the content. 

The subject of automatic webpage categorisation and extraction is an important and 
challenging topic, and this thesis w i l l provide a detailed analysis of the methods and tech­
niques that can be used to achieve satisfying results. In addit ion, our goal is to create 
a modular and scalable system called WebCa t , which provides tools for analysing content 
from the web pages and the large web archives. W i t h the use of natural language processing 
techniques, this system w i l l be able to accurately analyse content and search for specific 
entities, anomalies, or categories. The modular and distr ibuted design of the system w i l l 
allow it to be easily adapted and extended for different applications and use cases, and 
its scalable architecture w i l l handle large volumes of data, making it suitable for use in 
real-world scenarios. 

Overal l , our goal is to create a powerful tool that can help improve the efficiency and 
effectiveness of categorisation and information extraction from web pages, especially in 
challenging environments such as darknet forums and markets, or other domains that are 
highly unconventional and niche. 

2 



Chapter 2 

Natural Language Processing 

The study of natural language processing ( N L P ) is a subfield of computer science and 
artificial intelligence that focusses on the development of algorithms and techniques for the 
analysis, processing and generation of natural language data, such as text and speech. This 
field plays a crucial role i n enabling computers to understand, interpret, and communicate 
wi th humans i n a natural and intui t ive way [15]. Us ing the principles of N L P , researchers 
and developers can create systems that can automatical ly analyse, understand, and generate 
human language, making it possible to develop a wide range of applications i n areas such 
as machine translation, dialogue systems, information extraction, and many more. 

Depending on the specific task and the type of data that are being analysed, various 
techniques and algorithms can be used. Some common techniques used i n N L P include 
tokenization, lemmatisation, stemming, named entity recognition, topic modell ing, and 
much more [30]. These techniques can be applied to a wide range of data sources, including 
text documents, social media posts, and speech recordings, to extract valuable information. 
In recent years, the construction of language models has shifted more from the classical 
statist ical methods, such as the usage of the Naive Bayes and Hidden Markov Chains , 
towards the methods based on t ra ining deep neural networks. The main difference between 
these two approaches is how they analyse, process, and learn from natural language data. 

Stat is t ical methods use mathematical and statistical techniques to analyse data. These 
methods typical ly involve creating a statist ical model of the language from the input data 
and using the model to make predictions or generate text. For example, a statist ical model 
might use Hidden Markov Chains or Naive Bayes to learn a probabi l i ty dis t r ibut ion of the 
language or topic and generate text based on the patterns and structure of the language 
data [32]. 

In contrast, neural network-based methods use artificial neural networks, which involves 
t ra ining a neural network on a large natural language data set and using the trained net­
work to perform various downstream tasks. These methods are often more complex and 
computat ional ly intensive than statistical methods, but they can provide more accurate 
and sophisticated results. 

The choice between statistical methods or neural networks depends on the specific tasks 
and types of data analysed. A l though statist ical methods are often simpler and more 
efficient i n calculation, they may not be as accurate as methods based on neural networks. 
Neura l network-based methods are often more complex and computat ional ly intensive, but 
can provide more accurate results, especially i n some highly complex tasks. 

Overal l , N L P is an important and rapidly evolving field of computer science, mostly 
due to recent advances i n art if icial intelligence (AI ) , and has a wide range of applications in 
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many different areas. B y using highiy sophisticated techniques and aigorithms, it is possibie 
to gain vaiuabie insights and information from natural language data and to develop more 
intelligent and human-like computer systems. 

2.1 Common Terminology and Techniques 

In order to make understanding N L P problems i n the coming chapters more intuit ive, it is 
important to have a basic understanding of the common terminology and techniques used in 
this field. Th is chapter w i l l provide an introduct ion to some of the key terms and concepts, 
as well as an overview of the most commonly used techniques and algorithms. 

Corpus 

In the context of natural language processing, a corpus is a digi ta l collection of text data 
that is used to t ra in and evaluate N L P algorithms and models. A corpus typical ly includes 
a large number of text documents, such as news articles, books, or social media posts, and 
can be used to represent a specific language, domain, or topic. It can also provide valuable 
information on the characteristics and patterns of a specific language or domain. W h e n 
selecting a corpus for creating a language model, it is important to consider several key 
properties [33], including 

• Size: The corpus should be large enough to provide a sufficient amount of data. 

• Variety: The corpus should include a diverse range of text types, including genres, 
styles, and formats that are ideally evenly distributed. 

• Annotations: The corpus should be annotated wi th relevant labels, such as part-
of-speech tags, named entities, or categories, to support more advanced N L P tasks. 
However, the selection of the annotation type depends on the task that is being solved. 

• Quality: The corpus should be free of errors and inconsistencies and should be 
carefully curated to ensure its accuracy and reliability. 

In general, a corpus is an essential tool for many tasks, as it provides a large and 
representative data set that can be used to t ra in and evaluate algorithms and models. 

Vocabulary 

Vocabulary is a list of words that are used i n a given text or corpus. The process of creating 
a vocabulary typical ly involves extracting words from the text data and organising them 
into a list, while each word appears only once. These distinct items i n a vocabulary are 
also called „word types" [38]. 

B y creating a vocabulary from the text data, it becomes possible to represent the text 
data using a fixed and finite set of words or tokens, which can simplify the analysis and 
processing of the data. The finite property of the vocabulary also allows for indexing, which 
can be used to transform words into numeric representations that can further serve as input 
to the language models. 

M a n y N L P techniques and algorithms work w i t h the vocabulary. For example, a com­
mon technique is to bu i ld a statist ical model based on the vocabulary of a corpus, which 
can then be used to classify new pieces of text or to generate text that is similar to the 
samples in the corpus, preserving the same style of wri t ing. 
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Tokenization 

Tokenization is the process of breaking a piece of text into smaller pieces, called tokens 
[26]. These tokens can be words or symbols and serve as basic bui ld ing blocks for many 
N L P tasks. Th is process is typical ly done using a combinat ion of rules-based and statis­
t ica l methods. There are several types of tokenizers used i n natural language processing, 
including 

• W o r d tokenizers: For spl i t t ing the text into ind iv idua l words. 

• Sentence tokenizers: The text is split into ind iv idua l sentences. 

• Regex tokenizers: These tokenizers use regular expressions to identify patterns in 
text and split them into tokens based on those patterns. 

• Character tokenizers: For spl i t t ing the text into ind iv idua l characters. 

Tokenization is an important preprocessing step for any N L P task, as it allows the text 
to be represented i n a more structured and manageable form. Breaking the text into smaller 
pieces makes it easier to analyse and process the data and extract useful information and 
insights from the text. Indiv idual tokens can be indexed using the vocabulary to create a 
numerical representation of the input; however, new or unseen tokens that are not present 
in the vocabulary are often replaced by a special token [UNK]. 

Stemming and Lemmatisation 

B o t h stemming and lemmatisat ion are processes to reduce inflected (or sometimes derived) 
words to their stem, base, or root form of the word [26]. Th is is typical ly done by removing 
the suffixes or prefixes of words that are used to indicate a grammatical function, such as 
tense, gender, or plurality. The difference between these two processes is that stemming 
is a heuristic process that removes the ends of words, while lemmatisat ion is based on 
morphological analysis and vocabulary-based algorithms [26]. The example of stemming 
can be seen i n Figure 2.1, while lemmatisat ion is shown in Figure 2.2. 

cooked, overcooked, cooking =>• cook 

Figure 2.1: Example of words 'cooked', 'overcooked', and 'cooking' being processed by 
stemming and resulting in the word 'cook'. 

am, are, is =>• be 

Figure 2.2: Example of words 'am' , 'are', and 'is ' being lemmatized and resulting i n the 
word 'be'. 

This processing can be useful for tasks such as text classification, where the exact form 
of a word may not be important , but its basic meaning or concept is. W h e n words are 
reduced to their root form, it becomes easier to group and classify words based on their 
underlying meaning, rather than their specific inflected form. The root form of words can 
also be used to construct a robust and compact vocabulary for algorithms based on the 
frequency of the term, which w i l l be discussed i n the next chapters. 

Overal l , s temming and lemmatisat ion are important preprocessing steps i n many natural 
language processing tasks, as they can help to reduce the complexity of the text data and 
make it more applicable for analysis and processing by N L P algorithms. 
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2.2 Word Representation 

W o r d representation refers to the way words are represented i n a numerical or structured 
form. This representation is important , as it allows words to be input to the N L P algo­
rithms, which require numbers as their input rather than a sequence of bytes representing 
characters, in which way words are being represented in today's computers. The most suf­
ficient form of word representation for natural language processing tasks is a vector, as it 
allows the capture of properties of words across many dimensions that a simple scalar value 
is not capable of. Furthermore, any linear operation can be applied to these vectors, which 
makes it possible to measure s imilar i ty between pairs of words or construct higher-level 
representations of entire contexts, such as paragraphs or documents themselves. There are 
two main categories of word representations: 

• L o c a l representations (can also be referred to as one-hot), where every word in a fixed 
vocabulary of size D is represented by a binary vector v £ {0,1}\ S \ . E a c h dimension 
of the vector v corresponds to one word i n the vocabulary, and only one value in this 
vector w i l l be set to one, depending on the word it should represent [29]. 

• Dis t r ibuted representations, where each word is represented by a vector v £ 
where v can be sparse or dense (hand-made features or latent representation) [29]. In 
common terminology, these representations are referred to as embeddings. 

The common fact for every word representation method is that they are crafted or 
trained based on words that occur in some t ra ining corpora. One of the key issues includes 
the representation of words which were not present i n the reference corpus. It is unrealistic 
for models to include every word which exists in the language, furthermore, new words are 
being introduced continuously, which would require creating new embeddings on regular 
basis. For this purpose, only a subset of the most frequent terms are included i n the 
vocabulary, together w i th the special [UNK] symbol, which stands for any word outside of 
the vocabulary. 

Word Embeddings 

W o r d embeddings are numerical representations of words that capture their semantic and 
syntactic properties. These representations are typical ly created by t ra ining a neural net­
work on large corpora and using the trained network to generate numerical representations 
of words. Once the model is trained, the transi t ion of the word index i n the vocabulary 
space can be direct ly mapped to the vector space. There are also highly effective classical 
methods for creating embeddings, often classified into two main families [35]: 

• Local context window methods, for example, skip-gram model [27]. 

• Global matrix factorisation methods, for example, L S A (latent semantic analy­
sis) [8]. 

Embeddings made i n such a way can then be used to represent words in a more sophisticated 
and accurate way and are often used for most of the tasks i n the N L P domain. The desirable 
feature of high-quality embeddings includes capturing semantic similarities between words 
themselves. A s mentioned above, the magnitude of these similarities can be measured 
using the distance metric F(wi,W2) = s, where F is a function (for example, the cosine 
similar i ty function), w\ and wi are embeddings of two different words and s is the measured 
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queen 3:::::; e 

monkey 

Figure 2.3: The 3D projection of the K-dimensional latent space of the embeddings. 

similarity. Figure 2.3 shows a latent space of the embeddings projected i n the 3D space 
w i t h the vocabulary 
V = {apple, monkey, king, queen}. A s can be seen, the words „king" and „queen" are 
semantically more similar than the rest of the words i n the vocabulary and thus their 
vectors are much closer to each other. 

W o r d 2 v e c 

Word2vec is based on the idea that the meaning of a word can be inferred by the words 
that frequently appear near it i n a text [28]. 

This approach to creating word embeddings uses a shallow neural network to learn 
the vector representation of words from large corpora. One way in which word2vec can 
be trained is that the model takes a word as input and tries to predict the surrounding 
words i n the context of the sentence. This is known as the continuous skip-gram model. 
Alternatively, the model can be trained to predict the original input word while knowing 
the surrounding words, which is known as the continuous bag-of-words ( C B O W ) model. 

This approach has been shown to produce high-quality word embeddings that capture 
both the semantic and syntactic properties of words, and it is a popular and effective method 
for preprocessing textual data i n many different N L P applications. 

GloVe 

GloVe (Globa l Vectors for W o r d Representation) is a global log-bilinear regression method 
to t ra in word embedding models [35]. It is similar to Word2Vec but uses a different approach 
to learning word vectors. Instead of predict ing surrounding words, G l o V e learns word 
vectors by directly model l ing the co-occurrence probabilities of words i n a corpus of text. 
The t raining process involves constructing a co-occurrence matr ix , which counts how often 
each word co-occurs w i t h every other word i n the corpus. The rows and columns of this 
matr ix represent words, and the elements i n the mat r ix represent the number of times each 
pair of words co-occurs. Th is matr ix is then factorised using a technique called singular 
value decomposition, which yields the word vectors. 
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2.3 Document Representation 

The document can be seen as the highest l inguistic unit of the natural language [24]. The 
goal is to create a fixed size representation d, which contains information about the content, 
which is typical ly composed of words D = {w\, u>2, u > 3 , w n } , where D is the document. A s 
wi th the word representations described i n Section 2.2, the divis ion into categories follows 
the same pattern as the representations of words: 

• Local representation (one-hot), typical ly bag-of-words, or representation based 
on te rm frequencies. The order of tokens i n the document is not preserved, and the 
methods rely on the meaning of ind iv idua l words alone, especially nouns. 

• Distributive representation, typical ly transforming context into a latent space of 
dimensionality much smaller than the size of the vocabulary, w i th the help of neural 
network architectures capable of encoding sequences of tokens. 

Bag of Words 
The bag-of-words ( B O W ) technique is a method of representing textual data i n natural 
language processing. It involves representing a piece of text as a fixed-length vector of word 
counts, where each dimension of the vector corresponds to a specific word i n the text. 

