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ABSTRACT 
This master’s thesis is focused on hand gestures and finger detection in still images and 
video sequences. The thesis contains a summary of different approaches to hand gesture 
detections, advantages and disadvantages of each approach. The thesis also includes 
the realization of the platform independent application written in Python using OpenCV 
and PyTorch libraries, that can show a selected image or play a video sequence with 
highlighted recognized gestures.  
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ABSTRAKT 
Diplomová práce je zaměřena na detekci a rozpoznání gest rukou a prstů ve statických 
obrazech i video sekvencích. Práce obsahuje shrnutí několika různých přístupů k samotné 
detekci a také jejich výhody i nevýhody. V práci je též obsažena realizace 
multiplatformní aplikace napsané v Pythonu s použitím knihoven OpenCV a PyTorch, 
která dokáže zobrazit vybraný obraz nebo přehrát video se zvýrazněním rozpoznaných 
gest. 

 

KLÍČOVÁ SLOVA 
Počítačové vidění, detekce rukou, rozpoznání gest, zpracování obrazu, zpracování videa, 
OpenCV, PyTorch, Python, Deep Learning, konvoluční neuronové sítě, strojové učení 
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ROZŠÍŘENÝ ABSTRAKT 
Postupem času, tak jak to výpočetní výkon dovoluje oblast počítačového vidění nabírá 
na popularitě. A není se čemu divit, počítače i telefony jenž používáme každý den mají 
dostatek výpočetního výkonu pro analýzu obrazů a video sekvencí v reálném čase. 
Například naše mobilní telefony jsou ve většině případů rozpoznat tváře ve fotografiích 
a v některých případech pochopit i jednoduchá gesta rukou, jako například vzdálená 
spoušť pro pořízení fotografie, aniž bychom byli nuceni se dotknout telefonu. Počítače 
jsou velmi schopné těchto snadných detekcí, pokud vidí celé tváře nebo ruku, co ale 
v případě kdy ruce a prsty nejsou snadno viditelné? To je problém, pro který není snadné 
řešení. 

Analýza gest rukou poskytuje další způsob pochopení lidského chování ve video 
sekvencích pro zrakově postižené, nebo způsob překladu znakové řeči na text. Dalšími 
příklady využití analýzy gest mohou být systémy ovládané pomocí gest v automobilovém 
průmyslu, nebo analýza neverbální komunikace mezi zločinci zachycenými na 
bezpečnostní kamery. 

V této práci jsou představeny možné způsoby detekce rukou a samotných gest, 
které jsou následně popsány a porovnány včetně jejich kladů a záporů. 

Hlavní zaměření práce je na tvorbu multiplatformní aplikace určené pro detekci 
rukou a rozpoznání gest. Základem této aplikace je programovací jazyk Python 
s knihovnami pro počítačové vidění. 

Validace výsledků aplikace je provedena pomocí video sekvencí s rozdílnou 
obtížností viditelnosti rukou pořízenými za účelem testování aplikace a s využitím 
náhodných videí nalezených na internetu pro zjištění úspěšnosti detekce. 
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Introduction 
For quite some time, the field of computer vision is rising in popularity. And there 
is no surprise, that computers and phones we use every day are powerful enough to 
analyze images and video sequences in real time. For example, our mobile phones 
are in most cases capable of recognizing our faces in photos and sometimes they 
can even understand some basic hand gestures for taking a picture without us even 
touching the phone. Computers are quite capable of these easy recognitions when 
they can see the whole face or hand, but what about cases when hands and fingers 
are not visible that well? This is quite an issue that is not that easy to handle. 

Analysis of hand gestures is useful for providing another way of understanding 
what humans are doing in videos for visually impaired or blind people or translation 
of sign language to text. Another example could be gesture based controls of some 
systems in automotive industry, to analyze non-verbal communication of criminals 
caught on cameras etc.  

This thesis will introduce multiple ways how hand gestures can be detected 
and the qualities and flaws of each approaches.  

The main part of this thesis is focused on creating a hand gesture detection 
application and its functionality. The application is platform independent and 
written in Python with libraries for computer vision. 

The evaluation of this application is done using video sequences with varying 
difficulty of visible hands captured specifically for testing this application and 
random videos found on the internet to see with how high success rates the 
application manages to do its job. 
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1 Hand and gesture recognition 
To begin with gesture recognition, the hand must be detected first. There are a few 
approaches to finding the hand. These approaches differ from easier ones that are 
more susceptible to mistake and are not very robust, to the use of algorithms that 
are hard to confuse. Using these kinds of algorithms have a price: they may need 
significantly more processing power.   

1.1 Contour analysis 

The easiest method is analyzing a grayscale image (Figure 1.1 a)), as there is only 
one condition needed to use in order to get thresholded image (Figure 1.1 b)), if 
the pixel is part of a hand or if it is not. From a thresholded image, it is easy to 
get the contour of a hand and convex hull around the hand (Figure 1.1 c)). Then 
by the number of convex defects in the convex hull (Figure 1.1 d)) and the distances 
of these defects from each other, figure out what fingers are extended, and which 
are collapsed. [1]  

 

  

  
Figure 1.1 Contour analysis a) Detected hand b) Thresholded contour c) Detected 

edge and convex hull d) Detected convex hull defects [1]  
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One of the issues with this approach is the fact, that the hand must be easily 
separable from the background. This can be done either by thresholding, or other 
more complex approaches, such as separation by skin color, background subtraction 
etc. This also means that the algorithm can become easily confused when it comes 
to unusual background patterns or just a sharp change in lighting, causing a rapid 
change in skin color. 

The biggest issue of this method is that it is incapable of recognizing gestures 
if the palm is not facing the camera directly, it also easily fails to identify collapsed 
fingers when the hand rotates. Because of these issues, this method is not suitable 
for detection of more complex gestures or during worse visibility of the hand. 

1.2 Curve fitting 

Curve fitting, also known as snakes, is one of the less usable methods for hand 
detection, as it is more suitable for hand tracking. This approach needs some initial 
guess or cooperation from the person using this method [2]. The initial guess could 
be made by the person matching the curve on screen with his hand presented in 
Figure 1.2. After a certain threshold of similarity is passed, tracking can start, and 
the curve is adjusted from the previous frame to match the outline of the hand. As 
it needs an initial guess, this method is not a very good choice for detection in video 
sequences, that are not prepared for detection using this approach. 

 
Figure 1.2 Curve fitting [2] 

1.3 Model fitting 

Another approach to gesture recognition is creating a virtual model of a hand, 
composed from “bones” and “joints” like in a real hand. At first, it uses contour 
analysis or depth image analysis if it is available in the source to detect fingertips, 
followed by connecting detected fingertips to the model, so the model joints can 
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bend and recreate the gesture in a virtual environment [3]. An image of a virtual 
model is in Figure 1.3. 

 
Figure 1.3 Skeleton of the hand model [3] 

The problem here is again, that from certain angles, the model may not be 
properly connected to fingertips, which will cause unpredictable behavior, like 
guessing an incorrect gesture or losing focus on the hand itself [4]. On the other 
hand, systems like this could be easily modified to recognize more gestures by 
simply adding another configuration of the hand model with a description of how 
the fingers are bent. 

1.3.1 Multiple angle model fitting 
To make model fitting more accurate, more cameras can be used to capture hand 
movements from different angles, so the fingertips are always visible and can be 
connected to the model’s end points at any moment. 

This extension of model fitting is not usable for common video sequences, as 
they are not shot from different angles at the same time. This means that even 
though multiple angle model fitting can be more accurate, it is more useful in real 
time translation of sign language, where the person stands or sits in front of couple 
of cameras. 
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1.4 Depth based hand detection 

Another way of detecting hands, not from existing video sequences but rather in 
real time is based around capturing not only color but also depth. This can be done 
using special capturing devices like Microsoft Kinect its capture of scene depth in 
the image of a human’s arm is in Figure 1.4. From this image it is obvious that the 
depth levels have lower resolution than color, which means that objects like a hand 
will mostly be on one or two neighboring distance layers, making hand detection 
significantly easier than from a color image. 

 
Figure 1.4 Microsoft Kinects depth capture [5] 

The approach using depth to detect a hand has its positives, it does not care 
about background or lighting [5]. Its downside is if there is another object at the 
same distance as the hand in the depth map; the hand and object could blend 
together, though it is not that difficult to split it again by combining depth and 
color layers. This way the hand can be separated by selecting only the skin colored 
part of the depth layer on which the hand is located. 

As is obvious from the fact that it needs data captured with a depth sensor, 
this approach is unusable when it comes to hand detection from normal images and 
video sequences. 
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1.5 Deep learning 

In the last couple of years, the field of machine learning started to gain in 
popularity, as the main limitation in the past, the processing power, is more 
accessible than ever before. Considering the advancements in general purpose 
computing using graphics processors, the times needed to train artificial neural 
networks on a regular computer at home are comparable to times that were needed 
just a few years back on a supercomputer.  

