
Czech University of Life Sciences Prague 

Faculty of Economics and Management 

Department of Information Technologies (FEM) 

Bachelor Thesis 

Use of AI in game development 

Illia Holovko 

© 2024 CZU Prague 



CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE 
Faculty of Economics and Management 

BACHELOR THESIS ASSIGNMENT 
l l l ia Holovko 

Informatics 

Thesis t i t le 

Use of Al in game deve lopmen t 

Object ives of thesis 

The goal of this thesis is to assess t he possibilities of using di f ferent Al approaches for purposes of game 
development , The main object ive is t o propose and develop an exper imenta l solut ion f o r a specific scenario 
and eval uate the suitabi l i ty of Al integrat ion. 

Partial objectives are: 
- Conduct a theoret ical review of l i terature and onl ine sources wi th a focus on Al implementa t ion in game 
development 
- Assess and compare existing approaches using Al in a selected model scenario 
- Propose a solut ion using a suitable Al approach and implement it in a game prototype 

M e t h o d o l o g y 

Bachelor's thesis wi l l consist of t w o parts. The theoret ica l part of the work wi l l be based on study and anal
ysis of available l i terature and onl ine sources in t he areas of Al and game development . In the practical 
part, a scenario involving a specific usage of Al will be def ined. A solut ion will be proposed and experi
mental ly imp lemented using a game proto type appl icat ion, The suitabi l i ty of t he chosen approach will be 
evaluated and discussed. The conclusions of the thesis wi l l be based on the results of both the theoret ical 
and practical parts, 

Official d o c u m e n t * Czech Un ivers i t y of Liie Sciences Prague " Kamydka 129, 165 00 Praha - Suchdol 



The proposed ex ten t of t he thes is 

40-50 

Keywords 

game deve lopment , Unity, AI, C#, software tools, p ro to typ ing, pathf inding, au tomated env i ronment gen
erat ion 

Recommended i n fo rma t i on sources 

Bennett, C , & Sagmiller, D. V. (2014). Uni ty AI Programming Essentials. B i rmingham, UK: ISBN 
978-1-78355-355-6. 

Hendrikx, M. , Meijer, S., Van Der Velden, J., & losup, A. (2013). Procedural Content Generat ion for 
Games: A Survey. ResearchGate. [Onl ine]. Available at: 
h t tps : / /www.researchgate .net /pub l ica t ion/262327212_Procedura l_Content_Generat ion_for_Games 
[Accessed: 2S.05.2023]. 

Shaker, N., Tbgelius, J., & Nelson, M . J. (2016). Procedural Content Generat ion in Games, Switzerland: 
ISBN 978-3-319-42716-4. 

Spronck, P., Andre, E., Cook, M., Si Preuls, M, (2017), "Artif icial and Computat iona l Intel l igence in Games: 
Al-Driven Game Design," Dagstuhl, [Onl ine], Available at: 
h t tps : / /d rops.dagstuh l .de /opus/voNtexte /Z01S/8672/pdf /dagrep_v007_ i011_p0S6_17471.pdf 
[Accessed: 29.05,2023], 

Yannakakis, G, N,, & Togelius, J. (201S). Artif icial Intel l igence and Games. Cham, Switzer land: Springer 
Internat ional Publishing AG. ISBN 97S-3-319-63519-4. 

Expected date of thesis defence 

2023 /24 SS - PEF 

The Bachelor Thesis Supervisor 

Ing. Jan Pavlík, Ph.D. 

Supervis ing depa r tmen t 

Depar tment of In format ion Technologies 

Electronic approval : 4. 7, 2023 

doc. Ing. Jiří Vaněk, Ph.D. 

Head of department 

Electronic approval : 3. 11, 2023 

doc. Ing. Tomas Subrt, Ph.D. 

Dear 

Prague on 13. 03. 2024 

Official d o c u m e n t * C iech Univers i ty of Lile Sciences Prague " Kamýcká 129, 16S 00 Pra na - Suchdol 

https://www.researchgate.net/publication/262327212_Procedural_Content_Generation_for_Games
https://drops.dagstuhl.de/opus/voNtexte/Z01S/8672/pdf/dagrep_v007_i011_p0S6_17471.pdf


Declaration 

I declare that I have worked on my bachelor thesis titled "Use of A I in game 

development" by myself and I have used only the sources mentioned at the end of the thesis. 

As the author of the bachelor thesis, I declare that the thesis does not break any copyrights. 

In Prague on 14.03.2024 



Acknowledgment 

I would like to thank Jan Pavlik, for his support and given advice throughout my 

work on this thesis. 



Use of AI in game development 

Abstract 

The main objective of this thesis is to explore different A I approaches that are being 

used in Game Development. In the theoretical part of the thesis, three main A I 

implementations w i l l be analyzed, specifically: Pathfinding, Procedural Content Generation, 

and Player Behavior Analysis. 

In the practical part of the thesis, an environment for development w i l l be selected and a 

scenario w i l l be proposed with an experimental solution that w i l l involve some of the A I 

technologies discovered earlier. The feasibility of the application of A I w i l l be discussed 

with the ensuing pros and cons. 

Keywords: game development, Unity, A I , C#, software tools, prototyping, pathfinding, 

automated environment generation 

6 



Použití umělé inteligence ve vývoji her 

Abstrakt 

Hlavním cílem této práce je prozkoumat různé přístupy umělé inteligence, které se 

používají ve vývoji her. V teoretické části práce budou analyzovány tři hlavní implementace 

umělé inteligence, konkrétně: hledání cesty, procedurální generace obsahu a analýza chování 

hráče. 

V praktické části práce bude vybráno prostředí pro vývoj a navržen scénář pro 

experimentální řešení, které bude zahrnovat některé ze zkoumaných technologií umělé 

inteligence. Bude diskutována proveditelnost aplikace umělé inteligence a stanoveny její 

výhody a nevýhody. 

Klíčová slova: Vývoj Her, Unity, A I (Umělá Inteligence), C#, Softwarové Nástroje, 

Prototypování, Hledání Cesty, Automatická Generace Prostředí 

7 



Table of content 

1 Introduction 9 

2 Objectives and Methodology 10 

2.1 Objectives 10 

2.2 Methodology 10 

3 Literature Review 11 

3.1 Game Development 11 

3.2 Game Engines 12 

3.2.1 Unity Game Engine 13 

3.2.2 Unreal Engine 14 

3.3 A I Technologies during Game Development 15 

3.3.1 Pathfinding 16 

3.3.2 Procedural Content Generation(PCG) 19 

3.3.3 A I in Player Behavior Analysis 23 

4 Practical Part 26 

4.1 Implementation of Pathfinding using Unity 26 

4.1.1 Initial setup 26 

4.1.2 NavMesh 29 

4.2 Implementation of P C G using Unity 33 

4.2.1 Initial setup 33 

4.2.2 Perlin Noise implementation 35 

4.3 Combination of both P C G and Pathfinding using Unity 36 

5 Results and Discussion 39 

6 Conclusion 40 

7 References 41 

8 List of pictures, tables, graphs and abbreviations 43 

8.1 List of pictures 43 

8.2 List of abbreviations 43 

8 



1 Introduction 

In today's world full of rapid technology advancements, we, human beings, can access 

many facilities that sounded like science fiction some years ago. The Internet, smart devices, 

video games, etc. With the enlarging spreading of such facilities and the Earth's population, 

more and more people are involved in video games. 

According to statistics almost half of the Earth's population is playing video games. It means 

that the realm of video gaming has shifted from a niche hobby for certain ages (mostly for 

teenagers) into today's global phenomenon. The economic and cultural aspects of this sector 

of IT can now be reckoned with. 

Moreover, another rapidly growing aspect is Artificial Intelligence. The world has 

already faced the helpfulness of implementing A I , for example: A I chats for copy writing, A I 

algorithms that help with improving P C ' s performance in gaming, and A I algorithms that 

are being used for generating content (pictures, textures, descriptions, etc.). 

