
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

TOR NETWORK CONSENSUS DATASTORED IN OLAP
DATABASE
OPTIMALIZACE ULOŽENÍ DAT O SÍTI TOR POMOCÍ OLAP

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. MICHAL CHOMO
AUTOR PRÁCE

SUPERVISOR Ing. LIBOR POLČÁK, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2019

Vysoké učení technické v Brně
Fakulta informačních technologií

Ústav informačních systémů (UIFS) Akademický rok 2018/2019

Z a d á n í d i p l o m o v é p r á c e l
21404

Student: Chomo Michal, Bc.
Program: Informační technologie Obor: Informační systémy
Název: Optimalizace zpracování dat o síti Tor pomocí OLAP

Tor Network Consensus Data Stored in OLAP Database
Kategorie: Databáze
Zadání:

1. Seznamte se s Tor directory protocol, zveřejňovanými deskriptory popisující stav sítě Tor, volnou databází
MaxMind a nástrojem consensus_parser vznikajícím v rámci projektu Tarzan.

2. Seznamte se s podporou pro OLAP ve volně dostupných databázích (např. Maria DB, PostgreSQL).
3. Dle pokynů vedoucího navrhněte zpracování dat vhodné pro data vytvářená nástrojem consensus_parser

s využitím OLAP a vybranou databází. Zaměřte se na optimalizaci vyhledávání podle multidimenzionálních
kritérií včetně rozsahů IP adres a temporálních dotazů.

4. Urychlete nástroj consensus_parser s využitím navrženého modelu a rozšiřte množinu podporovaných
dotazů.

5. Otestujte výkonnost vytvořeného řešení na různých typech dotazů.
6. Práci vyhodnoťte a navrhněte možná zlepšení.

Literatura:
• LACKO, Luboslav. Databáze: datové sklady, OLAP a dolování dat s příklady v Microsoft SQL Serveru

a Oracle. Brno: Computer Press, 2003, 486 s. 1 elektronický optický disk. ISBN 8072269690.
• GOLFARELLI, Matteo a RIZZI, Stefano. Data warehouse design: modern principles andmethodologies.

New York: McGraw-Hill, 2009, xxi, 458 s . : il. ISBN 978-0-07-161039-1.
• GALLINUCCI, Enrico, GOLFARELLI, Matteo, RIZZI Stefano, ABELLÓ Alberto a ROMERO Oscar.

Interactive multidimensional modeling of linked data for exploratory OLAP. Information Systems, č. 77.
Elsevier, 2018, str. 86-104. ISSN 0306-4379.

• The Tor Project. Tor directory protocol, version 3. Dostupné online
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt

Při obhajobě semestrální části projektu je požadováno:
• Body 1 až 3.

Podrobné závazné pokyny pro vypracování práce viz http://www.fit.vutbr.cz/info/szz/
Vedoucí práce: Polčák Libor, Ing., Ph.D.
Vedoucí ústavu: Kolář Dušan, doc. Dr. Ing.
Datum zadání: 1. listopadu 2018
Datum odevzdání: 22. května 2019
Datum schválení: 29. října 2018

Zadání diplomové práce/21404/2018/xchomo01 Strana 1 z 1

https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
http://www.fit.vutbr.cz/info/szz/

Abstract
Tor is a distributed network providing privacy and anonymity on the Internet. Information
about Tor is publicly available in a form of consensus documents. Existing tools that are
able to display this information do not provide both historical and detailed view of it.
A tool named Consensus Parser that provides a detailed, historical view of this information
and extends it with geolocation and DNS information, was created as a part of T A R Z A N
research project at Brno University of Technology. It stores the information in regular files
on disk and makes it accessible via R E S T A P I . This thesis extends Consensus Parser with
MariaDB ColumnStore database with a schema designed to conform to O L A P needs. The
searching capabilities of Consensus Parser were enhanced by adding 109 new endpoints to
12 existing ones and adding the ability to limit the retrieved information to certain fields
only. Disk space needed for storing the information was reduced by a factor of five.

Abstrakt
Tor je distribuovaná sieť, ktorá poskytuje súkromie a anonymitu na internete. Informá
cie o nej sú verejne dostupné vo forme consensus dokumentov. Existujúce nástroje na
zobrazovanie týchto informácií ich nedokážu zobraziť detailne a zároveň z ktoréhokoľvek
bodu v čase. Nástroj Consensus Parser, vyvinutý v rámci výskumného projektu T A R Z A N
na Vysokom učení technickom v Brne, to dokáže a navyše obohatí tieto informácie o ge-
olokačné informácie a DNS záznamy. Consensus Parser tieto informácie ukladá do súborov
na disku a umožňuje k nim prístup cez RESTové A P I . Táto diplomová práca rozširuje Con
sensus Parser o databázu MariaDB ColumnStore so schémou navrhnutou tak, aby spĺňala
požiadavky na O L A P . Vyhľadávacie možnosti Consensus Parseru boli rozšírené pridaním
109 endpointov k 12 existujúcim a pridaním možnosti obmedziť hľadané informácie iba na
špecifické polia. Miesto na disku potrebné na uloženie dát bolo redukované na pätinu.

Keywords
Tor, O L A P (Online Analytical Processing), MariaDB ColumnStore, R E S T A P I , GeoLite2

Kľúčové slová
Tor, O L A P (Online Analytical Processing), MariaDB ColumnStore, R E S T A P I , GeoLite2

Reference
C H O M O , Michal. Tor Network Consensus Data Stored in OLAP Database. Brno, 2019.
Master's thesis. Brno University of Technology, Faculty of Information Technology. Super
visor Ing. Libor Polcäk, Ph.D.

Tor Network Consensus Data Stored in O L A P
Database

Declaration
Hereby I declare that this master's thesis was prepared as an original author's work under
the supervision of Ing. Libor Polcak, PhD. A l l the relevant information sources, which
were used during preparation of this thesis, are properly cited and included in the list of
references.

Michal Chomo
May 21, 2019

Acknowledgements
I want to thank my supervisor Ing. Libor Polcak, PhD. for his advice and time.

Contents

1 Introduction 3

2 Tor 5
2.1 Overview 5
2.2 Design and functionality 6
2.3 Directory protocol 8
2.4 Existing tools for Tor 11
2.5 Consensus Parser 12

3 Online Analytical Processing 17
3.1 What is O L A P 17
3.2 Multidimensional data model 18
3.3 Column-store 20
3.4 O L A P support in MariaDB and PostgreSQL 21
3.5 MariaDB ColumnStore architecture 22
3.6 Chapter summary 23

4 Design of the data schema 25
4.1 Schema arrangement 25
4.2 Fact table 27
4.3 Dimensions 28

5 Extending Consensus Parser with MariaDB 32
5.1 Custom database functions 33
5.2 Database connection and initialisation 34
5.3 Consensus status data insertion 36
5.4 Extending the Toreator A P I 37
5.5 MariaDB ColumnStore limitations 40

6 Evaluation and comparison to the original version 42
6.1 Performance experiments 42
6.2 Storage utilisation 46

6.3 Comparison of the versions 47

7 Conclusion 49

Bibliography 50

A C D contents 53

1

Glossary

A P I Application Programming Interface. 3, 11-14, 16, 32, 37-40, 42

C I D R Classless Inter-Domain Routing. 14, 33, 35
C S V Comma-separated values. 13, 14, 34, 35, 42-44, 46, 47

D B M S Database Management System. 17, 20, 21
D D L Data Definition Language. 22, 23
D M L Data Modification Language. 22, 23
DNS Domain Name System. 8, 12, 13, 16, 36, 39

H T M L Hypertext Markup Language. 14, 37
H T T P Hypertext Transfer Protocol. 8, 10, 11

J S O N JavaScript Object Notation. 11, 14, 37

O L A P Online Analytical Processing. 3, 17, 18, 21, 23, 24, 49
O L T P Online Transaction Processing. 3, 17, 18, 23, 26

R E S T Representational state transfer. 11, 12, 14, 16, 32, 37, 40

SHA-1 Secure Hash Algorithm 1. 9, 10, 29
SQL Structured Query Language. 17, 22, 32, 34-37, 47

T C P Transmission Control Protocol. 7, 22
T L S Transport Layer Security. 6-8

U R L Uniform Resource Locator. 12, 14, 39, 40, 46

Y A M L Y A M L Ain ' t Markup Language. 32, 34

2

Chapter 1

Introduction

Privacy and security on the Internet are becoming more and more important now that gov
ernments, organizations and companies track, collect and analyse data about the Internet
users. Being anonymous on the Internet is a very difficult task for regular people without
in-depth knowledge of computers and computer networks. By using Tor, a service that
provides anonymity on the Internet, users can protect their privacy, circumvent censorship
or freely express their opinion without fear. But even Tor can be compromised by a party
with enough resources. This may be prevented by having means to analyse data about the
Tor network itself, gaining better visibility and more complete view of the network.

Statistical information about the Tor network is publicly available and it is continuously
updated. There are some existing tools that are able to present this information, such as
ExoneraTor 1 or Onionite 2, but they provide either brief historical information or detailed
information about the current state. This thesis extends a tool called Consensus Parser that
offers detailed historical information. Consensus Parser is developed as a part of T A R Z A N
research project at Faculty of Information Technology at Brno University of Technology.
However, it uses regular files to store data, not a database, which is a disadvantage. Because
the information about the Tor network is continuously updated, it has multiple versions in
time and its volume is large and will grow.

A traditional relational database is not a good choice for storing large amounts of
historical data, but there is a technology called Online Analytical Processing (OLAP) that
is well suited to store such data and provide a multidimensional view of it. The aim of this
thesis is to modify Consensus Parser to use an O L A P database to store the information
about the Tor network and extend its searching and filtering capabilities.

In Chapter 2, principles of onion routing and overview of Tor service are introduced
along with the description of the Tor directory protocol and the existing tools for retrieving
information about the Tor network. Chapter 3 presents O L A P and compares it to On
line Transaction Processing (OLTP). Then, it describes multidimensional data model and
column-store database principles. Next, it compares PostgreSQL and MariaDB support for
O L A P and it closes with MariaDB ColumnStore architecture description. In Chapter 4,
design of the data schema for storing data about the Tor network is introduced, and the
fact table and the dimension tables are presented. Chapter 5 describes the integration
of MariaDB with Consensus Parser and extensions to the A P I . In Chapter 6, results of

x

https: / /metrics, t orproject.org/exoner at or.html
2

https: //onionite.now.sh

3

http://orproject.org/exoner

the experiments comparing the original version of Consensus Parser to the new one are
presented.

4

Chapter 2

Tor

This chapter begins with the overview of Tor followed by the description of Tor's design.
Next, the Tor directory protocol is presented followed by the existing tools to query in
formation about Tor. The chapter closes with the description of Consensus Parser. The
information provided in this chapter is not meant to be a detailed description of Tor, it is
more like a summary of the principles and parts of the service. This chapter should help
the reader understand what is the context of the data that is stored in the system described
by this thesis.

2.1 Overview

Tor is a service providing anonymity on the Internet by bouncing the client's communica
tions around a distributed overlay network of relays that are provided voluntarily by people
and organizations around the world [26]. This network is called the Tor network and the
relays are also called onion routers. Tor was originally designed and implemented by the
U.S. Naval Research Laboratory 1 to protect government communications [29]. Today it
is maintained and developed by a non-profit organization The Tor Project 2 [26]. Users
of Tor are regular people, journalists, activists, law enforcement officers, the military, IT
professionals and many others. They use Tor to ensure privacy, prevent identity theft,
anonymously report abuse, express opinions without fear of losing their job, bypass the
Internet censorship, and more [29]. However, it is not always used for legitimate reasons as
criminals also make use of it to prevent being caught. The Tor Project argues that criminals
have many other means of staying anonymous while normal users do not [24]. Tor is most
commonly used with the Tor Browser 3 that is based on Mozilla Firefox and allows users
to browse the web anonymously without installing anything else. „Tor" may also refer to
the client program or „onion proxy" running on the user's device. Both onion routers and
onion proxies are also referred to as „nodes".

x

https: //www.nrl.navy.mil
2

https: //www.torproject.org
3

https: //www. torpr o j ect.org/projects/torbrowser.html, en
4

https: //www.mozilla.org/en-US/firef ox/

5

http://www.nrl.navy.mil
http://www.torproject.org
http://ect.org/projects/torbrowser
http://www.mozilla.org/en-US/firef

2.2 Design and functionality

The basic principle of Tor is encrypting user's data with three different encryption keys and
then relaying the encrypted data via three relays in the Tor network. Encryption layering
can be seen in Figure 2.1. User's client knows all of the keys while each relay knows only
one of the keys. This ensures that no relay can tell the user is connecting to the destination.
Although the first relay is connected directly to the user's client, it only knows that the
user is using Tor. The second relay knows nothing about the user or the destination, it
only knows that the first relay is relaying traffic to the third relay via itself. The third relay
knows the destination, and possibly the payload data, if it is not encrypted. If the user does
not want the third relay to see the data, he has to use additional end-to-end encryption
such as TLS ' ' . It is also necessary to not use any identification credentials if the user wants
to be anonymous to the destination.

