
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF BUSINESS AND MANAGEMENT
FAKULTA PODNIKATELSKÁ

INSTITUTE OF INFORMATICS
ÚSTAV INFORMATIKY

APPLICATION OF SCRUM METHODOLOGY ON A
SOFTWARE DEVELOPMENT PROJECT
NASAZENÍ METODIKY SCRUM PŘI VÝVOJI SOFTWARE

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. Matúš Burzala
AUTOR PRÁCE

SUPERVISOR Ing. Lenka Smolíková, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2021

Specification Master's Thesis

Department:

Student: Be. Matúš Burzala

Institute of Informatics

Study programme: System Engineering and Informatics

Information Management

Ing. Lenka Smolíková, Ph.D.

2020/21

Study field:

Supervisor:

Academic year:

Pursuant to Act no. 111/1998 Col l . concerning universities as amended and pursuant to the BUT

Study Rules, by the Director of the Institute, you have been assigned a Master's Thesis entitled:

Application of SCRUM Methodology on a Software Development Project

Characteristics of thesis dilemmas:

Introduction

Goals of thesis and methods

A theoretical review of a problem

Analysis of the contemporary situation

Proposal of solution

Conclusion

References

Appendixes

Objectives which should be achieve:

The aim of the thesis is an application of S C R U M methodology on a software development project in

order to optimize the working process.

Basic sources of information:

B E C K , et al. Manifesto for Agile Software Development [Online]. 2001 [cit. 2021-02-18]. Retrieved

from: https://agilemanito.org/iso/en/manifesto.html

MYSLÍN, J . Scrum: průvodce agilním vývojem softwaru. Brno: Computer Press, 2016. ISBN 9 7 8 -

-251-4650-7.

S C H W A B E R , K. and J . S U T H E R L A N D . The Scrum Guide [Online]. 2020 [cit. 2021-02-18]. Retrieved

from: https://scrumguides.org/

Faculty of Business and Management, Brno University of Technology / Kolejní 2906/4 /612 00 / Brno

https://agilemanito.org/iso/en/manifesto.html
https://scrumguides.org/

Scrum.org - The Home Of Scrum [Online]. 2021 [cit. 2021-02-18]. Retrieved from:

https://www.scrum.org/

ŠOCHOVÁ, Z. and E. K U N C E . Agilní metody řízení projektů. Brno: Computer Press, 2014. ISBN 978-

8-251-4194-6.

Deadline for submission Master's Thesis is given by the Schedule of the Academic year 2020/21

In Brno dated 28.2.2021

L. S.

Mgr. Veronika Novotná, Ph.D.

Director of the Institute

doc. Ing. Vojtěch Bartoš, Ph.D.

Dean

Faculty of Business and Management, Brno University of Technology / Kolejni 2906/4 /612 00 / Brno

http://Scrum.org
https://www.scrum.org/

Abstract
The diploma thesis deals wi th the comparison of the methodology used on the soft­
ware development project wi th the S C R U M methodology. It maps all roles, events,
and artifacts of the project and identifies their differences from the S C R U M definition.
The thesis also contains the proposal of what needs to be adjusted or changed to reach
the correct application of the S C R U M and therefore the optimization of the develop­
ment process.

Abstrakt
Diplomová p ráca sa zaoberá po rovnan ím metodiky použitej na projekte vývoja soft­
ware a metodiky S C R U M . V rámci práce sú zmapované vše tky role, udalosti a arte­
fakty projektu u k torých sú následne identifikované ich odlišnosti od definície metodiky
S C R U M . P r á c a ďalej obsahuje náv rh toho, čo je po t r ebné upraviť, alebo zmeniť,
aby sa dosiahla sp rávna aplikácia metodiky S C R U M a t ý m p á d o m aj opt imal izácia
vývojového procesu.

Keywords
agile, agile methodologies, Scrum, software development

Klíčová slova
agilný vývoj , agilné metodiky, Scrum, vývoj softvéru

Reference
B U R Z A L A , M a t ú š . Application of SCRUM Methodology on a Software Development
Project. Brno, 2021. Master's thesis. Brno University of Technology, Faculty of
Business and Management. Supervisor Ing. Lenka Smolíková, P h . D .

Rozšířený abstrakt
Diplomová p ráca sa zaoberá aplikáciou agilnej metodiky S C R U M na projekt vývoja
softvéru. Konkré tne sa j edná o projekt firmy so sídlom v Brne, k to rá je jednou zo
štyroch pobočiek materskej firmy so sídlom v Škandinávii . Ma te r ská spoločnosť, rov­
nako ako aj vše tky jej dcérske spoločnosti sa zaoberá vývojom rozličných softvérových
riešení, k toré nachádza jú uplatnenie v sektoroch ako financie, zdravotníc tvo, auto­
mobilový priemysel, energetika, maloobchod, te lekomunikácie a mnoho ďalších.

Projektom, k to rý je predmetom tejto práce , sa rozumie vývoj modulu na správu
siete užívateľských dá t , k to rý je súčasťou uceleného produktu zloženého z viacerých
softvérových modulov ako aj hardvérových prostriedkov dodávaných ako jeden pro­
dukt v rámci materskej spoločnosti . N a vývoji sa v rámci p r e d m e t n é h o projektu
podieľajú štyri vývojové tými , lokalizované v Brne, z k torých niektor í členovia pracujú
permanentne na diaľku. Každý t í m sa skladá zo šesť až deväť vývojárov, j edného
člena v role Scrum Master a v rámci celého projektu ďalej existujú dvaja zamest­
nanci v role Product Owner a jeden zamestnanec na pozícii Systémového Architekta.
Je n u t n é podotknúť , že v rámci práce sa pod pojmom vývojář rozumie technicky
zameraný zamestnanec, podieľajúci sa na vývoji produktu, k to rého p ráca zahrňuje
činnosti ako analýza požiadaviek, návrh riešenia, tvorba zdrojového kódu, tvorba
testovacieho kódu, manuá lne testovanie, konfigurácia sieťových topologií a m n o h é iné.
Ďalš ím faktom je to, že ak tuá lne používaná metodika v rámci projektu je založená
na metodike S C R U M , čomu odpovedajú aj názvy rolí ako Scrum Master a Prod­
uct Owner. Tak isto ako u metodiky S C R U M , vývoj je v rámci projektu rozdelený
do po sebe sa opakujúcich cyklov nazývaných Sprint a tak t iež sú v rámci cyklov usku­
točňované udalosti p o d o b n é udalostiam metodiky S C R U M . Je však n u t n é podotknúť ,
že ak tuá lny stav odpovedá metodike S C R U M len v niektorých rysoch, čo potvrdzuje
aj analy t ická časť práce a celkový obsah práce a v ň o m uvedené skutočnost i . Cieľom
práce je teda identifikácia nedostatkov a odlišnost í ak tuá lne používanej metodiky
v rámci p reds taveného projektu, ako aj náv rh riešenia na ich ods t ránenie , k torého
výsledkom by malo byť zefektívnenie procesu vývoja.

P r á c a je rozdelená do troch častí , z k torých prvá, teore t ická časť, obsahuje popis
životného cyklu vývoja softvéru a jeho konkré tnych fáz. V rámci t rad ičných modelov
vývoja softvéru sú v práci preds tavené štyri modeli, Vodopádový model, I te ra t ívny
model, Špirálový model a V-model vývoja softvéru. Teoret ická časť ďalej pokračuje
úvodom do agilných m e t ó d vývoja softvéru, k to rý v krá tkos t i popisuje podstatu
agilných m e t ó d a vyzdvihuje ich kľúčové vlastnosti. V rámci agilných modelov bol
do práce zah rnu tý detailnejší popis modelov Crystal , E x t r é m e Programming, Lean
Software Development a Kanban. U všetkých uvedených agilných, ale aj t rad ičných
modeloch vývoja softvéru je uvedený ich s t ručný popis, grafické zobrazenie modelu
a zoznam ich výhod a nevýhod vo vzťahu k použi t iu modelu na projekty s konkrét­
nymi vlas tnosťami. Pos ledným modelom preds taveným v rámci teoretickej časti práce
je S C R U M . Popis tohto modelu je vypracovaný na detailnejšej úrovni v porovnaní
s o s t a tnými modelmi. Najprv je p reds tavená podstata modelu a nás ledne je v práci
uvedený rozbor tímovej š t r u k t ú r y a konkré tnych rolí, k to ré sú Produc Owner, Scrum
Master a Developer. U každej role je uvedený jej v ý z n a m a zodpovednosti v kon­
texte projektu. Po preds tavení rolí nasleduje špecifikácia udalos t í ako Sprint, Sprint

Planning, Dai ly Scrum, Sprint Review a Sprint Retrospective. K a ž d á udalosť m á
specifikovaný časový rámec konania, zoznam účastníkov a ich úloh v rámci udalosti,
agendu a hlavne cieľ, za účelom naplnenia k torého je d a n á udalosť organizovaná.
Všetky uvedené udalosti okrem Sprint, ma jú tiež určené svoje umiestnenie v rámci
Sprint. Okrem toho je u teoret ického popisu metodiky S C R U M uvedený ešte zoz­
nam artefaktov, k toré sa v rámci neho používajú, a to konkré tne Product Backlog,
Sprint Backlog a Incremet. Každý artefakt obsahuje pr idružený záväzok, k to rým
je konkré tne u Product Backlog - Product Goal , Sprint Backlog - Sprint Goal a u In-
crement - Definition of Done. Popis každého artefaktu zahrňuje jeho význam, prí­
padne spôsob manipulác ie s n ím. V závere teoretickej časti je ešte vysvet lený nás t ro j
nazývaný R A C I matrix, teda matica zodpovednost í , k to rá je v práci použ i t á na mapo­
vanie a vizualizáciu úloh vykonávaných v rámci vývoja produktu a typom zodpoved­
nosti, k toré k n im majú jednot l ivé role projektu.

Druhou a rozsahovo najväčšou časťou tejto práce je kapitola zaobera júca sa Analý­
zou súčasnej si tuácie. V úvode tejto časti je p reds tavená firma a jej organizačná š t ruk­
tú ra . Ďalej nasleduje popis projektu, k to rý je uvedený vyššie v rámci tohto abstraktu.
Po tom nasleduje detai lný popis procesu vývoja produktu, k to rý sa skladá z viacerých
fáz, v k torých m á každý člen t ímu určené svoje úlohy a zodpovednosti. Ana lýza ďalej
mapuje role, udalosti a artefakty procesu. Dôkladne sú tu p reb rané ich vzájomne
asociácie, účel, zodpovednosti a podobne. V ý s t u p o m analýzy je zoznam nedostatkov
a odlišnost í ak tuá lne používanej metodiky od metodiky S C R U M . Konkré tne analýza
odhalila to, že osoby zas tupujúce rolu Scrum Mastra vykonávajú technické úlohy
určené pre vývojárov a t ý m p á d o m zanedbávajú podstatu svojej role, ktorou je ap­
likácia a dohľad nad dodrž iavaním metodiky S C R U M . U role Product Owner bolo
v rámci analýzy zistené, že správne vykonáva aktivity spadajúce do správy artefak­
tov Product Backlog a Sprint Backlog. T á t o rola však nesprávne vykonáva aktiv­
ity ako tvorba návrhov riešení a testovacích scenárov, ana lýza požiadaviek na novú
funkcionalitu, technická podpora vývojárov, priraďovanie úloh konkré tnym vývo-
já rom, monitorovanie výsledkov testovania, tvorba dokumentác ie správa automati­
zovaných testov a iné. U role Developer je v rámci súčasného stavu projektu chýba­
júca pr í tomnosť samo-organizovanosti. Pozícia Systémového Archi tekta je z kon­
textu aplikácie metodiky S C R U M v y h o d n o t e n á ako zlučiteľná s rolou Developer.
Čo sa t ýka udalos t í vývojového procesu, Scrum bol vyhodno tený ako dobre š t ruk­
túrovaný. Sprint Planing bol vyhodno tený ako nedostačujúci v o tázkach definície
obsahu Sprint Backlog ako aj procesu tvorby obsahu Sprint Backlog, k to rý by mal
byť vytvorený rolami Developer p ros t redn íc tvom diskusie so zamestnancami v role
Product Owner. Takisto by mal byť kladený väčší dôraz na formuláciu Definiton
of Done. Dai ly Scrum n e m á v súčasnom stave urečenú osobu moderá to ra , k to rý by
dohliadal na dodržiavanie jeho časového, ale aj obsahového rozsahu. Sprint Review
by sa mal správne konať na konci Sprint a mal by obsahovať vyhodnotenie splnenia
úloh z Sprint Backlog a nie iba prezentác iu dodanej práce , ako je to v a k t u á l n o m
stave. Sprint Retrospective by mal navštevovať aj Product Owner a malo by byť vy­
naložené väčšie úsilie na ods t ránen ie nedostatkov, k toré t á t o udalosť odhal í . Analýza
tiež odhalila, že Product Backlog a Sprint Backlog by potrebovali viac organizovanosti
a pravidiel v rámci manipulác ie s nimi.

Návrhová časť obsahuje návrh na ods t ránenie uvedených nedostatkov. Tímová
š t r u k t ú r a je rozšírená o dvoch nových členov, k to rými b u d ú zamestnanci zastupu­
júci rolu Scrum Master. Zamestnanci zastávajúci t ú t o rolu v a k t u á l n o m stave pro­
jektu b u d ú p resunu t í na role Team Leader, kde môžu využiť svoje technické znalosti
a znalosť produktu a zároveň b u d ú odbremenen í od úloh zameraných na aplikáciu
metodiky S C R U M . Dvaja noví členovia v role Scrum Master si rozdelia t ímu tak, že
každý bude mať pod správou dva tímy, v k torých bude dohliadať na dodržiavanie
pr incípov S C R U M . T á t o rola je v rámci náv rhu kompletne zbavená zodpovednosti
za vykonávanie úloh patriacich do vývoja. Rola Product Owner je tak t iež zbavená
vývojových akt iví t a bude sa plne zameriavať na maximal izáciu hodnoty produktu
a t ransformáciu zákazníckych požiadaviek do vývoja. Vývojáři označovaní názvom
Developer sa b u d ú aktívnejšie zapájať do procesu plánovania a ďalej b u d ú vykoná­
vať úlohy patriace do Sprint Backlog a Product Backlog. Rola Team Leader rozširuje
rolu Developer o právomoc rozhodovania o technických riešeniach v po t rebných si tuá­
ciách a pr idáva jej tak t iež zodpovednosť za úlohy pr i radené t ímu ako aj povinnosť
poskytovania podpory menej skúseným členom t ímu. U udalos t í sú v rámci náv rhu
ods t ránené nedostatky uvedené v analýze, re t rospekt íva je umies tnená na koniec
Sprint a zároveň je pre ňu n a v r h n u t á nová, interakt ívnejš ia forma. Všetky udalosti
b u d ú moderované rolou Scrum Master.

P r á c a obsahuje aj finančné ohodnotenie navrhovaných zmien, k toré sa skladá
z dvoch častí . P rvá časť sa zaoberá zvýšením fixných nákladov spoločnosti vyplýva­
júcich z existencie dvoch nových členov projektového t ímu. Odhad navýšenia fixných
nákladov bol vyčíslený na sumu 2 970 960 Kč ročne. D r u h á časť nákladov m á jednora­
zový charakter a t ýka sa vzdelania a certifikácie členov projektu v metodike S C R U M .
Odhad tejto časti nákladov bol realizovaný v troch variantoch. P r v ý variant spočíva
v inertnom školení zamestnancov, k tor í nedisponujú oficiálnou certifikáciou, k to rý bol
ocenený na sumu 306 068 Kč. Druhý variant predstavuje kompromis v rámci šetrenia
finančných zdrojov a obs ta rávan ím certifikácie zamestnancov. Oficiálneho školenia sa
v tomto pr ípade účas t ina iba zamestnanci, k tor í v a k t u á l n o m stave nemajú certifiká­
ciu. Tento variant predstavuje nák lady vo výške 817 600 Kč a po jeho aplikácií
by mali všetci členovia projektu oficiálnu certifikáciu. Posledný, na jdrahš í variant,
spočíva v preškolení všetkých členov projektového t ímu pros t redn íc tvom oficiálneho
školenia. Po ukončení školenia by mali všetci členovia projektového t ímu najvyššiu
možnú certifikáciu odpovedajúcu ich S C R U M role, k to rá je dosiahnuteľná v rámci
školení poskytovaných v Českej Republike. Tento variant predstavuje jednorazový
výdaj vo výške 1 086 068 Kč.

Záverečná časť náv rhu pa t r í zoznamu prínosov navrhovaného riešenia, k toré sú
lepšia reakcia na pož iadavky zákazníkov a ich t ransformácia do produktu, presne­
jší a efektívnejší proces plánovania , zlepšenie kvality vyví janého produktu, upevne­
nie vzťahu so zákazníkmi , zefektívnenie pracovného procesu, priaznivejšie prostredie
pre rast členov projektového t ímu a zvýšenie efektivity vývojového procesu. Všetky
uvedené benefity by sa mali priaznivo odzrkadliť na finančných profitoch projektu.

Declaration
I declare that the submitted Master's thesis is original and I processed it indepen­
dently. The quote of the bibliography is complete, and I did not violate any copyrights
(in terms of Ac t no. 121/2000 Col l . , about Copyright and right related to Copyright).

Matus Burzala
M a y 8, 2021

Acknowledgements
I would like to express my sincere gratitude to my thesis supervisor Ing. Lenka
Smolíková, P h . D . for her valuable guidance and advice that she has provided through­
out the writ ing process of the thesis. Also, I would like to say thank you to all my
friends and family members that gave me support during whole my studies.

Contents

I n t r o d u c t i o n 3

G o a l s o f thes i s a n d u s e d m e t h o d s 4

1 T h e o r e t i c a l r e v i e w o f a p r o b l e m 5

1.1 Software development life cycle 5
1.2 Traditional models of software development life cycle 8

1.2.1 Waterfall Mode l 8
1.2.2 Iterative Mode l 9
1.2.3 Spiral Model 10
1.2.4 V - M o d e l 12

1.3 Agile models of software development life cycle 14
1.3.1 Crysta l 15
1.3.2 Extreme Programming 16
1.3.3 Lean Software Development 18
1.3.4 Kanban 20
1.3.5 Scrum 21

1.4 R A C I matrix 28

2 A n a l y s i s o f c o n t e m p o r a r y s i t u a t i o n 30
2.1 Company Introduction 30
2.2 Project introduction 32
2.3 Process of the product development 35

2.3.1 Change request 36
2.3.2 Analysis of the change requests 37
2.3.3 Solution design 39
2.3.4 Implementation 41
2.3.5 Testing 42
2.3.6 Deployment 43

2.4 Roles and responsibilities of the process 43
2.4.1 Scrum Master 43
2.4.2 Product Owner 45
2.4.3 Developers 46
2.4.4 System Architect 46
2.4.5 Responsibilities wi thin the process 46

1

2.5 Events and artifact of the process 47
2.5.1 Sprint 47
2.5.2 Sprint Planning 47
2.5.3 Dai ly Scrum 49
2.5.4 Sprint Review 49
2.5.5 Sprint Retrospective 50
2.5.6 Product Backlog 50
2.5.7 Sprint Backlog 50

2.6 Analysis summary 51

3 P r o p o s a l o f s o l u t i o n 57
3.1 Proposal of changes 57

3.1.1 Team structure 57
3.1.2 Scrum Master 59
3.1.3 Product Owner 59
3.1.4 Developers 61
3.1.5 Team Leader 62
3.1.6 System Architect 63
3.1.7 Responsibilities within the process 63
3.1.8 Sprint 65
3.1.9 Sprint Planning 65
3.1.10 Dai ly Scrum 66
3.1.11 Sprint Review 67
3.1.12 Sprint Retrospective 67
3.1.13 Product Backlog 68
3.1.14 Sprint Backlog 69

3.2 Financial evaluation of the proposal 69

3.3 Benefits of the proposed solution 74

C o n c l u s i o n 76

B i b l i o g r a p h y 78

A p p e n d i c e s 80

2

Introduction

In today's age of digitization and rapid technical evolution, technologies are experi­
encing extreme, or even exponential development. This fact is affecting costumers'
behaviour and therefore setup of the whole global market. What is today perceived
as a cutting-edge technology or effective tool wi th modern design, can be tomorrow
labelled as an old-fashion piece wi th an outdated look with a deprecated functionality.
This attitude is naturally reflected in the customers' requirements towards the prod­
ucts regardless of the market sector. Producers are forced to answer to these changes
and must put enormous effort into the fulfilment of the customers' needs in order to
defend their spot on the market, keep pace wi th the competitors, and hold customers'
loyalty.

This is the time when Agile methods are coming on the stage. Thanks to their fo­
cus, which is placed on the adaptability to the customers' requirements, they become
more and more popular not only in the informatics field. Thanks to their key values
which are the promotion of individuals and interactions over the processes and tools,
creation of working software over comprehensive documentation, customers collabo­
ration over contract negotiation, and response to changes over following of the plan,
their application on the projects provides a fertile environment for the creation of suc­
cessful products.