Since the first video game, the development of this product has improved hugely, 

nowadays programmers are using special Gaming Engines, such as Unity, Unreal Engine, 

CryEngine, Crytek, etc. Those environments allow to spread of development between 

different people and have a lower entry threshold for developers as some engines can even 

provide visual scripting(f.e. Blueprints in Unreal Engine, Unity Visual Scripting, etc.). This 

is so much different from the first video games that were written manually and intricately. 

To sum up, everything that was written above can lead to the obvious conclusion - we 

can count the video games segment as a viable business, the barrier to becoming a developer 

has increasingly lowered through time, so implementing A I during video game development 

is very important as it saves money and time for companies and indie developers, some 

examples of implementation were already mentioned above. 

M y thesis w i l l focus on discovering ways of implementing A I technologies during video 

game development. I w i l l define some problems and provide solutions, which w i l l involve 

A I , and an analysis of the solution w i l l be provided. 

9 



2 Objectives and Methodology 

2.1 Objectives 

The goal of this thesis is to assess the possibilities of using different A I approaches 

for purposes of game development. The main objective is to propose and develop an 

experimental solution for a specific scenario and evaluate the suitability of A I 

integration. 

Partial objectives are: 

- Conduct a theoretical review of literature and online sources with a focus on A I 

implementation in game development 

- Assess and compare existing approaches using A I in a selected model scenario 

- Propose a solution using a suitable A I approach and implement it in a game 

prototype 

2.2 Methodology 

Bachelor's thesis w i l l consist of two parts. The theoretical part of the work w i l l be 

based on study and analysis of available literature and online sources in the areas of 

A I and game development. In the practical part, a scenario involving a specific usage 

of A I w i l l be defined. A solution w i l l be proposed and experimentally implemented 

using a game prototype application. The suitability of the chosen approach wi l l be 

evaluated and discussed. The conclusions of the thesis w i l l be based on the results of 

both the theoretical and practical parts. 

10 



3 Literature Review 

3.1 Game Development 

Every video game is complex software, its production requires at least some knowledge in 

game designing, programming or scripting, sound designing, U I / U X interface creation, etc. 

Nowadays, game development has grown into an essential and serious business, there are 

two major "players" in this kind of business: developer companies and publisher companies, 

however, not every video game has enough resources for its development, so not every video 

game w i l l have publisher or a whole team for development. Usually, there are three main 

types of video games based on its budget, development team, etc. and those types are A A A 

projects, A A projects, and Indie projects: 

1. A A A projects: these are some kinds of videogames that has high budgets 

(approximately 50 mill ion dollars or more), developer has different dedicated 

departments, such as: the marketing department, the programming department, the 

art department etc. AAA-Projects are usually being made on company's own game 

Engine as their budgets allow them to do so. Such games have a vast number of 

developers working on them and their marketing includes digital, targeted and 

physical advertisement. We, as players, can see physical copies of A A A titles in 

almost every specialized retail shop, also, those games are available on big digital 

gaming platforms like Steam, Epic Games Store, etc. Sometimes, a company can 

have its own platform that is dedicated only to its produced or published games, for 

example, Battle.net, which includes only Activision Blizzard games, or Origin which 

includes only Electronic Arts games. Examples of projects are the G T A series 

(Rockstar Games), the Forza Horizon series (Playground Games), and The Witcher 

3: W i l d Hunt (CD Projekt Red, 2015). 

2. A A projects: usually, these kinds of projects have a medium budget (approximately 

between 1 mill ion and 50 mill ion dollars), developer company can have some 

departments, but, unlike A A A titles, A A titles are not very often distributed through 

physical copies, but sometimes publisher can decide to make a limited run of physical 

copies of the game, especially i f it's some special or collector's edition. Their 

marketing usually includes digital and targeted advertisement. Also , A A projects are 

sometimes made by subsidiaries of some big companies, for example, Chi ld of Light 

(Ubisoft Montreal, 2014) which was made by a subsidiary company of Ubisoft. 

11 

http://Battle.net


These titles are usually built on open-distributed game engines like Unity or Unreal 

Engine. 

3. Indie projects: usually, these projects are made by a very small group of people or 

even by only one person, they have low budgets (approximately up to 1 mill ion 

dollars). Almost every indie project is distributed through digital stores that were 

mentioned above. While A A A and A A titles are considered highly manageable 

products that don't quite often manipulate with some niche mechanics or settings, 

indie developers usually experiment with new and not very well-known gameplay 

features, game settings, etc. Example of indie projects are: Stardew Valley 

(ConcernedApe, 2016), Ori and the Bl ind Forest (Moon Studies, 2015) (1). Despite 

A A A and A A projects, indie projects usually don't have publisher. Of course there 

are a lot of them that help indie developers with deploying their project into digital 

stores and financing it, but usually, those companies require some royalty from game 

sales. If developers don't want to share their income with the publisher, they usually 

find financing in some special crowdfunding platforms, like Kickstarter or itch.io. 

However, its worth mentioning that such distinctions are conditional, in some cases, A A 

projects can be classified as either A A A or Indie project. Also , as the topic of this thesis is 

implementation of A I during game development, it 's vital to say that A I can be implemented 

in almost every stage of game development, it can be useful for providing some gameplay 

features for the programming department, generating content for the art department or even 

for generating some ideas for the marketing department, this means that A I is suitable for 

either A A A or Indie projects. I w i l l be mainly focused on some A I implementations that are 

aimed at developing video games, not for their distribution, more specifically it w i l l be 

discussed below. 

3.2 Game Engines 

A t the beginning of the video game development era, every game has been written manually 

by using different programming languages. It really differs from today's development as the 

first video games were implemented in a way, that no intermediary was involved between 

the game and hardware, which means that every rendering "engine" could work only for one 

game only. N o w it changed, you don't have to do it manually without any G U I , now you 

can see what you are actually doing, and how your changes reflect interaction with the game, 

this all is possible, thanks to game engines. 

12 



What is a gaming engine? Basically, this software provides a development 

environment, usually with G U I , so that it can be useful not only for programmers but also 

for people who are working on the art style of the game (creating models, level designing, 

etc.), also, despite those obsolete rendering "engines", nowadays gaming engines(like Unity, 

Unreal Engine, etc.) can provide multiplatform and can be used for different kind of games, 

you can create shooter or platforming, or either implement 2D or 3D graphics(most of the 

modern engines provide both dimensions, however, 2D is usually implemented as 3D 

graphics but with a static camera so that the game can render only 2 dimensions) (2). There 

are different types of licenses for this sort of software it can be either free or paid or hybrid 

versions (you can either use a free version or buy a subscription). Also, game engines can 

be only for in-company use, which means that technologies of those engines can be accessed 

only within certain companies and/or their subsidiaries, for example, it can be R A G E , 

Crytek, Duna, etc. A detailed overview of the 2 most popular game engines, namely: Unity 

Game Engine, and Unreal Engine, that are being used by both big and indie companies wi l l 

be provided below. 

Moreover, nowadays, despite the rendering aspect, game engines are also capable of 

providing audio, animation tools, A I implementation, and physics logic. It means that 

"Game" engines can also be used not only for gaming but for example: storyboards for film 

production, visualization of any data, etc. This means that this software grew from niche 

usage for game developers to a worldwide powerful tool for different purposes. 

3.2.1 Unity Game Engine 

A Unity Game Engine was developed by Unity Technologies in 2005 and originally was 

intended to be a Mac OS-specified game engine, however, later it rapidly changed and 

transformed into a multi-platform environment for development. Nowadays, Unity supports 

the creation of games for different platforms from desktop to mobile ones. The basic features 

of this engine involve real-time rendering, physics simulation, audio system, scripting 

support, asset management, and G U I . 

However, developers can use different programming languages to create scripts in Unity, 

the main one is C# (3). Also, sometimes JavaScript can be used for some web interactions i f 

the game is developed for a web browser or i f it includes an in-game browser, but, it 's not 

quite widely being used nowadays, the game engine shifted in the way that developers 

usually use only C# in their products, however, Unity W e b G L is currently being used for 

13 



some 3D interactions on the website, it can be, for example, demonstration of the car within 

car configurator on the manufacturer's website. 

