
University of Hradec Králové 

Faculty of Informatics and Management 

Department of Information Technology 

Virtualization and virtualization clusters on Linux systems 
Master's thesis 

Author: JAN KOHOUT 
Field of study: Applied Informatics 

Supervisor: Ing. PAVEL BLAŽEK, Ph.D. 

Luzern 2023 



D e c l a r a t i o n 
I warrant that the thesis is my original work and that I have not received outside assis­
tance. Only the sources cited have been used in this draft. Parts that are direct quotes or 
paraphrases are identified as such. 

Jan Kohout 
Apr i l 23, 2023 



Acknowledgements 
I would like to acknowledge and express my deepest appreciation to my supervisor, Pavel 
Blažek, for his support. I am also grateful to my colleagues for their support and en­
couragement. I would like to thank Jean Sebastien Susset and Fadri Pestalozzi for their 
assistance and support and reviews. Lastly, I would like to extend my appreciation to all 
the participants who generously gave their time and left me very valuable feedback. 





A n o t a t i o n 
The main objectives of this thesis are to conduct research on cloud technologies and design 
a distributed system based on modern principles. The system is built on cloud resources 
using microservices architecture design patterns and is adaptive through autoscaling. The 
entire solution meets the demand for modern approaches and standards. The master's thesis 
comprises of four primary chapters. The first chapter is an introduction that describes the 
motivation and focus of the research. The second chapter conducts research across various 
cloud providers and their solutions, and concludes with a decision on which provider to 
choose. The third chapter focuses on the system infrastructure's architecture provided 
by cloud services and designs it based on the knowledge gathered from research on each 
component. The fourth chapter describes the implementation of the system, including 
deployments and automations. The conclusions can be found in chapter number five. 



Contents 

1 Introduction 1 

2 Cloud solutions and cloud providers 2 
2.1 Cloud market growth and market shares 2 

2.1.1 Latest market shares 4 
2.2 Cloud services 4 

2.2.1 Cloud computing 5 
2.2.2 Cloud storage service 6 
2.2.3 DaaS Solutions 6 

2.3 Security 7 
2.3.1 Shared responsibility models 8 
2.3.2 Security management 10 
2.3.3 Workload security protection 12 
2.3.4 Secrets management 13 
2.3.5 V P N access 13 
2.3.6 Encryption 14 
2.3.7 SaaS policies 15 
2.3.8 Globally known standards 16 
2.3.9 Cloud auditing 17 

2.4 Conslusion 18 

3 Architecture of the system 19 
3.1 Infrastructure as a code 19 

3.1.1 Terraform 19 
3.1.2 AWS CloudFormation 20 
3.1.3 Azure resource manager 20 
3.1.4 Google cloud deployment manager 20 
3.1.5 Summary 21 

3.2 Helm package manager 21 
3.2.1 Helm umbrella charts 21 

3.3 Kubernetes 22 
3.3.1 Kubernetes control plane 22 
3.3.2 E K S 23 
3.3.3 ECS 23 
3.3.4 Fargate instances 23 
3.3.5 Summary 23 

3.4 Autoscaling 24 
3.4.1 Kubernetes built-in autoscaler and its integration with unoptimized 

applications 24 
3.4.2 K E D A 25 

3.5 AWS DaaS solutions 26 
3.5.1 Amazon RDS with PostgreSQL 26 
3.5.2 Amazon Aurora with PostgreSQL 27 
3.5.3 Aurora V S . Amazon RDS 27 
3.5.4 Amazon Neptune 28 



3.6 Infrastructure layer architecture 29 
3.7 C I / C D 29 

3.7.1 Github actions 30 
3.7.2 Infrastructure unit tests - Terratest 31 
3.7.3 Unit tests 31 
3.7.4 Code inspection and vulnerability detection - Sonar Cloud 31 
3.7.5 ArgoCD 32 
3.7.6 Release management and deployment strategies 32 
3.7.7 New feature deployment life-cycle 34 
3.7.8 On demand deployment - demo environments and development envi­

ronments 35 
3.7.9 Production environments 35 

4 Implementation of the system 38 
4.1 Terraform implementation and underlying infrastructure 38 
4.2 Github action automations 42 

4.2.1 Demo environment creation automation 42 
4.3 Helm deployment and app stack deployment 43 

4.3.1 Node autoscaler 43 
4.3.2 Private and public load balancers 44 
4.3.3 AWS CloudWatch collectors 44 
4.3.4 K E D A deployment and data flow architecture 45 

4.3.5 Load test of K E D A integration 46 

5 Conclusion of results 57 

6 Conclusion 58 

Bibliography 59 

List of Abbreviations 63 

•2 



List of Figures 

1 Cloud market growth 2018 [1] 3 
2 Cloud market growth Q3 2019 [2] 4 
3 Cloud market growth Q3 2022 [3] 5 
4 AWS shared responsibility model [4] 9 
5 G C shared responsibility model [5] 10 
6 Azure shared responsibility model [6] 11 
7 Basic cloud entities hierarchy 12 
8 Identity and access management (IAM) policy differencies 12 
9 Virtual private network (VPN) Site to site (S2S) and Point to site (P2S) 

diagram [7] 14 
10 Azure security center [8] 15 
11 Amazon inspector [9] 16 
12 Kubernetes Event-driven Autoscaling ( K E D A ) architecture diagram [10] . 25 
13 Infrastructure architecture diagram 30 
14 ArgoCD architecture [11] 33 
15 Deployment life-cycle 34 
16 C I / C D demo/dev environments architecture 36 
17 C I / C D production environments architecture 37 
18 State files in S3 40 
19 Terraform plan output 41 
20 Infrastructure architecture diagram 48 
21 Github action infrastructure creation architecture 49 
22 I A M source code 50 
23 Policy and role attachment 50 
24 Service account 51 
25 Cluster role 51 
26 Role 51 
27 ClusterRoleBinding and RoleBinding 52 
28 Node autoscaler deployment 53 
29 I A M and role schema 53 
30 Autoscaler configuration 54 
31 Private loadbalancer 54 
32 FluentBit log collection schema 55 
33 Custom metric architecture and log quering by ScaleObject 55 
34 ScaledObject deployment and configuration 56 
35 Correlation between requests per minute and nginx replicas 56 



List of Tables 

1 Cloud market shares in % 4 
2 Comparison of cloud computing engine [12], [13] 6 
3 Comparison of cloud storage [12], [13] 6 
4 Comparison of cloud computing engine [12], [13] 7 
5 Network security solutions comparison 13 
6 Secrets management solutions 13 
7 Secrets management solutions 14 
8 Results of load test 47 



1 Introduction 

As a result of globalization, more companies have become international in recent years and 
doing business in a foreign country on the other side of the world is not uncommon. The high 
demand for their applications to be available globally causes a number of issues. Instead of 
building their own infrastructure, which costs more effort, money and human power, most 
of them decide to move to the cloud. Moving a company into the cloud is not an easy task: 
it requires a pure company transformation that could take several years of work, where 
multiple teams contribute, research and implement. Cloud technologies became globally 
available and reliable and this brought the opportunity to run different application stacks 
on multiple cloud solutions. There are two main fundamental cloud paradigms: public and 
private. The public cloud is mostly used by small businesses, whereas the private cloud is 
mostly used by large enterprises and can be highly customized. This thesis focuses on the 
transformation of small to midsize enterprises into the public cloud with a high demand for 
customization and security. As stated above, there are several fundamental requirements, 
which are scalability, reliability, accessibility and security. Security in the sense of IP 
security, advanced firewalls and data storage; scalability—to provide a solution that is 
automatically able to adapt to continuous traffic in heavily loaded production environments. 
Reliability in terms of adopting the service level objectives Service level objective (SLO) and 
service level agreements Service level agreement (SLA) is defined by the contract between 
the company and the customer and accessibility—the application should be accessible from 
the region where the customer is located. These requirements could be met by running 
applications in the cloud in virtualization environments and this master thesis provides 
research, decisions and architectural solutions. [14] 

1 



2 Cloud solutions and cloud providers 

There are multiple cloud providers that provide their services around the globe. This 
chapter compares the biggest players in the cloud market and their Infrastructure as a 
service (IaaS), Platform as a service (PaaS) and Software as a service (SaaS) solutions. The 
comparison is made using publicly available metrics such as cloud market shares, security, 
networking, Virtual machine (VM) tiers, sizes, pricing and others. 

2.1 Cloud market growth and market shares 

In 2017, the cloud market began to expand rapidly as more businesses decided to transform 
their infrastructure and make it globally available rather than building their own hybrid 
or private cloud solutions.This trend was influenced in part by the COVID-19 pandemic, 
when more employees worked from home and desired to have their services available with 
the shortest possible connection response time; the same was true for clients abroad. The 
first news about the cloud market's progressive growth came in 2018, when many IT an­
alytical firms examined stakeholders' interest in public cloud providers and the impact of 
big enterprise transformation. This information is proven by the Synergy report from 2019: 

"New data from Synergy Research Group shows that across seven key cloud services 
and infrastructure market segments, operator and vendor revenues for 2018 passed the $250 
billion milestone, having grown by 32% from 2017. IaaS & PaaS services had the highest 
growth rate at 50%, followed by hybrid cloud management software at 41%, enterprise SaaS 
and public cloud infrastructure both at 30% and hosted private cloud infrastructure ser­
vices at 29%. In 2016 spending on cloud services first overtook spending on hardware and 
software used to build public and private clouds and in 2017 and 2018 the gap widened 
dramatically. Despite a strong 2018 uptick in the growth rate for spending on cloud in­
frastructure, in aggregate spending on cloud service markets continues to grow much more 
rapidly. Across the whole cloud ecosystem, companies that featured the most prominently 
among the 2018 market segment leaders were Microsoft, AmazonAWS, Dell E M C and I B M . 
They were followed by Salesforce, Cisco, H P E , Adobe and VMware. In aggregate these nine 
accounted for well over half of all 2018, total spend on hardware and software used to build 
cloud infrastructure exceeded $100 billion - somewhat evenly split between public and pri­
vate clouds - though spend on public cloud continues to grow more rapidly. Infrastructure 
investments by cloud service providers helped them to generate over $150 billion in rev­
enues from cloud infrastructure services ( IaaS, PaaS, hosted private cloud services) and 
enterprise SaaS, in addition to which their infrastructure supports internet services such as 
search, social networking, email, ecommerce, gaming and mobile apps." [1] The data of the 
cloud market growth are visualized in the plot 1. 

In the synergy report from October 2019, we can see one of the first comparisons between 
the four biggest players Amazon, Microsoft, Google and Alibaba and their market shares. 

"New data from Synergy Research Group shows that the leading four providers of public 
cloud services accounted for 72% of the worldwide market for IaaS and PaaS in Q3, up from 
57% at the beginning of 2016. Throughout that period Amazon's worldwide market share 
has held steady at around 40%, while Microsoft, Google and Alibaba have all steadily gained 
share. The four market leaders are followed by Salesforce, I B M , Oracle, Tencent, Sinnet-
AWS and a large group of companies with minor market shares. Total worldwide spending 
on public IaaS and PaaS reached $20 billion in Q3, representing over 80% of the total cloud 
infrastructure services. The rest of the market is comprised of hosted and managed private 

2 



ü S i i 
.2 w 

O O u 

2 =4 

3 03 
•10 -n 

I I ' 

Cloud Market Growth & Segment Leaders - 2018 
l a a S & 

P a a S 

Hosted 
Private 
C l o u d 

Enterprise 
S a a S 

U C a a S 

Pub l ic 
Cloud 

Private 
Cloud 

Hybrid 
Cloud S W 

• e l l E M C 
H P E 
Microsoft 

• e l l E M C 
H P E 
Microsoft 

• e l l E M C 
C i s c o 
H P E 

A m a z o n 
Microsoft 
Google 

VMware 
B M C 
Micro Focus 

0% 

Source: Synergy Research Group 

10% 2 0 % 3 0 % 
Growth from 2017 

4 0 % 5 0 % 

Figure 1: Cloud market growth 2018 [1] 

cloud services, where I B M is the market leader and companies like Rackspace and O V H 
feature more prominently. Wi th most of the major cloud providers having now released 
their earnings data for Q3, Synergy estimates that total cloud infrastructure service revenues 
(including IaaS, PaaS and hosted private cloud services) were well over $24 billion in the 
quarter, with revenues for the last four quarters now reaching $89 billion. The total market 
grew by 37% from the third quarter of 2018. The public IaaS and PaaS part of the market 
continues to grow more rapidly than private cloud services, with Q3 growth coming in at 
40%. Geographically, the cloud market continues to grow strongly in all regions of the 
world." [2] 

"It has taken just eight quarters for the public IaaS and PaaS markets to double in size 
and our forecast shows them doubling in size again over the next eleven quarters," said John 
Dinsdale, a Chief Analyst at Synergy Research Group. "It is particularly noteworthy that 
as spending on public cloud services continues to grow rapidly, the top four cloud providers 
are strengthening their grip on the market. Some of the companies outside the top four are 
actually growing at a reasonable pace, but the reality is that in aggregate they continue to 
lose ground to the market leaders. Outside of some niche services and geographic regions, 
this is a game where scale of operations, geographic footprint and global brand are key 
competitive advantages." [2] 

The plot 2 depicts the growth of the cloud market and a comparison of the top four 
players. The comparison of the growth of four big players in the cloud market from different 
sources than Synergy Research Group are in the table 1 and it highly correlates. 

3 



Public Cloud Services - Market Share Trend 
[Publ ic l a a S & P a a S - exc l udes H o s t e d / M a n a g e d Private Cloud) 

0 % • 
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 
16 16 16 16 17 17 17 17 18 18 18 18 19 19 19 

Source: Synergy Res ea rc h Group 

Figure 2: Cloud market growth Q3 2019 [2] 

Table 1: Cloud market shares in % 
Journal Period AWS Azure cloud (AC) Google cloud (GC) 
Synergy [15] Q4 2019 33% 18% ?% 
Sam solutions [16] 2020 33% 19% 7% 
Alto Palo [17] probably Q l 2021 33% 18% 9% 
Canalys [18] Q l 2021 32% 19% 7% 
Hosting seekers [19] probably Q2 2021 30% 16% 10% 
CISIN [20] Q l 2021 32% 20% 7% 
Channele2e [21] Q l 2022 33% 21% 8% 

2.1.1 Latest market shares 

The latest data on cloud market shares are shown in the plot 3. The growth of Azure 
cloud services has increased by 2%. Amazon remains the market leader, but its share has 
increased by only 1% in the last few years, while Google's cloud services have increased by 
approximately 2%. 

2.2 Cloud services 

Cloud computing refers to the delivery of computing resources, such as storage, process­
ing power and networking, over the internet. These resources can be accessed on-demand 
and are typically offered on a pay-per-use basis. Cloud computing can be a cost-effective 
and scalable solution for organizations that need to quickly and easily access computing 
resources. Azure, Google Cloud and AWS are three major providers of cloud computing 
services. Each provider offers a wide range of services, including IaaS, PaaS and SaaS. IaaS 

4 



Cloud Infrastructure Services Market 
(IaaS, PaaS, Hosted Private Cloud) 

Q3 2022 
Market 
Share 

$50 

Others 9% 
$0 

Q3 2017 Q3 2018 Q3 2019 Q3 2020 Q3 2021 Q3 2022 
Source: Synergy Research Group 

Figure 3: Cloud market growth Q3 2022 [3] 

is a type of cloud computing that provides access to raw computing resources, such as stor­
age, networking and processing power. IaaS allows organizations to rent these resources on 
a pay-per-use basis, rather than having to purchase and maintain their own infrastructure. 
Examples of IaaS offerings on Azure include virtual machines, storage and networking, 
while Google Cloud offers services such as Compute Engine, Cloud Storage and Cloud Net­
working. AWS also offers a range of IaaS services, including EC2, S3 and V P C . PaaS is a 
type of cloud computing that provides access to a platform for developing, testing and de­
ploying applications. PaaS eliminates the need for organizations to purchase and maintain 
their own hardware and software infrastructure and allows them to focus on developing 
and deploying applications. Examples of PaaS offerings on Azure include Azure App Ser­
vice, Azure Functions and Azure SQL Database, while Google Cloud offers services such as 
App Engine, Cloud Functions and Cloud SQL. AWS also offers a range of PaaS services, 
including Elastic Beanstalk, Lambda and RDS. 