Figure 2.1: Principle of encryption in onion routing. The onion proxy exchanges a key with
each onion router in the circuit using Diffie-Hellman method. Each onion router can then
decrypt one layer and relay the message forward. Reproduced from [17].

Cell

Cell is a fixed-size unit of communication which onion routers and onion proxies use to
communicate with each other. The size of the cell is 512 bytes and each cell contains
a circuit identifier, a command, and a payload [6]. Cells are divided to control and relay
cells. Control cells are interpreted by the receiving node while relay cells are relayed to the
next node. Relay cells have additional relay header at the beginning of the payload. A l l

5 T L S - Transport Layer Security, more at https://tools.ietf.org/html/rfc8446

G

https://tools.ietf.org/html/rfc8446

cells are passed via T L S connections with ephemeral keys, thus providing perfect forward
secrecy.

Circuit
Circuit is a path (see Figure 2.2) in the Tor network from the onion proxy to the destination
server via three relays where all the keys between the onion proxy and the relays are
established. It is identified by a circuit identifier contained in a header of each cell. This
identifier is different on each connection between two nodes. For example, in the connection
between the onion proxy and the first relay, the circuit identifier is cl and in the connection
between the first and second relay it is c2. Both cl and c2 refer to the same circuit, but
the onion proxy does not know c2 and the second relay does not know cl. Multiple T C P
streams can be attached to one circuit and multiple circuits can be multiplexed over one
T L S connection [6].

Efl} How Tor Works: 2

Alice

Step 2: Alice's Tor client
picks a random path to
destination server Green
links are encrypted, red
links are in the clear

Dave

Tor node
• • * - unencrypted link

* onerypted link

Figure 2.2: Path from Tor user (Alice) to the destination (Bob). When all the keys between
Alice's onion proxy and onion routers are established, path becomes a circuit. Reproduced
from [27].

Onion router
Onion router is a relay in the Tor network and its responsibility is to relay traffic. It can be
run by anyone with reasonably fast and reliable Internet connection as it is just a normal
user-level process. There are three kinds of relays according to the position in the circuit:

Guard relay - first relay in the circuit, communicates with the onion proxy and the
middle relay.

Middle relay - second relay in the circuit, communicates with the guard relay and the
exit relay.

Exit relay - third and last relay in the circuit, communicates with the middle relay and
the target server.

7

Since Tor uses a leaky pipe circuit topology, it is not always the exit relay that communicates
with the target server, but it can be the guard relay or the middle relay. Therefore, different
streams can exit via different onion routers in the same circuit. This is helpful when the
user does not want to use the exit relay because of its exit policy and it also hides the fact
that the streams belong to the same user [6].

There is also a special kind of relay called Bridge relay or bridge which is not listed
publicly, thus allowing use of Tor to users whose ISP blocks known Tor relays [25].

Every onion router has multiple pairs of private and public keys [5]:

• Long-term 1024-bit R S A identity key for signing T L S certificates and server descrip
tors.

• Short-term onion key for decrypting user requests to build a circuit and for negoti
ating ephemeral keys. Older versions use 1024-bit R S A key, the latest version uses
Curve25519 key but accepts the R S A key too.

• Short-term Ed25519 link authentication key for authenticating T L S handshake. In
older versions this was called connection key and was a 1024-bit R S A key. Connection
key handshake is still supported in the latest version.

Onion proxy

Onion proxy is a Tor client software that fetches directory protocol documents (see Sec
tion 2.3), handles connections from user applications and establishes a circuit in the network.
When a circuit is established, data from user applications is sent encrypted with three sym
metric keys negotiated with the three relays in the circuit. User applications ask the onion
proxy to make a connection via S O C K S 6 protocol [6]. The onion proxy then chooses an open
circuit or creates a new one and opens a stream on this circuit. After opening a stream, the
onion proxy accepts application data, encapsulates it in cells and sends it along the circuit.
Using S O C K S protocol has a downside because some applications try to resolve a hostname
and then pass an IP address to the onion proxy. By resolving a hostname, the application
reveals the destination server to the DNS server. The solution is to pass a hostname to the
onion proxy, so it can be resolved by one of the relays. But because this is not easy to force
in all applications, users have to be careful and check this behavior.

2.3 Directory protocol

For the Tor network to function, onion proxies have to know about the running onion routers
so they can construct circuits. This is handled by the directory protocol, which defines how
the information about the network is distributed among the nodes. This information is
publicly available and contains a list of active onion routers, their addresses and ports,
nicknames, public keys, exit policies and more. Directory protocol is transferred over the
network via H T T P ' protocol. There are four types of documents defined in the directory
protocol:

• Server descriptor - document describing the onion router's keys, capabilities and
other information.

6 SOCKS - Socket Secure, more at https://tools.ietf.org/html/rfcl928
7 H T T P - Hypertext Transfer Protocol, more at https://tools.ietf.org/html/rfc2068

8

https://tools.ietf.org/html/rfcl928
https://tools.ietf.org/html/rfc2068

• Microdescriptor - stripped down version of a server descriptor containing only the
most relevant parts.

• Status vote - document containing a summary of current descriptors and status for
onion routers. It is generated by a single directory authority.

• Consensus status - document that is computed by the directory authorities from
multiple status votes. It represents the current state of the network.

There are three important times that are defined for each consensus:

• Valid-after - all directory authorities have computed the consensus, which is multiply
signed by them. Valid-after time precedes the fresh-until time.

• Fresh-until - at this moment, a newer consensus becomes valid. Therefore, the older
one is not the freshest one, but still valid. Fresh-until time precedes the valid-until
time.

• Valid-until - at this point in time the consensus becomes invalid.

Typically, the fresh-until time is one hour after the valid-after time and the valid-until time
is two hours after the fresh-until time.

Consensus status
Consensus status document contains the preamble, the authority section and router status
entries. In the preamble there is information about the document itself, such as directory
protocol version, whether the document is a consensus or a vote, valid-after, fresh-until,
valid-until timestamps, recommended client versions, parameters and more [4]. A l l times-
tamps are in YYYY-MM-DD HH:MM:SS format in U T C time zone. The authority sec
tion has information about the authorities that contributed to the document. This includes
[4]:

• Nickname - a convenient identifier for the authority.

• Identity fingerprint - an uppercase hexadecimal S H A - 1 8 hash of the authority's
current identity key.

• Hostname - DNS name of the authority.

• IP address - current IP address of the authority.

• Directory port - the port that the authority listens on for directory protocol con
nections.

• Onion router port - the port that the authority listens on for onion routing con
nections.

Router status entries in consensus status document describe onion routers currently known
within the network. Each router entry has this information [4]:

• Nickname - onion router's nickname, a string of alphanumeric characters of length
1-19 that identifies an onion router.

8SHA-1 - Secure Hash Algorithm 1, more at https://tools.ietf.org/html/rfc3174

9

https://tools.ietf.org/html/rfc3174

• Identity fingerprint - a SHA-1 hash of the onion router's identity key, encoded in
Base649.

• Digest - a SHA-1 hash of the onion router's most recent descriptor (server descriptor),
encoded in Base64.

• Publication time - a publication time of the onion router's most recent descriptor.

• IP address - the current IP address of the onion router.

• Onion router port - the port that the onion router listens on for onion routing
connections.

• Directory port - the port that the onion router listens on for directory protocol
connections.

• Status flags - a series of space-separated status flags such as „Running" if the router
is currently usable over all its published onion router ports, „Exit" if the onion router
is an exit relay, etc. Status flags are in lexical order.

• Version - the version of the Tor protocol that the onion router is running.

• Proto entries - list of Tor protocols (directory protocol, server descriptor, etc.) with
versions that the onion router supports.

• Bandwidth - an estimate of the bandwidth of the onion router, in kilobytes per
second.

• Policy - list of patterns that specify ports which the onion router accepts or rejects
traffic on.

r seele AAoQlDAR6kkoo19hBAX5K0QztNw QUykpnS54fRnXu00yHP9sWIbMGI 2019-01-10

14:09:32 67.174.243.193 9001-0

s Running Stable V2Dir Valid

v Tor 0.3.5.7

pr Cons=l-2 Desc=l-2 DirCache=l-2 HSDir=l-2 HSIntro=3-4 HSRend=l-2 Link=l-5

LinkAuth=l,3 Microdesc=l-2 Relay=l-2

w Bandwidth=18

p reject 1-65535

Figure 2.3: Example router status entry from consensus status document.

Directory authority
The directory authority is an H T T P server that collects and provides information about
the Tor network. Onion routers periodically send their server descriptors to every directory
authority they know. The authority provides server descriptors indexed by the router
identity or by the hash of the descriptor [4]. The directory authority periodically generates

'https://tools.ietf.org/html/rfc4648

10

http://'https://tools.ietf.org/html/rfc4648

a status vote with the current descriptors and sends it to other authorities. A l l authorities
then compute the consensus status, which is used by onion proxies, directory authorities
and directory caches (see Subsection Directory cache) to detect that their list of server
descriptors is out of date. Onion proxies download the descriptors from directory caches
and directory caches and directory authorities download them from directory authorities.

Directory cache

Directory cache is an onion router that downloads, caches, and provides consensus docu
ments to reduce load on the directory authorities [4]. Onion proxies prefer directory caches
over directory authorities when downloading server descriptors. Directory cache also serves
microdescriptors, because some onion proxies download only those. Directory cache always
downloads consensus document if it does not have one or its current consensus is not valid
any more. If the directory cache has a valid consensus, it will try to download a new one
after the current one is no longer fresh.

2.4 Exist ing tools for Tor

There are tools that enable viewing and searching for information about the Tor network,
but they provide either detailed information about the current state or brief information
about the history. This thesis aims to create a tool that combines both features, i.e. enable
querying for detailed information in any point in time.

ExoneraTor

ExoneraTor is a tool that provides a way to determine if a relay with a given IP address
was active in the Tor network on a given day. IP address can be either IPv4 or IPv6
address. Search results contain not only information from the given day, but also the day
before and the day after it. This is the only tool that enables to examine the history of
the network, but it only provides information about the timestamp, IP address, identity
fingerprint, nickname and flag determining if the router is an exit relay.

Onionite application and Onionoo API

Information in this subsection is taken from [3] and [28]. Onionite is a web application that
shows current information about nodes in the Tor network. It allows the user to search
for a node by its nickname, IP address or identity fingerprint. It is possible to enter only
a part of the search term and Onionite will display all corresponding results. Onionite uses
the Onionoo protocol 1 0 for acquiring the information. Onionoo is a R E S T f u l 1 1 A P I that
accepts H T T P G E T requests and returns responses in J S O N 1 2 format. Onionoo provides
these documents:

• Summary - short summary of relays with nicknames, fingerprints and IP addresses.

• Details - similar information as in the consensus status document.

https: //metrics.torproject.org/onionoo.html
n R E S T - Representational state transfer, more at https://www.ics.uci.edu/-fielding/pubs/

dissertation/fielding_dissertation.pdf
1 2 J S O N - JavaScript Object Notation, more at https://tools.ietf.org/html/rfc7159

11

http://orproject.org/onionoo.html
https://www.ics.uci.edu/-fielding/pubs/
https://tools.ietf.org/html/rfc7159

147/

83/

147.83.29.168

147.83.32.100

2001/

ac8/

2001:ac8:21:2::190

2001:ac8:ab9:7::21

Figure 2.4: Example directory structure for IP addresses 147.83.29.168, 147.83.32.100,
2001:ac8:21:2::190 and 2001:ac8:ab9:7::21.

• Bandwidth - statistics of a consumed bandwidth for different time intervals.

• Weights - statistics for a different time intervals of a relay's probability to be selected
for building a path.

• Clients - estimate of an average number of users connecting to the bridge per day.

• Uptime - fractional uptimes for different time intervals.

Requests to Onionoo A P I may contain parameters in the query component of the U R L
to filter the results. It is possible to filter by relay type, countries, autonomous systems,
flags and many more. Onionite also supports these parameters in the search in the form
parameter-name:value.