Moreover, Unity Game Engine provides real-time rendering, which means, that the 

developer can see what he is doing right now in dynamics (4). Whatever w i l l be changed 

whether game assets, scripts, or environment the result can be instantly seen on the 

developer's screen. Also, Unity provides a drag-and-drop feature, which means that there is 

no need to manually write coordinates to place something, you can place models or apply 

scripts on some characters, environment aspects, etc. just by dragging that over your game 

scene. This feature pushes forward development speed, as changes can be seen instantly, so 

you have space for experimentation and adjusting, without any need to write everything 

directly with the programming language. 

Unity also supports the implementation of A I technologies, for example, Procedural Content 

Generation and Pathfinding. Different A I implementations w i l l be discussed below. Unity 

Game Engine's Al-integrated tools can be very helpful for different ranges of developers, as 

it doesn't involve high-tech knowledge to create some basic A I integration methods. For 

example, the NavMesh system that provides a user-friendly approach to simplify the creation 

of complex pathfinding processes (5), NavMesh is a helpful system that helps indie and mid-

range developer studios perform pathfinding and walkability tests. 

In conclusion, nowadays Unity Game Engine is a very powerful tool and not even for game 

development as it was written above, W e b G L provides the ability to create some 3D 

interactions on the website. It has evolved from being a niche instrument for one specific 

platform into the cross-platform powerful game engine with a user-friendly interface, that 

can be used by different members of a development team. 

3.2.2 Unreal Engine 

Despite Unity, Unreal Engine was developed by Epic Games in 1998 and was 

released with the "Unreal" shooter. The main features of this game engine crosshairs with 

Unity. The main programming language of this game engine is C++, which makes the 

development entry threshold higher than in Unity. However, despite Unity, Unreal Engine 

has a built-in blueprint system, which allows developers to create gaming scripts and render 

rules without deep knowledge of C++, it provides a graphical interface with nodes that can 

be connected and tuned. Unity has a similar feature, but it was implemented much sooner 

14 



than in Unreal Engine, which makes it more complicated to find some documentation about 

that. 

Unreal Engine is more likely to be used for triple-A projects, while Unity can compete in the 

indie segment, due to its larger community, also, Unreal Engine is more capable of dealing 

with hyper-realistic graphics (especially after the release of U E 5.2 with P C G , Substrate, 

Nanite and Lumen (6)). 

In contrast to Unity, Unreal Engine can be used for graphical representations as it provides 

better rendering features, so that, it can be used for creating rendered advertisements or even 

some movie special effects, unfortunately, Unity can't compete with Unreal Engine in such 

segment, due to lack of built-in rendering features. 

Unreal Engine also provides A I implementation, as was written above, with the release of 

U E 5.2 developers can now create procedurally generated content, so that, a game scene can 

be very diverse, thanks to this built-in technology. 

In conclusion, Unity implementation can vary, from developing a video game to 

implementing some 3D representations on the website. However, Unreal Engine also 

provides web interaction, but due to its higher demands on the hardware - it isn't being used 

that much in a such segment. However, due to complexity and rendering features, Unreal 

Engine is more suitable for example: rendering scenes for advertisements, representation of 

real-life architecture projects, movie storyboards, etc. 

3.3 AI Technologies during Game Development 

There are a bunch of A I implementations that can be used in game development, some 

of them can enhance the gaming experience by simulating unique behavior of Non-Playable 

Characters(NPC) or generating seemingly "random" environmental interactions. On the 

other hand, A I implementation can be also beneficial for developers themselves, because 

some content can be generated autonomously, so that, there is no need to spend time and 

resources on creating assets. 

However, some of the A I implementations can save time and resources, but they most 

probably won't have the same quality as something that has been created by human beings 

or they can consume a large amount of the hardware power, those drawbacks w i l l be 

provided below. 

15 



3.3.1 Pathfinding 

Let's assume that you have to create a character in your video game. One of the 

solutions for such a task is to create paths so that the character can take instructions on where 

and how it must go. However, the main problem occurs when there are large locations, not 

a small room, or i f we want to create variety, so that, users won't have a feeling that 

everything is very predictable and our characters on the scene can walk in different directions 

that w i l l create a feeling of having "life alike" behavior. To solve this problem, the main 

solution can be A I , to be more precise - pathfinding. 

To begin with, the main drawback of pathfinding, that most researchers are pointing at is the 

big usage of C P U and Memory power (7). But, it's worth mentioning, that nowadays 

hardware can handle most of the pathfinding implementations and almost every modern 

game that includes N P C s uses this A I technology. How does it work? Wel l , the main thing 

here is to realize, that pathfinding can be implemented in different ways that vary from the 

algorithm that has been cored in certain pathfinding methods. On the "high level" of this 

technology lays a very simple principle: we just have to define how to get the shortest path 

from point A to point B . Let 's see different algorithms that can lay on the " low level" of 

pathfinding. 

3.3.1.1 A * algorithm 

This algorithm is one of the most used by many developers (8). It is perfect for games that 

depend on the proper pathfinding, such as racing, strategy, etc. How does it work? It faces 

challenges of pathfinding by systematically navigation through nodes in a graph to find the 

most optimal path from a start node to the end node. 

The main two factors that lie on the basis of A * are cost and heuristic estimation. It operates 

by simultaneously considering both the actual cost of the path and an estimation of the 

remaining cost to reach the end node. B y this action, A * is capable of narrowing down search 

space while still optimizing trajectory. 

A * uses a heuristic function(f(n)) to serve, and it is f(ri) = g(n) + h(ri). The function g(n) 

keeps track of all the costs incurred while traveling from the starting point to the destination, 

thus representing the total effort involved in the journey. On the other hand, h(n) acts as a 

guide providing an estimate of how far you are from your goal at any given point. In addition, 

when there are obstacles on your path, f(n) comes into play. It evaluates and selects the most 

cost-effective route to ensure that you reach your destination with minimal hassle (7). 

16 



However, this algorithm can be seen as the ideal solution, but there are some drawbacks. 

First of all, due to the fact that it's node-based, it can consume a lot of memory resources 

during computations. Also , this is a heuristic method, so it isn't very accurate and depends 

on well definition of the remaining cost, it can result in an inability to define the most optimal 

path. 

3.3.1.2 Dijkstra's algorithm 

Dijkstra's algorithm is another approach to pathfinding. Its implementation can be seemingly 

similar to the A * algorithm, but it isn't a heuristic method. So, it requires more resources 

than A * , but it's more accurate. The function(f(n)) that is being used in Dijkstra's algorithm 

looks like this: f(n) = g(n). The definition of the g(n) is similar to the one that was in A * , 

but, as you can see, we don't have heuristic value, this is why Dijsktra's algorithm can't be 

considered as a heuristic one (9). 

So why choose Dijkstra's algorithm instead of A * ? To begin with, it 's accuracy, it is better 

than in A * . Also , it is simpler to implement. However there are some disadvantages, and the 

main one is that Dijkstra's algorithm can't really estimate optimal value in grids as it doesn't 

consider diagonal shortcuts, also, due to its specific work, it won't reduce its search space, 

as A * do, and it examines all reachable nodes which can lead to long computational time 

and big memory usage. But it is a perfect solution for small levels, with few amount of N P C s 

or any else entity that w i l l require pathfinding. 

3.3.1.3 Depth-First Search 

Depth-first search is a search algorithm that explores each branch as far as possible before 

backtracking and trying another branch (10). But despite A * and Dijkstra's algorithms, this 

algorithm is usually being used for decision-making rather than navigation, however, it is 

still a viable approach for pathfinding. 

The main disadvantage of this algorithm is that it tries every possible path/variant, so that it 

crossfires with Dijkstra's algorithm. Despite A * and Dijsktra's developers can use this 

algorithm to define different variations, after which entity in the game can make a decision 

about which option is better, based on what was defined as a good decision by a programmer. 

Because it's not that sufficient to find an optimal way and in big games, it can even lead to 

infinite loops. 

17 



But from first sight Dijkstra's algorithm and D F S are very similar and do the same job, the 

main difference is that in DFS there is no need to make sure that all paths that were checked 

should be best, this is the point why D F S isn't that popular in Pathfinding. 