2.2.1 Cloud computing 

Cloud computing refers to the delivery of computing resources, such as storage, processing 
power and networking, over the internet. These resources can be accessed on-demand 
and are typically offered on a pay-per-use basis. Cloud computing can be a cost-effective 
and scalable solution for organizations that need to quickly and easily access computing 
resources. One type of cloud computing service is IaaS, which provides access to raw 
computing resources such as storage and processing power. A key component of IaaS is 

5 



the V M , which is a software emulation of a physical computer that can be configured with a 
specific operating system and set of applications. Another type of cloud computing service 
is PaaS, which provides a platform for developing and deploying applications. PaaS includes 
container services, which allow applications to be packaged in a container that can be easily 
deployed on any infrastructure. Container registry is a service that stores and manages 
container images, while serverless functions are a type of cloud computing that allows 
organizations to run code without having to worry about the underlying infrastructure, 
compared in table 4. 

Table 2: Comparison of cloud computing engine [12], [13] 
Service AWS Azure cloud (AC) Google cloud (GC) 
IaaS 
PaaS 
Containers 
Container Deployment 
Container register 
Serverless Functions 

Amazon Elastic Compute Cloud (EC2) 
AWS Elastic Beanstalk 

Amazon Elastic Compute Cloud Container Service 

EC2 registry 
AWS Lambda 

Virtual Machines (Azure VMs) 
Cloud services 

A K S (Azure Kubernetes Service) 
Container service 

Container registry 
Azure Functions 

Google Compute Engine (GKE) 
Google App Engine 

G K E (Google Kubernetes Engine) 
Container Engine 

Container registry 
Google Cloud Functions 

2.2.2 Cloud storage service 

Cloud storage refers to the use of remote servers on the internet to store, manage and 
process data, rather than storing it on a local hard drive or server. Cloud storage can be 
a cost-effective and scalable solution for organizations that need to store and access large 
amounts of data. Cloud storage services are typically classified as either object storage or 
block storage. Object storage is a type of cloud storage that stores data as objects, which 
can be easily accessed and managed over the internet. Block storage is a type of cloud 
storage that stores data as blocks, which can be accessed and managed as part of a file 
system. Major providers of cloud storage services include Azure, Google Cloud and AWS, 
each offering a range of object storage and block storage services. 

Table 3: Comparison of cloud storage [12 > [13] 
AWS Azure cloud (AC) Google cloud (GC) 
Simple Storage Service (S3) 
Elastic Block Storage (EBS) 
Elastic File System (EFS) 
Storage Gateway 
Snowball 
Snowball Edge 
Snowmobile 

Blob Storage 
Queue Storage 

File Storage 
Disk Storage 

Data Lake Store 

Cloud Storage 
Persistent Disk 

Transfer Appliance 
Transfer Service 

2.2.3 DaaS Solutions 

Database as a service (DaaS) is a type of cloud computing service that provides access to 
a database over the internet. DaaS allows organizations to rent a database on a pay-per­
use basis, rather than having to purchase and maintain their own database infrastructure. 
This can be a cost-effective and scalable solution for organizations that need to quickly and 

(i 



easily database. DaaS is typically offered as part of PaaS, offering, that provides a 
platform for developing and deploying applications. 

Table 4: Comparison of cloud computing engine [12], [13] 
AWS Azure cloud (AC) Google cloud (GC) 
Aurora SQL Database Cloud SQL 
RDS Database for MySQL Cloud Bigtable 
DynamoDB Database for PostgreSQL Cloud Spanner 
ElastiCache Data Warehouse Cloud Datastore 
Redshift Server Stretch Database 
Neptune Cosmos DB 
Database migration service Table Storage 

Redis Cache 
Data Factory 

2.3 Security 

Cloud security and compliance refer to the processes and measures put in place to ensure the 
secure and compliant use of cloud computing services. Cloud security involves protecting 
data stored in the cloud and preventing unauthorized access to it, while cloud compliance 
refers to ensuring that a company's use of cloud computing adheres to relevant laws, reg­
ulations and industry standards. Ensuring both security and compliance is essential for 
companies that use the cloud, as the cloud has become a critical part of many businesses 
and the amount of sensitive data being stored in the cloud has increased. A breach of 
security or a failure to adhere to compliance requirements can have serious consequences 
for a company, including legal and financial penalties, damage to its reputation and the 
loss of customer trust. 

To address both cloud security and compliance, companies should have a clear under­
standing of relevant laws and regulations and implement policies and procedures to ensure 
that their use of cloud computing aligns with these requirements. In addition, they should 
implement technical controls such as encryption and secure authentication protocols to pro­
tect against data breaches and unauthorized access. Regular assessments and audits can 
also help companies ensure that they are adequately addressing both security and compli­
ance. 

There are various approaches that companies can take to ensure cloud security and 
compliance. One approach is to work with a third-party provider that specializes in helping 
companies achieve and maintain compliance with relevant laws and regulations. These 
providers can offer expert guidance on the specific requirements that companies need to 
adhere to, as well as assist with the development and implementation of compliance policies 
and procedures. They can also help companies assess and improve their technical controls 
and provide ongoing support to ensure that the company remains compliant over time. By 
working with these specialized providers, companies can have greater confidence that they 
are effectively addressing all aspects of cloud security and compliance and minimizing the 
risk of legal and financial consequences. 

Another approach is for companies to develop an in-house compliance and security pro­
gram. This involves establishing a dedicated team or department responsible for overseeing 

7 



compliance and security efforts, as well as implementing policies and procedures to en­
sure that the company is meeting all relevant requirements. This approach can be more 
cost-effective for companies that only use a few cloud computing services, but it may be 
more challenging for companies that rely heavily on the cloud and have a large number of 
compliance and security requirements to address. Regardless of the approach taken, it is 
essential that companies prioritize cloud security and compliance to protect their sensitive 
data and minimize the risk of legal and financial consequences. 

2.3.1 Shared responsibility models 

Shared responsibility models are an important concept in cloud computing, as they outline 
the specific responsibilities of the cloud provider and the customer when it comes to security 
and compliance. These models are meant to make it clear what each party's roles and 
responsibilities are, so that all the necessary steps are taken to protect sensitive data and 
follow laws and rules. 

There are several different shared responsibility models that are commonly used by cloud 
providers. In a full responsibility model, the cloud provider assumes complete responsibility 
for all aspects of security and compliance, including the physical infrastructure, the oper­
ating system and the applications. In this model, the customer is responsible for managing 
their own data and applications within the cloud environment, but the provider handles all 
other security and compliance concerns. 

In a partial responsibility model, the cloud provider and the customer share certain 
responsibilities. The provider may still be responsible for the physical infrastructure and 
the operating system, but the customer is responsible for managing their own data and 
applications and implementing necessary security measures. In this model, it is important 
for the customer to carefully understand their specific responsibilities and ensure that they 
are adequately addressing them. 

In a full customer responsibility model, the customer assumes complete responsibility for 
all aspects of security and compliance, including the physical infrastructure, the operating 
system and the applications. In this model, the cloud provider is responsible for providing 
the necessary resources and infrastructure, but the customer is responsible for all other 
security and compliance concerns. This model is usually used when the customer has very 
specific security or compliance needs that the provider cannot meet. 

No matter what model of shared responsibility is used, it is important for both the 
cloud provider and the customer to know and follow their specific responsibilities to make 
sure that cloud computing services are used in a safe and legal way. 

Every cloud provider has a slightly different model. 

The Amazon Shared Responsibility Model [4] is the most simple cloud provider model 
and can be seen in Figure 4. This model defines two main entities, which are the customer 
and Amazon web services (AWS) and explains them in a very simplistic manner. It should 
be mentioned that the customer is responsible for the security of its application stack, 
beginning with customer data, because the customer defines how the data will be stored 
and uses one of the AWSproducts. The customer also implements the identity and access 
management policies and fully configures them while using the access management services 
from a third-party provider or AWS. 

The customer also selects the platform on which the application stack will run ( Op­
erating system (OS), Amazon Elastic Kubernetes Service (EKS), Amazon Elastic Con-

8 



tainer Service (ECS), V M ) and fully configures network and firewall policies while utilis­
ing AWS IaaS, SaaS and PaaS. The customer is also responsible for the client's data and 
its encryption while being stored on the cloud, as well as the encryption of communication 
between the client and the cloud, as well as internal communication between specific ser­
vices within the cloud. For example , application — Transport Layer Security (TLS)—> 
database. On the other hand, AWS is responsible for its own cloud service stack, which 
includes a compute engine, storage, database and networking and gives recommendations 
for the best practises to the customer. AWS is also responsible for the availability of its 
services through declared availability zones and hardware in the data centers, as well as 
physical access to the machines and networks and S L A declared in the official terms of 
service. It should be mentioned that there is a difference between the responsibility for 
service availability and configuration. AWS provides the availability of the service while the 
customer configures it in the cloud. 

CUSTOMER PLATFORM, APPLICATIONS, IDENTITY & ACCESS MANAGEMENT 

R E S P O N S I B I L I T Y F O R 

S E C U R I T Y 'IN' T H E C L O U D OPERATING SYSTEM, NETWORK & FIREWALL CONFIGURATION 

C L I E N T - S I D E D A T A 

E N C R Y P T I O N & D A T A I N T E G R I T Y 

A U T H E N T I C A T I O N 

S E R V E R - S I D E E N C R Y P T I O N 

(FILE S Y S T E M A N D / O R DATA) 

N E T W O R K I N G T R A F F I C 

P R O T E C T I O N [ E N C R Y P T I O N , 

I NT E GRI T Y , I D E N T I T Y ) 

R E S P O N S I B I L I T Y F O R 

S E C U R I T Y ' O F ' T H E C L O U O 

SOFTWARE 

COMPUTE STORAGE DATABASE NETWORKIMG 

HARDWARE/AWS GLOBAL INFRASTRUCTURE 

REGIONS AVAILABILITY ZONES EDGE LOCATIONS 

Figure 4: AWS shared responsibility model [4] 

Shared responsibilities and shared fate on Google Cloud are shown in Figure 5. While 
the AWS model is based more on the common description, Google tries to compare its 
own IaaS, PaaS, SaaS solutions with On premise (on-prem). The Figure also shows two 
entities, a cloud provider and a customer. As could be seen, once the customer provides its 
own solutions On-prem, it takes full responsibility. Wi th cloud-based IaaS solutions, the 
customer is in charge of selecting the guest operating system, data and content. This could 
be the use case of running the virtual machine in the network with specific access. Wi th 
a PaaS cloud solution, the customer's responsibility begins at the point of web application 
security. This could be a use case for a web application running in the serverless computing 
engine [22]. The SaaS brings almost a whole pack of responsibilities to the cloud provider 
side and the most explanatory example is using the whole cloud solution by itself because 
it is SaaS. 

9 



Content 

A c c e s s pol icy 

Usage 

Dep loyment 

Web appl icat ion secur i ty 

Identity 

Operat ions 

A c c e s s and authent icat ion 

Network secur i ty 

Gues t OS, da ta , and content 

Audi t logging 

Network 

Storage and encrypt ion 

Hardened kernel and IPC 

Boot 

Hardware 

Cloud provider r e s p o n s i b i l i t y ^ ^ Customer responsibil ity 

Figure 5: G C shared responsibility model [5] 

Division of responsibility Azure approaches the problem from a slightly different angle. 
Unlike the previous two models, despite its origins in the Google model, Azure does not 
provide a straightforward responsibility policy, but rather shared responsibilities, as illus­
trated in Figure 6. On the other hand, it differs in terminology and is specific to provided 
cloud solutions via Microsoft, so there cannot be any further comparison done, especially 
in the case of highly configurable and customizable cloud solutions. 

2.3.2 Security management 

A l l three cloud providers implement different services for security management. Multifactor 
authentication (MFA) is supported via multiple authentication apps or text messages, which 
contain a unique code. The most commonly used apps are the Microsoft Authenticator 
app [23] or Google Authenticator [24]. The Single sign on (SSO) feature is provided via 
different systems. AWS has got newly its own Identity and access management (IAM) 
Center [25], which supports mostly same features as Azure active directory (AD), but it is 

10 



Responsibility always 
retained by the customer 

Responsibility transfers 
to cloud provider 

Responsibility 

Information and data 

Devices (Mobile and PCs) 

Accounts and identities 

Identity and directory infrastructure 

Applications 

Network controls 

Operating systei 

Physical hosts 

Physical network 

Physical datacenter 

Microsoft Customer Shared 

Figure 6: Azure shared responsibility model [6] 

also recommended to use third party SSO service like Okta Universal Directory [26] or A D , 
which is the most advanced SSO provider on the cloud market. Google has got its own SSO 
services, which are called Cloud Identity or a Google Workspace account. There are several 
protocols that implement the federation of third-party SSO service 

• OpenID Connect 

. OAuth 

. S A M L 

• password-based SSO 

• linked-based SSO 

These protocols provide the authorization and authentication process from identity provider 
to service provider. The service provider uses an identity provider to acquire the token that 
defines the user's identity. Based on this token, the user is able to log in to the service. Ev­
ery SSO implementation includes Role based access control (RBAC) management, which is 
the method of assigning different permissions to users who manage multiple cloud resources. 
In Figure 7 are basic resources or entities to which users can gain access based on R B A C 
policies. This is not an infinite count of resources, but only a comparison of basic structure. 

AWS consolidates permissions and resources into a single JSON file (called a policy). 
Permissions to resources are assigned to an identity via a policy. This is unlike Azure 
and G C P , which separate the permissions set from the scope; each assignment involves 
attaching permissions and resources to an identity. In addition, because Azure and G C P 

11 



AWS 
Organizations 

• l 

Orgafii7atiori Unit 

I 1 1 
e 8 

AWS Account 

•rgnnirntion Unii 

D 

I 
e 

Azure 
Directory 

Root Manogemeit Group 

PngjWfMrt Sraup M an age man t Groiip 

I ' 1 

Susc ri pt lorls 5u sen pi i ex 

I I 

M M M M 

GCP 
Organization 

Otgansotion 

, 1 , 

o o o o 
Project PTOJOI Project Proj» 

Figure 7: Basic cloud entities hierarchy 

follow R B A C permissions, they enable inheritance. Inheritance means that if a role has a 
higher scope, it has a wider set of permissions. [27] 

Identity Permissions Resources 

Figure 8: I A M policy differencies 

2.3.3 Workload security protection 

Workload security protection is a set of best practises implemented into the engine / service 
on the cloud platform that periodically checks all the running resources in the infrastructure 
and searches for potential vulnerabilities. This solution is very useful once an app stack is 

12 



running on a fully public cloud with internet access. Here is a list of potential vulnerabilities 
that should be investigated: 

• V M s and their OS vulnerabilities 

• Container services aka Kubernetes and serverless containers, memory leaks, overloads, 
thread leaks 

• Databases and SQL injections 

• Suspicious network traffic 

• Distributed denial of service (DDOS) 

Every cloud provider offers its own solution for complex continuous vulnerability checks 
and for network security maintenance (see table 5). 

. AWS - AWS Control Tower 

• MS Azure - Microsoft Defender for Cloud 

• Google Cloud - Google Cloud Platform Security Overview 

Table 5: Network security solutions comparison 
AWS Azure cloud (AC) Google cloud (GC) 
AWS shield 

Application Load Balancer 
NSGs 
V P C endpoints 
V P C peerings 
W A F 
V P C Flow Logs 

DDOS protection 
Application Gateway (WAF V2) 
NSGs 
PEPs 
V N E T Peerings 
Azure Firewall 
Azure Network Watcher 

Google Cloud Armor 
Cloud Load Balancing 
Firewall rules 
Private service connect 
V P C peering 
Firewall rules 
Network intelligence center 

2.3.4 Secrets management 

A l l three cloud providers have services for storing important application and infrastructure 
secrets, which are accessible via specific Application Programming Interface (API) or 
Software Development K i t (SDK) libraries. 

Table 6: Secrets management solutions 
AWS Azure cloud (AC) Google cloud (GC) 

Secrets manager Azure Keyvault Secret manager 

2.3.5 V P N access 

If a company decides to offer its product with high security standards, one of the best 
practises is to use Virtual private network (VPN) access only. It prevents accessibility from 
the internet and allows possible vulnerabilities to be mitigated, as mentioned with DDOS, 
SQL injections, etc. There are two implementations of V P N : V P N - Point to site (P2S) 
and Site to site (S2S), described in Figure 9. Not every cloud provider offers the same 
setup for V P N configuration as it's described in Table 7. 

13 



Table 7: Secrets management solutions 
AWS Azure cloud (AC) Google cloud (GC) 

AWS V P N 
P2Sand S2S 
10 S2S connections 

V P N Gateway 
P2Sand S2S 
30 S2S connections 

? 

S2S 
? 