To create a bag-of-words representation of a document, the first step is to define a 
vocabulary V = [wi, W2, W3,w\y\] that contains a fixed number of the most frequent 
words that are present wi th in a document, or by using a predefined list of words. The 
hot representation of each word is w = [0, 0 , 1 , 0 , 0 ] , as defined i n 2.2. The resulting 
bag-of-words representation can be defined as 

1 

k=l 

where I is the length of the document. It is clear that this representation alone only counts 
the word frequencies i n the document, and i n real-world scenarios, bag-of-words is being 
used as a too l to generate word count features [24]. 

T F - I D F 
The T F - I D F (term frequency-inverse document frequency) is a numerical representation of 
a word's importance i n a document or a collection of documents. It is commonly used in 
information retrieval tasks [29]. 

In T F - I D F , the term frequency ( T F ) of a word is the number of times that word appears 
in a document, which corresponds to the output representation of the bag-of-words method. 
The inverse document frequency ( IDF) of a word is a measure of how rare or common that 
word is i n a collection of documents. The product of these two values is used to represent 
the importance of a word i n a given document. The relative frequency of the term TF is 
calculated as 

TF(t, d)= f t ' d , 

where ft d is the raw count of the term t i n the document d, and the denominator is the 
sum of a l l terms in the document d. The part of I D F can be calculated as 

N 
IDF(t, D) = log 

l + \{d£ D :t £ D}\' 
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where iV is the total number of documents i n corpus D. The denominator in this case 
counts the number of documents i n which the term t appeared at least once. The final 
equation is the product of the T F and I D F parts: 

TF-IDF(t, d, D) = TF(t, d) • IDF(t, D) 

The idea behind T F - I D F is that words that are more common i n a given document 
are considered more important , while words that are common across a l l documents are 
considered less important . Th is allows the representation to capture the relevance of a 
word to a part icular document, while also taking into account the overall context of the 
corpus. This concept is especially important , as words wi th high frequencies across a l l 
documents (e.g. „ the" , „a", „more" , etc.) are being penalised and considered less relevant. 

This form of representation is often used i n N L P tasks such as document classification, 
clustering, and search, as it can provide a more accurate representation of a document's 
content compared to other methods that only consider the raw frequency of words. 

Neural Representation 

Distr ibut ive representation of documents using neural autoencoders refers to the process of 
learning a low-dimensional, dense vector representation of a document while preserving its 
syntactic and semantic information. The motivat ion behind this approach is to overcome 
the l imitat ions of t radi t ional bag-of-words models, which fail to capture the meaning and 
context of a document [22]. 

The architecture of a neural autoencoder for document representation consists of two 
main components, an encoder and a decoder. The encoder maps the input document to a 
low-dimensional vector and the decoder generates a reconstruction of the input document 
from this vector. The t ra ining objective of the autoencoder is to minimise the reconstruction 
error between the input document and the output generated by the decoder. Mathemat i ­
cally, this can be formulated as minimis ing the following objective function: 

mm\D-ge(MD))\2, 
u 

where 9 are the parameters of the encoder and decoder, fe(D) is the encoding function, 
and ge(fe(D)) is the decoding function. Note that concrete implementations of both encoder 
and decoder parts can vary depending on the selected neural network architecture and 
the form of input data. Figure 2.4 shows the general high-level overview scheme of this 
architecture. 

The t ra ining can be done i n an unsupervised fashion, hence the corpus does not need to 
contain annotations for input data. Once trained, the autoencoder can be used to obtain 
distr ibuted representations of new documents by passing them through the encoder and 
using the resulting vector as a representation of the document. T h i s representation can 
later be used for various N L P tasks, such as classification or summarizat ion. 
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MLP tasks 
(e.g. classification) 

• * * 

Document embedding 
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Figure 2.4: The general encoder-decoder architecture, where pn is an element from the 
input sequence i n the form of word/paragraph embedding vector and pn stands for the 
predicted word/paragraph embedding vector from the decoder. 

2.4 Artif icial Neural Networks for N L P 

Art i f i c i a l neural networks ( A N N s ) have become a popular tool i n natural language pro­
cessing due to their abi l i ty to automatical ly learn complex patterns i n data. A N N s are a 
type of machine learning model that is inspired by the structure and function of the brain, 
consisting of a large number of interconnected processing nodes, or neurons. In N L P , these 
neurons can be trained to process and analyse linguistic data, such as words, sentences, and 
paragraphs, to perform tasks such as language translation, text classification, or sentiment 
analysis. In this chapter, we w i l l explore the basic principles of A N N s and how they can 
be applied to N L P tasks. 

Neuron 

A neuron, also known as a „node" or „uni t , " is a basic bui ld ing block of a neural network. 
It receives input from other neurons, processes this input using a set of mathematical 
operations, and produces an output that can be passed on to other neurons or used as the 
final prediction of the network [1]. Neurons are organised into layers, w i th the input layer 
receiving the raw data and the output layer producing the final prediction, and the layers 
in between being called „h idden layers". The computat ion performed by a node is typical ly 
a simple mathematical operation, such as a dot product of the input w i th a set of weights 
and an optional bias term, followed by an act ivation function. The base scheme is shown 
in Figure 2.5. 

Activation Function 

The activation function is a fundamental component of art if icial neural networks. It is a 
mathematical function that is applied to the output of each neuron i n the network, and 
its pr imary purpose is to introduce non-linearity into the network, which is crucial for the 
network's abi l i ty to learn and model complex patterns i n data [1]. C o m m o n examples of 
activation functions that are widely used in neural networks include the hyperbolic tangent 
function, the sigmoid function (Figure 2.6b), and the rectified linear unit ( R e L U ) function 
(Figure 2.6a). Sometimes, the activation function is also known as the squashing function, 
as it can be used to l imi t the ampli tude of the output [12]. These functions are chosen 
based on the specific requirements of the network and the nature of the input data. 
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Input layer Bias 

Activation function 

X 
A{x) A{x) 

Figure 2.5: A n example of a single neuron, the base unit of neural network models, where 
xn are input values (they could be produced by other connected neurons), wn are weights, 
x is an element-wise product ( X ^ L i x%wi) + The activation function is denoted as A and 
its output as y. 

Training Process 
The t ra ining process of a neural network involves adjusting the weights of the network to 
make predictions that are as accurate as possible on a given data set. Th is is typical ly done 
using a backpropagation algori thm [1]. Th is a lgori thm starts by performing a forward pass 
through the network, where the input is passed through the network to obtain the predicted 
output. The error (also called loss) is then calculated by comparing the predicted output 
w i th the desired output, also called the „g round t ru th" . The loss is then propagated back 
through the network and the weights are adjusted in order to reduce the overall error. This 
process is repeated for a number of iterations unt i l the error converges to a min imum. 

There are many error functions that can be used for various tasks. For example, one of 
the typical ly used error functions for a regression problem can be the mean squared error 
( M S E ) function. M S E measures the squared Eucl idean distance between the predicted and 
desired output and is defined as 

ReLU Func t ion 

I i i i 1 i 1 i—I S igmoid Funct ion 

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 

(a) R e L U Function (b) Sigmoid Function 
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EmSE = 7 ^ ^Z(Vi ~ ti)2 

i=l 

where n is the number of t ra ining examples, yi is the output predicted for the ith t ra ining 
example and ti is the desired output for the ith t ra ining example. 

The weights are adjusted using the gradients of the error function w i t h respect to the 
weights, computed using the chain rule of differential calculus. Gradients are computed in 
the backward direction, starting from the output node, which is called the backward phase 
of the algori thm. The detailed description of the entire gradient computat ion process can 
be further studied i n [1]. 

Once the gradients are computed, it is necessary to somehow update the weights. Taking 
into account the simple perceptron, whose parameters correspond to W = (u>i, ...,wn), the 
simple technique called gradient descent can be applied as follows: 

_ _ dE dE — — dE 
W - a ( — , - — ^ W 4= W -

where E is an error (loss) function and a is a learning rate parameter that determines the 
significantness of the updates. The notat ion above shows an update for only one neuron 
in the entire network, and to update the entire model, this update has to be done for a l l 
neurons. 

Transfer Learning and Fine-tuning 
Transfer learning refers to the idea of using knowledge or information learnt by a model on 
a task to improve the performance of the model on a different but related task. Th is can 
involve using the weights and biases of a pre-trained model as the start ing point for t raining 
a new model on a different data set, or it can relate to using the learnt features from the 
pre-trained model as input to a new model . Transfer learning can be a powerful tool in 
deep learning since it allows models to leverage the knowledge learnt from previous tasks to 
improve their performance on new tasks and can often lead to better results than t raining 
a model from scratch. This approach can also be used when annotated data for certain 
domains are not available, but highly effective models for the same task have already been 
trained in different domains [2]. 

Fine- tuning is a type of transfer learning that refers to the process of adapting a pre-
trained model to a new task or data set, by adjusting the weights and biases of the model 
and adding addi t ional layers to the network. Fine- tuning is a common approach i n deep 
learning, where pre-trained models are often used as the start ing point for developing new 
models since it can save a significant amount of t ime and resources compared to t ra ining a 
model from scratch. There is a broad underlying theory on transfer learning that can be 
further studied i n [34]. 
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Architecture Types 

There are a few popular types of neural network architecture that can be used for N L P 
tasks, and the best one to choose can depend on the specific problem to be solved or the 
environment i n which it has to work. For N L P tasks, in general, the input of the neural 
network is commonly a sequence of tokens or vectors (embeddings). For this purpose, 
architectures capable of processing sequences were designed, and nowadays some of the 
most used architectures are [40]: 

1. Recurrent neural networks ( R N N s ) , which are well suited to processing sequential 
data, such as text. R N N s can be unrolled i n t ime to process long sequences and can 
include variations such as long-short-term memory ( L S T M ) and gated recurrent units 
( G R U s ) that help improve their abi l i ty to learn long-term dependencies. 

2. Convolutional neural networks ( C N N s ) , which are designed to process data w i t h 
a grid-like structure, such as images or text represented as a sequence of words i n a 
sentence. C N N ' s use convolutional layers, which apply a set of filters to the input 
data, to extract local features and create a hierarchical representation of the data. 

3. Deep contextualised language models, which t ry to capture the context of the en­
tire input sequence. One of the proposed methods was E L M o (Embeddings from L a n ­
guage Mode l ) , which was constructed from bidirect ional L S T M s to produce context-
rich embeddings [40]. Another successful proposal was B E R T (Bidirect ional Encoder 
Representations from Transformers), which is a type of neural network architecture 
based on self-attention mechanisms. These types of language model are considered 
highly universal, and their pre-trained variants are often fine-tuned for many different 
downstream tasks [4]. 

Recurrent Neural Networks 

A recurrent neural network is a type of art if icial neural network that is well suited for 
processing data wi th sequential dependencies, such as t ime series or natural language. 
Unl ike a t radi t ional feedforward neural network, which maps a fixed input to a fixed output, 
an R N N takes a variable-length input and produces a variable-length output, al lowing it 
to make predictions for various sequence-to-sequence tasks, such as machine translat ion or 
text generation [1]. 

A t the core of an R N N is the recurrent unit , which processes a single element of the 
input sequence and maintains a hidden state that captures information about the elements 
that have been processed so far. Th is hidden state is passed from one recurrent unit to the 
next, al lowing the model to use the information it has learnt from previous input elements 
to make more informed predictions about the next element i n the sequence. 

One of the key advantages of R N N s is that they can learn temporal dependencies i n the 
data, al lowing them to make predictions based on information that is far away from the 
current input element. Th is makes them well-suited for tasks such as language modell ing, 
where the meaning of a word can depend on the words that come before and after it in a 
sentence. In the standard R N N architecture, the information is passed forward, meaning 
that one input in a sequence has context only from its predecessors. To also gain context 
from successors, a modified version of R N N called Bidi rec t ional R N N can be used to capture 
context from both sides. However, this modification greatly increases the computat ional 
t ime needed to perform both passes throughout the network. 
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There are also some difficulties when it comes to t raining. One of the main challenges 
wi th the t ra ining process is the problem of vanishing/exploding gradients, where the gra­
dients computed dur ing backpropagation tend to become smaller/greater w i th each time 
stamp as they are propagated back through time, making it difficult for the network to 
learn long-term dependencies [1]. This can be addressed using techniques such as gradient 
c l ipping or long-short-term memory ( L S T M ) units, which use gates to control the flow of 
information through the network and help prevent the gradients from vanishing. 

Convolutional Neural Networks 

A convolutional neural network ( C N N ) is a type of artificial neural network that is designed 
to process data w i th a grid-like structure, such as an image or a sequence of words. C N N s 
use convolutional layers, which apply a set of filters to input data, to extract local temporal 
features [1]. 

The convolutional layers operate on smal l patches of the input data, applying the same 
set of filters at each locat ion to create a feature map. These feature maps are then combined 
using a nonlinear function, such as R e L U , to create a new set of feature maps that capture 
more complex patterns i n the data. This process is repeated mult iple times, each successive 
layer of C N N learning to extract more abstract and higher-level features from the input 
data. In the context of N L P , processing text data i n this way can be called the N - G r a m 
feature detector [48], as the convolutional filter can be viewed as a local context window. 

In addi t ion to convolutional layers, C N N s also typical ly include pool ing layers, which 
are used to downsample feature maps and reduce the spatial dimensions of the data. Th is 
can help reduce the computat ional complexity of the network and make it more robust to 
small translations or deformations i n the input data. 

Transformers 

Transformers are a type of neural network architecture that was introduced i n the paper 
„At t en t i on is A l l Y o u Need" [43]. Unl ike t radi t ional R N N s , which process input sequentially 
in a way that is difficult to parallelise, transformers are more parallelisable, which makes 
them part icular ly well suited for tasks that involve large-scale training. 