2.5 Consensus Parser

Consensus Parser is a tool for acquiring and processing consensus status documents and
providing information from these documents via Toreator 1 3 R E S T A P I or by the tool
itself. This tool is a part of T A R Z A N 1 1 research project which is developed at Faculty of
Information Technology at Brno University of Technology. Consensus Parser is implemented
in Python 3.6 programming language with F lask 1 5 framework used for the R E S T A P I part.
Information from consensus status documents is complemented by geolocation data from
GeoLite2 database created by M a x M i n d 1 6 and reverse DNS records.

Consensus Parser stores the data from consensus status documents on the file system
in the form of a preprocessed consensus file for each IP address. These files use similar
format as router status entries from consensus status documents (see Figure 2.3) but contain
only information about the specific IP address. Each preprocessed consensus file is named
exactly as the IP address it contains information about. They are stored hierarchically in
directories by the first two octets (for IPv4) or first two hextets (for IPv6). For example,
if there is information about IP addresses 147.83.29.168, 147.83.32.100, 2001:ac8:21:2::190
and 2001:ac8:ab9:7::21, the directory structure will look like the one in Figure 2.4.

'http://toreator.fit.vutbr.cz/

http://www.fit.vutbr.cz/units/UIFS/grants/index.php.en?id=1063

http: //f lask.pocoo.org/

'https: //www.maxmind.com

12

http://'http://toreator.fit.vutbr.cz/
http://www.fit.vutbr.cz/units/UIFS/grants/
http://lask.pocoo.org/
http://www.maxmind.com

x-inconsensus-valid-after 2019-01-10 19:00:00

x-inconsensus-fresh-until 2019-01-10 20:00:00

x-inconsensus-valid-until 2019-01-10 22:00:00

Figure 2.5: Lines with valid-after, fresh-until and valid-until times in a preprocessed file,

x-dns-reverse torl.relay.cstone.com 2019-01-10 21:08:36

Figure 2.6: Reverse DNS record in a preprocessed file.

There are some additional lines in preprocessed consensus files in addition to router
status entries in consensus status documents. Specifically, there are always lines with valid-
after, fresh-until and valid-until times for each entry in a preprocessed file as can be seen
in Figure 2.5.

Optionally there might also be a reverse DNS record if Consensus Parser was executed
with the —additional_inf o or -a argument. A n example of a reverse DNS record in
a preprocessed file is displayed in Figure 2.6.

Geolocation data is not stored in preprocessed consensus files but in C S V files in a di
rectory specified by the —geolite_dir or -g argument. Geolocation data is added only
when the IP address is looked up either by Toreator A P I or by Consensus Parser executed
with the —ipaddress or - i argument.

Command line arguments

Consensus Parser has two main functionalities - the first one is parsing and storing consen
sus status documents and the second one is searching the data that is already stored by IP
addresses. Therefore, command line arguments are divided into two groups corresponding
to the functionalities as can be seen in Table 2.1 and Table 2.2 (Note: in tables 2.1, 2.2
and in the list of endpoints, date formats are specified according to strftime

1

' function in
Python).

Long form Takes value Description

—consensus_path Yes The input file or directory with consensuses.
—update No Fetch and parse new consensuses.

—update_keeprunning No Keep running and fetch and update new con
sensuses.

—write_preprocessed Yes The path where preprocessed consensus will
be written.

—additional_info No For each IP address gather additional info like
reverse DNS.

—email Yes E-mail address to be notified when a consensus
is not available on time.

Table 2.1: Arguments related to parsing and storing.

https: //docs.python. org/3/library/time.html#time. strftime

13

http://torl.relay.cstone.com

Long form Takes value Description

—ipaddress Yes The IP address to be searched for.
—preprocessed_input Yes The preprocessed directory with consensuses

sorted by IP address.
—geolite_dir Yes The directory with geolite CSVs. The CSVs

are expected to be in subdirectories contained
in the downloadable zip files.

—time Yes Time of the search for the IP address (UTC) .
—date_prefix Yes Specify the date prefix for the search - prefix

of %Y-%m-%d.

Table 2.2: Arguments related to searching by IP address.

Toreator API
Toreator is a R E S T A P I that provides information about relays acquired from consensus
status documents. Since it is a module of Consensus Parser, it can directly use all the
functionality that Consensus Parser provides by calling its Python methods. It can return
results in H T M L or JSON format. In H T M L response, list of addresses consists of H T M L
links that lead to other U R L s 1 8 of the A P I . In JSON response there is a list with two
elements for each IP address in a list. First element is the address itself and the second
is the relative U R L it leads to. Details about a relay contain the same information in
both H T M L and JSON. Example of an H T M L result can be seen in Figure 2.7. Provided
endpoints are the following (<address> is an IPv4 or IPv6 address. <time> is in %Y-%m-
%d %H:%M:%S format. <date> is in %Y-%m-%d format. <month> is in %Y-%m format.
<year> is in %Y format.):

/

Link to the /addresses/ endpoint.

/addresses/

List of CIDR IP addresses of all /8 IPv4 and /16 IPv6 networks that contain addresses
of relays.

/addresses/<address>-<mask>/

List of CIDR IP addresses of all networks or hosts specified by the given IP address
and mask. <mask> is a digit in range 0-32.

/addresses/<address>/

Details from all consensuses about the relay with the given IP address. See Figure 2.7
for example of details about a relay from one consensus.

/addresses/<address>/date/

List of all dates which the relay with the given IP address was active on.

/addresses/<address>/date/<date>/

Details about the relay with the given IP address from all consensuses from the given
date.

1 8 U R L - Uniform Resource Locator, more at https://tools.ietf.org/html/rfc3986

14

https://tools.ietf.org/html/rfc3986

/addresses/<address>/time/

Redirects to /addresses/<address>/date/

/addresses/<address>/time/<time>/

Details about the relay with the given IP address from all consensuses that were valid
at the given time.

/addresses/<address>/month/

List of all months which the relay with the given IP address was active in.

/addresses/<address>/month/<month>/

Details about the relay with the given IP address from all consensuses from the given
month.

/addresses/<address>/year/

List of all years which the relay with the given IP address was active in.

/addresses/<address>/year/<year>/

Details about the relay with the given IP address from all consensuses from the given
year.

15

Result

Nickname default published at 2018-09-03
04:08:47

• IPv4 address 185.62.129.226 port 443
• DNS reverse name 185-62-129-226.pool.digikabel.hu queried at

o 2018-09-03 06:17:59
o 2018-09-03 07:14:47

• Server flags in Tor network Running, V2Dir, Valid, Tor exit policy reject
1-65535

• MaxMind Geolocation:
o from 2018-08-07 00:00:00:

• network: 185.62.129.192/26
• continent: Europe
• country code: HU
• country: Hungary
• country part: Borsod-Abauj-Zemplen
• city: Miskolc
• time zone: Europe/Budapest
• inside EU: True

o from 2018-10-02 00:00:00:
• network: 185.62.129.192/26
• continent: Europe
• country code: HU
• country: Hungary
• country part: Borsod-Abauj-Zemplen
• city: Miskolc
• time zone: Europe/Budapest
• inside EU: True

• MaxMind autonomous system number:
o from 2018-08-28 00:00:00:

• AS network: 185.62.128.0/22
• AS number: 20845
• AS organization: DIGI Tavkozlesi es Szolgaltato Kft.

o from 2018-09-04 00:00:00:
• AS network: 185.62.128.0/22
• AS number: 20845
• AS organization: DIGI Tavkozlesi es Szolgaltato Kft.

• Valid in consensuses after ("2018-09-03 06:00:00",), fresh until
("2018-09-03 08:00:00".). valid until ("2018-09-03 10:00:00".)

• Tor software version: Tor 0.2.4.23
• Node bandwidth: {'Unmeasured': '1', 'Bandwidth': '20'}
• Identity: 6UTTej6X838+asQvpYlezIDwX7I
• Digest: zvs+nSmuBTADlfTVd9m4dQTxO/s
• Dirport: 9030
• Supported protocols: ('Cons=l', 'Desc=l', 'DirCache=l', 'HSDir=l',
'HSIntro=3', 'HSRend=l', 'Link=l-4', 'LinkAuth=l', 'Microdesc=l',
'Relay=l-2')

Figure 2.7: Example result from Toreator R E S T API with reverse DNS and geolocation
data. The result can be obtained from this endpoint: /addresses/<address>/, e.g.,
/addresses/185.62.129.226/.

16

http://185-62-129-226.pool.digikabel.hu

Chapter 3

Online Analyt ical Processing

In the beginning of this chapter, Online Analytical Processing (OLAP) is defined and com
pared to Online Transaction Processing (OLTP). Then, multidimensional model and O L A P
operations are described. Next, column-store or column-oriented database is presented and
explained. This is followed by a comparison of O L A P support in PostgreSQL and Mari-
aDB. After that, MariaDB ColumnStore architecture is described and the chapter closes
with a short summary.

3.1 What is O L A P

The definition of O L A P by the O L A P Council 1 is the following [18]:

On-Line Analytical Processing (OLAP) is a category of software technology that
enables analysts, managers and executives to gain insight into data through fast,
consistent, interactive access in a wide variety of possible views of information
that has been transformed from raw data to reflect the real dimensionality of the
enterprise as understood by the user.

As the definition states, O L A P is used by analysts and managers to see the data from
multiple views. It is also often used in data warehousing because it is concerned with
historical and summarized data that provide better means for decision making. These are
the two main types of O L A P [7]:

R O L A P - relational O L A P . Data is stored in a relational Database Management Sys
tem (DBMS). The multidimensional model is mapped to the relational model using
a special type of schema. It is more scalable than M O L A P and allows to use SQL,
but the performance is worse than with M O L A P . Another advantage is the amount
of literature about the relational model and the experience with relational database
usage and management. This is the type chosen for this thesis because of the ability
to use an open-source relational D B M S and SQL.

M O L A P - multidimensional O L A P . It is based on an ad hoc logical model that can
represent multidimensional data directly. There are mostly proprietary solutions, for
example Microsoft Analysis Services. It has better performance than R O L A P but
poor storage utilisation.

1

 www. olapcouncil.org/

17

http://olapcouncil.org/

There are also other types such as Hybrid O L A P , Desktop O L A P and Web-based O L A P ,
but those are not relevant to this thesis.

Comparison to OLTP

O L T P is an operational system that processes tasks such as order entry, retail sales and
financial transactions [2]. Data is detailed and up-to-date and the main goals are consis
tency, reliability and transaction throughput [2]. The size of an O L T P database is much
smaller than the size of an O L A P database because O L T P is not concerned with historical
data. Operations in O L T P include querying, inserting, updating and deleting. Queries in
O L T P system are usually simple.

In comparison, O L A P is targeted on providing data for complex analyses, so queries
are more complex than in O L T P [2]. Data is not so detailed but the volume is much larger
since there is historical data which might even come from different sources (multiple O L T P
systems, flat files) [2].

3.2 Multidimensional data model

Multidimensional data model is the core of O L A P because it allows to view data in multiple
dimensions. It is often visualized as a data cube that might have an arbitrary number of
dimensions. If the number of dimensions is more than three, it is called hypercube [20]. Two
most important terms in a multidimensional model are:

Fact - a factor affecting the decision-making process. Instance of a fact is an event and
each fact is described by the values of measures that provide quantitative description
of events [7]. For example, shipment is a fact, a single carried out shipment is an
event and the amount shipped is a measure [7]. Within the context of this thesis,
router status entry is a fact, a specific router status entry in a consensus file is an
event and the bandwidth is a measure.

Dimension - an axis of n-dimensional space that events are placed in. Dimensions define
different perspectives to single out events [7]. A shipment may have products, dates
and destinations dimensions. In a data cube, dimensions are the edges of the cube
while events are the cube cells [7]. For router status entry there are published dates,
IP addresses or nicknames, among other dimensions.

Typical operations to reduce the quantity of data and obtain useful information in
multidimensional data model are [7]:

• Roll-up - increasing the aggregation level of a dimension and therefore getting more
summarized data. For example, if there is a time dimension with aggregation level of
months, by doing roll-up it is changed to years.

• Drill-down - decreasing the aggregation level of a dimension and thus getting more
detailed data. It is a complementary operation to roll-up.

• Slice - decreasing cube dimensionality by setting a specific dimension to only one
value. Effectively eliminates the dimension from the model. If all dimensions are set
to a particular value, they define a single event.

18

• Dice - generalization of slicing, it limits dimensions to a subset of their possible
values, making the cube smaller.

In R O L A P , facts are stored in a fact table which contains measures and foreign keys to
dimension tables. When the fact table does not contain any measures, only foreign keys,
it is called a factless table [20]. Dimensions are stored in dimension tables that consist of
a primary key and attributes describing the dimension. The attributes in a dimension table
may form hierarchies [20]. Since relational model does not include concepts of dimension,
measure and hierarchy, multidimensional model must be represented by specific types of
schemas [20]:

• Star schema - a schema with a single fact table which is a virtual center of the
schema and multiple dimension tables that surround the fact table. Dimension tables
in a star schema are denormalized (contain redundant information) to prevent many
join operations and thus improving performance. Star schema is named so because
when it is visualized, it resembles a star. A n example of a star schema can be seen in
Figure 3.1.