The deep learning itself is a subset of machine learning, that today makes use 
mostly of deep neural networks (these networks contain more than two layers of 
non-linear processing between input and output layers) to learn from huge amounts 
of data to solve problems without being explicitly programmed to do that. Typical 
representation of a deep learning neural network is in Figure 1.5. There are also 
other algorithms like recurrent neural networks, deep belief networks or deep 
Boltzmann machines that are part of deep learning, but they are not as widely used 
as deep learning neural networks. [6] 

 
Figure 1.5 General deep learning neural network [7] 

1.5.1 Convolutional neural networks 
When it comes to image processing using deep learning, the most frequently used 
variant of a neural network is a convolutional neural network. This kind of network 
contains a couple of convolutional layers. The filters of these layers are acquired 
during the training process of the network and with appropriate training data. After 
the convolutional layers usually comes the pooling layer to reduce the amount of 
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data for the next layer. The next layer is usually a single flattening layer followed 
by classic fully connected layers [8]. Architecture of the convolutional neural 
network is in Figure 1.6.  

 
Figure 1.6 Architecture of convolutional neural network [9] 

The reason for using convolutional neural networks for hand detection is 
simple: with correct training data, the network can learn itself what to look for, 
what is important and what is not. Of course, this is not based only on the training 
data, but on the model of the neural network. This means that every neural network 
is built differently, from a different number of layers and neurons in each layer.  

Almost every convolutional neural network that works with images takes an 
input image in RGB color space. This is because after experimentations with other 
color spaces like HSV, LUV and other ones used in computer vision applications, 
the network which trained on images in RGB color space provided higher accuracy 
of predictions than the same network trained on images in different color space [10]. 

Convolutional neural networks could also be divided into two different groups, 
depending on the type of input and output. If the input image is a single object in 
the center of the image and the neural network is supposed to predict what kind of 
object it is, this category is called classifiers. On the other hand, if the image 
contains many different objects all over the place, and the neural networks output 
is supposed to be a prediction of bounding boxes and what kind of object is in each 
bounding box, these neural networks are called detectors. 



8 

 

2 Realization 
The whole result of this thesis can be divided into parts. First, there is a need to 
detect a hand in the image before it can be recognized as a gesture. So, the second 
part is obviously rule based gesture classification, which should also be easily 
expandable. In the end the working application should be wrapped in multiplatform 
easy to use graphical user interface with easy gesture addition, an image and video 
viewer with detected gesture highlighting and logging of detected gestures into 
a file. 

2.1 Hand detection 

When it comes to detecting hands in various positions and different environments, 
it is quite difficult to assess some rules to detect hands accurately.  For example, 
fist looks very different from open palm. For this very reason the approach of deep 
learning was selected. This process consists of creating or finding and adjusting 
existing datasets for this very purpose. With the prepared dataset the next step is 
creating a neural network from scratch or using an already existing and tested 
architecture and retraining it for the purpose of hand detection. 

2.1.1 Oxford hands dataset 
Before training a neural network, there must exist some data to train the network 
on. The first choice for a dataset was oxford hands dataset [11], as its already 
annotated. Its diverse images of hands in very different situations, poses etc. seemed 
like a great way to train a neural network that would generalize well and provide 
good results. This was not the case, even after training on this dataset for several 
days, the results were not good. This could have been because of the lower 
resolution of the images; a few of those images from the dataset are in Figure 2.1. 

   
Figure 2.1 Images included in Oxford hands dataset [11] 
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2.1.2 EgoHands dataset 
For the purpose of this thesis the EgoHands dataset [12] was chosen, due to its 
high-resolution images with already existing annotations and wide range of hand 
poses in a few different locations. This dataset contains 4400 training and 400 
validation images as shown in Figure 2.2. Each picture includes at least one hand 
and maximally 4 hands, and these hands are not always clearly visible, as they can 
be obstructed from the camera by other hands or objects in the scene. 

  
Figure 2.2 Images included in EgoHands dataset [12] 

The annotations included in the dataset also had to be modified, as the original 
annotations were differentiating between left and right hand and even from which 
point of view is the hand captured. Annotations were also in different format than 
was needed for training the selected neural network. Conversion and annotation 
modification were done using simple python script. Modified annotations are shown 
in Figure 2.3 as yellow rectangles around hands. 

  
Figure 2.3 Modified annotations in EgoHands dataset [12] 

2.1.3 New Zealand Sign Language Dictionary 
The Ego Hands dataset is not completely universal, as it misses some hand gestures. 
Due to this reason the dataset was expanded with images from New Zealand Sign 
Language dictionary [13]. As the name suggests, this dictionary contains video 
sequences of humans presenting different signs of sign language. As there are a lot 
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of videos in the dictionary, only 10 videos were used for dataset expansion. From 
these videos, a total of 515 frames were taken for training and 231 frames for 
validation. The videos provide quite a big range of different gestures. This diversity 
helps in recognition of hand poses that are not present in the EgoHands dataset. 
Unlike images from EgoHands dataset, these images have a very similar 
background, which means it is not a very good idea to train the neural network 
with images only from this dictionary. Some of the hand gestures contained in 
videos from New Zealand Sign Language dictionary are presented in Figure 2.4.  

   
Figure 2.4 Images from videos in New Zealand Sign Language dictionary [13] 

Unlike for images from EgoHands dataset, for frames from videos in this 
dataset the annotations did not exist. Because of that these had to be created from 
scratch. Few images with displayed bounding boxes are in Figure 2.5. 

   
Figure 2.5 Annotated images from New Zealand Sign Language dictionary [13] 

2.1.4 MPII Human pose estimation dataset 
To make the training dataset even more robust, small part of the MPII Human 
pose estimation dataset [14], was used. Because the dataset is not focused on hands, 
they are not visible on many pictures from this dataset. For training 483 images 
were selected and 215 images for validation. On the used images, people are doing 
many different activities in a wide range of environments, from playing musical 
instruments or cooking in the kitchen to working with power tools. Some of the 
images even have people wearing gloves to farther improve chances of hand 
detection in difficult conditions as the detector cannot rely on skin color. Example 
of images from this dataset are in Figure 2.6. 
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Figure 2.6 Images contained in the MPII Human Pose dataset [14] 

Just like with images from the New Zealand Sign Language dictionary, the 
images from the MPII Human Pose dataset do not have annotations of hands 
needed for training neural networks and these annotations had to be created. 
Images from this dataset with showed bounding boxes are in Figure 2.7. 

  
Figure 2.7 Images from MPII Human Pose dataset with annotations [14] 

2.1.5 Neural network – YOLOv2 
Instead of creating and testing new architectures of neural networks the 
architecture YOLOv2 [15] (You Only Look Once v2) was selected. This means, that 
instead of testing if the neural networks architecture is designed correctly for 
predicting bounding boxes, it just needed to be adjusted to only look for one class 
and then be retrained for detection using a previously selected dataset. 

YOLOv2 is a fully convolutional neural network created out of 23 convolutional 
layers, 5 pooling layers, 2 routing layers, a reorganization layer and with a single 
detection layer. The relatively low depth of the network makes it work very well in 
real time processing. 

The function of convolutional layers is obvious from their name. Pooling layers 
on the other hand might not be that obvious. These layers reduce the spatial 
dimensions of their input but keep their depth. Usually this reduction is done by 
a factor of 2. There are two different versions of pooling layers, YOLOv2 uses max 
pooling, which means that the input is divided into small squares, where dimensions 
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of the square are the factor of the pooling layer. For YOLOv2, the input is divided 
into grids of 2 by 2 values and on the output of the layer is only the highest value 
from this grid. The other variant of this layer uses average pooling which, as its 
name suggests, the output produces an average value for each of the input grids. 

Reorganization layers have a similar function to pooling layers, as these layers 
also change the dimensions of their input, but unlike pooling layers, they also 
change the depth and keep all the input values. As the name of the layers hint, the 
input is reorganized in a way that a single channel on the input will become more 
channels on the output depending on the settings of the layer. The reorganization 
layer in YOLOv2 uses a stride of 2, which means that the spatial dimensions in 
both directions would be halved and depth would grow four times. 

Because the neural network uses routing layers, it means that the network 
actually does not run all of the layers sequentially, but rather works up to the 
routing layer sequentially and then takes the output of the layer to which the 
routing layer points to instead of taking output of the layer that preceeds it. 
Another option is if the routing layer points to multiple different layers, in that 
case all the outputs of layers pointed to are concatenated. The function of routing 
layers is clearly displayed in graphical representation of YOLOv2 with purple 
arrows in Figure 2.8. In this figure the horizontal numbers bellow layers signify how 
many convolutional filters are present in that layer, and angled numbers signify the 
spatial dimensions of all the layers since the last pooling or reorganization layer. 
Input dimensions for each convolutional layer are the dimensions of the previous 
layer times the amount of filters in that layer. 

 
Figure 2.8 YOLOv2 network architecture 
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2.1.6 Modifying the YOLOv2 neural network 
The actual network architecture is defined in the configuration file and the weights 
file. The original network’s configuration file and its pretrained weights can be 
downloaded from the website [16]. The configuration file had to be slightly adjusted 
to look for only one class, which meant changing the number of classes in the 
detection layer and changing the filter count in the preceding convolutional layer 
to the appropriate amount for the number of classes in detection layers. These 
changes in the last two layers in the configuration file are in bold in Listing 2.1. 