A t the core of the transformer architecture is the self-attention mechanism [43] which 
allows the model to „ a t t e n d " to different parts of the input sequence at different times, 
weighting the different input elements based on their relevance to the current output pre­
dict ion. Th is allows the model to learn dependencies between input elements that are far 
apart i n the sequence, and to create a more global representation of the input data. 

In addi t ion to the self-attention mechanism, transformer models also use multi-head 
attention [43], which allows the model to learn mult iple different representations of the input 
data in parallel, and feedforward layers, which map the input data to a higher-dimensional 
space before making predictions. 

B E R T 

Bidi rec t ional Encoder Representations from Transformers ( B E R T ) is a language represen­
tat ion model that uses unlabelled text data to produce embeddings, while capturing the 
context from the left and right directions of the input text [9]. It is based on the Transformer 
architecture and can be fine-tuned on a variety of downstream natural language processing 
tasks, such as question answering, sentiment analysis, and named entity recognition, to 
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achieve state-of-the-art performance [9]. In addi t ion, several extensions of B E R T have been 
developed that use different pre-training strategies such as R o B E R T a [23], A L B E R T [17], 
D e B E R T a [13], E L E C T R A [7] and others, to further improve its performance. 

B E R T uses the masked language modell ing ( M L M ) objective during the pre-training 
process. The idea behind this objective is to randomly mask the input tokens by replacing 
the original token wi th a special [MASK] token, and let the model predict the original tokens 
according to the context [9]. Us ing this technique, the model can learn highly complex 
general language representations to generate embeddings that can be used to fine-tune the 
new model on any downstream task. In addi t ion to M L M , the model is also jo int ly trained 
on the next sentence prediction (NSP) objective. A t t ra ining time, the input sequence 
consists of two sentences, separated by the [SEP] token, while the second sentence may 
or may not be the following of its predecessor. The goal is to predict whether the second 
sentence follows the first. For this purpose, the special [CLS] token has been introduced, 
which is present at the beginning of each input sequence. The output representation of 
the [CLS] token can be used as input for downstream tasks that require a general encoded 
context of the entire input sequence, for example, sentiment analysis or categorisation task. 
More details about B E R T can be found i n [9], the original B E R T paper. 

2.5 Text Classification 

Text classification is the task of assigning predefined categories or labels to a given text. It 
is a fundamental problem i n natural language processing and has various applications, such 
as sentiment analysis, spam detection, topic categorisation, or named entity recognition. 
In general, there are mult iple scopes for classification, as the task can be performed at the 
following levels [16]: 

1. Document level: In document-level classification, the task is to assign categories or 
labels to a given complete document. For example, documents can be classified by 
its type to dist inguish among academic articles, news articles, legal documents, etc. 

2. Paragraph level: In paragraph-level classification, the task is to assign categories or 
labels to a given paragraph wi th in a document. Examples include classifying customer 
reviews or identifying the main topic of graph wi th in an article. 

3. Sentence level: In sentence-level classification, the task is to assign predefined cat­
egories or labels to a given sentence wi th in graph. This context could be used 
for use cases such as sentence-level grammar checking. 

4. Sub-sentence level: In sub-sentence level classification, the task is to assign cate­
gories or labels to specific parts of a given sentence or the tokens themselves. Examples 
include named entity recognition, part-of-speech tagging, and coreference resolution. 

The task can be divided into mult iple pipeline stages that are followed to create a model. 
General steps include text preprocessing, feature extraction, classification, and evaluation. 
The following is a brief overview of each step in the pipeline [16]: 

1. Text preprocessing: Th is step involves cleaning and preparing the text data for 
further processing. The techniques used i n this step include removing stop words, 
stemming, and lemmatisation, and removing special characters and numbers. 
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2. Feature extraction: Th is step involves extracting features from the text data that 
w i l l be used for classification. Techniques used i n this step include bag-of-words, 
term frequency-inverse document frequency ( T F - I D F ) , and word embeddings such as 
word2vec and GloVe . In state-of-the-art approaches, the encoder part of a transformer 
can be used to extract these features. 

3. Classification: Th is step involves using the extracted features to classify the text 
data into different categories. Classical techniques include decision trees, the Naive 
Bayes Classifier ( N B C ) , the Support Vector Machine ( S V M ) , or the k-nearest neigh­
bours clustering algori thm. Deep neural methods include convolutional neural net­
works ( C N N s ) , recurrent neural networks ( R N N s ) , or transformer-based architectures, 
such as B E R T or R o B E R T a wi th a classification layer (head). 

4. Evaluation: Th is step involves measuring the performance of the classification model 
using metrics such as precision, recall, and the F l score, which are common metrics 
for any classification task. 

The following sections w i l l discuss i n more detail the relevant approaches we used in 
our work wi th respect to the specific tasks we focused on. The problem domains described 
in Sections 2.6 and 2.7 are specific cases of text classification. 

2.6 Content Categorisation 

In this chapter, we describe the common methods for the content categorisation task. The 
first and second methods are a common approach to classification i n many domains that 
work wi th artificial neural networks, while the th i rd is unique to N L P . 

Softmax Classifier 

The softmax classifier is a commonly used classification method i n machine learning that 
involves combining a neural network model (in our use case, the encoder) w i th a classifi­
cation head that uses a softmax function to produce the final prediction. The encoder is 
responsible for transforming the input data into a lower-dimensional representation, while 
the classification head is responsible for predict ing the class labels based on the encoded 
features. The encoder can be any neural network architecture, but we focus main ly on 
state-of-the-art encoders based on the B E R T architecture described i n Section 2.4. 

Once the encoder has been pretrained, a classification head is added to the network. 
The classification head typical ly consists of a fully connected layer followed by a softmax 
activation function, however, the head itself can be even more complex neural network on 
its own. The fully connected layer takes the encoded features as input and maps them to 
a set of class probabilities, while the softmax function normalises the class probabilit ies to 
ensure that they sum to 1. The class that has the highest probabil i ty is then considered 
the final prediction. More information on softmax itself or other functions used for output 
distributions can be found i n [11]. 

Dur ing training, the optimiser adjusts the weights of the model according to a cross-
entropy loss function, which measures the difference between the predicted class probabil i ­
ties and the true class labels. There are two important properties of this type of classifiers 
to consider: 
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1. F ixed labels: The model w i l l learn to predict a concrete number of labels depending 
on the size of the final output layer. 

2. Supervised training: In order to t ra in this type of classifier, a suitable data set has 
to exist in the desired domain that includes examples for a l l the required classes. 

Sigmoid Classifier 

The sigmoid classifier is a classification method that can be used when a sample can belong 
to mult iple classes at the same t ime. The methodology is the same as w i th the softmax 
classifiers, as the difference is in the handling of the final output layer of the classification 
head. Unl ike softmax, each label is treated independently and a separate sigmoid activation 
function is used for each class to produce a probabil i ty that the class is present. Dur ing 
training, the optimiser adjusts the weights of the model according to a binary cross-entropy 
loss function for each class. Note that this approach can be easily converted to a simple 
binary classification problem, when the output contains only a single class. 

Natural Language Inference 

Natura l Language Inference (NLI) is a fundamental task i n natural language processing that 
involves determining the relationship between two given text fragments. The goal of N L I 
is to infer whether the relationship between the two text fragments is one of contradiction, 
entailment, or neutrality. 

The two given text fragments are typical ly referred to as the „premise" and the „hypothes i s . 
The premise is the first text fragment that provides context or information, while the hy­
pothesis is the second text fragment that contains an assertion or c la im that is being 
evaluated i n relation to the premise. 

To perform N L I , a machine learning model is t rained on a large data set of text pairs, 
each labelled wi th one of the three possible relationships. The model learns to identify 
the linguistic features and semantic relationships that are indicative of each relationship 
and then applies this knowledge to new pairs of texts to make predictions. The common 
data set used to t ra in these models is the Standford Na tu ra l Language Inference (SNLI) 
Corpus [5], which includes triplets of the premise, hypothesis, and label for each entry. 
For each premise in the data set, there are a to ta l of 3 premise-hypothesis pairs for each 
of the following labels: (entailment, neutral, contradiction). In Table 2.1, there are a l l 3 
hypotheses for the premise „Two doctors perform surgery on patient." that has been taken 
directly from the S N L I 1 data set. 

Hypothesis Labe l 
Doctors are performing surgery. Entai lment 
Two doctors are performing surgery on a man. Neut ra l 
Two surgeons are having lunch. Contradic t ion 

Table 2.1: A n example of the t raining sample taken directly from S N L I data set for premise 
„Two doctors perform surgery on patient.". 

If the hypothesis is cleverly constructed, the model can serve as a classifier to predict 
the categories. A n example of a classifier made of this type of model can be seen i n Figure 

x h t t p s : //nip.stanford.edu/projects/snli/ 
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2.7. However, this approach has some specific drawbacks caused by the properties of the 
t ra ining objective. A l t h o u g h the common softmax classifier would contain a part called 
classification head, which contains the outputs of a l l defined categories, the N L I method 
can output the prediction for only one category at a t ime. This leads to the fact that the 
classification of a single premise requires inference to be made iV times, where iV is the 
number of categories. This drawback is compensated for the abi l i ty to choose any desired 
label and even change categories at run-time when needed. 

Hypothesis: The text provides information about [label] 

I The text p rov ides in format ion abou t w e a p o n s . 

I The text p rov ides in format ion abou t d r u g s . 

I The text p rov ides in format ion abou t d e l i v e r y . 

Entailment 

1.0 

@Shadown, I have answer you on agora, please be patient just a l i t t le longer, unforseen 
circumstances have delayed a lot o f m y shipments. I do appreciate your patience and you 
reserving comments, it w i l l pay dividends. @visualised. You have order $200 wor th o f A m m o , 
once again just l ike the gun, hal f o f what the cost was, since you ordered a week ago, you have 
sent me 67 messages, I can't help but believe you are another L E buyer t ry ing to keep tabs on 
me.... 

0.0 

Contradiction 

Figure 2.7: A n example of a classifier made from the model trained on the N L I task. 

2.7 Named Enti ty Recognition 

Named En t i t y Recognit ion ( N E R ) is a fundamental task i n natural language processing 
that involves identifying and categorising named entities in text, such as names of people, 
organisations, locations, and other trained categories. It belongs to tasks recognised as a 
sequence tagging [14], which is a form of text classification performed at the sub-sentence 
level, as already divided i n the section 2.5. Figure 2.8, visualises the example output of the 
N E R model . 

I wi l l sell 2 more guns ffllffflfl on Agora BffflHiEffi that I have posted and I am done. Good luck to these 

Blackmarkets, I hope they have a lot of success and they play a part in removing the tyranny in the 

wor ld . God Bless! 

Figure 2.8: A n example of N E R performed on a piece of text from the darknet market 
domain. The words „guns" and „Agora" were classified as entities belonging to the product 
and corporation categories respectively. 
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The goal of N E R is to correctly label each word or phrase i n a given text w i t h its 
corresponding entity category. This requires a machine learning model that can learn to 
recognise the patterns and features that are indicative of each category of entities. Such 
models typical ly use techniques such as condit ional random fields ( C R F ) [14], support vector 
machines ( S V M ) [10], or deep neural networks, such as L S T M [14] or B E R T [9] to perform 
classification. In our work, we focus mainly on state-of-the-art approaches that use models 
based on the transformer architecture, namely B E R T . 

2.8 Webpage Content Extraction 

Webpage content extraction is the process of automatical ly identifying and extracting rel­
evant content from web pages, which can include textual information, such as headlines, 
body text, and metadata, as well as mul t imedia elements, such as images, videos, and audio 
files. Ex t rac ted content can be used for a variety of applications, including web search, data 
analysis, and content curation. 

Web pages are typical ly created using an X M L - b a s e d markup language, such as H T M L , 
and the structure of a web page is defined by the Document Object M o d e l ( D O M ) , which 
represents the page as a hierarchical tree of elements. To extract content, various techniques 
and tools are available, such as regular expressions, X P a t h , C S S selectors, and machine 
learning-based approaches. In this chapter, we explore the fundamentals of how webpages 
are defined and structured and what tools are available for extracting their content. 

H T M L 

H T M L (HyperText M a r k u p Language) is a markup language that is used to structure and 
format the content of web pages. It employs a system of tags and attributes to define various 
elements on a webpage, such as headings, paragraphs, images, and l inks. These elements 
can be styled and arranged using C S S (Cascading Style Sheets) to control the webpage's 
appearance and layout. Web browsers parse the H T M L code to display its content to the 
user. 

The language was first officially released in 1991 [47] as a way to format and structure the 
content of web pages. Since then, it has become the standard language for web development 
and is used by v i r tua l ly a l l websites. The current standard is H T M L 5 , which introduced 
numerous quali ty of life features such as audio and video support, new semantic tags, basic 
rendering wi th <canvas>, val idat ion of forms, and more [25]. 

H T M L consists of a set of tags and attributes that can be used to define different 
elements. These elements define different components of a webpage, such as paragraphs, 
images, and hyperlinks. Typical ly , an element includes a start tag, inner content, and 
an end tag. For instance, the <p> and <div> tags are examples that follow this pattern. 
However, there are also exceptions that do not contain any content and do not require 
an end tag. These are referred to as empty elements, such as the <br> and <img> tags 
[46]. A l though the <img> tag is used to display an image, information about the image is 
provided through its attributes. 