This diploma thesis deals wi th the application of the agile methodology S C R U M
on a software development project. The first chapter of the thesis 1 contains theoret­
ical information that is important for proper understanding of other parts of the the­
sis. The second chapter 2 focuses on the analysis of the contemporary situation
which includes the introduction of the company and project, a detailed description
of the development process on which S C R U M methodology wi l l be applied, and
summarization of roles, events, and artifacts that are existing in the current state
of the project. The analysis is closed by summarization of all differences that the
current state has comparing to the definition of S C R U M . The last part of the the­
sis 3 contains the proposal of the solution which is based on the information gathered
in two previous chapters. The proposal contains a list of changes in the project's team
structure, responsibilities of the roles, a form of development process's events, and ad­
justments of artifacts used in the process. The proposed solution is also evaluated
from the financial point of view and the whole proposal is terminated by the summa­
rization of the expected benefits, that should S C R U M implementation bring up into
the project.

3

Goals of thesis and used methods

The main goal of the thesis is an application of S C R U M methodology on a software
development project in order to optimize the working process. Considering the fact
that the methodology that is currently used on the project is based on S C R U M ,
specific characteristics of the product and its development process, and the organiza­
tional structure of the company, this main goal incorporates several complementary
goals.

One of the complementary objectives is an analysis of the contemporary situa­
tion on the project which includes a detailed analysis of the process of the product
development. Another goal of the analysis is the identification of the roles that are
participating in the development process and summarization of their responsibilities
and activities in the development process as well as towards other participants of the
process. The analysis also needs to gather information about the artifacts and events
of the process. A l l outcomes of the analysis wi l l be used for comparison wi th the
S C R U M definition in order to find point out differences, which removal should bring
more efficiency into the process.

Another complementary objective towards the goal of an optimization of the de­
velopment process is a proposal of the changes that wi l l lead to proper implementation
of the S C R U M methodology. Actions listed within the proposal need to respect the
character of the product its development process and the organizational structure of
the company. The focus needs to be put on the specification of the team structure
and its roles. The needed outcome of the proposal is also a formulation of the events
and schedule of the development process. Also, a list of artifacts used in the process
needs to be provided wi th the detailed specification of their agenda, participants, and
accountabilities of the participants. It is important to provide a financial evaluation
of the proposed solution in ordered to provide direct arguments for easier decision
making about the provided solution.

The thesis utilizes methods and techniques for gathering information such as direct
observation wi th active participation in the observed process as well as interviews.
For better visualization and clarity of analysed facts, there is the presence of the E P C
diagram and R A C I matrixes within the thesis.

4

Chapter 1

Theoretical review of a problem

This chapter contains theoretical information, that is necessary to know in order
to properly understand other analytical and practical parts of the thesis. Most
of the information, except content that has its resource explicitly listed in itself,
outcomes from resources [10], [3], [12], [13], [4], [15] and [17]. The first section 1.1
of the chapter contains a brief introduction to the Software development life cycle
followed by a short description of its phases. The second section 1.2 sequentially
describes four well-known modes of Traditional software development life cycle. De­
scriptions of each of the four selected modes are briefly explained basic principles
of the modes followed by the model's diagram and list of advantages and disad­
vantages. The third section 1.3 discusses the Agile models of software develop­
ment. A t the beginning of this section, the first representative of agile models
Crystal 1.3.1 is introduced. Afterward, Extreme Programming 1.3.2, Lean Software
Development 1.3.3, and Kanban 1.3.4 are depicted. The whole chapter is concluded
by a detailed description of the Scrum method 1.3.5, its roles, events, and artifacts.
In the very last section 1.4, there is a short paragraph describing the R A C I matrix,
its purpose, and structure.

1.1 Software development life cycle
Software Development Life Cycle (S D L C) is a methodology used in the software
industry in order to create high-quality software products. S D C L defines the process,
that aims at the high quality of the developed software, which is following customer's
requirements, and which is delivered within the intended budget and time. A l l these
aspects are achieved by following a well-structured plan that consists of six phases 1.1
- Requirement Analysis and Planning, Requirement Definition, Architectural Design,
Development, Testing and Deployment, and Maintenance.

Requirement Analysis and Planning
The essence of this phase is to obtain input from all stakeholders which are customers,
sales department, marketing department industry experts, and so on. The result of
this phase should be the answer to the question of what problem our project should

5

Deployment
and

Maintenance

Testing

Figure 1.1: T h e Sof tware D e v e l o p m e n t L i f e C y c l e a n d i ts phases . (Source:
Own Creation)

solve, what functionality needs to be delivered or what needs to be improved on
the product. The output of this phase is a feasibility study from the technical,
technological, economic point of view. The feasibility study should include various
approaches that should lead to the successful implementation of the project.

Requirement Definition
In the second stage, it is important to clarify all product requirements. Afterward
gathered requirements must be approved either by the customer, market analyst,
or another responsible person. For these purposes, a document named Software
Requirement Specification (SRS) is used. SRS contains all product requirements
that must be fulfilled during the project life cycle.

Architectural Design
In this phase, SRS which is base for software architects is transformed into Design
Document Specification (DDS). This document usually contains more than the one
suggested design approach for the document architecture. A key part of this stage

6

is a review of the D D S by all stakeholders who are considering all aspects such
as modularity, robustness, scalability, risk evaluation, financial, technological, and
time constraints. A s an output of this review, the best approach is selected for
product development. The selected design includes a l l technical details necessary for
the implementation of the required product or module, as well as a description of its
interface required for future integration or deployment in the customer's environment.

Development
A t this stage, the actual product development begins. Developers involved in the
creation of the product's source code must adhere to the design contained in the D D S ,
as well as the established standards and procedures used within their organization.
The time spent on development depends on the amount of knowledge and experience
of development team members, as well as on the quality and sophistication of the D D S
created in the previous phase. Technologies and tools used within the development
process such as programming language, type of compiler, virtualization environment,
and database engine are selected considering the character of the developed product.

Testing
The goal of the testing stage is to reveal all the shortcomings and defects of the
software. Founded errors are repeatedly reported, corrected, and retested unti l the
product reaches quality standards defined in the SRS.

Deployment and Maintenance
The last but not the least phase of S D L C includes two main activities, which are
deployment and maintenance. When the product reaches the required quality, it is
put into real operation. Deployment can be performed in many ways. Sometimes the
product is init ial ly deployed only among a narrower group of customers, for whom
feedback is then collected. After correcting the product based on customer feedback,
the product is widespread to all customers. This approach achieves a lower error
rate of the product at the moment of delivery to the customer, but the release of
the product is carried out later. In other cases, the product is spread directly placed
on the market and is subsequently modified during operation in the form of new
versions. The result of this is earlier delivery, which can, however, mean more errors
in the ini t ial versions of the product. Bo th approaches require maintenance and
development of new versions throughout the whole life of the software.

7

1.2 Traditional models of software development life
cycle

1.2.1 Waterfall Mode l
This model, illustrated on figure 1.2, was the first S D L C model used in software
engineering. The process of software development is divided into several separate
phases. Each phase begins whenever the previous phase ended and phases in this
model never overlap. The output of the previous phase is used as an input for the
following phase. Thus, this approach models the process of software development as
a linear sequence of stages starting wi th the stage of Requirement Analysis followed
by System Design, Implementation, Testing, Deployment and ending by Maintenance
stage.

Requirement Analysis

System Desing

Implementation

Testing

Deployment

Maintenance

Figure 1.2: T h e W a t e r f a l l m o d e l o f S D L C . (Source: Own Creation)

Nevertheless, this approach was invited a long time ago, it stil l very usable for
a particular type of project nowadays. It is appropriate to apply this model for a
project which has clearly documented and fixed requirements, product definition is
stable, a project is quite short, and used technology is well understood.

8

A d v a n t a g e s

• Simple to understand and easy to apply

• Clearly defined structure and processes wi thin stages

• Easy to manage, setup milestones and divide tasks

D i s a d v a n t a g e s

• Difficult to reflect changes of requirements that appear during the process of
development

• Functional product is available at a later stage of the project

• Errors made in the ini t ia l stages are difficult to eliminate in the later stages

• In case of change of requirements whole process must start from the beginning
which is reflected in costs or can cause failure of the project

1.2.2 Iterative Mode l
The essence of the iterative model 1.3 is to develop software through repeated it­
erations. It starts with the implementation of a subset of requirements. In every
further iteration, results achieved in the previous iteration are reviewed, and the list
of requirements is updated. Then, new requirements are transformed into new ver­
sions. Each iteration consists of requirement specification, design, implementation,
and testing phase. This cycle is repeated, and new versions are produced and repeat­
edly adjusted or enhanced unti l the complete system is developed and prepared for
deployment.

This model fits projects that have clearly defined requirements for the complete
system. A s is mentioned in the description of the model above, some adjustments to
the system can be performed during the development, but it is necessary to mention
that major requirements must be defined at the beginning. Another use case of this
model is when the development team uses new technology, which it is learning during
the process of development.

A d v a n t a g e s

• Functional software (with l imited functionality) is available in early stage of the
project

• Parallel development and work in different phases are possible

• Results are obtained periodically and therefore can be reviewed constantly

• Possibility to change requirements during production process

• Less costs in case of changes in customer's requirements for the system

9

Build 1

Requirements

Design and
Development

Build 2

Design and
Development

Build N

Design and
Development

Testing Implementation

Testing Implementation

Testing Implementation

Figure 1.3: T h e I t e r a t i v e m o d e l o f S D L C . (Source: Own Creation)

D i s a d v a n t a g e s

• More difficult to manage whole process

• Significant changes of the requirements are not easy to apply

• Weaknesses or issues of system architecture can pop up during later iterations
of the development wi th incoming requirements

1.2.3 Spiral Mode l
This model incorporates evolving approach from the Iterative model combined wi th
the stepwise approach of the Waterfall model. A big emphasis is placed on the
support of risk handling. The Diagram of the model 1.4 looks like a spiral divided
into four quadrants. Each quadrant represents one phase of the development process
and during the development project repeatedly rotates through stages. Each loop
in a Spiral model is called the Phase of the software development process. Product
prototype is provided at the end of each phase. A final number of phases is unknown
at the begging of the project and can dynamically change. The role of the project
manager has huge importance here in the determination of the number of phases.

10

First stage by which each phase of the spiral model start starts can be named
Objectives determination. Here, customer's requirements are gathered and analyzed.
Based on that, objectives are conducted, and alternative solutions are proposed. In
the next stage, proposed solutions are evaluated according to the objectives and
constraints in order to select the best option. The focus of the evaluation is on risk
perception. I the end of this quadrant prototype of the best solution is built. The
third stage, stage of development and testing, includes implementation of the source
code followed by verification through testing. A t the end of the stage, the new version
of the product is available. The last quadrant is named Review and Planning. Here
customer evaluates the current version of the software. If the current version sti l l
doesn't meet requirements plans for new iterations are prepared.

Figure 1.4: T h e S p i r a l m o d e l o f S D L C . (Source: Own Creation)

This model mostly fits the large projects wi th a sufficient budget when it is ex­
pected that significant changes may be required in the future. Also, this approach
works with systems that have unclear and complex requirements at the beginning
of the project. Projects that need frequent releases of the new version for customer
evaluation also benefits from this model.

A d v a n t a g e s

• Significant changes of requirements are acceptable

11

• Better risk management

• Relatively high number of versions for customer's evaluation

• Functional product in early phase of the project

D i s a d v a n t a g e s

• Structure of the process is complex which means higher demands for manage­
ment

• Hardly to estimate end of the project

• Risk analysis needs experienced specialists

• Not suitable for small projects

1.2.4 V - M o d e l
V-model is also known as the Verification and Validation model can be considered
as an extended version of the Waterfall model. In advance to the classical sequential
linear approach in the Waterfall model for each stage of development (except the
coding stage), there is one corresponding stage of Validation. A s we can see on the
diagram 1.5, the model's name comes from its ' V shape. The left side of the diagram
represents a group of Verification stages and the opposite, the right side represents
Validation stages. Bo th sides are connected by stage of the Coding. A s well as in
other sequential approaches each phase can only start when the previous ended.

The phase of verification involves static analysis which is performed without ex­
ecution of the source code. Business Requirement Analysis is the first stage of this
group. It includes communication wi th the customer in order to understand its expec­
tations and gather system requirements. Acceptance test design is conducted as well
in this stage. In the second step, System Design, based on a list of the requirements
system design is completed followed by a plan of system tests. The Architectural
Design stage includes processes such as system design creation, interface design, data
flow design, technology selection, and integration test preparation. This stage is also
called the High-Level Design. The last stage of the Verification phase is Module De­
sign. It is also referred to as the Low-Level Design and at this point, the system is
breaking down into separate modules. The purpose and functionality of each module
are detailly processed as well as interfaces and data structures of them. Based on
that, a unit test plan is constructed.

The coding phase, as it is obvious from its name, covers the writ ing of the source
code.

The phase of validation carries four stages and involves dynamic analysis which
is done by execution of the source code. Here we start with the Uni t Testing stage
which follows the Coding stage and is complementary to the phase of Module Design.
This testing is performed on the code level and it aims at the elimination of bugs in
the implantation of atomic units as methods, classes, or modules. The next stage, the

12

1

Coding

Figure 1.5: T h e V - m o d e l o f S D L C . (Source: Own Creation)

Integration Testing stage performs testing focused on cooperation between modules.
When particular modules are integrated into one system, we need to validate if they
properly between each other and if their interfaces follow the High-Level Design.
After all parts of the system cooperate as we want, it is time to test the system as
one unit. For this purpose, V-model contains the System Testing stage. This checks
the functionality of the whole system and its capability to interact wi th external
systems. Acceptance Testing is the last step before releasing the products. It tests
if the developed product fulfills business requirements and if it can work properly
inside the customer environment. In this type of testing, we can also uncover hidden
performance issues.

The application of this model is pretty much the same as in the case of the
Waterfall model. In case of usage, system requirements should be very well defined
without any expectations of further changes. Due to the huge emphasis on verification
and validation of the developed system, this approach should be used for systems that
requires high quality and maximal fault tolerance.

A d v a n t a g e s

• Easy to understand and use in practice

13

• Not difficult to manage, thanks to precious verification and validation system
in each stage

• Huge emphasis on product testing

D i s a d v a n t a g e s

• Zero flexibility in terms of changes in system requirements

• Existence of prototypes is missing

• Not suitable for huge or complex projects

1.3 Agile models of software development life cy­
cle

Nowadays, requirements of the product functionality can change very dynamically
due to newly invented technologies, behavior of end-users, trends in the market, or
whatever external or internal factors. In the Agile process of software development,
unlike in traditional models, the focus is placed mostly on adaptability to the current
customer requirements. Customer interaction is one of the key characteristics of Agile
modes. A s it is defined in Agile Manifesto [13], the document that was conducted in
2001 by seventeen software engineers and which holds four values and twelve principles
of agile software development, four values of Agile are:

• I n d i v i d u a l s a n d i n t e r a c t i o n s over processes and tools

• W o r k i n g sof tware over comprehensive documentation

• C u s t o m e r c o l l a b o r a t i o n over contract negotiation

• R e s p o n d i n g to change over following a plan

Agile development process starts wi th a definition of a set of features that the
final product wi l l comprise. This list of the features comes out from requirements
analysis, and it is not followed by a detailed plan of tasks and milestones as we are
used to, in the theory of traditional S D L C approaches. Agile breaks down S D L C
into relatively short time frames during which the development team focuses on the
creation of specific features. A t the end of each time frame, a new bui ld is released
and presented to the customer and all other important stakeholders. Based on their
evaluation, and wi th an aim on the rising business value of the product another
feature is picked from the list and incorporated in the upcoming iteration. Thus,
each iteration is incremental in matters of features, and the final bui ld contains all
demanded features. Atomic phases that each iteration consists of are Requirements
and Planning, Development, Testing, Deployment, and Feedback.

Agile teams are supposed to be self-organized, self-motivated, cross-functional,
and ideally located in one place. A self-organized and self-motivated team can deliver

14

expected results in form of features, without the need for any external authority that
would guide or encourage the team members on the way to reach settled goals. Co-
location is another factor that improves a team's productivity. Cross-functionality
can be described as the ability of team members to carry on all task that belongs to
specific phases and roles wi thin S D L C , besides that they are experts in their domains.

Thus, Agile models should be used on projects which require high flexibility and
changeability in terms of product requirements. A n environment where customers
agree wi th a high volume of interaction whit the producer, or what is even better,
demand frequent delivery, and continuous evaluation of the product is the right place
to use these models.

1.3.1 Crystal
Crystal is a family of methods, that mainly focuses on people and the interaction
while working on the project rather than on tools and processes. This family of
lightweight and flexible approaches includes methods such as Crystal Clear, Crystal
Yellow, Crystal Orange, and others. Crystal methods follow the idea that project
characteristics change depending on the number of people involved, and also on the
level of the criticality of the project. For example, a small project wi th few contrib­
utors does not require a huge amount of paperwork, communication, and reporting.
O n the contrary, large projects cannot be delivered without the need for a lot of
frequent communication, status reporting, and paperwork. W i t h consideration of
that, the suitability of a particular Crystal method obeys three aspects - Team size,
Criticality, and the Prior i ty of the project.

A s an example can be mentioned Crystal Clear method, which applies to projects
wi th a team size of 1-6 members, a solid plan, and a fixed budget. A s a comparison,
a project that would involve 20-50 persons would likely require Crystal Orange. Such
a project could last 1-2 years, the workforce would be split into teams according to
their skills, releases would have an incremental character wi th a delivery period of
3-4 months, and so on. Other Crystal methods and their distribution according to
the number of people involved are illustrated in the picture below 1.6.

A l l methods within the family are based on seven Crystal properties. First of
all , Frequent delivery could be considered as key characteristics of all Agile methods,
and which guarantee benefits such as earlier issue discovery, customer feedback, etc.
Reflective Improvement aims at improving the product quality and techniques used by
the team. This is reached by a discussion of current solutions and working processes.
Osmotic Communications can be explained as absorption of the information or ideas
by all co-located people, without intention to directly participate in the ongoing
discussion. This can of course work only in small-size teams that are physically
located in the same space. Personal Safety means trust in-between team members.
This encourages them to stand up wi th their own ideas and opinions, which is essential
for a correctly working and healthy team. Focus is a Crystal property that should
developers have toward the tasks they are working on. It means they should have
clearly defined tasks on which they can focus without any disturbance. Assurance
of this boosts team performance and helps to follow deadlines. The penultimate

15

6
people

20
people

50
people 1

Clear Yellow Orange Red Maroon

Team size >

Figure 1.6: C r y s t a l m e t h o d s a n d t h e i r d i s t r i b u t i o n a c c o r d i n g to t he n u m b e r
o f peop l e i n v o l v e d i n t he p ro j ec t . (Source: Own Creation)

property is named Easy access to the expert users. This means direct communication
wi th customers in order to get valuable feedback from real users. The last one,
Technical environment and Frequent integration. This is a set of tools or machinery
of automated testing and a continuous integration system that helps to find bugs in
source code, and fix them in the early stages of the development.

A d v a n t a g e s

• Flexibi l i ty in terms of team size, project requirements and project or priorit i­
zation of delivery

• Due to the importance of teamwork and communication, team members can
gain improvement of knowledge and can learn from each other

• Active participation of user and almost continuous feedback

D i s a d v a n t a g e s

• Higher experience of team members is needed

• Need of co-location of team members due to proper communication

• Planning and development are not dependent on requirements

1.3.2 Extreme Programming
Extreme Programming is and software development methodology that is intended
to produce high-quality software wi th high responsiveness to changing customer re­
quirements. This is reached by frequent releases in short development cycles (with a
span of 14 days' time frames) and checkpoints dedicated to obtaining new customer
requirements. The name of the methodology comes from fact that all beneficial prac­
tices and activities used in traditional models of S D L C are here raised to extreme

16

levels. Pair programming, the technique frequently used in Extreme programming,
can be used as a convenient example of an extreme version of code review from S D L C .
As code reviews are usually done in S D L C once upon a time (e.g., end of the spe­
cific period, end of the feature development), pair programming represents a session
where two programmers are sitting next to each other while one is wri t ing the code
and simultaneously another from the pair is providing real-time code review.

