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Abstrakt 
D y n a m i k a ú h o z ů kláves je jednou z behav io rá ln í ch b iome t r i ckých charakteristik, kterou 
je m o ž n é p o u ž í t pro p r ů b ě ž n o u autentizaci už iva te lů . Vzhledem k tomu, že s ty l p san í 
na klávesnici se v čase měn í , je p o t ř e b a rovněž upravovat biometrickou šab lonu . T í m t o 
p r o b l é m e m se dosud, a lespoň pokud je autorovi z n á m o , ž á d n á studie nezabýva la . Tato 
d ip lomová p r á c e se pokouš í tuto mezeru zaplnit . S p o m o c í dat o časování ú h o z ů od 22 do­
brovoln íků bylo o t e s t o v á n o několik technik klasifikace, zda je m o ž n é je upravit na online 
klasifikátory, zdokonaluj íc í se bez uči te le . V ý r a z n é zlepšení v r o z p o z n á n í ú t o č n í k a bylo 
z a z n a m e n á n o u j e d n o t ř í d o v é h o s t a t i s t i ckého klasif ikátoru za loženého na n o r m o v a n é Euk­
lidovské vzdá lenos t i , v p r ů m ě r u o 23,7% prot i p ů v o d n í verzi bez adaptace, z lepšení však 
bylo pozo rováno u všech t es tovac ích sad. Z m ě n a m í r y r o z p o z n á n í s p r á v n é h o už iva te le se 
oproti tomu různi la , avšak s tá le zůs t áva l a na p ř i j a t e lných h o d n o t á c h . 

Abstract 
Keystroke dynamics is one of behavioural biometric characteristics which can be employed 
for continuous user authentication. A s typing style on a keyboard changes i n time, the 
template adapting is necessary. N o study covered this topic yet, as far as the author knows. 
This master thesis tries to fill this gap. Several classification techniques were exercised 
wi th help of keystroke data from 22 volunteers i n order to test i f they can be improved 
to unsupervised online classifiers. A significant improvement i n impostor recognition was 
noted at one-class statist ical classifier based on normed Eucl idean distance. The impostor 
could make 23.7% actions less than i n offline version on average but the improvement was 
obseved wi th a l l test sets. In contrary, the genuine user recognition varied from user to user 
but it s t i l l kept at acceptable values. 
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Chapter 1 

Introduction 

W h e n discussing biometric characteristics, many people understand the physiological bio­
metrics only. Tha t includes fingerprints, iris scans, face recognition, etc. However, there are 
also behavioural biometric characteristics, such as a signature, speech, a gait or computer 
usage manners [16, 13]. 

For many years biometrics has been used to verify the user's identity in order to allow 
access to a system or not. This approach is usually referred to as static authentication. Once 
the user is logged i n the static authentication system, he is not asked to re-authenticate 
himself any more. If we consider a computer system, no re-authentication may result in 
a security breach since the running session might remain unlocked (e.g. the user forgets to 
lock it when leaving, he loses his mobile device, etc.) and an impostor can use the device 
wi th the genuine user's identity. 

The continuous authentication1 is a much younger discipline. It studies how to recognise 
if the user working wi th a system is s t i l l the same person. The continuous authentication 
system should run in the background, preferably without being notified by the working 
user. However, i f it evaluates the working person changed, it has to lock the screen and 
force the person to re-authenticate w i t h a k ind of static authentication method (e.g. w i th 
a password). That implies the biometric system must be designed so that it can operate 
without user's intervention. If the system is to be deployed easily, it should also require no 
special hardware. [2, 44] 

A s the authentication system is running i n the background, one should also look after its 
speed. In order to allow comfortable work, the system should not slow down the computer, 
thus it needs to be computat ional ly effective. 

The stated constraints eliminate most of the physiological characteristics 2 and require 
usage of common hardware input devices only. In the current research, these devices are 
mainly represented by a keyboard, a mouse and a web camera. Equ ipped w i t h that, 
keystroke dynamics, mouse dynamics and face recognition can be performed. 

This work focuses on the keystroke dynamics ( K D ) . A lot of research on its usage for 
static biometrics has been performed, usually as an addi t ional authentication factor to the 
t radi t ional method of login w i th a username and a password. However, only few studies 
concerned employing K D i n continuous biometric systems. 

A biometric system captures a biometric sample from an ind iv idua l and compares it 
w i th the reference template created earlier, dur ing the enrolment phase. A s keystrokes 

1 Also referred to as continuous verification [44] or dynamic analysis. [13] 
Some trials with physiological characteristics for continuous authentication in computer systems were 

also performed, e.g. a fingerprint scanner placed on a mouse. [9] 
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represent a characteristic w i th low permanence (since the user can get better i n typing or 
can suffer an injury), the template should change i n t ime as well . Per iodic re-enrolment in 
order to update the template is uncomfortable for the user. D y n a m i c reference adaptation 
would represent a better way. Unfortunately, there is no research concerning this problem, 
as far as the author knows. Therefore the research question is set: 

Is it possible to adjust the template during the authentication phase in a con­
tinuous keystroke dynamics system? How does it differ for various classifying 
methods? 

To answer this question, 22 participants collected their keystroke data to be analysed 
later. Mos t participants collected tens of thousands keyboard events. The data were used 
for s imulat ing data from one user as genuine and the rest as impostor. 

Work organising 

The rest of work is organised as follows. 
Chapter 2 introduces the reader in the authentication using biometric methods. It ex­

plains terms biometric system, biometric method and sets conditions for choosing biometric 
features. 

Continuous authentication builds on biometric methods. Chapter 3 describes how to 
authenticate a user i n continuous setting, i.e. in s i tuat ion he or she is not aware of be­
ing authenticated. It discusses how to bu i ld dynamic template and how to evaluate such 
samples. 

In Chapter 4, the findings from Chapters 2 and 3 are applied to the keystroke dynamics, 
one of the behavioural biometric characteristics. Several approaches proposed by various 
researches are presented, w i th respect mainly to the choice of features and classification 
methods. 

Chapter 5 is about gathering data from users. It reviews several capturing tools and 
publ ic ly available databases and selects one, B e L T , for data collecting. B e L T ' s capabil­
ities and drawbacks are described more thoroughly. Process of seeking participants and 
explaining their task is also delineated. 

Next chapter describes processing the collected data. It includes filtering, transforming 
to P y t h o n data structures, extracting the significant features and packing them so the 
feature extraction can be skipped in later times. 

The possible classifiers themselves are elaborated in Chapter 7. The chapter starts 
wi th an introduct ion to machine learning terminology and s c i k i t - l e a r n l ibrary. Several 
classifiers are outl ined together w i th proposals how to make them learn continuously. 

The last chapter describes observed results w i th different classifiers and settings. 
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Chapter 2 

Biometric-based authentication 

Nowadays, the pr ivacy becomes a more and more demanded feature in computer systems. 
In most of the systems, users can work wi th in isolated sessions and they have to authenticate 
themselves prior to enter the session, e.g. w i th a combination of a username and a password. 

The authentication system can generally use one or more of the following authentication 
factors (or authenticators): 

1. what the user knows - knowledge-based, 

2. what the user possesses - token-based, 

3. who the user is - ID-based. 

Let us now look at the factors more i n deep. 

1) Knowledge-based The easiest and s t i l l widely used authentication methods are based 
on some information that the user remembers. The information is most often a password, 
a passphrase or a P I N code. This group contains also an "obscure" information related to 
the person that is secret to most people, such as the user's favourite colour or his mother's 
maiden name [ ]. 

2) Token-based Those methods are based on something the user physically possesses 
- which is called a token. Th is category includes smart-cards, one-time key generators or 
metal keys. The major drawback of token-based authenticators is that they can be lost or 
stolen. If the token is used as the only authenticator, an impostor is able to authenticate 
himself only wi th the token. To overcome that, the token-based methods often cooperate 
wi th another factor, such as addi t ional P I N code or a password. 

3) ID-based The last authentication factor group contains authenticators, which are 
unique for the user. Usually, biometrics is considered as an ID-based authenticator, how­
ever, documents unique for the person such as a dr iv ing license or a passport fall into this 
category too. The major advantage of the ID-based methods lies in the security, since it 
"cannot rely on secrecy, but instead on the difficulty of replicating it." [ ] However, when 

they are compromised and replicated, their replacement is difficult. 
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Figure 2.1: B lock diagram of a biometric system. 

Biometric characteristic Biometric characteristics are measured from unique phys­
ical , chemical or behavioural human attributes, which are usually called traits, indicators, 
identifiers or modalities. The biometric-based authentication has many advantages over 
the previous two categories. It is something natural and therefore the user needs not look 
after i t . A biometric characteristic is much more difficult to fake and it cannot be lost, 
stolen or shared. A s Ja in and Ross [17] mention, the biometric-based authentication offers 
two more advantages over knowledge-based and token-based systems: 

• Negative recognition can prevent a single person from using more identities. Th is 
identification5 capabil i ty is useful for welfare benefits or any other systems where 
nobody should be able to get the benefit twice (even under different names). 

• Non-repudiation can log the user's activities and prove his responsibili ty for the per­
formed actions later. 

2.1 Biometric system 

A biometric system consists basically of several bui ld ing blocks. The number of blocks 
varies i n the literature, but they can be generalised i n five blocks. The system design is 
shown i n Figure 2.1. A s it is, in fact, a pattern recognition system (although it does not 
perform exact comparison and rather produces a comparison score, as w i l l be shown later), 
it is predetermined to contain a reference pattern database and a comparing module. To 
acquire biometric data, the system also consists of a sensor module and a feature extraction 
module. The latter one also takes care of the sample quali ty before extracting the features. 

2.1.1 O p e r a t i o n a l modes 

Pr ior to describing the ind iv idua l bui ld ing blocks of a biometric system, its operational 
modes are presented. F i rs t , users must enrol in the system before they can use i t . After 
that, the system can operate identification or verification mode. [ ] Those modes differ 
from each other not only in the number of comparisons against the reference database, but 
also i n the sui tabi l i ty for continuous authentication. 

3 The term identification is explained in Section 2.1.1. 
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Enrolment A user has to be enrolled i n the authentication system before he can use it. 
The condit ion holds for a biometric-based system as well . Dur ing the enrolment phase 4 , the 
system extracts features from the acquired samples for each user and creates their reference 
records (in the later text also referred as the user's template). Those are then stored i n the 
database, alongside some personal information about the user. 

In order to create a representative template, more input samples may be required. [I ] 
The data capturing may be also supervised by a human, who verifies the user's identity and 
guaranties genuineness of the template. The template is validated against different dataset 
of the same user before it is released for authentication. The purpose of this addi t ional step 
is to ensure smal l mira-class distance or to set personal threshold r\. 

Identification In the identification mode, the system performs one-to-many comparison 
between the acquired sample and al l the records i n the reference database i n order to find the 
most similar records to the sample. Th is mode is used only i n static authentication systems, 
mainly for physiological biometric features. A s such, identification can play a big role in 
forensics. Searching the whole database brings also the capabil i ty of negative recognition 
(as discussed i n the introduct ion of this chapter), which helps to prevent double dipping5. 

Verification In the verification mode, the system only checks whether the user is the 
one he claims to be. Tha t means, the sample is compared only wi th one user-specific 
database entry and the procedure therefore operates much faster. Accord ing to whether the 
verification is performed statically (while proving the claimed identity) or dynamical ly (by 
monitor ing whether the user is s t i l l the same person), we distinguish static and continuous 
verification. 

Since it is impossible to perform a continuous identification, the continuous biometrics 
is usually understood as a synonym of continuous verification [ ]. For that reason, ver­
ification is the operational mode this thesis focuses on. A l l the samples are compared to 
a single template, which determines that each user's template can use different weights for 
part icular traits. 

2.1.2 S y s t e m o p e r a t i o n 

In the next few paragraphs, the five basic bui ld ing blocks of a biometric system are de­
scribed. The diagram of their operation is shown i n Figure 2.1. It is also explained how 
their operation depends on the current operation mode. 

Sensor module The sensor module works as a mediator between the biometric system 
and the user. The module is usually realised as a special piece of hardware. However, 
sometimes common hardware can be used, for example for behavioural biometrics. Speed 
of the sensor module is essential for the overall system speed. 

Pre-processing Before extracting features, the sample is verified i n order to be suitable 
for further processing. Qua l i ty of the data may be improved, e.g. noise can be removed. 
However, sometimes the sample is so poor that the user must provide the data again. 

4 Sometimes also referred to as learning or training phase, especially in connection with machine learn­
ing-based systems. 