3.3.1.4 Breadth-First Search 

Breadth-First Search is the opposite of Depth-First Search. Rather than diving deep into one 

option, it sorts them into layers and starts exploring from a single point, moving on to 

neighboring nodes. This method ensures a thorough and organized exploration of possible 

paths (10). This makes it more suitable for Pathfinding than DFS because it can compare 

and choose which explored layer is better. 

Actually, this approach is faster in most cases than Dijsktra's algorithm and can be chosen 

as an alternative, however, A * is still the best option among the other four. Despite the fact, 

that A * can be not that accurate, it is still able to lower the scope of the search, so that, it is 

much better for optimization of the game project. But, of course, for some game scenarios 

where precision is very important, A * won't be a good choice, so it depends on which game 

scenarios the developer is realizing. 

3.3.1.5 Pathfinding implementation in different game genres 

Let's discuss how pathfinding implementation in some video game genres is useful. For 

example, in strategy games - pathfinding is a cornerstone technology. It plays a crucial role 

in enabling Non-Playable Characters (NPCs) to navigate complex environments, which is 

essential for creating realistic and challenging gameplay. For example, in real-time strategy 

(RTS) games like StarCraft (Blizzard Entertainment, 1988) and Age of Empires (Ensemble 

Studios, 1997), efficient pathfinding algorithms are vitally important. They allow for the 

nuanced movement and management of multiple units, each navigating through varied 

terrains and reacting dynamically to enemy structures and movements. This not only 

enhances the tactical depth of these games but also ensures that N P C movements are logical 

and contribute to a strategically engaging experience. 

Another genre that is a good example of pathfinding implementation is stealth and action 

games. In those video games, the N P C behaviour of enemies is a very important aspect of 

creating a proper game challenge and properly immersing players in the atmosphere of the 

specific scene or game's world itself. Effective pathfinding enables N P C s to perform 

complex tasks, such as patrolling areas, searching for the player, and navigating complex 

18 



environments. This is evident in games like Metal Gear Solid (Konami, 1998) and Splinter 

Ce l l (Ubisoft, 2002), where enemy N P C s use sophisticated pathfinding algorithms to create 

a realistic and immersive stealth experience. The A F s ability to realistically imitate human 

search patterns and responses significantly enhances the strategic depth and realism of these 

games. 

3.3.2 Procedural Content Generation(PCG) 

One of the greatest A I technologies that can be used during video game development 

is Procedural Content Generation. It aims to create in-game content within algorithms, 

without any need for manual labor. Potential drawback is similar to pathfinding as this 

technology requires a lot of hardware power, and, unlike pathfinding, modern hardware can 

face a real challenge with rendering such content, it depends on the complexity of the 

algorithms that lay on the " low level" of the P C G and on the amount of the content that has 

been generated. 

Where can P C G be implemented in the video game project? Wel l , there are a lot of ways of 

the implementation. First of all, with P C G you can generate landscapes, dungeons, and every 

other environment. One of the greatest examples is dungeon generation for 2D "rogue-like" 

genre games, like Pixel Dungeon (Retronic Games and Watabou, 2012) or The Binding of 

Isaac (Group of indie developers, 2011), however, levels or even worlds can be generated 

within 3D graphics, great examples are Minecraft (Mojang Studios, 2011) and Diablo 

(Blizzard Entertainment, 1977), both of them use noises for generating their worlds. What is 

"noise" in the scope of P C G ? Basically, it 's a mathematical function or algorithm that 

generates "pseudo-random" patterns, those patterns are so-called "noises", they can be then 

used to generate a height map of the landscape, that w i l l provide a unique-looking 

environment without any manual implementation from the developer's side. Or it can create 

realistic textures or normal and specular maps for them so that fewer hardware resources 

wi l l be used. There are several patterns that are being used to create noises, because, 

otherwise, even creating a terrain on the game scene by just filling its height map with 

random numbers w i l l result in random spikes. A l l of those noises are usually represented as 

arrays filled with pseudo-random numbers (11), however, the approach to this filling varies 

from pattern to pattern. 

19 



3.3.2.1 Perlin Noise 

So, let's look at some examples of noise generation patterns. One of the most popular ones 

is Perlin Noise. I w i l l consider it in terms of the generation of the terrain. The basic principle 

of this noise creation involves directly producing slopes and deriving height values from 

them, rather than generating height values and subsequently interpolating slopes. The 

random numbers generated serve as interpretable random gradients, capturing both the 

steepness and direction of the slopes (12). This pattern is ideal for creating landscapes, I have 

already written that filling random values into arrays of height maps results in rather multiple 

spikes than smooth and "realistic" terrain, but with this gradient approach, we w i l l avoid 

spikes and create smooth transitions heights of our terrain (13). 

The main advantage of this principle is that we can avoid some abrupt changes in the 

elevation, however, in game development, using just one noise-generated map can lead into 

not very sufficient results. Usually, developers use different noises so that, we can see 

diverse results. If we are talking about terrain generation - Perlin Noise w i l l just provide us 

a basic look of the terrain, so it can be considered as a starting point, after implementation 

of the gradient height map we can proceed to the diversification of our generated terrain. 

Developers are typically using Fractals noises or Cellular Automata to add some micro-

details to the generated landscapes or some natural surface irregularities. 

But it was just a defined implementation of the Perlin Noise, can it be implemented in 

different aspects of the video game? Wel l , of course, there are some examples: 

1. Texture Generation: Perlin Noise can be used for generating different types of 

textures, usually it isn't some complex textures, but it can handle materials like wood, 

marble, and stone. 

2. Fluid Simulation: Perlin Noise can also handle basic simulation of fluids which is 

pretty enough for game development, it w i l l be inaccurate according to the physics, 

but it w i l l be enough for decorative elements in video games. 

3. Clouds generation: Perlin Noise is a good choice for cloud generation, but it won't 

generate a whole skybox, it is more likely to be used for adding depth to the middle 

graphical games, but it won't be enough for A A A projects. 

3.3.2.2 Fractal noises 

What i f we want to somehow complex our Perlin Noise data? In this case, Fractal noises can 

be a useful tool. They can help to add some details to the noise pattern. However, it is still a 

20 



self-sufficient pattern, a combination of Perlin and Fractal noises is a popular technique, that 

is being used by various video games today. 

H o w do Fractals work? Wel l , the main principle of fractals is that it's a pattern that consists 

of smaller patterns so that by "zooming in" you wi l l see that they just repeat themselves. 

This process is achieved by continuously replicating iterations in which specific patterns can 

be assigned, by proceeding with such iterations a Fractal can be created (14). This is why it 

is considered a less complex technology than Perlin Noise, but the combination of both can 

add to the base that was generated based on Perlin Noise data some minor details and won't 

look repetitive to the user. 

Some examples of Fractal Noises implementation: 

1. Texture mapping: Fractal Noises find application in the creation of normal and 

specular maps for the textures. While Perlin Noise provides only a base for mapping, 

additional integration of Fractal Noises can impart depth and intricacy, for example, 

developers can easily add porosity to the wood texture by the synergy of those 

technologies. Also, such implementation w i l l be beneficial for the C P U and Memory 

resources of the hardware, as noises for texture mapping can be created only during 

the development stage of the game without any 3D model user w i l l see that texture 

isn't a solid picture on the wall . But this approach is not being used quite often, as it 

is much better to add dynamical generation to make game textures feel different from 

each other, however, it is still a better option than the manual creation of an enormous 

amount of normal and specular maps for textures. 

2. Vegetation Placement: Fractal noises can provide pseudo-random placement for the 

vegetation on the game scene. However, this implementation is scale-sensitive, it 

works perfectly fine with smaller vegetation, for example, flowers or grass. It is still 

can be applied to larger vegetation(for creating forests), but the end result for the user 

wi l l strongly vary on the playable character's vantage point, because repeatability is 

more visually noticeable. 

In conclusion, there are a lot of ways to create noises(diamond square algorithm, simplex 

noises, etc.), so that they wi l l be later used for Procedural Content Generation, but those two 

that were described above are the main ones that are being used by most developers. 

21 



3.3.2.3 Cellular Automata 

Another technology that is being involved in P C G is Cellular automata. It is a good 

alternative to noise-based technologies, however, the results of its implementation can be 

seen as similar to noises, but the approach is quite different. 