Core representatives of Extreme programming practices that should be mentioned
in this brief overview are - Pair Programming, Continuous Integration, Test-driven
development, Planning Game, and Collective Ownership. Pair Programming is more
detailly described in the paragraph above. Continuous Integration is an approach
where contributing developers integrate the newly developed pieces of code to the
one shared mainline several times per day. After the integration of the newly intro­
duced source code, the whole system is tested. This supports the consistency of the
product under development and helps to expose and fix integration issues sooner.
A n d the fact that only a small part of the code is merged, makes the process of
searching for the bug in the source code significantly shorter. Test-driven Develop­
ment changes the order of phases during code writ ing and unit testing. Usually, at
first, the production code is conducted and afterward unit tests are written and ex­
ecuted on the previously created code. But here, firstly unit tests are written based
on new functionality requirements. The next step is the execution of the unit test
and based on the failing tests, missing functionality is covered by coding. Planning
Game is the name for the planning process of Extreme Programming. This process
holds one meeting per iteration (usually one or two weeks) and has two parts. The
first part called Release Planning is meeting wi th the presence of customers and de­
velopers. Here the definition of requirements for particular releases takes place. This
part has three phases starting wi th Explorat ion Phase - where customer define prod­
uct requirements which are transformed to the user stories (software system feature
description in informal, natural language), Commitment Phase - were developers and
business responsible commit in which release what functionality wi l l be delivered,
and ending wi th Steering Phase - withing which plan can be adjusted and list of
product requirements is updated. The second part of the Planning Game is Iteration
Planning. This has also three phases that holds the same names as phases in Release
Planning. Only developers participate in this meeting. In the first phase, require­
ments are translated to the tasks, and tasks are written to the task cards. W i t h i n
the Commitment Phase tasks are assigned to the developers and deadlines for the
tasks are estimated. In the last phase, developers execute their tasks and match their
results wi th the user story. Collective Ownership or team code ownership says that
everyone is responsible for the whole code as well as everyone has the possibility to
rewrite whatever part of the source code.

This methodology is suitable for projects wi th a high probability of frequent
changes in product requirements. It can be used only when customers agree wi th
participation in the project along wi th regular meetings and feedback sessions. From
the producer's point of view, team members should be familiar with concepts as Pair
Programming, Test-driven Development, and Continuous Integration. Also, these

17

concepts need a specific development environment that contains appropriate tools
and frameworks for unit testing, test automation, system integration, and so on.

A d v a n t a g e s

• Intense interaction wi th the customer and quick response to changes in require­
ments.

• Clean source code and frequent testing what guarantee high-quality standard.

• Importance of team collaboration and favorable environment for the growth of
the abilities of team members.

D i s a d v a n t a g e s

• Teams have to accept and follow specific techniques of the development process.

• The co-location of the team is needed in order to achieve efficiency.

• Due to customer's unclarity about the requirements, it is difficult to estimate
the duration of the project as well as costs.

1.3.3 Lean Software Development
Lean method was init ial ly developed for the manufacturing industry. Its principle is
'just in time production' and it aims at decreasing cost and increasing development
process speed. The way how Lean reaches these goals is by reducing waste. Waste
in terms of software development production are all activities or artifacts that don't
add value to the product but consume effort, time, or financial sources. Particular
seven wastes that appear in the software development industry are - Incomplete
or partial work done, Addi t ional or not required features, Ex t r a processing, and
documentation, Switching between tasks, Wait ing periods and delays, Handing-off
work between project members, and Product defects and bugs. For all these undesired
wastes, Lean offers solutions.

A l l proposals and solutions for reducing software development waste, as well as
the whole Lean philosophy, comes out from seven Lean principles 1.7 which are -
Eliminate Waste, Empower the Team, Deliver it Fast, Optimize the Whole, B u i l d in
Quality, Defer Decisions and Ampl i fy the Learning. In charge of fulfilling and follow­
ing all these principles, there are three types of roles defined in Lean. First one, called
Lean Master, a role that has to know and understand all Lean tools and techniques.
W i t h this knowledge, awareness of the project, and by keeping contact wi th cus­
tomers, Lean Master is responsible for selecting project team members, coaching and
mentoring them, and maintaining plan by considering all requirements and changes.
Lean Project Leader can be perceived as a communication interface between Lean
Master and Lean Team members. His usual tasks are leading the team and project,
reporting to the superior roles, removing barriers, communication and mediation, and

18

Figure 1.7: S e v e n p r i n c i p l e s o f L e a n Sof tware D e v e l o p m e n t . (Source: Own
Creation)

responsibility for team improvement. Lean Team consists of developers, testers, and
another domain expert depending on the character of the project.

Since Lean method requires the participation of the customer as all Agile method­
ologies, it can be used only for projects where customers are wil l ing to do that. A n ­
other aspect that should be considered before choosing Lean is the size and complexity
of the project, where Lean works only for smaller ones.

A d v a n t a g e s

• Reduction of costs and increment of development speed

• Focus on product quality and optimization of processes

• Amplif ication of team members' competencies and qualifications

D i s a d v a n t a g e s

• Suitable only small and rudimentary projects

• High dependency of project success on team members

19

• B i g demand of customer interaction

1.3.4 Kanban
Kanban is a Lean method that focuses on productivity and efficiency by managing the
work flow wi th emphasis on the team's full capacity usage and development process
optimization. The essence of Kanban is adjusting the amount of work in progress
(WIP) to the team's capacity. It is also marked as a pul l system because within
Kanban work is pulled into the system when the team has free capacity for it, rather
than tasks being assigned by superiors.

Backlog In Progress Done

;

Figure 1.8: E x a m p l e o f K a n b a n b o a r d . (Source: O w n Creation)

Kanban can be described over an explanation of its six core principles. The first
one, Visualizat ion of the Workflow, is the one that comes to mind of every person
who ever got in touch with this method. The Kanban board, the crucial artifact of
the method, provides transparent, easy to understand, and brief status of the work
process. This board, usually in form of a whiteboard or vir tual form, is divided into
several columns. The most curricular columns, that every Kanban board (illustrated
on figure 1.8) independently to the project are - Backlog, In Progress and Done. Each
column is used for the determination of the task state. Tasks are represented by task
cards. B y moving the card from one column to another, team members are providing
information about task status to all concerned. Only team members who work on the
tasks can manipulate cards. Second, practice is a Limi ta t ion of the work in progress.
Columns are not endless, and only a certain number of cards can be placed within
them at once, which limits W I P and reflects the team's capacity. Different projects
require a different number, capacity and types of columns (e.g. Wait ing, Blocked,

20

Verification) as well as distinct types of cards (Epic, User Story, Trouble Report).
The thi rd practice is called Mange flow, and it means that by using Kanban we are
trying to achieve smooth workflow during the process of the development. Fourth
in the list of Kanban practices is Making Process Policies Expl ic i t . Appl icat ion of
this is done by keeping working process and all his aspects transparent, published,
and accessible for all team members, because only then they can fully participate,
increase value and bring positive impact. Feedback Loops are essential in Kanban,
as Kanban itself comes from an agile family. A good example is the daily, max 15
minutes long, a meeting called Stand up. This meeting takes place in front of the
Kanban board, and its agenda is that each team member share info about what he
did the previous day and what he is going to do today, with the rest of the team.
The last practice, Improve collaboratively refers to a way of teamwork that leads to
better cooperation and easier direction to the improvement.

A s this method is more philosophy and a way how to improve and raise efficiency,
it can be implemented into projects which are fundamentally functional but could be
smoother. Another place where Kanban could fit is in companies that are wil l ing to
improve exiting processes without radical system changes.

A d v a n t a g e s

• Strong visualization and transparency of the working process

• Easy to adopt into ongoing projects without the need for radical system changes

• Straight forward way to raise efficiency and productivity

D i s a d v a n t a g e s

• Cannot be applied as a standalone tool, but rather merged wi th another process

• Not applicable for complex projects wi th a huge number of tasks and activities

• Prediction of dates for task delivery is difficult and inaccurate

1.3.5 Scrum
As The Scrum Guide [4] says: „Scrum is a lightweight framework that helps peo­
ple, teams and organizations generate value through adaptive solutions for complex
problems." This framework often referred to as a framework for IT development
projects management, however can be applied to many different fields such as mar­
keting, sales, research, etc. In its definition, it says that Scrum is simple, and it is
definitely not a methodology. It is not a strict set of complex rules and practices
on how to proceed. It provides an approach based on empiricism, that elects heuris­
tic philosophy with support of human elements and self-organization rather than a
heavy-handed algorithmic approach. Empir ic ism believes that knowledge comes from
experience and observation.

21

Scrum framework models the work process as iterative and incremental, which
goals into the optimization of predictability, and risk control. It defines three types
of roles that play key roles within the main event of the Scrum called Sprint. Sprint is
the name for one development iteration that is bound by other events, which wi l l be
described in further sections. These three roles and scrum events are supplemented
by few artifacts that together represent the Scrum framework.

One of the three Scrum pillars is Transparency, which certificates that all work
wi l l be transparent and visible for all team members as well as project stakeholders.
Without this, the empiric approach could miss-lead the project from its path towards
increasing business value and customer satisfaction. The second pillar, Inspection,
comes from flexibility and intention to uncover potential issues as soon as possible.
It is processed by Scrum events and artifacts. The last pillar named Adaptat ion is
closely interconnected wi th Inspection. After any deviation of the process is observed,
an adaptation of the plan and task must be performed.

S c r u m roles

Scrum recognizes three essential roles that together create a Scrum Team 1.9. Namely
Scrum Master, Product Owner, and Development Team members. Besides these three
roles, they are also stakeholders, which can be perceived as a customer that Scrum
Team develops a product for. Scrum Teams are cross-functional what means, as one
unit they have the skil l set necessary to create value and fulfill the Product Goal .
Another crucial characteristic is the ability to self-organization, which means that
Scrum Team doesn't need an external authority that wi l l decide who does what, when,
and how. In terms of size, Scrum Team shouldn't consist of more than 10 people.
The size of the team should be enough large to handle and finish significant work
within one Sprint but at the same time enough small to stay agile. Here can be applied
general rule, that it is easier to communicate and therefore be more productive among
a small group of people. The scrum team takes responsibility for al l product-related
activities such as collaboration with stakeholders, planning, research, development,
testing, deployment, maintenance, operation, etc.

S c r u m M a s t e r

The Scrum Master is in charge of helping everyone within the organization and Scrum
Team to understand Scrum theory and practice. He or she is responsible for estab­
lishing Scrum according to its definition in Scrum Guide.

The role of the Scrum Master is leader, not a manager, and his elemental duty
is to empower Scrum Team's effectiveness. His or her main accountabilities toward
the Scrum Team are coaching of the team members in cross-functionality and self-
management, guiding of the team on the way of increasing product value by incre­
ments that meet the Definition of Done, removing barriers that distract the team from
progress, facilitating and moderating of all Scrum events, ensuring that Scrum events
take place at the right moment, wi th the participation of the correct participants,
withing the defined timebox and they fulfill their purpose.

22

Scum Master Product Owner

Developers

Figure 1.9: S c r u m T e a m . (Source: Own Creation)

The services and activities that Scrum Master serves to the Product Owner can
be summarized as assistance to find techniques for effective Product Backlog man­
agement and definition of the Product Goal , improving awareness of Scrum Team
about the importance of clear and summary Product Backlog, facilitating collabora­
tion between stakeholders, and support for the application of the empiric planning
process.

The person in the role of Scrum Master has also his or her functions towards
the organization which are: coaching, training, and leading the organization during
the process of Scrum adoption, removing obstacles between the Scrum Team and
stakeholders, helping all interested people to understand and achieve empirical ap­
proach for complex work, and proposing and planning Scrum application among the
organization.

P r o d u c t O w n e r

The main responsibilities of the Product Owner role are maximization of the product
value and management of the Product Backlog. B y maximization of the product
value, it is meant an increment on the product after each Sprint, that is delivered
by Scrum Team. Management of the Product Backlog consists of several activities
beginning wi th the formulation and clear communication of the Product Goal , gener­
ation and straightforward communication of the Product Backlog and its items and
ending wi th arranging of the Product Backlog items and keeping the whole Product
Backlog transparent, accessible, visible, and properly understood.

23

Product Owner can delegate his or her accountabilities to someone from the Scrum
Team or execute them by himself, but at the end of the day, he is always one that is
responsible for it. The organization has to put trust in the Product Owner otherwise
he or she can not succeed. His or her purpose is to represent the needs of stakeholders
which he or she is transforming to the product by Product Backlog. Whoever wants
change, can achieve it only by convincing the Product Owner.

D e v e l o p e r s

Developers or better say Development Team, which consists of developers who are
working on the tasks from Product Backlog, and who are providing increment of
product value every Sprint. B y the term developers, Scrum Guide doesn't mean only
software developers, but all roles that taking part in product development such as
architects, designers, researchers, analysts, programmers, testers, and many others
according to the character of the product. The key qualities of the successful Develop­
ment Team are, as was previously mentioned in other paragraphs, self-organization,
and cross-functionality. Developers are always accountable for the creation of Sprint
Backlog, preservation of quality by following the Definition of Done, everyday adap­
tation of the plan according to the Sprint goal, and mutual responsibility as profes­
sionals.

S c r u m events

The cornerstone of all Scrum events (illustrated on figure 1.10) is Sprint. It de­
termines when all other events take a place. According to the definition of Scrum,
each event has a clearly defined timeframe, purpose, and list of participants. The
reasons why all scrum events exist in their form are the formal opportunity to inspect
and adapt Scrum artifacts as well as the provision of required transparency of the
development process.

T h e S p r i n t

Sprint is a timeframe that encapsulates all other Scrum events, and it is time-space
where all ideas are transformed into value. The duration of the Sprint is fixed,
usually one month or less, and each sprint starts immediately after the previous one
ended. W i t h the increasing length of the Sprint, there is a higher possibility that
the Sprint Goal becomes invalid, and the rate of complexity and risk might increase
as well. Thus, by shorter Sprints, Scrum Team can benefit in the reduction of risk
and wi th its associated costs. In the case of a Sprint goal become outdated, Sprint
can be canceled. But it is necessary to say that only the Product Owner has such
competence.

The sprint agenda consists of Sprint Planning, Dai ly Scrums, Sprint Review, and
Sprint Retrospective, which are all actions that lead to the achievement of the Prod­
uct Goal . B y performing listed activities development process benefits in better
predictability and adaption of the Product Goal . There are several rules that need
to be followed during the Sprints, in concrete - it is prohibited to make any changes

24

Daily Scrum

Planning

Figure 1.10: S c r u m events . (Source: Own Creation)

that could end up in the threatening of the Sprint Goal , quality, in general, cannot be
decreased, Product Backlog can be adjusted if the current situation requires it, and
wi th the increased knowledge there is the possibility to update Scope by negotiation
wi th the Product Owner.

S p r i n t P l a n n i n g

Sprint Planning is an event that launches each Sprint. The outcome of this event is
an artifact called the Sprint Backlog. Sprint Backlog consists of Sprint Goal , set of
Product Backlog items selected for particular Sprint, and plan of the item's delivery.
This output of the Sprint Planning is established by a collaboration of the whole
Scrum Team. Scrum Team has also the possibility to invite other attendees to this
event in order to receive their advice. The Product Owner has here responsibility to
assure that participants are prepared to discuss an important item from the Product
Backlog as well as the mapping to the Product Goal . In terms of the time duration
of the Sprint Planning, for the Sprint that lasts one month, Planning is l imited to a
maximum of eight hours. I the case of shorter Sprints this event usually takes less
time.

There are three topics that Sprint Planning has to resolve. The first one is 'Why
is this Sprint valuable?' Here, the Product Owner is in charge to provide a proposal
of product value increase for the current Sprint. Afterward, the whole Scrum Team
hooks up in order to formalize a Sprint Goal . Sprint Goal must provide the answer
why is this Sprint valuable to stakeholders.

25

The second topic focuses on 'What can be Done this Sprint?' The developers
take items from the Product Backlog which wi l l be included in the ongoing Sprint.
This is done by a discussion wi th the Product Owner and if the situation requires
it, refinement of the items in order to empower understanding and confidence can be
done by the Scrum team. Estimation of the amount of work that should be delivered
within the Sprint is no effortless activity. But how it comes from empiricism, wi th
more experiences gained during previous sprints, the team becomes more accurate
wi th their Sprint forecasts.

T h i r d and the last topic that needs to be discussed during this event is 'How
wi l l the chosen work get done?' Developers step by step take each of the previously
selected Product Backlog items and plan work that wi l l result in an increment that
meets the Definition of Done. A t this point, it is very usual that items are decomposed
into smaller tasks that should take one day or less. A l l this work is completely in
hands of the Developers.

D a i l y S c r u m

The main purpose of this short everyday meeting is to review progress on the way
to reaching the Sprint goal. If it is necessary, adjustment of Sprint Backlog can be
performed. Benefits of these events are impediments identification, communication
improvement, quick decision-making promotion, and the abolishment of the necessity
of other meetings. However, this event is not the only occasion when Developers can
update their plan. They are free to meet whenever it is needed, to discuss more
specifically about certain issues or about updating plans from the rest of the Sprint.

In order to decrease complexity Dai ly Scrum should occur every working day in
the same place at the same time. It shouldn't last more than fifteen minutes. The
presence of the Developers is mandatory and in case that the Scrum Master and
Product Owner are actively working on Sprint Backlog items, they are participating
as well. There is no strict definition of the event structure, necessary is just fact of
focusing on Sprint goal and formulation of a plan for the upcoming day. This builds
focus and upgrades Scrum Team's self-management ability.

S p r i n t R e v i e w

The Sprint Review is the penultimate event of the Sprint. During this event, the
Scrum Team is presenting an output of the work executed by the time of the current
Sprint to the important stakeholders. Accomplished progress towards the Sprint goal
is discussed and determination of plan adjustments is carried out. According to the
analysis, participants debate what to do next. Modification of the Product Backlog
is also possible here wi th the aim to meet new opportunities. It supposes to be more
a working session than just a passive presentation. Timeframe dedicated for such an
event is four hours, for the one-month long Sprints. For shorter Sprints timeframe is
naturally shorter.

26

S p r i n t R e t r o s p e c t i v e

As this is the event that is terminating the Sprint it is the right time for evaluation
of previous decisions and processes. The Scrum Team looks at aspects such as in­
dividuals, processes, interactions, the Definition of Done, etc. P lan how to increase
quality and effectiveness are discussed. Problems that appeared in previous weeks
are explored, methods of their mitigation and solving are evaluated and solutions for
removal of their origins are proposed. Proposals wi th the major impact are addressed
and may be transferred into items of the Sprint Backlog. For the one-month long
Sprint, it should take a maximum of four hours, and as usual, for shorter Sprints, the
duration is shorter.

S c r u m a r t i f ac t s

The objective of the existence of the Scrum Artifacts is the maximization of trans­
parency of principal information. Each artifact represents either work or value and
each contains commitment. The intention of commitments is a transparent represen­
tation of the state wi th which real progress can be compared.

P r o d u c t B a c k l o g

The Product Backlog is the one and only source of work for the Scrum Team. It is
an emergent and ordered list of required product improvements. Product Backlog
items that Scrum Team is able to complete within one Sprint are prepared for the
selection in a Sprint Planning. Backlog items are reaching this status by process of
refinement. Refinement is the transformation of Product Backlog items into smaller
and more rigorous items. This is a continuous activity that involves specification
of the further details, providing and extending of the description, ordering, and size
estimation. Developers who work on refinement activities are accountable for sizing
while they are served by Product Owner assistance for better understanding and
easier finding of compromises.

Commitment bundled wi th Product Backlog is named Product Goal . It is a long-
term target for the Scrum Team. Before taking another one, they have to either
fulfill the current one or abandon it. Product Goal represents the required state of
the product which the Scrum Team's plans should lead to. It is inside the Product
Backlog together with other items that specify which changes wi l l fulfill the Product
Goal .

S p r i n t B a c k l o g

The Sprint Backlog is a plan constructed by Developers for themselves. It is a plan
of delivering the Increment on the way follow Sprint Goal composed by a selected list
of Product Backlog items. It is providing a transparent, highly visible, and real-time
picture of the Developer's work for current Sprint. Its content can be updated during
the Sprint wi th new knowledge learned. It should have enough explanation value
that the Scrum Team can use for inspection of progress during Dai ly Scrums.

27

The Sprint Goal is all Developer's commitment to the Sprint Backlog. It is a single
objective that Developers are aiming at while they are working on Sprint Backlog
items. It is formulated during the Sprint Planning and afterward added into Sprint
Backlog. A l l Developers should keep it in their minds throughout the Sprint, and
if they feel their work is continuing by the different path that they expected, they
are welcomed to negotiate wi th the Product Owner about the scope of the Sprint
Backlog. This negotiation can conclude in the adjustment of the Sprint Backlog but
can't affect the Spring Goal . This definite goal helps Scrum Team to work together
on one common objective rather than on separate initiatives.

I n c r e m e n t

A n Increment is a step forward on the way to the Product Goal . It must increase
product value and work smoothly along wi th all previous Increments. Not all changes
can be considered as Increment, only those which provide additional value by their
usability. During the Sprint several increments can be incorporated into the product.
Newly implemented ones are presented at the Sprint Review. However, the Sprint
Review should not be the onliest point of Increment delivery. Some situations or
stakeholders may request earlier delivery of demanded value. The rule that is used for
evaluation of executed work, and which determines if provided work can be considered
as Increment is called the Definition of Done.