R A D I U S S e r v e r A D D o m a i n 

S e r v i c e s 

Figure 9: V P N S2S and P2S diagram [7] 

2.3.6 Encryption 

In terms of encryption, it is necessary to distinguish between three main approaches, in 
transit, at the host and at rest ."At res" approach is done via symetric encryption and 
its focus is on actively running infrastructure resources, which are V M ' s OS discs and 
whole scale sets ( IaaS), databases ( DaaS), etc. To secure encryption keys, they should be 
stored encrypted, too. This process is called envelope encryption, which involves encrypting 
encryption keys. These are then stored in secrets storage with very limited user access 
defined via strict R B A C policies. Encryption fragmentation or partitioning is used to 
speed up the process and make it more user-friendly. For example, the V M OS disc is 
encrypted into multiple partitions with several different keys. Once there is demand for 
encryption or decryption, it runs in parallel. Envelope encryption and partitioning also 
prevent attackers from decrypting data easily, which makes it more or less impossible. [28] 
"At host", the approach is almost the same as at rest, but with a slight difference in the 
encryption target, which is the whole host running V M s . [29] 

Encryption in transit is used in communication between several parties. 

• When a client machine communicates with a server 

• When a server communicates with another server 

• When a server communicates with a non-cloud platform server (for example, Exchange 
Online delivering email to a third-party email server) 

and is done via T L S which is common, obligatory approach. [30] 

14 



2.3.7 SaaS policies 

Azure Security Center 10 is a security management tool provided by Microsoft Azure that 
helps customers protect their Azure resources. It provides a centralized view of security 
alerts and recommendations and allows customers to take actions to remediate potential 
threats. Azure Security Center also integrates with third-party security solutions, such as 
antivirus software and firewalls, to provide a more comprehensive security posture. [31] 

= Microsoft Azure (Preview) 

HO.TIP > Security Center - Overview 

O Securily Center - Ov— 
SlKwxig iLbKivlun 'ASC DEMO1 RlU 

0 Overview 

$ Getting started 

' I ' Piictng Si settings 

'J- Community 

Workflow .sutomaticin [Previ... 

POLICY & COMPLIANCE 

2. Coverage 

0 'v . :i • 

[* Security polity 

* - fteEjulatory ramplia nee 

RESOURCE SECURITY HYGIENE 

RetGrnmeridations 

^ Compute 6i apps 

! Networking 

i'„ loT Huts & rescues 

0 Data & storage 

rl Identity fii access 

•:; Security solutions 

ADVANCED CLOUD DEFENSE 

A^lptil^ 3 |!J|)liCrl1iOrl CCiHitiK 

© Juit in time VM a « « ! 

irily Center to display only selected sďbscfipl JÜITS 

7 Subscriptions [ f What's new 

Polmy St compl iance 

Secure score 

7 7 8 , 

Resource security hygiene 
Recommendations 

I Median SrinC) 

10 

13 
I 163 Unhealthy 

Threat protect ion 

Security alerts by seventy 

0 j 
I 

Regulatory compliance 

| &OCTSP 0 of 13 passed controls 

| I S O 27001 1 ef21 pund omfroti 

| PCI D5.S, 3.2.1 3 t>f passed conlrals 

Resource htealth by severity 

81 Compute Ů apps resources 

147 N-.-UvLiikiriůiřesojrctí 
''<••» m u m — 

A " 1 1 IDT Hubl Ů resources 

Security alerts overtime 

Subscription coverage 

2 
64 Dala & storage resources 

^ 5 Jdentity fit access resources 

FtevM 

Most převalen 

I High wwiiry 

I s 
I High wwiiry 

I s ^ Access 1 

I s 
1 Iwjrmm 

^ Ä U r 1 u i j S l 

^ Aiure Si 

Figure 10: Azure security center [8] 

The Google Security and Trust Center is a resource provided by Google Cloud that helps 
customers understand and implement security best practises for Google Cloud products. 
It includes a wide range of resources, including documentation, case studies and security 
assessments, to help customers understand the security features of Google Cloud products 
and how to use them effectively. Google Security and Trust Center also includes a secu­
rity incident response team that is available to assist customers in the event of a security 
breach. [32] 

Amazon Inspector 11 is a security assessment tool provided by Amazon Web Services 
(AWS) that helps customers identify potential security issues in their AWS resources. It 
performs a range of checks, including identifying insecure network configurations and vulner­
able software versions and provides recommendations for remediation. Amazon Inspector 
can be used on an ad-hoc basis or as part of a regular security assessment schedule. [9] 

In terms of security features, all three of these tools offer a range of capabilities to 
help customers protect their resources. Azure Security Center and Google Security and 
Trust Center both provide centralized security management and integration with third-
party security solutions, while Amazon Inspector focuses on identifying potential security 

15 



Amazon Inspector 
An automated security 

vulnerability management 
service that continually 

evaluates your resources 
for software vulnerabilities 

and unintended 
network exposure 

33 
Enable Amazon Inspector 

Get started with a few 
clicks and useAWS 

Organizations for muLti-
account management 

Automated 
workload discovery 

Discover and scan 
Auto-discover AW5 workloads 

and continually scan them 
for vulnerabilities 

•y-
ContextuaLize findings 
Consider many factors to 

create a meaningful 

Amazon Inspector 

AWS Security Hub 

Amazon 
EventBridge 

rĵ | Amazon ECR 

© A P N Partners 

Take action 
Use detailed findings to 

automate workflows 
Like ticketing and 

remediation 

Figure 11: Amazon inspector [9] 

issues and providing recommendations for remediation. Ultimately, the choice of which tool 
to use will depend on the specific needs and requirements of the customer. 

2.3.8 Globally known standards 

ISO 27001 is an international standard that outlines the requirements for an information 
security management system (ISMS). It provides a framework for establishing, implement­
ing, maintaining and continually improving information security. The standard is intended 
to help organizations protect their sensitive data and ensure the confidentiality, integrity 
and availability of their information systems. One of the key features of ISO 27001 is its 
focus on risk management. The standard requires organizations to assess the risks to their 
information systems and implement controls to address those risks. This can include tech­
nical controls, such as firewalls and encryption, as well as non-technical controls, such as 
employee training and policies and procedures. ISO 27001 also requires organizations to 
regularly review and assess their information security controls to ensure that they are ef­
fective and up-to-date. To become certified to ISO 27001, organizations must demonstrate 
that they have implemented an ISMS that meets the requirements of the standard. This 
typically involves conducting a gap analysis to identify any areas where the organization's 
current practices do not align with the standard and implementing the necessary changes 
to bring the organization into compliance. Once the organization has implemented the nec­
essary controls, it can undergo an audit by an accredited certification body to determine 
whether it is ready for certification. [33] 

PCI DSS is a set of security standards designed to ensure that all companies that 
accept, process, store, or transmit credit card information maintain a secure environment. 
The Payment Card Industry Security Standards Council is in charge of these rules. The 
council is made up of major credit card companies like Visa, Mastercard and American 
Express. 

PCI DSS consists of six main categories of requirements, known as the "PCI DSS Control 
Objectives": 

16 



• Build and Maintain a Secure Network: This includes requirements for protecting the 
network infrastructure, such as using firewalls to secure network access. 

• Protect Cardholder Data: This includes requirements for protecting sensitive data, 
such as encrypting data transmission and storing data securely. 

• Maintain a Vulnerability Management Program: This includes requirements for iden­
tifying and addressing vulnerabilities in the network and applications. 

• Implement Strong Access Control Measures: This includes requirements for control­
ling access to cardholder data, such as requiring unique user IDs and strong passwords. 

• Regularly Monitor and Test Networks: This includes requirements for monitoring and 
testing the network to identify security issues and ensure that controls are effective. 

• Maintain an Information Security Policy: This includes requirements for establishing 
and maintaining an information security policy that outlines the company's commit­
ment to protecting cardholder data. 

To become compliant with P C I DSS, companies must demonstrate that they have im­
plemented the necessary controls to meet the requirements of the standard. Usually, this 
means filling out a self-assessment questionnaire (SAQ) and letting a qualified security 
assessor (QSA) do an audit from the outside. 

2.3.9 Cloud auditing 

Cloud auditing refers to the process of reviewing and verifying the security and compliance 
of cloud computing environments. This can include reviewing the configuration of cloud 
resources, assessing the security of data stored in the cloud and verifying that the organi­
zation is adhering to relevant laws and regulations. Cloud auditing is an important part of 
ensuring the secure and compliant use of cloud computing services. 

On Azure, cloud auditing can be performed using Azure Audit Logs. Azure Audit 
Logs provide a record of activity within the Azure environment, including actions taken by 
users, system events and resource changes. This information can be used to track changes 
to resources, identify security issues and verify compliance with policies and standards. 
Azure Audit Logs are stored in a central repository and can be accessed using the Azure 
portal, Azure Monitor, or the Azure Log Analytics A P I . 

On Google Cloud, cloud auditing can be performed using Cloud Audit Logs. Cloud 
Audit Logs provide a record of activity within the Google Cloud environment, including 
actions taken by users, system events and resource changes. This information can be used 
to track changes to resources, identify security issues and verify compliance with policies 
and standards. Cloud Audit Logs can be accessed through the Google Cloud Console or 
the Cloud Audit Logs A P I . 

On AWS, cloud auditing can be performed using AWS Cloud Trail. AWS CloudTrail is 
a service that provides a record of activity within the AWS environment, including actions 
taken by users, system events and resource changes. This information can be used to 
track changes to resources, identify security issues and verify compliance with policies and 
standards. AWS CloudTrail can be accessed through the AWS Management Console or the 
CloudTrail A P I . 

17 



2.4 Conslusion 

It is used AWS for the purpose of this master's thesis because it has the highest shares 
on the cloud market, AWS cloud services are the first ones to have started with cloud 
computing, so many bugs on AWS cloud are already resolved in comparison with the other 
cloud providers; and it has the most updated documentation. 

18 



3 Architecture of the system 

This chapter presents the architecture of the distributed system designed in this thesis. The 
objective of this chapter is to provide a detailed explanation of the system's infrastructure 
design and the integration of cloud services to build the system. The architecture of the 
system was developed based on the knowledge gathered from the research conducted on 
each particular component of the system. The design of the system's infrastructure was fo­
cused on the microservices architecture design pattern and cloud resources, which provides 
scalability and availability. The chapter provides a comprehensive overview of the archi­
tectural decisions made during the design process, including the selection of infrastructure 
components and the configuration of the system's components. Furthermore, the chapter 
elaborates on the implementation of the infrastructure design, including the integration of 
cloud services and the development of a deployment strategy. Finally, this chapter con­
cludes with an evaluation of the architecture's effectiveness in meeting the requirements 
and objectives of the system design. 

3.1 Infrastructure as a code 

Infrastructure as a Code (IaaC) is a practice that allows for the management of infras­
tructure resources, such as virtual machines, network settings and storage services, through 
code, rather than manual configuration processes. This helps to automate the deployment, 
management and scaling of IT infrastructure, improving the speed and consistency of in­
frastructure provisioning and reducing the risk of human error. IaaC also enables version 
control and collaboration, making it easier to track changes to infrastructure over time 
and collaborate with others on the development and management of infrastructure. The 
code used in IaaC is typically written in a high-level programming language and can be 
integrated into a broader Developers/Operations (DevOps) workflow, making it possible 
to automate the entire software delivery process, from development to production. 

3.1.1 Terraform 

Terraform is an open-source IaaC tool that allows users to define and manage infras­
tructure resources as code. It supports a wide range of popular cloud providers, includ­
ing AWS, Google cloud (GC) and Azure cloud (AC), as well as on-premise and other 
infrastructure. Wi th Terraform, infrastructure is described using a high-level configuration 
language called HashiCorp Configuration Language (HCL), which can be version controlled 
and shared among teams. 

Terraform automates the creation, update and deletion of infrastructure resources by 
using provider APIs. This allows for the management of complex infrastructure in a pre­
dictable and consistent manner, reducing the risk of errors and making it easier to roll back 
changes if necessary. Terraform also provides a visualization of the resources it manages 
and the dependencies between them, making it easier to understand and manage large-scale 
infrastructure. 

In summary, Terraform provides a unified way to manage and automate the provisioning 
of infrastructure, making it easier to build, change and version infrastructure as code. [34] 

19 



3.1.2 AWS CloudFormation 

AWS CloudFormation is an IaaC service that helps to automate the deployment, manage­
ment and scaling of AWS resources. It provides a simple way to create and manage AWS 
infrastructure in a predictable and repeatable manner. The difference between Terraform 
and AWS CloudFormation is, that AWS CloudFormation is fully integrated with AWS plat­
form and cannot be used with other cloud providers. Terraform is much more universal 
and not vendor locking. 

Wi th AWS CloudFormation, infrastructure is defined using templates written in either 
J S O N or Y A M L , which describe the desired state of the infrastructure. These templates 
can be version controlled, shared among teams and reused across multiple environments. 
Once a template is written, CloudFormation uses it to create and manage the defined AWS 
resources, such as EC2 instances, S3 buckets and Virtual private cloud (VPC)s. 

AWS CloudFormation also provides features for monitoring, updating and rolling back 
changes to the infrastructure. This makes it easier to make changes to the infrastructure and 
track the history of those changes. Additionally, CloudFormation integrates with other AWS 
services, such as AWS CodePipeline and AWS CloudTrail, to provide a complete end-to-end 
solution for automating infrastructure deployment and management. 

In summary, AWS CloudFormation is a tool that allows users to model and set up users 
AWS resources and manage infrastructure as code. It provides a centralized way to manage 
and automate the deployment, updates and deletion of AWS resources, making it easier to 
build, change and version infrastructure as code. [35] 

3.1.3 Azure resource manager 

Azure Resource Manager (ARM) is the deployment and management service for A C com­
puting platform. It provides a way to automate the deployment, management and monitor­
ing of Azure resources, such as virtual machines, storage accounts and network resources. 

Wi th A R M , infrastructure is defined using templates written in JSON, which describe 
the desired state of the infrastructure. These templates can be version controlled, shared 
among teams and reused across multiple environments. A R M uses these templates to create 
and manage the defined Azure resources in a consistent and repeatable manner. 

A R M also provides features for monitoring, updating and rolling back changes to the 
infrastructure. This makes it easier to make changes to the infrastructure and track the his­
tory of those changes. A R M also integrates with other Azure services, such as Azure DevOps 
and Azure Policy, to provide a complete end-to-end solution for automating infrastructure 
deployment and management. [36] 

3.1.4 Google cloud deployment manager 

Google Cloud Deployment Manager is a service for deploying and managing infrastructure 
in Google Cloud Platform (GCP) . It provides a simple way to create and manage G C P 
resources in a predictable and repeatable manner. 

Wi th Cloud Deployment Manager, infrastructure is defined using templates written in 
Y A M L , which describe the desired state of the infrastructure. These templates can be 
version controlled, shared among teams and reused across multiple environments. Cloud 
Deployment Manager uses these templates to create and manage the defined G C P resources, 
such as Compute Engine instances, Cloud Storage buckets and Google Kubernetes Engine 
clusters. 

20 



Cloud Deployment Manager also provides features for monitoring, updating and rolling 
back changes to the infrastructure. This makes it easier to make changes to the infras­
tructure and track the history of those changes. Additionally, Cloud Deployment Man­
ager integrates with other G C P services, such as Google Cloud Build and Stackdriver, 
to provide a complete end-to-end solution for automating infrastructure deployment and 
management. [37] 

3.1.5 Summary 

Despite the fact, AWS is being used for the practical part of the master's thesis, Terraform 
is the most suitable IaaC tool because it is universal and not vendor-locked in case the 
customer would want to use a specific platform in terms of ownership and control over it. 
Terraform also provides a wide range of modules for AWS and has descriptive and updated 
documentation and a large community too. 

3.2 He lm package manager 

Helm is a package manager for Kubernetes that allows users to easily deploy, manage 
and version their Kubernetes applications. Wi th Helm, users can define their applications 
as packages, called charts, which include all the necessary Kubernetes resources, such as 
deployments, services and ingress controllers. It provides a simple and consistent way to 
install, upgrade and delete applications and allows users to manage dependencies between 
applications. Helm charts can be easily shared and reused, making it easier to collaborate 
and manage applications across teams and organizations. Helm also supports versioning 
and rollback of applications, which allows users to easily switch between different versions of 
an application, or roll back to a previous version if there are issues with a new deployment. 
This makes it easier to manage and maintain complex applications on Kubernetes. It has 
become a widely adopted standard for deploying applications on Kubernetes. It provides 
a simple and consistent way to package, deploy and manage Kubernetes applications and 
has a large and active community that contributes to the development and maintenance of 
Helm charts. It provides a standardized format for packaging and distributing Kubernetes 
applications, which makes it easier to share and reuse application packages across teams 
and organizations. It also provides a consistent and repeatable deployment process, which 
makes it easier to deploy and manage applications across different environments, such as 
development, testing and production. Helm has a large and active community, with a wide 
range of pre-built charts available for popular applications and services. Users can also 
create their own charts to define their own applications or to extend existing ones. [38] 

3.2.1 Helm umbrella charts 

A n umbrella chart is a type of Helm chart that allows users to package multiple charts 
together as a single unit. This is useful for managing and deploying complex applications 
that are composed of multiple components or services. The umbrella chart includes a parent 
chart, which provides a top-level template and a set of values that are shared across all the 
child charts. 