• Snowflake schema - a schema based on a star schema but with normalized dimen
sion tables. It is called snowflake schema because normalizing dimension tables results
in more tables and the schema visualisation then looks like a snowflake.

• Fact constellation - a schema where there are multiple fact tables sharing the
dimension tables [2].

dim_products

P K product id

name

category

dim_t ime

P K time id

year

month

week

day

orders

F K product id

F K customer id

F K time id

F K store id

quantity

amount

d im_cus tomers

P K customer id P K

name

address

dim_stores

P K store id

city

country

Figure 3.1: A star schema example, orders table is a fact table that contains measures
(quantity and amount) and foreign keys pointing to the dimension tables (dim_products,
dim_customers, dim_time and dim_stores). Dimension tables in a star schema contain
redundant data (country will be the same for multiple city records) on purpose because
it improves query performance.

19

3.3 Column-store

Information in this section is taken from [1]. Wi th analytical queries it is typical to access
very large amounts of data on disk. Because reading this much data is often slow, it
is desirable to reduce the amount of accessed data as much as possible to speed up the
execution of the query. In traditional row-oriented D B M S , data for a single table is stored
together in one or multiple files on disk. This means that if a query is only concerned
with one column, other columns still have to be read and then discarded. For transactional
workloads this is not a problem because the user is often interested in many or all columns
and the size of accessed tables is not that big. But with the size of the data that analytical
queries usually access, this introduces a significant performance penalty. This is where the
column-oriented D B M S or column-store comes into play.

In column-store, each column is stored in a separate file on disk (see Figure 3.2 for
difference between row-oriented and column-oriented physical layout). This allows the
system to read only the columns that the query needs rather than reading entire rows and
discarding the data after. In consequence, memory bandwidth and overall utilisation of
the available I /O improve because less data is transferred between main memory and C P U
registers. And, most importantly, this leads to reduced query execution time. The wider
the table, i.e. the more columns the table has, the more time and resources are saved.

Row-oriented
One file

id product_id date city

1 10 2019-01-02 Brno

2 20 2019-03-04 P rague

3 30 2019-05-06 Brat is lava

Column-oriented

One file One file One file One file

id product_id date city

1 10 2019-01-02 Brno

2 20 2019-03-04 P rague

3 30 2019-05-06 Brat is lava

Figure 3.2: Illustration of the difference between the physical layout of row-oriented and
column-oriented D B M S . Row-oriented D B M S stores the data for the whole table in one
file on disk while column-oriented D B M S stores each column in a separate file. This allows
column-oriented D B M S to only access the columns that are needed for the query, saving
time and resources.

20

The next advantage of column-store is compression of the data which causes substantial
increase in performance and available disk space. Compression rates are good because the
data in a specific column has low information entropy and therefore is easier to compress
than the data in a whole table which has high information entropy. And since CPUs
are generally faster than memory bandwidth, it is preferable to spend C P U cycles on
decompressing the data rather than transferring more data from disk to memory and from
memory to C P U . In many cases it is even possible to operate directly on compressed data,
e.g. with run-length encoding it is sufficient to multiply run-lengths and values when doing
a sum operation instead of summing each value independently. Another performance gain
is achieved by leveraging vectorized processing which uses vectors of N tuples that fit into
the L I cache instead of one tuple at a time.

3.4 O L A P support in M a r i a D B and PostgreSQL

PostgreSQL 2 is a very popular open source object-relational database system released under
the PostgreSQL license3. Its advantag 6S £1X6 cl large and active community of users, extensive
and detailed documentation, robust feature set, reliability, extensibility and support for all
major operating systems [21]. It has been developed for over 30 years [21].

As for the O L A P support, because of PostgreSQL's almost full conformance to ISO/IEC
9075 "Database Language SQL", it supports G R O U P I N G SETS, R O L L U P and C U B E
clauses since version 9.5 [23, 22]. There is also a module that implements a data type
for representing a multidimensional cube called cube1. However, these are just syntax
constructs that help the user write more concise queries. PostgreSQL is not really an
analytical database and its focus is on transactional workloads which it does very well. For
analytical queries, however, it cannot compete with column-oriented D B M S , as can be seen
in this benchmark''. There is an extension called cstore_Jdw that implements column-store
for PostgreSQL. This improves performance for analytical queries but it still has serious
disadvantages compared to native column-store systems. Maybe the biggest disadvantage
is the use of the normal PostgreSQL query optimizer that is tuned for row-oriented storage.
Other drawbacks are that update and delete operations are not supported.

Mar iaDB' is an open source fork of a really popular and widely used relational database
system called M y S Q L 8 . It is developed by MariaDB Foundation 9 which employs some of the
developers that founded and worked on MySQL and it still maintains a very high compat
ibility with MySQL [15]. MariaDB is fast and scalable, has a rich feature set and a strong
focus on security [8]. It is released under the G N U General Public License, version 2 1 0 [14].
O L A P support in MariaDB comes with ColumnStore, the column-oriented storage engine
that is designed for big data scaling and performance with real-time response to analyti
cal queries. It is based on Inf iniDB 1 1 and utilizes a parallel distributed data architecture
[13]. ColumnStore is the reason MariaDB is better suited for O L A P than PostgreSQL or

2

https: //www.postgresql.org
3

https: //opensource.org/licenses/postgresql
4

https: //www.postgresql.org/docs/current/cube.html
5

https: //tech.marksblogg.com/bencnmarks.html
6

https: //github.com/citusdata/cstore_fdw
7

https: //mariadb.com
8

https: //www.mysql.com
9

https: //mariadb.org
1 0

https: //www.gnu.org/licenses/old-licenses/gpl-2.0.html.en
n

https: //github.com/inf inidb/inf inidb

21

http://www.postgresql.org
http://ce.org/licenses/postgresql
http://www.postgresql.org/docs/current/cube.html
http://ech.marksblogg.com/bencnmarks
http://iadb.com
http://www.mysql.com
http://iadb.org
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html.en

MySQL. As mentioned in Section 3.3, ColumnStore allows to access only columns needed
for the query, leverages compression and vectorized processing.

3.5 M a r i a D B ColumnStore architecture

MariaDB ColumnStore is a column-oriented storage engine designed for distributed, mas
sively parallel processing, such as big data analytics. It is composed of three modules -
User Module, Performance Module and Storage. These are described below.

User Module

User Module manages and controls the operation of queries. It maintains a state of each
query, issues requests to one or more Performance Modules and resolves the query by aggre
gating results from Performance Modules into one [12]. It contains various processes [12]:

• MariaDB Server - normal MariaDB server, runs as mysqid process. It is responsible
for parsing SQL statements, generating SQL plan and distributing the final result-set.
It also converts MariaDB query plan into ColumnStore query plan format which is
a parse tree with added execution hints from the optimizer.

• Execution Manager - process that converts the parse tree from MariaDB Server
into a Job List, i.e. a sequence of instructions that have to be executed to satisfy
the query. Job List is comprised of job steps such as application of a column filter,
processing table joins or projection of returned columns. Each step can run on User
Module only, Performance Module only or combination of both. It listens for query
parse trees from MariaDB Server on T C P port 8601. To determine which Performance
Module to send work orders to, Extent Map is used (see Subsection Storage in this
section).

• Distribution Managers - DDLProc for distributing Data Definition Language
(DDL) statements to Performance Modules; D M L P r o c for distributing Data Ma
nipulation Language (DML) statements to Performance Modules; cpimport for dis
tributing source files for high-speed bulk loading to Performance Modules.

Performance Module

Performance Module stores, retrieves and manages data, processes block requests and passes
them back to the User Module for finalisation [10]. It selects data from disk and caches it in
a shared-nothing, LRU-based buffer [10]. There can be many Performance Modules; each
one increases the size of the cache and the amount of processing power of the database.
A heartbeat mechanism ensures all Performance Modules are running and if one fails, there
is a transparent failover [10]. Performance Module is composed of these processes [10]:

• Process Manager - starts, monitors and restarts all ColumnStore processes on the
Performance Module.

• Process Monitor - is used by Process Manager to monitor the processes of Column-
Store.

• Primary Process - handles query execution by executing instructions from the User
Module as block oriented I /O operations. Performs predicate filtering, join processing
and the initial aggregation of data, then sends the data back to the User Module.

22

• WriteEngineServer - coordinates D M L , D D L and imports for each Performance
Module.

• cpimport - updates database files when loading bulk data and thus allows to support
fully parallel loads.

Storage

Information in this subsection is taken from [11]. Tables in MariaDB ColumnStore are
created with at least one file per column in the table. The file is stored on disk of a Per
formance Module. Each column is stored in a logical measure of eight million rows called
an Extent. This makes 8 M B for one byte data types, 16 M B for two byte data types,
32 M B for four byte data types and 64 M B for eight byte or variable size data types. String
columns with more than eight bytes store only indexes to separate dictionary files. When
an Extent becomes full, a new one is created. A n Extent is physically stored as a collection
of 8 K B blocks, each uniquely identified by its Logical Block Identifier (LBID). The physical
file made up of these blocks is called a segment file. There is a configurable maximum value
of extents that one segment file can store, default is two. A l l segment files of a column form
a partition that is stored in a directory on disk. Default value of segment files per partition
is four.

MariaDB ColumnStore uses a structure called Extent Map to map Extents to their
corresponding blocks (LBIDs) and also keep information about minimum and maximum
values for the column's data within the Extent. The primary Performance Module has
a master copy of the Extent Map and on system startup it is copied to other User and
Performance modules for failover. Other modules keep the Extent Map in memory and
receive broadcast updates when Extents are modified.

Thanks to the Extent Map, MariaDB ColumnStore can perform logical range parti
tioning and retrieve only the blocks that are necessary for the query. This is done via
eliminating Extents that do not meet the join and filter conditions of the query. Elimina
tion is done by extracting partitioning information and minimum and maximum values of
extents and then comparing minimum and maximum values to join and filter conditions. If
the values do not meet the conditions, extent is eliminated, i.e. not accessed on disk at all.

MariaDB ColumnStore uses compression for all tables and columns by default. It can
be disabled or enabled for each table and column. Since data in each column is similar,
compressibility is excellent and compression saves between 65% and 95% of disk space.
Compression is optimized for read performance from disk.

3.6 Chapter summary

This thesis employs O L A P technology because it has to deal with large amounts of data
and present it in a multidimensional view. The specific type of O L A P that is used is
called Relational O L A P since it stores data in a relational database. There were two
database systems considered for use, PostgreSQL and MariaDB. Both are well known open
source databases with large communities, lots of features and support for multiple operating
systems. PostgreSQL, however, is suited mainly for O L T P and has support for O L A P
only with an unofficial extension which still does not reach the performance of systems
that support O L A P natively. MariaDB, on the other hand, has a storage engine called

23

ColumnStore which is suited exactly for O L A P and analytical workloads. For this reason,
MariaDB is used for this thesis.

24

Chapter 4

Design of the data schema

This chapter presents the data schema for storing information about onion routers in the
Tor network. The first section explains the chosen arrangement, the second section describes
the fact table and the third section presents the dimension tables.

4.1 Schema arrangement

Data is arranged in a typical star schema (see Figure 4.1) with some additional tables for
GeoLite2 data (see Figure 4.2). There is one fact table which contains keys pointing to
the dimension tables, and facts. There are ten dimension tables that describe router status
entries in consensus status documents from different perspectives. Full GeoLite2 database is
stored in geolite_blocks and geolite_locations tables. Since geolite_blocks is quite
large, containing about 3.6 million records, there is a dimension table dim_geolite which
combines the data from geolite_blocks and geolite_locations, but only for existing IP
addresses in dim_ip_addresses dimension table. This results in higher usage of disk space
but makes data retrieval faster. One special table that maps IP addresses to dim_geolite
dimension data is needed for inserting data to the fact table (see Section 5.3).

Some tables that store IP addresses of type VARBINARY use M y l S A M storage engine
instead of ColumnStore because ColumnStore does not support VARBINARY data type. If
this thesis only worked with IPv4 addresses, they could be stored as INTEGER but this is
not possible since IPv6 is also required. The default MySQL engine InnoDB also supports
V A R B I N A R Y but it uses row-level locking while M y l S A M uses table-level locking [19].
Table-level locking uses less memory and is faster for read-mostly workloads which this
thesis has.