5 Encyclopedia of Biometrics [23] characterises the double dipping as "the unethical act of seeking com­
pensation, benefits, or privileges from one or more sources, given only a single legitimate entitlement." 
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Feature extraction In this module, the biometric data is processed and discriminatory 
information is extracted. The extracted set of features, referred to as the user's template, 
should evince smal l intra-class and large inter-class distance. Another reason for simplifying 
is to reduce dimensionality. The proper choice of features to extract influences the perfor­
mance of matching module i n a large manner. Therefore the features should be selected 
wi th respect to the matching algori thm. 

Comparison & decision modules The comparing module compares incoming set of 
features (extracted from the acquired sample) w i th the template stored i n the database. 
Generally, the comparison is made not only i n verification (one-to-one comparison) and 
identification (one-to-many comparison) modes, but also during the enrolment phase, in 
order to ensure that the user is not enrolled i n the system yet. In fact, the comparing 
module works i n the identification mode during the enrolment. A s a biometric feature is not 
completely stable i n time, the matching algori thm does not perform the exact comparison. 
Instead, the comparing module generates a comparison score and lets the decision module 
to evaluate i t . In the verification mode, the modules validate the claimed identity. In the 
identification mode, a list of candidate identities is returned or the sample is rejected when 
no match is found. 

Database The system database acts as a storage for users' templates along wi th some b i ­
ographic information such as name, address, username or P I N . The templates are extracted 
and saved during the enrolment phase. Dur ing the recognition phase, bo th in identification 
and verification mode, the templates are passed to the comparing module to be compared 
wi th the current sample. 

2.2 Biometric methods 

Various biometric modes 6 are commonly used for user authentication. In this section, 
the cri teria for proper choosing the method are discussed. A s this work focuses on the 
continuous authentication on computers, some methods which are usable for that purpose 
w i l l be briefly introduced as well. 

2.2.1 B e h a v i o u r a l m e t h o d s 

Al though majori ty of researchers in the area of biometrics are interested i n physiological 
modes, such as fingerprints, iris scans, voice recognition, etc., the behavioural modes de­
serve at least the same attention. The behavioural biometric characteristics evince higher 
variance, but they can be favourably used in a smaller circle. 

A s behaviour is rather a long-term process, behavioural biometrics ( B B ) is predeter­
mined to be used in continuous verification. In computer use, keystroke dynamics, mouse 
dynamics or software interaction (such as e-mail behaviour, G U I interaction or program­
ming style) can be counted in behavioural characteristics. Besides that, many motor skills 
(gait, l ip movement, signature recognition) can be classified as behavioural characteristics 
as well . 

Yampolsk iy and Govindara ju [ ] published an extensive survey on behavioural biomet­
rics, concerning many different behavioural characteristics (even very rare) and compared 

6 According to [15], the mode is denned as a "combination of a biometric characteristic type, a sensor 
type and a processing method." 
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them. They pointed out that almost every aspect of human behaviour can be used as a ba­
sis for personal profiling and many of them also for biometric verification. The behaviour 
profiling is already being employed i n web-usage analysis, t racking down shopping manners 
or customising user interface. Several experiments were also performed to show that B B 
are suitable for continuous verification. 

2.2.2 Fea ture sui tabi l i ty 

Not a l l traits are equally convenient for biometric recognition use. J a in et a l . [16] introduced 
seven aspects which should be considered when choosing the method. Yampol sk iy and 
Govindara ju [ ] extended their explanation for behavioural biometrics. 

1. Universality: Every user of the system should possess the trai t . A l though the 
universality of behavioural characteristics is low i n the populat ion, it is high enough 
for the applicable domains. 

2. Uniqueness: The trait should be unique i n the set of users of the system and should 
evince smal l intra-class and large inter-class distance. The behavioural features are 
expected to show larger intra-class distance. They are s t i l l unique enough for verifi­
cation, but it is difficult to identify an ind iv idua l from his behaviour. 

3. Permanence: The modal i ty should be sufficiently stable i n t ime. A s a user can 
learn new ways of accomplishing tasks, the permanence of his behavioural character­
istics is low. Therefore the template should be periodical ly updated to overcome this 
drawback. 

4. Measurabil i ty (also collectability): It should be easy to acquire and process the 
trait . Computer input devices handle this problem easily and without obtruding the 
user, who sometimes does not even notice capturing the data. 

5. Performance: Th is property encapsulates the recognition accuracy which hugely 
varies according to the operational mode. For verification, the performance is usually 
high enough even for B B , however, it depends on the observed characteristic i n the 
identification mode. 

6. Acceptabil ity: The capturing method should be unobtrusive for the user. To pro­
vide an example, the footprint-based biometrics is proven to be usable as a biometric 
mode [33], but we can hardly expect Europeans to take off their shoes to be scanned. 7 

Behavioural characteristics, as usually collected without the user cooperation, evince 
high acceptability, but might be disapproved for ethical or privacy reasons [ ]. 

7. Circumvention: The effort for imi ta t ing the trait should be very high to prevent 
obfuscating the system. B B systems are very difficult to circumvent, since it is difficult 
to get to know someone's behaviour and imitate i t . 

7 The authors of the research meant footprint-based biometrics for usage in Japanese environment, where 
taking off the shoes is a common habit when entering the dwelling. 
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2.2.3 U s i n g c o m p u t e r i n p u t devices 

In biometric systems common hardware can be uti l ised as a sensor module in applications 
in the personal computer. A l though special hardware can be used for the login procedure, 
such as a fingerprint scanner, only the methods which can perform continuous verification 
w i l l be discussed in this work. Nowadays, most of the research on this topic revolves around 
computer-related behaviour - typing keyboard or point ing wi th mouse. However, contin­
uous verification based on physiological biometrics is also possible, as w i l l be shown later. 
A s far as the author knows, no commercial product for continuous biometric authentication 
exists. 

Let 's now look at the three most significant methods. 

Keystroke dynamics The keystroke dynamics biometrics is based on the way a user 
types. A computer keyboard is used as a sensor module. The signal from the keyboard 
is processed by the operating system (OS) that extracts low-level keyboard events - the 
key-down and the key-up events. The feature extraction module transforms a sequence 
of the low-level events to the sequence of features, which usually include t imings of single 
keystrokes and digraphs 8 . However, some researchers [8, 25, 43] wanted to utilise the 
advantage of wider context and include also n-graphs (n > = 3) or whole words i n the 
template. Such an approach, however, has one large drawback for pract ical use - a huge 
amount of data is required for a user to enrol. The whole Chapter 4 is dedicated to the 
topic of the keystroke dynamics. 

Mouse dynamics Us ing mouse (and point ing devices in general) movements for biomet­
ric recognition is a subject of study for much shorter t ime than the keystroke dynamics. It 
is obviously caused by expanding usage of point ing devices for controll ing the computer. 
Dur ing the continuous authentication, the low-level mouse events data is being collected 
from the O S . Unl ike keystroke dynamics, the low-level mouse events are too detailed to be 
processed directly. Pre-processing of such events is therefore necessary and aggregation is 
also used quite often [ ]. Feher et al . [11] introduced an extensive study on the topic of 
the mouse-based user verification. They included many features i n the template - not only 
movements, but also clicks and composed features such as point-and-click or drag-and-drop. 

Face recognition S i m et al . [ ] proposed a method of mul t imoda l continuous verification 
using a web-camera and a fingerprint scanner placed on a mouse. Performing stand-alone 
face recognition is also possible, but it has to overcome several difficulties including liveness 
detection or different poses and angles of capturing. However, it is usually considered as 
one of the less intrusive methods [26]. 

Summary 

Biometr ic methods are considered ID-based authentication factors. A biometric character­
istic is a unique physical , chemical or behavioural human attribute and is the most difficult 
to imitate from a l l the authentication factors. 

A biometric system is a complex authentication mechanism that collects and processes 
ind iv idua l samples, compare them to a user template stored i n database and based on the 

8 A digraph is an ordered pair of two consequent characters. 
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comparison predicts either the user identity (identification mode) or whether they are who 
they c la im to be. 

Behavioural methods observe specific parts of human behaviour and are suitable for 
authentication as well . However, they evince much smaller precision than physiological 
features and thus the authenticators can use combination of more behavioural traits. 
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Chapter 3 

Continuous biometric 
authentication 

Al though most researchers focus on static biometric recognition, i n some situations it can be 
advantageous to monitor continuously the user's identity. Considering the user is monitor 
continuously, the biometric system has to evaluate a large number of samples in a short 
t ime. Therefore its template has to be simpler than for static biometrics and it should be 
possible to update it regularly. 

Moreover the continuous biometric system should forgive short-term deviat ion from the 
template. Concept of trust handles this problem by maintaining value of trust level which 
expresses rate how much the system believes the user is s t i l l the same person. If the trust 
level drops below pre-set value, the user is locked out. 

3.1 Dynamic template 

The dynamic template is usually understood as a database of biometric features which is 
being updated regularly during the continuous authentication. In contrast to the static 
template, the dynamic one must satisfy several requirements: 

1. The dynamic template must be simple. Compar ing a sample wi th the template is 
very frequent, since every single sample is examined individual ly . Several samples 
can appear every second and they must be processed in a short t ime w i t h as l i t t le 
resources as possible. 

2. It should allow adding new training samples dur ing the run t ime wi th as l i t t le 
overhead as possible. It implies creating a simple procedure that does not need to 
process the whole enrolment dataset again. This is especially important for classifiers 
w i th long enrolment phase, such as neural networks. 

The constraints above require much simpler features than for a static template. For 
example, for the static keystroke dynamics of a single password, the durations of characters 
and latencies between t h e m 9 are usually stored. The durations and latencies are directly 
bound to their positions i n the password. For a password of n letters, such a template 
contains at least 2n — 1 features (n durations and n— 1 latencies). Addi t iona l ly , some other 
features can be included, e.g. overall typing speed. 

9 For the explanation of terms duration and latency see Section 4.1.1. 
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In contrast to that, a dynamic template can consist of a table of durations for every key 
(or a selected subset of the most frequent keys) and a table of latencies between digraphs. 
Of course, the template structure is adapted to the needs of the part icular classifier but 
generally is composed of simpler features than a static template. 

3.1.1 T e m p l a t e adjus t ing m e t h o d s 

A s mentioned before, a typica l way to create a biometric template is to capture the user's 
traits dur ing an enrolment phase. It is possible to divide the template creation into three 
phases: capturing, usage and adjusting. The typica l operation - I w i l l cal l it late adjust­
ment method - keeps the mentioned order. 

However, it is also possible to create the template dur ing the recognition phase, which is 
more meaningful for behavioural biometrics. Let me cal l this approach early adjustment 
method. A s the name suggests, early adjustment method starts the classification wi th 
a template made of very few samples (or even wi th a completely empty template). Dur ing 
the system operation, the template is being adjusted. F r o m the beginning, the system w i l l 
show higher error values (refer to Section 3.3). B u t as the template grows, the system 
gets more and more adapted to the user's behaviour and is not so impacted by negative 
effects dur ing the enrolment such as stress or confusion. The early adjustment method also 
requires less attention from the user. 

3.2 Biometric evaluation 

In static biometrics, a distance metric and a threshold is usually used to evaluate genuine­
ness of a part icular sample. It implies that the genuine user's mistake can cause rejection 
when logging in . Th is quite simple approach does not suit continuous authentication, since 
the user types in a common way and he can make mistakes. Therefore, Bours [6] introduced 
the concept of trust to overcome that problem. 

3.2.1 C o n c e p t of trust 

A s mentioned i n Section 3.3, the F A R and F R R do not suit measuring quali ty of a continu­
ous biometric system. They are l imi ted to a certain number of samples, so they can be used 
at best for evaluating periodic authentication. In a dynamic system, the biometric evalua­
t ion should be done wi th every sample (i.e. in context of this work wi th every keystroke). 
Since nobody is perfect and not every sample from a genuine user is mated, the user must 
not be locked out immediately after one non-mated sample. O n the other hand, the system 
should allow only a l imi ted number of "bad" actions i n order to reveal an impostor quickly. 

Therefore Bours [ ] implemented the trust level (TL) - a scale of genuineness of a user. 
The T L is expressed as the probabil i ty that the currently typing user is genuine. W h e n the 
system has started and the genuine user has just logged in , the T L is set to the value 100 
to express 100% genuineness of the user. Then, while he types, each sample is compared 
and classif ied 1 0 whether it belongs to the genuine user or not. 