The child charts are typically independent Helm charts that define the different compo­
nents or services of the application. The umbrella chart allows users to deploy all the child 
charts at once, with a single command and manage them as a single unit. This makes it eas-

21 



ier to manage and deploy complex applications that are composed of multiple components 
or services. [39] 

3.3 Kubernetes 

Kubernetes is an open-source container orchestration platform that automates the deploy­
ment, scaling and management of containerized applications. It was originally developed 
by Google and is now maintained by the Cloud Native Computing Foundation (CNCF) . 

Kubernetes provides a way to manage containers at scale, making it easier to deploy, 
manage and scale applications across a cluster of hosts. It uses a declarative model, where 
the desired state of the application is defined in configuration files called manifests. K u ­
bernetes then takes care of reconciling the actual state of the application with the desired 
state, making any necessary changes to the cluster to ensure the desired state is met. 

Kubernetes provides features for container management, such as automated deployment 
and scaling, self-healing and rollouts and rollbacks. It also provides features for networking, 
storage, security and monitoring, making it a complete platform for running containerized 
applications in production. [40] 

There are several implementations of hosting Kubernetes on AWS which are described 
bellow. 

3.3.1 Kubernetes control plane 

The Kubernetes control plane is a set of components that manage the state of a Kubernetes 
cluster. It consists of several key components that work together to provide a platform for 
running and managing containerized applications. 

The components of the Kubernetes control plane include: 

• etcd: This is a distributed key-value store that stores the configuration data and state 
of the cluster. A l l Kubernetes objects, such as Pods, Services, and ConfigMaps, are 
stored in etcd. 

• A P I server: The A P I server is the control plane component that provides a RESTful 
A P I for users and other components to interact with the cluster. It serves as the 
interface for all communication between the control plane and the nodes. 

• Scheduler: The Scheduler is responsible for assigning Pods to nodes in the cluster. It 
takes into account the resource requirements of the Pod and the available resources 
on each node. 

• Controller Manager: The Controller Manager is responsible for managing the various 
controllers that are responsible for maintaining the desired state of the cluster. It 
includes controllers for ReplicaSets, Deployments, and Services. 

• Cloud Controller Manager: The Cloud Controller Manager provides a way for Kuber­
netes to interact with various cloud providers. It includes controllers for managing 
resources such as Load Balancers, Volumes, and Nodes. 

Together, these components provide the necessary functionality for running and man­
aging containerized applications on a Kubernetes cluster. 

22 



3.3.2 E K S 

E K S is a fully managed service by AWS that makes it easier to run Kubernetes on AWS. E K S 
eliminates the need for users to manage their own Kubernetes control plane, as AWS takes 
care of this for them. 

E K S is designed to be highly available, scalable and secure, making it a good fit 
for running production workloads. Wi th E K S , users can create and manage Kubernetes 
clusters in E K S , including worker nodes, load balancers and networking. E K S integrates 
with other AWS services, such as Elastic Load Balancing, Amazon V P C and AWS I A M , 
to provide a seamless and secure Kubernetes experience. 

E K S also supports the latest versions of Kubernetes, as well as popular Kubernetes 
tools and extensions, such as kubectl and Helm. 

In summary, AWS E K S is a fully managed service that provides a simple, scalable and 
secure way to run Kubernetes on AWS. [41] 

3.3.3 E C S 

ECS is a fully managed container orchestration service by AWS. ECS allows users to easily 
run and scale containerized applications on AWS, without having to manage the underlying 
infrastructure. 

Wi th ECS, users can use Docker images to create containers and run them as tasks. 
These tasks are then grouped together into services, which can be load balanced and scaled 
automatically. E C S integrates with other AWS services, such as Elastic Load Balancing, 
Amazon V P C and AWS I A M , to provide a seamless and secure container experience. 

ECSalso provides features for monitoring and logging, making it easier to troubleshoot 
issues and optimize the performance of users containers. Additionally, E C S integrates with 
other AWS services, such as AWS Fargate and AWS Batch, to provide more flexibility in 
how users run and manage users containerized workloads. [42] 

3.3.4 Fargate instances 

AWS Fargate is a compute engine for containers that allows users to run containers without 
having to manage the underlying infrastructure. Wi th Fargate, users can run containers as 
a fully managed service, without having to provision, configure, or scale virtual machines. 

Fargate allows users to launch containers in a matter of seconds, without having to worry 
about underlying infrastructure or server management. Users simply define containers and 
resources and Fargate takes care of launching and managing them on their behalf. This 
makes it easy to run and scale users applications, without having to worry about the 
underlying infrastructure. 

Fargate is integrated with other AWS services, such as Elastic Load Balancing, Amazon 
V P C and AWS I A M , to provide a seamless and secure container experience. Fargate also 
provides features for monitoring and logging, making it easier to troubleshoot issues and 
optimize the performance of users containers. [43] 

3.3.5 Summary 

There are several advantages and disadvantages to each of the products described above. 
The main reason to use E K S over the other two managed solutions is its flexibility and Helm 
package manager support. Helm brings standardisation in terms of application deployment: 

23 



hence, many companies require standardised environments and do not like vendor locking. If 
a company wants to deploy applications on customer premises and in the cloud too, there is 
no other standard and widely used technology than Helm in combination with Kubernetes. 
This policy provides the company with a universal solution for easy deployment on a variety 
of Kubernetes-powered environments. 

3.4 Autoscaling 

Autoscaling is a feature of cloud computing services that allows users to automatically 
adjust the number of computing resources (such as virtual machines, containers, or servers) 
in response to changes in demand for their application or workload. The goal of autoscaling 
is to ensure that they have enough computing resources to handle the workload, without 
paying for more resources than are needed. 

Autoscaling typically works by setting up policies that define thresholds for various met­
rics, such as C P U usage, network traffic, or queue length. When a threshold is breached, the 
autoscaling system will automatically provision additional resources to handle the increased 
workload. Similarly, if the workload decreases, the autoscaling system will automatically 
deprovision resources to save costs. 

There are two main types of autoscaling: 

• Vertical autoscaling: This involves adding or removing resources (such as memory, 
C P U or storage) to a single instance in response to changes in demand. This type 
of autoscaling is often used for applications that require large amounts of processing 
power or memory. 

• Horizontal autoscaling: This involves adding or removing entire instances (such as 
virtual machines or containers) in response to changes in demand. This type of 
autoscaling is often used for applications that have a high number of requests, where 
adding more instances can help to distribute the workload. 

3.4.1 Kubernetes built-in autoscaler and its integration with unoptimized ap­
plications 

The built-in autoscaler in K8 is a feature of the Kubernetes engine. Its main feature is 
horizontal autoscaling, which automatically updates instances of workloads based on metrics 
from the K8s metrics server. Autoscaling is based on two metrics, which are provided by 
the metrics server: C P U load and memory load. These two metrics are the most suitable 
for 80% of optimised application loads that were developed to run Kubernetes or cloud 
native. If a company wants to transform its native Linux applications to the cloud, it can 
face multiple issues where the application does not provide real metric values. 

One of the examples could be Java heap allocation. If Kubernetes engineers define a 
hard limit for memory allocation in a single Kubernetes The smallest deployable unit that 
represents a single instance of a running process in k8s cluster (POD), a Java application 
inside can easily allocate memory until it reaches the hard limit of the P O D itself. Memory 
is allocated to its maximum limit despite the fact that it is not used inside the P O D , just 
allocated. The metric server provides this allocation value, 90% of the memory used to 
the autoscaler and it triggers autoscaling. This can affect the cost-efficiency of the cluster: 
hence, it is overscaled and not really used at all. [44] 

24 



3.4.2 K E D A 

Kubernetes Event-driven Autoscaling ( K E D A ) is a popular open-source project and K u -
bernetes operator that enables event-driven autoscaling for containerized workloads running 
in Kubernetes. 

K E D A is designed to help cloud engineers scale Kubernetes workloads based on various 
events, such as the number of messages in a queue or the number of events in a stream. It 
allows users to automatically scale workloads up or down based on the number of incoming 
events or messages, so users can handle increased demand without wasting resources when 
there are fewer events to process. 

K E D A can work with various event sources such as Kafka, Azure Service Bus, Rab-
bi tMQ and Prometheus and it can be integrated with Kubernetes native autoscaling, such 
as the Horizontal Pod Autoscaler (HPA), to provide a powerful and flexible autoscaling 
solution for Kubernetes workloads. By using K E D A , cloud engineers can ensure that ap­
plications are always running at the optimal level of performance and resource utilization, 
while also reducing operational overhead and cost. [10] 

Kubernetes cluster 

ScaledObject 

Figure 12: K E D A architecture diagram [10] 

25 



3.5 A W S DaaS solutions 

Amazon provides multiple DaaS solutions: 

• Relational - Traditional applications, enterprise resource planning (ERP) , customer 
relationship management (CRM), ecommerce - Amazon Aurora, Amazon RDS, Ama­
zon Redshift 

• Key-values - High-traffic web applications, ecommerce systems, gaming applications 
- Amazon DynamoDB 

• In-Memory - Caching, session management, gaming leaderboards, geospatial applica­
tions - Amazon ElastiCache, Amazon MemoryDB for Redis 

• Document -Content management, catalogs, user profiles - Amazon DocumentDB 
(with MongoDB compatibility) 

• Wide column - High-scale industrial apps for equipment maintenance, fleet manage­
ment and route optimization - Amazon Keyspaces 

• Graph - Fraud detection, social networking, recommendation engines - Amazon Nep­
tune 

• Time series - Internet of Things (IoT) applications, DevOps, industrial telemetry -
Amazon Timestream 

• Ledger - Systems of record, supply chain, registrations, banking transactions - Amazon 
Ledger Database Services (QLDB) 

Consider the following for the purposes of this thesis: Amazon RDS with PostgreSQL, 
Amazon Aurora with PostgreSQL and Amazon Neptune. The first two are suitable, hence, 
it has got the support of PostgreSQL and the third one is designed for fraud detection 
solutions. [45] 

3.5.1 Amazon RDS with PostgreSQL 

With Amazon RDS for PostgreSQL, users can launch a managed PostgreSQL database 
instance in minutes, without the need to manually provision hardware, install software, or 
configure backups and maintenance tasks. Amazon RDS for PostgreSQL offers a range of 
features and benefits, including: 

• Automated backups and point-in-time recovery: Amazon RDS automatically backs 
up your PostgreSQL database and enables you to recover your database to any point 
in time within your retention period. 

• Scalability and high availability: Amazon RDS allows you to scale your PostgreSQL 
database up or down with a few clicks and provides built-in fault tolerance and high 
availability features. 

• Security and compliance: Amazon RDS provides several security and compliance 
features, including network isolation, encryption at rest and integration with AWS 
Identity and Access Management (IAM). 

26 



• Monitoring and management: Amazon RDS provides detailed monitoring and man­
agement capabilities through its integration with AWS CloudWatch and the AWS 
Management Console. 

• Read replicas: Amazon RDS allows you to create one or more read replicas of your 
PostgreSQL database for read-heavy workloads, providing improved read performance 
and scalability. 

Amazon RDS for PostgreSQL supports several versions of PostgreSQL, including the 
latest version and provides several configuration options, including instance size, storage 
type and performance metrics. [46] 

3.5.2 Amazon Aurora with PostgreSQL 

Amazon Aurora is a high-performance, fully-managed relational database engine offered by 
AWS. It is designed to provide compatibility with popular open-source databases, including 
PostgreSQL, without sacrificing performance or availability. 

Amazon Aurora with PostgreSQL is a version of Amazon Aurora that is compatible 
with PostgreSQL and provides many of the same benefits and features as the standard 
Aurora offering. These include: 

• Performance and scalability: Amazon Aurora is designed to provide high performance 
and scalability, with low latency and high throughput for both read and write oper­
ations. It is also highly scalable, allowing you to add or remove capacity with ease. 

• High availability: Amazon Aurora provides automatic failover and built-in replication 
to ensure high availability of your database, with minimal downtime. 

• Security and compliance: Amazon Aurora provides several security and compliance 
features, including network isolation, encryption at rest and in transit and integration 
with AWS Identity and Access Management (IAM). 

• Monitoring and management: Amazon Aurora provides detailed monitoring and man­
agement capabilities through its integration with AWS CloudWatch and the AWS 
Management Console. 

• Compatibility with PostgreSQL: Amazon Aurora with PostgreSQL is designed to 
be compatible with PostgreSQL, allowing you to use many of the same tools and 
applications that you would use with a standard PostgreSQL database. 

• Amazon Aurora with PostgreSQL also provides some additional features that are 
specific to PostgreSQL, such as support for advanced PostgreSQL features like JSONB 
and H S T O R E and compatibility with popular PostgreSQL tools like pgAdmin. 

[47] 

3.5.3 Aurora VS . Amazon RDS 

Amazon Aurora with PostgreSQL and Amazon RDS with PostgreSQL are both managed 
database services offered by AWS, but there are some key differences between the two: 

27 



• Performance: Amazon Aurora with PostgreSQL is designed to provide high perfor­
mance and scalability, with low latency and high throughput for both read and write 
operations. It uses a unique storage architecture that allows it to achieve up to five 
times the performance of a standard PostgreSQL database, making it an ideal solution 
for applications that require high performance. In contrast, Amazon RDS with Post­
greSQL provides good performance, but may not be able to match the performance 
of Aurora. 

• High Availability: Both Amazon Aurora with PostgreSQL and Amazon RDS with 
PostgreSQL offer high availability, with automatic failover and built-in replication. 
However, Aurora provides faster and more seamless failover than RDS and also pro­
vides an active-active option for multi-region deployments. 

• Scalability: Amazon Aurora with PostgreSQL is highly scalable, allowing you to add 
or remove capacity with ease, while Amazon RDS with PostgreSQL is less scalable, 
particularly for write-heavy workloads. 

• Cost: Amazon RDS with PostgreSQL is generally less expensive than Amazon Aurora 
with PostgreSQL, particularly for smaller database instances. However, the cost of 
Aurora can be more competitive for larger database workloads, particularly when you 
factor in the potential performance benefits. 

• Features: Amazon Aurora with PostgreSQL and Amazon RDS with PostgreSQL both 
offer many of the same features, including automated backups, security and compli­
ance, monitoring and management and read replicas. However, Aurora provides some 
additional features that are specific to Aurora, such as the ability to scale to multiple 
regions and the ability to create up to 15 read replicas. 

Features: Amazon Aurora with PostgreSQL and Amazon RDS with PostgreSQL both 
offer many of the same features, including automated backups, security and compliance, 
monitoring and management and read replicas. However, Aurora provides some additional 
features that are specific to Aurora, such as the ability to scale to multiple regions and the 
ability to create up to 15 read replicas. 

3.5.4 Amazon Neptune 

Amazon Neptune is a fully-managed graph database service offered by AWS. It is designed 
to be highly available, scalable and secure and is optimized for storing and querying highly 
connected data with complex relationships. 

Some key features of Amazon Neptune include: 

• Graph database functionality: Amazon Neptune is designed specifically for graph 
databases, which are used to model and query data with complex relationships. It 
supports popular graph query languages such as Gremlin and S P A R Q L and provides 
many graph-specific features, such as node and edge labels, property indexes and 
traversal caching. 

• High availability and scalability: Amazon Neptune is designed to be highly available 
and scalable. It uses a distributed architecture that allows it to automatically replicate 
data across multiple Availability Zones and it can scale to support large-scale graph 
workloads. 

28 



• Security and compliance: Amazon Neptune provides several security and compliance 
features, including network isolation, encryption at rest and in transit and integration 
with AWS Identity and Access Management (IAM). 

• Integration with other AWS services: Amazon Neptune integrates with other AWS 
services, such as AWS Lambda, Amazon S3 and Amazon CloudWatch, allowing you 
to build complex graph-based applications using a range of AWS tools and services. 

• Fully managed: Amazon Neptune is a fully-managed service, which means that AWS 
takes care of the administrative tasks associated with running and maintaining a 
graph database. This allows you to focus on building your application and working 
with your data, rather than managing the underlying infrastructure. 

[48] 

3.6 Infrastructure layer architecture 

Regarding the technological stack described above, a summary about the architecture could 
be made. Requirements £1X6 ctS follows: 

• Application should be accessible at the location where it is used by clients and response 
time should be as low as possible as defined by the network throughput. 