25

dim_nicknames

P K id

nickname

dimj ingerpr ints

P K M
fingerprint

dim_digests

P K id

digest

dim_versions

P K id

version

d i m j l a g s

P K id

authority

bad exit

exit

fast

quard

hsdir

no ed consensus

stable

stale desc

runninq

valid

v2dir

o<

fact_router_entries

FK

FK

F K

F K

F K

F K

F K

F K

F K

F K

F K

F K

F K

F K

F K

F K

publish date *>

valid after date

fresh until date

valid until date

publish time

valid after time

fresh until time

valid until time

nickname

fingerprint

digest

version

dns name

flags

ip addr

geolite id

or port

dir port

bandwidth

ip_addr_to_geolite

P K ip addr id

F K geolite id

dim_date

P K id

year

month

day

d i m j i m e

P K id

hour

minute

second

dim_dns_names

P K id

dns name

dim_ip_addresses

P K id

ip addr

dim_geolite

P K id

network start

network end

latitude

longitude

as num

as orq

continent

country

city

time zone

is in eu

Figure 4.1: Data schema for storing information about onion routers in the Tor network.
Tables with black border lines use ColumnStore engine and tables with blue border lines use
M y l S A M engine. The schema is a star schema with the fact table fact_router_entries
which contains sixteen keys to the dimension tables and three facts. The keys to the di
mension tables are without foreign key constraints typically set in O L T P databases because
ColumnStore does not support foreign key constraints.

26

geolite_blocks

PK id

FK location id

network start

network end

latitude

longitude

as num

as org

XD-

geolitejocation

• PK location id

continent

country

city

time zone

is in eu

Figure 4.2: GeoLite2 database is stored in two tables and both use M y l S A M engine because
geolite_blocks table columns network_start and network_end are IP addresses of type
VARBINARY which is not supported by ColumnStore. geolite_location table does not
contain any column of type VARBINARY but it is always joined only with geolite_blocks
and joins within the same engine are faster than cross joins between engines.

Data type Size [B]

BOOLEAN 1
TINYINT 1
SMALLINT 2
INTEGER 4
FLOAT 4
BIGINT 8
VARCHAR N
VARBINARY N

Table 4.1: MariaDB data types with sizes [9, 16]. Data types that are not used in the
design were omitted.

4.2 Fact table

The fact table is named fact_router_entries and it contains three facts and sixteen
foreign keys pointing to the dimension tables. Table columns with corresponding types are
shown in Table 4.2. The fact table contains the most columns of all tables in the schema and
is supposed to be the largest on disk too. Foreign keys data types (see Table 4.1 for MariaDB
data types sizes) correspond to data types of id columns of the dimensions. Although the
name foreign key is used here, keys are not bound by FOREIGN KEY constraints because
ColumnStore does not support them. Since there are multiple timestamps in a consensus
status, there are multiple foreign keys pointing to dim_dates and dim_times dimension
tables. Foreign keys dns_name_id and geolite_id may be NULL because the IP address of
an onion router is not guaranteed to have P T R DNS record or be in GeoLite2 database.

27

The facts in the fact table are onion router port, directory port and bandwidth (see
Subsection Consensus status in Section 2.3). Onion router port and directory port have
SMALLINT data type since port is a two-byte unsigned integer. Bandwidth has type INTEGER
because it is an estimate of the onion router's bandwidth in kilobytes per second.

fact router entries

publish_date_id SMALLINT

valid_after_date_id SMALLINT

fresh_until_date_id SMALLINT

valid_until_date_id SMALLINT

publish_time_id INTEGER

valid_after_time_id INTEGER

fresh_unti1_time_id INTEGER

valid_until_time_id INTEGER

nickname_id INTEGER

fingerprint_id INTEGER

digest_id INTEGER

version_id SMALLINT

dns_name_id INTEGER

flags_id SMALLINT

ip_addr_id INTEGER

geolite_id INTEGER

or_port SMALLINT

dir_port SMALLINT

bandwidth INTEGER

Table 4.2: f act_router_entries table column names and types.

4.3 Dimensions

Dimensions are different perspectives which router status entries in consensus status doc
uments can be seen in. They jointly describe the router status entry. From a storage
perspective, dimension tables contain data common for multiple entries in a fact table
which only contains a key to each dimension table. Therefore, each dimension table has
an id column that is referenced by the key in the fact table, id column data type differs
among dimensions because some tables contain fixed number of elements and do not need
a large data type. Every integer type is unsigned since there is no need for negative numbers
to be stored. Each dimension table uses ColumnStore storage engine except where noted.
These are all dimensions from the schema, each with a description and a table containing
dimension table name, its columns and their types:

• Dates - holds combinations of years, months and dates. SMALLINT type for the id
column was chosen because it supports years up to 2049, which is sufficient. Years are
in range 2007-2049, months in range 1-31 and days in range 1—31. 2007 is the first year
consensuses are available for in the archive 1. This dimension table is referenced from
the fact table by publish_date_id, valid_after_date_id, fresh_until_date_id
and valid_until_date_id columns.

x

https://metrics, torproject.org/collector/archive/relay-descriptors/consensuses

28

https://metrics
http://torproject.org/collector

dim dates

id SMALLINT

year SMALLINT

month TINYINT

day TINYINT

Table 4.3: dim_dates table column names and types.

Times - holds combinations of hours, minutes and seconds, id column is of type
INTEGER because there are 24 x 60 x 60 = 86400 combinations which exceeds SMALLINT
capacity. This dimension table is referenced from the fact table by publish_time_id,
valid_after_time_id, fresh_until_time_id and valid_until_time_id columns.

dim times

id INTEGER

hour TINYINT

minute TINYINT

second TINYINT

Table 4.4: dim_times table column names and types.

Nicknames - nickname is a string of length 1-19 alphanumeric characters that iden
tifies an onion router [4]. This dimension table is referenced from the fact table by
nickname id column.

dim nicknames

id INTEGER

nickname VARCHAR(19)

Table 4.5: dim_nicknames table column names and types.

Fingerprints - fingerprint is a SHA-1 hash of an onion router's identity key (see
Subsection Onion router in Section 2.2) encoded in Base64. This dimension table is
referenced from the fact table by f ingerprint_id column.

dim fingerprints

id INTEGER

fingerprint VARCHAR(27)

Table 4.6: dim_f ingerprints table column names and types.

Digests - digest is a SHA-1 hash of an onion router's most recent descriptor encoded
in Base64. This dimension table is referenced from the fact table by digest_id
column.

dim digests

id INTEGER

digest VARCHAR(27)

Table 4.7: dim_digests table column names and types.

29

Versions - version of the Tor protocol running on an onion router. Version is
stripped of the „Tor" string. This dimension table is referenced from the fact ta
ble by version_id column.

dim versions

id INTEGER

version VARCHAR(20)

Table 4.8: dim_versions table column names and types.

DNS names - reverse DNS name retrieved by querying the P T R record of the
onion router's IP address. This dimension table is referenced from the fact table by
dns name id column.

dim dns names

id INTEGER

dns_name VARCHAR(80)

Table 4.9: dim_dns_names table column names and types.

Flags - combinations of flags that the authorities assigned to the onion router. The
fact table references the record that has all the assigned flags for the onion router set to
True, id column is of type SMALLINT because there are only 2

12

 = 4096 combinations.
This dimension table is referenced from the fact table by f lags_id column.

dim flags

id SMALLINT

authority BOOLEAN

bad_exit BOOLEAN

exit_ BOOLEAN

fast BOOLEAN

guard BOOLEAN

hsdir BOOLEAN

no_ed_consensus BOOLEAN

stable BOOLEAN

stable_desc BOOLEAN

running BOOLEAN

valid BOOLEAN

v2dir BOOLEAN

Table 4.10: dim_f lags table column names and types.

IP addresses - current IPv4 or IPv6 address of the onion router. ip_addr column is
of type VARBINARY(16) since it can store both IPv4 and IPv6 addresses and convert
between their string and binary representations with INET6_NT0A and INET6_AT0N
functions. This dimension table is referenced from the fact table by ip_addr_id
column and uses M y l S A M storage engine because ColumnStore does not support
VARBINARY data type.

30

dim ip addresses

id INTEGER

ip_addr VARBINARY(16)

Table 4.11: dim_ip_addresses table column names and types.

• GeoLite2 - geolocation data from GeoLite2 database for existing IP addresses in
dim_ip_addresses dimension table. It contains information about the network and
autonomous system which the onion router IP address belongs to, along with the loca
tion information. Full GeoLite2 database is in geolite_blocks and geolite_loca-
tions tables, this table holds only a subset of data from those tables. It is denor-
malized on purpose (there are duplicate column values) which results in larger size
but faster data retrieval. This dimension table is referenced from the fact table by
geolite_id column and uses M y l S A M storage engine because ColumnStore does not
support VARBINARY data type.

dim geolite

id INTEGER

network_start VARBINARY(16)

network_end VARBINARY(16)

latitude FLOAT

longitude FLOAT

as_num INTEGER

as_org VARCHAR(256)

continent VARCHAR(14)

city VARCHAR(64)

country VARCHAR(64)

time_zone VARCHAR(30)

is_in_eu BOOLEAN

Table 4.12: dim_geolite table column names and types.

There is a special table named ip_addr_to_geo that maps IP addresses to GeoLite2 data.
This table is updated before the data is inserted to f act_router_entries table. For each
IP address a respective record from dim_geolite table is found by checking which net
work the IP address belongs to. Then the IP address id column from dim_ip_addresses

and GeoLite2 id column from dim_geolite are stored in this table. This is required
for the join of tmp_router_entries table with dim_geolite table when inserting to
f act_router_entries table (see Section 5.3).

ip addr to geo

ip_addr_id INTEGER

geolite_id INTEGER

Table 4.13: ip_addr_to_geo table column names and types.

31

Chapter 5

Extending Consensus Parser with
M a r i a D B

This chapter describes the implementation of new parts of Consensus Parser that interact
with MariaDB database and original parts that were modified for the purposes of this thesis.
First, used technologies with their respective versions are listed. Next, custom database
functions are described, followed by the connecting to the database and its initialisation.
Then, the insertion of data from consensus status documents to database is presented. After
that, extensions to the Toreator A P I are described. The chapter closes with a section about
the limitations of ColumnStore storage engine.

Consensus Parser is implemented in Python 3.61 programming language and therefore
all implementation done within this thesis is in Python 3.6 too. For R E S T A P I functionality,
Conensus parser used Flask 2 framework version 1.0.2 and that was not changed. MariaDB'^
Server version is 10.3.13 and MariaDB ColumnStore 1 version is 1.2.3-GA. SQLAlchemy 0

1.3.1 and P y M y S Q L 0.9.3 are utilised for interacting with MariaDB. SQLAlchemy auto
matically handles connection pooling, it supports SQL statements creation with Python
methods and can abstract the specific database to some extent. It has two main compo
nents - object-relational mapping (ORM) and Core. O R M is not used in the implementa
tion because of the limitations of ColumnStore, such as a lack of support for FOREIGN KEY
constraints, and because Core provides more fine grained control over SQL statements.

The root directory with the source code and the name of the repository is TorConsensus-
Parser. Inside this directory there are all source code files for the original Consensus Parser,
some of which were modified for the needs of this thesis. Main module of the application is
consensus_parser .py which accepts various command line arguments and is the only exe
cutable module along with rest .py and prof ilerest .py. Consensus Parser was modified
to use Python's logging module. The configuration is in Y A M L ' format in logging.yml
file and it's loaded in the logging_config.py module. The source code files concerning
the database reside in the database Python package. Full directory structure can be seen
in Appendix A .

x

https://www.python, org/downloads/release/python-360
2

http: 111 lask.pocoo.org
3

https: //mariadb.com

https: //mariadb.com/kb/en/library/mariadb-columnstore
5

https: //www.sqlalchemy.org
6

https: //github.com/PyMySQL/PyMySQL
7

https: //yaml.org

32

https://www.python
http://lask.pocoo.org
http://iadb.com
http://iadb.com/kb/en/library/mariadb-
http://www.sqlalchemy.org

5.1 Custom database functions

This section describes the database functions that were created for the purposes of this
thesis when some functionality was required that MariaDB did not provide. Their usage
will be further described in this chapter. List of the functions with respective descriptions
follows:

get_start_ipv4_of_cidr

Takes a VARCHAR(19) containing an IPv4 network address in CIDR notation and
returns a VARBINARY(4) with the first IP address in that network.

get_end_ipv4_of_cidr

Takes a VARCHAR(19) containing an IPv4 network address in CIDR notation and
returns a VARBINARY(4) with the last IP address in that network.

get_start_ipv6_of_cidr

Takes a VARCHAR(50) containing an IPv6 network address in CIDR notation and
returns a VARBINARY(16) with the first IP address in that network.

get_end_ipv6_of_cidr

Takes a VARCHAR(50) containing an IPv6 network address in CIDR notation and
returns a VARBINARY(16) with the last IP address in that network.

get_start_ip_of_cidr

Takes a VARCHAR(50) containing a network address in CIDR notation, determines if
it is IPv4 or IPv6 and calls get_start_ipv4_of _cidr or get_start_ipv6_of _cidr
accordingly.

get_end_ip_of_cidr

Takes a VARCHAR(50) containing a network address in CIDR notation, determines
if it is IPv4 or IPv6 and calls get_end_ipv4_of_cidr or get_end_ipv6_of _cidr
accordingly.

get_geoblock_id_for_ip

Takes a VARBINARY(16) with an IP address and returns an INTEGER with the id of
the block from geolite_blocks table that the address belongs to.

get_dim_geolite_id_for_ip

Takes a VARBINARY(16) with an IP address and returns an INTEGER with the id of
the block from dim_geolite table that the address belongs to.

get_asn_num_for_range

Takes two VARBINARY(16) variables with start and end IP addresses of a network
and returns an INTEGER with the number of the autonomous system that the net
work is a part of. Autonomous system number is looked up in a temporary table
tmp_asn_blocks (see Figure 5.1) that contains information from GeoLite2 database.