Once the sample is classified, the trust level value is adjusted. Bours [ ] introduced 
the penalty & rewards function for that purpose (see below). If the T L drops below the 
configured threshold Tiockout, the currently typing user is treated as an impostor and is 

1 0 Many approaches for making this decision exist. Their application for keystroke dynamics is discussed 
in Section 4.2. 
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locked out. He has then to re-authenticate stat ically to restore the session (and to reset the 
T L back to 100%). 

3.2.2 P e n a l t y & rewards func t ion 

W h e n a sample is recognised as genuine, the user should be rewarded, i.e. his T L should 
increase. O n the other hand, when it is non-mated, he should be penalised. It depends on 
the recognition algorithm, however, using statist ical methods is a quite popular solution [6, 

]. The distance between the sample and the template is calculated and compared wi th the 
distance threshold r\ as mentioned in Section 2.1.1. 

There are more options how to implement the penalty & rewards function. They vary 
in how much they increase or decrease the trust level w i th a single sample. Basically, fixed 
or variable changes can be used. Pract ical ly, the function usually contains both of those 
options. 

Using a fixed change, the trust level is adjusted for a certain fixed A + when a sample 
is mated and another fixed A - for a non-mated sample. B y way of contrast, A + and A -

based on the distance can be used as the variable change. It is also possible to combine 
those approaches and, e.g., to use a fixed A + and a variable A ~ . M a k i n g that decision is 
up to the developer. 

Of course, the distance can be calculated only for those samples that have patterns 
included i n the template. If a sample is not found in the template, it may be ignored or 
the trust level may be decreased by a smal l constant. 

3.3 Error metrics 

The performance of a static biometric authentication system is usually measured by two 
error rates. 

false acceptance rate ( F A R ) expresses how many times an impostor would gain access 
to the system, i.e. how many times the system would classify impostors as genuine users. 
F A R is defined as [2]: 

F A R = # of false matches 
Tota l # of impostor attempts 

false rejection rate ( F R R ) tells how many times the system would not recognise the 
genuine user. F R R is defined as [2]: 

_ „ „ # of false rejections 
FRR = ™—r^—r (3-2) 

Tota l # of genuine user attempts 

Example 3.1 Let's consider a static biometric system for logging in a program. In the 
table below, Tj denotes the template of user i, Sj denotes j t h sample of user i and the 
number in the table represents the distance between the particular sample and the particular 
template. For clarity, the genuine samples are highlighted. 
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T i T2 T3 

si 94 102 166 

s'i 99 124 122 

si 131 105 148 

si 240 99 112 

s'i 133 61 147 

si 201 105 126 

si 188 121 124 

si 135 102 87 

si 144 194 104 

Let's now consider a global threshold rj for classifying the sample as genuine or not. If 
the distance d is lower or equal to rj, the sample is mated. 

Let's set r\ = 125 and calculate corresponding FAR and FRR. We will denote that 
as FAR125 and FRR125. Let's start with simpler FRR125. We need to count how many 
genuine samples (i.e. the highlighted ones) are above rj. According to Equation 3.2 we get: 

FRR125 = ^ 11.1% (3.3) 

For calculating FAR125 we have to count the number of non-highlighted samples with 
the distance lower or equal r\. We get: 

FARl25 = 4-38.9% (3.4) 

The F A R in the example above is unacceptably high, it means that approximately two 
of five impostor 's tr ials to log into the system would be successful. We can change the 
threshold rj to achieve better F A R , but one should note that the F A R and the F R R change 
simultaneously. W h e n one indicator increases, the second decreases and vice versa. 

A frequently used option how to display the quali ty of a biometric system is to plot 
the dependency of the F A R and the F R R on the threshold r\. Such a plot for Example 
3.1 is shown in Figure 3.1. A t the point where the F A R and the F R R are equal, there 
lies a significant point - equal error rate ( E E R ) , a frequently used indicator for measuring 
quality. [2, 6] 

Nevertheless, those metrics do not suit the continuous biometrics, since we need to 
express how fast the system locks out an impostor or a genuine user. Average number of 
impostor actions ( A N I A ) and average number of genuine actions ( A N G A ) metrics fit this 
[ ]. We can express them for each part icular user or as an average over the whole dataset. 

Average number of impostor actions ( A N I A ) metric expresses an average number 
of actions an impostor can perform before the system recognises h i m and locks h i m out. 
Natural ly, a general effort is to decrease this number as much as possible, i.e. to reduce the 
damage the impostor can make. 

Average number of genuine actions ( A N G A ) metric is the opposite of A N I A . It 
shows how many actions can a genuine user perform on an average before being locked 
out. A s the system should be as unobtrusive as possible, A N G A should l imi t to infinity, 
i.e. a genuine user should be never locked out. 
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Figure 3.1: P lo t of dependency F A R (increasing) and F R R (decreasing) on the set thresh­
old w i th marked E E R point. 
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Example 3.2 Let's now consider periodic authentication with the keystroke dynamics, per­
formed every n = 30 keystrokes. Periodic authentication allows us to transform the FAR 
and FRR metrics to ANIA and ANGA. Let the FAR be 3% and the FRR 0.2%. 

First, let's transform FAR to ANLA. When an impostor comes to a computer, he can 
always type 30 keystrokes. After that, he is not recognised and can type further 30 keystrokes 
with a FAR = 3% probability. ANIA is therefore defined as the infinite series: 

oo oo 
ANIA = n • FAR1 = ^ 30 • 0.03* » 30.928 (3.5) 

i=0 i=0 

In the same way, we can transform FRR to ANGA: 

oo oo 
ANGA = n • (1 - FRRf = 30 • 0.998*' » 15000 (3.6) 

i=0 i=0 

Example 3.3 / / we use the continuous verification and Bours's trust model as announced 
in Section 3.2.1 instead, we have to test the system with the genuine user's data (different 
from the enrolment dataset) and with some impostor data. Let's use vectors G and I for 
collecting the numbers of actions since last lockout for a genuine user and an impostor (in 
that order). Both vectors are initially empty. Let's start the simulation of the authentication 
system and every time the user is locked out, let's append the number of actions since last 
lockout to the vectors G (for the genuine user lockouts) and I (for the impostor lockout). 
After each lockout the lock is removed and the trust level restored to 100% value. 

The error metrics would be then calculated in the following way: 

ANGA = (3.7) 
G 

ANIA = ^ - (3.8) 

Summary 

The biometric-based authentication is one of the methods from ID-based authentication 
category. A l though physiological biometrics is quite popular, the behavioural biometrics is 
more suitable for continuous authentication. Static biometric recognition usually evaluates 
a whole large feature set at once. In opposite, continuous authentication operates upon 
much smaller sets, since every single sample is evaluated individual ly. 

Due to its lower classification precision for a single sample, the predict ion are aggregated 
using so-called concept of trust. Tha t allows a genuine user not to correspond his template 
perfectly while it can s t i l l recognise an impostor i n a short t ime. 

For quali ty evaluation, several error metrics are used. The differ for static and continu­
ous authentication due to impossibi l i ty to compare samples directly. W h i l e F A R , F R R and 
E E R are the most common error metrics for static biometrics, A N G A and A N I A describe 
average success rate i n impostor detection. 
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Chapter 4 

Keystroke dynamics 

Every human being types the keyboard i n a different way. In the history, even the skil led 
telegraphers were able to recognise who was t ransmit t ing on the wire. The way how one 
types depends on his typing ski l l , the context (i.e. the surrounding n letters, so called di­
graph), the application and the language he types in , handedness, frame of mind , familiari ty 
w i th used vocabulary and many other circumstances [8, 43, 6, 4, 40]. It can also be 
temporari ly influenced by hand injuries, typing wi th one hand or by typing on different 
types of keyboards [ ]. The human's keystroke dynamics ( K D ) is not only unique, but it 
is also hardly artificially imitable and is therefore robust against automated attacks [ ]. 

If we consider a static biometric recognition by the K D , we may face a problem wi th 
high F R R , especially when the conditions dur ing enrolment and recognition are different 
(e.g. typing a P I N code on different A T M keyboards). H i g h rejection rate makes the system 
less user-friendly, so the system administrators are s t i l l moderate w i th deploying behavioural 
biometrics solutions in order to give their customers no reason for discontent. [25] 

The static biometric authentication can operate i n a challenge-response mode, in which 
the user is attempted to copy the displayed text. It can also be used for strengthening 
authenticating w i t h a username and a password. This approach is often referred to as 
credential hardening [4]. 

In 1995, Shepherd [42] showed K D is also capable of user recognition on the free text. 
It was a very simple algori thm based on keystroke cadence 1 1 without dist inguishing keys. 

In the last few years, K D on a free text has become more popular method of continuous 
biometrics, because it requires neither any special hardware nor user interaction. The 
typing manner can be captured on a computer keyboard or any input device wi th physical 
or emulated keys, which includes mobile phones, P D A s or tablets. Every device which can 
capture t iming information can be used. [23, 6] 

Several studies focus on the keystroke dynamics usage for continuous authentication. 
They vary i n data acquisition, i n classifying methods and i n features contained in the 
template. 

Accord ing to [13], the first t r ia l keystrokes dynamics analysis based on a free text was 
performed i n 1997. Before that, studies used to concern the static and predefined text only, 
although the text was sometimes quite long. Authent ica t ing the user by copying a text gave 
quite good results for static recognition (e.g. observing whether the password was wri t ten 

1 1 Although term keystroke cadence means number of keystrokes per second, Shepherd used the term for 
average value of duration and latency (see Section 4.1.1). 
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in a genuine way). However, it gave very poor results for continuous recognition, since it 
d id not reflect a way of typing a common text. 

4.1 Features 

A base of K D is a keystroke. It is del imited by two events recognised by an operating 
system: a key-down and a key-up event [4]. We can derive more features from a single 
keystroke or from a sequence but a l l of them are based on those two events. The features 
are more deeply discussed in Section 4.1. 

Creat ing a template during the enrolment phase means to select significant charac­
teristics of the sample set. The majori ty of research studies use the duration of a single 
keyst roke 1 2 and the latency of an n-graph (a digraph, a tr igraph, etc.). The features are 
related to a part icular key or n-graph. It is good to point here that not a l l the keys must 
be stored i n a template. For example, Bours [ ] selected the most frequent characters and 
digraphs i n Engl i sh i n order to obtain a representative pattern. However, this approach 
has one large drawback which should be pointed. Rest r ic t ing the template to a language-
characteristic-based subset l imits world-wide spreading the algori thm. 

Accord ing to [2], few older studies t r ied to include also a key pressure i n the template. 
However, a special keyboard was necessary, which goes against the collactabil i ty require­
ment mentioned i n Section 2.2.2. Other advanced features for long-term user authentication 
include typing speed, frequency of correcting errors (i.e. frequency of using Backspace and 
Delete), use of Shift key to capitalise letters, using navigation keys (arrows, PageDown, 
PageUp, . . . ) , etc. [ , ]. 

The user environment is sometimes also taken into consideration [ , ]. The most 
observed variables are the keyboard layout and the running applicat ion the user is typing 
in . A separate template can exist for each combinat ion of the environment variables. 

4.1.1 D u r a t i o n a n d latency 

Having a digraph composed from keys K\ and Ki, two events for each key press can be 
observed, as shown in Figures 4.1 and 4.2: the key-down events when the key was pressed 
down (in times t^wn, t^wn) and the key-up events when it was released (tup, tup)- We can 
then calculate the duration dur of key Ki as [6]: 

dur{Ki) = i g - 4 1 n (4-1) 

The durat ion can be only a positive number, since the key is always released after it is 
pressed down. 

It should be stressed here that the key-down event is fired for a l l the t ime the key is 
held pressed. The speed of generating the event is customisable and is usually referred to as 
repeat rate13. Anyway, the intermediate key-down events between the in i t i a l key-down and 
finishing key-up should be ignored when extract ing the durat ion. To prevent such a long 
pressed key from influencing the template, a maximum-t ime threshold for durat ion can be 
set. 

The latency lat of a d i g r a p h 1 4 (Ki, Ki) is a bit more confusing property, since studies 
differ from each other i n defining the latency. A frequently used approach is defining latency 

1 2 Also reffered to as held time [43] or dwell [ ]. 
1 3 In Microsoft Windows, the repeat rate is a parameter of the WM.KEYDOWN event messsage. [27] 
1 4 Also referred to as inter-key or flight time. 
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Figure 4.1: Events of a digraph wi th non-overlapping keys. 
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Figure 4.2: Events of a digraph wi th overlapping keys. 

of a digraph as the t ime delay between releasing the first key and pressing down the next 
key [6, 8, 25, 43]: 

A s defined this way, latency of a digraph can be negative when the second key is pressed 
before the first is released. Th is approach is usually called release-to-press or inter-key t ime. 
Stefan and Yao [45] declare i n their research that many users tend to write w i th negative 
inter-key times. 