It comprises an n-dimensional grid along with sets of states and transition rules. Typically, 

Cellular Automata exist in either one or two dimensions. Each cell within this framework 

can exist in various states; in its simplest form, cells can either be on or off. The arrangement 

of cell states at the commencement of an experiment (at time tO) constitutes the initial state 

of the cellular automaton. Subsequently, the automaton progresses in discrete steps, adhering 

to the specific rules defined for that automaton. A t each time step t, every cell determines its 

new state by considering not only its own state but also the states of all neighboring cells at 

the preceding time step (t -1) (12). 

This technology is more complex than noises, but, on the other hand, developers can define 

rules, so that it is more adjustable than Fractal or Perlin noises. Moreover, the base(ground), 

can be created by noise-based technologies, and with Cellular Automata developer can 

supplement it with different features, like rivers, caves, etc. While synergy of Fractals and 

Perlin noises was intended to be a micro-feature addition, synergy with both those noises 

and Cellular Automata results in a smooth and clean Procedurally Generated level. 

On the other hand, there is no need to use Cellular Automata with noises as it's standalone 

technology too. So that, it is capable of creating content without any noise techniques. Also, 

Cellular Automata can be used for different simulations, not just for models, for example, 

resource distribution in strategy games, and pseudo-random population simulation. Some 

practical examples of Cellular Automata implementation: 

1. Cave generation: this is a key feature and what developers use this technology mainly 

for. Due to its ability to define rules between neighborhood cells, this tool is very 

powerful for generating dungeons with different entries and exits (15). 

2. Vegetation distribution: I have already mentioned that Fractal noises can handle this 

task, but it has some boundaries. With Cellular Automata it's much easier to create 

a distinctive spread of different fauna on the game level without any repetitive pattern 

as it was with Fractals. 

Overall, this technology is more complex than noises, but the outcome is more fascinating. 

22 



3.3.2.4 P C G implementation in different game genres 

I have earlier described that P C G is more likely to be used in "rogue-like" and "open-world" 

game genres, but, now when we have discussed different noise-based technologies I can be 

more specific in my examples. The "Open-world" game genre is a great example of where 

should we implement P C G . B y leveraging algorithms like Perlin Noise and Fractal Noises, 

these games can generate vast, evolving landscapes, offering players a unique experience 

with each playthrough. In Minecraft (Mojang Studios, 2011), for instance, P C G creates 

endless terrain variations, ensuring that no two players' experiences are the same, the 

developers used different approaches, Noises are among them, alongside unique seeds to 

generate the world, ore distribution algorithms etc. (16). Similarly, No Man's Sky (Hello 

Games, 2016) uses P C G to generate an entire universe, complete with diverse planets and 

ecosystems, pushing the boundaries of exploration and replay ability in the game. This 

dynamic environment creation is not just about visual diversity, it significantly impacts 

gameplay, as players encounter unique challenges and discoveries in each session. 

What about a "rogue-like" game genre? In "rogue-like" games, P C G is fundamental for 

creating varied and unpredictable gameplay experiences. Games like The Binding of Isaac 

(Group of Indie Developers, 2011) and Spelunky (Mossmouth, L L C , 2008) rely on P C G to 

randomly generate levels, enemies, and item placements. This randomness is a defining 

feature of the roguelike genre, ensuring that each playthrough presents new challenges and 

environments. The unpredictability fostered by P C G not only enhances replayability but also 

tests players' adaptability and strategy-making skills in ever-changing scenarios. 

3.3.3 AI in Player Behavior Analysis 

In the sphere of game development, A I ' s role extends beyond creating immersive 

environments and simulating N P C behavior. So-called Player Behavior Analysis can be 

helpful in terms of game testing and enhancement of user interaction with a video game, this 

branch of A I focuses on player modeling. One important aspect to notice is that player 

modeling isn't N P C modeling, player modeling tries to imitate a human player (10), while 

N P C modeling tries to simulate the behavior of a human being. 

Moreover, player modeling plays a vital role in increasing the replayability of the game, 

usually, there are 3 main roles that could be imitated through player modeling: 

1. Companion role: Here, the game A I must align with the expectations of the 

human player. For instance, i f a player prefers a stealth approach, Al-controlled 

23 



companions should not engage in open combat that contradicts this strategy. The 

success of the companion A I lies in its ability to accurately predict and 

complement the player's desires, enhancing the gaming experience rather than 

disturbing it. 

2. Coaching role: In this role, the A I monitors the player's behavior and, depending 

on the game's objectives, guides or redirects the player's focus. This role is 

particularly crucial in serious games, where training and personalized coaching 

are integral. A well-developed player model assists in achieving the game's 

goals efficiently and effectively. Unlike the companion role, the coaching A I 

may challenge the player's approach to foster learning or dramatic engagement. 

3. Opponent role: As an opponent, the A I must adapt to match the human player's 

skil l level and respond aptly to their playing style. This balance is challenging; 

overly weak A I opponents may bore the player, while excessively strong ones 

can lead to frustration and disengagement. The key is to provide a competitive 

but fair challenge that maintains player interest and satisfaction (17). 

Each of these roles demonstrates the versatility and importance of player-modeling A I for 

game development. B y effectively adopting these roles, A I can significantly enhance the 

player's experience, catering to different needs and preferences, and ultimately contributing 

to a more engaging and immersive gaming experience. 

Also, player modeling through A I is particularly beneficial in the testing phase of 

game development. For smaller studios or projects with limited budgets, creating 

sophisticated A I models that can simulate player behavior is a cost-effective alternative to 

extensive human testing. This approach allows for preliminary testing of gameplay 

mechanics and features, helping developers identify and rectify potential issues without the 

need for a large pool of human testers. It also facilitates the refinement of game features in 

a controlled and iterative manner, which is especially valuable in the early stages of game 

development. 

In summary, A I in Player Behavior Analysis, particularly through player modeling, 

is a multifaceted tool in game development. Its applications range from being an efficient 

testing mechanism for developers with constrained resources to enhancing the overall 

entertainment value and replayability of games (18). The implementation of A I in 

Companion, Coaching, and Opponent roles not only revolutionizes player interactions but 

24 



also demonstrates the evolving capabilities of A I in creating more responsive and immersive 

gaming experiences. 

25 



4 Practical Part 

A n overview of the two most popular game engines was provided in the theoretical 

part of the thesis. I w i l l use Unity Game Engine in my practical part. Firstly, Unity has a lot 

of built-in A I instruments that w i l l be helpful in my thesis. However, Unreal Engine provide 

more complex toolkit, it is redundant in such scope. Additionally, most indie developers use 

Unity for creating video games, so it means that Unity has larger community which w i l l be 

helpful to implement my solutions to the scenario that is described below. Unity has much 

wider documentation than Unreal Engine does and it requires only basic knowledge of C# 

to implement some scripting features. 

Moreover, Unreal Engine can provide much better rendering features, which wi l l 

result in more advantageous graphics. However, it is unnecessary in my practical part as the 

goal is to implement such technologies and evaluate how their implementation can be helpful 

during the development of video games. Therefore, a basic prototype with worked 

mechanics w i l l be quite indicative. 

Let 's imagine that some indie developers need to implement pathfinding and P C G into 

their games. The game prototype should be aimed to represent the adventurer-exploration 

genre so it w i l l need basic mechanisms for providing controlling and unique environment 

generation, the player should be able to control the Agent by mouse-clicking on the 

generated terrain, so Pathfinding wi l l be used to provide controlling and P C G w i l l be used 

to provide unique terrain every playthrough. The goal is to achieve 2 demos and demonstrate 

how pathfinding and P C G can be implemented through Unity Game Engine, after that both 

demos w i l l be combined to achieve proper navigation on randomly generated terrain, also 

the outflows w i l l be discussed below. Throughout the implementation of such A I 

technologies through Unity engine I w i l l use scripting, the book Unity A I Programming 

Essentials (19) and Unity official online documentation (20) were helpful throughout the 

whole development process to understand how Unity C# scripting works. 