Listing 2.1 Modifications of YOLOv2 neural network’s configuration 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 

 
243 
244 
245 
246 
247 
248 

[convolutional] 
size=1 
stride=1 
pad=1 
filters=30 
activation=linear 
 
[region] 
anchors=1.3221,1.73145, 3.19275,4.00944, 5.05587,8.09892, 9.47112,4.84053, 
11.2364,10.0071 
bias_match=1 
classes=1 
coords=4 
num=5 
softmax=1 
jitter=.3 
rescore=1 

 

The filter count in the last convolutional layer before the detection layer is 
calculated from the count of 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 that the neural network is supposed to be 
detecting by the equation [17]: 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +  1)  ∙  𝑛𝑛𝑛𝑛𝑛𝑛  (2.1) 

Where 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 represent the four attributes of bounding boxes (x, y, width and 
height), constant 1 is for confidence with which the object is detected and 𝑛𝑛𝑛𝑛𝑛𝑛 
stands for the number of anchor pairs in the region layer. 

Anchor pairs represent initial sizes of bounding boxes in the detection layer, 
which is for YOLOv2 13x13 pixels, before the closest one to the detected object is 
resized. Anchors can be calculated from training data using K-Means clustering, 
but for detection of hands it is not necessary as hands can be in pretty much in 
any shape, just like all the different objects in the default networks configuration.   
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2.1.7 Training neural network 
With the configuration file modified for the need of hand detection, the only thing 
remaining is training the network itself. For this purpose, the interpreter for YOLO 
based neural networks for deep learning framework  PyTorch [18] was used [19]. As 
it is just an interpreter for training and detecting there was no need to change the 
code, because the changes to the neural networks were in their configuration files. 

The neural network was trained for 150 epochs, where one epoch means a single 
pass through all the training data. The training was stopped after 150 epochs passed 
as the training loss and validation did not change much since epoch 100. Used 
weights were from training epoch 100 to prevent the issue of overfitting, that is a 
state of a neural network in which the network learned exact details of images and 
did not generalize very well or at all, even though the predictions are great on the 
training set, predictions on never before seen data are poor.  

Training loss can be calculated in many ways. In the case of YOLOv2, it is 
divided into three components. The first is coordination loss, which represents how 
wrong the network was in detecting the location of the object in the image from 
the ground truth. The second component is confidence loss, which represents how 
much the neural network is sure about the detection. The last of the three errors, 
error in object classification, is calculated as binary cross entropy. As the modified 
network detects only a single object, this error is equal to zero. The final training 
loss is calculated as the sum of previously mentioned errors. Training loss of the 
neural network after each training epoch is in Figure 2.9. 

 
Figure 2.9 Training loss after each epoch 
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After a set number of epochs, the validation process was started. For the 
purpose of higher precision of displaying these data, the validation process was run 
after every epoch. This process consists of comparing ground truth bounding boxes 
and bounding boxes predicted by the network on images not used for training the 
network. The decision if the network predicted correctly is done using intersection 
over union (𝐼𝐼𝐼𝐼𝐼𝐼) between prediction and ground truth calculated by equation (2.2). 
If the ratio of intersection over union is higher than the set threshold, in this case 
0.5, then the network’s predictions are accepted as correct. 

𝐼𝐼𝐼𝐼𝐼𝐼 =  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎 𝑜𝑜𝑜𝑜 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈

  (2.2) 

Figure 2.10 visually presents the area of union and area of overlap with red 
overlay in an image of detected hand (blue rectangle) and ground truth (green 
rectangle) for the same hand. 

  
Figure 2.10 Area of Overlap and Area of Union 

During validation, three values defining the accuracy of the network are 
calculated, two of these values are 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 [20], [21]. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is 
defined as:  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

  (2.3) 

Where 𝑇𝑇𝑇𝑇 means True Positive and corresponds to the amount of correct 
detections and 𝐹𝐹𝐹𝐹 stands for False Positive and matches the amount of incorrect 
predictions. If the neural network did not make incorrect predictions, the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 
of the network would be 1.   

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is defined similarly to precision but instead of incorrect predictions, the 
number of undetected objects from the ground truth image is used in the equation: 
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

  (2.4) 

Where 𝐹𝐹𝐹𝐹 stands for False Negative and represents the mentioned undetected 
number of hands in an image. If 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 equals 1, the neural network detected all 
the objects in the validation dataset. To better understand what 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 mean, Figure 2.11 explains it very well. 

 
Figure 2.11 Graphical meaning of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 [22] 

The last of the three values describing the result of validation is F-score, it is 
used to measure validation accuracy as a whole and it is calculated as harmonic 
mean of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 [23]:  

F-score = 2 ∙ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

  (2.5) 

From Figure 2.12 is clearly visible that training produced the biggest changes 
in precision in the first epochs. That is because at the beginning of training, the 
network’s weights were trained for detecting multiple different objects and the 
changes had to be big to start detecting hands, this is done by used settings in the 
configuration file for training. At first, the network needs to learn more aggressively. 
A typical starting value of learning rate is 0.001 to quickly learn basic features of 
hands. After some time, in this case 40 000 steps, which equals to 66 epochs with 
training batch size of 8, the learning rate was lowered to 0.0001 to prevent too big 
of a jump in weights values and start learning finer features of hands. The learning 
rate was lowered again after epoch 95 to further decrease the difference between 
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weights and slow down learning, which was not necessary as the validation results 
stayed pretty much the same since epoch 90. 

 
Figure 2.12 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and F-score after each training epoch 

2.2 Finger detection 

For finger detection a pretrained neural network trained for detection of hand key 
points was used. This neural network is part of the project OpenPose [24]. 
OpenPose uses a neural network architecture called convolutional pose machines 
[25] to detect key points of specific parts of the human body. Out of the four 
networks, used convolutional pose machine is focused on hand key points detection 
[26]. This network takes as an input a single image, in which is supposed to be 
a single hand. From this image the network on the output generates 22 heatmaps. 
An example image from which these heatmaps are generated and heatmaps for each 
key point of index finger are in Figure 2.13. 

     
Figure 2.13 Heatmaps generated for index finger 
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Each of the first 21 heatmaps represent an approximate position of a single key 
point in the image and the last heatmap represents the background. From these 
heatmaps can be easily found the location of maximum, which represents the 
location of the found key point. After all the key points from all heatmaps are 
found, the gesture recognition process can be started. The detected key points are 
numbered and connected to create hand skeleton and all the heatmaps combined 
into one can be seen in Figure 2.14. 

  
Figure 2.14 Hand key points and combined heatmap generated by CNN 

One of the biggest downsides of OpenPose is the fact that it is trained to only 
detect key points of right hands. That means that the results of detection for the 
left hand are much worse than when using detection for the right hand. This issue 
can be avoided by flipping the image horizontally to effectively run the model over 
the right hand, followed up by flipping the detected key points around again to fit 
the left hand [26].  

2.2.1 Left hand detection 
As mentioned, the hand key point detector was not trained to detect key points of 
left hands [26]. If the hand is right or left, there is no issue in running the detection 
once with the only difference being the flipped input and, in the end, flipping the 
key points back. But if the hand could be either left or right, it is a different story. 
To battle this issue without doubling up the time needed for key point detection 
by running the detection again over the horizontally flipped input image if the 
results are not as expected, the flipped image is being concatenated to the original 
input image as is in Figure 2.15 and the detection is being run over this modified 
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input. This way the time needed for detection stays approximately the same as the 
network runs only once. 

 
Figure 2.15 Normal and modified input for hand key point detection 

While running the detection over input that contains two hands, more post 
processing is needed to correctly identify if the hand is left or right and to get the 
correct key points out of the detection output. For this is used the fact that the 
network generates heatmaps, instead of just coordinates, that helps in the fact that 
there are peaks in the heatmaps for finger detected in the original and in the flipped 
half of the network’s input image. All the heatmaps of this modified input combined 
are in Figure 2.16. From the heatmap it is visible that in the right half of the image 
with flipped left hand, the values are generally higher and more pronounced. The 
reason for that is that the network is not as sure about the detection for a left hand. 
For the same reason, the detection for a right hand produces better results. It all 
comes down to the fact that the network was trained only over right hands. 

 
Figure 2.16 Combined heatmaps generated by CNN out of modified input 
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The fact that the values are generally higher in one half of the output 
heatmaps, it can then be used to deduce if the higher values are in the original half 
of the image or the flipped one. If there are more higher values in the original half, 
the hand is considered as right and similarly, if more of the higher values are in the 
flipped side of the heatmap, the hand is considered as left. This approach is also 
beneficial because it can help later in gesture recognition with limiting gestures only 
to one hand. 

2.2.2 Model conversion 
The hand detector uses the interpreter of the Darknet framework written on top of 
PyTorch, on the other hand the hand key point detector uses Caffe as it’s backend 
framework. As PyTorch provides easy installation using python’s package installer 
pip, while supporting all versions of python and CUDA, Caffe needs to be compiled 
before usage. Due to this, the hand key point detector was converted to use 
PyTorch. For the conversion, the utility MMdnn developed by Microsoft, was used 
for converting the model between different deep learning frameworks [27]. 

2.3 Gesture recognition 

From the detected key points, it is possible to get all the information needed for 
classifying gestures. As the key points are in a list of vertical and horizontal 
coordinates the distances between key points can be used to determine the pose of 
each finger and the angle of the line given by these points and the horizontal axis 
indicates the direction the hand or finger is pointed to.  