Other works define the latency by press-to-press or release-to-release t ime [ ] which 
always results in a positive value. They are also easily extended to a latency of a general 
n-graph. For example, S i m and Janakiraman [ ] describe it as „the time interval between 
the down keyevents of the first and last keystrokes that make up the n-graphu. 

Since only the n-graphs that two samples have in common are used during the authen­
t icat ion phase, n could be l imi ted to a certain m a x i m u m value. S i m and Janaki raman [ ] 
observed that n should be l imi ted up to four to keep the n-graph discriminative. 

4.1.2 A d v a n c e d features 

A s mentioned earlier, the template should store only the significant features extracted from 
the user's K D . The decision what information to store depends mainly on the classification 
method, this problem is discussed in Section 4.2. However, some general features must be 
considered wi th a l l the classifiers. 
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K e y b o a r d layout A user is usually more familiar w i th a certain layout than w i t h another 
one. This does not apply only to the computer keyboard where different logical layouts can 
be used, but also for other devices. For example, i f a user gets a new mobile phone wi th 
a different size or a different key layout, his typing behaviour would probably take a while 
to adjust and keep stable. The same stands for different types of laptops etc. 

Modif ier keys Special keys Shift , C t r l and A l t which modify functions of other keys 
can be handled either as any other key (and then e.g. Shif t + T is considered as a digraph) 
or they can be stored i n the template as a flag. Separate templates for any combination of 
these modifier keys can be then generated. The last approach is to ignore them completely 
i n order to keep the design simple, but then a piece of information about different typing 
manners w i th the modifier key pressed are lost. 

Dead keys Dead keys do not generate a character but modify a key pressed right after it . 
Examples of those are ' (acute) or " (caron). Pressing ' and a generates a. The keystroke 
dynamics should always be based on keys, not on characters. 

Automat ic key repeat W h e n a letter key is held for a long time, the operating system 
starts to repeat wr i t ing down the letter automatically. A l though the manner of using this 
feature may be included i n the template, the circumstances when this event occurs happen 
so rarely that it does not pay off to use i t . To eliminate this event, we can set a threshold of 
max imum time between key-down and key-up event. The repeat rate was more thoroughly 
discussed in Section 4.1.1. 

Frequency of errors The less experienced typist, the more errors occur i n the text. 
Er ror frequency can be measured as number of Backspace or Delete keys depressions. [42] 

H o w the user feels Stress and tiredness also influence typing behaviour largely. How­
ever, including this k ind of information in the authentication system is almost impossible 
i n order to keep it unobtrusive. The template should be compiled from a large enough 
number of the reference records to be able to handle different users' temper. 

Environment Results of the experiments also vary according to the environment where 
the users attend the experiment. Two environment classes are usually distinguished: con­
trolled environment, typical ly run i n a lab on the lab computer w i th programs specified by 
the researcher. Uncontrolled environment represents the second class. The user works on 
his own, familiar computer and performs common work as usual. The capturing program 
runs on the background and captures and stores the keyboard events. 

4.2 Existing solutions 

Using statistics (i.e. stat ist ical algorithms or statist ical classifiers), artificial neural networks 
(NNs) and machine learning (supervised or unsupervised) are the most popular approaches 
for the sample classification. [ ] 

K i l l o u r h y and M a x i o n [20] tested 14 classification techniques proposed by various au­
thors in order to compare their results on a unified dataset. A l though their work operates 
wi th static recognition, the classification techniques correspond to continuous recognition. 
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They covered distance-based probabil ist ic and statist ical approaches wi th miscellaneous dis­
tance metrics, as well as supervised and clustering machine learning ( M L ) methods. Seven 
of tested classifiers were observed as sufficient, but the authors chose none of them as the 
best, since the results were compared w i t h several methods. Moreover, those results were 
obtained using static recognition and their val idi ty for continuous K D should be verified. 

4.2.1 Stat i s t ica l m e t h o d s 

The statist ical methods operate wi th aggregating functions of the feature vectors. The mean 
and the standard deviat ion of every key and every digraph are quite frequent, but some 
studies also operate wi th m i n i m u m and m a x i m u m values and other measures. In statistics, 
a distance metric is calculated to evaluate how much the sample and the template differ 
from each other. A distance threshold based on the standard deviat ion is set to classify the 
sample as genuine or not. However, several systems also use a system-wide threshold value. 

Distance metrics 

A m o n g other methods, K i l l o u r h y and M a x i o n [20] compare also the performance of E u ­
clidean, Manha t t an and Mahalanobis metrics. Generalisation of the first two is called 
Minkowski distance. 

Minkowski distance [ ] d ( X , Y ) , where X , Y are feature vectors of the same length 
n, is a parametric metrics w i th a parameter p. It is defined as: 

n 

d(X,Y) = ( £ / \ x i ( 4 - 2 ) 
i=l 

lip is substi tuted wi th 1, resp. 2 , we get well-known Manha t t an (p = 1, see Equa t ion 
4.3) and Eucl idean (p = 2 , see Equa t ion 4.4) distance metrics, respectively. 

n 

dM(X,Y) = J2\xi-Vi\ ( 4 - 3 ) 
i=l 

d s ( X , Y ) J > - Viy ( 4 . 4 ) 

\ i = l 

Mahalanobis distance [23] can be used in situations when the feature vectors are too 
complex for M i n k o w s k i distance. The distance is calculated between mean feature vector 
X and the sample feature vector Y . S denotes covariance matr ix . 

ö ! m h ( X , Y ) = ( X - Y ) t S - 1 ( X - Y ) (4.5) 

If the covariance mat r ix is diagonal, the resulting distance metric is called normalised 
Euclidean distance: 

, / T , V ( X . Y ) = . V ^ L V Ü ! ( 4 . 6 ) 
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where ctj denotes standard deviat ion of i feature in the t ra ining set. Its huge advantage 
over the Eucl idean distance is its range. The m i n i m u m range of Eucl idean distance is zero 
(meaning identity) but the m a x i m u m range is unknown. W i t h normalisation, the distance 
w i l l remain i n multiples of U{ which wouldn' t usually exceed 3 for normal dis t r ibut ion. 

4.2.2 M a c h i n e l earn ing approaches 

The user verification is a 2-class classification problem (a genuine user vs. an impostor) . 
However, we have to handle the problem wi th non-available impostor data. A l though the 
reference data of other users i n the system can be employed as the impostor data to t ra in the 
classifier, they are not always available (e.g. when running the continuous authentication 
system on a single-user P C ) . Th is problem can arise rather i n static authentication, since 
the other users would have to type the same password as the genuine user. O n the other 
hand, continuous K D system can run on a single-user computer. 

Marsters [ ] employed R a p i d M i n e r framework for testing three different classifiers on 
a continuous K D dataset - Bayesian Belief Network (BayesNet), K-Star and RandomForest 
classifiers. He tested them against the key durations set. They hugely vary i n t raining 
time, but both BayesNet and RandomForest fit under one minute wi th the error rate of 
2.39 % ± 0.88 % and 2.25 % ± 0.98 %, respect ively 1 5 . 

Y u and Cho [50] selected a support vector machine ( S V M ) for its short t ra ining time, 
which is 1,000 times shorter than the t ime required by a N N . They also introduced a novelty 
approach for selecting features to be included into the template and to pass to classifiers. 
The method employs genetic opt imisat ion algori thm. They achieved the average error rate 
of 0.81%. 

Revett et al . [36] employed a probabil ist ic neural network ( P N N ) for authentication. 
The P N N operates i n the supervised mode and both genuine and impostor samples are 
required to t ra in i t . They reported a much faster learning phase compared to a back-
propagation based N N . The P N N algori thm achieved approximately 4 % error rate. 

A s seen from this short overview and the overview i n [2], the M L algorithms can achieve 
similar results like statist ical approaches. However, only a few studies worked wi th the 
dynamic verification and more research is needed to compare statist ical and M L approaches. 

4.3 Performance 

A performance of the keystroke dynamics i n continuous authentication is somewhat vari­
able, depending on many factors. In general, better results were achieved wi th digraphs, 
especially i f a word [43] or an applicat ion [ ] context was taken into consideration. However, 
the penalty &; rewards function plays a big role as well . The best results i n the studied 
literature were achieved by Bours [6] w i th detecting an impostor in 98 keystrokes on average 
(considering an application context). 

Summary 

In this chapter, several studies exercising the keystroke dynamics were presented. The 
features mainly concerning durat ion and latency of a digraph were discussed. Several clas­
sification methods were introduced, including both statist ical and machine learning meth-

1 5 Marsters, however, does not specify what error metrics he uses. We can only suppose it as EER. 
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ods. A l though machine learning approaches perform quite well for static authentication, no 
study employed them for the continuous keystroke dynamics yet. The statist ical approach 
is very popular w i th continuous verification researchers and several distance metrics were 
shown in the text. 
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Chapter 5 

Collecting user data 

It is not necessary to implement the whole authenticating system to show characteristics 
of different kinds of templates. Instead, I simulated the authenticating system on captured 
keyboard events captured on volunteers' computers during their common work. 

The keyboard events are usually implemented as hardware interrupts and as such are 
processed by the operating system. The operating system transforms the interrupts to the 
form of event messages. Therefore it is possible for a program to capture and process these 
messages along wi th the OS . Several tools for capturing keyboard events already exist in 
the research world. A short overview of available applications is provided in section 5.2. 

Since a large amount of data is essential for proper analysis, many participants should 
be involved and observed for a long t ime period. A capturing program should follow similar 
guidelines as a continuous authentication system, especially be unobtrusive and completely 
automated. Addi t iona l ly , it should consider users' pr ivacy and therefore it should not log 
any sensitive information such as passwords or bank account numbers. 

The continuous biometric authentication is s t i l l a young discipline and only a few tools 
are available for that purpose. M a n y of the tools are moreover intended for using i n different 
research areas such as human-computer interaction (HCI) (e.g. [21]) and they do not meet 
al l the demands placed. 

5.1 Existing databases 

In the literature, many researchers collect data for their work. However, those datasets vary 
in quali ty and are often adapted to needs of the part icular research. Moreover, most of the 
publ ic ly available databases are designed for static authentication research (such as [12]) 
due to the risk of present sensitive information i n the common work recording. 

Monta lvao and Freire [ ] bui l t a publ ic ly available database of free-text samples from 
15 participants. The sample is unfortunately pretty short, it consists of only 10 rows of text, 
about 110 keystrokes each. In addit ion, the text was collected during only two sessions, 
which is a very smal l number for the purpose of my experiment. 

Banerjee and Woodard 's survey [ ] provide an overview of existing K D databases. Mos t 
of them concern static biometrics and, moreover, almost none of them is available now. 
On ly one of the databases is marked as dynamic i n the survey - the Monta lvao 's and 
Freire's mentioned i n the previous paragraph. 
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To summarise it , I have not found any publ ic ly available database for continuous K D . 
I understand the worries about privacy of participants of the experiments, however, making 
such a database public could allow others to compare their results to each other. 

5.2 Capturing tools 

M a n y of the available tools are originally not meant to be employed in an authentication 
research, but rather i n H C I area. However, some tools dedicated for biometric research 
have been developed. 

Unfortunately, I have not found any t ru ly cross-platform tool . Mos t are targeted for 
Microsoft Windows systems, however few of them cover also M a c O S X or G N U / L i n u x 1 6 . 

R U I (Recording User Input) is a tool introduced by Kukre j a et al . [21]. It is intended for re­
search i n area of H C I and is able to capture keyboard and mouse events. The binaries 
are available for Microsoft Windows and M a c O S X operating systems. Unfortunately, 
as the tool is developed pr imar i ly for H C I research, it records only key-press events, 
not both key-down and key-up events. For that reason, it is useless for behavioural 
biometrics research, which needs to measure durat ion and latencies of the keys. 

A p p M o n i t o r could be a great tool for logging keyboard events i f it was extended a l i t t le . 
A s its authors mention, only two applications (Microsoft W o r d and Adobe Reader) 
are supported and only special key combinations are captured in order to protect user 
privacy. [ ] 

Inputlog logs both key-down and key-up events and a researcher can obtain it on re­
quest. However, a participant has to start and stop recording manually and has to 
remember to stop the tool when typing sensitive data like passwords or bank account 
numbers. [22] 

B A K E R by Marsters [ ] favours user privacy and therefore captures wider context of 
the typed key, a trigraph for capturing durations and a quadgraph for storing sta­
t is t ical data about latencies. Therefore both durat ion and latency are stored in 
a 3-dimensional matr ix , which the author preferred to ordered logs to keep the users' 
privacy. The statistical data are represented by the count of occurrences, the mean 
and the variance. 