33

get_asn_org_for_range

Takes two VARBINARY(16) variables with start and end IP addresses of a network and
returns a VARCHAR(256) with the name of the organization of the autonomous system
that the network is a part of. Organization of the autonomous system is looked up in
a temporary table tmp_asn_blocks (see Figure 5.1) that contains information from
GeoLite2 database.

tmp_city_blocks

network start

network end

location id

latitude

lonqitude

tmp_asn_blocks

network start

network end

as num

as org

Figure 5.1: Temporary tables that are created when loading GeoLite2 data to MariaDB.
They are filled with city and A S N blocks data from GeoLite2 C S V files and then merged
into the geolite_blocks table. These tables use M y l S A M storage engine since they store
network addresses in VARBINARY data type.

5.2 Database connection and initialisation

Encapsulation of database connection is done in the DBWrapper class. It handles the cre
ation of SQLAlchemy Engine object with database configuration from db. yml file. Config
uration is in Y A M L format and contains connection parameters such as hostname, port,
username, password and database name, and connection pool related settings. DBWrapper
provides database connections by the get_connection method and loading C S V files by
the load_csv_f i l e method. The connection is automatically retrieved from the connec
tion pool and returned there after the caller finishes its work. load_csv_f i l e creates and
executes a LOAD DATA LOCAL INFILE statement that reads the data directly from the file.

The initialisation of the database is composed of four main parts:

• Creation of the tables - all persistent tables that can be seen in Figure 4.1 are
defined and created by the TorTable class from the tortable .py module. Each table
is an instance of SQLAlchemy Table class and a class variable of the TorTable class.
The TorTable class has only one method - create_all - that takes a connection as
an argument and creates all tables.

• Creation of the database functions - all SQL functions are defined and created
by the Function class that is a subclass of the Enum class. It is defined in the
function.py module. Each function is an enum member that is a tuple with the
function name and CREATE FUNCTION SQL statement. Functions are created by the
create_all method that takes a connection as an argument and creates all functions

34

using their SQL statements. The Function class contains methods get_name and
get_create_sql for extracting respective parts of the tuple, and the get_str_call_-
with_args method that takes an argument list and returns a string with function call,
e.g. „func(argl, arg2)".

• Initialisation of date, time and flags dimensions - these three dimensions are
not dynamic and do not depend on the inserted data. In consequence, they can be
initialised on database creation. Initialisation happens in the init_dimensions .py
module. Each dimension is truncated at first and then a C S V file with all necessary
combinations (e.g. all possible combinations of hours, minutes and seconds) is created,
loaded into the database and deleted.

• Downloading GeoLite2 data and loading it to MariaDB - downloading and
loading GeoLite2 data is in the load_geolite.py module. First, the data is down
loaded from MaxMind 's 8 website and extracted from the ZIP archives. See Table 5.1
for the description of the files. Then, location data is inserted directly from the C S V
file GeoLite2-City-Locations-en.csv into geolite_locations table. Next, tem
porary tables tmp_city_blocks and tmp_asn_blocks are created (see Figure 5.1).
These are filled with the data from city and A S N blocks C S V files respectively, both
IPv4 and IPv6 versions. Data from both tables is then merged and inserted into
geolite_blocks table. But since network blocks in temporary tables are different,
get_asn_num_f or_range and get_asn_org_f or_range functions are used for retriev
ing A S N data when joining the temporary tables.

Database initialisation can be executed by running consensus_parser .py with —init_db

argument. Inividual steps can also be executed with —create_db_tables, —create_db_-

functions, —init_dimensions and —load_geolite arguments.

Name Content

GeoLite2-ASN-Blocks-IPv4.csv IPv4 network address in CIDR format, au
tonomous system number and autonomous
system organization.

GeoLite2-ASN-Blocks-IPv6.csv IPv6 network address in CIDR format, au
tonomous system number and autonomous
system organization.

GeoLite2-City-Blocks-IPv4.csv IPv4 network address in CIDR format, loca
tion id, latitude and longitude.

GeoLite2-City-Blocks-IPv6.csv IPv6 network address in CIDR format, loca
tion id, latitude and longitude.

GeoLite2-City-Locations-en.csv Location id, continent, country, city, time zone
and a binary value indicating if the location is
in the European Union.

Table 5.1: GeoLite2 database C S V files content description. Some fields that are not used
in this thesis were omitted.

'https: //www.maxmind.com

35

http://www.maxmind.com

5.3 Consensus status data insertion

Consensus status data is parsed from consensus status documents in the consensus_-

parser.py module when it is executed with —consensus_path argument with the path to
the directory that contains consensus status documents. This directory is then recursively
scanned and each file that has valid-after timestamp newer than the latest one stored is
processed. First, an instance of the ConsensusStatus class is created by parsing the file's
content and storing consensus status valid-after, fresh-until and valid-until timestamps and
a list of the OnionRouter class instances with all routers that it contains. The OnionRouter
class encapsulates information about an onion router from consensus status document (see
Subsection Consensus status for router entry description and Figure 2.3 for router entry
example). If consensus_parser.py is executed with -a or —additional_info options,
the DnsReverseResolver class from dns.py module is used to resolve reverse DNS name
for each onion router. To make resolving faster, it is done in parallel using Python's Pool
class and its methods map_async and map. From this point on, consensus status may be
stored to preprocessed files (see Section 2.5) or to the database. This is controlled by
—write_to_db option of Consensus Parser. Since this thesis is about storing consensus
status data to the database, the following text describes the process with this option.

I N S E R T INTO dim_nicknames

(nickname)

S E L E C T D I S T I N C T j.nickname

FROM tmp_router_entries A S j
L E F T J O I N dim_nicknames AS dim

ON j.nickname = dim.nickname
WHERE dim.nickname I S N U L L

AND j.nickname I S NOT N U L L ;

Figure 5.2: SQL code snippet for updating a dimension table with values from the tem
porary table tmp_router_entries that are not yet present in the dimension table. This
example shows an update of the dim_nicknames dimension table.

After the instance of the ConsensusStatus class is created, an instance of the Consensus-
Statuslnserter class is created and its insert method is called with the ConsensusStatus
instance as an argument. This method does the following:

1. Create a temporary table tmp_router_entries. This table has columns that corre
spond to the dimension tables columns except IDs, and facts in the fact table. It uses
M y l S A M storage engine because one of the columns is the IP address.

2. Insert onion routers data to tmp_router_entries. A regular INSERT statement is
used with VALUES clause containing values from all OnionRouter class instances in
the ConsensusStatus instance that was passed to the insert method.

3. Insert values that are in tmp_router_entries but not in the dimension tables to the
dimension tables (excluding dim_dates, dim_times, dim_flags and dim_geolite).
This is done by doing a LEFT JOIN of tmp_router_entries and a dimension table
with a WHERE condition eliminating existing values in the dimension and NULL values
in tmp_router_entries. See Figure 5.2 for example.

36

4. Insert geolocation data from geolite_blocks and geolite_locations to dim_geo-
li t e dimension for all IP addresses in tmp_router_entries that do not have a cor
responding block in dim_geolite yet. That is achieved by inserting geolocation values
from the join of tmp_router_entries with geolite_blocks and geolite_locations
using get_geoblock_id_f or_ip function to find the ID of the geolocation block for
the IP address.

5. Insert ID of the IP address from tmp_router_entries and ID of its corresponding
block from dim_geolite to ip_addr_to_geolite for each IP address in tmp_rou-
ter_entries which does not have its ID in ip_addr_to_geolite yet.

6. Insert consensus status data to the fact table by joining tmp_router_entries with
the dimension tables and ip_addr_to_geolite, thus replacing dimensions values with
numeric IDs. Join condition compares values but only dimensions IDs and facts are
selected. INSERT INTO SELECT SQL statement is used for the insertion.

5.4 Extending the Toreator A P I

Consensus status data is provided by the Toreator R E S T A P I described in Subsection
Toreator ^4P/in Section 2.5. One of the aims of this thesis was to extend this A P I with new
types of requests. Toreator A P I functionality resides in rest.py, rest_utils.py, rest_-
endpoint_creator.py and serializable.py modules. The serializable.py module
converts the data to H T M L or JSON and the other modules are described later in this
section.

Abstraction layer

To be able to make queries to the database with parameters from the endpoints, an ab
straction layer was added between the R E S T A P I and the database. This layer consists of
these classes from the database.py module:

• Field - a class that abstracts what to select, join or filter. It contains instances of all
dimension tables from the TorTable class but with aliases. This is necessary for joins
because publication, valid-after, fresh-until and valid-until keys in the fact table all
point to dim_dates and dim_times dimension tables. Without aliases it would not
be possible to distinguish them in a join (see Figure 5.3). There also members of this
class that are instances of columns, such as year or or_port, to be able to filter on
them.

• SelectColumns - a class that controls what will be in the SELECT clause of the query.
Its constructor accepts field_names argument - a list of strings that correspond
to aliases in the Field class except for date and time fields which are merged. For
example, publication date field has „publish_date" alias and publication time field has
„publish_time" alias but the string in f ield_names is just „publish" and both fields
are automatically included. Besides aliases from Field, f ield_names can contain fact
names „or_port", „dir_port" and „bandwidth". A l l columns (except IDs) of fields
from f ield_names are chosen to be selected and if f ield_names is empty, all columns
(except IDs) of all fields are chosen to be selected along with facts columns. Columns
are instances of SQL Alchemy Column object and each is assigned an appropriate

37

label that is used as an SQL alias. Columns chosen to be selected are provided by
the get_columns_to_select method. Field instances that need to be joined with
the fact table are provided by the get_f ields_to_join method.

• Filter - a class that determines which tables will be joined with the fact table
on what conditions and what conditions will be in the WHERE clause of the query.
The constructor accepts a list of fields to join with the fact table and a dictionary
f ilter_dict mapping the Field instances to their desired values. For all fields that
are joined with the fact table, a condition that the fact table key equals the field's
ID is automatically added to JOIN ON clause. filter_dict values are transformed
into conditions used in JOIN ON and WHERE clauses by internal filtering functions.
SQLAlchemy Join object is provided by the get_join method and SQLAlchemy
A N D conjunction is provided by the get_where method.

• OnionRouterSelector - a class that executes the SELECT statement and returns
a list of OnionRouter instances. It takes list of columns to select, SQLAlchemy Join
and SQLAlchemy A N D conjunction as arguments in constructor. The get_routers
method constructs SQLAlchemy Select object, executes it and returns OnionRouter
instances. The OnionRouter instance is constructed from the database row by the
or_f rom_db_row module method. If some fields are missing in the database row, this
method just ignores them.

SELECT publish_date.year AS publish_date_year,

publish_date.month AS publish_date_month,

publish_date.day AS publish_date_day,

valid_after_date.year AS valid_after_date_year,

valid_after_date.month AS valid_af ter_date_month,

valid_after_date.day AS valid_after_date_day

FROM fact_router_entries

JOIN dim_dates AS publish_date

ON publish_date.id = f act_router_entries.publish_date_id

JOIN dim_dates AS valid_af ter_date

ON valid_af ter_date.id = f act_router_entries.valid_af ter_date_id

Figure 5.3: Example demonstrating the need for aliases for dim_dates dimension table.
Since both publish_date_id and valid_af ter_date_id keys from the fact table point to
dim_dates, aliases are necessary. Wi th dim_times dimension table it is analogous.