Distance 𝑑𝑑 between the key points 𝑝𝑝 and 𝑞𝑞 can be calculated as a Euclidean 
distance for 2-dimensional space: 

𝑑𝑑(𝑝𝑝, 𝑞𝑞)  =  �(𝑝𝑝1 − 𝑞𝑞1)2 + (𝑝𝑝2 − 𝑞𝑞2)2  (2.6) 

Where 𝑝𝑝1 and 𝑞𝑞1 are horizontal coordinates of both key points and 𝑝𝑝2 and 𝑞𝑞2 
represent vertical coordinates. In implementation, for most of the distance 
comparisons, one of the compared distances is weighted by a constant 𝐶𝐶, to account 
for different lengths of finger sections. Except of distances, the angle the thumb or 
the hand is in relative to the horizontal axis is also used. All the poses the finger 
can be in or the direction the hand can point in, can then be written into gesture 
definition file. 

All the states of fingers, that are analyzed have two options over those needed 
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for complete gesture description. State none allows the finger not to be detected 
while still being able to correctly classify the gesture. State any then completely 
skips the category during the matching of detected hand pose to one of the 
predefined gestures. That means the gesture does not need the finger detected, or 
in any specific state. 

If the hand pose does not match any of the predefined gestures, the output of 
pose to gesture matching returns unknown, instead of the gesture name. On the 
other hand, if the hand pose fit more than one gesture, the one that comes 
alphabetically first is returned. 

2.3.1 Finger bends  
The first thing needed for gesture classification is the state of bend for each finger. 
For all fingers except for thumb, which does not have a state of full bend, the bend 
state is defined in the gesture definition file by one of three states:  

• straight 
• partly_bent 
• fully_bent 

As is obvious, straight state means that the distance between the base and the 
tip of the finger is approximately the same as the sum of distances between all the 
four key points defining a finger. For the thumb, a partial bend is selected if it does 
not pass as straight. The condition that needs to be met for a finger to be considered 
straight is defined by equation (2.7) below. The distances that need to be of similar 
value for passing as straight are shown as blue lines in Figure 2.17 a): 

𝐶𝐶 ∙�𝑑𝑑(𝑘𝑘𝑖𝑖,𝑘𝑘𝑖𝑖+1) ~ 𝑑𝑑(𝑘𝑘𝑛𝑛, 𝑘𝑘𝑛𝑛+3)
𝑛𝑛+2

𝑖𝑖=𝑛𝑛

 (2.7) 

Where 𝑛𝑛 is the index of a key point at the base of a finger and can have a 
value of 5, 9, 13 or 17 and 𝑘𝑘𝑖𝑖 is a key point with an index 𝑖𝑖. This is not possible to 
use for the thumb as it has only two sections in a finger. Due to this the equation 
needed to be modified: 

𝐶𝐶 ∙�𝑑𝑑(𝑘𝑘𝑖𝑖,𝑘𝑘𝑖𝑖+1) ~ 𝑑𝑑(𝑘𝑘2,𝑘𝑘4)
3

𝑖𝑖=2

 (2.8) 
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Because the thumb is calculated only once and key points do not change 
indexes, the equation uses fixed index numbering for the distance between the base 
and the tip of the thumb. 

If the finger does not pass the condition for being in the straight state, the type 
of bend is chosen with another distance comparison. Full bend uses a comparison 
of distances between the base and the tip of a finger and the length of the middle 
out of the three links defining a finger. If the base to the tip distance is smaller 
than the length of the middle link, the bend state is considered as fully bent, 
otherwise the partial bent state is selected. This can be described with inequation 
(2.9). Compared distances for a partial bent are shown with blue lines in Figure 
2.17 b) and for full bent in Figure 2.17 c). 

𝐶𝐶 ∙ 𝑑𝑑(𝑘𝑘𝑛𝑛,𝑘𝑘𝑛𝑛+3) < 𝑑𝑑(𝑘𝑘𝑛𝑛+1,𝑘𝑘𝑛𝑛+2)  (2.9) 

 
Figure 2.17 Finger bend states a) straight b) partly bent c) fully bent 

2.3.2 Finger spread 
Another important parameter needed for gesture recognition signifies how far the 
fingertips are spread from each other. This parameter is just like finger bend state 
calculated using the distance between two points and is always defined for two 
neighboring fingers. In the gesture definition file, the spread of fingers is defined 
with one out of two possible states: 

• far 
• close 
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The state is decided from comparing distances between bases and the tips of 
fingers, except for the gap between the little finger and the ring finger, as the tip 
of the little finger is approximately one section of a finger lower than the tip of ring 
finger. Due to this, for calculating the distance between these fingers, the bottom 
part of the last link of the ring finger is used, instead of its tip. The state is then 
decided depending on the result of inequation: 

𝐶𝐶 ∙ 𝑑𝑑(𝑘𝑘𝑛𝑛,𝑘𝑘𝑛𝑛+4) < 𝑑𝑑(𝑘𝑘𝑛𝑛+3,𝑘𝑘𝑛𝑛+7)  (2.10) 

 Where 𝑘𝑘𝑛𝑛 stands for the key point at the base of the index, middle or ring 
finger. In the case where the distance between the fingertips is bigger than the 
distance between their bases, as is visible in Figure 2.18 a), the far state is selected. 
If the tips of neighboring fingers are nearly the same or a shorter distance from 
each other than bases as can be seen in Figure 2.18 b), the close state is selected.  

 
Figure 2.18 Finger spread states a) far b) close  

2.3.3 Thumb position 
Next on the list of finger poses is the position of the thumb. The thumb in general 
can be in three different poses against the palm, these poses are in gesture definition 
named as: 

• over 
• close 
• far 

At first, the option if the thumb is placed over the palm is tested with 
comparison of two distances. The distances between the tip of the thumb and bases 
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of the middle finger and the index are compared. In the case where the distance to 
the base of the middle finger is smaller than to the base of index finger, the thumb 
is considered as over the palm, as can be seen in Figure 2.19 a) or defined by 
inequation: 

𝐶𝐶 ∙ 𝑑𝑑(𝑘𝑘4,𝑘𝑘5) < 𝑑𝑑(𝑘𝑘4,𝑘𝑘9)  (2.11) 

If the thumb does not fit the rules to be over the palm, the decision about its 
closeness to the palm is made. For this decision are needed the distances between 
the base of the index finger and key points at the tip of the thumb and in the 
middle of the thumb. Unless the distance to the tip of the thumb is approximately 
the same or shorter than to the middle of the thumb the position of the thumb is 
close to the palm as in Figure 2.19 b), otherwise if it is like in Figure 2.19 c) the 
thumb position is considered as far from the palm. 

 
Figure 2.19 Thumb position states a) over b) close c) far  

2.3.4 Thumb tip position 
Some hand gestures depend on the distance between the tip of the thumb and tip 
of other fingers. It may be very important to determine whether the fingertips are 
very close to each other and even touching. In the gesture definition this state is 
defined by an array of all the fingers the thumb is touching or with options for 
detection: 

• index 
• middle 
• ring 
• little 



25 

 

Just like with previous poses, the decision is based on the comparison of 
distances; in this case three, instead of two, for a higher chance of correct pose 
estimation. One of the distances lays between the tips of the thumb and the finger 
that the thumb might be touching. If this distance is shorter than the length of the 
last link of the thumb, as is described by equation (2.9) or in Figure 2.20 a), the 
fingers are considered close enough and the finger name is added into an array of 
all other fingers the thumb is close to. Otherwise the situation might resemble the 
pose the hand is in Figure 2.20 b). 

𝑑𝑑(𝑘𝑘4,𝑘𝑘𝑛𝑛+3) < 𝑑𝑑(𝑘𝑘3,𝑘𝑘4)  (2.12) 

Where 𝑘𝑘 stands for key point with specific index. Key points are in absolute 
states, because the same index always represent the same key point. Key point 𝑘𝑘𝑛𝑛 
stands for the base of the finger the thumb might be touching. 

 
Figure 2.20 Thumb tip position a) index finger b) none  

2.3.5 Thumb direction 
In some cases, the gesture may also need the direction of the thumb, be it pointing 
downwards, upwards, left or right. Just like all other states of fingers, this is defined 
in the gesture definition file with states: 

• up 
• down 
• left 
• right 

Unlike with previous finger states, the direction of the thumb is calculated as 
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an angle between the line defined by two points and positive direction of horizontal 
axis. From the coordinates of the two points, the following can be calculated: the 
sides of a right triangle. These sides can then be used to calculate the angle with 
the trigonometry function arc tangent.  This function returns value in range from 
−𝜋𝜋

2
 to 𝜋𝜋

2
, which is not enough to determine direction. Because of this, the conditional 

function for arc tangent called 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 which takes in consideration the sign of 
both input arguments and its output range is from −π to π in radians or from −180 
to 180 degrees after conversion, which covers all the directions possible in 
2-dimensional space, is used: 

arctan2(y, x)  =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ tan−1 �𝑦𝑦

𝑥𝑥
� , if 𝑥𝑥 > 0

tan−1 �𝑦𝑦
𝑥𝑥
�+ 𝜋𝜋, if 𝑥𝑥 < 0 and 𝑦𝑦 ≥ 0

tan−1 �𝑦𝑦
𝑥𝑥
� − 𝜋𝜋, if 𝑥𝑥 < 0 and 𝑦𝑦 < 0

+ 𝜋𝜋
2

, if 𝑥𝑥 = 0 and 𝑦𝑦 > 0

−𝜋𝜋
2

, if 𝑥𝑥 = 0 and 𝑦𝑦 < 0
undefined, if 𝑥𝑥 = 0 and 𝑦𝑦 = 0

  (2.13) 

Where output of the 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 function is the calculated angle, and arguments 
𝑥𝑥 and 𝑦𝑦 are points defining the hypotenuse of the right triangle. For the calculation, 
points at the tip of the thumb and point at the base of the thumb are used. From 
the angle, it is then easy to decide which direction the thumb is pointing to. 
Graphical representation of the arctan2 function is in Figure 2.21. 