For a l l the mentioned reasons, B A K E R would look as an ideal program for collecting 
data. However, the websites proposed i n the work are not available any more, and 
the tool neither. 

T U B A is not really a tool for the continuous authentication, but rather for periodic au­
thentication triggered by certain combinations of network and typing events. T U B A 
is mentioned since it employs X window system (XI1 ) and therefore represents the 
only tool available for L i n u x of those I have found. Its architecture is composed from 
a remote authentication server and a client. If a network security breach is detected, 
the server challenges the user to re-authenticate himself. 

T U B A is also interesting for reducing the t iming vector dimensions using principle 
component analysis ( P C A ) , a method from data mining area. [45] 

1 6 The Stefan and Yao's work [45] covers particularly Linux systems with X Windows System (XI1 in 
short). Actually, XI1 can run also on other operating system, so it is partially platform-independent. 
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B e L T (Behaviour Logging Tool) by Stenvi, 0verb0 and Johansen [ ] is a tool specially 
developed for capturing user interaction i n Microsoft Windows . It captures keyboard, 
mouse and software interaction events and relevant information about hardware (such 
as screen resolution etc.). 

It observes user interface interaction employing U I Au toma t ion framework. [ ] 
Therefore it can recognise types of user input fields and does not record passwords. 
This is a huge advance over the other tools since it improves users' feeling of security. 

The program starts on system startup, runs minimised i n the system tray and does 
not require any addi t ional action from the user. Thus it fulfils the requirement of 
unobtrusiveness. 

I was permit ted to use B e L T for collecting the data for this master's thesis. 

5.3 Data capturing 

This section describes the structure of participant set and how they took part i n collecting 
the data. 

5.3.1 Targe t part ic ipants 

I had to restrict possible participants to Microsoft Windows users as B e L T is only available 
for Windows . The participants should actively use the computer i n a period of at least two 
weeks to obtain enough data. 

Originally, I intended to ask only people who currently learn to type the keyboard. 
However, I found only six high school students wi l l ing to participate and a l l of them rejected 
later for various reasons. Therefore the participant set consists users w i th different level of 
typing sk i l l and wide range of how often they use the computer. 

In total , almost 50 people promised to participate but only 22 of them eventually de­
livered the data. 

5.3.2 P a r t i c i p a n t s ' task 

The participants were informed about the purpose of the experiment and how to collect the 
data to keep high quali ty of the samples. They were acquainted wi th B e L T instal lat ion, 
interface, proper settings and operation. Every participant was also informed about the 
risk of collecting sensitive data and instructed how to prevent i t . In order to keep the data 
free of other people's samples, I also asked the participants to pause B e L T when they lend 
the computer to someone else, even for a short t ime. 

The task was to do their common computer work wi th B e L T running i n the background 
for at least two weeks. After that period, they were asked to send me the data for further 
analysis. 
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300 M M 162 31 7142677 299 
301 M D 162 31 7142802 296 1 0 95 1350 711 
302 S FC firefox.exe 7142848 301 4 Suche oder Adresse eingeben lemptyl 107 25 906 40 
303 M U 162 31 7142864 301 1 107 25 906 40 
304 K D d 7143488 302 0 
305 K U d 7143550 304 0 1 
306 K D i 7143613 302 0 
307 K U i 7143675 306 0 1 

Figure 5.1: Excerpt of B e L T C S V file (opened i n LibreOffice Calc ) . 

5.4 BeLT data format 

B e L T exports captured data into C S V 1 7 files. E a c h row i n the file represents one captured 
event message. B e L T captures keyboard, mouse and some software events and also logs 
some hardware information (mainly the screen resolution). 

The row format va r i e s 1 8 depending on the event type. A sample excerpt from B e L T 
C S V file is shown in Figure 5.1. The first three columns have identical meaning for a l l event 
types. The first contains event I D , a number unique wi th in every file. In the second field, 
there is a basic event type (K for keyboard, M for mouse and S for software). A n action 
is determined by the th i rd value: e.g. for keyboard events, D denotes key down event and 
U denotes key up event. 

Considering only the keyboard events, next columns provide information about the key, 
the event t imestamp (in miliseconds from starting the computer), an ID of related event 
(for key up event refers to its respective key down event), flags indicat ing active system 
keys (e.g. Shift, C t r l , A l t etc.) and repeat count (see Section 4.1.1). [46] 

B e L T can also store the data in raw fo rma t 1 9 . It is not a binary format as one might 
suppose, but an ordinary text file. Its rows are more verbose than rows of the C S V format. 

However I discovered a bug in recording the time. O n some special occasions (e.g. switch­
ing the keyboard layout w i th Shift + Alt), a L C t r l key up event is generated (wi th no 
related key down event) and the t ime jumps about 50 days forward. Therefore the C S V 
format is a preferred way for collecting data. 

5.5 BeLT drawbacks 

It is advisable to be able to compare users from different countries. In real use, it would 
be necessary to bu i ld a solid database for t ra ining the classifier. Therefore storing the 
numerical key code (which is transformed to a key based on set keyboard layout i n the OS) 
would be a better choice than storing the key. A l though the keyboard is the same (usually 
generic 104/105 layout), the keys are not. I encountered this issue when I created templates 
for several users who had set a C y r i l l i c layout. 

1 7 Comma-separated values (CSV) is a simple file format for tabular data. The format was specified in 
RFC 4180 [41]. 

1 8 The BeLT-exported data does not comply with the CSV specification due to variable column count 
and data types. 

1 9 BeLT's raw format uses file extension .raw. This can be a bit confusing since .raw files usually store 
photographs in the camera. 
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The problem also occurred wi th Czech characters that have to be typed using a dead 
key20. In that case B e L T interpreted the combination Shift + ~, n as "n instead of n. 
Par t icu lar ly this issue discouraged about 10 potential data collectors from collaboration. 

W h e n processing the data, storing data in single-byte encoding proved not to be very 
comfortable to work wi th . The files are stored in system-wide set encoding instead of 
U T F - 8 which is treated as present-day standard. Since the data collectors were of various 
nationalities, I had to convert each user's data to U T F - 8 separately. Wi thou t that, the 
data would not be comparable. 

Summary 

In this chapter, the existing tools for capturing keystroke dynamics were presented, as well 
as some existing databases. Unlucki ly , none of the tools and the databases has sufficient 
capabilities for the purpose of continuous dynamics. B A K E R software would represent one 
exception, i f it had been s t i l l available. Fortunately, I was permit ted to utilise B e L T for 
acquiring the data from the users which made the data collection reachable. 

B e L T is a program users instal l to their computers and keep it running i n the back­
ground. It collects data about how the user behaves, notably it tracks keyboard and mouse 
actions. B e L T stores data in C S V files where each line corresponds to one action. 

Regarding dead keys, refer to Section 4.1.2. 
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Chapter 6 

Data processing 

Before the data can be pushed to classifiers, it has to be prepared to a suitable form. Tha t 
includes converting from B e L T format to list of features. Th is way from B e L T to P y t h o n 
is not that straightforward as it might seem. It consists of four steps we w i l l take a look at 
in the following sections: 

Pre-processing normalises file names, encoding and formats (see Section 5.4 for more 
information on B e L T formats). 

Convert ing C S V to EventList transforms each B e L T line to an instance of Event class 
and joins them in a list. 

Extract ing features step takes EventList as an input and creates features consisting of 
more events. 

Packing for later use is a necessary step preventing from extracting the data again every 
t ime the data is required. 

The first step was performed manually due to need of manual interception for selecting 
proper encoding. The others were run as a batch using script extractf eatures .py. 

In the real continuous authenticator, the feature extraction would run online as soon 
as the data was captured. However, batch processing is much more convenient for the 
simulation. 

6.1 Pre-processing 

In Sections 5.4 and 5.5 we discussed how B e L T stores the data. The first precondition 
for convenient work wi th bash 2 1 is to remove spaces from file names and convert them to 
common encoding. Tha t was achieved wi th rename and iconv commands. 

In order to determine proper in i t i a l encoding, python package chardet was employed. It 
provides also L i n u x command that can be called directly without start ing P y t h o n shell and 
evaluates probabilities of various encodings. The proper one should be selected manually 
wi th knowledge of the originator operating system. 

Moreover, two of the participants d id not follow the instructions properly and collected 
data to the raw B e L T format. I wrote converting script raw2csv.py that performs the 

2 1 Bash is a UNIX shell providing easy scripting language. It allows direct calls of programs and is 
therefore more convenient for semi-batch processing of files. 
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Figure 6.1: Feature count of participants by feature type. 
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Figure 6.2: Feature t ime mean and standard deviation of participants. 
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conversion. The t ime bug discussed i n Section 5.5 is not bypassed by the script, since only 
relative times between two consequent events are calculated. Therefore t ime jump twice 
a day would not make such a big difference to be worth fixing i t . 

6.2 Creating event list 

The cleansed data are processed by P y t h o n csvreader and converted to a dictionary 2 ^ 
On ly keyboard data are currently stored but the script is designed to be easily extended. 

6.3 Feature extraction 

W h e n the list of events is generated, the features can be extracted. A l though it is against 
common naming conventions i n biometrics, here features denote type of higher-level events. 
Two type of features are extracted from keyboard events - a key feature and a digraph 
feature. Properties of features (i.e. biometric traits) are called feature properties. I collected 
key, t ime (duration or latency) and modifier keys of the feature, as defined i n Section 4.1. 
Moreover, I extracted further properties which are calculated also from the samples i n the 
past. Those are: 

Context is an estimated posit ion i n the text. Its value can gain one of the following values: 
first key of the word, in-word key, space (i.e. space, backspace or delete), shortcut 
(i.e. a key pressed together w i t h C t r l , Alt or Win key) or last digraph in the word. 
Note there is no such context for last single key feature, since it is not possible to 
recognise it in the stream incoming to classif ier 2 3 . 

2 2 Python dictionary is essentially an associative array as known from other programming languages. 
2 3 In the simulated environment the experiment was taken at, it would naturally be possible. But in 

order to keep the simulated reality in place, the last key feature flag was omitted. 
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Figure 6.4: Context of each participant. 

T y p i n g speed measurement is implemented as two counters: number of observed features 
in the last 15 and 60 seconds. This property was added as a t r i a l to eliminate impact 
of typing speed variance. 

B y experimental testing wi th Gaussian Naive Bayes classifier(see Chapter 7), these 
features improved the results slightly. 

6.4 Packing 

Because feature extraction takes about 5 minutes for the dataset, the final feature list is 
packed using the bui l t - in P y t h o n package cPickle. The package is designated for serialising 
P y t h o n objects (the method is called pickling). 

Unfortunately, there is a drawback of cPickle in storing the object together w i th its 
methods. Therefore when you unpickle the feature list, you can work wi th the methods 
only i n the version when it was pickled. For that reason, it is a good idea to inherit the 
feature list from some bui l t - in type and after unpickl ing use only the bui l t - in methods. 

6.5 Data statistics 

This section provides several statistics on the extracted data. 
Figure 6.1 shows number of features that were captured by each participant. A s it can 

be observed in the plot, the number of to ta l features varies from 166, 942 (User 18) to 5, 725 
(User 22). The average feature count is 72,468 features. 

The collected data contained slightly more key features than digraphs. This small 
difference points out that most of the keystrokes were captured when typing a word or 
pressing a keyboard shortcut. Contexts of the features are i l lustrated i n Figure 6.4 and 
they also support that hypothesis. 
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Average keystroke durations and digraph latencies are depicted i n Figure 6.2. Keystroke 
durations are slightly shorter than digraph latencies for most of the participants. However, 
that does not hold for User 11 and User 17; according to Figure 6.1 are both fairly advanced 
typists. The digraph latency error bars in Figure 6.2 confirm assumption from Section 4.1.1 
that latencies can be also negative, especially for advanced typists. 

A l though key durations might seem not to have required variance, it turns out, when 
filtered by a part icular key, this variance is i n place. Figure 6.3 gives such example for 
keys e and p. The differences between average durations of e's and p's are relatively 
small but should be enough for correct classification. Obvious contrast can be observed by 
Users 7, 13, 17 and 22. One can suppose similar differences are present for other participants 
w i th different combination of keys. 