4.1 Implementation of Pathfinding using Unity 

4.1.1 Initial setup 

As it was discussed above, Unity has a built-in NavMesh toolkit that uses the A * 

algorithm at its basic level, so I w i l l use it to solve some practical problems that can occur 

during game development. Before starting let's imagine a scenario in which the developer 

26 



needs to implement some pathfinding, the next content is only imaginary but can be helpful 

in terms of real development: 

• The demo needs to have an Agent that w i l l be controlled by the player 

• The Agent should find the closest path to the chosen point by the player. 

• The Agent should be able to avoid obstacles 

• The Agent should be able to easily adapt to new obstacles, terrain, etc, i f the 

developer does so. 

Creating an initial project in Unity 

First of all, I need to create the project, from the offered templates in Unity (version 

2022.3.17fl was used in this project), I have chosen 3D Core. 

Figure 1 - Unity project creation interface, source: own processing 

After the creation of the 3D template in Unity, there is a need to create a basic scene so that 

I can test the Pathfinding implementation in action. To do so I have used 3D Object -> Cube 

to create the basic floor of the scene. Also, as it was described above, Unity allows me to do 

that directly in its interface, also, it allows me to change the sizes of the object without any 

coding, so I have changed the sizes of my Cube so that it would look more like a plain solid 

floor for the Agent. 

27 



Figure 2 - Plain surface in Unity, source: own processing 

To test out that the Agent can actually find a path, I added some other 3D objects so that it 

w i l l emulate obstacles that can occur on our path. As far as we know, the A * algorithm 

should be able to navigate even on diagonals instead of Dijkstra's Algorithm, at this point, 

it doesn't matter how those obstacles w i l l be placed, so I placed them at different points on 

the floor and in different angles. B y doing this, it w i l l be noticeable that Nav Mesh helps the 

Agent to find the nearest possible path without any limitations according to the closest path 

being on a diagonal axis instead of a straight one. Also, just for convenience, I made the 

floor and obstacles in different colors as Unity Game Engine allows to do so. The next step 

wi l l be to add the Agent that the player can control by mouse, to do so, firstly I created a 3D 

Object, a sphere. 

28 



Figure 3 - Basic scene for further Pathfinding testing, source: own processing 

4.1.2 NavMesh 

To make the scene act like a navigation grid and our Agent navigate through it, I 

proceeded with settings. First of all, the player agent should be assigned with the "Nav Mesh 

Agent" component, to do so - Player -> A d d Component -> Nav Mesh Agent. After those 

steps, Unity w i l l identify the Agent as a "Nav Mesh Agent" which means that it can now 

navigate through the Navigation Area. Then I assigned the Floor a "Navigation Static" 

property so that it w i l l be counted as a Navigation Area, to do so we have to switch to Nav 

Mesh Window mode - Window -> A I -> Navigation. To count our floor as a Navigation 

Area I switched to its properties and checked "Navigation Static" and made it "Walkable". 

For our obstacles, I did the same but instead of "Walkable" I chose "Not Walkable" 

29 



Scene Filter: 
© A l l §§Me&h Renderers 

Agents Areas Bake Object 

£ Terrains 

ESFIoor (Mesh Renderer} 

Navigation Static • 
Generate OffMeshLinks 
Navigation Area Walkable 

Figure 4 - Settings for NavMesh Surface, source: own processing 

Scene Filter: 
© A l l §§Mesh Renderers s£ Terrains 

B§Cube (1} (Mesh Renderer} and 8 o thers 

Navigation Static • 
Generate OffMeshLinks 
Navigation Area Not Walkable 

Figure 5 - Settings for NavMesh Obstacle, source: own processing 

After that, I baked it so that I could see what my Nav Mesh grid looks like. 

30 



= Hierarchy 

Iff SampleSce 

Figure 6 - Generated NavMesh including Obstacles, source: own processing 

To test out how the Agent finds the path I wrote a script that w i l l allow the player to control 

the Agent by clicking the mouse. Also, I implemented a trail (red color) and added 

visualization for clicked point (pink color) so that it can be visible which path does Agent 

has. The script looks like this: 

using S y s t e m . C o l l e c t i o n s ; 
using S y s t e m . C o l l e c t i o n s . G e n e r i c ; 
using U n i t y E n g i n e ; 
using U n i t y E n g i n e . A I ; 

• public class Con t ro l l i ngOfAgent : MonoBehaviour 
{ 

public HavMeshAgent a g e n t ; 
public T r a i lHen d e r e r t r a i l R e n d e r e r ; 

: public GaneObject c l i e k l n d i c a t o r P r e f a b ; 

private GaneObject c u r r e n t C l i c k l n d i c a t o r ; 

B ; void S t a r t O 
| I 

t r a i l B e n d e r e r = G e t C o n p o n e n t - c T r a i l R e n d e r e r K ) ; 
: > 

v o i d U p d a t e O 
{ 

i f ( I n p u t . G e t N o u s e B u t t o n D o w n O ) ] 
{ 

Ray pos i t i onToNove = C a m e r a . m a i n . S c r e e n P o i n t T o R a y ( I n p u t . n o u s e P o s i t i o n ] ; 
; ; i f ( P h y s i c s . R a y c a s t C p o s i t i o n T o N o v e , o u t v a r h i t l n f o } ) 

; i I 
i a g e n t . S e t D e s t i n a t i o n ( h i t I n f o . p o i n t ] ; 

! ; D e s t r o y ( c u r r e n t C l i c k l n d i c a t o r ) ; 

i c u r r e n t c l i c k l n d i c a t o r = I n s t a n t i a t e ( c l i c k I n d i c a t o r P r e f a b , h i t l n f o . p o i n t . Q u a t e r n i o n . i d e n t i t y ) ; 

Figure 7- Script for Agent controlling, source: own processing 

Basically, the script does the following things: 

31 



• The "Start" method initializes the "TrailRenderer" component by getting a reference 

to it from the same "GameObject" as the script. This component w i l l be used to create 

a visual trail behind the moving agent. 

• The "Update" method listens for mouse clicks 'Tnput.GetMouseButtonDown(O)". 

When a click is detected, a ray is cast from the camera to the clicked position on the 

screen using "Camera.main.ScreenPointToRay(Input.mousePosition)". 

• The "NavMeshAgent" component (agent) is used to move the "GameObject". When 

a valid terrain point is clicked "Physics.Raycast" hits something, the agent's 

destination is set to the clicked point using "agent.SetDestination(hitlnfo.point)". 

• Before setting the destination, the script destroys the previous click indicator 

"Destroy(currentClicklndicator)" i f it exists. It then instantiates a new click indicator 

"Instantiate(clickIndicatorPrefab, hitlnfo.point, Quaternion.identity)" at the clicked 

position. 

• The script uses a "TrailRenderer" to create a visual trail behind the moving agent. 

The "TrailRenderer" is attached to the same "GameObject" as the script 

"trailRenderer = GetComponent<TrailRenderer>()". 

• The "trailRenderer" is assigned a reference to the "TrailRenderer" component to 

allow manipulation of the visual trail during runtime. 

As it can be seen, the Agent is now controllable by the player, and without any further 

instructions or settings it can now go to any point available on the Floor, and it also considers 

obstacles, so there is no need to create a map of obstacles. I have made several tests and as 

can be seen in the figure below, the A I does its job perfectly, all I have to do as a player is 

just click on the point where I need my Agent to go, as a developer I didn't need to spend so 

much time on the map of obstacles, implementing some coordinates map for routes so that 

Agent could find its path and have a large experience with scripting. 

32 



Test #1 Test #2 

Figure 8- Pathfinding through NavMesh tests, source: own processing 

4.2 Implementation of PCG using Unity 

Unfortunately, Unity doesn't have a built-in toolkit to generate terrains that are based 

on noises which is an essential element of P C G . To do so, I w i l l have to write a script that 

wi l l handle the creation of noise texture and after that implement it on the terrain, so we wi l l 

see completely new generated terrain. But Unity has a built-in function called Perlin Noise 

that I chose to create a noise texture that takes 2 float values "x" and "y" that represents the 

input coordinates for generating Perlin noise and returns a float value from the range between 

0.0 and 1.0 representing Perlin noise at the specified input coordinates ("x" and "y" 

accordingly) (21). The goals are: 

• Create an algorithm that w i l l make a 256 by 256 pixels texture of Perlin Noise. 