 
Figure 2.21 The output of function arctan2 [28] 

The thumb can be directed up as is in Figure 2.22 a) which happens if the 

arctan2(y, x) 

y/x 
 



27 

 

calculated angle is within the range of 45 to 135 degrees. Similarly, if the thumb is 
pointing to the right, which can be seen in Figure 2.22 b), the range the angle must 
fit into is from −45 to 45 degrees. In the case where the thumb is facing downwards, 
which is shown in Figure 2.22 c), the needed range of degrees is from −45 to −135. 
If the thumb is pointing to the left like in Figure 2.22 d), the range is the remainder 
to fulfill the whole 360 degrees from −135 to −180 and from 135 to 180 degrees. 

 
Figure 2.22 Thumb directions a) up b) right c) down d) left 

2.3.6 Hand orientation 
The last of the parameters defining hand pose focuses on the direction the hand is 
pointing to. It is calculated very similarly to the thumb direction and uses the same 
group of five states for the definition of gesture:   

• up 
• down 
• left 
• right 

To determine the direction the hand is pointing to, the angle between the base 
of the hand and averaged coordinates of the bases of fingers is needed. The angle 
is then calculated the same way as with thumb direction using equation (2.13). 
Similarly, the direction is then determined by the same rules as the direction of the 
thumb. Figure 2.23 represents all the recognized hand directions. 

 
Figure 2.23 Hand directions a) up b) right c) down d) left 
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2.3.7 Gesture definition format 
Each gesture is defined by a single JSON file in the gestures folder. These files 
contain a readable and easily modifiable structure with the name of the gesture and 
the definition of poses the finger can be in for the one gesture. The general structure 
of the gesture definition file is in Listing 2.2 with all the main level categories. 

Listing 2.2 Gesture definition format – main categories 
 { 

    "name": "…", 
    “hand”: [ 
        … 
    ] 
    "finger_bends": { 
        … 
    }, 
    "finger_spreads": { 
        … 
    }, 
    "thumb_position": [ 
        … 
    ], 
    “thumb-tip”: [ 
        … 
    ], 
    “thumb-direction”: [ 
        … 
    ], 
    “hand-direction”: [ 
        … 
    ] 
} 

 

Except for the gesture name, all the possible states are always in the square 
brackets, which are in JSON format used to encapsulate array members. The states 
are then string names of enumeration types used in the application code, to make 
readability by the human eye easier. 

Curly brackets are used to represent objects; members of an object are then 
represented by a string name and the corresponding value. In this case the values 
are mostly arrays and other objects. Objects are used for finger bend states where 
the name of the member value is necessary to differentiate between fingers and for 
finger spreads to distinguish for which fingers the spread is in between. The final 
bend state and spread of fingers is again defined as an array of string names. 

To allow the hand or pose of finger to be in any state possible and to skip the 
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category in gesture matching, the keyword “any” can be used to indicate that the 
category does not matter. For example, keyword “any” can be used to identify that 
the gesture can work for both the left and right hand. Two definitions, one using 
a list of string names and the second one with only the keyword “any” but with 
the same outcome are in Listing 2.3. 

Listing 2.3 Gesture definition format – keyword “any” 
“hand”: [ 
    “left”, 
    “right”, 
    “unknown” 
] 

“hand”: [ 
    “any” 
] 

2.4 Graphical user interface 

To ensure ease of use, a graphical user interface for the application was created. 
For this purpose, the open-source cross platform Python library Kivy [29] was used.  
Kivy uses event-based programming, resulting in the application running in super 
loop and just responding to event callbacks from the user interface. The UI can be 
designed either directly from Python, which can become very confusing with bigger 
projects, or by using Kivy proprietary language called KV, in which a tree structure 
of widgets with rule-based properties can be defined. Hello World type of 
application UI using KV language is in Listing 2.4. 

Listing 2.4 Hello world in KV language 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

#:kivy 1.10.1 
 
BoxLayout: 
    orientation: ‘vertical’ 
 
    Label: 
        text: ‘Hello ’ + ‘World!’ 
 
    Button: 
        text: ‘Close’ 
        on_press: exit() 

 

This simple application will be composed of two widgets, label occupying the 
top half and button in the lower half of the window. KV language can also use 
simple python commands and conditions in its properties. This is presented with 
the concatenation of strings in the text property of the label.  Python function calls 
can be also used, like exit() function call in the on_press event callback. 
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2.4.1  Main screen 
The application is designed to use a single screen, which contains a video player 
with a hide-able control panel at the bottom of the screen, which contains the 
typical play/pause button, option to go through the video frame by frame in either 
direction, position slider for easy navigation in the video, current time in the video 
and the length of the input sequence followed up by a quick screenshot button.  At 
the top of the application window is located an action bar containing function 
buttons at the top.  

Each button launches a callback function which results in opening a popup 
overlay with file browser, setting the video source to camera, sliding a panel with 
more options into the screen, button that reloads the source file or enables log 
saving. The base screen of the application is in Figure 2.24. 

  
Figure 2.24 Created application window 

In the design of the application, most of the used icons belong to the open-
source icon pack called Open Iconic [30] with the colors changed to fit the dark 
interface, and some icons were made from scratch, such as the icon for save image 
button because Open Iconic did not contain an icon usable for this function. 
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2.4.2 Settings 
The settings panel contains options for configuring the detection itself. One of the 
options is the usage of NVIDIA CUDA which is by default turned on if the system 
contains a supported GPU. Other options allow the hand detector, finger detector 
or gesture matching to be disabled, which can be done if the GPU does not have 
enough video memory to fit both neural networks into it or the functionality just 
is not needed. To be able to use this application with GPUs with less amount of 
memory, the option to use only half precision floating point models is available. 
This may also produce faster processing on supported GPUs but for the cost of 
possibly lower accuracy. Half precision is also not available for use on CPUs, so the 
option is automatically disabled if the NVIDIA CUDA is not used. 

More cosmetic options include the drawing of hand skeletons, joints or detected 
bounding boxes into the image or the frame of a video sequence. The last two 
options represent the frame rate the detection should try to get if the hardware is 
powerful enough; the base frame rate of video or camera is set when the source is 
selected, and how many frames should be skipped between detections, which is by 
default 0. The settings panel is shown in Figure 2.25. 

 
Figure 2.25 Detection settings available in application 

Except for the settings that change the processing unit and precision of 
calculation, this is because big data transfers of models between GPU and system 
memory or the need to reload weights, all of the settings can be toggled during 
detection and the new setup is used for detection over the next frame. 

2.4.3 Record panel and settings 
Saving the video is designed in a slightly different way than is usual for applications 
working with video sequences. Instead of saving the whole video and waiting for 
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the whole video to be processed, the saving is done using a recorder. The recorder 
can be launched at any moment in the video and can be paused to allow skipping 
of certain parts of the video. The record panel also includes optional toggle to save 
log during the output video saving. Both expanded record panel and record settings 
panel are shown in Figure 2.26. 

 
Figure 2.26 Record panel and record settings 

All the settings are set automatically after opening a video or loading up 
a camera to match the resolution and frame rate of the input. This does not mean 
that the settings cannot be different, as the frame rate and resolution can be 
changed to almost anything and the frames will then be resized and written with 
the frame rate set before the recording is started. 

The advanced record settings contain a single text box, in which can be written 
FourCC (four-character code) defining an encoder that is to be used while 
generating an output video sequence. There are many FourCC sequences [31], but 
it is impossible to say upfront which will work on specific systems. Because this is 
the only place for the user to input an incorrect setting, a warning about possible 
application crash is also included. Most common FourCC codes are MJPG, DIVX, 
H264 but there are many more. By default, FourCC used by the application is 
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MJPG, which stands for the codec Motion JPG and should be available with every 
OpenCV build, but the produced output file is very large compared to more 
advanced codecs like DIVX or H264.  

The approach of using a recorder also allows changes in detection settings 
during the saving process, like disabling hand detector, changing target frame rate 
or just turning off the rendering of hand skeletons. 

2.4.4 Info panel 
Last of the UI elements is panel containing information about the application, 
version of python and versions of used libraries, hyperlinks to project repository 
and university website and contact email. Expanded info panel is in Figure 2.27. 