. Application should fulfill S L A of 99,999%. 

• Application should be able to scale up in response to the amount of traffic and the 
number of requests that arrive at the load balancer or gateway. 

• Application should implement standards for self-healing mechanisms to prevent out­
ages. 

As shown in the diagram 13, this architecture may meet requirements. 

3.7 C I / C D 

Continuous Integration/Continuous Deployment (CI /CD) is a set of practices and pro­
cesses that enable organizations to deliver software quickly and reliably by automating the 
building, testing and deployment of code changes. 

Continuous Integration (CI) involves automatically building and testing code changes 
as soon as they are committed to the source code repository, to detect errors early in the 
development cycle and ensure that new changes do not break the existing codebase. This 
process can include tasks such as code compilation, unit testing and static analysis. 

Continuous Deployment (CD) goes one step further by automating the deployment of 
the application to production environments, once the code has passed the CI tests. C D 
can involve tasks such as building and packaging the application, deploying it to a testing 
environment, performing integration and acceptance testing and finally deploying it to the 
production environment. 

The ultimate goal of C I / C D is to streamline the software development process, reduce 
the risk of errors and enable faster time-to-market for new features and bug fixes. By 
automating many of the manual processes involved in software development and delivery, 
organizations can focus more on developing quality code and less on the logistics of deploying 
it to production environments. [49] 

29 



Requests 

Serves the http based traffic 

Amazon ELB 
spreads the load across APP 
instances running on EKS 
checks the health of APP 
instances 
provides metrics for autoscaling 

Transmits requests from clients to 
app instances running on EKS 

Stores data 

AWS EKS + KEDA 
• runs instances of APP 
• takes care of lifecycle of APP 

instances 
• KE DA watc hes metrics and 

triggers autoscaling 

APP instances 

G O § j KKotlin 

Figure 13: Infrastructure architecture diagram 

3.7.1 Github actions 

GitHub Actions is a popular cloud-based C I / C D service provided by GitHub. It allows 
developers to define custom workflows for building, testing and deploying their applications, 
directly from their GitHub repositories. 

Wi th GitHub Actions, developers can create workflows using Y A M L syntax and au­
tomate tasks such as building and testing code, deploying code to different environments 
and sending notifications based on various triggers such as code commits, pull requests, 
or issue creation. GitHub Actions supports a wide range of programming languages, tools 
and frameworks and allows you to use your own tools or choose from a variety of pre-built 
actions available in the GitHub Marketplace. 

GitHub Actions provides a variety of built-in features that make it easy to customize 
workflows, such as environment variables, secrets and conditional logic. Developers can 

30 



also use GitHub Actions to integrate with other third-party tools such as Slack, AWS, or 
Docker and to orchestrate complex workflows across multiple repositories and projects. [50] 

3.7.2 Infrastructure unit tests - Terratest 

Terratest is an open-source testing framework for testing infrastructure code, particularly 
for Terraform. It is designed to help developers test their infrastructure code more thor­
oughly and automate the testing process, ensuring that their infrastructure deployments 
are reliable and secure. 

Terratest provides a simple and easy-to-use interface for running tests against Terraform 
code, allowing developers to write automated tests in Go language that can be run in their 
preferred test runners like Go test, C i r c l e d or Jenkins. Terratest can test a wide range of 
cloud resources, including AWS, Azure, Google Cloud and Kubernetes. 

Terratest allows developers to test for a variety of scenarios, such as testing the infras­
tructure code to ensure it provisions resources correctly, validating the network connectiv­
ity of resources, testing the deployment of complex infrastructure setups and more. It also 
provides many helper functions and utility libraries for common tasks, such as spinning up 
infrastructure resources for testing, programmatically querying cloud APIs and verifying 
the output of Terraform code. 

Overall, Terratest is a powerful and flexible tool for testing infrastructure code, en­
abling developers to catch issues early and ensure that their deployments are reliable and 
secure. [51] 

3.7.3 Unit tests 

Unit testing is a software testing technique that involves writing and executing automated 
tests for small, individual units of code, typically at the function or method level. The 
purpose of unit testing is to validate that each unit of code performs as expected, with the 
aim of identifying and fixing defects as early in the development cycle as possible. 

Unit tests are usually written by developers and they are designed to test the behavior 
of a single function or method in isolation, without any dependencies on external systems, 
databases, or services. This allows developers to test their code in a controlled and repeat-
able environment, ensuring that the function or method behaves as expected and meets the 
requirements specified in the design document. 

Unit tests typically use a framework or library to automate the testing process and 
they are usually executed as part of a CI pipeline, which automates the build, testing and 
deployment process of the software. Unit tests are an essential part of the software devel­
opment process, as they help to identify defects early in the development cycle, reducing 
the cost and time required to fix them. 

3.7.4 Code inspection and vulnerability detection - Sonar Cloud 

SonarCloud is a cloud-based software quality management platform that provides contin­
uous code inspection and analysis to identify bugs, vulnerabilities and code smells in a 
variety of programming languages. 

SonarCloud is designed to integrate with a wide range of development tools, such as 
code repositories, issue trackers, build systems and C I / C D pipelines. It analyzes the code 
for a variety of issues, including code complexity, security vulnerabilities, reliability and 
maintainability, providing developers with detailed reports on the quality of their code. 

31 



The platform uses a combination of static code analysis, dynamic code analysis and 
machine learning algorithms to detect and prioritize issues. It also offers intelligent code 
review capabilities, such as pull request analysis and branch analysis, which enables devel­
opers to identify issues earlier in the development cycle and fix them before they become 
larger problems. 

In addition, SonarCloud provides features for tracking code quality metrics over time, 
monitoring the progress of code quality improvements and enforcing code quality standards 
across a team or organization. It can also integrate with security scanning tools to identify 
and remediate security vulnerabilities. [52] 

3.7.5 ArgoCD 

Argo C D is an open-source tool for continuous delivery and deployment of Kubernetes ap­
plications. It provides an automated way to deploy and manage applications across multiple 
environments, such as development, staging and production, with consistent configuration 
and version control. It is built on top of Kubernetes and uses Git as its source of truth 
for application deployment configuration. It continuously monitors the Git repository for 
changes and automatically deploys new versions of the application to the desired target 
environments when changes are detected. Argo C D uses a declarative approach to manag­
ing applications, where the desired state of the application is defined in a Y A M L file and 
the tool handles the deployment and synchronization of the actual state with the desired 
state. It supports various deployment strategies, including rolling updates, blue-green de­
ployments and canary releases, which enable teams to deploy and test new features with 
minimal downtime and risk. It also provides a web-based user interface, a Command Line 
Interface (CLI) tool and an A P I for managing applications, tracking changes and performing 
rollbacks if needed. It offers features such as R B A C for managing access and permissions, a 
webhook system for integrating with external tools and automatic syncing of Helm charts, 
Kustomize overlays and other Kubernetes resources. [11] 

The architecture of ArgoCD declarative deployments is shown in the Figure 14. 

3.7.6 Release management and deployment strategies 

Several deployment strategies used as part of the release process in production environments 
are listed here, regarding the previous chapter. 

• Rolling Deployment: This strategy involves gradually rolling out new versions of an 
application by updating a subset of instances at a time, while keeping the rest of the 
instances running the previous version. This allows for gradual testing and validation 
of the new version, with minimal disruption to the user experience. 

• Blue-Green Deployment: This strategy involves deploying two identical environments, 
one with the current version of the application (the blue environment) and the other 
with the new version (the green environment). Traffic is gradually routed from the 
blue environment to the green environment, allowing for thorough testing and vali­
dation of the new version before cutting over completely. 

• Canary Deployment: This strategy involves deploying a new version of the application 
to a small subset of users, while keeping the rest of the users on the previous version. 
This allows for testing and validation of the new version with a smaller audience, 
before rolling it out to the rest of the users. 

32 



Ul 

CLI 

gRPC 
REST 

search application 
image: acmc/scarctvvi.O 
c-nvs.dcv. staging, us-cc rural-1 

gucstbook application 
image: acmc/gucstbc-okvl.3 
erws.dev. staging, us-easi-1, us-wsst-1 

API 

Repository 
Service 

Application 
Controller 

Sync Hooks. 
App Actions 

I 
Deploy 

dav staging 

us-west-1 us-central-1 us-east-1 

Figure 14: ArgoCD architecture [11] 

• A / B Testing: This strategy involves deploying multiple versions of an application 
and randomly routing traffic to each version, allowing for testing and comparison of 
different features, designs, or algorithms. This can help optimize the user experience 
and improve engagement or conversion rates. 

• Shadow Deployment: This strategy involves deploying a new version of the application 
alongside the current version, but not actually routing traffic to the new version. 
Instead, the new version is used to collect data and monitor behavior, allowing for 
testing and validation before rolling out the new version to users. 

• Feature Toggles: This strategy involves deploying new features or functionality as 
part of the current version of the application, but hiding them behind a toggle or 
configuration flag that can be turned on or off. This allows for testing and validation 
of new features without impacting the user experience or requiring a full deployment. 

33 



3.7.7 New feature deployment life-cycle 

Once development finishes new feature and test it on their side, there are several steps 
that should be performed in case of smooth delivery of this feature to the production 
environment. For this use case, there are three running environments: 

• Development Environment: This is the first environment where the application is 
developed, tested and debugged. Developers work on the code and test it locally or 
in a shared development environment. 

• User Acceptance Testing (UAT) Environment: The U A T environment is a replica of 
the production environment where the application is deployed for testing by stake­
holders such as product owners, business analysts and users. This stage allows for 
functional and usability testing, as well as validation of non-functional requirements 
such as performance, security and scalability. 

• Production Environment: Once the application has been fully validated in the staging 
environment, it is deployed to the production environment, where it is made available 
to users. At this stage, the application is monitored for issues and feedback is collected 
for continuous improvement. 

The whole process is described in the Figure 15. 

Develops/Debugs 

Developer 

Communicates 
feedback to tech 

staff, decides 
changes, 
approves 

deployment on 
prod 

Product Owner 

Provides 
Q&A feedback, 

approves for prod 
deployment 

Customer's QBiA 

Figure 15: Deployment life-cycle 

34 



3.7.8 On demand deployment - demo environments and development environ­
ments 

On-demand deployment is a deployment model in which resources are provisioned and re­
leased based on current demand, rather than being provisioned and allocated for a fixed 
period. This means that resources, such as compute, storage and network resources, are 
made available as needed and then released when they are no longer required, resulting in 
a more efficient use of resources. It is commonly used in cloud computing environments, 
where resources are provisioned dynamically based on workload requirements. This enables 
organizations to scale up or down based on demand without having to invest in additional 
hardware or infrastructure. It can also refer to the process of deploying software appli­
cations on an as-needed basis. This can be achieved through the use of automation and 
orchestration tools, which enable developers to quickly deploy new versions of applications 
or services in response to changing business requirements. On-demand deployment is widely 
used for demo environments when company tries to sell the piece of software to their po­
tential customers. It should be quickly deployed based on the delivery team's demand to 
introduce the application to the customer. The customer is able to test all the delivered 
features themselves and then sign a potential contract if he decides to go for it. Diagram, 
which describes whole process is shown in Figure 16. 

3.7.9 Production environments 

Production environments differ from demo environments by High availability (HA) prin­
ciples: more scalability, stability and less fluctuation of their instances. It is the live and 
operational environment where the software is deployed and used by end-users. This is the 
environment where the application is accessed and used by customers and where any is­
sues or errors can potentially cause significant impact, such as financial losses, reputational 
damage, or even harm to individuals. Here are the key requirements that should be met 
by a production environment in comparison with a demo environment. 

• Security: Production environments should have strong security measures in place to 
protect sensitive user data and prevent unauthorized access. This includes firewalls, 
intrusion detection and prevention systems, data encryption, access controls and more. 

• Disaster Recovery: Production environments should have disaster recovery plans and 
processes in place to ensure business continuity in the event of a system failure or 
outage. This includes backups and redundancy measures to minimize downtime and 
data loss. 

• Release Management: Production environments should have a robust release manage­
ment process to ensure that new features, updates and patches are thoroughly tested 
before being released to end-users. This includes a process for rolling back changes if 
issues arise. 

In the diagram 17 is shown how applications are deployed in a production environment. 
The difference between demo and production deployment is the step of deployment via 
ArgoCD that keeps the consistency of production deployments via continuous syncing. 

35 



Microservice 
source code in 

repository r repository 

O L 

GitHub 

SL 

Image Registry/ 
Container 

Registry -AWS 
ECR 4 

Terraform laaS 
source code in 

repository 

O 
GitHub 

Helm Charts 
source code in 

repository 

O 
GitHub 

0 
0 

) 0 
GitHub Actions 

Image Build 

docker 

Unit tests 
Code smell and \ Gradle 

'vulnerabilitytests / build 
Docker Image 
build and push 

Kotlin jgtf 
sonarcloud <2> S r a d l e 

) 
GitHub Actions 

Infrastructure deployment 
& 

application deployment 

Terraform creates all the 
resources on A W S cloud 

aws 
Terříform 

Helm pulls the images from E C R 
and deploys them on EKS (k8s) 

HELM 

Using demo environment 

Running 
infrastructure on 

the cloud 

II 
A W S R D 5 

$4 

Running 
app-stack 
on infra in 

A W S 

C u s t o m e r 

Figure 16: C I / C D demo/dev environments architecture 

36 



Microservice 
source code in 

repository r repository 

o L 

GitHub 

Image Registry/ 
Container 

Registry -AWS 
ECR 4 

Terraform laaS 
source code in 

repository 

o 
GitHub 

Helm Charts 
source code in 

repository 

o 
GitHub 

CI/CD argo 
repository 

defines full 
configjratoi of 
environments 

o 
GitHub 

) 0 
GitHub Actions 

Image Build 

docker 

Unit tests 
Code smell and Gradlo 

'vulnerabilitytests / build 
Docker Image 
build and push 

Kotlin jgtf 
sonarcloud <2> S r a d l e 

GltHjb Actions 

Infrastructure deployment 
& 

application deployment 

Terraform creates all the 
resources on A W S cloud 

V 
Terraform 

aws 

Qithub action lints and packageshelm chart 
into tgz package and pushes it into ECR. 

H E L M 

ArgoCD deploys production environment on 
t underlying EKS infra and keeps it consistent via 

continuous syncing. 

% Q r 9 0 

Running 
infrastructure on 

the cloud 

II 
A W S R D 5 

Running 
app-stack 
on infra in 

A W S 

Figure 17: C I / C D production environments architecture 

37 



4 Implementation of the system 

This chapter presents the implementation details of the distributed system designed in this 
thesis. The objective of this chapter is to provide a comprehensive overview of the implemen­
tation process, including the technical details, challenges faced and the solutions adopted. 
The implementation of the system was performed using cloud resources. The chapter also 
provides a detailed explanation of the development process, the testing methodology and 
the results of the testing. The implementation of the system includes the configuration 
of the infrastructure and the integration of the system with the cloud provider's services. 
Finally, this chapter concludes with an evaluation of the implementation and the lessons 
learned during the development process. 

4.1 Terraform implementation and underlying infrastructure 

This sub-chapter provides a detailed description of the implementation of the underlying 
Terraform infrastructure and demonstrates resource definitions through examples. By de­
fault, the Terraform script requires a strict structure and includes a few obligatory parts. 
These include the following: 

• Definition of provider 

• Variables file 

• Definition of backend 

The Terraform provider file includes the initial configuration that specifies which cloud 
infrastructure is being used as the provider. In this Master's thesis, the Terraform provider 
file contains information about the AWS cloud provider. As seen in the example, there are 
a few crucial definitions that need to be made. Firstly, the provider used is defined, which 
provides the driver to use the AWS A P I to create resources and it also specifies the region 
where the resources will be created. Secondly, it specifies the versions of the provider and 
the Terraform framework that will be used. 

provider "aws" { 

region = var.region 

} 

terraform { 

required_providers { 

aws = { 

source = "hashicorp/aws" 

version = "-> 3.0" 

} 

} 

required_version = ">= 1.2.0" 

} 

A variables file is a text file that includes definitions for input variables used in the Terraform 
configuration. Input variables are values that are unknown at the time of writing the 
Terraform configuration and need to be provided when applying the configuration. By using 
a variables file, users can define values for input variables separately from the Terraform 

38 



configuration. This makes it easier to manage and reuse the same Terraform configuration 
with different input values. 