• Implement this texture as a height map of terrain. 

• The Perlin Noise texture should allow to generate pseudo-random terrains every time 

the user starts the game. 

4.2.1 Initial setup 

To begin with, the creation of the project is similar to what I did in the Pathfinding part 

of my thesis Practical Part. However, the scene that I w i l l create w i l l now be a little bit 

different, as to implement Perlin Noise generated height-map texture I w i l l need to apply it 

33 



to the Terrain type 3D object instead of a plain cube, as it was before. So now my scene 

looks like this: 

Figure 9 - Initial plain Terrain object in Unity Game Engine, source: own processing 

After that I added a component to my Terrain - a script file and named it "TerrainGenerator", 

in this file I w i l l write the generation of Perlin Noise texture and immediately apply it to the 

Terrain on the scene. 

34 



4.2.2 Perlin Noise implementation 

I have written this script, that generates Perlin Noise data and applies it directly to the terrain: 

using Systea.Collections; 
using UnltyEngine; 

Rpublic class TerrainGenerator : NonoBehaviour 
II 

public lnt terrainWidth - 256; 
public lnt terrainHeight = 256; 
public int terrainOepth - 25; 
public float terrainScale • 15f; 

public float randoaOffsetU • If; 
public float randoaOffsetV = If; 

mU StartC) 
{ 

randoaOffsetU • Randoa.Range(0f, 9999f); 
randoaOffsetV • Randoa.Range(8f, 99990; 

Terrain terrain = GetCoaponent<Terraln>C); 
terrain.terrainOata • GeneraleTerraln(terrain terrainOata); 

) 

TerrainOata GenerateTerrain(TerrainOata terrainData) 
I 

terrainOata heightaapResolution • terrainWidth • 1; 
terrainOata.size • nm Vector3(terralnWidth, terralnDepth, terrainHeight); 
terrainOata.SetHeightsO, 6, PerlinNoiseHeightsQ); 
return terrainOata; 

> 

B float[,] PerlinNoiseHeightsO 
< 

float[,] heights • nea float[terrainWidth, terrainHeight]; 
A ' for tint x = 8; I < terrainWidth; x»») 
| I 

R for (lnt y = 8; y < terrainHeight; y«-») 
t 

helghts[x, y] • PerlinNolseCalcHeightCx, y); 
} 

> 

return heights; 
1 

n float PerllnNoiseCalcHeight(int x, lnt y) 
{ 

float xCord = (noat)x / terrainWidth • terrainScale I randoaOffsetU; 
float yCord = (float)y / terrainHeight • terrainScale » randoaOffsetV; 

return flathf.PerlinNolseCxCord, yCord); 
) 

Figure 10 - Script for terrain generation, source: own processing 

Basically, this script does the following things: 

• The script exposes several parameters, such as "terrainWidth", "terrainHeight", 

"terrainDepth", and "terrainScale". These parameters allow developers to customize 

the dimensions and appearance of the generated terrain. 

• Method Start the initial script every time when the user starts the demo. 

• Also , I have implemented offsets ("randomOffsetU" and "randomOffsetV") so that 

the data w i l l be pseudo-random at each startup of the demo 

35 



• The "GenerateTerrain" method configures the terrain data by setting the heightmap 

resolution and size based on the specified parameters. It then populates the height 

map using the "PerlinNoiseHeights" method. 

• The "PerlinNoiseHeights" method iterates over the terrain dimensions and calculates 

heights using the "PerlinNoiseCalcHeight" method. 

• The "PerlinNoiseCalcHeight" method converts 2D coordinates to Perlin noise 

coordinates, considering the random offsets. It then utilizes "Mathf.PerlinNoise" to 

obtain a Perlin noise value, representing terrain height. 

• The script utilizes the Unity "Vector3" size property to define the dimensions of the 

terrain in the x, y, and z axes. 

• The "SetHeights" method is used to apply the generated height map to the terrain. 

This method sets the heights of the terrain vertices based on the calculated Perlin 

noise values. 

Now every time when the demo starts we can observe that the landscape is always different, 

I as a developer don't need to create many variants of terrains so that players can see the 

diversity of that, because now generated Perlin Noise do it for me. 

Test#1 Test #2  

Figure 11 - PCG of terrain through Perlin Noise, source: own processing 

4.3 Combination of both PCG and Pathfinding using Unity 

The final step w i l l be to implement both P C G and Pathfinding so that the player can 

explore our demo world which w i l l be always generated randomly. To do so I made some 

36 



changes in my script for Perlin Noise terrain generation. I have added two variables 

"obstaclePrefab" (data type - "GameObject". I have added dependency on the Prefab 

"Cylinder" so that it imitates an obstacle) and "numberOfObstacles" (data type - int. This 

variable handles a number of obstacles that w i l l be placed on the terrain). Also , I have added 

a method, which w i l l place randomly those prefabs: 

void PlaceRandomObstacles() 

{ 

for (int i = 0; i < numberOfObstacles; i++) 

{ 

float randomX = Random.Range(0, terrain Width); 

float randomY = Random.Range(0, terrainHeight); 

float height = PerlinNoiseCalcHeight((int)randomX, (int)randomY); 

Vector3 obstaclePosition = new Vector3(randomX, height * terrainDepth, randomY); 

Instantiate(obstaclePrefab, obstaclePosition, Quaternion.identity); 

} 

} 

After those changes the Terrain now looks like this, all the obstacles are placed randomly 

each time, when the Player starts the demo: 

Test#1 Test #2  

I used the same script that I had developed in the NavMesh part for my Agent, however, 

there is one more change that I have implemented in my script for generating the Terrain -

37 



I have added a method to bake NavMesh Surface every time when new Terrain was created: 

void BakeNavMesh() 

{ 

NavMeshSurface navMeshSurface = GetComponent<NavMeshSurface>(); 

navMeshSurface.BuildNavMesh(); 

} 

Now we can finally see how both Pathfinding and P C G Terrain generation work together. 

Combining both approaches let me to create different terrain with different obstacles, but the 

Agent still manages to navigate through it: 

Test#1 Test #2 

Figure 13 - Pathfinding on PCG terrain with randomly placed obstacles tests, source: own 
processing 

38 



5 Results and Discussion 

Based on the comprehensive literature review and the practical implementations detailed in 

this thesis, the primary objectives of exploring A F s role in game development have been 

successfully achieved. The practical part was primarily focused on implementing 

Pathfinding and P C G for specific scenarios. 

Pathfinding Implementation: The practical application of pathfinding algorithms, 

particularly the use of Unity's NavMesh system with A * algorithm that lies in the core of 

this built-in tool, demonstrated efficient navigation of game characters in complex 

environments. This implementation showcased the A F s capability to dynamically adapt to 

varying terrain and obstacles, emphasizing the importance of A I in enhancing in-game 

realism and interactivity. 

Procedural Content Generation: The practical part considered the implementation of P C G 

with the usage of the Perling Noise algorithm for creating a pseudo-randomly generated 

terrain. This application showed that P C G can handle the creation of diverse and evolving 

game landscapes, as a result, a unique player experience can be provided each playthrough. 

The combination of both A I techniques resulted in interesting gameplay solutions and 

decrease in development time and human efforts in the creation of video games. 

One potential area for further exploration could be the integration of more complex A I 

models for N P C behavior and player interaction by using Player Behavior Analysis. While 

the current implementations effectively demonstrate basic A I functionalities in game 

development, expanding the scope to include more advanced A I techniques could lead to 

even more engaging and realistic game scenarios. For example, a combination of Cellular 

Automata and Perlin Noise adds some points of interest for the player, like lakes, rivers, 

trees, ancient ruins, etc. 

39 



6 Conclusion 

This thesis aims to investigate and implement A I technologies in game development. 

The study successfully demonstrated the practical applications of A I technologies, 

highlighting their significance in modern game development. 

The theoretical part of the thesis provided a solid foundation for understanding the various 

A I technologies available for game development. It also set the stage for the practical 

implementations, which were key to demonstrating the real-world applicability of the 

concepts discussed. 