The attributes are used to provide more information about an element and always 
appear i n the starting tag. Typical ly , an attr ibute is composed of a name/value pair [44]. 
For instance, the <img> tag requires a l ink to the image and an optional description, which 
appears instead of the image when it fails to load. A n example can be seen i n Figure 2.9. 
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<img src="../images/cat.png" alt="Cat s i t t i n g on a mat."> 

Figure 2.9: A n example of an H T M L <img> tag that is used to insert an image into a 
webpage. The tag includes the src at tr ibute that specifies the locat ion of the image file. 
The a l t at tr ibute provides alternative text that is displayed i f the image does not load. 

Tags can be combined and nested to create complex and structured web pages, as shown 
in Figure 2.10. In addi t ion to defining the structure and content of a web page, H T M L 
can also be used to add interactivi ty using technologies such as JavaScript. Th i s allows 
developers to create dynamic and interactive web experiences that can respond to user 
input and change over t ime. We w i l l not describe these interactive elements any further as 
it is out of the scope of this work and irrelevant to the context of the content extraction 
problem. 

<html> 
<head> 

<title>My Webpage</title> 
</head> 
<body> 

<hl>Header K/hl> 
<p>This i s some text i n a paragraph tags.</p> 
<div> 

<ul id="myList"> 
<li>List item K / l i > 
<li>List item 2</li> 
<li>List item 3</li> 

</ul> 
</div> 

</body> 
</html> 

Figure 2.10: A min ima l example of a webpage defined by the H T M L code. The html tag is 
a root element of the webpage that contains head and body chi ld elements. The purpose of 
the head element is to provide metadata about the webpage, while body encapsulates the 
visible content to the user. 

Document Object Model 

The W 3 C (World W i d e Web Consort ium) Document Object M o d e l ( D O M ) is a standard­
ised way to work wi th X M L - l i k e documents and is supported by most modern web browsers 
and programming languages [37]. It defines a set of interfaces, methods, and properties that 
can be used to interact w i t h the document. Th is standard can be separated into three parts: 

• Core D O M - shared among a l l document types. 

• X M L D O M - specification for X M L documents. 
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. H T M L D O M - specification for H T M L documents. 

Since we are mostly interested in the content extraction from web pages, i n the following 
section, we w i l l focus par t icular ly on the H T M L D O M standard. 

H T M L D O M 

H T M L D O M is a programming A P I for H T M L documents that defines a l l elements as 
objects and organises them into a tree structure. The root of the tree is the document, 
which contains a l l other nodes appearing on the webpage [37]. The H T M L D O M standard 
defines three ma in categories [45]: 

• Properties of a l l H T M L elements. 

• Methods to access a l l H T M L elements. 

• Events for a l l H T M L elements. 

Every element i n the document is represented by a node i n the tree, w i th an element 
node potential ly having chi ld nodes, which can be other element nodes or text nodes. The 
attributes of an element are also represented as separate nodes. The example of Figure 2.10 
visualised D O M tree can be seen in Figure 2.11. 

Document 

Element: 
<head> 

Root element: 
<html> 

Element: 
<body> 

Element: 
<head> 

Root element: 
<html> 

Element: 
<body> 

Element: 
<title> 

Element: 
<p> 

Element: 
<h1> 

Element: 
<div> 

Text: 
"My Webpage" 

Text: 
"This is some text in a 

paragraph tags." 

Text: 
"Header 1" 

Element: 
<ul> 

Attribute: 
"id" 

Element: 
<li> 

Element: 
<li> 

Element: 
<li> 

Text: 
"List item 1" 

Text: 
"List item 1" 

Text: 
"List item 1" 

Figure 2.11: Visual i sa t ion of the H T M L D O M tree, based on the code from Figure 2.10. 
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html/body/div/ul/li [pos i t ionO > 1] 

Figure 2.12: A n X P a t h query that addresses a l l items except the first one i n the list from 
Figure 2.10. The output of this query are two <li> elements w i th the values „List item 2" 
and ,£jist item 3". 

XPa th 

X P a t h refers to the X M L P a t h Language, which uses n o n - X M L syntax to address various 
parts of the X M L documents [31]. It can be used as a powerful way of navigating through 
the D O M of any X M L - l i k e language, including H T M L . X P a t h uses a path notation, similar 
to U R L s , to move through the hierarchical arrangement of an X M L file. To enable it to 
be used in U R I s and X M L attribute values, it adopts a syntax that is different from X M L 
itself [31]. 

X P a t h also has a number of useful features that make it a popular choice for X M L 
processing. For example, it supports a wide range of operators and functions and makes it 
easy to perform complex X M L data queries. A n example can be found in Figure 2.12. 

Available Tools 

Various tools are available for parsing and scraping websites using almost every modern 
programming language. Typical ly , these tools allow access to web pages, parsing them into 
a D O M tree following the W 3 C standard, and providing useful methods for searching and 
extracting content from the D O M . A s P y t h o n programming language is widely used for 
deep learning, we have decided to focus mainly on the technological stack based around the 
P y t h o n ecosystem. The following libraries can be used to parse web pages i n the P y t h o n 
programming language: 

• BeautifulSoup 2 : A P y t h o n l ibrary to pu l l data from H T M L and X M L files. It is a 
simple and powerful tool to extract data from web pages and is commonly used for 
scraping and data extraction. However, the BeautifulSoup l ibrary does not support 
X P a t h expressions for document navigation, which can be a disadvantage in certain 
scenarios. 

. html51ib 3: The pure P y t h o n l ibrary that is focused on the H T M L 5 standard, pro­
vid ing a simple and easy A P I for parsing up-to-date web pages. 

• lxml : P y t h o n l ibrary for parsing and processing H T M L and X M L documents. It is 
a b inding of the libxml2 and l i b x s l t C libraries and offers a powerful and highly 
efficient way to extract data from web pages. 

A l l of these libraries provide useful features for parsing web pages in Py thon . However, 
given the requirements for high processing speed and X P a t h support, most operations 
regarding the D O M manipulat ion w i l l be done using the lxml l ibrary. The explanation of 
the need for X P a t h support w i l l be further discussed in later chapters. 

2 h t t p s : //beaut i f ul-soup-4.readthedocs.io/en/latest/  
3 h t t p s : //html51ib.readthedocs.io/en/latest/ 
4https://lxml.de/ 
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Chapter 3 

System Design 

U n t i l this point we have covered key topics that are necessary to bu i ld the automatic content 
categorisation and extraction system of web pages. In this chapter, we outline the basic 
structure of the proposed system. W h e n designing the system, it is important to keep in 
mind the flexibility, maintainabil i ty, and performance of the system, as it should handle 
the wide range and amount of web pages wi th different structure and content types. 

3.1 Requirements Analysis 

The main purpose of the system w i l l be the categorisation of content from web pages, 
specialised i n darknet forums and marketplaces. Content analysis w i l l be performed at the 
level of posts or comments, and extracted entities and topic categories w i l l be stored in 
the database. W h i l e crawling these websites on the T O R network can be a difficult task 
by itself, the system w i l l not be responsible for scraping web pages, but w i l l work mainly 
wi th already crawled and archived data. However, it is important to allow for a possible 
extension of the system in this regard. 

The archived forums typical ly contain a series of snapshots from different t ime periods 
and many files, each representing a webpage accessible from any other element i n the 
website structure. G i v e n the nature of the data, the system must be scalable to process 
such quantities of data in a reasonable time. Furthermore, many pages crawled i n this way 
w i l l not be useful for the analysis, as not a l l pages contain the interaction between users or 
the content of interest. In fact, when analysing large-scale archives such as Darknet Market 
Arch ives 1 , most of the files produced by the crawler are not usable for this task at a l l . 

For the analysis task, state-of-the-art deep learning N L P methods w i l l be used. However, 
these methods are highly computat ional ly expensive and require a significant amount of 
resources. Therefore, it is necessary to p lan the dis t r ibut ion of the computing power wisely 
and split the entire processing pipeline into the following phases: 

1. F ind ing valuable files: The system w i l l iterate over each file and mark potential ly 
valuable files for further processing. 

2. Processing valuable files: Files marked as valuable w i l l be further subjected to a 
more complex and expensive analysis. 

These phases could be viewed as two separable map-reduce tasks, which would allow the 
system to use computat ional resources i n an effective and distr ibutive manner. 

x h t t p s : //www.gwern.net/DNM-archives 
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3.2 General Architecture 

The general architectural pattern used to bu i ld this system is client-server architecture. 
This pattern allows for the construction of highly flexible and performant applications, 
which can be easily deployed in both local environments and cloud environments w i th 
scalable computing resources on demand. The basic scheme of this architecture can be seen 
in Figure 3.1. 

Figure 3.1: Client-server architecture. 

Microservice Architecture 
One of the modern architectures based on the client-server pattern is a microservice archi­
tecture, also known as microservices. Microservices is a structure that models an applicat ion 
as a series of services that can be independently deployed, are loosely coupled, are organised 
around business capabilities, and are owned by a smal l team [36]. E a c h of these services 
can be viewed as a smal l appl icat ion that is responsible for a single function or process 
that can be easily described and understood. These services can communicate w i t h each 
other to cooperate and perform more complex tasks. Communica t ion is typical ly done 
through well-defined A P I s 2 over the network [39]. A n il lustrative example of an applicat ion 
composed of mult iple microservices can be seen i n Figure 3.2. 

Service 2 Service 5 

Figure 3.2: Illustrative example of a microservice architecture. 

2 Application Programming Interfaces 
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We propose using this architecture to bu i ld our system, because it is easily maintainable, 
scalable, and can be deployed anywhere w i t h the help of containerisation technologies, such 
as Docker 3 . 

The in i t i a l design of the system modelled as a component diagram can be seen i n Figure 
3.3. A t a high level, the system can be viewed as a collection of mult iple easily manageable 
components, where each component has clear and simple responsibilities for certain tasks 
and uses other components to achieve a common goal. The analogy wi th the microservice 
architecture is natural ly achieved as each component can be seen as a single independent 
service. 

1. Client: The client appl icat ion is responsible for sending requests to the back-end 
server and visualising the processed data to the user. The client can be almost 
anything that can construct an H T T P request and send it over the network to the 
A P I . 

2. Backend Server (API) : The back-end server can serve clients, providing them wi th 
data, and accepting requests for processing. 

3. Coordinator: The coordinator is responsible for managing the workload and the 
workers. D a t a w i l l be split into batches and sent to workers for processing. After 
processing is complete, the coordinator must retrieve a l l the results and ensure that 
the results are stored i n the database. 

4. Worker: Workers take orders from the coordinator and use the N L P engine wi th the 
parser to perform content categorisation and data extraction. 

5. N L P Engine: Provides access to deep learning models for content analysis and other 
features based on N L P methods. 

6. Parser: Parse files into a manageable format suitable for further analysis. 

7. Database: Handles requests for data storage and serves as an information provider 
for the back-end server and his clients. 

3.3 Database Structure 

The database is a key component of the system and must be versatile enough to handle 
a variety of web page data. The data w i l l be almost exclusively textual content that is 
included wi th in the elements that make up the entire web page. These elements can be 
grouped together i n a free way to compose more complex and meaningful pieces of content. 
For example, i f the subject of interest is forum posts, the ma in content of each post w i l l 
most l ikely be composed of the author's username, ti t le, and message. In general, any set of 
elements can represent an atomic piece of content, which means that the user must not be 
l imi ted to the content structure or format to be parsable by the system itself. Furthermore, 
not a l l elements may contain data that contribute to categorisation analysis i n any way. 
For example, the username does not include information relevant for categorisation, but 
can be useful for filtering content based on their authors. 

3 h t t p s : //www.docker.com/ 
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Figure 3.3: The overall architecture of the proposed system, modeled as a component 
diagram. 

Entity Relationship Diagram 
To achieve the required properties, the E n t i t y Relat ionship Diagram 3.4 has been proposed 
to serve as the basis for the database structure. Based on the requirements of the system 
and the database, we have identified the following entities: 

1. Content: In terms of the system, it is the ma in unit of information. The content 
entity groups a l l elements of interest together and links them to a specific file. Fur­
thermore, the property hash is introduced to prevent storing redundant pieces of 
content that were already parsed and analysed i n the past. The hash should be cal­
culated from the overall structure and textual content of a l l l inked elements. This 
can potential ly happen while parsing large web archives, which contain snapshots of 
the sites i n a t ime series. 

2. Attr ibute: A single at tr ibute is equivalent to the node (or a subtree) i n the D O M 
tree structure. The main properties of an attr ibute entity are content and tag. The 
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content property stores the textual content extracted from the node, and tag is 
an auxi l iary property that can be used for different purposes, such as enumeration of 
paragraphs, analysis errors for the concrete element, etc. E a c h at tr ibute can also have 
named entities and categories associated w i t h them, and it knows its type determined 
by the Attr ibute Type entity. 

3. At tr ibute Type: A n entity that determines the type of Attr ibute entity. Properties 
tag and name represent machine-friendly and user-friendly names, respectively. 

4. N a m e d Entity: The named entity represents a concrete entity found wi th in some 
attribute's content. It is a product of the analysis process called Named En t i t y Recog­
ni t ion. Each named entity belongs to an attr ibute entity and knows its type. 

5. N a m e d Ent i ty Type: The type of named entity defined by the properties name and 
tag, representing user-friendly and machine-friendly names, respectively. 

6. Category: Available category i n which the at tr ibute can be categorised. The relation­
ship between Attr ibute entity and Category must contain the relation Confidence 
Score associated wi th a certain category, which emerges as a product of the categori­
sation analysis part. 

7. File: Represents a file that has been parsed by the system. 

3.4 Design Summary 

So far, we have made important design choices for the system that aims to categorise the 
content of the web pages. Using state-of-the-art deep learning N L P methods, a user can 
perform content analysis and extract entities and categories that are stored i n a database. 
The system works wi th data already crawled and archived, and the architecture is designed 
to be scalable to handle large amounts of data i n a reasonable time. 