 
Figure 2.27 Application’s info panel 

2.5 Application development 

The whole application can be divided into four parts. Three of these parts represent 
the whole process from hand detection to the final gesture recognition. The last 
part of the application is the user interface, which is then by callbacks and rule-
based functions connected with the computational part of the application. 
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2.5.1 Models download 
Because of the size of the weights for both neural networks, these are not included 
in the source code repository. There are two options on how to download these. 
Either the weights will be downloaded at first launch of the application, showing 
the progress of the weights download in the terminal window, before the UI loads 
or downloading them manually before launching the main application by running 
the script get_models.py from the repository [32]. The result is the same as the 
application calls the functions from get_models.py on every launch to check if the 
models are present and downloads them if they are not. 

2.5.2 Background logic 
The logic behind the complete gesture detection is divided into three python 
modules. Hand key point detection and gesture matching are in their own modules. 
Hand detection is included in the module with the wrapper class.  

The hand detection neural network contains all the logic in the Darknet 
interpreter python package, and the only preprocessing needed is conversion of color 
format from BGR to RGB. That means the function call for prediction over an 
input image is included in the wrapper class without any postprocessing. 

The situation is different when it comes to the hand key point detector from 
the project OpenPose, because the weights have been converted to PyTorch, the 
whole preprocessing and postprocessing had to be written from scratch. Even if 
that was not the case, because of the decision making in the case of the left or right 
hand, the implementation would be very different anyway. 

Gesture recognition, unlike either of the detections is tied to the hand key 
points detector and subsequently cannot be launched on its own. Gesture matching 
consists of getting the pose out of the key points, which is then followed up by 
gesture matching. The main idea behind the algorithm is to check if the current 
parameter of the pose can be in the defined gesture. If any of the pose parameters 
cannot be in the tested gesture, that gesture is removed from the list and the next 
definition is tested. The best-case scenario would end up in either an empty list or 
a list with a single remaining gesture definition left for an unrecognized gesture and 
a recognized gesture respectively. In the case the list contains more than one gesture 
definition, the one first loaded into memory is used as the resulting gesture.  

The whole detection logic is wrapped in the hand tracker class that provides 
a single function to provide complete detection from a static image or  a single 
frame of a video sequence. The class also contains functions and state variables to 
allow for changing detection settings. 
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These functions are useful for easy binding to the switches in the application’s 
settings, that allow to easily change the output from the prediction function. Some 
of these changes though cannot be done during detection and can only be made 
while the detection is not running. 

2.5.3 Multi-threaded processing 
To make the UI of the application responsive without freezing the UI during tasks 
that need a lot of time for calculation, the processing logic of the neural networks 
was moved to a separate thread. This means that the application’s UI stays 
responsive even during time consuming detection. To keep full control of this 
thread, the control is done using simple semaphores. One that keeps the thread 
running and the second, that allows the processing to start. If the thread is running, 
but processing is stopped, the thread is put to sleep for half a second, before it 
checks if processing is required or not. The main reason for this delay is to make 
the application use less processing power at the time of not doing anything. The 
processing thread is also created only at the time of changing the source for 
detection, and only after the previously running thread stops. This approach makes 
threading relatively easy, because there are always  at most two threads running. 

2.5.4 Logging 
The application includes two logging systems, one runs only during recording and 
the second one runs all the time. Even though logging is always running, the log is 
saved only if the option is selected. 

If the option to save log is used and the source is a video, the log will be saved 
on a change or reload of the source file. This approach ensures that the log contains 
information about every processed frame and is the only option, because of the 
atypical saving system. The log for an image is saved only if the processed image 
is saved and log for a camera feed is not taken at all as there is no video information 
to compare it to after the frames from the camera are processed.  

The situation is different if the recording is running. At the start of the 
recording, a second logging object is created, which records every information about 
every frame saved into the output video file. This also means the logging object 
starts indexing the frames from zero and uses the output framerate to calculate the 
timestamp in the log to match the output video. 

The logs always contain a header, which for images contains the output image 
path and the dimensions of the image. The log then contains a single line for each 
of the hands in the image. These records contain the information about the 
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bounding box in normalized format and string representation of the detected hand 
and gesture. In the case the hand detector is not used, the bounding box location 
is put in the center of the picture with a width and height matching the dimensions 
of the image. If the hand key point detector or gesture matching is not used, the 
word “unknown” is used in the log. If the gesture does not match any of the defined 
gestures, the word “unknown” is used instead of the gesture name. The format of 
the log with header and record is in Listing 2.5 

Listing 2.5 Log header and record format for static images 
<filename>, Shape: <width>x<height> 
<x> <y> <width> <height> <hand> <gesture> 

 

The format of the log header for video sequences compared to the log for 
a single image also includes information about the video framerate. The records of 
the log then also include frame index and calculated timestamp from the frame 
index and the framerate. After these two new values, the format is the same, with 
the bounding box information in normalized format and the string representation 
of the hand and gesture. Format of the log for video sequence with all the 
information is in Listing 2.6. 

Listing 2.6 Log header and record format for video sequences 
<filename>, FPS: <framerate>, Shape: <width>x<height> 
<frame> <time> <x> <y> <width> <height> <hand> <gesture> 

2.6 Application prerequisites 

The created application uses very memory and computationally intensive methods 
of image processing, so the hardware of the system must be appropriate. There are 
prerequisites when it comes to both the hardware and the software of the system. 

2.6.1 Source code repository 
The application’s source code, including full change history and step by step 
installation guide for both Microsoft Windows and Linux based systems, is stored 
completely in a git repository [32].  

2.6.2 Hardware requirements 
When it comes to processing using a CPU, which is possible but not recommended 
because of long processing times, the system should have at least 8 GB of system 
memory, but 16 GB or more is recommended, as the system itself normally uses at 
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least 2 GB on its own, and 6 GB is then easily filled with the weights of both neural 
networks and processed image, and in the worst case scenario the system might 
start moving data into swap. This can then result in a very unresponsive system, 
not just the application behavior. 

If the system contains a supported NVIDIA GPU, the system memory can be 
just 8 GB, but the GPU memory should have at least 6 GB be for smooth 
functionality. With either the hand detector or the hand key point detector disabled 
and with half precision processing enabled, the application can run even on cards 
with 2 GB of video memory. 

There is no requirement on the CPU performance, but for the best 
performance, the model of CPU should not bottleneck the GPU available in the 
system and vice versa. The result of bottlenecking is lower frame rate in the example 
as a result of the CPU not serving the images for processing quickly enough or the 
GPU waiting for the commands from the CPU, so the load of the GPU is nowhere 
near the load it could be with adequate CPU. 

2.6.3 Software requirements – Microsoft Windows 
The application on the operating system Microsoft Windows, only needs installation 
of 64-bit Python version 3.6 with pip package manager installed. Although the 
Python version can be higher, the link to PyTorch package wheel in 
requirements.txt would have to be changed according to PyTorch Get Started 
guide [33]. The python installation should also be added into the system path during 
installation to ensure there would be no issues during package installation process. 
The NVIDIA video driver corresponding to the version of the CUDA toolkit, the 
PyTorch package has been compiled with, installed is also necessary, if the 
accelerated GPU computing is to be used. The minimal video driver version can be 
found in NVIDIA CUDA documentation [34]. The full installation of the NVIDIA 
CUDA Toolkit is not necessary as PyTorch already comes with prebuild binaries 
needed for GPU accelerated computation.  

All the Python packages needed are in file in the root of the repository 
requirements.txt and can all be installed with the command in Listing 2.7. To allow 
usage of the same requirements.txt on Microsoft Windows and on Linux based 
systems, the OS specific packages are marked inside the file with environmental 
markers. 

Listing 2.7 Python packages installation command on Microsoft Windows 
python -m pip install -r requirements.txt 
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2.6.4 Software requirements – Linux 
Just like with Microsoft Windows, the recommended Python version is 3.6 in 64-bit 
version, higher versions of Python can be used, but the links to the PyTorch wheel 
in requirements.txt needs to be changed for the same reasons as for installation 
in Microsoft Windows and the new link can be found using Get Started guide on 
PyTorch website [33]. Unlike with Microsoft Windows, Linux based systems need 
a few packages installed through the system package manager. The main package 
in question is the framework for graphical user interface Kivy and its dependencies, 
as mentioned in the Kivy installation guide for Linux [35]. The Python installation 
also needs packages: 

• cython 
• setuptools 
• wheels 

These packages are needed to build the Kivy wheel before the installation itself. 
Just like with Microsoft Windows, the appropriate NVIDIA video driver [34] is 
necessary for PyTorch to allow NVIDA CUDA in application settings. After that 
the setup is like the setup process in Microsoft Windows. All the python packages 
are in the same file requirements.txt and on Linux can be installed with 
command in Listing 2.8.  

Listing 2.8 Python packages installation command on Linux 
pip3 install -r requirements.txt 



39 

 

3 Dataset creation 
Using only the EgoHands dataset [12], the application provided good detection 
results, when it came to hands doing stuff on a table, like playing chess or Jenga. 
Which makes sense as it is created out of multiple video scenes where people play 
cards, chess and Jenga. This also means, that the results when it comes to hand 
detection in various poses, considerably different to the actions that the dataset 
was created on, were not exactly good. The same thing applies for MPII Human 
Pose dataset, as it contains people in various poses, training neural networks for 
detection of hands using only this dataset provides disappointing results. Similarly, 
for the New Zealand Sign Language dictionary, which contains images in similar 
settings without more widely varied conditions. That meant that the datasets had 
to be expanded to create a more varied set of images. 