Summary 

This section provided an overview on what has to be done before one can use the B e L T 
data. The users' da ta were processed by L i n u x and P y t h o n tools to eventually receive 
a P y t h o n list of features per user. 
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Chapter 7 

Training the classifier 

A s the user types, the keyboard events are generated by operating system and processed 
by a classifier. The incoming event stream can be generalised as a data vector D = 
(di, d,2, (I3,...). The classifier tries to uncover regular patterns i n D and select the best-
suiting hypothesis h from the hypothesis space 2 4 H = {hi, hi, • • • , ^ a t } - Based on the 
classifier, the hypothesis space can be finite or infinite. 

A s it was explained in Section 2.1.1, the biometric system can operate in identification 
or verification mode. In verification mode, the classifier evaluates D and decides between 
hypotheses h g e n u i n e (denoting the last observed data point belongs to the genuine user) and 

himpostor • 

In identification mode, the classifier operates upon the database of N users and estimates 
l ikel ihood for each hypothesis in H = {hi, hi, • • •, hjy, h n o n e } . 

Each hypothesis hi € H has its prior probability p(hj) that expresses probabil i ty of hi 
without observing any data. B y normalisation, ^2iP(hi) = 1- Probabi l i ty of hypothesis hi 

after observing data vector D , p{hi\D), is called a posteriori probability. 
The data vector D is usually, especially under supervised setting, split i n t ra in data 

strain-, val idat ion data D m / and test data D i e s i . Tra in data are used for learning the 
classifier (fitting) and correct labels (target) are required for fitting. Since many classifiers 
are set by parameters invariant on t ra in data, val idat ion data is usually used to estimate 
best setting of these parameters. A s you can see, there is need of a large amount of data 
for setting the classifier properly. Fortunately, cross-validation (see Section 7.3) may help 
to solve the problem wi th data amount and allows omit t ing val idat ion data. 

The data, originally stored in a feature list (see Chapter 6 for how the raw data is 
transformed to a feature list) , has to be transformed to suit ind iv idua l classifier's needs. 
Section 7.1 describes how the data is processed. 

The best hypothesis, arg max f t . p{hi|D), is then used for predict ing class of each sam­
ple. However, as it was described in Section 3.2.1, the decision about a user's genuineness 
cannot be made from a single sample. A wrapper class T L C l a s s i f i e r observes values 
predicted by nested classifier and adjusts the trust level according to the predictions. 

A s the behaviour changes in time, it is favourable to mainta in the user's template up-
to-date. In machine learning, this approach is known as continuous or online learning. The 
online learning keeps learning also in the recognition phase. The concept of online learning 
is discussed i n Section 7.4. 

2 4 In context of this work, hypothesis space represents space of all possible templates. 
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7.1 Introduction to scikit-learn library 

Machine learning algorithms are nothing new. It would be unwise to code them again when 
specialised well-tested libraries already exist. One of such libraries is s c i k i t - l e a r n [35] 
which I decided for because it covers pretty wide area of machine learning and data mining 
including also pre-processing, selecting useful features and model evaluation. Th is section 
provides a short overview of s c i k i t - l e a r n design and capabilities. Thanks to the l ibrary 's 
interfaces it is possible to insert custom code that cooperates w i th the l ibrary functions. 

The basic bui ld ing block of the l ibrary is an estimator. Those blocks can be pipelined in 
such manner that the each block i n the pipeline receives the output of the preceding block 
to its input . The first block receives the raw data. 

Developers can create a custom estimator i f non of those included in the l ibrary do not 
satisfy their needs. However, the l ibrary itself provides a large set of estimators which are 
of one of the following types: 

Transformer is an estimator used to pre-process the data according to needs of the fol­
lowing blocks i n the pipeline. 

A n example of such transformer is class DictVectorizer that takes a list of P y t h o n 
dictionaries as input and transforms it into 2-dimensional array of real numbers. 

Most of the transformers need some data to create rules how to transform the data. 
This operation is called fitting and a l l estimators have to implement method f i t () in 
order to be integrated i n a pipeline. DictVectorizer scans keys in the dict ionary and 
creates a column in the output array for each input numerical feature. This cannot be 
applied to string features, so those are transformed to M boolean indicators where M 
denotes number of unique values for the key i n the input list. Th is behaviour allows 
to specify categorical (even numerical) data s imply by transforming them to string 
before handing them i n the DictVectorizer. 
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Once fitt ing is finished, the following data is only transformed (by method transform () 
each transformer has to implement) without modifying the transformation rules. 

Classifier is usually the last step i n a pipeline i n such setting that the data should be 
divided in classes based on previously seen examples. Classifier therefore works in 
supervised mode. A n unsupervised analogue is a cluster (see below). 

A s each estimator, a classifier has to provide method f i t ( ) that is used for t raining 
the classifier. Moreover, several classifiers can operate also i n an online setting. The 
classifier can be learnt online i f it provides method p a r t i a l _ f i t (). 
Once the classifier is trained, it can predict novel data using methods predict () or 
predict_proba() . The former method s imply returns the most probable class, the 
latter estimates l ikel ihood for a l l classes that the novel sample belongs to it. 

Regressor is similar to classifier i n the manner it works as the last step of a pipeline. 
However it differs in prediction target. W h i l e classifiers tries to find a model that 
determines a class for the data, regressors approximates a mathematical function 
that generates the data. 

Cluster is an estimator that does not need to fit data since it is an instance of unsupervised 
classifier. Its a im is to divide the incoming data into clusters based on their distance. 
Several distance metric were discussed i n Section 4.2.1. Note that distance metric are 
not solely clustering domain, they can be used i n supervised statist ical learning as 
well. 

The estimators can be pipelined together, making one compact estimator to work wi th . 
The pipeline automatical ly decides what actions should be taken by each of the estimators. 
It usually starts w i th some pre-processing transformers, continues wi th opt ional feature 
selection that reduces complexity of the data and finishes wi th a classifier or a regressor as 
the last step. 

Overal l , s c i k i t - l e a r n l ibrary is a great helper to work w i t h and makes creating custom 
estimators much easier. 

7.2 Supervised classifiers 

Classifiers that need to observe several t ra ining examples before predict ing classes for unseen 
samples, are called supervised. The supervisor is commonly referred to as a teacher. 

This section provides overview of three classifiers that were compared i n this work. 
The first two of them, Naive Bayes a fc-Nearest Neighbours are multiclass classifiers, i.e. 
they can generally predict class of a l l the samples. I used them i n two-class setting though 
(genuine user vs. impostor) to be able to compare them wi th the th i rd classifier, a one-class 
statistical classifier. 

7.2.1 N a i v e Bayes 

One of the simplest supervised is classifiers is the naive Bayes classifier. It assumes i.i.d. 
(independent and identically distributed) data. In practice, this assumption is often violated 
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but even though the naive Bayes classifier performs surprisingly well . Its performance can 
be even improved by boos t i ng 2 5 . [3, 39] 

The classifier employs Bayes probabil ist ic model w i th independent variables. For a data 
point x = (xi,X2, • • • ,XD) where Xi denotes one discrete variable, the probabil i ty of being 
classified as class c £ C is: 

p(c |x) = P { C ) ; P ( X | C ) 

P ( X ) (7.1) 
p(c) • p(x|c) 

E C i e c P ( c » ) - P ( x | c i 

P r io r probabil i ty p(c) can be set expl ic i t ly or be proport ional to c occurrence i n the 
t ra ining set. F r o m the i . i . d . assumption, the p(x|c) is just a simple product: 

D 

p(x|c) = J J p ( z i | c ) (7.2) 
i=l 

Discrete variables For some applications, the l ikel ihood of variable Xi assuming class c 
can be deducted from a model . B u t usually the underlying model is unknown and in that 
case, p{xi) can approximately expressed as: 

count (xj A c) 
V{xi\c) » — — (7.3 

count (c) 

where count(a) denotes number of occurrences of a in the t ra ining set [10]. 

Continuous variables W h e n dealing wi th continuous data, those are usually assumed 
to be dis tr ibuted according to Gaussian dis t r ibut ion [3, 39]: 

p(xi\c) = — e 2 < T i ' c (7.4) 

V 2 7 r ^ c 

where / i j ] C denotes mean and o f c denotes standard deviat ion of continuous variable xi in 
class c. 

Classification For two-class classification C = {co ,c i} , the final decision is made based 
on comparison: 

p(co|x) > p ( c i | x ) (7.5) 

p(cp) - p ( X | C Q ) p(ci) - p ( x | c i ) 

p(x) p(x) 

2 5 Boosting is a process of iterative training where hypotheses from all iterations are used for creating 
the final hypothesis. 

Each iteration consists of weighted training and validating with the same training set. In the first iteration, 
all weights are set to the same value. The classifier is trained and weights adjusted - weights of those 
samples that were classified correctly are decreased and weights of incorrectly classified samples increased. 
This process repeats K times and the final hypothesis is a weighted majority combination of hypotheses 
from all K rounds. [38] 
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A s the denominator has only normalising function, it can be omit ted which simplifies 
the comparison: 

P ( c 0 ) - p (x | c 0 ) >p(c{) - p ( x | c i ) (7.7) 
D D 

P(cO) • X\v{xi\co) > p(ci) • J J p ( x j | c i ) (7.8) 
i=l i=l 

If the expression is true, then the classifier evaluates x as belonging to class en, otherwise 
as belonging to class c\. 

For multi-class classification, p(cj |x) is calculated for each class c% and the data point is 
classified as member of class w i th the highest probability. 

7.2.2 i f -nearest ne ighbours 

Another classification method uses distance metric (as mentioned i n Section 4.2.1) for de­
terminat ion of nearest samples in the t ra ining se t 2 6 . [3] 

W h e n a novel sample x is to be classified, the distance to each sample in the t raining 
set is calculated and k nearest samples (those are called neighbours) are selected. The class 
of x is given by the most numerous class wi th in the k nearest neighbours. In the case of 
ambiguity, (k + l ) s t nearest neighbour is selected and so on. 

The template of fc-nearest neighbours classifier is very simple, it is a list of t raining 
samples. It determines the speed: although the t ra ining is very fast (it consists only of 
loading the t ra ining set), classification of a novel sample takes n comparisons where n is 
the size of the template. 

Having the template so simple however simplifies operation i n online setting, since 
extending the template means only appending the novel t ra ining sample. 

However, one should be aware of growing the template since the larger the template, 
the longer t ime is required to classify a sample. Th is problem can be overcome by replacing 
a sample i n the template w i th the novel example, instead of appending. If the furthest 
sample of the template is replaced, it might lead to reducing the perimeter of the cluster 
and thus to rise of false rejections. A better way is designing the template as a circular 
buffer, so that always the oldest sample is replaced. This enables adapting the template. 

The method of classification also implies a requirement for the template to contain both 
genuine and impostor samples. However, it is possible to modify the algori thm to operate 
as one-class classifier. Instead of predict ing the class of a novel sample, the algori thm cal­
culates distance from the nearest neighbour and checks i f it falls into predefined (manually 
or dynamical ly based on the t ra ining set) threshold. If so, then the novel sample is classified 
as genuine, otherwise as impostor. 

7.2.3 One-class stat ist ical classifier 

A simple classifier proposed by Bours [ ] can handle only continuous properties. In the 
original paper, only t iming information is relevant and the template is stored separately for 
the keys. The idea is though extendible for any number of continuous properties. 

The key point here is that the template is created solely from the genuine user data. 
Such approach is called one-class classification. 

2 6 K-nearest neighbours are also often used in unsupervised setting, as a clustering algorithm. In that 
case, the distance is measured from every sample in the set to each other and clusters are estimated according 
to the distance between samples. 
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Normal distribution pdf for / i = 125,<r=25 

Figure 7.2: P robabi l i ty density function of normal dis t r ibut ion wi th \x = 125 and a = 25. 

The underlying concept is an assumption that data from user u and key fci are generated 
under normal probabil ist ic dis t r ibut ion as depicted i n Figure 7.2. M a x i m u m of probabil i ty 
density function pdf(x) lies i n x = fx. 