The system architecture is based on the client-server pattern and the proposed design 
uses microservices. The system is composed of mult iple components, each component hav­
ing clear and simple responsibilities for certain tasks and using other components to achieve 
a common goal. Components include a client, a back-end A P I server, a coordinator, worker, 
N L P engine, parser, and database. 

The database must be versatile enough to handle a variety of web page data, and the 
data w i l l be almost exclusively textual content that is included wi th in elements that make 
up the entire web page. These elements can be grouped together i n a free way to compose 
more complex and meaningful pieces of content. 

In conclusion, the proposed system is designed to provide a scalable, efficient, and 
flexible solution for content analysis and categorisation of darknet forums and marketplaces, 
or any other web page content from other domains. The microservice architecture is ideal 
for this task, and the proposed design provides a clear and simple approach to achieving 
the goals of the system. 
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Figure 3.4: The entity relational diagram for the system database. 
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Chapter 4 

System Implementation 

In this chapter, concrete implementat ion choices are described in more detail , covering 
minor changes and the expansion of the system capabilities. The system is implemented 
in an object-oriented manner, following the object oriented principles, which allows for the 
usage of the object-oriented design patterns. These patterns are used to implement the 
components of the system, as they help to keep the code simple and reusable. 

4.1 Environment and Tools 

The main programming languages used for implementat ion are P y t h o n and Typescript . 
P y t h o n is used for the server-side implementation, while Typescript is used for the client-
side implementation. The server-side implementat ion is based on the Flask 1 framework, 
while the client-side implementat ion is based on the React 2 framework. We use an open-
source relational database implementat ion called PostgreSQL3, and the database is accessed 
using the SQLA1 enemy1 object relational mapping ( O R M ) , which is a technique that maps 
data between an object-oriented programming language and a relational database. To make 
the development process feasible i n an iterative manner, we use Alembic' tool for database 
migrations to enable comfortable upgrade and fix of the database scheme. 

For deployment and orchestration, Docker is used to containerise the system components 
and Docker Compose to orchestrate the containers. Th is enables the system to be deployed 
on any machine that has Docker installed and allows the system to be orchestrated as a 
microservice architecture, where each component is deployed as a separate container. 

Regarding the versioning of the source code, we use Git to manage and track changes 
made to our codebase. Git is a popular dis tr ibuted version control system that allows 
efficient collaboration and easy management of different code versions. O u r G i t repository 
is hosted on GitHub', which is a Git hosting platform that provides a variety of useful 
features for managing software development projects. 

x h t t p s : //flask.palletsprojects.com/ 
2 h t t p s : //react.dev/ 
3 h t t p s : //www.postgresql.org/ 
4 h t t p s : //www.sqlalchemy.org/ 
5 h t t p s : //alembic.sqlalchemy.org/en/latest/ 
6 h t t p s : //git-scm.com/ 
7 h t t p s : //github.com/ 
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4.2 Project Structure 

The project directory consists of the following main files and directories: 

• R E A D M E . m d : Includes addi t ional information about the project and files or d i ­
rectories that are not specifically listed here. 

• config.py: A configuration file used to initialise the Flask applicat ion. It is shared 
across a l l microservices to provide a connection str ing for the database. 

• docker-compose.cpu.yaml and docker-compose.gpu.yaml: A Docker Compose 
files for running the project on a C P U and G P U machine, respectively. 

• docker-compose.cpu.debug.yaml and docker-compose.gpu.debug.yaml: A Docker 
Compose files to run the project on a C P U and G P U machine wi th the support for 
external debugging. This allows for easy and comfortable attachment of any external 
debugger (for the VS Code I D E , see the . vscode/launch. json configuration wi th 
already predefined attach options for a l l services). 

• webcat: A package containing the code for the ma in logic of the system. It includes 
sub-packages for the analyser, database, model_repository, parser, pipeline 
and template_engine. This package is available to a l l services. 

• webcat api: A directory containing the code for gateway A P I . 

• webcat client: A directory containing the code for web client. 

• webcat scheduler: A directory containing the code for scheduler service. 

• webcat worker: A directory containing the code for worker service. 

• webcat templates: A directory containing the code for templating service. 

Every directory wi th the webcat prefix is a fully independent implementat ion of a mi -
croservice running i n the Docker environment. The package webcat itself is distr ibuted 
among a l l these services, except client, which provides access to the implementat ion of 
the business logic for each service. The c l i e n t is implemented in the t ex t t tReac t 8 frame­
work, while api, scheduler and worker are Flask 9 applications. It is worth mentioning 
that the PostgreSQL 1 0 database runs together w i t h other services in the Docker environ­
ment, and its image is pulled from the Docker image registry while the project is being 
orchestrated by the Docker Compose11 tool . The running applicat ion scheme can be seen 
in Figure 4.1. Note that given the properties of the microservice architecture, multiple 
workers can be instantiated to fully occupy available computat ional resources, which could 
be beneficial in powerful cloud computing environments. 

8 h t t p s : //react.dev/ 
9 h t t p s : / / f l a s k . p a l l e t sprojects.com/en/2.3.x/ 

1 0 h t t p s : //www.postgresql.org/  
n h t t p s : //docs.docker.com/compose/ 
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Gateway API Worke rs 

Figure 4.1: Scheme of the fully orchestrated WebCa t applicat ion. 

4.3 Services 

This section w i l l focus on each ind iv idua l service and describe its purpose, responsibilities, 
and cooperation wi th other services. E a c h service exposes the R E S T A P I , providing unique 
functionalities for other services. D a t a exchange between services is always done wi th 
JavaScript Object Nota t ion ( J S O N ) payloads. 

A s mentioned above, a l l services are run separately as containers in a Docker environ­
ment. The base images used to bu i ld the containers £1X6 ctS follows: 

• python:3.11-slim 1 2: Used by a l l Flask applications. 

• node: 18.1513: Used by the React web client service. 

Gateway A P I 

The gateway A P I is the main and only entry to the features of the system, as it is exposed by 
the Docker environment to the public . A s i l lustrated i n Figure 4.1, the Gateway A P I service 
communicates w i th a l l other services to achieve the desired results requested by clients. In 
the majority of cases, this applicat ion serves as a proxy server whose responsibili ty is to 
forward requests to other services hidden wi th in the v i r tua l network of the containerised 
environment. 

Currently, the A P I also provides direct access to processed content stored wi th in the 
database wi th the various filtering options. However, this functionality is planned to be 
moved into its separate service, as it violates the facade principle, which we would like to 
fully enforce eventually i n the near future. 

Interface 

A s was mentioned before, the gateway A P I serves as a proxy for most of the features. For 
that reason, this section is split into 2 parts. The first part contains the list of a l l endpoints 
that are only forwarded for other microservices and w i l l be discussed further in more detail 
in the sections dedicated to the specific service they belong to. The second part covers 

1 2 h t t p s : //hub.docker.com/_/python 
1 3 h t t p s : //hub.docker.com/_/node 
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the unique feature for the gateway service itself, and thus is described i n more detail . The 
gateway A P I provides the following H T T P proxy endpoints for clients to use: 

. POST /api/vl/webcat i n t e r a c t i v e 

. GET /api/vl/webcat _files_parser 

. POST /api/vl/webcat _files_parser 

. GET /api/vl/webcat _templates/templates 

. POST /api/vl/webcat _templates/templates 

. DELETE /api/vl/webcat _templates/templates 

. POST /api/vl/webcat _templates/element_types 

. GET /api/vl/webcat _templates/element_types 

. DELETE /api/vl/webcat _templates/element_types 

. POST /api/vl/webcat _templates/engine 

. GET /api/vl/webcat _templates/engine 

A s mentioned above, the A P I also provides access to the results stored wi th in the 
database, while al lowing for the construction of filtering queries. 

GET /api/vl/webcat_data_provider 

Description: Lis ts a l l categories and named entity types recognised by the system. This 
information can be useful for clients to retrieve a l l categories and named 
entity types that can further be used as filtering options. 

Response: A J S O N object containing the following keys: 

• categories: A n array of strings wi th names of a l l categories. 

• entity_types: A n array of strings wi th names of a l l named entity 
types. 

POST /api/vl/webcat_data_provider 

Description: Provides access to the results i n the database and accepts filtering options 
for the required content. 

Parameters: The request body should contain a J S O N object w i th the following keys 
that specify the filtering options: 

• categories: A n array of the required categories. If no categories are 
specified, a l l categories w i l l be considered. 

• cat_threshold: A floating number value between 0 and 1 that sets 
the min ima l confidence threshold assigned to a category to be retrieved 
by the system. 

• entity_types: A n array of a l l the required named entity types that 
must be present i n the results. If not specified, these types w i l l not 
affect the filtering. 
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• f i le_paths: A n array of file paths from which the results should 
originate. A special symbol * can be used anywhere in the path as a 
wildcard, matching a l l files i n the subpath. 

• authors: Special option for filtering by authors. A n array of authors 
should be specified, and a l l content results containing an attribute 
wi th subword *author* as the attribute's type tag w i l l be matched 
against the list of authors. A l l names containing the author's name as 
a subword w i l l be matched as well. 

Response: A J S O N array wi th serialised database results compliant w i th the specified 
filtering options. 

DELETE /api/vl/webcat_data_provider 

Description: Removes a result entry from the database. 

Parameters: The request body should contain a J S O N object w i th the following keys: 

• id: A n identifier of the removed content entry. 

Response: Status code of the operation. 

Worker Service 

The responsibili ty of the worker service is to handle any of the following requests: 

• Interactive input: The user can send a raw text input for analysis that is handled 
as a single content fragment and processed through the processing pipeline. This 
feature can be useful for testing different hypotheses or labels and verifying the desired 
outcomes i n an interactive way. 

• Processing files: The worker w i l l process the given file or mult iple files i n the 
directory. The processing pipeline w i l l adjust different parsing strategies depending 
on the file type. 

The most important part of the worker is the processing pipeline, which has to be 
configured and init ial ised depending on the configuration included wi th in the incoming re­
quest. The worker has been designed wi th an emphasis on flexibility and expandability, 
thus processing pipeline was split into mult iple configurable sections that follows the strat­
egy pattern of the object-oriented design principles. Due to this approach, different parsing 
strategies and models can be loaded and swapped for each request. In addit ion, other file 
types, models, or preprocessing steps can be easily implemented and integrated into the 
system. The processing pipeline and workflow are discussed further in Section 4.4. 

Furthermore, the worker service can be instantiated as either a C P U - b a s e d or G P U -
based service. A l t h o u g h both types are inter-changable and capable of processing a l l sorts 
of requests, for larger models, it is recommended to use a G P U - b a s e d variant that can speed 
up the inference times significantly. 
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Interface 

POST /webcat_interactive 

Description: Th is endpoint provides access to the interactive worker service that can be 
used to analyse the input of raw text provided by the user. 

Parameters: The request body should contain a J S O N object w i th the following keys: 

• hypothesis_template: A string wi th a hypothesis template. 

• labels: A n array of strings wi th categorisation labels. 

• input: R a w text data that should be analysed. 

• models: A J S O N object that contains information on the selected 
models. 

Response: A J S O N object containing information about categories and named entities 
found wi th in the text input. 

GET /webcat_files_parser 

Description: Lis ts a l l available models integrated by the system. 
Response: A J S O N object containing information about the available models for both 

classification and N E R tasks, containing name, description, size, model 
repository path, task, and default flag for a l l available models. 

POST /webcat_files_parser 

Description: Sends a request to parse file(s) to the worker service. 

Parameters: The request body should contain a J S O N object w i th the following keys: 

• hypothesis_template: A string wi th a hypothesis template. 

• labels: A n array of strings wi th categorisation labels. 

• path: P a t h to the file(s) that should be analysed. 

• recursive: Explore files inside sub-directories as well. 

• save: Save the results to permanent storage (database). 

• models: A J S O N object that contains information on the selected 
models. 

Response: A J S O N array containing a l l extracted content fragments w i th the assigned 
categories and named entities. 
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Templates Service 

This service provides access to features related to templates, bo th their creation and their 
management. A detailed description of the templat ing process and the use case of templates 
w i l l be further discussed i n Section 4.5. Th is microservice can be split logically into main 
three resources it provides: 

• Templates Management: Provides a basic C R U D interface for templates. 

• Element Types Management: Provides a basic C R U D interface for the element 
types, which is the amotic part of each template. This enables the possibil i ty to define 
custom content attributes that can be used i n the templates to extract specific parts 
of content based on the needs of the user. 

• Template Engine: Provides access to the templat ing engine, which implements an 
automatic way of creating templates. 

Interface 

GET /templates 

Description: Lis ts a l l available templates stored i n the database. 
Response: A J S O N array containing a l l templates used by the system. 

POST /templates 

Description: Create a new template. 
Parameters: The request body should contain a J S O N object w i th the following keys: 

• template: A n object of the Template class created by the user or 
template engine. 

Response: Created object w i t h the assigned identifier. 

DELETE /templates 

Description: Remove the template from the database. 

Parameters: The request body should contain a J S O N object w i th the following keys: 

• i d : A n identifier of the template. 

Response: Status code of the operation. 

GET /element_types 

Description: Lis ts a l l available element types stored i n the database. 
Response: A J S O N array containing a l l the element types recognised by the system. 
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POST /element_types 

Description: Create a new element type. 

Parameters: The request body should contain a J S O N object w i th the following keys: 

• name: User-friendly name for the created type. 

• tag: Unique tag that w i l l be used by the system internally. 