New endpoints

The A P I was extended with new endpoints allowing to search by different fields than IP
address, date and time. This is handled by rest .py, rest_utils .py and rest_endpoint_-
creator.py modules, rest.py is a main module where the Flask application is started.
This module uses the rest_endpoint_creator.py module to dynamically generate end-
point functions which are assigned to the rest.py module. rest_endpoint_creator.py
contains classes that encapsulate different types of endpoints (see Subsection Toreator API
in Section 2.5). Each class implements the create_endpoints method that returns a list of
pairs. The first element of the pair is a function processing the endpoint type for a specific
field or multiple fields. The second element is the path of the endpoint. So each pair in

38

the list represents a specific endpoint for a specific field or multiple fields. The rest.py
module then calls the create_endpoints method of all classes, iterates through all pairs,
assigns the functions to itself and creates U R L rules based on the paths.

The rest_utils .py module contains common functions that are used across multiple
endpoints. Most important ones are:

• get_routers - accepts a list of parameters from the query component of the U R L
and a dictionary with fields to filter and their values. Returns a list of OnionRouter
instances conforming to filter and containing fields specified by the parameters or all
fields if no parameters were given. Router entries with identical fields except valid-
after and valid-until times are merged it those times overlap.

• get_field_activity - accepts a dictionary with fields to filter and their values,
and a date format. Returns all valid-after dates in a given date format (or default
%Y-%m-%d if none was given) conforming to filter.

• get_all_f ield_values_links - accepts an instance of the Field class and returns
links to the endpoints containing information about the field's values. This method is
only usable for fields nickname, fingerprint, digest, IP address and reverse DNS name.

New endpoints are like the ones described in Subsection Toreator ^4P/in Section 2.5 (except
the first three) but in place of addresses there can be nicknames, fingerprints, digests,
versions, dns_names, flags, countries, cities, as_nums or as_orgs. flags is specified
by a list of comma divided flag names, other fields are just strings or numbers. Of course,
<address> has to be replaced with a proper value of the aforementioned fields. There are
also some endpoints that allow to filter by more than one field. They are listed in Table 5.2.

U R L
/addresses/<address>/nicknames/<nick>/

/addresses/<address>/flags/<flags>/

/nicknames/<nick>/flags/<flags>/

/dns_names/<dns_name>/flags/<flags>/

/flags/<flags>/addresses/<address>/

/flags/<flags>/dns_names/<dns_name>/

/flags/<flags>/countries/<country>/

/flags/<flags>/cities/<city>/

/flags/<flags>/as_nums/<as_num>/

/flags/<flags>/as_orgs/<as_org>/

/versions/<version>/addresses/<address>/

/countries/<country>/flags/<flags>/

/cities/<city>/flags/<flags>/

/as_nums/<as_num>/addresses/<address>/

/as_nums/<as_num>/flags/<flags>/

/as_nums/<as_num>/versions/<version>/

/as_orgs/<as_num>/addresses/<address>/

/as_orgs/<as_num>/nicknames/<nick>/

/as_orgs/<as_num>/flags/<flags>/

Table 5.2: New endpoints that provide searching by multiple fields. They were chosen
according to the discussion with the supervisor of the thesis.

39

Specifying fields by parameters in the URL
Another new feature is a possibility to include only specified fields in the results. This is
controlled by parameters in the query component of the URL with names of the desired
fields. The names correspond (with some exceptions, see the SelectColumns class descrip
tion above in this section) to aliases or column names in the Field class. For example, if
the user is interested only in a nickname, a fingerprint and an onion router port, the request
URL would look like this: /addresses/158.255.3.14/?nickname&f ingerprint&or_port.
This would filter the data by the IP address 158.255.3.14 but the result would contain only
the desired fields (see Figure 5.4). Because of the abstraction layer, this feature is imple
mented in a simple manner. A list of parameters is just passed to the get_routers method
in the rest_utils .py module which passes it to the constructor of the SelectColumns
class. The SelectColumns instance then determines the appropriate columns to select.
When applied, this feature also offers performance increase because ColumnStore does not
have to scan so many columns and fewer joins are done.

N i c k n a m e hollow
• Identity: AIFk0HNTfu4Jm4OTWoeoD6vON10
• ORPort: 9001

Figure 5.4: Result returned by the Toreator REST API when URL parameters are used
to specify what should be included in the result. URL parameters are strings corre
sponding (with some exceptions, see the SelectColumns class description above in this
section) to aliases and column names in the Field class. In this example the URL is
/addresses/158.255.3.14/?nickname&fingerprint&or_port. Result with all fields can
be seen in Figure 2.7.

5.5 M a r i a D B ColumnStore limitations

ColumnStore does not support VARBINARY data type which is a huge drawback since it
requires using other engine for tables that need to store IPv6 addresses. This thesis has
IPv4 and IPv6 in the same column; therefore, all tables that store IP addresses use M y l S A M
engine. Performance problems arise from this because cross joins between engines are slower
and ColumnStore query optimizer does not seem to take M y l S A M or InnoDB indexes into
account. This is the reason that some workarounds were used which are not optimal, such as
dim_geolite dimension. If ColumnStore optimizer took indexes into account and queries
were faster, it would be sufficient to store geolite_blocks ID in dim_ip_addresses table
and join on that. This would make data insertion faster and simpler. If VARBINARY was
supported in ColumnStore it would make queries even faster.

Another problem is a bug in join between ColumnStore and M y l S A M or ColumnStore
and InnoDB which causes INET6_NT0A and INET6_AT0N functions to not work when the
IP address contains 0x00 byte or zero octet or hextet. This is evident especially with
GeoLite2 data where the first address of the network often contains 0x00 byte. It also
affects searching since no IP address which contains 0x00 byte can be joined with the fact
table. Such addresses are only showed by /addresses/ endpoint because it just selects the

40

addresses from the dimension table without joining with the fact table. I filed a bug J in
MariaDB J IRA system and got some reponse from a MariaDB developer so hopefully this
will be resolved.

Nevertheless, ColumnStore is actively developed and there is a good chance that these
problems will be fixed in the near future.

'https: / / j ira.mariadb.org/browse/MC0L-2234

11

http://ira.mariadb.org/browse/MC0L-2234

Chapter 6

Evaluation and comparison to the
original version

This chapter presents the results of the experiments which were done to compare the original
version of Consensus Parser to the one created as a part of this thesis. In the first section,
various experiments showing performance differences are introduced. In the second section,
storage utilisation of both versions is compared. The chapter closes with a section that
compares the versions and lists their advantages and disadvantages.

Experiments were done on a machine running Ubuntu 1 Linux version 18.04.2 LTS with
Linux core 4.15.0-47-generic. It was a virtual machine running in VMWare with 4 C P U cores
and 16 G B R A M . Both versions were running locally on the machine, exposing the A P I via
the loopback interface. MariaDB ColumnStore was installed as a single server configuration,
i.e. User Module and Performance Module on the same machine. The database was filled
with data from consensus status documents for 2017 and the same documents were given to
the original version to transform to preprocessed files. Therefore, both versions were tested
on the same data.

6.1 Performance experiments

Experiments were focused on the performance of both versions and their comparison. A re
quest to an endpoint was always sent five times and then mean, maximum and mini
mum durations were stored. The source code for running experiments resides in the
experiments .py module in the experiments package. The module takes a C S V file with
pairs of IP address and time as an input and writes durations of the requests for specific
endpoint and version to another C S V file. It can also send requests to Toreator2 server
instead of the local machine. Note that in Chapter 2, Toreator is referred to as the name
of the A P I . In this chapter, it is referred to as the name of the actual server hosted in Brno
University of Technology network.

Displaying all information

The first experiment was done to examine the performance of the most computationally
expensive task - displaying all information about the onion router with a specific IP address

x

https: //www.ubuntu.com/
2Toreator is accessible at http://toreator.fit.vutbr.cz

42

http://www.ubuntu.com/
http://toreator.fit.vutbr.cz

without any date or time restriction. Two IP addresses were chosen to retrieve information
about according to the large amount of data that was stored in the system for both of them.
Another criterion was for one address to take a short time to look up in the GeoLite2 C S V
files and the other one to take a long time. Since GeoLite2 C S V files contain records
ordered by the network from 1.0.0.0 to 255.0.0.0, chosen addresses were 5.79.68.161 and
217.191.97.45. This demonstrated the inefficiency of the original version's approach when
the network that the IP address belongs to is located near the end of the file. The results
for IP addresses 5.79.68.161 and 217.191.97.45 can be seen in Figure 6.1 and Figure 6.2
respectively.

Figure 6.1 shows that the original version achieves excellent performance when the
search for the IP address in GeoLite2 C S V files is fast. In comparison, the new version does
not perform so well due to the nature of ColumnStore which is not optimised for retrieving
data for all columns. It would be interesting to see what the results would be if the new
version supported multiple versions of GeoLite2 database. The fact is that the original
version performs worse with more GeoLite2 database versions, as can be seen in Figure 6.3.
If the new version supported multiple versions of GeoLite2 database, it might not degrade
performance as much as in the original version, because querying the database is in most
cases faster than searching directly in files.

Mean • Max Min

12000

co
E,
c
o
co
i

ZJ
Q

10000

8000

6000

4000

2000
1763 1824 1731

Original version New version

Figure 6.1: Comparison of durations of retrieving all information about the onion router
with the IP address 5.79.68.161.

In figure 6.2, the differences between the two versions are much smaller since the old
version took more time to search for the geolocation data, but it was still faster then the
new version.

To illustrate the performance of the original solution with the data for multiple years
and with multiple GeoLite2 database versions, Toreator server was queried too. Toreator

43

runs the original version on a machine with all consensus data since 2008 and many versions
of GeoLite2 database.

12000

Mean • Max Min

10000

c o
co
i

ZJ
Q

8000

6000

4000

2000

8730

I
•
I

Original version New version

Figure 6.2: Comparison of durations of retrieving all information about the onion router
with the IP address 217.191.97.45.

In Figure 6.3, the results of comparing Toreator performance to the original and the
new version running on a local machine are displayed. IP address 82.229.26.235 was chosen
because there is a lot of data for it for multiple years. It is evident from the figure that
Toreator performance is significantly worse. It is caused by the volume of the data, the
number of versions of GeoLite2 database and the fact that GeoLite2 database records are
looked up directly in the C S V files.

Comparison of various endpoints

In this experiment, mean durations of various endpoints supported by both versions were
compared. IP addresses were the same as in Subsection Displaying all information in
this section. The results in Table 6.1 show that durations for the endpoints such as
addresses/5.79.68.161/date or addresses/5.79.68.161/month that show only the onion
router activity (links to endpoints that display information about an onion router for a
time period) are relatively comparable for both versions. The endpoints with more no
table differences between the versions are the ones that return information about the onion
router. And the longer the time period, the longer the duration of the request, except for
the original version endpoints addresses/5.79.68.161/time/2017-07-01 12:00:00 and
addresses/217.197.91.145/time/2017-07-01 12:00:00. These take more time because
the original version has to parse valid-after and valid-until times as U N I X timestamps and
compare them to the given time. For dates, it just checks the prefixes of valid-after and
valid-until. For IP address 217.197.91.145, the differences are smaller because the original
version took more time to retrieve the geolocation data than for IP address 5.79.68.161.

44

135

120

100

S
 8 0

c
o

co
i

ZJ
Q

60

40

20

Original version New version Toreator

Figure 6.3: Comparison of mean durations of retrieving all information about the onion
router with the IP address 82.229.26.235. Both versions running on a local machine were
queried as well as the Toreator server.

Endpoint Original version New version

addresses/5.79.68.161 1763 10036

addresses/5.79.68.161/date 383 1297

addresses/5.79.68.161/time 388 1305

addresses/5.79.68.161/month 562 1284

addresses/5.79.68.161/year 595 1299

addresses/5.79.68.0-24 3 15

addresses/5.79.68.161/time/2017-07-01 12:00:00 2549 4764

addresses/5.79.68.161/date/2017-07-01 409 4375

addresses/5.79.68.161/month/2017-07 529 4824

addresses/5.79.68.161/year/2017 1791 10083

addresses/217.197.91.145 6213 9845

addresses/217.197.91.145/date 354 1305

addresses/217.197.91.145/time 369 1269

addresses/217.197.91.145/month 552 1296

addresses/217.197.91.145/year 530 1311

addresses/217.197.91.0-24 3 13

addresses/217.197.91.145/time/2017-07-01 12:00:00 6645 4556

addresses/217.197.91.145/date/2017-07-01 4270 4559

addresses/217.197.91.145/month/2017-07 4453 5059

addresses/217.197.91.145/year/2017 5726 9341

Table 6.1: Mean durations in milliseconds for requests to specific endpoints.