Fit t ing For a key k and i t h feature of the feature vector created of N samples, the 
template Tk = (/Xfc,cr^). For simplicity, the calculation here is shown only for one feature. 
In the implemented classifier, this template holds for every feature in the feature vector. 
The mean /i& and standard deviat ion o~\ for key k are calculated as follows: 

/'A; 
Z^i=l xk,; 

N 

N 

4 N ^2(xk,i - Hkf (7.9) 

i=l 

However, this form does not suit the online learning very well , since it has to store 
al l previously seen examples. It is favourable to disassemble the equation to the following 
form: 

f'k 
1 N 

-Y %k,; 
i=l 

N N 

i=l i=l 

and simplified by using two addi t ional variables: 

N N 

Sumk(N) = Yxk,i 
i=l 

Sumt(N) = J24,; 

(7.10) 

(7.11) 

(7.12) 

40 



Substi tuing i n (7.10) gives: 

_ Sumk(N) 
Mfc - (7.13) 

2 _ Sum\{N) - 2/ikSumk{N) 2 

Now, if we are about to fit (N + l ) s t example: 

Sumk(N + 1) = Sumk(N) + xkji (7.15) 

S u m £ ( i V + 1) = Sum2

k(N) + x2

kji (7.16) 

Incrementing in (7.15), (7.16) and recalculating mean (7.13) and standard deviat ion 
(7.14) are the only operations to be taken to fit a novel example. Th is approach saves 
memory space for storing template. 

Classification A prediction is made based on calculat ing distance from the mean. Even 
though Bours employs scaled Manha t t an distance, i.e. Manha t t an distance from (4.3) 
divided by the respective variance: 

dMS(X,Y) = Y/
l-^M (7-17) 

This metric scaling can be applied to any distance metric. One should just be aware of 
using the right denominator, e.g. Eucl idean distance (4.4) should be divided by standard 
deviation af instead of variance. The advantage of using a scaled metric is that that enables 
classifying by a fixed threshold. 

If the distance of the sample is wi th in some margin around the mean, the sample is 
treated genuine. The margin threshold beyond which the sample is treated impostor can 
be set even as a hard value or be calculated dynamical ly according to the t ra in set. 

Based on the prediction, the trust level is adjusted. If no template is found for the 
particular key or the template consists of very few examples, Bours proposed to decrease 
the trust level slightly. 

7.3 Cross-validation 

W h e n t ra ining a supervised classifier, one may face two problems that may happen wi th 
improperly set learning parameters. The first one is underfitting and occurs when the 
classifier cannot even predict the t ra in set correctly. There t ry ing better configuration can 
help. 

The more common problem is overfitting, i.e. fitting to t ra in examples perfectly. Perfect 
fit means it includes also outliers or devious samples. Such classifier performs very badly 
wi th unseen examples. A usual way is to take another part of labelled data, the validation 
set. The classifier is t rained on t ra ining set and predict ing the val idat ion set can detect 
overfitting. 

However, one is often dealing wi th smal l t ra ining set, why should it be shrunk by taking 
a part of it as a val idat ion set? Fortunately, cross-validation can help to fix this problem. 
The basic approach is d iv id ing the t ra ining set i n k parts of the same size. Tra in ing then 
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works i n rounds. In the first round, the t ra ining set is formed wi th k — 1 parts and the 
val idat ion set w i th the remaining part. In any next round, another part is chosen as the 
val idat ion set and the t raining is repeated. E a c h part is used for val idat ion exactly once. 

The final score is calculated as an average score for a l l the rounds. 
This can help w i th choosing the best parameters for the classifier, sklearn l ibrary makes 

automated testing of many different settings possible by providing grid search functions. 
The search runs over a gr id of manually set parameters by t ry ing each possible combination. 
The best score classifier is then selected and can be directly used for prediction. [35] 

A n example of such grid is: 

param_grid = [{ 
" t l _ t h r e s h o l d " : [60, 70, 80, 90], 
" t l _ l e a r n " : [80, 85, 90, 95], 
" o n l i n e " : [True] , 
" t l _ h i s t o r y _ s i z e " : [20, 50, 100], 
" d i s t a n c e _ t h r e s h o l d " : [1.0, 1.5, 2.0] 

} , { 
" t l _ t h r e s h o l d " : [60, 70, 80, 90], 
" o n l i n e " : [ F a l s e ] , 
" d i s t a n c e _ t h r e s h o l d " : [1.0, 1.5, 2.0] 

}] 

The example shows two separate grids. The former one exercises the classifier in an 
online mode and therefore provides also parameters for online learning (tl_learn and 
tl_history_size). The latter one needs not be trained for a l l values of the online-learning-
specific parameters as they have no impact to the performance. 

I uti l ised gr id search wi th cross-validation for every exercised classifier. 

7.4 Online learning 

A machine learning classifier expects the data to keep independent and identically dis­
t r ibuted over t ime. The behavioural biometrics, however, cannot guarantee that expecta­
t ion since the behaviour usually changes over time. 

The online learning classification aims to overcome this problem. It is capable to process 
data that change rapidly i n a short t ime or a large dataset that changes gradually. B y 
contrast to the offline learning (the k ind of M L we have seen so far) which stops learning 
once it switches from training to recognition phase, the online learning continues learning 
also i n recognition phase. Some online classifiers even start in recognition phase and learn 
from scratch. 

In the same way as w i th the offline classifiers, one can distinguish t ra ining wi th and 
without supervision. B o t h groups are described i n the following sections. 

However, it is possible to modify supervised offline classifiers to be trained i n supervised 
setting but adjust their template during recognition. 

7.4.1 S u p e r v i s e d pure-on l ine classifier 

Block diagram of a supervised classifier is depicted in Figure 7.3. For every novel sample 
Xi, the classifier predicts iji and returns the prediction. After the prediction is made, the 
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Figure 7.3: Supervised online-learned classifier. 

classifier is provided the correct answer yi and based on comparison between yi and jji it 
decides whether to update the hypothesis (template). 

A n example of such algori thm is randomised weighted majority algorithm for 
boolean classifiers, described by Russel l and Norv ig [38]. It operates on a set of boolean 
classifiers. Each classifier has an assigned weight which describes its trustworthiness and 
which is updated wi th every sample. 

Formally, it is described i n A l g o r i t h m 7.1. Rea l number f3 on the line 9 ranges from 0 to 
1 and determines how much the classifier is penalised i f it provides an incorrect prediction. 

procedure R W M A ( C = {d, CK}) 
Initialize W = {wi,..., WK} a l l to 1 
for every incoming sample x do 

{Vi, •••,VK} = P R E D I C T ( C , x ) 

Randomly choose a classifier k*, i n proport ion to its weight: P(k) = Wk/^2k> wy 
Provide y = yk* 
Receive correct answer y 
for each classifier i such that jjk ^ y do 

wk <- I3wk 

end for 
end for 

end procedure 

A l g o r i t h m 7.1: Randomised weighted majori ty algori thm. [38] 

However, the set of possible classifiers is very large, even for a smal l number of features. 
For example, it needs 1024 classifiers for a boolean 10-feature space. 

W i n n o w [24] is another classifier operating on a boolean feature space. O n the contrary 
to the previous algori thm, W i n n o w manages processing a very large feature space in a short 
time. 
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Figure 7.4: Unsupervised online-learned classifier. 

7.4.2 U n s u p e r v i s e d pure-on l ine classifier 

Litt lestone [24] introduced a supervised online-classifier W i n n o w 2 that is able to efficiently 
eliminate irrelevant features from large boolean feature space. 

The algori thm assumes there exists a hyperplane that l inearly separates the sample 
space X = {0,1}™. One can find the hyperplane by finding a correct prediction function in 
a monotone disjunctive f o r m 2 8 : 

f(xi,...,xn)=xilV---Vxik (7.18) 

The hyperplane is then given by Xix + • • • + xik = \. 
Such a function is called a target function and the set of a l l possible target functions is 

called target class. 
W i n n o w maintains vector of weights w = (u>i , . . . , wn) (as well as R W M A i n Sec­

t ion 7.4.1). The prediction is based on comparing Y17=i w i x i w i th a predefined threshold O 
(the recommended value is O = n / 2 ) . Every Xi for which the classifier made a mistake 
(xi 7^ y) is either promoted (wi := awi, where a is a predefined constant), el iminated 
(Winnow 1, Wi := 0) or demoted (Winnow 2, Wi := ^ ) . Thus, i n a relatively smal l number 
of steps, the relevant features are selected. 

The original W i n n o w is in fact a supervised online learner. In order to use W i n n o w for 
automated motion detection, N a i r and C la rk [ ] equipped the algori thm w i t h an automatic 
labeller. Tha t is a low accurate classifier that satisfies two requirements: 

1. Automatic failure recognition: The labeller must be able to tel l when the output it 
provides is not reliable and thus the sample should not be used for updat ing the 
weight vector. 

2. Unbiased labelling: The labeller must be aware of any biases and in case of uncertainty, 
it should rather label the sample as unreliable. 

2 7 Although Littlestone calls Winnow a reinforcement-learned classifier, it is in fact supervised classifier 
since the reinforcement comes with every sample. 

2 8 Monotone disjunctive form denotes such function that does not contain negated literal in any term. 
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The labeller acts for W i n n o w as the teacher 2 9 . Based on the labeller's feedback, W i n n o w 
decides whether and how to update the weight vector. 

Nai r and C la rk also introduce how to transform W i n n o w target class from binary feature 
space to integer space. The base idea is to transform an integer value in interval [0, N] to 
vector of boolean features of the form x < t and x > t for t £ [1, N]. A l though this idea 
allows to use Winnow, it changes the sample space size dramatically. 

A n implementat ion that kept value of every such boolean feature would be very space-
consuming. Therefore Na i r and C la rk propose to mainta in the weight vector v i r tua l ly by 
storing one weight for entire interval [t\, £2 ) -

However, the target function for K D is not in monotone disjunctive form. It can be 
expressed as sum of more disjunctive terms where each term corresponds to a part icular 
key or digraph. B u t the disjunctive form functions can be used separately for each key, so 
the final form would be similar to: 

x = toBoolean(timinq) 
, s ( 7 - 1 9 ) 

/(/c,x) = x k l V • • • V x f c „ 

where k denotes the part icular key or digraph and toBoolean() denotes function transform­
ing integer value to boolean vector, as described above. The integer value can really acquire 
only values from interval [0, MAX fay] for single keys or [ — M A X ^ g r a v ^ MAX^grav^ re­
spectively. 

Unfortunately, there rose a problem when I tr ied to adapt it for keyboard dynamics. 
Nai r and C la rk had a weak classifier for image recognising a person in an image but there is 
no such unsupervised classifier that would make such decision. One could raise an objection 
T L can be used. B u t T L is ini t ial ised to a fixed value and relies on prediction of another 
classifier. 

I decided not to exercise this classifier any more due to this deadlock. However, com­
bining W i n n o w and the one-class statist ical classifier from Section 7.2.3 as a weak classifier 
might br ing interesting results. 

7.4.3 A d j u s t i n g superv i sed offline classifiers 

Beyond the pure-online classifiers proposed above, one can also adjust supervised offline 
classifiers to operate i n online mode. The basis is a trained supervised classifier that w i th 
each predicted sample decides whether to include it i n the template. 

That excludes classifiers which need to process whole t raining set again to update their 
template. Neura l networks represent an example of such classifiers because they are trained 
iteratively over the whole t ra ining set. 

Next important step is how the classifier decides which sample should update the tem­
plate and which not. I tested two possible approaches. 

Predict ion probabil ity is essentially a probabi l i ty that the sample belongs to a part icu­
lar class. F r o m tested classifiers, such probabil i ty is provided only by naive Bayes classifier. 

A l though s c i k i t - l e a r n implementat ion of fc-NN classifier does not provide the prob­
abil i ty prediction, it can be roughly expressed as number of samples i n ^-neighbourhood 

2 9 Note that Winnow is in fact a supervised method but the labeller is an unsupervised classifier. The 
joined classifier is therefore treated as unsupervised. 
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that belong to a part icular class. However, the probabil i ty would not evince enough en­
tropy for commonly used values of k (k = 3, k = 5). For that reason, this approach was 
not implemented wi th fc-NN classifier. 

The statistical classifier works wi th continuous Gaussian probabil i ty dis t r ibut ion and 
as such the probabil i ty of the exact value is always zero. A range around the sample value 
would have been selected. B u t what size should be the range? A n d how to calculate 
joint probabi l i ty for more features? This approach was not therefore used wi th statist ical 
classifier as well. 

The approach wi th prediction probabil i ty has another large shortcoming. A s it selects 
only samples close to the previous, it adds almost no new information. It follows that new 
training samples must be selected from wider context to br ing new information. 

Trust level history Another approach is to mainta in a window of H last values of trust 
history. If a l l the values in the window are higher than some threshold t i e a r n then the 
sample can be used for online learning. 

This approach is generally independent on the classifier. The learning threshold t i e a r n 

should be set slightly below the m a x i m u m T L value. Thus even if the in i t i a l T L is at its 
max imum value then it drops fast under t i e a r n for incoming stream of impostor samples. 
Value of t i e a r n therefore depends not only on the window size but also on the specific penalty 
h rewards function. 