• analysis_f lag: Determines whether or not the content fragment as­
sociated wi th this type should be analysed by the models. 

Response: Created object w i th the assigned identifier. 

DELETE /element_types 

Description: Remove the element type from the database. 

Parameters: The request body should contain a J S O N object w i th the following keys: 

• id: Identifier of the removed element type. 

Response: Status code of the operation. 

GET /engine 

Description: Lis ts a l l available template engines provided by the system. 

Response: A J S O N array of available template engine objects w i th the following keys: 

• name: Name of the template engine. 

• description: Descr ipt ion of the template engine. 

• requires_key: A flag indicates whether the template engine requires 
an access key or not (for example, to the remote A P I , such as the 
O p e n A I A P I ) . 

POST /engine 

Description: Creates a template proposal from the provided file. 

Parameters: The request body should contain a J S O N object w i th the following keys: 

• engine: Name of the engine that should process the file. 

• f i le_path: P a t h to file that is used for the template creation. 

• key: If the engine requires keys, they must be provided. 

Response: Template proposal object created by the template engine. 
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Scheduler Service 

The responsibility of the scheduler service is to manage access to the computat ional heavy 
resources and keep records of the system usage. The managed resource is the worker 
instances, which use language models that are computat ional ly expansive. The scheduler 
keeps track of a l l workers connected to the system and maintains the reservation table 
stored wi th in the database. 

For now, the scheduling system is fairly simple and works on the first-in-first-out ( F I F O ) 
principle. W h e n the reservation request is received, the first available worker w i l l be re­
served for the task. Note that it is the responsibility of the cal l ing service to release the 
reserved worker by cal l ing an appropriate endpoint on the scheduler service when the task 
is completed. 

The capabilities and scheduling strategies can be easily expanded i n the future, de­
pending on the addi t ional requirements on the system. One possible improvement includes 
smart reservations based on the requirements and complexity of the pipeline, which would 
distinguish between the need for C P U - b a s e d or G P U - b a s e d workers. 

Interface 

GET /webcat_scheduler 

Description: Lis ts a l l available workers connected to the system. 
Response: A J S O N array containing a l l workers and their statuses. 

POST /webcat_scheduler 

Description: Create a new reservation for the worker. 

Parameters: The request body should contain a J S O N object w i th the following keys: 

• type: E i the r „cpu" or „gpu", determines the type of worker. 

• f i le_path: P a t h to the file(s) that should be analysed. 

Response: Status of the reservation request, together w i th the information about re­
served worker. 

DELETE /webcat_scheduler 

Description: Release the worker from the reservation table. 

Parameters: The request body should contain a J S O N object w i th the following keys: 

• id: Identifier of the worker being released. 

Response: Status code of the operation. 
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Web Client Service 

To provide a comfortable way to interact w i th the system, we have implemented a graphical 
user interface (GUI) that provides natural access to a l l features provided by the gateway 
A P I . A s already mentioned, the client is implemented in the React framework which allows 
for bui lding responsive and dynamic user interface components. The React is a client-side 
framework, which means that the entire applicat ion runs i n the client's web browser. The 
app itself must be served by a web server, as for now we use the default development server, 
but migrat ion to a more production-suited web server implementation, such as NGINX14, w i l l 
be necessary i n the near future. The web client is logically split into the following sections: 

• Iteractive Parser: Provides access to the processing pipeline in an interactive way 
that allows testing of different hypothesis templates, category labels, and different 
models. The user can input any raw text data into the input window and inspect the 
results produced by categorisation and N E R models. 

• Files Parser: Th is section provides the same functionality as the Interactive Parser, 
but requires one to provide path to files instead of the raw input . W h e n the processing 
task is completed, the results are displayed together w i th summary statistics. 

• Template Maker: Th is feature enables the creation of templates. The user can 
choose between automatic and manual modes for template creation. The automatic 
approach uses the template engine to automatical ly create templates from files, while 
the manual mode allows users to load H T M L files directly onto the website and 
provides tools for content annotation. 

• Template Manager: It is a template management tool that provides an overview 
of the templates that are actively used by the parser. 

• D a t a Viewer: A useful tool for inspecting the results processed. The user can choose 
from a variety of filtering options and search wi th in the results. 

Screenshots of a l l sections are provided in the appendix A . 

4.4 Data Processing Workflow 

The data processing workflow of our system begins when the user interacts w i th the web 
client applicat ion, which communicates w i th the A P I . The user provides the system wi th 
the path to the file(s) to be processed and the configuration of the pipeline that w i l l analyse 
the content. If the path provided is a directory, the system automatical ly discovers a l l files 
w i th in that directory. The A P I then requests an u r l of a free worker from the scheduler 
service, which keeps a table of worker statuses i n the database. If a free worker is available, 
the scheduler reserves the worker by changing its status from „free" to „busy" and returns 
the U R L of the worker w i th a success status code. 

Once the worker reservation has been made successfully, the A P I sends a request to the 
reserved worker, which loads a pipeline based on the configuration provided by the user. 
The configuration contains information on the deep learning models that should be used for 
processing, together w i th addi t ional information, such as category labels, the hypothesis 
template, and whether the final results should be stored i n the database. 

1 4 h t t p s : //www.nginx.com/ 
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The pipeline includes a parser that requires templates for content extraction to be 
fetched from the database created by the templat ing engine, which w i l l be discussed further 
in the section on templating. The parser then parses the files i n parallel using the Joblib 
l ibrary and returns the fragments of the content found. The analyser component of the 
pipeline first uses a deep learning model trained on the textual entailment task to categorise 
each attr ibute of the content that is marked for analysis by the flag. Then it uses a named 
entity recognition ( N E R ) model to find named entities, and finally, the pipeline stores the 
content i n the database using O R M and returns a serialised response wi th the analysed 
content in J S O N format. 

Once the job is completed, the A P I requests the release of the worker from the scheduler 
service and returns the results to the client. The entire processing pipeline provided by the 
worker can be seen in Figure 4.2. 

Categories 

HTML 
T e m p l a t e -

b a s e d p a r s e r 

D a t a b a s e < - O R M 
R e s u l t 

s e r i a l i z e r 

N a m e d E n t i t y 

R e c o g n i t i o n m o d e l 

Named 
entities 

Figure 4.2: Processing pipeline executed by the worker service. 

4.5 Templating 

Templat ing is a key method of our system's data extraction process. To extract structured 
data from unstructured sources such as web pages, we match them against predefined 
templates. A template is a set of elements that must be present i n the source file to be used 
for extraction. These templates are stored in our database, and the parser w i l l attempt to 
match each template to the files that are being processed. The template entities stored in 
the database can be described by the E R diagram in Figure 4.3. 

The Template entity keeps the date of creation and the path to the origin file. Each 
template contains at least one element, but for the system to work efficiently and accurately, 
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Template 

PK id: int 

creation_date: DateTime 

origin_file: string 

Element Element Type 

PK id: int PK id: int 

FK1 type jd : int name: string FK1 type jd : int I name: string 

xPath: string tag: string 

classes: string analysis_flag: boolean 

Figure 4.3: E R diagram of the Template and associated entities. 

it is highly anticipated to create templates w i th as many Element entities as possible. The 
Element Type is an entity that tags an element w i th addi t ional information about its 
content. For example, Element Type can denote messages, titles, usernames, profile l inks, 
etc. It also contains an analysis_f lag attribute, which indicates whether the element's 
content should undergo further analysis or not. 

In our system, templates can be created i n mult iple ways. The user can either create 
templates manually wi th our special tool implemented in the client appl icat ion or the system 
can t ry to create a template in a fully automatic way. 

Manual Template Creation 

Creat ing templates manual ly is the easiest way to define templates because it allows the 
user to annotate specific parts of the web pages to extract any pieces of information that 
the user is interested in . We have implemented a tool i n our web client which allows parsing 
any H T M L file and rendering the structure of a web page into an interactive window. Each 
element of the original web page is expandable, and textual nodes are highlighted for better 
clarity. Each element can be annotated by selecting the desired annotation type from the 
selector above the interactive window and then cl icking on the element which should get 
annotated. The screenshot of our web client can be found in the Append ix A . 4 . 

Automatic Template Creation 
We tr ied to implement a convenient way of creating templates from H T M L files without 
the need for manual annotation. We focus only on the domain of web forums, where the 
content is logically split into posts or messages. The ma in structure of the post is always 
very similar to a l l other posts present on the web page. The key idea was to identify these 
repeating structures and find patterns, which would indicate the parent tag wrapping the 
repeating subtree wi th a high degree of similarity. 

The experiments were carried out using clustering techniques, for example, the K - M e a n 
clustering method. We calculate these clusters by constructing the vocabularies of the 
element tags and their classes Vt and Vc. T h e n we define a feature vector 

F=[t,C,Dt,Dc,d,n,l], 

where t is the index of the element tag i n the vocabulary Vt, C is a vector of indices of 
elements classes of the vocabulary Vc, Dt is a set of a l l descending tag indices from the 
vocabulary Vt, Dc is a set of a l l descending class indices from the vocabulary Vc, d is the 
depth of the element wi th in the D O M tree, n is the number of chi ld elements, and I is the 
length of the text content present wi th in the element, normalised by the text length from 
the entire web page. 
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I want you to act as a data extraction tool and extract post t i t l e s , 
post authors, and post messages from raw text extracted from HTML 
code of a forum website. The raw text i s separated by newline characters 
and the desired output i s a JSON array of objects i n the format 
[{"post-title": "some t i t l e " , "post-author": "some author", 
"post-message": "some message"]-]. Your task i s to segmentate the 
raw text and extract the required information from each segment. Do not 
modify the input i n any way, the output values must be id e n t i c a l with the 
input lines. 
The input i s : [TEXT] 

Figure 4.4: The prompt used by the C h a t G P T - 3 . 5 for performing the segmentation task 
on the extracted text data. The [TEXT] token appearing at the end of the prompt is being 
replaced by the extracted text. 

W h i l e clustering methods are able to form clusters w i th one of them representing the 
set of posts, without further val idat ion and guidance from the user it is difficult to identify 
the correct cluster and further segmentate the content without complex and highly biased 
heuristics, which made this method unusable for pract ical cases. 

4.6 Cha tGPT-dr iven Template Creation 

Given the recent advances i n generative language models and the release of highly successful 
O p e n A I 1 5 G P T - 4 and C h a t G P T - 3 . 5 models, we carried out experiments on the effectiveness 
of these language models i n the analysis of textual data from unstructured data sources, 
such as web pages. 

The main focus was on content segmentation, as we strived to identify content fragments 
and map them to specific H T M L elements. After experimenting w i t h the different prompts 
and input data formats, we have come up wi th a satisfactorily working solution. Suprisingly, 
passing the raw H T M L code to the language model d id not work, al though we assumed 
that it should be the most sufficient form, as it excels at overall code generation. 

The working solution is based on passing the raw textual data extracted direct ly from the 
parsed H T M L , represented by D O M . We intentionally preserved only the newline characters 
that denote the boundaries of the elements, while removing a l l newline characters from the 
text content itself. The prompt we have used can be seen i n Figure 4.4. 

To further reduce the number of tokens and reduce the overall cost and inference time, 
the context window has been introduced as part of the input preprocessing for the C h a t G P T 
model. To segmentate text and identify the repeating content fragments, such as posts 
or messages, and their logical structure, it is not necessary to pass the entire content of 
the webpage. In our method, we set a fixed m a x i m u m number of lines, as well as the 
max imum l imi t for characters that each line can include. We w i l l refer to these parameters 
as MAX_LINES and MAX_CHARACTERS_PER_LINE respectively. In general, the start ing lines 
of text extracted i n this way w i l l include many unnecessary data, such as the names of the 
navigation elements. To address this redundancy, we have decided to skip these lines to 
further save more tokens and w i l l refer to this parameter as INPUT_OFFSET. N o part icular 

1 5 h t t p s : //openai.com/ 
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strategy for setting the offset has been used, as the resulting algori thm does not take the 
location of the content into account. In general, we a i m to identify the repeating content 
fragments that can occur mult iple times in the webpage, and thus the relative posit ioning 
of these fragments does not matter. The resulting algori thm is described i n Figure 4.5. 

To provide more clar i ty about the input format that the model receives, we have pre­
pared the visualisation that can be seen i n Figure 4.6. The entire red area is the raw textual 
content extracted from a forum web page. The blank lines serve as a delimiter between 
content that was part of a separate textual node. W h e n formatting the text in this way, 
we can instruct the language model to pay attention to these g c tpS 5 ctS they potential ly 
represent an important delimiter between some logical sections of content. 

Parameters MAX_LINES and MAX_CHARACTERS_PER_LINE are subject to further testing 
and opt imisat ion to minimise the to ta l token spend, leading to faster response times and 
a lower cost of the overall process. In general, the goal is to provide enough clues for the 
model so that it can annotate the content as accurately as possible. 

4.7 Categorisation Model 

One of the most important parts of our system are the deep learning models used for content 
categorisation. We have focused on the natural language inference approach described in 
Section 2.6. Th is method is suitable for the domain of our focus, the darknet environment, 
as we lack a sufficient amount of annotated data. Since our work was mainly focused 
on the design and implementat ion of the automatic system for content categorisation and 
extraction, we have decided to outsource the models for now and constructed a flexible 
framework that makes it easy to add any addi t ional models in the future, al lowing the 
possibili ty for future research and development of custom models. 

A s for the models, we work mainly wi th the already pre-trained model of a P h . D . 
candidate researcher M o r i t z Laurer ( V U Amsterdam) [20], which is based on the Microsoft 
DeBERTA V3 architecture [13]. We have integrated two variants of the pre-trained models, 
DeBERTA-v3-large16 and DeBERTA-v3-base17. 