Here is an example of variables that are used to create the infrastructure. 

variable "region" { 

type = string 

default = "eu-west-1" 

} 

variable "availability_zone_l" { 

type = string 

default = "eu-west-la" 

} 

variable "availability_zone_2" { 

type = string 

default = "eu-west-lb" 

} 

variable "environment_name" { 

type = string 

default = "test-demo" 

} 

variable "vpc_id" { 

type = string 

default = "vpc-047fe7f7538b42dc7" 

} 

variable "cidr_blocks" { 

type = list(string) 

default = [ « « , « « « « ] 

} 

This set of default variables enables the user to specify the region where the infrastructure 
is created, multiple availability zones, the name of the whole environment and the network 
ranges for multiple networks that are part of the architecture. 

A backend is a configuration that determines how Terraform stores and retrieves state 
data. The backend file is a Terraform configuration file that specifies the configuration for 
the backend that Terraform should use. The backend file is usually named backend.tf and 
it includes a backend block that specifies the backend configuration. Here is an example of 
a backend configuration: 

terraform { 

backend "s3" { 

bucket = "tf-states-bucket-<unique_identifier>" 

key = "test-customer-demo-<date-created>-<available-until>.tfstate" 

region = "eu-west-1" 

} 

} 

39 



This backend example specifies the following: it will use an AWS S3 bucket to store the 
state file, specifies which bucket is being used (the bucket should have a unique name), 
specifies the name of the state file stored in the bucket and specifies a region. 

Once these commands run: 

terraform init #initialises backend and saves the state f i l e in S3 

terraform plan #downloads the content of the current state and 

compares i t with predefined resources by terraform, outputs 

the plan, which contains resources, that should be created 

the output in the S3 bucket is shown in Figure 18 And the partial example of the terraform 

O b j e c t s {15) 

Objects a re the fundamental entities stoned in Amazon 55. You tan use Amazon 55 Inventory [3 *a 9** 3 '••5t °^ objects in your bucket For others to a cess your objects, you'll need to explicitly grant them permissions. 

r j Copy S3 Uft l 0 Copy URL & Download Open G3 Action? » Create folder | 

| Q . Find objects by prefix 

• Name A Type 

• Q test-customer-demo-2023-03-19-11-34-56_202 3-03-20-11-34-56.tf state tf state 

• Q tE5t-cti5Iomer-deino-2O23-O3-19-12-O6-03_2023-03-20-12-O6-03.tf5taw tf state 

• 0 Te5T-CEJ^omer-demo-2023-O3-19-12-36-34_2023-03-20-12-36-34.tf5raw tf state 

• 0 test-CEiMDmer-deino-2O23-O3-19-12-43-55_2D23-03-20-12-43-55.tf5tate tf state 

• 0 te5t-C6iWDmer-detno-2O23-O3-19-13-19-32_2D23-03-20-13-19-32.tf5tate tf state 

• 0 test-customer-derro-2O23-03-19-23-43-32_2025-03-20-23-43-32.tfstate tfstate 

• Q cest-customer-demo-2023-O3-20-06-48-13_2023-03-21-06-48-13.tfstate tf state 

• Q test-customer-demo-2023-03-20-20-56-19_2023-03-21-20-56-19.tfstate tfstate 

• Q te5t-CEi5tomer-demo-2O23-O3-20-22-11-12_2023-03-21-22-T1-12.rfstate tfstate 

• Q te5t-CU5tomer-deino-3-2023-O3-2Q-22-14-20_2O23-O3-21-22-14-20.T(5tate tfstate 

• Q t e5 t -C [ is tomer -demo2-2023 -D3-19 -12 -19 -23_2D23-03 -20 -12 -19 -23 . t f«a te tfstate 

• D test-customer-demo2-2023-03-19-12-S1-35_2023-G3-20-12-51-35.tfstate tfstate 

• Q test-customer-demo2-2023-03-19-13-24-08_2Q23-03-20-13-24-O8.tfstate tfstate 

• Q test-customer-deino3-2023-03-19-l3-24-59_2023-03-20-13-24-S9.tfsrate tfstate 

• Q tf_ecr.Tfstate tfstate 

Figure 18: State files in S3 

plan output is shown in Figure 19. 
Regarding the AWS infrastructure, there are several elementary resources forming the 

underlying layer. These resources are as follows: 

• S3 bucket serves as a Terraform state file storage (already created). 

• E C R (Elastic Container Registry) for storing Helm charts and Docker images. 

• V P C and networking (virtual private cloud definition and main network definition). 

• AWS I G W (Internet Gateway) for accessing resources from the internet. 

• Subnets (definition of subnets used for E K S and application networking inside and 
outside the internet). 

• N A T Gateway (transfers network traffic between public and private networks). 

• Route tables later assigned to subnets. 

40 



16 T e r r a f o r m used t h e s e l e c t e d p r o v i d e r s t o g e n e r a t e t h e f o l l o w i n g e x e c u t i o n 

17 p l a n . R e s o u r c e a c t i o n s a r e i n d i c a t e d w i t h t h e f o l l o w i n g s y m b o l s : 

IS + c r e a t e 

19 <= read ( d a t a r e s o u r c e s ] 

20 

21 T e r r a f o r m w i l l p e r f o r m t h e f o l l o w i n g a c t i o n s : 

22 

23 # d a t a , a w s i a i j m t i c y document . e k s _ c l u s t e r _ a u t o s e a l . e r _ a s s u i i e _ r o l e _ p o l i c y w i l l be read d u r i n g a p p l y 

24 # ( c o n f i g r e f e r s t o v a l u e s no t y e t known) 

25 •:= d a t a " a w s _ i a m _ p o l i c y _ d o c u m e n t " " e k s _ c l u s t e r _ a u t o s c a l e r _ a s s u m e _ r o l e _ p o l i c y " { 

26 + i d = (known a f t e r a p p l y ) 

27 + j s o n - (known a f t e r a p p l y ) 

28 

29 + s t a t e m e n t { 

3fl + a c t i o n s = [ 

31 + " s t s : A s s u m e R o l e W i t h W e b l d e n t i t y " , 

32 ] 

33 + e f f e c t = " A l l o w " 

34 

35 + c o n d i t i o n { 

36 + t e s t = " S t r i n g E q u a l s " 

37 + v a l u e s = [ 

38 + " s y s t e m : s e r v i c e a c c o u n t : k u b e - s y s t e m : c l u s t e r - a u t o s c a l e r " , 

39 ] 

48 + v a r i a b l e = (known a f t e r a p p l y ) 

41 } 

42 

43 + p r i n c i p a l s { 

44 + i d e n t i f i e r s = [ 

45 + [known a f t e r a p p l y ) , 

46 ] 

47 + t y p e - " F e d e r a t e d " 

48 } 

49 } 

50 } 

51 

Figure 19: Terraform plan output 

• E K S (Elastic Kubernetes Service) runs the application stack 

• Nodes and node groups form the underlying layer that runs Kubernetes workloads 
(application stack). 

• OIDC definition (OpenID Connect Provider). 

• I A M for autoscaler (a role that allows the autoscaler to have permissions to control 
node groups and scale them). 

As shown in Figure 20, Terraform deploys several layers that were mentioned in List 
4.1. The networking is divided into two main groups: private and public. The public 
networking is connected to the internet gateway, while the private networking is connected 
to the N A T gateway. Each networking unit has one routing table and two subnets. The 
networking service dynamically provides IP addresses. The private networking provides 
networking to the node group layer, which comprises EC2 instance virtual machines that 

41 



provide computing power to the E K S cluster workload - the workload runs on these virtual 
machines. The private networking also provides networking for the app workload that runs 
on E K S . If there is a need to expose one of the services to the internet, it is routed through 
the internet gateway and an IP address is dedicated from one of the public subnets. The 
app stack images are pulled from E C R . Terraform deploys everything via GitHub Action 
and the current state of the infrastructure is saved in the S3 bucket in the same V P C on 
the cloud. 

4.2 Github action automations 

GitHub Actions are essentially sets of rules and definitions written in a Y A M L file that are 
executed by the GitHub Actions engine. These actions consist of several sections, including 
the following: 

• Workflow dispatch: This section serves as the entry point for inputs configured by 
the user of the GitHub Action. [53] 

• Jobs: This section is used to define groups of steps that are executed and jobs can 
run in parallel. 

• Steps: This section contains the steps that are executed sequentially and they are 
contained within job groups. 

• Plugins: These are used to execute specific steps, such as the EndBug/add-and-
commit@v9 plugin. 

The repository contains all the files required for creating the demo environment, including 
Terraform infrastructure scripts, Helm charts and an important file with CIDR blocks. This 
file lists all available IP ranges within a single V P C that is defined by the main IP range 
after it is created. 

4.2.1 Demo environment creation automation 

The automation process of the deployment is illustrated in diagram 21. Once the workflow 
dispatch is filled with user input, the action is triggered. It checks out the current git 
commit from the main branch and begins initializing carbon print. Carbon print is a set of 
files that defines the demo environment: 

• backend.tf is a Terraform backend file that includes initial infrastructure configuration, 
as mentioned in chapte 4.1 

• The files from and to contain the timestamp generated by the Python script based on 
user input of the lifetime of the demo environment. After the time specified in the to 
field is reached, the environment is automatically destroyed by a GitHub action cron 
job. 

• Status is a file that contains the current status of the environment creation and can 
have values: initialized, progress, created. 

• ccidr_blocks.csv contains IP ranges of all networks used for demo environment cre­
ation. These IP ranges are needed for the apply and destroy commands. 

42 



• tf_apply.sh and tf_destroy.sh contain the apply and destroy commands with all con­
figuration parameters that are passed into Terraform variables. 

Once the carbon print is initialized, it is committed to the main branch and the workflow 
proceeds to validate and initialize the Terraform backend with the cloud infrastructure. 
The carbon print is then updated to the progress status and the creation of the demo 
environment can begin. In the next step, the CIDR blocks are reserved from the main 
CIDR block file in the repository and a new file cidr_blocks.csv is created in the carbon 
print. Additionally, the tf_apply.sh and tf_destroy.sh scripts are generated. Another 
commit is made to the main branch to save the updated carbon print with all the changes. 
In Step 7, the tf_apply.sh command is used to create the infrastructure, as shown in Figure 
20. In Step 8, Helm is used to install the components described in Chapter 4.3. Finally, 
the carbon print is updated to its final state and the status is changed to created. The 
customer now has access to the private demo environment. 

4.3 He lm deployment and app stack deployment 

This chapter describes the deployment of the app stack on the infrastructure layer created 
in sub-chapter 4.1. The entire deployment is done using multiple Helm charts. 

The following applications are deployed on the E K S cluster: 

• Node autoscaler: This is a scaler that scales the underlying E K S infrastructure -
nodes in the node groups - and defines how many nodes should be started to run 
the application stack. This autoscaler is deployed as a plugin and is part of the 
Kubernetes control plane. 

• Private and public load balancers. 

• AWS CloudWatch collectors (for collecting metrics used by K E D A ) . 

. K E D A P O D autoscaler. 

• The application itself. 

4.3.1 Node autoscaler 

The node autoscaler is designed to automatically scale the underlying layer of nodes in 
response to changes in the number of pods. When the number of pods increases, the 
control plane triggers the autoscaler to scale the nodes up. Conversely, when the number 
of pods decreases, the control plane triggers the autoscaler to scale the nodes down. The 
autoscaler consists of two main components: I A M roles and policies and the autoscaler 
deployment itself. The I A M roles and policies were already deployed using Terraform and 
are responsible for granting permissions to manage the node groups. 

I A M policies consist of three main components: aws_iam_policy_document, aws_iam_role 
and aws_iam_policy. The aws_iam_policy_document entity specifies who has access, 
which in this case is the aws_iamopenid_connect_provider.eks.url, an OpenID provider 
integrated into the E K S cluster. The aws_iam_role entity defines the role itself, while the 
aws_iam_policy entity implements specific policies. The definition of these three entities is 
illustrated in Figure 22. fterward, the policy is attached to the role as shown in Figure 23. 

The autoscaler deployment in the k8s cluster consists of the following entities. The 
ServiceAccount is responsible for binding to the I A M role created previously by Terraform. 

43 

http://aws_iamopenid_connect_provider.eks.url


The definition of this is shown in 24 where the binding to the AWS I A M role is visible via 
the annotation. 

ClusterRole defines permissions inside the k8s cluster that has got entity assigned to 
the role as shown in Figure 25. 

Role defines permissions insisde the k8s cluster that has got entity assigned to the role, 
but differs from the ClusterRole by the scope. ClusterRole is able to define the permissions 
to the cluster scoped entities such as nodes (important for the autoscaler), non-resource 
endpoints, namespaced resources (like deployments/pods) across all namespaces. Role has 
got scope only over the namespace. Definition of the Role could be seen in the Figure 26. 
ClusterRoleBinding and RoleBinding are kind of attachment between Service Account, Clus­
terRole and Role. Definition of those could be seen in the Figure 27. Once the role is at­
tached via binding to the ServiceAccount, the ServiceAccount has got permissions defined 
by the roles. 

Deployment is the autoscaler application itself, that has got assigned ServiceAccount 
with ClusterRole/Role defined permissions and is deployed to the kube-system namespace, 
which is degault namespace of k8s where the control plane related applications are deployed. 
Definition of the autoscaler deployment could be seen in the Figure 28. Whole mechanism 
of I A M policies, permissions and ServiceAccounts is also explained in the diagram 29. 

Atoscaler could be configured for particular purpose as is shown in the Figure 30. There 
are few important parameters that should be meant in context with the current use case: 

• node-group-auto-discovery=asg:tag=k8s.io / cluster-autoscaler/enabled,k8s.io / cluster-
autoscaler/application_cluster - This specifies particular nodes, that are being scaled. 
If nodes do not have these tags, they are not scaled. 

• scale-down-utilization-threshold - If one the node resources (memory utilization, cpu 
utilization) increases above 50%, autoscaler triggers up. If nodes are utilized under 
50% autoscaler triggers down. 

• scale-down-delay-after-add - if nodes are utilized under 50% for 15 seconds, autoscaler 
triggers scale down. 

4.3.2 Private and public load balancers 

Private and public load balancers are essentially Kubernetes services based on Nginx, which 
include specific annotations defining the type of AWS L B , whether it's internal or exter­
nal. In the Figure 31 is example of full private load balancer. TThere are two important 
annotations: service.beta.kubernetes.io/aws-load-balancer-type, which specifies the type 
of AWS network load balancer as nib and service.beta.kubernetes.io/aws-load-balancer-
internal, which specifies whether the load balancer is internal or external. The second 
annotation is not necessary for public load balancers, as AWS L B is public by default 
unless another configuration via annotations is provided. 

4.3.3 AWS CloudWatch collectors 

For the purpose of this master thesis, there is used Fluent Bit . It is a lightweight and 
efficient data collector and forwarder designed for cloud-native environments and modern 
infrastructures. It is an open-source project developed by the Fluentd community and 
written in C language. Fluent Bit is deployed as a Daemon Set and runs on each node, 

44 



collecting logs from containers that run on every node and then sends the data to AWS 
Cloud Watch, which saves the data to an S3 Bucket. The logs can be viewed by executing 
Cloud Watch queries from the S3 Bucket and they are displayed as tables and graphs. A 
detailed log collection architecture is illustrated in the diagram 32. 

4.3.4 K E D A deployment and data flow architecture 

For querying metrics from Cloud Watch by K E D A Scale Set, access logs should be trans­
mitted into custom metric, that is later queried by Scale Set itself. This is done by query 
filter and creation custom metric into new Cloud Watch namespace. Only metric could 
be queried in Cloud Watch A P I so there is no other possibility then creating it out of log 
query. In the diagram 33 could be seen whole architecture. Logs are stored in log groups 
within Log insights. A custom metric can query logs in their original state and parse them 
using a simple regex. This custom metric periodically queries logs to make them available 
for external queries through the Cloud Watch A P I . K E D A ScaledObject is a Kubernetes 
custom resource that is bound to a specific deployment using an annotation (in this case, 
Nginx). It periodically queries the custom metric from the Cloud Watch A P I and com­
pares it to configured thresholds. When the metric reaches the threshold, it triggers scaling 
up and sends a request to the K E D A engine, which runs in the same Kubernetes cluster. 
The request includes information about the number of instances to which the deployment 
should be scaled up and the deployment identifier (in this case, the name of the deployment 
is Nginx). The Kubernetes default pod scaler scales up the deployment, which remains in 
this state until the queried custom metric decreases below the threshold value. Once the 
cooldown period is triggered and there are no further increases in the custom metric value, 
the deployment is scaled back down to its initial state. The custom metric can be based 
on a large amount of diverse information contained in logs, but this always depends on the 
specific use case. Potential log query filters could include: 

• Error rate (5xx) 

• Latency 

• Response time 

• Number of timeouts 

The configuration of the K E D A ScaledObject could be seen in the Figure 34. It contains 
few important parameters: 

• pollinglnterval: 30 - a length of period in which the scaled object executes metric A P I 
call 

• cooldownPeriod: 0 - a period after which all pods are scaled down to initial state once 
the metric value decreases under the certain threshold 

• minReplicaCount: 1 - minimum number of instances of scaled application 

• maxReplicaCount: 50 - maximum number of instances of scaled application 

• namespace: CustomLogQueries - a namespace, where is located the metric 

• expression: S E L E C T SUM(nginx_all_http_requests_l) F R O M CustomLogQueries 
- the query targeting our metric 

45 



• metricName: nginx_all_http_requests_l - metric name 

• targetMetricValue: 1300 - a threshold upon the scaling up triggers 

• minMetricValue: 0 - a value provided if pulling from the metric ends up with no value 

• awsRegion: eu-west-1 - a region of metric location 

• awsEndpoint: - could be targeted specific endpoint ( / by default) 

• metricCollectionTime: 600 - a size of the interval from now to past in seconds 

• metricStat: Average - an agregation function applied on metric query 

• metricStatPeriod: 60 - equivalent to group by function, in this case 1 second 

• metricUnit: Count - the units for the custom metric can vary, such as bytes per 
second, bits and so on. 