3.1 Obtaining images 

To be sure that the dataset contains most of the gestures humans can do with their 
hands, it is vital to use images that contain these gestures in different environments, 
lighting, poses and so on. For this very reason, it is a good idea to combine existing 
datasets or use frames from videos that are on the internet and create own data by 
recording what the network should train on. 

3.1.1 Combining existing datasets 
The easiest way of expanding datasets is to combine two of them together. 
Especially if both datasets include annotations of the object needed for training. In 
that case, combining datasets is just about converting annotations into the required 
format. If the dataset does not have desired annotations, then these must be created 
manually using one of the labeling tools. 

This is the method used in expanding the EgoHands dataset with images from 
the New Zealand Sign Language dictionary and the MPII Human Pose dataset. As 
mentioned before, neither of these had required annotations, so these were created 
manually. 

3.1.2 Recording own data 
For the purpose of recording own data, Python script saving a frame from a webcam 
after a set interval or selecting frames from a video sequence recorded on a camera 
can be used. Either of these approaches is usable in this case, although the recording 
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device should have high quality image capturing, as the neural network provides 
better results if trained on images with higher resolutions, rather than lower 
resolution images. An example of such images with ground truth annotations are 
in Figure 3.1. This approach was used to create evaluation dataset for left hand 
recognition and gesture classification part of the application. 

  
Figure 3.1 Custom images for dataset extension 

3.1.3 Getting videos from the internet 
Another way of modifying the existing dataset is using frames from videos with 
license that is allowing reuse of the content, that can be found on the internet. 
A couple of frames from videos from YouTube can be seen in Figure 3.2. Scraping 
videos from the internet is a viable option, but this approach to dataset extension 
was not necessary as the three combined sets of images provided a high variety of 
training data. 

  
Figure 3.2 Images from YouTube videos [36], [37] 

3.2 Annotation of images 

Annotation can be done in two ways. One way is by manually creating files and 
measuring distances from the corner of an image followed by width and height of 
the object. The data must then be manually inserted into a file. This approach is 
not ideal as doing this for thousands of images would be extremely ineffective. 



41 

 

Because of this, annotation tools are much more effective. Their purpose is to create 
annotations in the format that would work for a specific network or in some format, 
which could be easily transformed into another. The process of creating the 
annotation is mostly automatic, the only thing that must be done is manually 
selecting the object that needs to be annotated and the tools take care of the rest. 

3.2.1 Tool LabelImg 
The YOLOv3 neural network needs specifically annotated images for training. The 
annotation consists of a single txt file for each image, that contains the ground 
truth information about objects for which the network should train and their 
bounding boxes; each object in the image is placed on a new line. The locations and 
dimensions of bounding boxes are in normalized format independent of the image 
resolution and object class is represented by its index. The format of these 
annotation files is in Listing 3.1. 

Listing 3.1 Format of image annotations for YOLO based networks 
<class> <x> <y> <width> <height> 

 

For annotating all the additional images the multiplatform application 
LabelImg [38] was used, which can generate annotation files in the correct format 
from the bounding boxes drawn into the image. User interface of LabelImg is shown 
in Figure 3.3. 

 
Figure 3.3 Annotation tool LabelImg 
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These annotations are usable only with neural networks based on YOLO 
architecture, but can be easily converted for use with any other neural network 
with simple scripts written in python. After annotating, the dataset was ready for 
training the neural network.  

3.2.2  Website Supervise.ly 
Another very useful tool for dataset annotations is the website called Supervisely 
[39]. This online based tool is very capable as it can create the annotations in its 
editor, which is shown in Figure 3.4. It can also show statistics like how many 
images are left to annotate, and even the percentage of image space, that is occupied 
by the objects. 

Even though it seems like it can do a lot already, the functionality does not 
end here, Supervisely has also implemented data transformation language, that can 
easily divide the dataset into multiple smaller datasets, which is useful for creating 
subsets of the dataset for training and evaluation. Another interesting feature is 
data augmentation, which extends the dataset by color shifting, flipping and 
rotating existing images. 

 
Figure 3.4 Annotation tool Supervisely 

On top of that, supervisely also contains the means to train a few predefined 
networks using the annotated and augmented datasets. This feature though is not 
implemented on the website itself but needs a separate Linux based system with 
NVIDIA CUDA support, as the website will only control the machine that will do 
the computing.  
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4 Evaluation and testing 
As with any deep learning applications, it is highly recommended to use GPUs to 
speed up the forward pass of input data through the neural network and out of the 
output. Most of the deep learning frameworks like TensorFlow, PyTorch and others 
use NVIDIA CUDA for this purpose. The framework used for training and then 
testing was PyTorch, because of this, the GPUs used to evaluate the performance 
of the application are only from NVIDIA. As there is pretty much no point in 
creating a hand detection solution with hardware that almost no one has, one of 
the GPUs used is a few generations behind current ones and targeted on laptops, 
which means it is less powerful than its desktop counterpart. The second tested 
GPU is targeted at desktops and is a single generation ahead of the laptop one. 
Even  then, the desktop GPU belonged to the mid-range and was nowhere near as 
powerful as the most expensive GPUs from the same generation. Parameters of 
both tested graphics cards are listed in Table 4.1. 

Table 4.1 GPU used for evaluation and testing 
 NVIDIA GeForce GTX 

850M 
NVIDIA GeForce GTX 

1060 

CUDA cores 640 1280 

Base core clock 0.901 GHz 1.607 GHz 

Max boost clock 1.084 GHz 1.835 GHz 

Memory 2 GB 6 GB 

Memory bandwidth 80.0 GB/s 192.2 GB/s 

Memory type DDR3 GDDR5 

Manufacturing process 28 nm 16 nm 

Architecture Maxwell Pascal 

Target system Laptop Desktop 

Launch date March 2014 July 2016 

 

There are some options to get even better performance out of the graphics 
cards, if they support it. Because the architecture of the GPUs changes a lot in 
between generations, these usually do not differ just in the performance 
improvements but also in the features of the GPUs. For example, compared to the 
Maxwell architecture, graphics cards based on the Pascal architecture support 
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mixed precision processing [40]. In practice, this means that lowering the precision 
of the data types from 32-bit floating point to the floating point represented with 
only 16 bits, not just the memory requirements but also the time needed for 
processing will be cut in half. Another improvement in performance could be gained 
with GPUs based on the Volta architectures, some GPUs based on the Turing 
architecture and possibly architectures released in the future. Graphics cards based 
on these architectures may contain not just CUDA cores, but also tensor cores [41]. 
Tensor cores are specifically optimized computing cores for matrix operations which 
are used at the core of deep learning applications. 

Just for good measure, testing was also done on CPUs available in systems 
with tested GPUs, to show the performance loss on systems without a GPU from 
NVIDIA. Same as for the tested GPUs, testing was done on a few years old laptop 
processor to show how quickly the neural network can detect hands on lower end 
hardware and on much newer desktop CPU to show the difference in performance 
achievable with a more modern CPU. Tested CPU parameters are in Table 4.2. 

Table 4.2 CPUs used for evaluation and testing 
 Intel Core i7 4700HQ Intel Core i5 8400 

Cores 4 6 

Threads 8 6 

Base core clock 2.4 GHz 2.8 GHz 

Max boost clock 3.4 GHz 4.0 GHz 

Memory 16 GB 8 GB 

Memory type DDR3 DDR4 

Manufacturing process 22 nm 14 nm 

Architecture Haswell Coffee Lake 

Target system Laptop Desktop 

Launch date June 2013 October 2017 

4.1 Hand detection 

On the hand detection testing can be looked at from two angles, accuracy and 
speed. Accuracy of the network is calculated during training, so it can be evaluated 
subjectively. On the other hand, the speed of detection can be easily measured. 
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4.1.1 Detection accuracy 
From predictions made on the validation dataset, most of the time the hands are 
detected correctly, and predictions of bounding boxes are very close to actual 
ground truths. The comparison of ground truth and predictions made by the neural 
network can be seen in Figure 4.1. 

  
Figure 4.1 Comparison of ground truth and CNNs prediction [14] a) ground truth  

b) predictions by neural network 

Even though most of the time the trained neural network manages to detect 
hands correctly there are times it can get confused and show incorrect detections. 
This can happen when the image is blurry, hands are obscured from full view by 
other objects, the objects look from a certain angle as human hands or just make 
incorrect predictions without a reason. These situations can be seen in Figure 4.2 
where in one image two hands are detected as one, just like an ear and a tool in a 
belt, or in the second image where the design on the jersey of one of the basketball 
players is recognized as a hand. On the other hand, from this second image, it can 
be taken as fact that hand detection works on various skin colors. 