Definition of Done is a detailed and formally formulated set of qualities or state
of the product, which need to be entered in order to reckon it as an Increment. It
is a tool used for sharing a transparent and understandable view of the work that
was completed. If Product Backlog items don't meet this definition, they cannot be
released or presented on the Sprint Review. In this case, they have to return to the
Product Backlog where they wi l l wait for their selection in further Sprint Planning.
Definition of Done must be perceived as a standard wi thin the organization or at least
standard for the product. This standard represents the minimum that Developers
must reach. Developers must subordinate to the Definition of Done and if there are
multiple Scrum Teams cooperating on a single product, they must together define
and follow the same Definition of Done.

1.4 R A C I matrix
This subsection is based on information located in the source [9]. R A C I matrix is a
tool for responsibility assignment, which provides a simple and clear way how to map
every task of the project and define which role has what specific type of responsibility
towards the task. Usually, it has a form of a table in which rows are dedicated to
the tasks of the process and columns are holding the information about the roles
of the process. Each cell then represents the type of responsibility of a concrete
role in a particular task. Acronym R A C I stands for four types of responsibilities.
Starting wi th the ' R ' which means Responsible, and which is used for roles that
work on the task and which complete the task. There can be several roles that are
labelled wi th 'R'. Letter ' A ' means Accountable, and the person to who belongs this

28

letter is the one who approves that the task objective is completed. There should
be only one Accountable person per task. ' C stands for Consulted and people in
this position are communicating wi th the Responsible during the task execution and
their opinions are sought. The last letter T belongs to the roles that need updates
about the task progress and these people are only informed about the task completion
without contributing to the task.

29

Chapter 2

Analysis of contemporary situation

The following chapter contains an analysis of the contemporary situation of the ob­
served process of software development. The purpose of the analysis is to map the
development process and assign all activities that process incorporates to the partic­
ular roles which are executing them. The analysis also focuses on the investigation
of events and artifacts of the process and their relation to the roles of the process. In
concrete, the chapter starts wi th the introduction of the company 2.1, which includes
a description of the organizational structure of the company. The next section 2.2
is dedicated to the project introduction, which explains what exactly is perceived
as a project from the perspective of the previously introduced company. This brief
description of the project illustrates what is the product and what activities are
executed during the product development. Then, wi th the previously provided clari­
fication of the product, the process of the product development is analysed. This is
done within the longest section of this chapter 2.3. This section detailly describes the
whole process of product development and decomposes it into several stages. Each
stage is characterized in a separate subsection within which the ingress and egress
of the stage are listed as well as activities that the stage incorporates. Activit ies are
illustrated wi th the focus on roles that execute them. This section is followed by the
section 2.4 which is introducing four different roles that appear in the process. The
end of the section contains all responsibilities that specific roles have in the process.
The penultimate section of this chapter 2.5 contains characteristics of five events
and two artifacts of the process. The whole chapter is closed by section 2.6 that is
summarizing provided analysis.

2.1 Company Introduction
Company X X X , which one of the projects is subject of this thesis, is the branch office
of its mother-company Y Y Y . The headquarters of the whole enterprise is located
in the Nordic area. Besides branch X X X located in South Moravian city Brno,
there are three more branch offices spread around the Czech Republic. X X X was
established as a second one, and by the number of employees, it is also the second
biggest among their sister's companies situated in the Czech Republic. The company

30

Y Y Y is providing a variety of software solutions for financial, healthcare, automotive,
energetic, retail, telecommunication, and many more industries.

In terms of numbers, the company employs around 24 000 professionals globally.
Its annual turnover is estimated at approximately 3 bil l ion euro and a major part
of the revenue comes from Nordic countries. It provides its services to thousands of
customers in more than 90 countries of the world. The history of the company began
in the second half of the twentieth century. During many years of its existence,
the company undertook several changes of the name as well as fusions wi th other
enterprises. The branch located in Brno was found in 2015 and its most recent
annual report indicates a turnover of 195 mil l ion Czech crowns and 135 employees.

Organizational structure
The simplified organizational structure of the whole corporate Y Y Y is illustrated in
figure 2.1. The root position within the chart is the C E O which is the highest position
of the whole organization. If we look one step lower, we can see that organization
is on this level divided into several areas. The scope of each area is determined by
a combination of geographical location, field specification, or industry orientation.
A t this stage, the enterprise is a compound of more than ten parts from which each
controls a different area and has its own head representative.

Each area is further divided into divisions. Branch office X X X represents one
separate division. O n the chart 2.1 borders of the division are marked by an or­
ange dashed line. A s it is illustrated, the whole Brno division has its own Program
manager. The program manager covers the role of the division leader and serves the
role of the contact point between division and corporate's top management. He is
responsible for all strategic decisions of the division. Also, his task is to stand for the
corporate values and to drive the division on the right path towards the corporate's
business goals. Not each division has to follow the hierarchy applied in Brno, and
substructures and roles of other divisions can diverse according to many factors.

Right below the Program manager, there are Line managers. A s this thesis focuses
on a concrete project, which has only one Line manager, information about a certain
number of Line managers wi thin the described division is not necessary. Also, there
are other departments and external or internal positions that complete the division,
such as Human resources, Accounting, etc. But since they are not taking part in the
product development process, their presence in the chart would result in an unwanted
increase of its complexity and decrease of its explanation value. The line manager
of our particular project is supervising four teams. Each team consists of up to ten
members. Team members have a wide scale of competencies such as development,
testing, architecture design, continuous integration, computer networking, and so on.
Level of experience and time spent on the project also diverse among the people.
Each team sits together in a separate office, but some teams have members that work
permanently remotely.

31

CEO

Head of ABC Other areas

Brno divison
Program manager

Line manager

1
I Other clivisons

Other line managers

Figure 2.1: S i m p l i f i e d o r g a n i z a t i o n a l s t r u c t u r e w i t h focus o n B r n o d i v i s i o n .
(Source: Own Creation)

2.2 Project introduction
In the beginning, it is important to clarify the definition of the project, and what
is meant by the designation project wi thin this thesis. The company Y Y Y creates
one product within several of its branch offices. Thanks to the size, complexity,
and number of customers of the product, there are hundreds of people employed in
the process of product creation and delivery. Each branch office, or in other words
division, takes care of certain subsystem or logical module determined for example by
the functionality. For instance, we can name divisions dedicated to the development of
G U I (Graphical user interface), development of the hardware elements, development
of module for user data network, a module for control system data, and others.
Besides the divisions that are directly participating in the development process of
the product, there are also divisions that are in charge of continuous integration
system, acceptance testing, or technical documentation which is served to customers.

There is one separate group of people that is called the System council. Members
of this group are professionals in several domains that have enough experience and
competencies to officiate about the development of functionality of the whole product.
This is the main authority that decides what functionality wi l l be newly introduced
to the product.

B y the project (to which S C R U M wi l l be applied), it is meant the process of the
development of module for the user data network. In concrete, the bigger part of the
module, because there are only four teams located in Brno out of six teams that are

32

participating in the development of this module. Another two teams are completely
separated from the teams in Brno, whatever we look at the physical location of
the teams, management, position within the organizational structure, ownership of
hardware devices used for development and testing as well as responsibilities for
specific functionality of the module and its subsystems. The thing that bounds al l
six teams together is the shared source code of the module, communal responsibility
for the module as one unit,and common System council.

Indeed, four teams located in the Brno division are taking part in the development
of a single module. The source code of this module is shared among two other teams,
which has however clearly defined parts of the module, which they own and take
responsibility of. If the implementation of some functionality requires changes in the
part of the code that belongs to teams outside the Brno division and vice versa, minor
changes can perform someone from Brno's teams. In this k ind of situation, it is usual
that someone from the team, which is responsible for such code, provides code review
and participates in the approval of the change. If a situation requires more significant
changes, the request is created in form of a task that is addressed to the accountable
team.

Also, the module must be compatible wi th other modules within the system and
at the same time, it has to be consistent wi th the hardware components that it is or­
chestrating. Compatibi l i ty wi th other modules and hardware elements and therefore
functionality of the whole product as one complete system is provided by Continu­
ous Integration system, together with teams which are performing acceptance testing
and simulation of real customer use cases. Currently, the product is already deployed
among multiple customers. Therefore, another level of the testing and source of is­
sue reports is provided by customers. Impulses for the creation of new functionality
comes out from the System council, product users, customers, the internal necessity
to broaden or improve a current functionality, following of market trends, business
and economic suggestions, the existence of the new technologies, etc. Al ike , a stim­
ulus to redesign or extend current implementation often comes from the developers
which have the closest distance from the project.

The development team along with the product source code provides also test
coverage of the implemented code. Testing of the module as well as the whole product
is performed by multiple stages. Each stage validates product quality from a different
point of view and is performed at a certain moment. Starting wi th unit tests, the
lowest level of the testing that verifies if particular methods and classes are providing
outputs as they should as well as if they are able to deal wi th exceptions and incorrect
user inputs. Uni t tests are designed and implemented by each development team at
the same time when the source code of the functionality is written. They are part
of the product source code and their execution is triggered whenever the source code
is being built. The second type of tests that are used within this project is named
Integration tests. Word integration in their indication stands for the integration of the
features between each other. A single feature can consist of several classes and module
can carry a theoretically unlimited number of them. Thus, integration tests are the
tool that checks if features inside the module can cooperate. They are part of the
source code of each module as unit tests. Another difference, besides their purpose,

33

is that they are segregated from other source code and they are executed by special
scripts, which is triggered after the source code is pushed to the shared repository.
The third level of the test is the system test, which verifies the functionality of the
whole product. It means that they test all modules together along with the hardware
components of the product. In some cases, hardware components are simulated by
virtual machines. From the version control system and source code point of view, they
are in an isolated repository. W i t h i n the testing process, they use hardware resources
dedicated for these purposes wi th a combination of the reservation system for them.
Besides that, they are using the external testing framework, an automated system
for reporting the test results, and continuous integration machinery. A l l elements
mentioned in the previous sentence are products delivered by other teams of the
corporate or by external subcontractors. Source code of the tests is again developed
by the development team. Execution of these tests is performed periodically. Their
execution is orchestrated by the continuous integration system. If the number of new
commits within the version control system reaches a specified number, repositories of
all modules are built, bundled, deployed to the testing environment, and test cases are
executed. Afterward, results are automatically reported and in case of the successful
test results, a new version of the product is stored and forwarded to the last stage of
testing. This test execution triggered by a number of commits operates only during
the working days when developers are delivering their changes. Since the product
is huge it would take a long time to test the whole functionality thus only the most
critical parts are tested by this method. During the night-time and the weekends,
the whole machinery provides the testing of a full scale of test cases, using the same
procedure as daily testing. The fourth and the highest level of testing is acceptance
testing. Provided by the external teams, it tests products by real test cases wi th more
complex hardware topologies and by the presence of various software and network
traffic.

Besides the development of the product functionality, an important part of the
project is the creation of the technical documentation. There are several types of
documentation included in this project. They diverse from each other by form, level
of importance, and mainly by the addressee for which are wrought. The first type of
documentation is documentation on the level of source code. This includes documen­
tation of the methods and classes and comments inside the source code. There are no
huge requirements for the form and quality of this documentation, but it has a key
role in terms of product quality and sustainability. The second sort of documentation
is A P I (Application Programming Interface) documentation of the module. It is gen­
erated by an automated tool from the source code, thus the creator must follow strict
syntactic rules. This documentation is used mostly by other teams, which are using
the module's A P I for communication wi th other modules. It is also used within the
process of testing, whatever it is manual testing or creation of the automated tests.
Authors of both previously mentioned types of documentation are members of the
development teams. The last type of documentation, which is visible by the end-users
of the product is customer documentation of the product. It detailly describes the
functionality of all product features and offers instruction on how to configure, use,
or troubleshoot the system. Because this is the source of the technical information

34

provided directly to the customers, there is a big emphasis on the form and content.
In an account of this, there is an external team, which based on the inputs provided
by the development team members, creates documentation that follows all standards
and policies.

2.3 Process of the product development
Process of the product development (shown on the E P C diagram 2.2) within the
analysed project stands for the process of the development of module for the user
data network. Several roles are taking part in this process, and their responsibilities
and functions are described in the next section 2.4 of this chapter. The methodology
used within this process comes from S C R U M .

Figure 2.2: E P C d i a g r a m o f t he process o f p r o d u c t d e v e l o p m e n t . (Source:
Own Creation)

The whole process starts wi th the analysis of the change requests. There are mul­
tiple types of requests that are originating from different originators. According to
the type of the request and its content, the request is analysed and then a decision

35

of its approval or rejection is made. In case of rejection, this statement is provided
to the originator of the request, and the existence of the request inside the process
is fulfilled and terminated. If the conclusion of the analysis is the approval of the
request, the next stop is solution design. This design is based on the information
provided in the request and outcomes of the previously done analysis. If there is
no possibility to transform the request to a thinkable design, the request is rejected.
Again , the originator of the request is informed about this fact, and then the request
considered as served. In the situation when the solution design ends up successfully,
the process continues wi th the implementation. During the implementation phase,
solution design is transformed into the source code. In order to verify newly cre­
ated implementation as well as keep previous functionality in a consistent state, the
development process incorporates a stage of testing. If there is any issue detected
by the testing, a proposal of the solution and fix of the implementation is provided.
If testing confirms the correct functionality of the implementation, the change can
be deployed. Deployment wi thin this process stands for the delivery of the change
represented by the inclusion of the implementation into the shared project repository.

2.3.1 Change request
Inputs of the process of the product development are change requests. In concrete,
for the observed process request for changes of module for the user data network. A
change request can be the request for the creation of new functionality or modification
of existing functionality. W i t h i n this project, requests are generated by different
sources and have diverse forms and levels of detail.

The first type of request is requests for the new feature implementation. They
come out from System council. The form of such request has is the text document,
which has a strictly defined structure and detailly describes how, and what should
feature provide. Creators of these documents are system architects. They obtain
assignments from the S Y S T E M C O U N C I L within which they do research, in order
to find out whether the implementation of the feature is possible, and how.

Another type of request that enters the process is a request for a customer's issue
correction. There are dedicated Customer support teams, which are receiving requests
from customers and transforming them into Trouble Report (further in the text T R)
records inside the J I R A system (software for planning, tracking, and releasing of the
software products [6]). Development teams then receive a report of the issue in form
of the T R record wi thin the J I R A . This record usually contains issue description,
version of the customer's system deployment, characterization of the software and
hardware configuration, and log records. Alternatively, a snapshot of the database
can be attached to the T R . This kind of T R has always dedicated member of the
Customer support teams, which is responsible for the T R and provides and further
communication wi th the customer. Content of such T R s usually incorporates al l
necessary information. In case of any additional information is needed developers
can ask using the comment section inside the T R record and the responsible support
specialist wi l l contact the customer. Customer's T R has generally the highest priority.

36

The thi rd type of T R s is errors that come from testing. In case of an issue found
on the stage of Acceptance testing, the team which is charring out such testing wi l l
create the T R record ad fulfill all needed data related to the issue. When the issue
is observed on the level of System testing, there are two possible scenarios. Scenario
number one, the issue appeared in the tests outside of the project scope. The finder
of the issue must create a T R and forward it to the team responsible for the concrete
area or to the Scrum Master, or Product Owner. Scenario number two, the issue
shows up in test suites owned by teams from the observed project. Here finder of the
issue can either remove the issue immediately or in case of a more complicated issue
he can also create the T R . The possibility of immediate issue removal is thanks to
the product complexity very rare.

The last type of change request is a request originating from the development team
members. It can be for example proposal for code refactoring or redesign. The form
of this request is usually a verbal proposition presented during the team meeting.

2.3.2 Analysis of the change requests
Each change request is analysed during the described process. The goal is an analysis
of the request relevance from the perspective of added value for the customer, scope
of the project, and current project priorities. It is also important to consider if the
change fits into the product's concept and its functionality. The analysis is performed
by the Product Owners, Scrum Masters as well as Developers. The possible results of
the analysis are rejection or approval of the request followed by passing the request
to the stage of solution design.

In the case of the new feature implementation request, there is no need for any
extensive analysis. The necessary analysis was performed by the System architect
yet before the delivery of the request to the development team. It is only needed to
assign the feature development to one of the teams. This task belongs to the pair
of Product Owners, which are aware of the team's free capacity. During the time
of making a decision, they can discuss it wi th the Scrum Masters. But at the end
of the day, the final decision is completely in their hands and the chosen team must
accept the request. In practice, there are no situations when the Product Owner or
the development teams refused such kind of request.

Another type of request that requires analysis is the customer's T R s . The fact
that the concrete T R was delivered to the teams within the observed project is the re­
sult of Customer support team analysis. So, after the development team receives the
customer's T R , the first question that needs to be answered is, which team is respon­
sible for the particular area. This primordial analysis is done by the Product Owner.
Firstly, he verifies if the issue belongs to the functionality of the module. Then he
checks if the customer is really facing the product issue, or he just wrongly inter­
preted the product functionality. In case the issue is t ruly located within the module
that the development teams take responsibility for, the Product owner assigns T R to
the concrete team. In case of the issue comes from a different module, the Product
Owner passes T R to the correct addressee. In case of the incorrect interpretation of
the functionality, the Product Owner provides an answer to the originator of the T R .

37

In the response, he usually provides an explanation of the functionality along wi th a
link to the sections of the Customer documentation which are describing particular
functionality. The second step of the customer's T R analysis is a closes analysis of
the product issue. After the Product Owner assigns T R to the development team,
one of the Developers or the Scrum Master can assign the T R to himself and can start
to analyse provided artifacts. Such analysis consists of searching for errors using log
records, source code, a database snapshot, and comparing wi th the documentation.
If it is necessary for analysis, the team member that performs the analysis can ask
for further data using Customer support. The outcome of this second step is finding
an error inside the product source code or inconsistency between database and hard­
ware configuration. Also, the conclusion can be the incorrect interpretation of the
functionality, which wasn't revealed by the Product Owner. In this team member
has to follow the same procedure as during the first step. In case of inconsistency,
the team should ideally search for the reason for the inconsistency and resolve it.
Due to the time-consuming characteristic of such an approach, in practice, the team
usually just resolves the inconsistency by a manual intervention of the database or
the configuration. Thus, customer's T R s can be either rejected, in case there is no
implementation issue. Also, they can be redirected to another, responsible team.
Otherwise, customer's T R s can be accepted and rigorously analysed for purposes of
solution design.

When it comes to T R s originating from testing, if the error was detected by the
Acceptance test team, they create T R containing all necessary info and pass it to the
Product Owner. Product Owner then continues as in the case of the customer's T R .
If the issue was detected on the System testing level, a member of the development
team accountable for monitoring the test suites does analysis. In the beginning, he
verifies if the observed issue belongs to the scope that his team is responsible for. If
the issue does not come from the team scope, he creates T R which then forwards
to the Product Owner. Contrariwise, if the issue belongs to the team's scope, the
developer has to continue with a more detailed analysis. If the observed issue has
a t r ivial character, the developer should fix it. If the fix of the issue requires more
time, the developer must create T R . In addition to data that is presented in all types
of the T R s , he joins the results of his analysis. This kind of T R is then either passed
to the Product Owner or if the developer has a free capacity, he can continue wi th
the design of the solution. There is one special type of issue, that can be detected
during the System testing. It is called an Environment issue. It can be an issue
wi th the hardware in the testing lab, the error of the testing framework, or whatever
issue that has no connection with the product. In that case, if it is a removable
hardware issue, the developer should resolve it by himself. If it is a hardware issue
that is not removable, the developer contacts the Lab support team. In case of
any other Environment issues developer contacts teams that have responsibilities for
those areas. Thus, requests in form of T R s originating from testing can be rejected,
redirected to the other team, or accepted and analysed.

The goal of the request originating from the development team members is usu­
ally refactoring or redesign the existing implementation. Developers can come wi th
requests whenever they see an opportunity. For instance, during the Planning, during

38

other meetings, or they can address them in a private way directly to the Product
Owner. Form of this k ind of request usually texts or verbal. If the request represents
less time-consuming activity, it can be approved by the Product Owner. In case of
more significant change, which needs more time and more involved employees, it has
to be approved by the System council. The main criteria used for evaluating the
requests is an added value for the customer. Most of the refactoring and redesign
aims on increasing of sustainability of the product source code. However, from the
short-term point of view, this does not bring added value for the customer and there­
fore the majority of this k ind of request is rejected. When the request was approved,
the procedure is similar to the new feature implementation request. The only differ­
ence is that analysis is performed by the originator of the request, not by the system
architect.

2.3.3 Solution design
Roles responsible for the creation of the solution design within the described process
are Developers or Scrum Master. Solution design is based on information gathered
during the analysis. A t the same time, the design has to be in accordance wi th
module architecture and product architecture which both have strongly established
database and transaction mechanisms. During the process of the design creation
its author consulates his design and obtains needed information from other team
members, Product Owners, System architects, or other teams which superintend
other modules. The final decision for approval of the design is in hands of the Product
Owners. Currently, there are two employees in the position of Product Owner on this
project, and both miss advanced experience in the domain of programming. This
means that they judge design only from the perspective of functionality but not from
an implementation point of view. This can result in a lack of focus on the quality of
the implementation.