• metricEndTimeOffset: 0 - the offset of collection time (now - offset) 

The metric threshold for the ScaledObject is configured to be 1300 requests per minute 
and when this threshold is reached, the number of nginx replicas scales up. The scaling 
policy is defined by the function numberOfPods = numberOfRequests / metric Threshold 
for numbers greater than 1. If the number is less than 1, the count of nginx replicas is 1. If 
there are no requests, the number of nginx replicas is determined by the minReplicaCount 
parameter. 

4.3.5 Load test of K E D A integration 

The load testing is managed by a user-friendly tool called Locust [54], which allows easy 
creation and execution of load tests using Python. The output of Locust is a report consist­
ing of several graphs that are easy to read and export to various formats for use with other 
data analytic tools. The design specifies a minimum of 27.5 requests per second, equiva­
lent to 1650 requests per minute, with a minimum aggregation value of 60 seconds in the 
current metric pull. Load test was running in 10 rounds with increase of requests per every 
round. Results could be seen in the table 8. The prove of scale up based on the number 
of the request per minute could be seen in the graph 35, it correlates and ScaledObject is 
configured well. 

46 



Table 8: Results of load test 
Round Threads Spawns/s Requests/s (avg) Requests/minute (avg) nginx replicas 
1 1 1 28 1678 2 
2 2 1 54 3284 3 
3 3 1 86 5165 5 
4 4 2 111 6638 5 
5 5 5 144 8445 7 
6 7 5 190 11276 9 
7 9 7 250 15040 12 
8 12 10 290 17362 14 
9 14 14 320 20255 16 
10 20 30 479 28737 24 

47 



V P C 

IGW (internet gateway) 

Public route table 

Public subnet l Public subnet 2 

provides accesibility from the internet 

S 3 Bücket with state 
f les 

E C Fl with docker 
images 

App instance 
jse-v : e i 

EKS cluster 

App instance 
(stateful set) 

App instance 
(deployment) 

App instance 
(cronjob) 

Workload layer 

provides images for workloads 

provides compute power to the workload 

E C 2 node 1 (VM) E C 2 node 2 (VM) Node group layer E C 2 node n (VM) 

NAT gateway 

Private route table 

Pr vate sub-let I Private subnet 2 

Github Actions with Terraform 

V 
GitHub Actions Terraform 

creates whole infrastructure 

Figure 20: Infrastructure architecture diagram 

48 



Github repository 

Gilhub action - demo env creation 

0. Workflow dispatch 
input trigger 

1. Checkout 

2, Initialization of 
carbon pri-t 

3. Commit and push 
of car ton print 

4. Setup, validate, 
format and in it 

Terraform 

5. Update carbon 
print - status: in 

progress 

B. Book tree CIDR 
blocks 

7. Terraform apply 

8. Helm install 

9. Update carbon 
print 

demo envs folder 

cen'o env carbon arinl 

b a c k e n d ! 
from 
to 
status 

cidr blocks.csv 

t tf_apply.sh 
• tf_desctrcy.sh 

»• List o) CIDR blocks in V P C 

T F infra scripts 

Helm deployment scripts 

J AWS 
Figure 21: Github action infrastructure creation architecture 

19 



ndata "aws_ian_po licy.document'
1

 "eks_cluster_autoscaler_assume_role_policy" { 

& statement i 
actions = pstsiAssumeRc leWithWedldentity"] 

effect = "Allow" 

FI condition •{ 

test = "StpingEqjals" 

variable = ''${replace(aws_iarii_openid_corinect_provider.eks_urt, "https://", "")J:sub" 

values = [''system :^ej^cjjjcco^^ 

t ' 
principals { 

identifiers = [affs_ian_openifl_Gonnect_provider.eks.arn] 

type = "Federated" 

f } 

y } 
r 
resource "aws_ian_role" "eks_cUster_autoscaler" { 

assume_role_policv • data.aws_iam_DolicyJocunent.eks_cluster_autoscaler
,

_assyiiie_role_policY.json 

name = "eks-cluster-autoscaler-$-{var.environment_name)" : 
resource "aws_ian_policy" "eks_cluster_autoscaler" { 

name = "eks-cluster-autoscaler-$-{var.environinent_nameK 

FI policy = jsonencodeU 

PI Statement = [{ 

Action = [ 

"auto scaling:DescribesutoScalingGroups", 

"auto scaling:DescribeAuto5calingInstances", 

"auto scaling:DescribeLauncr,Configurations", 

"auto scaling:DescribeTags", 

"auto scaling:SetDesiredCapacity", 

"auto scaling:TerminateInstanceInAutoScalingGroup", 

"ecZ:DescribeLauncnTemplateVersions" 

] 
Effect = "Allow" 

Resource = "*" 

f " 
Version = "2012-1B-17" 

» 

Figure 22: I A M source code 

resource ''aws.iam.rale.policy.attachmerit1' M_ks_cluster.autcscaler_attach" { 

role = av__iam_role.eks_c luster-.ajtoscaler. name 

policy_arn = aws_iam_policy.eks_cluster_autosca1er.arn 

Figure 23: Policy and role attachment 

50 

http://affs_ian_openifl_Gonnect_provider.eks.arn
http://aws_iam_policy.eks_cluster_autosca1er.arn


A— 
apiVersion: v l 

kind: ServiceAccount 

metadata: 

name: cluster-autoscaler 

namespace: kube-systen 

annotations: 

eks.amazonaws.coiri/role-arn: arn:aws:ian:: role/eks-cluster-autcscaler 

Figure 24: Service account 

apiVersion: rbac.authorization.k8s.io/vl 

kind: ClusterRole 

metadata: 
name: cluster-autoscaler 

Vules: 
\ - apiGroups: [""] 

resources: [ " e v e n t s " , " e n d p o i n t s " ] 

verbs: [ " c r e a t e " , " p a t c h " ] 

Figure 25: Cluster role 

apiVersion: r b a c . a u t h o r i z a t i o n . k S s . i o / v l 

kind: Role 

metadata: 

name: c l u s t e r - a u t o s c a l e r 

•i namespace: kube-systen 

nrules: 

j - apiGroups: [""] 

resources: ["configmaps"] 

verbs: [ " c r e a t e " , " l i s t " , " w a t c h " ] 

? - apiGroups: [ , , M ] 

resources: ["configmaps"] 

resourceNames: ["c l u s t e r - a u t o s c a l e r - s t a t u s " , " c l u s t e r - a u t o s c a l e r - p r i c r i t y - e x p a n d e r " ] 

verbs: ["delete", "get", "update", "watch"] 

Figure 26: Role 

51 



apiVersion: rhac.authorization k8s i o / v l 

kind: ClusterRoleBinding 

^metadata: 

name: cluster-autoscaler 

r roleRef: 

apiGroup: rhac.authorization kSs io 

kind: ClusterRole 

name: cluster-autoscaler 

subjects: 

- kind: ServiceAccount 

name: cluster-autoscaler 

namespace: kube-system 

y 
apiVersion: rhac.authorization kSs i o / v l 

kind: RoleBinding 

^metadata: 

name: cluster-autoscaler 

namespace: kube-system 

rroleRef: 

apiGroup: rhac.authorization kSs io 

kind: Role 

name: cluster-autoscaler 

subjects: 

- kind: ServiceAccount 

name: cluster-autoscaler 

namespace: kube-system 

Figure 27: ClusterRoleBinding and RoleBinding 

52 



apiVersion: apps/vl 

kind: Deployment 

metadata: 

name: cluster-autoscaler 

namespace: kube-system 

i l a b e l s : 

3 app: cluster-autoscalep 

=ispec: 

replicas: 1 

J selector: 

3 match Labels: 

ap p: cluste p-autosc ale r 

k template: 

metadata: 

la b e l s : 

app: cluster-autoscaler 

spec: 

serviceAccountName: cluster-autoscaler 

containers: 

- image: kSs.gcr.io/autoscaling/cluster-autoscaler:vl.21.a 

name: cluster-autoscaler 

resources: 

l i m i t s : 

cpu: lOQrn 

memory: 60GM1 

requests: 

cpu: 100m 

3 memory: 6B6f1i 

Figure 28: Node autoscaler deployment 

I AM policy 
{defines what 
permissions) 

1AM policy document 
(defines who is able 

to get the role) 

1AM role polic/ 
attachment 

(attaches policy to the 
role) 

I AM rale 

ClusterRoleBindinc, 
ClusterRole 

(defines permissions, 
cluster scope) 

SetviceAccount 

has scaling permissions over the node group 

Mode group 
(with specific tag) 

scales node group with _ 
specific tag * * 

RoleBinding 
Role (defines 
permissions, 

namespace scope) 

gets the I AM role 
permissions through 
the service account 
and from the roles 

Deployment 
iauliscale-í 

Figure 29: I A M and role schema 

53 



. / c l u s t e r - a u t o s c a l e r 

- -v=4 

- - c loud-p rov ide r=aws 

- - s k i p - n o d e s - w i t h - l o c a l - s t o r a g e ^ f a l s e 

- -expande r= lea st -wa s te 

- - n o d e - g r o u p - a u t o - d i s c o v e r y = a s g : t a g = k 8 5 . i o / c l u s t e r - a j t o s c a l e r / e r i a b l e d . k S s . i o / c l u s t e r - a u t o s c a l e r / a p p l i c a t i o n s l u s t e r 

- - b a l a n c e - s i m i l a r - n o d e - g r o u p s 

- - s k i p - n o d e s - w i t h - s y s t e m - p o r J s ^ f a l s e 

- - s c a l e - d o « m - u t i l i z a t i o r i - t h r e s h o l d = 8 . 5 

- - sca le -down-non -emp ty -cand ida tes -coun t=3a 

- - s c a l e - d o » m - d e l a y - a f t e r - a d d = 1 5 s 

— s c a l e - d o « i n - d e l a y - a f t e r - d e l e t e = Q 

- - s c a l e - d o « m - d e l a y - a f t e r - f a i l u r e = 3 m 

- -sca le-doum-ur ineeded- t ime=15s 

Figure 30: Autoscaler configuration 

a p i V e r s i o n : v l 

k i n d : Service 

m e t a d a t a : 

name: private-lb 

=1 a n n o t a t i o n s : 

s e r v i c e . b e t a . k u b e r n e t e s . i o / a w s - l o a d • b a l a n c e r - t y p e : nib 

d s e r v i c e . b e t a . k u b e r n e t e s . i o / a w s - l o a d - b a l a n c e r - i n t e r n a l : 6 . 9 . 6 . 9 / 6 

=ispec: 

t y p e : LoadBalancer 

J s e l e c t o r : 

a p p : nginx 

p o r t s : 

- p r o t o c o l : TCP 

p o r t : 80 

t a r g e t P o r t : web 

Figure 31: Private loadbalancer 

54 



FluentBit running as a Daemon Set on E K S 

f l u e n t b i t 

Node 1 Mode 2 Node N 

Amazon 
CloudWateh 

JŮi3-í4-l5T21:5fl:M„ J263 

2eZ3-«M-15TZl:43;3B... 15Ü1 

Figure 32: FluentBit log collection schema 

Nginx L B 
deployment 

scales 

ktts default pod 
autoscaler 

B i_n: l by 
I annotation 

triggers 

A W S User 
has permission 

authenticates 

K E D A Sca led Object 
secret 

A W S _ A C C E S S _ K E Y _ I D 
AWS S E C R E T A C C E S S <EY 

K E D A Sca led Object 

Metric query, thresholds, 
cooldown period 

ig&r^i 

que'ies 
•ne:- c 

triggers! scaling 

K E D A engine 

Role with 
CloudWateh Ad m i n 

pol icy 

CustomMetr lc 

Nginx API requests 

{ 
S.kubernete s, container_name 
= "nginx" && S.log = '"HTTP"' 

contained 

CloudWateh namespace: 
C u s t o m L o g s 

Log Insishts 

Log Groups 

Nginx L B 
access logs 

Figure 33: Custom metric architecture and log quering by ScaleObject 

55 



apiVersion: keda.sri/vlaT.phal 

kind: Scaled Object 

metadata: 

name: aws-cloudwatch-queje-scaledobiect-nginx 

namespace: default 

spec: 

scaleTangetRef: 

name: nginx 

pollinglnterval: 38 

cooldownPeriod: 0 

miriReplicaCount: 1 

maxReplicaCount: 5B 

triggers: 

- type: aws-cloudwatch 

netadata: 

namespace: CustomLogQje-rics 

expression: SELECT SLH(nginx_all_http_requests_l] FROH CustomLogQueries 

metricName: nginx_all_http_recuests_l 

targetfletricvalue: "1399" 

minNetricValue: "3" 

awsRegion: "eu-west-1" 

awsEndpoint: "" 

netricCollectionTine: "306" 

metricStat: "Average" 

netricStatPeriod: "66" 

netricllnit: "Count" 

metricEndTimeOffset: "9" 

authenticatiorRef: 

name: keda-trigger-auth-aws-credentials 

Figure 34: ScaledObject deployment and configuration 

Figure 35: Correlation between requests per minute and nginx replicas 

0 1=J 1 1 1 1 u 

0 0.5 1 1.5 2 2.5 3 
requests / minute • 104 

56 



5 Conclusion of results 

The output of the practical part of the master's thesis is the implementation of the in­
frastructure and C I / C D pipeline designed in the third chapter. There was discussed the 
implementation of the entire infrastructure created by Terraform, based on E K S , network­
ing, load balancing, log ingestion by FluentBit, node autoscaling and pod autoscaling by 
K E D A , with custom metrics stored in an S3 bucket managed by AWS Cloud Watch. The 
infrastructure and deployment could be automatically created from GitHub Actions and 
provides on-demand deployment in several minutes. The last part of the chapter proved 
and tested the concept of pod autoscaling through a sequential load test of the Nginx load 
balancer and the results can be seen in Graph 35. 

57 



6 Conclusion 

In the second chapter, the cloud market was researched and initial observations were made. 
The results from Synergy Research were compared with other sources and were found to 
highly correlate (table 1). The chapter compared multiple cloud providers and their shares 
in the growing cloud market, as well as their services. Security aspects of the cloud, such 
as encryption and shared responsibility models, were also defined and compared. Based on 
the research, the AWS cloud provider was chosen. 

The third chapter discussed the infrastructure design and modern principles of cloud 
infrastructure development, such as infrastructure as code, Helm and its charts and virtual 
environments like Kubernetes. The chapter concluded with a choice of suitable technologies 
to run the application stack. The second part of the chapter focused on scaling the system 
and its components to meet the demand of real-time processing and requests. It compared 
suitable DaaS options and researched modern C I / C D principles, complemented by auto­
mated vulnerability detection and Git Ops principles like ArgoCD. Release management was 
also mentioned, which partly defined the diversification of production-wise environments 
and demo or development environments. The output of this chapter was the architecture 
of the infrastructure and C I / C D pipeline, which can be seen in Figure 16. 

The fourth chapter implemented a suitable architecture of the infrastructure layer for 
running enterprise applications based on distributed system design and microservices. Later 
on, it was implemented by Terraform, Helm, Github Actions, and K E D A . The result is an 
on-demand environment created in less than 30 minutes that runs on Kubernetes in the 
cloud and is fully automatically scalable. 

This master thesis has proven several principles of modern cloud development and vir-
tualization, that were tested and can be highly recommended to every company, that has 
got a high demand of moving into cloud and provide there a distributed enterprise system 
as SaaS. 