One should also consider what value to fill the history window wi th . If impostor stream 
comes to the input then high level might cause including impostor actions i n the template. 
O n the other hand i f the window is filled w i th value less than t i e a r n , the stream of genuine 
has to wait un t i l a l l the values i n the history window are overwritten. 

Perhaps the best option is to use t i e a r n as the in i t i a l filling of history window and 
init ial ize T L to t[earn. Then genuine samples are directly learned and impostor samples are 
isolated from online learning. 

I decided to start w i th m a x i m u m T L since that l i t t le learning examples do not influence 
template significantly. Th is is because size of t ra ining set; I used 10,000 samples for each 
user. 

Summary 

Classification is a way how to automatical ly predict class of previously unseen data on 
the base of training examples. The common assumption is the data samples are i . i .d . 
(independent and identically distributed) and that is therefore possible to estimate function 
that generates them, a hypothesis. 

Since machine learning is a well-documented science area, there exist libraries for many 
programming languages. The l ibrary I used is called s c i k i t - l e a r n and covers both super­
vised and unsupervised offline learning. I selected naive Bayes and fc-nearest neighbours 
classifiers for their abi l i ty to adjust the hypothesis. Moreover, I added one-class statist ical 
classifier. 

In the following sections, several pure-online classifiers are described but non of them is 
suitable for continuous authentication using keystroke dynamics. Therefore I propose how 
to adjust the offline classifiers to work i n online setting. The biggest difficulty is picking 
samples that should be used for online learning. One of the approaches is based on a single 
sample, another one on the trust level value of recently evaluated samples. 
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Chapter 8 

Experimental results 

Dur ing the experiments, I trained the classifiers w i th 10,000 samples for each user. The 
t ra ining set was composed of the first 5,000 genuine user sample in their feature lists and 
5,000 randomly chosen samples from other users, a l l shuffled in random. 

I excluded User 22 from experiments due to very l i t t le data, as Figure 6.1 shows. 
W i t h each classifier, every user was tested against the rest of his dataset for testing 

genuine samples and against each other user for exercising the classifier w i th impostor 
actions. The performance was measured by average number of genuine actions ( A N G A ) 
and average number of impostor actions ( A N I A ) separately for each combinat ion of user 
datasets (in to ta l then 21 tests for A N G A and 21 • 20 = 420 tests for A N I A ) that were 
calculated in the following way. 

If the user was not locked out at a l l , the A N I A / A N G A value equals to the number 
of test examples. Otherwise the metric is computed as to ta l number of act ion from the 
beginning to the last lockout divided by number of lockouts: 

. , T . # actions unt i l last lockout 
A N A = — —— 

# lockouts 

The higher value of A N G A and the lower value of A N I A , the better the classifier per­
forms. A s those values are calculated for each user, the presented results are averaged. 

8.0.4 Classif iers 

In total , I exercised the following four classifiers. 

W i n n o w I rejected the first one, Winnow, after I encountered it is not possible to use 
T L as a weak classifier. The problem was already described in Section 7.4.2. 

Naive Bayes classifier For naive Bayes classifier ( N B ) , I employed the s c i k i t - l e a r n 
class GaussianNB which is a classifier suitable for processing continuous variables. The 
N B evinced on average excellent 45,448 of genuine actions ( A N G A ) but very poor 36,108 
impostor actions. Tha t means almost no one was ever locked out. Adjus t ing trust level 
threshold d id not help here because the T L was keeping around its max imum. Therefore I 
left naive Bayes classifier behind as well. 
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Figure 8.1: Average t ime for predict ing one sample by different classifiers. Tra in ing set 
consisted of 10,000 samples. 

fc-nearest neighbours classifier Next classifier I exercised, was fc-nearest neighbours 
classifier. I tested it in default settings, namely wi th automatic algori thm selection (accord­
ing to documentation, usually the Bal lTree a lgori thm is chosen) and k = 5. It performed 
much better than N B : a genuine user could make 1,483 actions on average and an impostor 
could make on average 145 actions. However it suffered from another large drawback, the 
recognition t ime. Figure 8.1 shows recognition t ime for a l l the classifiers. Whi l s t running 
al l tests for N B or the statist ical classifier took about 20 minutes, tests w i th fc-nearest 
neighbours classifier (fc-NN) took almost 5 hours each. 

Moreover, the fc-NN can basically use three different structures for storing the key, 
according to used algori thm. For brute-force algori thm, i.e. testing each novel sample wi th 
each template sample, the template consists s imply from a list of sample and is therefore 
easily extensible. B u t the recognition t ime wi th the t ra ining set of 10,000 samples is almost 
three times longer than presented in Figure 8.1. 

The other algorithms use a tree structure as a template. Nevertheless, the tree structure 
is a packed C l ibrary and s c i k i t - l e a r n l ibrary does not provide source codes for those. 
Tha t means, the tree would have to be generated each t ime a novel sample comes into the 
template, which would increase the recognition t ime even more. 

Statistical classifier I implemented the statist ical classifier by myself, roughly following 
Bours ' work [ ]. Beyond that, I implemented the trust level history window for online 
learning. 

Due to quite large number of possible configurations, I employed GridSearchCV (see 
Section 7.3) to find best values for the parameters. G r i d search discovered several configu­
rations wi th same score for each user. I decided for the most common setting: T L history 
window size = 20, T L threshold for learning = 80 and lockout threshold = 60. 
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Figure 8.2: Improvement of A N G A and A N I A for the statist ical classifier w i th T L history 
window size 20, tiearn = 80 and tiockout = 60. 

In the offline setting, the average A N G A value was 18,560 actions and average A N I A 
value 16,455. However this value is hugely influenced by several large numbers and the 
median A N I A value is 4,772. 

After switching to online setting, the average A N G A value slightly decreased to 18,539 
actions, the average value of A N I A decreased significantly to 12,538 and the median value 
to 3,374. Tha t is an average A N I A improvement of 23.7%. 

The proport ional change of A N G A and A N I A values from al l the users is shown in 
Figure 8.2. One can notice that even though the A N G A became worse for most of the 
users 3 0 (however making no significant difference on average), the A N I A value, representing 
resistance against impostors, has improved for every tested user. 

The large changes i n A N G A values are caused by smal l number of genuine user lockouts 
both i n offline and online setting. 

3 0 Note the almost 100% improvement for User 15. He was locked out once in the online setting, 
approximately in the half of the test set. Online setting did not locked him at all so the A N G A value 
increased rapidly for him. 
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Chapter 9 

Conclusion 

This master thesis aimed to exercise whether it is possible to automatical ly adjust the 
template of a continuous biometric system after it is trained. A s far as I know, this is the 
first work concerning this problem. 

Almos t 50 people agreed wi th collecting their keystroke data but only 22 of them eventu­
ally completed the capturing. I used an external program B e L T which runs under Microsoft 
Windows for collecting the data. I had to overcome several problems associated wi th B e L T 
because it does not consider different keyboard layouts and system-wide encoding. Thus 
al l data files were normalised to mult i-byte encoding U T F - 8 . It also allows to store data in 
two different file formats and several users selected by accident other file format than the 
others. I had to write the script for converting between those two formats. 

Next challenge was pre-processing the data. A s B e L T captures low-level system events, 
those were aggregated to form single key and digraph features. L i s t of such features were 
stored for each user, i n to ta l 163 M B of data. 

The consequent testing exercised four classifiers i n order to answer the research question. 
The best performing offline classifier was fc-nearest neighbours classifier but it operated very 
slow and was hard to extend for online learning. 

However, an online improvement was achieved using a simple one-class statist ical clas­
sifier. The template was adapted based on 20 last seen examples and this enhancement 
improved an average impostor recognition rate by 23.7%. 

The first research question is thus answered: yes, it is possible to adjust the template 
during recognition phase. Unfortunately, I cannot answer how it differs for various classifi­
cation method as I have found no more methods worth experimenting wi th . 

This topic could be extended i n future work by exercising methods of adjusting and 
speeding up fc-nearest neighbours classifier since it evinced very good results in online set­
t ing. Unfortunately it 's implementat ion in s c i k i t - l e a r n l ibrary forced to choose between 
inefficient brute force and closed-source trees. 
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fc-NN fc-nearest neighbours classifier. 48, 50 

A N G A average number of genuine actions. 15, 17, 47, 49 

A N I A average number of impostor actions. 15, 17, 47, 49 

B B behavioural biometrics. 8, 9, 17 

E E R equal error rate. 15, 17, 23 

F A R false acceptance rate. 13-17 

F R R false rejection rate. 13-18 

G U I graphical user interface. 8 

H C I human-computer interaction. 25, 26 

K D keystroke dynamics. 3, 12, 13, 18-20, 22-26, 29, 45 

M L machine learning. 7, 22-24, 42 

N B naive Bayes classifier. 47, 48 

N N neural network. 21, 23 

O S operating system. 10, 25, 28 

P C A principle component analysis. 26 

P I N personal identification number. 5, 8, 18 

P N N probabilist ic neural network. 23 

R F C request for comments. 28 

S V M support vector machine. 23, 56 

T L trust level. 13, 14, 45-49 

X I 1 X window system. 26 
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Appendix A 

Used software 

This master thesis would not be created without several software packages. They are listed 
below. 

B e L T v2.0.21 B e L T (Behaviour Logging Tool) [46] is a program developed at H0gskolen 
i Gj0v ik (Gj0vik Univers i ty College) i n Norway to help w i t h collecting users' da ta for 
behavioural biometrics research. It's behaviour is more thoroughly described i n Chapter 5 
including the file format and several bugs. 

P y t h o n v2.7.9 D a t a processing and simulation was wri t ten i n P y t h o n 2. I chose the 
language for it 's suitable for fast script ing and prototyping as well as for larger software 
packages. Moreover, there exist many scientific libraries for P y t h o n that are described in 
following paragraphs. 

numpy l i b r a r y v l .9 .2 [ ] is an efficient l ibrary for mathematic computat ion i n Py thon . 
Especial ly important for this master thesis was support for operations over arrays and 
matrices and generating random numbers according to specified probabil i ty dis t r ibut ion. 

s c i k i t - l e a r n l i b r a r y vO.16.2 [ ] is a P y t h o n l ibrary implementing classical machine 
learning algorithms such as Naive-Bayes, S V M or /c-Nearest Neighbours. It provides a 
unified interface for classifiers so a l l the classifiers implemented this interface so it could be 
used in the simulator. 

scipy l i b r a r y vO.15.1 [ ] is a base l ibrary for s c i t k i t - l e a r n and is required for its 
run. 

matplot l ib l i b r a r y v l .4 .3 [14] is a Matlab-style l ibrary for 2D plots. The plots are 
highly customizable and are generated as vector graphics, therefore suitable for including 
in printed work. 

56 



Appendix B 

CD contents 

Y o u can find several subdirectories in the root directory of the attached C D . 

sr c / 
+- M a k e f i l e 
+- common/ 

+- <source f i l e s common f o r e x t r a c t i o n and p r o c e s s i n g > 
+- h e l p e r s / 

+- graphs.py ( g e n e r a t i n g graphs) 
+- raw2csv.py ( t r a n s f o r m BeLT RAW f i l e to CSV) 
+- s t a t s . p y ( p r o c e s s s t a t i s t i c s of r e s u l t s ) 

+- t e s t s / 
+- <t e s t s f o r c o v e r i n g major c l a s s e s > 

+- e x t r a c t f e a t u r e s . p y ( c r e a t e s f e a t u r e s l i s t s from CSV) 
+- r u n \ _ g r i d . p y (compares d i f f e r e n t c l a s s i f i e r s ) 
+- r u n \ _ s i m u l a t i o n . p y (run s i m u l a t i o n and w r i t e r e s u l t s ) 
+- r u n t e s t s . p y (runs a l l t e s t s ) 

l o g / 
+- <unprocessed r e s u l t s i n CSV> 

tex / 
+- M a k e f i l e 
+- <LaTeX source f i l e s > 

Please note the user data are not stored on the C D nor the extracted feature. Th is is 
due to their private character. The data were burn to a separate C D which is stored by my 
supervisor doc. Drahansky. 

Directory src/ contains P y t h o n scripts for extracting features, classification and simu­
lat ion. Purpose of ind iv idua l files is annotated in the l is t ing above or can be deducted from 
in-file documentation. Fi les are documented i n compliance wi th P y t h o n best prac t ices 3 1 . 

3 1 The documentation conventions are described in PEP 257 (https://www.python.org/dev/peps/ 
pep-0257/) 
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