In process of solution design for the new features, the author is creating the
design based on the document delivered within the change request. This document
was prepared by the System architect, which summarizes all technical, technological,
and also conceptual aspects. Thus, the document incorporates a description of the
feature functionality, a list of selected technologies, tools, and protocols. Also, use
cases of the feature cannot be missed in the document. Therefore, in pursuance of
the described document, the product's source code, and the technical documentation
of the product author bui ld up the design. The design does not have predefined
content. Usually, it consists of text description and graphical elements such as Ent i ty
Relationship Diagram, Class diagram, and so on. Design is stored on the project's
Confluence web pages (workspace for sharing the knowledge [5]). The part of the
design creation process is also the formation of the J I R A records such as User Stories
and Tasks. This brings a need for the decomposition of the solution into multiple
subtasks. The advantage of the decomposition is the possibility to divide work among
more developers which should result in earlier delivery of the implementation as well
as the better spreading of the knowledge about the feature around the team members.
Besides that, it also makes planning and tracing of the progress easier. The a im is

39

to formulate tasks in a way that their implementation should take a maximum of
one working day. Achieving this is of course very difficult for example because of
the different amount of knowledge and experiences of the team members across the
domains. W i t h i n the delivery of the new feature, there is bundled delivery of the test
coverage. Responsible for the test design can be either Developer which is designing
the feature implementation, or another team member which has wider experiences
wi th testing. The second option is more often taken into practice. Different level of
the testing requires the different design. For Uni t tests, the design is never provided.
In the case of System tests and Integration tests, the design is conducted in form of
the J I R A tasks. Task usually contains only text description. In the design of the
System tests, there is one additional characteristic that needs to be established. This
crucial attribute is the priority that is quantified according to the importance of the
feature within the product. Based on the priority author of the design must choose
a location where the new test wi l l be placed in the Continuous integration system.
His decision is affected also by the availability of hardware resources in testing labs.
The majority of the attempt to create a solution design for the new feature ends as a
success. This is caused mainly by the fact that they are based on the well-prepared
analysis from the System architects. The architect usually reveals all technical and
technological limitations. Thus, the only factor that is threatening design is the need
for consensus wi th product architecture and real implementation.

Designing the solutions for customer's issues and issues originating from the test­
ing is identical. These kinds of designs do not have a defined structure. The impor­
tance is put into the fastest delivery of the solution, which means that in practice
team members only discuss the solution and afterward implement it into the source
code. The absence of any solution documentation results in a non-systematic ap­
proach towards the product fixes. This affects the quality of the source code and at
the same time possibility to reuse verified solutions by the other team members is
disappearing. Usually, the developer prepares his private solution design in a form
that fits him. He discusses this solution verbally wi th the Product Owner or other De­
veloper. Afterward, he transforms the solution into the implementation without any
further sharing of the solution among the communication canals of the team. In some
cases, it is impossible to create a solution design. For example, when developers see a
way how to fix the error, but by fixing such error other module functionality would be
broken. For this k ind of situation, there is a section 'Limitations and Workarounds'
within the Customer documentation. When the developer comes to the conclusion
that it is impossible to design implementation that would solve the issue, he docu­
ments a particular use case. Then he bundles the error case description along wi th
the formulation of the manual procedure which resolves the error and joins it into the
documentation. This Is afterward provided to the originator of the T R as a solution
to his problem. If the developer designs solution for the customer's T R , he has to
prepare a custom testing script. If the solution of the T R includes adjustments to
the customer's configuration, it is important to prepare a proposal of manual testing
scenario and a proposal of the deployment for the customer's environment.

When the team has to create a solution design for the request originating in the
team itself, the originator of the request usually does it by himself. In case of complex

40

change, the process of the design is similar to the designing of the new features. When
the change is simple, the originator only creates a task or set of tasks that contain
the formulation of the solution. According to the fact that this type of request is
created when developers see the potential for improvement by the code refactoring
or redesign, designing this kind of solution is always possible.

2.3.4 Implementation
The ingress of the implementation stage is solution design. During the implementa­
tion, solution design is transformed from the theoretical level directly into the source
code of the module. Before the implementation, a particular developer picks the task,
assigns its J I R A representation to himself, and sets the task status to 'In Progress'.
This wi l l tell all team members and other interested stakeholders what the task state
is. In addition to the task status, everyone is allowed to comment on such a task
using its J I R A record. Afterward, a developer can start wi th source code creation.

During the production, or modification of the source code should all developers
follow commonly used patterns and best practices. The project has its own definition
of code formatting, logging, and commenting. However, these definitions are not
gathered in the same place and some of the developers don't know about them.
In ordered to control adhering to the rules, maintaining the code quality, as well
as verification the correctness of delivered changes, there is a code review system.
This code review system is used around the whole product. For these purposes, the
company uses the version control system Gi t (opensource version control system [14]).
After creation or modification of the source code author of the change creates a so-
called commit (record within the Gi t system, which represents and clearly indicates
the change). Then, commit which contains also a text description of the change, and
a link to the J I R A task is sent to the shared repository. There is one additional
step after which the wi l l be commit includes in the repository. This step is code
review. For this purpose, the company uses a system named Gerrit (a system serving
code review for Gi t repositories, which provides review, approval, commenting of the
commits, and so on [8]). Commit appears in the Gerrit system after the developer
posts them using Gi t . Here everyone with granted rights can see, review, approve
or disapprove the commit and inform the author about certain irregularities using
the comment section. Commit needs to be approved at least by one person except
for his author, to be applied into the product repository. A l l developers are notified
by email whenever someone posted a commit that contains changes to the source
code, that they are authors of. In the ideal case, after receiving a notification should
all developers provide the code review. Because as an author of the previous code
they have sufficient knowledge and competencies to evaluate the correctness of new
change. B y taking into account the size of the product and the number of the involved
developers, the average developer gets dozens of notifications during the week. This
overloading by the notification causes their ignorance. In practice, the author of the
commit usually asks for the review of his teammate by the chat. However, addressed
teammates do not have to have the required competencies. This can cause a delay in
the delivery of the commit by the protracted code review process. In a worse case,

41

a teammate can approve the commit without verification of its correctness what can
result in decreasing in source code quality and product error introduction.

Besides the implementation of the product functionality, this phase incorporates
also the creation of the Uni t tests and automated System tests. For the Uni t tests
source code developers use a special library. This library provides automatic execution
and evaluation of the tests during the source code compilation. In the case of the
System tests in addition to their implementation, it is also required to ensure their
execution by their inclusion into the Continuous integration system described in the
previous section 2.2. Also, System tests need to be recorded to the web application
which is a unified tool for gathering and analysing tests wi thin the whole product.

Another not less important part of the implementation phase is the writ ing of
the technical documentation. For this purpose, project members are not used to
creating J I R A tasks, but the creation of the documentation is an implicit part of
the implementation process. Developer s are accountable for the content part of
the documentation. A more detailed explanation of the documentation types, their
form, content, and creation process is placed in the ending paragraph of the previous
section 2.2.

2.3.5 Testing
Testing is the last step before the inclusion of new implementation into the shared
repository and therefore into the module source code. W i t h i n the observed product,
testing is performed on several levels. A more detailed description of the certain
testing levels is summarized in the section that contains the introduction of the
project 2.2. Only certain types of tests are used for verification of the implementation
before its inclusion into the product. In concrete, Uni t tests and Integration tests.
After the commit is sent to the shared repository, the building of the modules is
automatically triggered, which also includes the execution of the Uni t tests. After
successful verification of the change by the unit tests, next in the row are Integration
tests. Their execution is also handled automatically. Besides this, there are scripts
that validate a certain set of formatting rules and at the same time source code is
analysed by the SonarQube tool (a tool for the static analysis of the source code [2]).
In case that any of mentioned mechanisms evaluates commit as invalid, its author
has to provides a solution according to the verification process result. Otherwise, if
the commit is approved and reviewed by another team member, it can be embedded
into a shared repository.

Besides the automated testing orchestrated by the Continues integration system,
teams have in hand hardware resources as well as vir tual machines, using which they
can perform manual testing. Also, they can use those resources for the execution of
the System tests. This kind of testing is usually more time-consuming, because of the
necessity to configure hardware, or vir tual devices. Though, this testing has a key
value in order to verify the correct functionality of the module within the product.
This higher-level testing is usually performed by the author of the implementation,
Scrum Master, or another team member which has free capacity.

42

If the team needs to test the script for correction of the customer T R , testing is
performed manually according to the solution design. Firstly, a configuration similar
to the customer's is prepared on the testing environment, and afterward function of
the script is verified. This special type of testing is always performed by someone
who is not the author of the script.

2.3.6 Deployment
From the analysed process perspective, deployment stands for the inclusion of the
commit, that holds implementation, in the shared repository. After delivery of the
commit, the change request is considered terminated. If further testing discovers
any error of the delivered implementation, correction of this issue is perceived as a
new change request that enters the development process as a T R . Delivery of the
implementation directly to the customers takes place in certain time intervals, which
usually last one quarter or few months. These deliveries are named Releases. Re­
lease always includes multiple product changes, improvements, and new functionality.
There are dedicated teams that are managing releases its delivery to the customers.

Delivery of the scripts for fixing of customer's T R s is performed in a special way.
Along with the script, the team also delivers a detailly manual for script usage.
Delivery is done using online sessions, with the attendance of a responsible team
member, a technician from the customer's side, and the Customer's support member.
A technician is following the manual and a responsible developer is there to help in
case of any unexpected issue.

2.4 Roles and responsibilities of the process
Since the company is using a methodology based on the S C R U M , roles within the
process have the same titles as S C R U M roles. Also, some of their responsibilities
can overlap wi th the S C R U M definition. The team structure is illustrated in the pic­
ture below 2.3. There are four Development teams participating in the development
process described in the previous section 2.3. Each team consists of 7-10 Developers
including one Scrum master per each team, and one System Architect for the whole
project. Also, there are two persons in the role of the Product Owners. They split
the responsibilities of all four teams between each other's, so each is working and
taking responsibility for his two teams. There are also different stakeholders which
are serving input requests to the development process and at the end of the process,
they are the customers of the process who are benefiting from the product increment.

2.4.1 Scrum Master
Each of the four teams from the observed project has his own Scrum Masters. People
that represent this position were previously in the position of Developer. When
previous Scrum Masters left their teams, management offered these positions to the
Developers which had the biggest knowledge of the product. If addressed Developer

43

Figure 2.3: T h e t e a m s t r u c t u r e o f t he p ro jec t . (Source: Own Creation)

agreed with the offer, he had to take an official course in order to get the certificate
of the Scrum Master.

After the team member becomes a Scrum Master, he does not lose his previous
responsibilities. He continues wi th all duties that Developers have. He has to work
on the usual Developer's tasks which means he is analysing the incoming request,
preparing solution designs, implementing the source code, test the new versions of the
module, and other activities included within the development process. Besides that,
as a person which the broadest knowledge of the product he is a person that makes
decisions in terms of technical questions. For example, when there is the possibility
to implement one feature using two different design patterns, which both have their
advantages and disadvantages, Scrum Master decides which approach going to be
used. W h i t his knowledge he is also in charge of supporting Developers by providing
help in the technical part of the task solving. A n d generally, he is sharing his product-
related knowledge whenever the situation requires that. A s an example can be used
the arrival of a new team member. I this k ind of situation Scrum Master is providing
all technical information and explanations when it is needed.

O n top of the responsibilities related to the technical part of the development,
Scrum Master stands also in the role of a team leader and manager. He is managing
the team and also coaching and motivating team members. He takes responsibility

44

for the team tasks. He controls the fulfilment of the tasks and performance of the
team members. He is administrating the team's backlog and divides tasks among the
Developers. When the new T R arrives, he is one that chooses Developer to which wi l l
be the T R assigned. That means he must be aware of the team member's capacity.
Reporting and communication of the team progress is another key responsibility that
Scrum Master has. Also, he is organizing and moderating all events such as planning,
daily meetings, and retrospectives.

2.4.2 Product Owner
Both Product Owners were previously in the role of the Scrum Masters. This implies
that they have the deepest knowledge about the product out of the Development
team and huge experience wi th the development process. Before they were promoted
to the role of Product Owners, they had to pass an official course at the end of which
they were provided wi th the certificate.

The Product Owner's responsibilities start at the beginning of the product devel­
opment process where he is in charge of reception, analysis, and addressing of the
incoming request. A s it was described in the section documenting the development
process 2.3, the person in this role has to provide a preliminary analysis of the task
in order to find out if the task was addressed to the correct teams. If so, he assigns
the newly received requests to the accountable team. If he comes to the conclusion
that the task should belong to another area of the product, he addresses the task to
the Product Owner of them that he believes is right. If he finds out that the task
is based on the misunderstanding of the product functionality by the end-user, he
informs the originator about the task rejection along wi th an explanation on how
to solve his issue. If someone from the development team comes wi th his own re­
quirement Product Owner can evaluate it and subsequently reject or approve it. If
the requirement stands for significant change, he presents this request to the System
council which is the authority wi th the right to approve such request. In the phase
of the solution design, the Product Owner is appraising designs and, in situations,
where there are more possible solutions, he has to make the decision which option wi l l
be preferred. Sometimes he is also creating the design solutions. A s an experienced
part of the team, he also prepares test scenarios from time to time. Occasionally, he
is performing an analysis of the new functionality requests, which is originally the
System Architect 's job. When the less experienced Developers have some struggles
or need advice wi th solving technical tasks they usually ask h im for help.

A person in this role is the keeper of product-related knowledge. He gathers
news about the product coming from all other areas outside the module and he is
constantly spreading it around the teams. He is managing Product Backlog items
as well as Sprint Backlog items. When it comes to planning, he always comes wi th
a list of tasks that should be covered in the upcoming Sprint. This means he has
to be aware of the team capacity, which he is reaching by communication wi th the
team members and mostly with the Scrum Master. Also, he is monitoring team
performance. He also works as a communication channel between stakeholders and

45

the Development team. Therefore, he is responsible for fulfilling the Sprint Backlog
and Product Backlog in front of the stakeholders.

2.4.3 Developers
There are four Development teams cooperating on the observed project. Each of the
teams consists of 7-10 Developers. Most of the Developers are located in the same
office, but each team has at least one member that works permanently remotely. One
of the characteristics of the teams is that they are cross-functional. That means when
we perceive a team as a single unit, its knowledge covers a variety of areas and it
is able to cover al l tasks that the software development process includes. Each of
the team members has at least basic knowledge of all particular development process
operations, and according to his specialization and experience, he is profiled on a
specific part of the process.

Developers represent the heart of the whole development because they are respon­
sible for fulfilment of the Product Backlog tasks and therefore, they are real creators
of the product. Their daily business incorporates working on the tasks from the
Sprint Backlog. They analyse requests, conduct solution designs, write the source
code, formulate documentation, execute manual testing, and control or extend au­
tomated testing. Besides these crucial activities, they are communicating wi th the
task originators, track their progress within the J I R A system, and help each other
wi th the Developer's everyday matters. When they see a space for improvement in
the product as well as in the working process, they can share the ideas with the team
and responsible authorities.

2.4.4 System Architect
Currently, there is one System Architect representing the whole project, or in other
wording, one Architect is covering the area for the entire module. He was previously
working as a Developer and he was promoted to the position of Architect according
to his competencies and performance when the position was opened. His main assign­
ment is to provide a detailed analysis of the requirements for the new features and
the creation of the corresponding documents. More information about the document
and its purpose can be found in the section describing the development process 2.3.

A s he is a member of the development team, in case he has the free capacity, he
is performing the same tasks as Developers do. Also, he is in closer contact wi th all
Architects from other modules and wi th the System council. They are discussing all
new changes wi th each other, share ideas, evaluate their analysis, present new fea­
tures, etc. A person in this position is therefore in charge of providing the information
from other modules to the Development teams.

2.4.5 Responsibilities within the process
A l l four roles previously introduced in this section have different responsibilities to­
wards the tasks of the development process. Since the process of the product de-

46

velopment described in the section above 2.3 is complex and incorporates a higher
number of tasks, this section contains R A C I (Responsibility assignment) matrix 2.1
that summarizes all the tasks. Structure of the matrix consist of the task description
placed in the first column. This column is followed by the other four columns, which
stand for the four roles of process. Each row then represents one specific task and
the cell belonging to the column of the role defines the type of responsibility that
role has to the task. Particular responsibilities are stated by four letters ' R ' , ' A ' , ' C ,
and T . Acronym ' R ' marks the role or the person who executes the task. Letter ' A '
in the column means the role is approving work done by 'R'. The ' C is used for roles
that are communicating wi th the ' R ' during the task execution and their opinions
are sought. The last letter T belongs to the roles that are only informed about the
task completion.

2.5 Events and artifact of the process
As the company is currently using for the project a methodology based on the
S C R U M , also time structure of the process, its events, and existing artifacts are
similar. But as it is explained in this section, in certain cases similarity can be only
in the name of the event and al l other aspects can differ from the S C R U M definition.
The main event is the Sprint, which more or less follows the definition of the S C R U M
Sprint. There are four other events that are periodically repeated during each Sprint.
In concrete, Sprint Planning, Dai ly Scrum, Sprint Review, and Sprint Retrospective.
A l l events are described in separate paragraphs. Each characterization contains a list
of participants, their roles within the event, and activities executed by the time of the
event. In the second half of the section, there are paragraphs depicting two artifacts
of the development process Product Backlog and Sprint Backlog. This content pro­
vides information about the form and purpose of the artifacts as well as a summary
of the ways how certain roles can manipulate the artifacts.

2.5.1 Sprint
Every Sprint lasts three weeks. A t the beginning of the sprint, usually on the first or
the second day of the Sprint, Sprint Planning is happening. During this meeting, the
team discusses their tasks for the upcoming three weeks. Developers then work on
specified tasks. Each day of the Sprint all four teams have their private Dai ly Scrum.
A n d at the end of the Sprint, there is a meeting called Sprint Review, during which
all four development teams, their Scrum Masters, and Product Owners gather, and
each team presents work that they did during the last three weeks. Also, at the end
of the Sprint teams can have their private Sprint Retrospective.

2.5.2 Sprint Planning
This event lasts around 45 minutes wi th the attendance of the Developers, Scrum
Master, and Product Owner. Participants are using a shared text document that

47

Table 2.1: R A C I m a t r i x s u m m a r i z i n g roles o f t he d e v e l o p m e n t process a n d
t h e i r r e s p o n s i b i l i t i e s a c c o r d i n g t o t he tasks w i t h i n t he process . (Source:
Own Creation)

Task Developer Scrum Master Product Owner System Architect

Assignment of the task
to the team

I C R, A I

Preliminary verification
of the T R area

I I R, A I

Readdressing
of T R

I I R, A I

Verification if the T R
is real product issue C C R, A C

Explanation of the functionality
to the T R originator R, C R, C R, A , C R, C

Assignment of the task
to the team member R, C R, A , C R, C R, C

Detailly analysis of the T R ,
and its artifacts R, C R, C R, A R, C

Monitoring of the System
testing results R R, A R, A R

Creation of the system testing
related TRs R R, C A , C R

Resolving of the Environment
issues R R, A , C I R

Creation of the refactoring
or redesign request R, A R, A C R, A

Approval of the refactoring
or redesign request C C R, A C

Detailly analysis of the refactoring
or redesign request R R A , C R

Creation of the solution
design content R, C R, C A , C R, C

Creation of the solution
design JIRA representation R, C R, C A R, C

Creation of the test
design R, C R, C A , C R, C

Approval of the solution
design C C R, A C

Description of issue in the Limitations
and Workarounds document R, C R, C R, A , C R, C

Creation of the testing and deployment
scenario for the customer's T R R, C R, C R, A , C R, C

Implementation of the change
into the source code R, C R, C A , C R, C

Providing of the code
review

R, A , C R, A , C I R, A , C

Implementation
of the tests R, C R, C A , C R, C

Inclusion of the tests
to the Continuous Integration system R, C R, C R, A , C R, C

Recording of the implemented
tests into system R, C R, C R, A , C R, C

Creation of the technical
do cument at ion R, C R, C R, A , C R, C

Execution of the manual
testing R, C R, C A , C R, C

Delivery of the scripts
to the customers R, C R, C A , C R, C

contains a list of tasks that need to be done for certain Sprint. This list is created
by the Product Owner and each item that is representing the task contains a short
description, level of priority, and link to the J I R A task item. A t the beginning of the

48

Planning, the team runs through the list of tasks from the previous Sprint. Scrum
Master is here in the role of the moderator, which comments on each task or asks
Developers who are assigned to the task to comment current task status. Simultane­
ously, Scrum Master is making notes about the task status and then continues wi th
the next one. After all tasks were reviewed, Scrum Master asks the Product Owner
to present a new list of the task for the current Sprint. The Product Owner explains
each task and his priority. A l l other participants are free to ask about needed details
or discuss all aspects of the tasks. Then Product Owner takes unfinished tasks from
the previous lists and incorporates them into a list for the current Sprint. Then, he
can also update the priorities of the tasks. When the team has a clear perception of
the tasks and there are no more questions to the Product Owner, Product Owner he
can leave the meeting. Afterward, Scrum Master is walking through the tasks in the
new list and Developers can ask for the assignment of the task, if they are interested.
If nobody wants to take the task, Scrum Masters try to find someone by discussing
wi th the Developers. A t the end of this procedure, each task from the list has at
least one assignee, which means that the Sprint Planning is done. It is important to
mention that the Development team is not discussing the size of the workload and
always receives all tasks that the Product Owner listed in the document.