45

Limiting the returned fields
This experiment was done to prove that ColumnStore achieves a notable performance gain
when the number of columns it has to read is limited. The feature described in Subsection
Specifying fields by parameters in the URL in Chapter 5 was used to limit the information
returned by the A P I . It is done by specifying parameters in the query component of the
U R L . Count of retrieved fields ranging from one to thirteen was tested. The results in
Figure 6.4 show that limiting the returned fields indeed improves the performance and
shortens the duration of the request.

12000

9741

0
13 12 11 10 9 8 7 6 5 4 3 2 1

Number of retrieved fields

Figure 6.4: Mean durations of the request with respect to different number of retrieved
fields.

6.2 Storage utilisation

Figure 6.5 displays the difference in storage size for both versions for 2017 consensus data.
It is apparent that MariaDB database takes almost five times less space than preprocessed
files. This is due to the design of the data schema which has a large fact table that
contains only numeric keys that point to the dimension tables. ColumnStore also utilises
compression, achieving even more space savings. In comparison, preprocessed files store all
data redundantly as strings, so their size increases linearly with addition of more data.

Both versions use GeoLite2 database for geolocation data and the original version also
supports multiple versions of this database. The size of one version (in C S V files) ranges
from 250 M B to 340 M B . So for the whole year it is approximately 52 x 300 = 15600 M B ,
but since the new version does not support multiple GeoLite2 versions, only the size of
one version was included. In the new version, GeoLite2 is stored in tables with M y l S A M
storage engine and it can be seen in Figure 6.5 that its size is about 300 M B . The original
version uses the C S V files directly.

46

30
GeoLite C S V f i les 0,3

Preprocessed f i les 29

25

CO
CD
O)
N

Original version New version

Figure 6.5: Comparison of the size of consensus data for 2017 in the original version and
the new version.

6.3 Comparison of the versions

Main disadvantages of the original version are the limited searching options, poor storage
utilisation and slow retrieval of GeoLite2 data. The biggest original version's advantage
is the hierarchical structure of the directories with preprocessed files. Because of it, the
duration of retrieving is shorter than in the new version if only one GeoLite2 database
version is used. Another advantage is having multiple versions of GeoLite2 database which
means the geolocation data reflect the state in a specific time period, not just the current
state as in the new version. However, because geolocation data is looked up in C S V files,
request duration suffers. And the more versions (more files), the worse the performance.

Main drawbacks of the new version are a lack of GeoLite2 database versioning and
query performance. The performance problem is due to the fact that retrieving data from
all columns is not a use case where ColumnStore is very efficient. Its advantages show more
when the retrieved results are limited to only some columns because then it does not have
to access the disk that much. The mixing of ColumnStore and M y l S A M is also not ideal.

As for the advantages, the new version provides 121 endpoints while the original version
provides only 12. That is a tenfold increase which extends the searching options consider
ably. The new version is much more effective in storage utilisation. The size of the database
with all consensus data for the year 2017 is 5.1 G B (ColumnStore tables take up 4.8 G B ,
M y l S A M tables take up 338 M B) . Preprocessed files for the year 2017 take up 29 G B ,
almost five times more. A n additional benefit of the new version is that it brings the power
of SQL to a user that has direct access to the database and some SQL knowledge. This
provides possibilities for various analytical queries, e.g. a calculation of the average band
width, finding the most frequently used port or the country with the most onion routers.

47

This also means that much more information can be extracted from the new version than
from the original version.

Some performance improvement can be achieved in the new version by using a multi
server configuration for ColumnStore and thus utilising distributed processing on multiple
User and Performance Modules (see Section 3.5). Running ColumnStore on bare metal
server instead of a virtual machine will probably increase the performance too.

18

Chapter 7

Conclusion

The aim of this thesis was to modify and improve Consensus Parser - a tool for storing
and providing information about the Tor network - to use an O L A P database and improve
its searching and filtering capabilities. This was accomplished by designing a database
schema for storing Tor network consensus data that conforms to O L A P needs, creating
a database based on the schema and integrating it into Consensus Parser. Created solution
provides enhanced searching functionality which includes searching by multiple dimensions
and retrieving only specified fields. To give context to the reader, the Tor network and the
Tor directory protocol were introduced along with Consensus Parser and the data it stores.
Further, O L A P and multidimensional data model was described and research was done to
examine support for O L A P in open source databases PostgreSQL and MariaDB. Based on
the research, the latter was chosen as an appropriate database for Consensus Parser because
it has ColumnStore storage engine which is suited exactly for O L A P .

Results of the experiments revealed that the new version is a little bit slower than the
original version when the original version uses only one version of GeoLite2 database. But
when retrieving only specified fields - a new feature - is used, the performance of the new
version increases significantly. Main accomplishment of the new version is the addition of
109 endpoints to 12 existing ones to allow more complex search, and reducing the disk
usage by a factor of five.

Possible improvements of the new version of Consensus Parser are versioning of the
GeoLite2 geolocation database, adding onion router policy and supported protocols infor
mation to stored information, and storing Tor protocol version as a numeric value instead
of a string. Adjusting unit tests and adding integration tests would be a reasonable en
hancement too.

49

Bibliography

[1] Abadi, D.: The Design and Implementation of Modern Column-Oriented Database
Systems. Foundations and Trends® in Databases, vol. 5, no. 3. 2012: pp. 197-280.
ISSN 1931-7883. doi:10.1561/1900000024.

[2] Chaudhuri, S.; Dayal, U . : A n Overview of Data Warehousing and O L A P Technology.
SIGMOD Rec.. vol. 26, no. 1. March 1997: pp. 65-74. ISSN 0163-5808.

[3] Childs, L . : Onionite. [Online; visited 30.12.2018].
Retrieved from: ht tps : / /onioni te .now.sh

[4] Dingledine, R.; Mathewson, N . : Tor directory protocol, version 3. [Online; visited
18.10.2018].
Retrieved from: h t tps : / / g i tweb . to rp ro jec t . o rg / to r spec .g i t / t r ee /d i r - spec . tx t

[5] Dingledine, R.; Mathewson, N . : Tor Protocol Specification. [Online; visited
16.10.2018].
Retrieved from: h t tp s : / / g i tweb . to rp ro jec t .o rg / to r spec .g i t / t r ee / to r - spec . tx t

[6] Dingledine, R.; Mathewson, N . ; Syverson, P.: Tor: The Second-Generation Onion
Router. In 13th USENIX Security Symposium. San Diego, C A , USA. August 2004.

[7] Golfarelli, M . : Data warehouse design. New York: McGraw-Hill , third edition. c2009.
ISBN 978-0-07-161039-1.

[8] MariaDB: About MariaDB Software - MariaDB Knowledge Base. [Online; visited
8.4.2019].
Retrieved from: h t tps : / /mariadb.com/kb/en/l ibrary/about-mariadb-software

[9] MariaDB: ColumnStore Data Types - MariaDB Knowledge Base. [Online; visited
28.4.2019].
Retrieved from: h t tps : / /mariadb.com/kb/en/ l ibrary/columnstore-data- types

[10] MariaDB: ColumnStore Performance Module - MariaDB Knowledge Base. [Online;
visited 8.4.2019].
Retrieved from:
h t tps : / /mariadb.com/kb/en/ l ibrary/columnstore-perf ormance-module

[11] MariaDB: ColumnStore Storage Architecture - MariaDB Knowledge Base. [Online;
visited 8.4.2019].
Retrieved from:
h t tps : / /mar iadb.com/kb/en/ l ibrary/columnstore-s torage-archi tec ture

50

https://onionite.now.sh
http://torproject.org/torspec.git/tree/dir-spec.txt
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt

[12] MariaDB: ColumnStore User Module - MariaDB Knowledge Base. [Online; visited
8.4.2019].
Retrieved from: https: //mariadb.com/kb/en/library/columnstore-user-module

[13] MariaDB: MariaDB ColumnStore - MariaDB Knowledge Base. [Online; visited
8.4.2019].
Retrieved from: https: //mariadb.com/kb/en/library/mariadb-columnstore

[14] MariaDB: MariaDB License - MariaDB Knowledge Base. [Online; visited 8.4.2019].
Retrieved from: https: //mariadb.com/kb/en/library/mariadb-license

[15] MariaDB: MariaDB versus MySQL - Compatibility - MariaDB Knowledge Base.
[Online; visited 8.4.2019].
Retrieved from:
https: //mariadb.com/kb/en/library/mariadb-vs-mysql-compatibility

[16] MariaDB: V A R B I N A R Y - MariaDB Knowledge Base. [Online; visited 28.4.2019].
Retrieved from: https://mariadb.com/kb/en/library/varbinary

[17] Neal, H . : Onion diagram. [Online; visited 07.10.2018].
Retrieved from: https: //en.wikipedia.org/wiki/File: 0nion_diagram.svg

[18] O L A P Council: O L A P and O L A P Server Definitions. [Online; visited 21.1.2019].
Retrieved from: http: //www.olapcouncil.org/research/resrchly.htm

[19] Oracle Corporation: MySQL :: MySQL 8.0 Reference Manual :: 8.11.1 Internal
Locking Methods. [Online; visited 6.5.2019].
Retrieved from:
https: / / dev.mysql.com/doc/ref man/8.0/en/internal-locking.html

[20] Ponniah, P.: Data warehousing fundamentals. New York: Wiley. 2001. ISBN
04-714-1254-6.

[21] The PostgreSQL Global Development Group: PostgreSQL: About. [Online; visited
6.4.2019].
Retrieved from: https://www.postgresql.org/about

[22] The PostgreSQL Global Development Group: PostgreSQL: Documentation: 11:
Appendix D. SQL Conformance. [Online; visited 6.4.2019].
Retrieved from: https: //www.postgresql.org/docs/current/features.html

[23] The PostgreSQL Global Development Group: PostgreSQL: Feature Matrix. [Online;
visited 6.4.2019].
Retrieved from: https://www.postgresql.org/about/featurematrix

[24] The Tor Project: Abuse F A Q . [Online; visited 07.10.2018].
Retrieved from: https://www.torproject.org/docs/faq-abuse

[25] The Tor Project: Bridges. [Online; visited 30.12.2018].
Retrieved from: https://www.torproject.org/docs/bridges

[26] The Tor Project: F A Q . [Online; visited 06.10.2018].
Retrieved from: https://www.torproject.org/docs/faq

51

https://mariadb.com/kb/en/library/varbinary
http://en.wikipedia.org/
http://www.olapcouncil.org/research/resrchly.htm
http://dev.mysql.com/
https://www.postgresql.org/about
http://www.postgresql.org/docs/current/features.html
https://www.postgresql.org/about/featurematrix
https://www.torproject.org/docs/faq-abuse
https://www.torproject.org/docs/bridges
https://www.torproject.org/docs/faq

[27] The Tor Project: How Tor works. [Online; visited 07.10.2018].
Retrieved from: https://www.torproject.org/images/htw2.png

[28] The Tor Project: The Tor network status protocol. [Online; visited 30.12.2018].
Retrieved from: h t tps : / /metr ics . torprojec t .org /onionoo.h tml

[29] The Tor Project: Who uses Tor? [Online; visited 06.10.2018].
Retrieved from: ht tps: / /www.torproject .org/about/ torusers

52

https://www.torproject.org/images/htw2.png
https://metrics.torproject.org/onionoo.html
https://www.torproject.org/about/torusers

Append i x A

C D contents

latex-source - A directory with WF^K. source codes of the thesis.

michal-chomo-thesis.pdf - The text of this thesis in Portable Document Format.

TorConsensusParser - A directory with source codes of Consensus Parser and a Python
virtual environment with required libraries.

Below is a detailed view of TorConsensusParser directory. Directories are listed first, then
files, testf iles and venv directories contents are omitted.

TorConsensusParser

database

consensus_status_inserter.py

db.yml

db_wrapper.py

field.py

filter.py

function.py

init_dimensions.py

init .py

install-mariadb-columnstore.sh

load_geolite.py

onion_router_inserter.py

onion_router_selector.py

select_columns.py

1 tortable.py

testfiles

venv

consensus_parser.py

consensus_status.py

dns.py

experiments.py

geolite2.py

init .py

_LICENSE

— logging_conf ig.py

_logging.yml

53

onion_router.py

parameterizable_tc.py

profilerest.py

_ README

requirements.txt

rest_endpoint_creator.py

rest.py

rest_utils.py

runserver.sh

serializable.py

test_additional_info.py

test_cp.py

test_files.py

test_geolite2.py

test_or.py

test.py

test_rest.py

test_serializable.py

test_time.py

time_parser.py