58 



References 

[1] R E N O , N . 2018 Review Shows $250 billion Cloud Market Ecosystem Growing at 32% 
Annually. Synergy, Jan. 2019. Available from: 
https: //www. srgresearch. com/art icles/2018-review-shows-250-billion-

cloud-market-ecosystem-growing-32-annually 

[2] R E N O , N . Amazon, Microsoft, Google and Alibaba Strengthen their Grip on the 
Public Cloud Market. Synergy, Oct. 2019. Available from: 
https: / / www.srgresearch.com/articles/amazon-microsoft-google-and-

alibaba-strengthen-their-grip-public-cloud-market 

[3] R E N O , N . Q3 Cloud Spending Up Over $11 Billion from 2021 Despite Major 
Headwinds; Google Increases its Market Share. Synergy, Oct. 2022. Available from: 
https: 

//www.srgresearch.com/articles/q3-cloud-spending-up-over-ll-billion-

from-2021-despite-major-headwinds-google-increases-its-market-share 

[4] team, A . Shared Responsibility Model, aws.amazon.com, Nov. 2022. Available from: 
https://aws.amazon.com/compliance/shared-responsibility-model/ 

[5] team, G. Shared responsibilities and shared fate on Google Cloud, cloud.google.com, 
July 2022. Available from: https://cloud.google.com/architecture/framework/ 
security/shared-responsibility-shared-fate 

[6] Terry Lanfear, D . B. , Ann Marie Hitchcock. Shared responsibility in the cloud. 
learn.microsoft.com, Aug. 2022. Available from: https://learn.microsoft.com/en-
us/azure/security/fundamentals/shared-responsibility 

[7] McGuire, C ; team. About Point-to-Site V P N . learn.microsoft.com, Sept. 2022. 
Available from: 
https: //learn.microsoft.com/en-us/azure/vpn-gat eway/point-to-site-about 

[8] Team, A . Azure security center, azure.microsoft.com, Nov. 2019. Available from: 
https: //azure.microsof t.com/en-gb/blog/new-azure-security-center-and-

azure-platform-security-capabilities-2/ 

[9] team, A . Amazon inspector, aws.amazon.com, Jan. 2023. Available from: 
https: / / aws.amazon.com/inspector/ 

[10] Team, K . Kubernetes Event-driven Autoscaling. keda.sh, Feb. 2023. Available from: 
https: //keda.sh/docs/2.0/concepts/ 

[11] Team, A . ArgoCD. argo-cd.readthedocs.io, Feb. 2023. Available from: 
https: / / argo-cd.readthedocs.io/en/stable/ 

[12] Team, G . Google Platform Services Comparison, cloud.google.com, Jan. 2023. 
Available from: 
https://cloud.google.com/free/docs/aws-azure-gcp-service-comparison 

[13] Ekuan, M . ; team. Azure Platform Services Comparison, learn.microsoft.com, Jan. 
2023. Available from: https: 
//learn.microsoft .com/en-us/azure/architecture/aws-prof essional/services 

59 

http://www.srgresearch.com/
http://www.srgresearch.com/articles/q3-cloud-spending-up-over-ll-billion-
http://aws.amazon.com
https://aws.amazon.com/compliance/shared-responsibility-model/
http://cloud.google.com
https://cloud.google.com/architecture/framework/
http://learn.microsoft.com
https://learn.microsoft.com/en-
http://learn.microsoft.com
http://azure.microsoft.com
http://aws.amazon.com
http://aws.amazon.com/
http://argo-cd.readthedocs.io/
http://cloud.google.com
https://cloud.google.com/free/docs/aws-azure-gcp-service-comparison
http://learn.microsoft.com


[14] Hilton, A . S R E fundamentals SLI vs SLO vs SLA. Google, May 2022. Available from: 
https://cloud.google.com/blog/products/devops-sre/sre-fundamentals-sli-

vs-slo-vs-sla 

[15] R E N O , N . Synergy Cloud Market Shares. Synergy, Feb. 2020. Available from: 
https: //www.srgresearch.com/articles/incremental-growth- cloud- spending-

hits-new-high-while-amazon-and-microsoft-maintain-clear-lead-reno-nv-

february-4-2020 

[16] Solutions, S. Sam Solutions Cloud Market Shares. Sam Solutions, Jan. 2021. 
Available from: https: 
/ / sam-solutions.us/aws-vs-azure-v-s-google-cloud-which-is-better/ 

[17] Murray, C. Alto Palo Cloud Market Shares. Alto Palo, Apr. 2021. Available from: 
https: //alt o-palo.com/blogs/google-cloud-vs-aws-vs-azure-choose-the-

right-cloud-platfor 

[18] analytics team, C. Canalys Cloud Market Shares. Canalys, Apr. 2021. Available from: 
https://www.canalys.com/newsroom/global-cloud-market-Q121 

[19] seekers, H . Hosting Seekers Cloud Market Shares. Hosting Seekers, Aug. 2021. 
Available from: https: 
//www.host ingseekers.com/blog/aws-vs-azure-vs-google-cloud-plat form 

[20] CISIN. CISIN Cloud Market Shares. CISIN, Jan. 2022. Available from: 
https://www.cisin.com/coffee-break/technology/aws-vs-azure-vs-google-

cloud-market-share-2021.html 

[21] Panettieri, J . Channele2e Cloud Market Shares. Channele2e, Apr. 2022. Available 
from: https: //www.channele2e.com/news/cloud-market-share-amazon-aws-
microsoft-azure-google/ 

[22] team, G. Serverless. cloud.google.com, Nov. 2022. Available from: 
https: / / cloud.google.com/serverless/ 

[23] team, M . Download and install the Microsoft Authenticator app. 
support.microsoft.com, Dec. 2022. Available from: https: 
/ / support.microsoft.com/en-us/account-billing/download-and-install-the-

microsoft-authenticator-app-351498fc-850a-45da-b7b6-27e523b8702a 

[24] team, G. Google Authenticator. play.google.com, Dec. 2022. Available from: 
https: //play.google.com/store/apps/details?id= 

com.google.android.apps.authenticator2&gl=US&pli=l 

[25] team, A . AWS Single Sign-On (AWS SSO) is now AWS I A M Identity Center. 
aws.amazon.com, July 2022. Available from: 
https://aws.amazon.com/about-aws/whats-new/2022/07/aws-single-sign-on-

aws-sso-now-aws-iam-identity-center/ 

[26] team, O. Okta universal directory, www.okta.com, Dec. 2022. Available from: 
https://www.okta.com/products/universal-directory/ 

60 

https://cloud.google.com/blog/products/devops-sre/sre-fundamentals-sli-
http://www.srgresearch.com/articles/incremental-growth-
https://www.canalys.com/newsroom/global-cloud-market-Q121
http://www.host
http://ingseekers.com/blog/aws-vs-azure-vs-google-
https://www.cisin.com/coffee-break/technology/aws-vs-azure-vs-google-
http://www.channele2e.com/news/cloud-market-share-amazon-aws-
http://cloud.google.com
http://cloud.google.com/
http://support.microsoft.com
http://support.microsoft.com/en-us/account-billing/download-and-install-the-
http://play.google.com
http://aws.amazon.com
https://aws.amazon.com/about-aws/whats-new/2022/07/aws-single-sign-on-
http://www.okta.com
https://www.okta.com/products/universal-directory/


[27] team, E . AWS, Azure and G C P : The Ultimate I A M Comparison, ermetic.com, July 
2022. Available from: https: 
//ermetic.com/blog/cloud/aws-azure-and-gcp-the-ultimate-iam-comparison/ 

[28] Baldwin, M . ; team. Azure Data Encryption at rest, learn.microsoft.com, Nov. 2022. 
Available from: https: //learn.microsof t .com/en-us/azure/security/ 
fundamentals/encryption-atrest 

[29] Baldwin, M . ; team. Server-side encryption of Azure Disk Storage. 
learn.microsoft.com, Aug. 2022. Available from: https: 
//learn.microsof t .com/en-us/azure/virtual-machines/disk-encrypt ion 

[30] Gluck, D.; team. Encryption for data-in-transit, learn.microsoft.com, Sept. 2022. 
Available from: https: //learn.microsof t .com/en-us/compliance/assurance/ 
assurance-encryption-in-transit 

[31] Team, A . Azure security center, azure.microsoft.com, Jan. 2023. Available from: 
https: / / azure.microsoft.com/en-us/services/security-center/ 

[32] team, G. Google Security and Trust Center, cloud.google.com, Jan. 2023. Available 
from: https: //cloud.google.com/security/ 

[33] org team, I. ISO Standard 27001. www.iso.org, Jan. 2023. Available from: 
https: //www.iso.org/standard/45170.html 

[34] team, T. Terraform. www.terraform.io, Feb. 2023. Available from: 
https: //www.terraform.io/ 

[35] team, A . AWS CloudFormation. docs.aws.amazon.com, Feb. 2023. Available from: 
https: / / docs.aws.amazon.com/cloudf ormation/index.html 

[36] team, M . Azure Resource Manager, azure.microsoft.com, Feb. 2023. Available from: 
https: 

//azure.microsof t.com/en-us/get-st art ed/azure-portal/resource-manager 

[37] Team, G . Google Cloud Deployment Manager, cloud.google.com, Feb. 2023. Available 
from: https: //cloud.google.com/deployment-manager/docs 

[38] Team, H . Helm Package Manager, helm.sh, Feb. 2023. Available from: 
https://helm.sh 

[39] Christopher Parker, M . Helm Umbrella Charts, itnext.io, June 2020. Available from: 
https: //itnext.io/helm-3-umbrella-charts-standalone-chart-image-tags-

an-alternat ive-approach-78a218d74e2d 

[40] team, K . Kubernetes Engine, kubernetes.io, Feb. 2023. Available from: 
https://kubernetes.io/ 

[41] Team, A . AWS Elastic Kubernetes Service, docs.aws.amazon.com, Feb. 2023. 
Available from: 
https: //docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html 

61 

http://ermetic.com
http://learn.microsoft.com
http://learn.microsoft.com
http://learn.microsoft.com
http://azure.microsoft.com
http://azure.microsoft.com/
http://cloud.google.com
http://cloud.google.com/
http://www.iso.org
http://www.iso.org/standard/45170.html
http://www.terraform.io
http://www.terraform.io/
http://docs.aws.amazon.com
http://docs.aws.amazon.com/
http://azure.microsoft.com
http://cloud.google.com
http://cloud.google.com/
https://helm.sh
https://kubernetes.io/
http://docs.aws.amazon.com
http://amazon.com/eks/latest/userguide/what-is-eks


[42] Team, A . AWS Elastic Container Service, docs.aws.amazon.com, Feb. 2023. Available 
from: 
https: / / docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html 

[43] Team, A . AWS Fargate Instances, docs.aws.amazon.com, Feb. 2023. Available from: 
https: 

//docs.aws.am azon.com/AmazonECS/latest/userguide/what-is-fargate.html 

[44] Team, K . Kubernetes build-in autoscaler. kubernetes.io, Feb. 2023. Available from: 
https: 

//kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/ 

[45] Team, A . AWS Database Solutions, docs.aws.amazon.com, Feb. 2023. Available from: 
https: //aws.amazon.com/products/databases/ 

[46] Team, A . AWS RDS for Postgres. docs.aws.amazon.com, Feb. 2023. Available from: 
https: 

//docs.aws.am azon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html 

[47] Team, A . AWS Aurora for Postgres. docs.aws.amazon.com, Feb. 2023. Available from: 
https: //docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/ 

Aurora.AuroraPostgreSQL.html 

[48] Team, A . AWS Neptune, docs.aws.amazon.com, Feb. 2023. Available from: 
https: //docs.aws.amazon.com/neptune/latest/userguide/intro.html 

[49] Team, R. C I / C D principals, redhat.com, May 2022. Available from: 
https://www.redhat.com/en/topics/devops/what-is-ci-cd 

[50] Team, G . Github actions, github.com, Feb. 2023. Available from: 
https: //docs.github.com/en/actions 

[51] Team, G . Terratest. gruntwork.io, Feb. 2023. Available from: 
https: //terratest.gruntwork.io/ 

[52] Team, S. Sonar cloud, sonarsource.com, Feb. 2023. Available from: 
https: //www.sonar sour ce.com/products/sonar cloud/ 

[53] Team, G . Workflow dispatch, docs.github.com, Feb. 2023. Available from: 
https://docs.github.com/en/actions/using-workflows/events-that-trigger-

workflows 

[54] Team, L . Locust, locust.io, Feb. 2023. Available from: https://locust.io/ 

62 

http://docs.aws.amazon.com
http://docs.aws.amazon.com/
http://docs.aws.amazon.com
http://azon.com/AmazonECS/latest/userguide/what-is-fargate.html
http://docs.aws.amazon.com
http://amazon.com/products/databases/
http://docs.aws.amazon.com
http://azon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL
http://docs.aws.amazon.com
http://amazon.com/AmazonRDS/latest/AuroraUserGuide/
http://docs.aws.amazon.com
http://amazon.com/neptune/latest/userguide/
http://redhat.com
https://www.redhat.com/en/topics/devops/what-is-ci-cd
http://github.com
http://github.com/en/actions
http://sonarsource.com
http://www.sonar
http://ce.com/products/
http://docs.github.com
https://docs.github.com/en/actions/using-workflows/events-that-trigger-
https://locust.io/


Seznam zkratek 

A C Azure cloud 

A D Azure active directory 

A P I Application Programming Interface 

A R M Azure Resource Manager 

AWS Amazon web services 

C D Continuous Deployment 

CI Continuous Integration 

C I / C D Continuous Integration/Continuous Deployment 

CLI Command Line Interface 

DaaS database as a service 

D D O S distributed denial of service 

DevOps Developers/Operations 

E C S Amazon Elastic Container Service 

E K S Amazon Elastic Kubernetes Service 

G C Google cloud 

G C P Google Cloud Platform 

H A High availability 

H C L HashiCorp Configuration Language 

H P A Horizontal Pod Autoscaler 

IaaC Infrastructure as a Code 

IaaS infrastructure as a service 

I A M identity and access management 

K E D A Kubernetes Event-driven Autoscaling 

M F A Multifactor authentication 

on-prem on premise 

OS Operating system 

P2S point to site 

PaaS platform as a service 

63 



P O D The smallest deployable unit that represents a single instance of a running process 
in k8s cluster 

R B A C role based access control 

S2S site to site 

SaaS software as a service 

S D K Software Development Ki t 

S L A service level agreement 

SLO service level objective 

SSO Single sign on 

T L S Transport Layer Security 

U A T User Acceptance Testing 

V M virtual machine 

V P C virtual private cloud 

V P N virtual private network 

64 



Univerzita Hradec Králové 
Fakulta informatiky a managementu 

Zadání diplomové práce 

Autor: Bc. Jan Kohout 

Studium: 12000982 

Studijní program: N1802 Aplikovaná informatika 

Studijní obor: Aplikovaná informatika 

Název diplomové 
práce: 

Virtualizace a virtualizační clustery na Linuxových 
systémech 

Název diplomové práce Virtualization and virtualization clusters on Linux systems 

Cíl, metody, literatura, předpoklady: 

Cílem diplomové práce je prostudování, pochopení a návrh virtualizačního 
clusteru jeho automatická konfigurace a dimenzace pro určitý typ 
aplikací. Řešení má být založeno na open source software. 

1, Úvod do problematiky virtualizace 

2, Rešerše jednotlivých řešení na trhu 

3, Návrh provedení a automatizace 

4, Návrh teoretické dimenzace 

5, Implementace a provedení základních výkonových testů 

6, Shrnutí 

1, Virtualization, A Beginner's Guide 978-0071614016, 978-0071614016 
2, Understanding the L inux Kernel Daniel P. Bovet,Marco Cesati 0596005652 
(ISBN13: 9780596005658) 
3, Hardware and Software Support for Virtualization 1627056882 (ISBN13: 
9781627056885) 
4, Inside the Machine 1593271042 (ISBN13: 9781593271046) 
5, Docker Deep Dive (Kindle Edition) Nigel Poulton 
Kubernetes: Up & Running (Paperback) Kelsey Hightower,Brendan Burnsjoe 
Beda 1491935677 (ISBN13: 9781491935675) 
6, Docker: Up & Running: Shipping Reliable Containers in Production Sean 
P. Kane, Karl Matthias 1491917571 (ISBN13: 9781491917572) 
7, The Book of Xen: A Practical Guide for the System Administrator Chris 
Takemura, Chris Takemura 1593271867 (ISBN13: 9781593271862) 

AJ: 

7, Závěr 

Zadávající pracoviště: Katedra informačních technologi í , 
Fakulta informatiky a managementu 



Vedoucí práce: Ing. Pavel Blažek, Ph.D. 

Datum zadání závěrečné práce: 21.1.2020 