2.5.3 Daily Scrum
According to the calendar event representing the Dai ly Scrum, it should last 15
minutes, and it occurs every workday. Every team organizes its own Dai ly Scrum
separately. Participants of this meeting are Developers, Scrum Master, and the Prod­
uct Owner. This short gathering should be the time when each Developer informs
other participants about the status of the task he is currently working on. What he
did since the last Dai ly Scrum and what he wi l l do unti l the next one. In practice,
depending on the personality of the particular Developer and his current task, devel­
opers tend to provide very deep explanations and use this space to discuss possible
solutions wi th the Product Owner or Scrum Master. F inding a solution for more
difficult problems can end up in a long discussion between two or three participants
and all other participants are more or less wasting their time. This k ind of discussion
very often causes an exceeding of the 15 minutes time frame.

2.5.4 Sprint Review
Sprint Review is the only event where all four development teams their Scrum Masters
and Product Owners meet at the same time. The agenda of this meeting is that each
team is presenting the work, they did during the last Sprint. It always takes place on
the last day of the Sprint. Either the team's Scrum Master, chosen Developer, or a few
of the Developers are presenting work finished in the last three weeks. Depending on
the presenter and last Sprint's tasks, the presenter is showing the product increment
which can have a form of the new feature and optimization or change of the previous
functionality. In the case of new features, it is usual to have a demo presentation
that includes an explanation of the new functionality and a live demonstration of

49

feature usage on testing hardware. Since the significant part of the workload of the
teams is bug fixing, demo presentation is not done by each team. Therefore, teams
are used to present what issues they fixed during the Sprint. Taking into account
the fact that there is no moderator in this event, it is very often that presenters are
providing very long and extremely detailed descriptions of every issue they corrected.
This way is very time-consuming and does not have a beneficial effect on the meeting
participants. Sometimes this meeting is more about showing off with the delivered
work, than presenting useful facts to the other project colleagues.

2.5.5 Sprint Retrospective
This is a private meeting where only Scrum Master and Developers are invited. Scrum
Master asks each of the Developers about his feelings due to the last Sprint. Develop­
ers have space to evaluate all aspects such as Sprint Backlog tasks and their charac­
teristics, working process, working environment, tools used during the development,
team's mood, their personal progress, the performance of the team or particular team
members, and so on. This meeting is lead in form of a discussion and everyone can
come out with his opinion on the currently discussed topic. Scrum Master is also
sharing his feeling and opinions as he also works as a Developer. Through the discus­
sion, the team is t ir ing to find solutions and answers for problems that pop up during
the meeting. Scrum Master is making notes about all important topics and if it is
needed, he is trying to the solve appeared issues wi th the Product Owner or company
management. It is not very usual that team members have significant issues. A n d if
they have some, the issues are mostly principled or systemic problems and therefore
cannot be removed easily.

2.5.6 Product Backlog
Product Backlog is a list of a l l tasks from the J I R A system that are labelled as tasks
of the observed module. Since tasks are materialized as J I R A system records, they
are visible and accessible to each member of the project. Also, each project member
has access right to create a new task within the J I R A system. This implies that
each team member can add a new task into the Product Backlog. Also, employees
that are working on the other modules are free to create new Product Backlog items.
Customer Support technicians are another group of people that has this possibility.
This fact causes that Product Backlog often contains duplicate, wrongly formulated,
inaccurately addressed, incompletely filled, and unnecessary tasks.

2.5.7 Sprint Backlog
As it was already mentioned in the section about the event named Sprint Planning,
Sprint Backlog has two representations. The first is a document formulated by the
Product Owner, and the second is a set of J I R A task records that are reflecting
the document. J I R A items are labeled wi th the Sprint identificatory in order to
provide an association with the particular Sprint. This collection of tasks contains

50

unresolved ones from the previous Sprints as well as tasks that were newly added
by the Product Owner. Each task has its priority, description, status indicator, and
possibly its assignee. Similarly, as it is in the case of the Product Backlog, everyone
wi th access rights to the J I R A system is free to add a new task to the Sprint Backlog.
This of course means that if a concerned person does not update a shared document,
these two representations can differ. This sometimes causes that there are tasks
that team members are not aware of, or Developers are working on tasks that they
shouldn't work on according to the prioritizing.

2.6 Analysis summary
The process of product development, described in the section 2.3, consists of several
phases. Each phase incorporates several different tasks. Some of the tasks are ex­
ecuted only by specific roles and some of them can be performed by all the project
members. Fact that the company is currently using a methodology based on the
S C R U M results in the situation where the roles that appear in the process, ongoing
events, and existing artifacts of the process may look like they follow the definition
of S C R U M . But , from the closer perspective that is provided within this chapter 2,
it is apparent that the current methodology differs from the S C R U M definition. In
some cases, the difference is significant and in other cases, we can find only minor
contrast. From a slightly more concrete point of view, when we take into account the
responsibilities of all project members described in the section 2.4 of this chapter,
we can see roles have some accountabilities in addition. Artifacts and events used
within the process also require some corrections in order to fulfil the S C R U M def­
inition. Allocated time frames and placement within the Sprint are similar to the
definition, but their agenda and the activities of some participants are different. A r ­
tifacts are missing some basic characteristics, and the possibilities of how some roles
can manipulate them are also incorrect comparing to the definition.

Scrum Master
In this process person in the role of the Scrum Masters in practice stands for several
roles. The first role is the role of the Developer, which means a person in this position
is executing all tasks that provide increment on the product. The second is the role
of the team leader which means supervising and controlling other Developers. A n d
at the top of that, an employee in this role is also fulfilling some duties listed in the
S C R U M definition.

First of al l , the person in this role should not act as a Developer wi thin the
process. Someone could say that there is no explicit part of the S C R U M definition
that is prohibiting the Scrum Master's participation in the development activities.
But , since the main goal of this role is an establishment of the S C R U M methodology
on the project and among its members, which is currently not completely achieved
on the project, it is crystal clear that this goal requires more effort what implies this
role cannot be combined with the role of the Developer.

51

The Scrum Master's role of the team leader has two parts. The first part is
coaching and motivating the team members. This is in line wi th the definition of
the S C R U M . The second part is his authority towards the technical sphere of de­
velopment. A s it is mentioned in this subsection, Scrum Master should put all his
effort into the responsibilities listed in the definition. Thus, technical tasks and de­
cisions must be done by other participants of the process. Also, the responsibility of
the task fulfilment needs to be removed from this role. Developers wi th the widest
knowledge base should be rather promoted to the Technical Lead roles or other roles
except for Scrum Master. Administrat ion of the team's backlog is completely out of
the Scrum Masters' scope of activities. The dividing of tasks among Developers is
also an unwanted activity that is decreasing the team's self-organization, what is the
opposite effect that should this role bring into the team's environment. Organization
of all events is correctly assigned to this role, but as it is more detailly described in
the further subsections, Scrum Master needs to put more focus into the agenda of
meetings, as well as activities executed by particular team members during the events
that differ from the definition.

Product Owner
One of the Product Owner's functions is the management of the Product Backlog.
Thus, preliminary analysis of the incoming requests is correctly addressed to this
role. This statement can be defended by an explanation that by accepting the task,
the Product Owner is adding a new item into the Product Backlog. This rule can
be also applied to situations when the Product Owner evaluates change requests
from the Developers. In case a request may have a significant effect, the Product
Owner forwards this proposal to the System council. This can be perceived as an
obtaining of the requirements from the stakeholders and transforming them to the
Product. Approval of the solution designs can stay in the competencies of this role
because it can be understood as clarification of the Product Backlog items. Creation
of the solution designs, preparation of the test scenarios, and analysis of the new
functionality requests are activities that should be done by someone else than the
Product Owner. Helping the Developers wi th their technical struggles should be
rather done by more experienced members of the Development team. Maintenance
and sharing of the product-related knowledge are also acceptable for this role as well
as management of the Product Backlog and Sprint Backlog.

W i t h a closer look into the R A C I matrix 2.1 that accumulates all tasks of the
development process, we can see that person in the role of Product Owner is executing
several tasks that he should not. In concrete he or she should not be responsible for
these tasks:

• Assignment of the task to the team member

• Detail ly analysis of the T R , and its artifacts

• Monitor ing of the System testing results

• Creation of the system testing related T R s

52

• Description of issue in the Limitations and Workarounds document

• Creation of the testing and deployment scenario for the customer's T R

• Inclusion of the tests to the Continuous Integration system

• Recording of the implemented tests into system

• Creation of the technical documentation

Developers
As it is written in the section describing the Scrum Developers 1.3.5, two key charac­
teristics of a functional Development team are cross-functionality and self-organization
The content of previous sections of this chapter confirms the presence of cross-
functionality between the developers of all four teams. But when it comes to the
self-organization of the teams there is space for improvement. The fact that Devel­
opers are able to choose which task they want to work on can be perceived as a trait
of self-organization. But on the other hand, the situations when tasks are assigned
by the Scrum Master or Product Owner predominate. Thus, abandoning this habit
would be a step further towards the alignment wi th the S C R U M definition.

A l l tasks that Developers execute during the Sprint, and produce Increment on
the product are correct. When it comes to Sprint Planning, Developers are provided
wi th the list of tasks gathered by the Product Owner, and they have to accept this
list as a Sprint Backlog. S C R U M definition says that Sprint Backlog must be created
by the Developers, not by the Product Owner. So, this is another point on the list
of changes that need to be done in order to apply the S C R U M methodology.

System Architect
This role is completely custom, and there is no such definition of the role of System
Architect wi thin the S C R U M . But the rule that says the Development teams are
cross-functional, and domains of the particular team members incorporate all needed
specializations approves that the person in the role of System Architect can be per­
ceived as a Developer. This implies that al l responsibilities of the Developers can be
also responsibilities of the System Architect. In the end, there is flexibility in terms
of what custom roles can exist wi thin the process that uses S C R U M methodology,
without breaking fundamental principles of the S C R U M .

Sprint
Duration of the Sprints and al l events that are ongoing during each Sprint fit the def­
init ion formulated within the S C R U M . Some corrections can be done in the schedul­
ing of particular events that are happening within each Sprint. The Sprint Planning
should be the first event that opens new Sprint and therefore should not take place
two or three days after the Sprint beginning. Also, as it outcomes from the provided

53

analysis, Sprint Retrospective is not a mandatory event and thus can be skipped by
the team's or Scrum Master's decision. Mak ing Sprint Retrospective a mandatory
event of each Sprint could bring improvement into the process of product develop­
ment.

Sprint Planning
Starting wi th the evaluation of the time frame reserved for this event, in the current
situation it is enough wide for the execution of all planning activities. But with the
erasing of some distinctions from the S C R U M definition, this time frame may need
to be extended. The list of participants is in accordance wi th the definition.

The first question that should Sprint Planning answer is 'Why is this Sprint
valuable?', is more or less fulfilled in the current form of Sprint Planning. Since
the Product Owner brings the list of the new tasks, that need to be done during the
Sprint, as the author of the list he or she can present why are these tasks valuable.

The second question W h a t can be Done this Sprint?' , which should be resolved by
Developers through the discussion with the Product Owner, is currently not resolved
correctly. The contemporary way of defining the Sprint Backlog is done without
the right of the Developers to discuss a number of tasks or the presence of the task
in the list. The Product Owner is just providing the list of tasks that must be
accepted. Therefore, there is no need for estimation of the work that should be done.
This autocratic approach in planning removes principles of empiricism and therefore
should be removed.

The thi rd question that should be answered during this event is 'How wi l l the
chosen work get done?'. Since analysis contains information, that Developers are able
to discuss tasks from the provided list wi th the Product owner, this action is partly
done. But there is no exact formulation of the Definition of Done for particular tasks,
what can result in situations that Developers need additional explanation during the
development. Or in a worse situation, this can cause delivery of incorrect functionality
due to misunderstanding and lack of Definition of Done. So, it is more than required
to add compulsorily of formulation of Definition of Done for each task within the
Sprint backlog.

Daily Scrum
The agenda of this meeting and the list of participants is correct compared to the
S C R U M definition. A s a bottleneck of this event can be marked fact that participants
sometimes start a deep discussion about a particular topic and therefore meeting
exceeds a timeframe of 15 minutes. This needs to be eliminated by the Scrum Master
which should interrupt this k ind of dialogue and remind discussants that they can
continue outside of the Dai ly Scrum meeting.

54

Sprint Review
As it comes from the S C R U M definition, this meeting should serve as space where
teams present their work to important stakeholders and modifications of plan and
Product Backlog are done. The analysis discovered that the content of this meeting
covers only one part which is the part where a l l teams present their output of the
work. Also, it was mentioned that there is no moderator who is controlling the agenda
of the event. This can be done by one, or more Scrum Masters. There is not any
presence of plan or Backlog adjustments within the current state. This is done at the
beginning of each Planning. Taking into account fact that this meeting is attended
by all teams, it would not make sense to discuss such modifications with each team
one by one. So, a possible solution can be a separation of the presentation part into
another meeting which would be common for all four teams. Then Backlog and plan
updates would be done separately by each team.

Sprint Retrospective
The list of participants which in the current situation incorporates Developers and
Scrum Master can be extended by the invitation of the Product Owner. The agenda
and the basic idea of this meeting are aligned wi th the definition of S C R U M and
therefore there are no significant characteristics that need to be changed. Maybe
more effort from the site of company management could be added into the process of
solving issues that were discovered during this meeting.

Product Backlog
Product backlog that is represented by records within the J I R A system is reaching
enough level of visibil i ty and transparency that it should have according to the defi­
nition. Also, the possibility of the team members to create and update J I R A records
follow the rule of refinement of the tasks. But maybe there should be applied some
policies how to create a task which should bring more clarity and organization into
this artifact.

Sprint Backlog
As it is written in the above section discussing Sprint Panning 2.6, this artifact is built
exclusively by the Product Owner. This is an incorrect way and formulation of the
Sprint Backlog needs to be done by Developers and their discussion with the Product
Owner. Also, a form of the Sprint Backlog or better says two separate sources are
not the best option for how to materialize the Sprint Goal . A possible solution is to
use only J I R A records that are accessible for all project members and which enables
the creator to capture important features of each task such as estimated duration,
priority, description, and so on. Also, the rights of the project members to add tasks
into Sprint Backlog should be limited. This could be solved maybe by adding the
requirement of approval before the task wi l l be included in the Sprint Backlog. That

55

would mean only team members would be able to decide if the new task can be
included in the current Sprint Backlog.

56

Chapter 3

Proposal of solution

This chapter accommodates a proposal of solution that needs to be applied to the cur­
rent state of the observed project to achieve implementation of the S C R U M method­
ology. The proposal is based on the analysis of the contemporary situation which is
provided in the previous chapter 2. Changes that are summarized within this pro­
posal were formulated using theoretical information from the chapter that contains a
theoretical review of the problem 1. More concrete, the first section 3.1 is describing
changes that need to be done in the team structure, a l l project roles and their re­
sponsibilities, Sprint structure, and its events, and artifacts. The second section 3.2
evaluates the financial side of the proposal. W i t h i n this section, there is the summa­
rization of available educational courses ad their prices as well as costs of the project
members' labour. Then there is provide calculation of the costs based on previously
gathered information, which involves costs of the project members' education and
costs of salaries of the new project members that are introduced in the proposal. The
last section of this chapter 3.3 outlines the benefits of the proposed solution.

3.1 Proposal of changes
This section contains the proposal of changes that need to be implemented to the pro­
cesses within the observed project in order to follow the definition of the S C R U M . A l l
proposals are made wi th the aim of optimization of the working process and retention
of mechanisms of the development process 2.3 that needs to stay unchanged because
of characteristics of the product 2.2 and the company's structure 2.1. The proposed
solution is based on the information gathered in the Analysis of the contemporary
situation 2, wi th the intention to erase shortcomings highlighted in the Analysis sum­
mary 2.6. The first half of this section contains the proposal of changes toward the
team structure and its roles. The second part is dedicated to the corrections of events
and artifacts of the process.

3.1.1 Team structure
According to the analysis, which is described within the previous chapter 2, there
are four different roles within the process of product development. In the current

57

structure 2.3, there are two Product Owners, and four teams that consist of 7-10 De­
velopers, each team has its own Scrum Master and there is one System architect, that
also acts as a Developer. The newly proposed structure displayed on the picture 3.1
should consist of two Product Owners, two Scrum Masters, and four Development
teams. Each team wi l l consist of 6-9 Developers and one Team Leader and there wi l l
be one System Architect as it is in its current state.

The newly introduced role of the Team Leader wi l l be a role that incorporates
responsibilities of the Developer and accountabilities that were identified as unwanted
for the role of Scrum Master wi thin the section of Analysis summary 2.6. The number
of Developers was decremented by one person because the Team Leader wi l l also act as
Developer and therefore keeping the Development team's size results in this situation.

Figure 3.1: P r o p o s e d t e a m s t r u c t u r e o f t he p ro j ec t . (Source: O w n Creation)

The number of the Scrum Masters wi l l be decreased from four (one per team)
to two (one per two teams). This decision was done wi th considering of fact that
Scrum Master's work wi l l be correct implementation and control of compliance of the
S C R U M principles, without any participation in technical tasks of the development.
This wi l l lower the number of Scrum Master's tasks, and therefore one Scrum Master
can serve two teams at the same time. Also, the financial perspective affected this
decision, because there are two more employees in the new team structure, which
means extra costs for the company.

58

3.1.2 Scrum Master
As it is mentioned in the previous subsection 3.1.1, a person within the role of the
Scrum Master wi l l be deprived of his development activities and his authority to­
wards the technical decisions that he is serving in the current state. B y removing the
Developer's duties, Scrum Master wi l l be able to completely focus on the implemen­
tation of the S C R U M methodology and its principles to the development process. A n
employee in this role is in charge of S C R U M rules application and therefore he or she
must put all his or her effort into controlling S C R U M policies fulfilment. In terms
of technical leadership and decision making that is Scrum Master providing in the
current state, all these operations wi l l be readdressed to the newly introduced role of
the Team Leader.

Coaching and motivating of the team members are correctly assigned to this role
and should be kept also in the proposed solution. Accordingly, the organization of
all S C R U M events should stay on the list of Scrum Masters responsibilities. During
these events, he wi l l be in the role of the moderator, which wi l l control if the meeting
agenda is correct, if the list of participants fits the event definition, if the time frame
and location within the Sprint is accurate, and if all participants represent correct
roles within the event. A n d the last but not least, he or she wi l l be observing how
is manipulated with the Scrum Artifacts, and in the case of any differences from the
S C R U M definition he wi l l take an action for the correctness of the situation.

According to the particular tasks that exist in the process of the product develop­
ment, and Scrum Masters' responsibilities towards them, there is no task that would
person in this role execute or which execution would he or she approve. A l l tasks and
Scrum Master's relation to the is depicted in R A C I matrix 3.1.

3.1.3 Product Owner
The main accountabilities of the employee in the role of the Product Owner are max­
imization of the product value, management of the Product Backlog, and definition
and promotion of the Product Goal . Also, he or she has responsibilities towards the
visibil i ty and accessibility, transparency, and intelligibility of the Product Backlog.
According to the summary of the analysis which focuses on the role of the Product
Owner 2.6, Product owners are correctly achieving these objectives in the current
state of the project. Also, as follows from mentioned part of the Analysis summary,
there are several tasks that wi l l not be executed by the Product Owners in the pro­
posed solution. One thing that needs to be granted to the Product Owner is a better
way how to control Product Backlog. This means that the Product Owner wi l l be
an authority that wi l l approve recently created tasks as Product Backlog tasks. The
mechanism for implementation of this rule wi l l be detailly described in the subsection
about the proposals for the Product Backlog 3.1.13.