Another model of different architecture types that we integrated was bart-large-mnli 1 8 

based on the Facebook BART [21] architecture. However, given the poorer performance of 
this model on the M N L I data set and significantly longer inference times, we have chosen 
DeBERTA-v3-large as our base model for the categorisation task. For completeness, the 
accuracy on the M N L I data set according to [19] and [21] is the following: 

M o d e l Accuracy M N L I _ m (%) Accuracy M N L I m m (%) 
DeBERTa-v3- la rge 91.2 90.8 
DeBERTa-v3-base 90.3 90.3 

B A R T - l a r g e 89.9 90.1 

Table 4.1: Compar ison of Language M o d e l Accuracy on the M N L I Dataset 

'https: //huggingf ace.co/MoritzLaurer/DeBERTa-v3-large-mnli-f e v e r - a n l i - l i n g - w a n l i 
https: //huggingf ace.co/MoritzLaurer/DeBERTa-v3-base-mnli 
https: //huggingf ace. co/f acebook/bart- large-mnli 
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1. Ex t rac t a l l text from the webpage and remove a l l newline characters from the content 
of elements. Save the mapping between the text and their corresponding H T M L 
elements. 

2. Skip the first INPUT_OFFSET lines of extracted text. 

3. C u t the number of lines to a m a x i m u m length of MAX_LINES. 

4. C u t each line of text to a m a x i m u m length of MAX_CHARACTERS_PER_LINE. 

5. Send the text data i n the prompt from Figure 4.4 to OpenAI API and parse it using 
the ChatGPT-3.5-turbo model. 

6. Ex t rac t the identified segments from the model output. 

7. If mult iple entities were found, group values by segments. The segment refers to 
the type of the value, for example, t i t le, author or message. 

8. For each identified segment: 

8.1.1 M a t c h the textual values annotated by the model w i th the corresponding H T M L 
element from the stored mapping. 

8.2.2 Count the number of elements w i th equal X P a t h that were returned for current 
segment. 

8.3.3 Select the element w i th the highest number of occurences. If mult iple elements 
have the same count, keep a l l of them. These elements are referred to as can­
didate elements. 

9. For each identified segment: 

9.1.1 Use the stored X P a t h of each candidate element to retrieve a l l matching 
elements from the entire web page. 

9.2.2 The candidate element that was able to locate the highest number of nodes 
is selected as the template element. 

10. Construct the template proposal from a l l identified segments and their correspond­
ing template elements. 

Figure 4.5: The algori thm for automatic content segmentation from H T M L file, w i t h the 
usage of ChatGPT-3.5-turbo model. 
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Figure 4.6: Visua l iza t ion of the context window seen by the C h a t G P T 3.5 model. 

4.8 Named Enti ty Recognition Mode l 

We have decided to add the N E R model to our processing pipeline to enhance the data 
extraction process, producing addi t ional data that can be useful for further analysis. Fa­
mil iar isat ion wi th the N E R problem took place in Section 2.7. 

For the N E R model, we chose a s imilar pa th as w i th the categorisation models and 
outsourced the pre-trained model . However, we had to consider a different approach to the 
selection of the suitable model, as the N E R task is not as flexible as N L I and the set of 
entities that the model is capable of recognising had to be chosen carefully, as well as the 
data domain it has been trained on. 

We have found a promising and performant N E R m o d e l 1 9 provided by a tool T-NER 
[41]. This model is based on the RoBERTa architecture and is trained on the specialised 
TweetNER7 data set [42]. The TweetNER7 is made up of annotated posts (tweets) from 
the Twit ter social network. The annotations contain the following labels: corporation, 
creative_work, event, group, location, product and person. 

This data set is ideal for our use case of finding named entities wi th in posts on the 
darknet forums, as the domain is s t i l l different but quite similar in certain ways. One 
challenge we encountered while testing other models was the inabi l i ty to detect usernames, 
which are quite different from the names of real people. Models fine-tuned on the domain 
where usernames are commonly used natural ly perform significantly better in classifying 
usernames than other models trained on data sets containing annotations of the real names 
only. Another advantage of the Twit ter data set created by the authors is that it provides 

9 h t t p s : //huggingf ace.co/tner/twitter-roberta-base-dec2021-tweetner7-random 
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annotations for entities labelled product, which is not common for other conventional N E R 
data sets. The abi l i ty to detect certain products in conversations can be a great source of 
information for further content filtering, especially in the market environment, where users 
discuss or review products a lot. 
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Chapter 5 

Results 

In this chapter we summarise the results and outline possible directions for further work. 
The outcome of this work is a system called WebCat , which is a containerised applicat ion 
that can be deployed nearly anywhere and can be used for categorisation and extraction 
of the content located on the web pages. The source code and instal lat ion instructions are 
included on the attached memory medium. More information about its content and the 
l ink to N e x t C l o u d storage can be found i n the Append ix B . 

5.1 Comparison of Different Hypothesis Templates 

The key component of the N L I classifiers for categorisation are the hypothesis templates. 
The selection of the hypothesis can affect the results i n a significant way, and we have 
conducted experiments to search for the most suitable template that can be used for the 
text categorisation task. We have chosen the DeBERTa_v3-large model as the base model 
for our experiments, as the model performs the best of our inspected models i n the N L I 
task i n general, as shown i n Table 4.1. 

In the absence of suitable data sets for the darknet market domain, the experiments were 
carried out on a total of 2000 samples from the data set newsgroup 1 that was introduced 
i n [18]. The newsgroup data set is a well-known benchmark data set that is used for text 
classification tasks. It contains messages from various news groups posted in the early 1990s. 
The data set includes more than 20.000 documents, classified into 20 different topics, such 
as politics, sports, and religion. 

We have modified this data set by selecting and aggregating categories into its supercat-
egories, whenever possible, to eliminate the overlap of categories. For example, categories 
such as hardware, graphics, or ms-windows were merged into the computer super category, 
as the overlap of the common domains causes noise in our evaluation process, since the 
model can output mult iple categories, but the data set contains only one ground t ru th 
label for each sample. W h e n the sample is classified into concrete category, but the model 
also identifies some of the subcategories, the precision is negatively distorted. For this rea­
son, we have decided to split the data set only into the following diverse labels: medicine, 
computer, religion, sport, motorcycles, guns, forsale, cars, and politics. 

The evaluation of text classification algorithms often involves measuring the F l , Pre­
cision, and Reca l l scores. These scores are used to assess the performance of a model in 
terms of its abi l i ty to correctly classify instances into their respective classes. F l score is the 

x h t t p s : //huggingf ace.co/datasets/newsgroup 
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harmonic mean of precision and recall, which makes it a balanced metric for models that 
are good at either precision or recall but not both. Precis ion is the ratio of true positives to 
the total number of predicted positives, while recall is the ratio of true positives to the total 
number of actual positives. These scores can be calculated using the following formulas: 

Precision = TP/(TP + FP) 

Recall = TP/(TP + FN) 

Fl = 2 * ((Precision * Recall)/(Precision + Recall)) 

where TP represents true positives, FP represents false positives and FN represents 
false negatives. 

# Hypothesis Template F l Precision Recal l 
1 The text examines the topic of x i n depth. 0.782 0.720 0.855 
2 The topic of this text is x . 0.841 0.801 0.884 
3 The text provides information about x . 0.804 0.707 0.933 
4 The text discusses x . 0.838 0.771 0.917 
5 The text contains information relevant to x . 0.650 0.489 0.969 
6 The text provides insights into x . 0.694 0.553 0.931 
7 The text sheds light on x . 0.755 0.638 0.924 
8 The text explores x i n detail . 0.796 0.722 0.888 
9 This text covers the topic of x . 0.827 0.742 0.933 
10 The central theme of this article is x . 0.789 0.736 0.850 
11 The text provides a comprehensive analysis of x . 0.375 0.356 0.397 
12 The text covers the topic of x extensively. 0.798 0.713 0.905 
13 The pr imary subject matter of this article is x . 0.796 0.737 0.867 
14 The text delves deeply into the topic of x . 0.813 0.726 0.925 
15 The main idea presented in this text is x . 0.796 0.737 0.870 
16 The example is about x . 0.823 0.773 0.880 
17 The focus of this wr i t ing is on x . 0.811 0.753 0.879 

Table 5.1: Performance of different hypothesis templates on a newsgroup data set for the 
DeBERTa_v3-large model variant. 

A s can be seen i n Table 5.1, the selection of the hypothesis template can have a strong 
influence on the behaviour of the classifier. In general, the metric considered should mainly 
be the F l score, as it provides the op t imal balance between precision and recall metrics. 
However, the preferred metric can also depend on the task and the environment itself. If 
the main focus is on minimis ing the F P predictions (i.e., cases where the model does not 
output the positive label at all) , the preferred metric could be the recall. However, as can 
be seen i n Table 5.1, the hypothesis template w i th the highest recall performs much worse 
than others i n terms of precision. This observation indicates that the model predicts more 
than two labels as positive on average, most l ikely producing unnecessary noise. 

We recommend either the model w i th the highest F l score or the recall depending on 
the cri teria described above. However, we are also interested i n the #3 hypothesis w i th the 
second-highest recall, as the general precision is much better compared to the #5 hypothesis 
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for the only slight loss i n the recall metric. For this reason, the #3 hypothesis has been 
set as a default for the DeBERTa_v3-large model, but users are encouraged to t ry different 
well-performing hypotheses to see which performs best i n their domain of interest. 

For comparison, we have also evaluated the performance on the identical set of hypoth­
esis templates of the DeBERTa_v3-base model and the results are shown in Table 5.2. The 
results clearly demonstrate the general robustness and better performance of the large 
variant, as none of the proposed templates used by the base model was able to outperform 
or compete wi th the results i n Table 5.1. Furthermore, the #1 and #11 examples show 
the proneness of the base model to the inabi l i ty to perform the categorisation task, when 
certain unsuitable hypotheses are selected, demonstrating the generally better robustness 
of the large model. 

# Hypothesis Template F l Precision Recal l 
1 The text examines the topic of x i n depth. 0.225 0.213 0.239 
2 The topic of this text is x . 0.744 0.645 0.880 
3 The text provides information about x . 0.778 0.697 0.880 
4 The text discusses x . 0.766 0.666 0.902 
5 The text contains information relevant to x . 0.667 0.521 0.926 
6 The text provides insights into x . 0.510 0.480 0.543 
7 The text sheds light on x . 0.558 0.481 0.666 
8 The text explores x i n detail . 0.628 0.585 0.679 
9 This text covers the topic of x . 0.764 0.667 0.894 
10 The central theme of this article is x . 0.723 0.655 0.783 
11 The text provides a comprehensive analysis of x . 0.006 0.006 0.006 
12 The text covers the topic of x extensively. 0.542 0.501 0.591 
13 The pr imary subject matter of this article is x . 0.727 0.678 0.783 
14 The text delves deeply into the topic of x . 0.536 0.511 0.564 
15 The main idea presented in this text is x . 0.743 0.680 0.818 
16 The example is about x . 0.781 0.714 0.862 
17 The focus of this wr i t ing is on x . 0.668 0.594 0.762 

Table 5.2: Performance of different hypothesis templates on a newsgroup data set for the 
DeBERTa_v3-base model variant. 

5.2 Strengths and Limitations 

A s for the evaluation of system performance i n our domain of interest, which is an environ­
ment of darknet forums, due to the lack of data sets that would be suitable for evaluation 
purposes, we w i l l identify and summarise the strengths, weaknesses, and behaviour i n the 
real environment based on our observations and experience gained while using the system. 

We have tested the system i n the environment of the dnmarchives [6] data set, par­
t icular ly i n the archives of darknet market forums such as Utopia , Bungee54, Abraxas , 
Darkbay, or Greyroad. The concrete categories that we have used for testing purposes 
were selected to represent the diverse controversial topics that are generally considered to 
appear on the darknet. We have configured the processing pipeline to categorise forum 
posts into following categories: drugs, hacking, fraud, cryptocurrency, shipment delivery, 
weapons, counterfeit, childporn and cryptography. 
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Some of the following examples contain highly sensitive and controversial topics, how­
ever, we believe that it is important to demonstrate how our system operates i n the real 
environment and its potential to detect malicious content i n general. The example demon­
strating the operation of the classifier can be seen in Figure 5.1. We identified the mapping 
between the text content and the categories and marked them wi th matching colours to 
provide a better insight. We believe that the example shows both the strengths and l imi ­
tations of the categorisation process. In general, the classifier is highly prone to inferring 
categories based on the occurrence of the words from the desired domain rather than con­
sidering the whole context. Th is can be clearly visible in the case of the detection of the 
drugs category, where the word Dope, present wi th in the username, is associated wi th this 
category. Another frequently occurring anomaly is the association of the cryptocurrency 
label w i th the numbers, dates, and hyperlinks i n general. We have made an effort to pre-
process the text and remove a l l dates and hyperlinks from the text input . However, many 
cases, such as the price tags, which are present wi th in the example, are difficult to treat, 
and the question of their processing is the subject of further research and development. 

Categories: 

Named Entity Recognition: 
0.00000000 | ] 8 days ago|FREE PRIORITY DOMESTIC STEALTH SHIPPING w / T R A C K I N G | 

Final ized, Sh ipped Ac t ions Event: Vendo r changed status o f this o r d e r t o Sh ipped . Feedback 

received: 0 /5 : Asked m e if I cou ld get h im p h o t o s of l i t t le boys! [ 2 hou rs ago) A A 

The Dope m a n I y o u clear ly are t h e scammer. lTh is is abso lu t ley at roc ious. 