In the practical section, the successful implementation of A I in pathfinding and P C G within 

Unity showcased the potential of A I to revolutionize game development. The use of Unity 's 

NavMesh for pathfinding and the generation of dynamic terrains and obstacles using the 

Perlin Noise algorithm underscored the efficiency and versatility of A I in creating complex 

and engaging game environments. 

A I implementation showed that it decreases development time and effort. However, A I 

provides a less detailed environment i f it is being made by human beings, it also provides 

various variations of this environment. Al-driven pathfinding is effective in terms of 

navigation (especially, previously discussed, A * algorithm that lies on the basis of Unity 's 

NavMesh system) and doesn't require directly written paths from developers. 

This thesis contributes to the field by offering a detailed examination and practical 

demonstration of AI ' s role in game development. The insights gained could be valuable for 

both academic research and game development practices. 

40 



7 References 

1. Hitberry Games. Indie, A A , and A A A Games: The Ultimate Guide. HitberryGames. 

[Online] November 27, 2023. [Cited: March 8, 2024.] 

https://www.hitberrygames.com/post/indie-aa-and-aaa-games-the-ultimate-guide. 

2. DrawAndCode. What is a game engine: an essential overview for beginners. 

DrawAndCode. [Online] DrawAndCode, 25 Apr i l 2023. [Cited: 26 August 2023.] 

https://drawandcode.com/learning-zone/what-is-a-game-engine/. 

3. Unity Technologies. Creating and Using Scripts. Unity Documentation. [Online] Unity 

Technologies, March 19, 2018. [Cited: December 19, 2023.] 

https://docs.unity3d.com/Manual/CreatingAndUsingScripts.html. 

4. Unity Technologies. Real-time rendering in 3D. Unity how-to. [Online] Unity 

Technologies. [Cited: August 27, 2023.] https://unity.com/how-to/real-time-rendering-3d. 

5. Unity Technologies. Unity - Scripting A P I : NavMesh. Unity Documentation. [Online] 

January 13, 2024. [Cited: January 14, 2024.] 

https://docs.unity3d.com/ScriptReference/AI.NavMesh.html. 

6. Epic Games. Unreal Engine 5.2 is now available! Unreal Engine. [Online] Epic Games, 

May 11, 2023. [Cited: September 23, 2023.] https://www.unrealengine.com/en-

US/blog/unreal-engine-5-2-is-now-available. 

7. Pathfinding Algorithms in Game Development. Abdul Rafiq, Tuty Asmawaty, Abdul 

Kadir, Siti Normaziah Ihsan. 1, Pahang, Malaysia : I O P S C I E N C E , 2019, V o l . 1. D O I 

10.1088/1757-899X/769/1/012021. 

8. Procedural Content Generation for Games: A Survey. Hendrikx, Mark & Meijer, 

Sebastiaan & Velden, Joeri & Iosup, Alexandru. 1, The Netherlands : A C M Transactions 

on Multimedia Computing, Communications, and Applications ( T O M C C A P ) , 2013, V o l . 

9. DOI : 10.1145/0000000.0000000. 

9. Simulation of artificial intelligence in a computer game. Elena V Soboleva, Nadezda V 

Shalaginova. 3, Kirov : I O P S C I E N C E , 2019, V o l . 1399. D O I 10.1088/1742-

6596/1399/3/033050. 

10. G . N . Yannakakis, J. Togelius. Artificial Intelligence and Games. Cham, Switzerland : 

Springer International Publishing A G , 2018. I S B N 978-3-319-63519-4. 

11. Ares Lagae, Sylvain Lefebvre, Rob Cook, T. Derose, George Drettakis, David S. Ebert, 

J.P. Lewis, Ken Perlin, Matthias Zwicker. State of the Art in Procedural Noise Functions. 

41 

https://www.hitberrygames.com/post/indie-aa-and-aaa-games-the-ultimate-guide
https://drawandcode.com/learning-zone/what-is-a-game-engine/
https://docs.unity3d.com/Manual/CreatingAndUsingScripts.html
https://unity.com/how-to/real-time-rendering-3d
https://docs.unity3d.com/ScriptReference/AI.NavMesh.html
https://www.unrealengine.com/en-


ResearchGate. [Online] May 2010. [Cited: November 9, 2023.] 

https://www.researchgate.net/publication/216813586_State_of_the_Art_in_Procedural_No 

ise_Functions. 

12. Noor Shaker, Julian Togelius, Mark J. Nelson. Procedural Content Generation in 

Games. Switzerland : Springer, 2016. I S B N 978-3-319-42716-4. 

13. Tatarinov, Andrei. GraphiCon 2008. GraphiCon. [Online] 2008. [Cited: October 28, 

2023.] https://www.graphicon.ru/html/2008/proceedings/English/S8/Paper_3.pdf. 

14. Mandelbrot, Benoit B . The Fractal Geometry of Nature. New York : Freeman & 

Company, W . H , 1982. 0716711869. 

15. Andrew Pech, Philip Hingston, Martin Masek, Chiou Peng Lam. Artificial Life and 

Computational Intelligence. Evolving Cellular Automata for Maze Generation. Newcastle : 

Springer, Cham, 2015. 

16. How Minecraft Generates Worlds. Alphr. [Online] Alphr, August 1, 2023. [Cited: 

December 30, 2023.] https://www.alphr.com/how-minecraft-generates-worlds/. 

17. Player behavioural modelling for video games. Sander C.J . Bakkes, Pieter H . M . 

Spronck, Gie l van Lankveld. 3, The Netherlands : Entertainment Computing, 2012, V o l . 3. 

ISSN 1875-9521. 

18. Hildmann, Hanno. M D P I . Designing Behavioural Artificial Intelligence to Record, 

Assess and Evaluate Human Behaviour. [Online] September 25, 2018. [Cited: December 

12, 2023.] https://www.mdpi.eom/2414-4088/2/4/63. 

19. Curtis Bennett, Dan Violet Sagmiller. Unity AI Programming Essentials. Birmingham, 

U K : Packt Publishing, 2014. I S B N 978-1-78355-355-6. 

20. Unity Technologies. Unity Documentation. [Online] [Cited: December 30, 2023.] 

https://docs.unity.com/. 

21. Unity Technologies . Unity - Scripting APLMathf.PerlinNoise. Unity Documentation. 

[Online] January 13, 2024. [Cited: January 14, 2024.] 

https://docs.unity3d.com/ScriptReference/Mathf.PerlinNoise.html. 

42 

https://www.researchgate.net/publication/216813586_State_of_the_Art_in_Procedural_No
https://www.graphicon.ru/html/2008/proceedings/English/S8/Paper_3.pdf
https://www.alphr.com/how-minecraft-generates-worlds/
https://www.mdpi.eom/2414-4088/2/4/63
https://docs.unity.com/
https://docs.unity3d.com/ScriptReference/Mathf.PerlinNoise.html


8 List of pictures, tables, graphs and abbreviations 

8.1 List of pictures 

Figure 1 - Unity project creation interface, source: own processing 27 

Figure 2 - Plain surface in Unity, source: own processing 28 

Figure 3 - Basic scene for further Pathfinding testing, source: own processing 29 

Figure 4 - Settings for NavMesh Surface, source: own processing 30 

Figure 5 - Settings for NavMesh Obstacle, source: own processing 30 

Figure 6 - Generated NavMesh including Obstacles, source: own processing 31 

Figure 7- Script for Agent controlling, source: own processing 31 

Figure 8- Pathfinding through NavMesh tests, source: own processing 33 

Figure 9 - Initial plain Terrain object in Unity Game Engine, source: own processing 34 

Figure 10 - Script for terrain generation, source: own processing 35 

Figure 11 - P C G of terrain through Perlin Noise, source: own processing 36 

Figure 12 - Randomly placed obstacles on P C G terrain, source: own processing 37 

Figure 13 - Pathfinding on P C G terrain with randomly placed obstacles tests, source: own 

processing 38 

8.2 List of abbreviations 

U E - Unreal Engine 

P C G - Procedural Content Generation 

D F S - Depth-First Search 

B F S - Breadth-First Search 

N P C - Non-Playable Character 

A I - Artificial Intelligence 

G U I - Graphical User Interface 

C A - Cellular Automata 

R T S - Real-Time Strategy 

43 