In concrete, tasks that the process of the product development consists of, and
the Product Owner's responsibilities against them are listed in the R A C I matrix 3.1.
In the proposed structure wi l l be an employee in this role in charge of the execution
of these tasks:

59

• Assignment of the task to the team

• Preliminary verification of the T R clXccl

• Readdressing of T R

• Verification if the T R is real product issue

• Explanation of the functionality to the T R originator

• Approval of the refactoring or redesign request

• Approval of the solution design

Besides the responsibilities of an executor, the person in this role stands also for
an authority that is evaluating and approving the correct execution of the tasks,
which was provided by other team members. This list summarizes particular tasks,
where the role of the Product Owner acts as an approver:

• Assignment of the task to the team

• Preliminary verification of the T R clXccl

• Readdressing of T R

• Verification if the T R is real product issue

• Explanation of the functionality to the T R originator

• Creation of the system testing related T R s

• Creation of the refactoring or redesign request

• Approval of the refactoring or redesign request

• Detail ly analysis of the refactoring or redesign request

• Creation of the solution design content

• Creation of the solution design J I R A representation

• Creation of the test design

• Approval of the solution design

• Description of issue in the Limitations and Workarounds document

• Creation of the testing and deployment scenario for the customer's T R

• Implementation of the change into the source code

• Implementation of the tests

60

• Inclusion of the tests to the Continuous Integration system

• Recording of the implemented tests into system

• Creation of the technical documentation

• Execution of the manual testing

• Delivery of the scripts to the customers

3.1.4 Developers
B y closer look at the two key attributes that each Development team should have
and wi th the consideration of facts written in the analysis summary focusing on the
Developers 2.6, we can state the presence of cross-functionality wi thin the current
state of the project is sufficient. When it comes to self-organization among the team
members, this peculiarity wi l l be improved by the removal of the ability of task
assignments from the list of Scrum Master's and Product Owner's competencies.
Team members wi l l divide the tasks between each other by themselves with the help
of the Scrum Master and Team Leader. It is necessary to mention, that Scrum Master
wi l l only take care of the procedural side of the assignment. The Team Leader as a
part of the Development Team wi l l be an authority, which wi l l be able to decide who
wi l l execute a task, but only in borderline cases. Most of the time Developers wi l l
be free to take tasks that they wi l l consider as the right candidate according to the
priorities, state of the Sprint Backlog, and Sprint Goal .

Another change that needs to be applied comparing to the current state is that
Developers need to be creators of the Sprint Backlog. This means they wi l l actively
participate the Sprint Planning where they wi l l construct a list of the tasks that wi l l
materialize the Sprint Backlog. Their participation during the process of planning
wi l l be again monitored by the Scrum Master.

In order to provide a complete list of tasks that are Developers responsible for
during the process of product development, we can take a look into the R A C I ma­
tr ix 3.1. A s it comes from S C R U M definitions, Developers are those team members
who execute tasks from the Backlog, which results in the fact that they are marked
as executors almost in all tasks of the development process. They are no executors
only in case of tasks that are part of the Product Backlog management. In particular,
they should execute these tasks in the proposed solution:

• Explanation of the functionality to the T R originator

• Assignment of the task to the team member

• Detail ly analysis of the T R , and its artifacts

• Monitor ing of the System testing results

• Creation of the system testing related T R s

61

• Resolving of the Environment issues

• Creation of the refactoring or redesign request

• Detail ly analysis of the refactoring or redesign request

• Creation of the solution design content

• Creation of the solution design J I R A representation

• Creation of the test design

• Description of issue in the Limitations and Workarounds document

• Creation of the testing and deployment scenario for the customer's T R

• Implementation of the change into the source code

• Providing of the code review

• Implementation of the tests

• Inclusion of the tests to the Continuous Integration system

• Recording of the implemented tests into system

• Creation of the technical documentation

• Execution of the manual testing

• Delivery of the scripts to the customers

3.1.5 Team Leader
This is a completely new role that does not appear in the current state of the project.
Persons that should stand for this role are employees that are in roles of the Scrum
Masters within the current project team scheme. They are the right employees to
occupy this position since they have a high level of technical skills and wide knowl­
edge about the product as well as experience wi th a leading position. If other, less
experienced Developers wi l l face some obstacles during the execution of the tasks
Team Leader is one that wi l l help them. Also, in situations where there is a need to
decide between two or more technical solutions, Team Leader wi l l be one that holds
the final decisions on his shoulders. His or her assignments wi l l not be related only
to decision making, but he or she wi l l be also a full-featured Developer 3.1.4 which
wi l l execute all actions that result in the product increment.

In the more concrete wording, Team Leaders wi l l execute al l tasks that Devel­
opers 3.1.4 executes, which is visualized within the R A C I matrix 3.1. Moreover,
employees in this role wi l l be in charge of approvement of the fulfilment of these
particular tasks of the development process:

62

• Assignment of the task to the team member

• Detail ly analysis of the T R , and its artifacts

• Monitor ing of the System testing results

• Resolving of the Environment issues

• Providing of the code review

3.1.6 System Architect
B y the fact that this role is an extra-defined role that is not part of the S C R U M
definition, we can consider the role of the System Architect as a special domain of
competence of the Developer 3.1.4. Thus, there is no need to define special rules
what should or should not person in this role execute within his or her existence in
the product development process. A l l rules that belong to the role of Developer also
apply to the role of System Architect.

3.1.7 Responsibilities within the process
Except for the proposal of general activities and accountabilities that each role has to
fulfil wi thin the proposed changes, there is also needed adjustment of responsibilities
towards the particular tasks of the development process. For these purposes, this
subsection contains R A C I matrix 3.1, which incorporates the same list of tasks as
a R A C I matrix 2.1 locate within the subsection of the previous chapter, which is
dedicated to the analysis of the current assignment of responsibilities within the
observed process 2.4.5. Comparing to the mentioned matrix 2.1, there are several
changes to the table structure. In particular, there is a new column dedicated to the
role of Team Leader 3.1.5. Column with title 'Developer' stands for responsibilities
of the Developers 3.1.4 as well as System Architect 3.1.6. These two roles were
considered unifiable roles from the S C R U M definition point of view. The other three
columns of the structure in a concrete column wi th the tasks of the process and
column for the Scrum Master's and Product Owner's responsibilities keep the same
semantic as in the previous R A C I matrix 2.1.

If one takes a closer look at the content of the R A C I matrix situated below 3.1, it
is apparent that there are several differences in the assignment of particular relations
of the roles towards the tasks. The most significant changes are proposed for the role
of the Scrum Master, which was completely deprived of execution of tasks which are
marked by acronym 'R' . Also, the column capturing the relation of this role according
to tasks does not contain the letter ' A ' . Removal of both these types of responsibilities
implies that the person in the role of Scrum Masters acts as an advocate of S C R U M
methodology and not technical worker.

63

Table 3.1: R A C I m a t r i x c o n t a i n i n g p r o p o s a l o f roles o f t he d e v e l o p m e n t
process a n d t h e i r r e s p o n s i b i l i t i e s a c c o r d i n g t o t he tasks w i t h i n t he process .
(Source: Own Creation)

Task Developer Scrum Master Product Owner Team Leader

Assignment of the task
to the team

I C R, A C

Preliminary verification
of the T R area

I I R, A C

Readdressing
of T R

I R, A C

Verification if the T R
is real product issue C I R, A c

Explanation of the functionality
to the T R originator R, C I R, A , C R, C

Assignment of the task
to the team member R, C I R, A , C

Detailly analysis of the T R ,
and its artifacts R, C I I R, A , C

Monitoring of the System
testing results R, C I I R, A , C

Creation of the system testing
related T R s

R, C A , C R, C

Resolving of the Environment
issues R, C I I R, A , C

Creation of the refactoring
or redesign request R, C I A , C R, C

Approval of the refactoring
or redesign request C I R, A C

Detailly analysis of the refactoring
or redesign request R, C I A , C R, C

Creation of the solution
design content R, C I A , C R, C

Creation of the solution
design J I R A representation R, C C A , C R, C

Creation of the test
design

R, C I A , C R, C

Approval of the solution
design C I R, A C

Description of issue in the Limitations
and Workarounds document R, C I A , C R, C

Creation of the testing and deployment
scenario for the customer's T R R, C I A , C R, C

Implementation of the change
into the source code R, C I A , C R, C

Providing of the code
review R, C I C R, A , C

Implementation
of the tests R, C I A , C R, C

Inclusion of the tests
to the Continuous Integration system

R, C I A , C R, C

Recording of the implemented
tests into system R, C I A , C R, C

Creation of the technical
documentation R, C I A , C R, C

Execution of the manual
testing R, C I A , C R, C

Delivery of the scripts
to the customers R, C I A , C R, C

64

3.1.8 Sprint
The timeframe allocated for the Sprint, which lasts three weeks, works very well wi th
the types and time requirements of tasks that exist within the development process
and therefore does not require any adjustments. When it comes to the time location
of the events of the Sprint there are some changes that need to be introduced. A s it
is depicted on the visualization of the Sprint and its events 3.2, the very first event of
the Sprint wi l l be the Sprint Planning. This event wi l l begin new Sprint and therefore
wi l l take place on the first day of the Sprint. Then there wi l l be Dai ly Scrum which
wi l l happen every day at the time agreed by the team members. Sprint Review as a
penultimate event of the Sprint, along wi th the Sprint Retrospective which is the last
event of the Sprint wi l l be organized on the last day of the Sprint. A l l four mentioned
events, Sprint Planning, Dai ly Scrum, Sprint Retrospective, and Sprint Review wi l l
be obligatory and could be skipped on in exceptional situations. The person that wi l l
guarantee their realization and their correct location wi thin the Sprint wi l l be Scrum
Master.

Figure 3.2: S p r i n t a n d i t s events . (Source: Own Creation)

3.1.9 Sprint Planning
Starting wi th the duration of this event and list of participants, which both do not
have to be changed comparing to the current state, we can say that this event wi l l
last 45 minutes (or even more when the size of the agenda wi l l require it), and the

65

attenders must be Product Owner, Scrum Master and all Developers of the team.
Important change needs to be implemented in the time location of this event within
Sprint. A s it is explained within the subsection about the Sprint 3.1.8, and visualized
in figure 3.2, Sprint Planning needs to be placed at the beginning of the Sprint.

B y closer look at the content of the meeting, Sprint Planning needs to achieve
resolution of three topics - 'Why is this Sprint valuable?', W h a t can be Done this
Sprint?' , and 'How wi l l the chosen work get done?'. A s it was concluded in the part
of the Analysis summary focused on Sprint Planning 2.6, the answer for the first
topic is correctly provided in the current state and therefore does not require any
adjustments.

The second question W h a t can be Done this Sprint?' wi l l be resolved by the
Developers in the proposed solution. Because of the character of the development
process and the way how are incoming change requests processed, there cannot be
done any significant change in the fact that the Product Owner brings the list of the
task that needs to be done. But what needs to be changed is the way how these tasks
from the list are transformed to the Sprint Backlog items, as well as what number
of tasks wi l l form the list be accepted. Focusing on the crucial characteristic of the
S C R U M , which is empiricism, only Developers wi l l estimate the time constraint of
the tasks. This wi l l be achieved by the discussion between Developers and Product
Owner, which wi l l result in a clear definition of what needs to be done within the task
and how it can be done. After this analysis of the whole list of the tasks, Developers
together with the Product Owner wi l l negotiate what is possible to deliver wi thin the
upcoming Sprint. Product Owner wi l l highlight priorities of the particular tasks and
wi th their consideration, Developers wi l l establish Sprint Backlog.

The third topic which incorporates specification of how selected tasks wi l l be
implemented, and what wi l l be considered as required work wi l l be also resolved
wi th the application of proposals written above in this subsection. There wi l l be a
focus on the technical part of the solution during the discussion and there wi l l be
special attention in the formulation of the Definition of Done for each task in the list.
Fulfilment of this proposal wi l l be warranted by the Scrum Master which wi l l provide
the support and direct the whole agenda in case of any struggles.

3.1.10 Daily Scrum
Participants, which are Product Owner, Scrum Master, and Developers, and everyday
occurrence of this short event is correctly justified in the current state and do not
require any changes. Content of the meeting which consists of informing about the
progress towards the Sprint Goal and state of the Sprint Backlog tasks also fits the
definition. The only proposal for improvement of this meeting is the need for Scrum
Master's to focus on the event duration which should not exceed 15 minutes, and
which is mostly caused by the extending discussion of the specific topic by a few
of the participants. In this k ind of situation, when Scrum Master wi l l notice that
participants are beginning wi th a deep discussion that other participants do not need
to follow, Scrum Master should interrupt the discussants and advise them to continue
wi th the discussion out of the Dai ly Scrum event.

66

3.1.11 Sprint Review
Sprint Review wi l l consist of two parts wi thin the proposed solution. The first part
wi l l be dedicated to the presentation of the work that was done during the terminating
Sprint. This part wi l l be accomplished wi th the presence of all four Development
teams, their two Scrum Masters, both Product Owners, and all other interested
stakeholders such as management of the company, teams that are implementing other
modules of the product, customers, etc. The style of the presentation should be in
form of a demo presentation, which wi l l contain an explanation of the implemented
functionality, its benefits towards the product, an example of a use case, or a live
demonstration using the testing hardware. W i t h the consideration of the different
types of listeners wi thin the audience of the presentation, the explanation should not
contain deep information including technical details of the implementation. Of course,
in case of curiosity about this k ind of information among the audience, these details
can be added to the presentation. During this part of the Sprint Review, there wi l l
be also space for a gathering of suggestions originating from the stakeholders and all
participants. These comments can be then used within the second part of the Sprint
Review.

The agenda of the second part of this event wi l l be a modification of the plan
and Product Backlog. Since each team has its own Product Backlog and plans how
to achieve the fulfilment of it, this part needs to be done separately by each team.
Participants of this part of the Sprint Review wi l l be Developers from the particular
team, Scrum Master of the team, and Product Owner. They should all together adjust
the Product Backlog by reviewing tasks that were delivered or were not delivered in
currently finishing Sprint and using comments that were gathered in the first part of
the Sprint Review.

Both proposed parts of the Sprint Review need a person in the role of the moder­
ator, which wi l l be again Scrum Masters. They wi l l control the fulfilment of proposed
changes and drive the meeting.

3.1.12 Sprint Retrospective
According to the subsection of the Analysis summary that is discussing Sprint Ret­
rospective 2.6, the current form of this event, which is described in section 2.5.5,
follows the definition of the S C R U M . The list of participants, which in the current
state consists of Developers and Scrum Master, needs to be extended by the role of
Product Owner, who is also participating in the process, and therefore he or she can
have a need to share his or her personal opinions and suggestions. Placement of the
Sprint Retrospective can be on the last day of a Sprint, as is already proposed in the
subsections dedicated to the Sprint 3.1.8. Another thing that can be improved is the
way how are results of this meeting processed and implemented into the processes
inside the company. If the management wants to gain better results, they need to
pay more attention to the needs of their workers which are recorded in this event.
This can be achieved by promotion of the gathered list of needs to the company's
management by the Scrum Master.

67

In order to gather more insights and encourage participants to share their ideas.
Sprint Retrospective can be done in the form of a game. This proposal of an in­
teractive Retrospective is based on the Playbook [7]. In the phase of preparation,
teams that have some members working remotely should create a new collaboration
document. In case of all team members can attend this event in person, the team wi l l
need space wi th an available whiteboard. Selected document or whiteboard needs to
be divided into three columns wi th headlights 'What we did well ' , W h a t we can do
better', and 'Actions'. This preparation should be followed by a quick revision of the
topics from the last Retrospective to bui ld continuity. The facilitator who is Scrum
Master should remind these facts to the participants - do not make it personal, and
take it personally, listen wi th an open mind, focus on improvement, the experience
of everyone is valid. Then team members can start with wri t ing down what the team
did well. This should be in form of one idea per note. Then posted notes need to
be grouped by similar and duplicates should be removed. The team should briefly
discuss each note. Then the same approach wi l l be applied for the column W h a t
we can do better', into which wi l l team members post their ideas on what can be
improved. Again , the team needs to discuss each topic. Then everyone should brain­
storm actions that can be done to improve identified weak areas. Participants again
write one action per note, group them and remove duplicates as before. Gathered
actions must be discussed within the team, and then they have to be assigned to the
members that wi l l take the actions.

3.1.13 Product Backlog
Representation of this artifact using the J I R A system was evaluated as a correct
option towards reaching needed Product Backlog characteristics such as transparency,
accessibility, visibility, and so on. The area, which was considered as a place that may
be improved within the part of the Analysis summary aimed at Product Backlog 2.6,
is the creation of new Product Backlog items. A s it was explained within the section
of analysis which describes current features of the Product Backlog 2.5.6, everyone
wi th the access rights to the J I R A system, has also the possibility to create tasks and
therefore Product Backlog items. The possibility of a task creation should be kept
in the proposed solution because the form and way how are change request incoming
to the Development process 2.3 requires it. What needs to be adjusted is a way
how these newly created tasks becoming members of Product Backlog. There can be
added either a J I R A label i tem or a J I R A task state, which would differentiate a newly
created task that is not yet part of the Product Backlog from a Product Backlog item.
W i t h the addition of this new marker, the Product Owner would have the possibility
to evaluate all incoming tasks and would be able to decide about their presence in the
Product Backlog. This wi l l reduce the existence of task duplicity, incorrect addressing
of the task among the teams, and in case of wrongly or incompletely formulated task,
the record wi l l be very easy to ask for additional information.

68

3.1.14 Sprint Backlog
Taking into account facts written in the part of the analysis describing Sprint Back­
log 2.5.7, and subsection of Analysis summary that highlights shortcomings of this
S C R U M artifact 2.6, it is more than required to use only one representation of the
Sprint Backlog. According to the capabilities of J I R A task records which are cur­
rently used as one of two existing Sprint Backlog representations, and which can
simply store priority, description, status, and assignee of the task, this wi l l be the
one and only representation of the Sprint Backlog.

The presence of a particular task wi thin the Sprint Backlog can be specified by
the J I R A label item as it is in the current state. But only Developers of each team
must have the right to labelled tasks wi th this label and therefore include them into
the Sprint Backlog of their team. This step of the association of tasks with the Sprint
Backlog wi l l be done within the proposed solution after the approval of the task as a
Product Backlog item, which wi l l be done by Product Owners and which is explained
in the above subsection 3.1.13.

3.2 Financial evaluation of the proposal
Applicat ion of the proposal described in the above section 3.1 wi l l be reflected within
the firm costs in two ways. The first part of the costs wi l l be related to the existence
of additional employees within the proposed solution compared to the actual state of
human resources on the project. The second part of the cost wi l l be allocated for the
education of the employees in the S C R U M methodology.

Prices of project members labour
For the estimation of the salaries wi l l be used web page glassdoor.com [1], which con­
tains information about average salaries for specified positions and specified regions.
This source is used also because of the reason that company is not publishing the
salaries or any other details of their employees. For the Developers, we wi l l use the
average salary for the position of Software developer in the location Czech Republic,
which is according to the motioned source [1] approximately 735 500 K c per year.
This means approximately 61 292 K c per month for one Developer. People that are
employed in the role of the Scrum Master earn in the Czech Republic approximately
70 650 K c per month. The monthly salary of the Product Owner is on average
78 908 K c according to the previously mentioned web page [1].

Salaries stated in this subsection in the above paragraph are gross salaries, which
means that we need to add to these salaries additional costs that employers pay for
social and health insurance. For calculation of this cost wi l l be used online calculator
of net salaries in the Czech Republic for the year 2021 [16]. The base of the calculation
wi l l be gross salary per month which wi l l be calculated from the gross salary per year.
Thus, the gross monthly salary of the Developer is approximately 61 292 K c , which
means for employer costs 82 008 K c per month. Month ly costs that the firm has to
pay in order to provide Scrum Master's net salary 70 650 K c are 94 530 K c . For

69

http://glassdoor.com

the Product Owner's monthly net salary which is an average 78 908 K c must the
company pay 123 790 K c .

For the simplicity of the estimation, employees in the role of System Architect
wi l l have the same salary as Developers, and Team Leaders wi l l have the same salary
as Scrum Masters. A list of the average salaries and their costs from the employer's
point of view is for better readability written in the table below 3.2.

Table 3.2: T a b l e o f t he m o n t h l y sa lar ies o f t he p a r t i c u l a r p ro j ec t roles a n d
t h e i r costs for e m p l o y e r . (Source: glassdoor.com [1], vypocet.cz [16])

Role M o n t h l y gross salary Mon th ly employer's costs Costs per one man-day
Developer 61 292 Kc 82 008 Kc 4 100 Kc

Scrum Master 70 650 Kc 94 530 Kc 4 727 Kc
Product Owner 78 908 Kc 123 790 Kc 6 190 Kc

Prices of S C R U M courses
Prices of the courses used within this cost evaluation are obtained from a price list
that is published on the web pages of the company scrum.cz [11], which is the biggest
provider of S C R U M courses in the Czech Republic. This company is licensed by
scrum.org [10]. This company was chosen because of her rating as well as because
of her location in the Czech Republic. A list of the courses that were evaluated as
relevant for this proposal is summarized in the table below 3.3. The table contains
information needed for the financial evaluation of this proposal such as the name
of the course, duration of the course in days, price of the course in Czech crowns,
set of S C R U M roles or project roles that should be course useful for, and official
certification that attendee can obtain after successful passing of assignment at the
end of the course (as it is written on the web page of the provide [10], there are two
tries to pass the assignment included in the price of course for each participant).

The mentioned company [11] offers two types of courses for the Scrum Masters,
which are named Professional Scrum Master and Professional Scrum Master II. Bo th
courses have the same price, 27 000 K c , and both take two days. A t the end of
the first-named course, the attendee has the possibility to obtain a certification v
Professional Scrum Master I. Bypassing the second-mentioned course, the participant
can obtain certification called Professional Scrum Master II. In the list of people
that should attend the first course are Scrum Team members, Scrum Masters, and
people involved in agile product development. This course is also marked as the best
introduction to the S C R U M methodology. The second course is designed for Scrum
Masters wi th experience of at least one year, that have a good understanding of a
Scrum Framework and want to deepen their knowledge.