Figure 5.1: A n example of a content (post i n the forum thread) retrieved by the WebCat 
system. The example was put into an interactive parser tool provided by the web client, 
so we could analyse and identify the concrete mapping of categories and the relevant text 
areas. Boxes matching the same colour indicate the corresponding mapping. W h e n any of 
the marked text is removed, the corresponding category is no longer being detected. 

Another example presented in Figure 5.2 demonstrates the u t i l i ty of the N E R model 
to extract useful information about the named entities that occurred in the content. We 
have also identified the text areas that affect the classifier for cryptocurrency and coun­
terfeit categories, to address the problem mentioned above w i t h the hyperlinks i n regards 
to cryptocurrency label, and to demonstrate the abi l i ty to classify challenging and niche 
categories, such as counterfeit. 
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Categories: 
w e a p o n s 1.00 

c r y p t o c u r r e n c y 0.96 

c o u n t e r f e i t 0.92 

Post Author 
Ev i lg r in l 

Post Title 
Topic: G a u g e o f in te res t - l o w e r receivers 

Post Message 
Hey I j u s t w a n t e d t o k n o w if JUST lowers f o r A R - 1 5 s , m - 1 6 s , AK-47s a n d FN-FALs 

w o u l d be a g o o d seller o n here. A n d I guess I'll bu rs t y o u r b u b b l e r i gh t now . They a r e | 

plast ic. But t h a t does n o t mean t h e y are 'c rappy ' - t h e y are j u s t as s t r o n g as a luminunr 

lowers. They are a l i t t le b i t th icker and m a d e w i t h s t r o n g plast ic - t h e s a m e plast ic lego 

are m a d e f r o m . I assume th is w o u l d be the o p t i m a l w a y t o b u y a r i f le . You cou ld buy 

t h e lower o n here, a n d b u y t h e u p p e r a n d f i re c o n t r o l g r o u p legal ly o n t h e in te rne t . This 

w o u l d be m u c h cheaper t h a n b u y i n g a fu l l r i fe o f f here. These w o u l d be inexpens ive (see 

w h a t I d i d there?) and w o u l d c o m e w i t h extras i n c l u d i n g stocks a n d m a g s a n d o t h e r 

th ings . Interest? M y or ig ina l p lan was t o bu i ld fu l l r i f les a n d sell t h e m , b u t th i s m i g h t be 

easier f o r b o t h m e and t h e po ten t i a l buyers. A lso le t m e k n o w if t h e r e is any in teres t in 

inexpens ive plast ic h i g h capac i ty magaz ines fo r ARs a n d AKs . A n d also Glocks . 

Thanks. Tor Bazaar A lpha - 

3 p 4 2 y 5 6 a 7 6 g 6 o k u v . o n i o n / i n d e x . p h p / r e g i s t e r / f 0 c 2 5 c e 6 0 a c 5 d 7 9 8 

Figure 5.2: A n example of a content (post i n the forum thread) retrieved by the WebCat 
system. Words highlighted wi th the blue colour in the text were tagged by the N E R model 
and classified as tokens w i t h product label. 

The last example shown in Figure 5.3 demonstrates the susceptibili ty of the classifier 
to draw a wrong conclusion from the ambiguous sequence of words. This can be applied to 
many different cases. For example, the reason behind the selection of the label shipment 
delivery rather than delivery alone, was the fact of frequent association of the reference 
to email communicat ion wi th the delivery category, which was unintended and produced 
unnecessary noise. This demonstrates the importance of selecting unambiguous labels and 
testing these labels against representative samples to validate the intentions of the specific 
category. 

Overal l , the examples presented suggest that more work needs to be done on the for­
mulat ion of labels and text pre-processing. Another space for improvement may be the 
exploration and further evaluation of different hypothesis templates, as was discussed in 
Section 5.1. In this regard, we w i l l strive to create a curated data set for evaluation pur­
poses w i t h the use of tools that we have developed, to support further research in this area, 
part icularly for the domain of the darknet environment. 
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Categories: 

s h i p m e n t de l i ve ry 0.98 

Post Author 
d o r n e s t i c d o o d e 

Post Title 
Re: I n t r o d u c e Yoursel f ! 

Post Message 
D D Team here ! G o i n g t o | f l o o d th i s p lace w i t h qua l i t y LSD a n d o t h e r g rea t p r o d u c t s He re 

is t h e p a g e - > [URL] Keep an eye o u t f r i ends . H o p e y o u all en joy ! 

Figure 5.3: A n example of a content (post i n the forum thread) retrieved by the WebCat 
system. This example represents the situation, where the classifier is confused by the 
ambiguous meaning of the sequence. 

5.3 Future Expansions and Improvements 

The topic of this thesis is extensive and could be developed further in many different 
directions. We have focused mainly on the design and implementat ion of the system for 
automatic webpage content categorisation and extraction, however, many techniques and 
features used i n this work could be further expanded and improved. In the following 
sections, we w i l l explore and propose subjects for further research and development. 

Templating 

There are mult iple ways that templat ing i n general could be improved to make this tech­
nique faster and more robust. For now, the templates are highly generic and are not bound 
to specific websites. If the complexity of the template object is too small , there is the pos­
sibi l i ty that the template w i l l match a different website w i th a s imilar structure, resulting 
in incorrect content mapping. A d d i n g meta-data about the page into the templates might 
solve this issue and further speed up the process of the correct template selection for the 
parsed webpage. 

In connection wi th the previous paragraph, resolving the template affiliation to the 
specific web pages would also help to allow the system to be fully autonomous when parsing 
large-scale web archives. A t the moment, due to the possibil i ty of conflicting templates, 
the system is not reliable i n processing many different websites at once. To implement 
this feature, the templates have to be more robust and other mechanisms, such as webpage 
candidate selection for the automatic template creation, must be further developed. Due 
to these missing parts, the system is not yet able to use the C h a t G P T - p o w e r e d templat ing 
engine to produce new templates for unknown web pages i n a fully autonomous way. 
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Support for Different Input Formats 

The database structure was designed to store data of various content from unstructured 
sources, pr imar i ly H T M L webpages. This allows the possibil i ty of expanding the poo l of 
supported file types accepted by the system, opening the way for different use cases. One 
of the possible use cases might be the analysis of content from structured formats such as 
C S V or J S O N . The system could also contain a feature for export ing results into different 
file types, or serve as an enrichment tool that would append analyt ical results to the files 
directly. 

Smart Scheduling 

A s was outl ined i n Section 4.3 about the scheduler service, the scheduling algori thm is 
fairly simple and does not make full use of the system's capabilities. One of the possible 
improvements might include evaluating the complexity of the required processing pipeline 
configuration and assigning the task to C P U or G P U - b a s e d workers based on the estimated 
complexity. 

Custom Deep Learning Models 

Another important and specific modification for the domain of the darknet environment 
could involve fine-tuning categorisation and N E R models. Furthermore, i n theory, any 
demanded domain could be adapted by t ra ining our own models on data sets from different 
domains, adapting the analysis to the specific needs of the user. The web client applicat ion 
could also be modified to reflect the availabil i ty of different features tailored for specific 
domains and use cases. 

In terms of the domain of interest, the key challenge is to find suitable data sets that 
could potential ly improve the overall performance of the models. We have explored different 
ways for potential synthesis or auto-labelling of the darknet domain data, such as exploita­
t ion of the general language models ( G L M s ) such as OpenAI GPT-4, GPT-3 or some of its 
open-source but much less performant variants, namely gpt4all [3] and ChatGLM [49]. We 
believe that the transfer of knowledge from these language models by creating synthesised 
data sets could potential ly improve the quali ty of the analysis i n many different domains. 
However, this topic requires its own research and therefore is beyond the scope of this thesis. 
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5.4 Summary 

The subject of automatic webpage content categorisation and extraction is a vast and 
multifaceted area of research. Our work is focused on the highly specialised domain of the 
darknet environment, which presents unique challenges due to the scarcity of suitable data 
sets. To tackle this issue, we have approached the problem wi th a highly adaptable and 
universal methodology, intended to create a flexible system capable of handling any content 
type and scalable to meet future development requirements. 

The system we have designed is intended for general use and we have made cr i t ical 
design decisions to create a system that is bo th agile and extensible. Th is includes careful 
consideration of the overall architecture, database structure, and configurable pipeline of 
the system. 

A s demonstrated in Section 5.2, the model trained on the natural language inference 
data set has the potential to categorise content effectively, provided that the appropriate 
hypothesis template is used. We have conducted an in-depth analysis of the performance 
of various hypothesis templates, as detailed in Section 5.1. 

To facilitate the data extraction process, we have integrated a named entity recognition 
( N E R ) model into our processing pipeline. This model is capable of identifying named 
entities that are stored in the database for further analysis. In addit ion, we have employed a 
templat ing methodology to automate content extraction. This involves creating a template 
and using it to process similar web pages i n a consistent manner. O u r templat ing methods 
are described i n Section 4.5. 

Furthermore, we have proposed an automated approach to segmenting website content 
using the OpenAI ' s ChatGPT-3.5 model . Th is technique provides annotations that can 
be used to generate templates and automatise the extraction process. The segmentation 
process is described i n Section 4.6. 

In order to enhance the accessibility and ease-of-use of our system, we have developed 
a web client appl icat ion that offers a user-friendly graphical interface for interacting wi th 
the system. Detai led screenshots of this appl icat ion can be found in the appendices A . 
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Appendix A 

User Interface of the Web Client 

W e b C a t 

• Show M o d e l Select ion 

Classif ication M o d e l 

DeBERTa v3 Large MM LI 

A model trained on MNLI dataset using Microsoft's DeBERTa v3 base architecture. Size: B7D MB 

Entity Recogni t ion M o d e l 

RoBERTa base TweetNER7 

A model trained on the TweetNER7 dataset using the RoBERTa base architecture. Size: 484 MB 

Hypothesis Template 

Show p re -de f ined hypothesis templa tes 

The text provides in fo rmat ion abou t {}. 

At inference time, labels will be placed inside the {}• 

Show pre -de f ined labels 

Figure A . l : Screenshot of the Interactive Parser tool , provided by the Web client. This 
tool provides an interface for interactive testing of different hypothesis templates, category 
labels and models by providing option to pass raw textual data for processing. 
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WebCat 

• Show Model Selection 

Classification Model 

DeBERTa v3 Large MNLI 

A model trained on MNLI dataset using Microsoft's D =BERTa v3 base architecture. Size: 870 MB 

Entity Recognition Model 

RoBERTa base TweetNER7 

A model trained on the TweetNER7 dataset using the RoBERTa base architecture. Size: 484 MB 

Hypothesis Template 

Show pre-def ined hypothesis templates 

The text provides informat ion about {}. 

At inference time, labels will be placed inside the {). 

Labels 

Show pre-def ined labels 

drugs,hacking,fraud,cryptocurrency,shipment delivery.weapons.co unter te i le ryptography 

File Type 

html v 

Path to Files 

Enter path to files to be parsed or select f i les/directory. 

Use reccursive path resolution 

Save files t o the database 

Submit 

Figure A . 2 : Screenshot of the Files Parser tool , provided by the Web client. This tool 
provides the same options as the Interactive Parser, but accepts only files as the input for 
processing. 
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WebCat 

Categor ies 

all drugs fraud cryptocurrency delivery weapons 

coun te r fe i t childporn shipment delivery electronic delivery email delivery 

software cryptography explosives offer sell offer 

Entity Types 

person corporation group event location creative work 

product 

• Show Advanced Filters 

Category Threshold 

The threshold for the 

category confidence. 

Authors 

Remove 

The authors of the posts (subwords will get matched as well). 

Add 

File Path 

The path to the file (wildcards * can be used as well). 

Remove 

Add 

Request Data 

Figure A . 3 : Screenshot of the filtering options provided by the D a t a Viewer component. 

Th is feature requests the data that are stored i n the database. The construction of the 

filtered query is handled by the A P I . 
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t o f f e e 

< / l i > 

• <l i c lass="user t i t l e "> 

< / l i > 

• <\\ d a s s = " u s e r s t a t u s " > 

< / l i > 

< / u l > 

• < u l class = " a u t h o r - i n f o " > 

< / u l > 

< / d i v > 

' < d i v c l a s s = " p o s t - e n t r y " > 

* < d i v c l a s s - " e n t r y - c o n t e n t " > 

A n y o n e t r i ed t h e n e w ac id t h a t Bunc ee is o f fe r ing? I 'm t h i n k i n g a b o u t pickinc u p sc m e b u t wa w o n d e r i n g if a n y o n e had t r ie d it yet? 

< / p > 

< / d i v > 

< / d i v > 

Figure A.4: Screenshot of the Template Maker tool in the WebCa t Cl ient applicat ion. Th is 
tool provides an easy way of creating templates direct ly from H T M L files selected directly 
from the file system. Once the file is loaded, the v i r tua l representation of the webpage is 
rendered and the user can manual ly annotate the content and create template. 

Figure A . 5 : The WebCa t applicat ion logo created wi th the a id of OpenAI ' s D A L L - E model. 
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Appendix B 

Attached Med ium Contents 

This thesis also includes a memory medium wi th the following contents: 

• src/ Source code for the WebCa t system. 

• tex/ L a T e X source code for this thesis. 

• xreinmOO.pdf ... Copy of this thesis in P D F . 

For the instal lat ion instructions, see the README.md file inside the src/ directory. The 
attached contents were also uploaded to N e x t C l o u d 1 storage of the Facul ty of Information 
Technology, B rno Univers i ty of Technology. 

xhttps://nextcloud.f it.vutbr.cz/s/5m87JSqXDgPJtmY 
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