Course provider offers also a course for Product Owners called Professional Scrum
Product Owner. This course has the same price as a course for Scrum Masters, which
is 27 000 K c . Also, the duration is two days as in the case of previously described
courses. After the successful passing of the examination at the end of the course, the
participant wi l l gain certification Professional Scrum Product Owner I. This course

70

http://glassdoor.com
http://vypocet.cz
http://scrum.cz
http://scrum.org

is mostly for Product Owners and product managers, Scrum Masters who want to
obtain a better understanding of the Product Owner role.

There is also a course that is designed for the teams that want to strengthen their
S C R U M knowledge. The course has the lowest price out of all courses described
within this section, which is 21 000 K c . The course takes two days and participants
can obtain certification of Professional Scrum Master I after successful passing of
assignment at the end of the course.

Table 3.3: L i s t o f se lec ted S C R U M courses t h a t a re ava i l ab le o n w e b page
scrum.cz. (Source: scrum.cz [11])
Name of the course

Duration of the
course [days]

Price of the
course [Kc/person]

Who should
Certification

Professional Scrum
Master I 2 27 000

Scrum Team members,
Scrum Masters,

and people involved in
agile product development

Professional Scrum
Master I

Professional Scrum
Master II 2 27 000

Scrum Masters with experience
of at least one year,

that have a good understanding
of a Scrum Framework and want

to deepen their knowledge

Professional Scrum
Master II

Professional Scrum
Product Owner 2 27 000

Product Owners and product
managers, Scrum Masters who

want to obtain a better understanding
of the Product Owner role

Professional Scrum
Product Owner I

Applying Professional
Scrum 2 21 000

Teams that are starting with
the S C R U M or teams that want

to strengthen their
S C R U M knowledge

Professional Scrum
Master I

Cost of the project members' labour
Because of the fact that the company is not publishing salaries of the employees, this
financial evaluation uses average salaries for a specific job in the Czech Republic which
are more detailly explained in separate subsection 3.2 and which are summarized in
the table 3.2.

When we compare team structure in the current state of project 2.4 and the
structure described in this proposal 3.1, there are two additional team members in
the proposed solution. In concrete, there are two new employees in the role of Scrum
Masters, if we expect that four employees that are in roles of Scrum Masters at the
current state of the project wi l l be reallocated for the positions of Team Leaders.

This if we wi l l take into consideration the average salaries listed in table 3.2, there
wi l l be two new employees wi th a monthly gross salary of 70 650 K c . Paying this
gross salary to two employees costs the company in total 247 580 K c per one month.
Which is 2 970 960 K c per year if we don't count bonuses or other benefits that
could be reflected within the costs. Thus, the conclusion can be that application
of the proposed solution wi l l raise the fixed costs of the company approximately by
2 970 960 K c annually.

71

http://scrum.cz
http://scrum.cz

Costs of employees' education
The costs related to the education of employees in the theory of S C R U M methodol­
ogy wi l l have a one-time character and wi l l be spent at the beginning of the process
of proposal implementation into the project environment. The main part of these
costs wi l l be taken by courses, that are terminated by the final assignment. In case of
participant's success in this assignment, he or she wi l l obtain official S C R U M certifi­
cation. A list of the particular courses that are relevant for this financial evaluation
is summarized in table 3.3.

This part of the proposal contains three variants of employees' education. The
first variant focuses on the saving of resources 3.2. The second variant provides a
compromise between cost-cutting and retraining of all employees 3.2. The last variant
aims at the education of all employees without a focus on costs 3.2. A l l variants are
summarized within the table 3.4.

V a r i a n t A

Since all employees which are in the roles of Product Owners in the current state of
the project already passed the course, there is no need to retrain them again. Also,
we can expect that new employees that wi l l take two newly introduced positions
of Scrum Masters wi l l be already educated and certified for this role what implies
that the firm can save on costs of their training. Thus, only Developers are project
members without any official S C R U M courses. Training of the developers can be
done internally without their attendance of the courses provided by external firms.
Scrum Masters wi th the assistance of Product Owners can prepare a training session
for them. It is necessary to mention that training provided by official trainers, which
are specialized in this, and which have experience wi th training of others, reach the
better quality than internal training. After implementation of this variant, all Scrum
Masters wi l l have certification 'Professional Scrum Master I', Product Owner wi l l
have certification 'Professional Scrum Product Owner I' and all developers wi l l have
internal training. Team Leaders which are in the current state of the project in the
role of the Scrum Masters have also the certification of 'Professional Scrum Master
I'.

So, if we wi l l estimate the duration of this k ind of internal training to two working
days, which is the same duration as the length of official courses, which wi l l be led
by Scrum Masters and Product Owners for Developers, the costs of this educational
process wi l l be approximately 306 068 K c . This amount was calculated by summa­
rization of the costs of salaries from the table 3.2. There are included costs of salaries
for two working days of two Product Owners, two Scrum Masters, and thirty-two De­
velopers (it is an average number of Developers if there are four Development teams,
and each consists of 6 to 10 employees).

V a r i a n t B

This variant is a compromise between the focus of cost-cutting and training of all
team members. In this variant, only team members without official certification which

72

was obtained after the official course wi l l be educated. In the current state, only the
developers don't have official certification. This implies that Product Owners, Scrum
Masters, and Team Leaders of the proposed solution are already certified. So, there
are four Development teams that have from 5-9 Developers (we do not count Team
Leaders). Therefore, Developers can attend a course called 'Apply ing Professional
Scrum' described in section 3.2 and motioned in the last row of table 3.3. After
successful passing of this course, all Developers should be certified with the certifi­
cation called 'Professional Scrum Master I'. After this, all S C R U M team members
wi l l be certified. In concrete all Developers, Team Leaders, and Scrum Masters wi l l
have at least certification 'Professional Scrum Master I' and Product Owner wi l l have
certification 'Professional Scrum Product Owner I'.

Costs of this variant can be divided into two categories, the first one includes
costs of the courses and the second involves costs of the employees' salaries that wi l l
be played to them during the presence on S C R U M courses. Costs of the courses wi l l
be 588 000 K c which reflects the cost of the mentioned course which is 21 000 K c
per person, and the number of developers which is on average 7 Developers in four
teams. Costs of the salaries, using data from table 3.2 and considering the number
of Developers and course duration, wi l l be 229 600 K c . So, this variant wi l l cost in
total 817 600 K g .

Table 3.4: T h r e e va r i an t s o f emp loyees ' e d u c a t i o n , t h e i r d e s c r i p t i o n , poss i ­
b l y o b t a i n e d ce r t i f i ca t ions , a n d t h e i r costs . (Source: Own creation)

Variant Description

Scrum Masters, Team Leaders,
and Product Owners already have certification
Developers will take an internal course
held by Scrum Masters and Product Owners

Scrum Masters, Team Leaders,
and Product Owners already have certification
Developers will take an official course
named Applying Professional Scrum

Scrum Masters and Team Leaders will
have Professional Scrum Master I certification
Product Owners will have Professional Scrum
Product Owner I certification
Developers will have internal training
without any certification
Scrum Masters, Team Leaders, and Developer
will have Professional Scrum Master I certification
Product Owners will have Professional
Scrum Product Owner I certification

306 068 Kc

817 600 Kc

Developers will take an official course
named Applying Professional Scrum
Scrum Masters will take an official course
named Professional Scrum Master II
Product Owners will take an official course
named Professional Scrum Product Owner I

Team Leaders and Developers will have
Professional Scrum Master I certification
Scrum Masters will have Professional
Scrum Master II certification
Product Owners will have Professional
Scrum Product Owner I certification

1 086 068 K c

V a r i a n t C

This variant is the most expensive one. It proposes the education of all team members
by the attendance of official courses without any consideration of their certification
ownership. The goal is the presence of the official certification for all employees
and the renewal or strengthening of their S C R U M knowledge by participating in the
course. A t the end of this educational process of this variant, each Developer (includ­
ing Team Leaders) wi l l be certified wi th the official certification 'Professional Scrum
Master I', each Scrum Master wi l l own 'Professional Scrum Master II' certificate, and
both Product Owners wi l l have 'Professional Scrum Product Owner I' certificate.

73

Costs of this variant wi l l again be the sum of two parts, costs of courses, and costs
of salaries. Courses wi l l cost 672 000 K c for the education of Developers, 54 000 K c
for the training of Scrum Masters, and 54 000 K c spent on the courses for Scrum
Masters. This makes in total 780 000 K c for the courses. The cost of the salaries for
all mentioned employees spend on the two days course wi l l be 306 068 K c . This the
most expensive variant wi l l therefore cost in total 1 086 068 K c .

3.3 Benefits of the proposed solution
Implementation of the proposed solution describe within this chapter 3, that aims at
the application of S C R U M methodology on a software development project should
result in the following benefits:

• C u s t o m e r s ' r e q u i r e m e n t s - because of the fact that Product Owners are not
executing any Backlog tasks in the proposed solution, and they are focused on
the maximization of the product value and management of the Product Backlog,
this wi l l bring the benefit of more flexible reaction to changes in customers'
requirements. Also, this wi l l also improve the quality of customer requirements
specification.

• P l a n n i n g a n d d e l i v e r y - proposed changes are promoting an empiricist ap­
proach in which Developers are estimating the time constraint of the tasks based
on their experience. The procedure of planning also empowers Developers to
decide what wi l l be delivered and more focus is put on the Definition of Done.
This wi l l make the process of planning more efficient which wi l l be reflected
in more accurate delivery in terms of the deadlines meeting and requirements
fulfilment.

• P r o d u c t ' s q u a l i t y - there are several intentions of the proposal which should
positively affect quality of the product. More effort spent on the customers'
requirements wi l l transform into the functionality that wi l l fulfil the purpose
of the product on a higher level. Improvement of the planning process means
that Developers wi l l have more time to analyse and implement product changes.
Also, fact that team members wi th the broadest technical and product-related
knowledge wi l l be deprived of non-technical tasks wi l l empower the technical
state of the product. Besides these factors, there are several less significant
factors that wi l l all together end up in the product quality increase.

• C u s t o m e r s ' t r u s t - quicker and more flexible reaction to the customers' re­
quirements on time delivering and better quality of the delivered product wi l l
strengthen the relation that customers have towards the product and the com­
pany that is selling the product.

• W o r k f l o w i m p r o v e m e n t - a superior division of the responsibilities among
the team members, as well as a better structure of sprint wi th better planning,
should bring more organization to the process of the product development.

74

Particular roles wi l l execute only tasks that they have competencies for, and
the tasks wi l l be correctly specified and assigned to the teams. Self-organization
of the teams, which is also the goal of the described proposal should boost the
motivation of the team members. Changes in the Retrospective wi l l help to
erase impediments for the working process.

• T e a m m e m b e r s ' g r o w t h - the proposed solution should transform the team
environment into more open in terms of team members' personal realization.
This means that they wi l l have more opportunities to bring up their ideas and
proposals, they wi l l have more responsibilities as well as they wi l l be able to
learn from each other. This wi l l positively affect their soft skills as well as
technical knowledge and hard skills in general.

• P r o c e s s eff ic iency - wi th the better assignment of the accountabilities, well-
defined structure of the Sprint, strict agenda of the events, and correctly de­
signed artifact, the whole process of the product development benefits in more
effective usage of all resources such as financial resources, human resources,
time capacities, and hardware resources, and so on.

A t the top of all benefits summarized above, there is a financial benefit that is
the most important for all kinds of business. B y the application of the S C R U M
methodology, the company wi l l optimize the process of the product development on
the observed project, which wi l l encounter al l benefits named in this section. The
existence of all these benefits wi l l result in better economical profits of the project.

75

Conclusion

The goal of the thesis is an application of S C R U M methodology on a software devel­
opment project in order to optimize the working process.

In the theoretical part of the work, there was described software development life
cycle and its phases. This explanation was followed by a description of traditional
models of software development life cycle. In particular, there were introduced four
traditional software development models - Waterfall Model , Iterative Model , Spiral
Model , and V - M o d e l . Each section contains short description of the model, graphical
illustration of the model and several pros and cons of the model. In the second
half of the theoretical chapter, a closer look was taken at agile software development
life cycle models. Crystal , Extreme Programming, Lean Software Development, and
Kanban were briefly described and then, their advantages and disadvantages were
highlighted. This was followed by a more detailed explanation of the S C R U M . Here
the focus was put into the definition of the S C R U M principles, all its roles, existing
events of the S C R U M , and its artifacts.

The chapter containing analysis of the contemporary situation was opened by the
introduction of the company in which is observed project located. Introduction of
the company incorporates information about the company location, list of sectors
in which its products are used, number of employees and so on. This section also
contains insight into the company's organizational structure. Then the project on
which should be S C R U M applied was introduced. There was formulated what is the
project from this thesis point of view. There was also a description of the teams on the
project, product developed within the project, stakeholders of the project, activities
incorporated into the project, etc. The next section describes the process of product
development and its phases from a detailed perspective. Each phase has its inputs
and outputs, and each role of the project has its specific task among the phases. The
roles existing within the project were analysed afterward and their responsibilities
towards the task within the development process were mapped. Also, events of the
process and artifacts used within the process were evaluated and the whole analysis
was closed by the summarization of what needs to be adjusted to correctly apply
S C R U M methodology to the project.

W i t h i n the proposal of the solution, a new team structure was defined at the
beginning of the chapter. Then each role of the new team structure was comprehen­
sively described and responsibilities towards the tasks of the process were correctly
assigned to the roles. Then adjustment of the Sprint and its evets were provided.
Also, artifacts of the development process and their changes were included in the
proposal. This was followed by a financial evaluation of the proposed solution, which

76

was based on the summarization of available educational courses ad their prices as
well as costs of the project members' labour. The evaluation concluded that the
fixed costs of the company wi l l be increased approximately by 2 970 960 K c annually
which reflects the proposed change of the team's structure. Evaluation of the costs
of employees' education was provided in three different variants. The first variant
which is the most cost-saving one requires a one-time investment of 306 068 K c . The
second variant would cost 817 600 K c , and the last and the most expensive form of
the employees' education was evaluated to price 1 086 068 K c . The end of the pro­
posal highlights the benefits of the proposed solution which are expected in several
areas and which all should be reflected in better economical profits of the project.

77

Bibliography

[1] ©2008-2021 Glassdoor Inc.: glassdoor.com. [Online; visited 12.4.2021].
Retrieved from: https://www.glassdoor.com/

[2] ©2008-2021 SonarSource S.A: SonarQube. [Online; visited 12.3.2021].
Retrieved from: https://www.sonarqube.org/

[3] ©2011-2018 www.javatpoint.com: Software Engineering Tutorial. [Online;
visited 18.2.2021].
Retrieved from:
https: //www.j avatpoint.com/software-engineering-tutorial

[4] ©2020 S C H W A B E R Ken; S U T H E R L A N D Jeff: The Scrum Guide. [Online;
visited 18.2.2021].
Retrieved from: https://scrumguides.org/

[5] ©2021 Atlassian: Confluence. [Online; visited 12.3.2021].
Retrieved from: https://www.atlassian.com/software/confluence

[6] ©2021 Atlassian: Jira Software. [Online; visited 12.3.2021].
Retrieved from: https://www.atlassian.com/software/jira

[7] ©2021 Atlassian: Retrospective. [Online; visited 12.4.2021].
Retrieved from:
https: //www.atlassian.com/team-playbook/plays/retrospective

[8] ©2021 Gerrit: Gerrit Code Review. [Online; visited 12.3.2021].
Retrieved from: https://www.gerritcodereview.com/

[9] ©2021 I D G Communications, I.: CIO from IDG. [Online; visited 12.4.2021].
Retrieved from: https://www.cio.com/

[10] ©2021 Scrum.org: Scrum.org - The Home Of Scrum. [Online; visited 18.2.2021].
Retrieved from: https://www.scrum.org/

[11] ©2021 T A Y L L O R C O X : scrum.cz. [Online; visited 12.4.2021].
Retrieved from: https://www.scrum.cz/

[12] ©2021 Tutorials Point: SDLC Tutorial. [Online; visited 18.2.2021].
Retrieved from: https://www.tutorialspoint.com/sdlc/index.htm

78

http://glassdoor.com
https://www.glassdoor.com/
https://www.sonarqube.org/
http://www.javatpoint.com
http://www.j
http://avatpoint.com/software-engineering-tutorial
https://scrumguides.org/
https://www.atlassian.com/software/confluence
https://www.atlassian.com/software/jira
http://www.atlassian.com/team-playbook/plays/retrospective
https://www.gerritcodereview.com/
https://www.cio.com/
http://Scrum.org
http://Scrum.org
https://www.scrum.org/
http://scrum.cz
https://www.scrum.cz/
https://www.tutorialspoint.com/sdlc/index.htm

[13] ©2001 B E C K et al.: Manifesto for Agile Software Development. [Online; visited
18.2.2021].
Retrieved from: https: //agilemanif esto.org/iso/en/manif esto.html

[14] Conservancy, S. F . : Git -fast-version-control. [Online; visited 12.3.2021].
Retrieved from: https://git-scm.com/

[15] M Y S L I N , J . : Scrum: průvodce agilním vývojem softwaru. Brno: Computer
Press. 2016. I S B N 978-8-251-4650-7.

[16] Výpočet .cz: Výpočet čisté mzdy v roce 2021. [Online; visited 12.4.2021].
Retrieved from: https://www.vypocet.cz/cista-mzda

[17] ŠOCHOVÁ, Z.; K U N C E , E . : Agilní metody řízení projektů. Brno: Computer
Press. 2014. I S B N 978-8-251-4194-6.

7!)

http://esto.org/
https://git-scm.com/
https://www.vypocet.cz/cista-mzda

Appendices

80

List of Figures

1.1 T h e Sof tware D e v e l o p m e n t L i f e C y c l e a n d i ts phases . (Source:
Own Creation) 6

1.2 T h e W a t e r f a l l m o d e l o f S D L C . (Source: Own Creation) 8
1.3 T h e I t e r a t i v e m o d e l o f S D L C . (Source: Own Creation) 10
1.4 T h e S p i r a l m o d e l o f S D L C . (Source: Own Creation) 11
1.5 T h e V - m o d e l o f S D L C . (Source: Own Creation) 13
1.6 C r y s t a l m e t h o d s a n d t h e i r d i s t r i b u t i o n a c c o r d i n g to t he n u m ­

be r o f peop le i n v o l v e d i n t he p ro j ec t . (Source: Own Creation) . 16
1.7 S e v e n p r i n c i p l e s o f L e a n Sof tware D e v e l o p m e n t . (Source: Own

Creation) 19
1.8 E x a m p l e o f K a n b a n b o a r d . (Source: Own Creation) 20
1.9 S c r u m T e a m . (Source: Own Creation) 23
1.10 S c r u m events . (Source: O w n Creation) 25

2.1 S i m p l i f i e d o r g a n i z a t i o n a l s t r u c t u r e w i t h focus o n B r n o d i v i ­
s ion . (Source: Own Creation) 32

2.2 E P C d i a g r a m o f the process o f p r o d u c t d e v e l o p m e n t . (Source:
Own Creation) 35

2.3 T h e t e a m s t r u c t u r e o f t he p ro j ec t . (Source: O w n Creation) . . . 44

3.1 P r o p o s e d t e a m s t r u c t u r e o f t he p ro j ec t . (Source: Own Creation) 58
3.2 S p r i n t a n d i ts events . (Source: Own Creation) 65

81

List of Tables

2.1 R A C I m a t r i x s u m m a r i z i n g roles o f t he d e v e l o p m e n t process
a n d t h e i r r e s p o n s i b i l i t i e s a c c o r d i n g to t he tasks w i t h i n the
process . (Source: Own Creation) 48

3.1 R A C I m a t r i x c o n t a i n i n g p r o p o s a l o f roles o f t he deve lop ­
m e n t process a n d t h e i r r e s p o n s i b i l i t i e s a c c o r d i n g to t he tasks
w i t h i n t he p rocess . (Source: Own Creation) 64

3.2 T a b l e o f the m o n t h l y sa lar ies o f t he p a r t i c u l a r p ro j ec t roles
a n d t h e i r costs for e m p l o y e r . (Source: glassdoor.com [1], vypocet.cz [16]) 70

3.3 L i s t o f se lec ted S C R U M courses t h a t are ava i l ab le o n w e b
page scrum.cz. (Source: scrum.cz [11]) 71

3.4 T h r e e va r i an t s o f e m p l o y e e s ' e d u c a t i o n , t h e i r d e s c r i p t i o n , pos­
s i b l y o b t a i n e d ce r t i f i ca t ions , a n d t h e i r costs . (Source: Own
creation) 73

82

http://glassdoor.com
http://vypocet.cz
http://scrum.cz
http://scrum.cz