  
Figure 4.2 Incorrect detections [14] 

 Because the hands from the first-person point of view included in the 
EgoHands dataset were not used for training the neural network, hands from this 
perspective are mostly not being recognized either. In Figure 4.3 are shown 
examples of missed detections from the first-person point of view. 
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Figure 4.3 Undetected hands [12] 

4.1.2 Detection speed 
To make things clear, the neural network has a fixed input size, which means that 
all input frames are resized to the resolution set in the configuration file of the 
neural network before it was trained. In this case, the resolution is 416x416 pixels. 
As expected, the times needed for running the detector on any of the available 
CPUs provided unexceptional results as low as 0.61 frames per second using a 
mobile processor, the desktop CPU even though four generations newer and with 
higher clock speed, managed to be only three times as quick. Using the GPUs 
provided much better results, even the older mobile graphics card easily 
outperformed both tested CPUs by a big margin and managed to get to more than 
three times higher framerate than the desktop CPU. Although the mobile GPU did 
beat both CPUs by a big difference, using a newer desktop GPU provided a massive 
performance increase, although not as high as it could be, due to the bottlenecking 
of the graphics card by the CPU in the system. All the measured frame rates and 
times needed to process a single frame of a video sequence are listed in Table 4.3. 

Table 4.3 Detection speed comparison between GPU and CPU 
 Frames / second ms / frame 

Intel Core i7 4700HQ 0.61 1639.34 

Intel Core i5 8400 1.83 546.45 

NVIDIA GeForce GTX 850M 6.81 146.84 

NVIDIA GeForce GTX 1060 6GB 28.91 34.59 

4.2 Hand key points detection 

As the key point detector belongs to the project OpenPose, the evaluation of the 
neural network model was already done in paper [26]. What can be tested and does 
not belong to the original paper, is the decision if the hand is left or right. 
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4.2.1 Left hand recognition 
Since OpenPose uses another neural network, specifically for human pose 
estimation, the decision for which hand the pass through the network should be is 
quite straight forward. The implementation is vastly different from the one used. 
Because of that, the accuracy of the current implementation had to be evaluated. 

For the evaluation, 147 hands were used in a set of 101 testing images that 
contain people showing hands with different gestures using either one or both of 
their hands. This set of images was also taken with varying lighting conditions and 
in different environments. Two of the pictures from this testing set with annotations 
of left and right hand are in Figure 4.4. 

  
Figure 4.4 Images from the evaluation dataset with hand annotations 

The implementation of the hand classifier managed to correctly classify the 
hand in 94.5% of all tested cases. Exceptions to the correct detections are mostly 
the cases when the hand is positioned in a way that can resemble the other hand. 
This situation usually occurs at moments when it is not clear from the image cutout 
containing the hand, which hand it is. A situation like this, where the neural 
network can be mistaken by the very similar outlines and pretty much the same 
distribution of key points, is depicted in Figure 4.5, and even in this situation the 
incorrect detection is not certain and depends on the quality of the input image. 

 
Figure 4.5 Left and right hand with similar key point distribution 

LEFT 
RIGHT 

LEFT 

RIGHT 
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To represent both correct and incorrect classifications of hands, the confusion 
matrix in Figure 4.6 was created. From this matrix it is visible that only in a few 
instances the classification was not accurate, and the number of incorrect 
classifications is insignificant when compared to the number of correct ones. From 
the confusion matrix it is clearly visible that the logic behind the hand classifier is 
accurate in most cases. 

 
Figure 4.6 Confusion matrix for recognition of left and right hand 

4.2.2 Half Precision calculation 
Even though the full evaluation of the hand key point detector was not necessary, 
due to the option of using half precision floating points, the accuracy can be lower 
than expected. This issue was encountered when working with the neural network 
only once using an image found on the internet, where the usage of half precision 
made a difference. While using single precision, the hands and hand key points were 
detected correctly and the gesture classificator predicted both gestures correctly as 
is in Figure 4.7 a) even though the second key point of the ring finger on the left 
hand is slightly off the correct position. On the other hand while using half 
precision, the second key point of the index finger on the right hand was not 
detected correctly which is in Figure 4.7 b), which might have been due to overflow 
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in one or more of the layers in the neural network. This resulted in incorrect pose 
estimation and wrong gesture classification. Even though there was a difference in 
the predicted key points of the right hand, key points of the left hand stayed the 
same, no matter the precision used for calculation. 

  
Figure 4.7 Effect of half precision on hand key points detection [42] 

 a) single precision b) half precision 

4.3 Gesture classification 

For the purpose of testing the gesture recognition system, eight gestures were 
predefined. These gestures were also included in the creation of the dataset for 
evaluating the hand and gesture classifier. All the predefined gestures are presented 
in Figure 4.8.  

 
Figure 4.8 Predefined gestures a) One b) Two c) Three d) Four e) Five  

f) OK g) Thumbs up h) Thumbs down 

Correct classification of a gesture is ultimately dependent on the predicted 
hand key points positions. This makes evaluation of gesture classification quite 
difficult, because the error might not be in the gesture classification, but in the 
output of the key point detector.  

To evaluate, the same set of 101 images used to evaluate the classification of 
the left or right hand was used. These images were manually labeled with the 
gestures shown in them. If the label matched the predicted gesture or was unknown 
because the gesture was not in the predefined set, the prediction was taken as 

OK 
OK OK 

UNKNOWN 
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correct. In the case the hand key point detector produced a result that was 
obviously wrong, like in Figure 4.9, that detection was not used in the calculation 
of the success rate of the gesture classificator as it does not objectively represent 
the error in the gesture classification.  

  
Figure 4.9 Incorrect hand key points detection 

The images from the evaluation dataset used for classification contained either 
a single hand, where hand detection was not necessary, or with multiple hands in 
various poses with the need for the hand detector. Both cases of the evaluated 
images are displayed in Figure 4.10. 

 
Figure 4.10 Gesture recognition evaluation images 

The success rate was then calculated as a simple ratio between the correct 
classifications and total hand gestures used for testing. This produced a success rate 
of 79.8%. The success rate had to be from the beginning lower than the success rate 
of the left- or right-hand detection, because if the key points were meant for the 
other hand, they are most of the time not very usable for further gesture matching. 
The reason for slightly lower success rate of gesture matching is the hand key point 
detection neural network. Because the fingers can be hidden from the view, the 
neural network must guess the pose, the finger might be in. The key points of a 
finger can be predicted in a position that does not match the gesture rules. Because 

UNKNOWN 

UNKNOWN 

THREE 

OK 
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of this, even though subjectively the hand pose fits the gesture, it does not actually 
pass the rules. 

The evaluation dataset contains 119 hands, on which the hand key point 
detector subjectively predicts the locations of key points correctly. Out of these 119 
hands, each of the tested gestures was represented with approximately 10 to 18 
occurrences in the dataset. On top of the tested gestures, 16 hand poses that did 
not match any of the predefined gestures were included to also test if the gesture 
matching logic understands the unknown hand poses correctly. From the results, 
a confusion matrix in Figure 4.11 was also created for visual representation of the 
accuracy. As is visible, most of the classifications are on the main diagonal, which 
means these classifications were correct, and if they were not, in most cases the 
gesture was classified as an unknown gesture. 

 
Figure 4.11 Confusion matrix for predicted gestures 
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5 Expansion possibilities 
The computational backend of the application could be expanded in the future to 
provide better detection results and additional functionality. 

5.1 Detector modifications 

As the neural network used for hand detection does make mistakes, the result could 
be further improved without modifying the code by retraining YOLOv2 with an 
even more diverse dataset of hands, or by replacing the neural network by 
a different YOLO based architecture. The successor of YOLOv2, YOLOv3 [43] 
already exists and should produce much better results because it uses not just one 
but three detection layers, each in different scale of the input image, but due to 
much higher performance requirements, the older version was used. Changing the 
detector can be easily done by just swapping the configuration file and the 
corresponding weights for another YOLO based neural network. 

5.2 Key points post processing 

The OpenPose key point detector produces output with a lot of jitter that can be 
expected as the detection is always done on a single frame, but it could also be 
improved by performing detection over a time window, and smoothing out the 
detection in the frame at the center of the window. The result would then provide 
a smoother less jumpy movement of the drawn hand skeletons. That would be 
easier to match the gesture to. 

This detection over a time window could also be used to fix incorrect detection 
between a couple of frames. While in the majority of the frames  the finger would 
be detected in a similar place and in the middle of the window there would occur 
a sudden jump in the location of the key points, followed up by returning to 
a location very similar to the previously detected sequence, the incorrect location 
of key point could be replaced by approximating the key points position. 

Both approaches would result in smoother, higher quality detection, although 
for the price of losing real time processing, depending on the size of the detection 
window.  
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Conclusion 
The goal of this master’s thesis was to study and analyze possible approaches to 
hand detection, gesture recognition and finger tracking, select one of the possible 
approaches to the issue and create a multiplatform application capable of processing 
images, video sequences and a camera stream. 

Most of the approaches to hand detection expect at least some kind of 
cooperation with the person in front of the camera, be it wearing colored gloves to 
easily detect important points of the hand, or just expecting the hand to be in 
a pre-defined part of the image. Other approaches might require specialized 
hardware for video capture with depth channel and so on. These issues made most 
of the generally used approaches unusable. 

To create a system capable of hand detection that is not dependent on lighting 
or the environment,  it is almost impossible to use a rule-based system. That might 
result in confusion during detection in situations not thought about during the 
creation of the system. To avoid these issues and to create much more robust hand 
detection the approach using a neural network was chosen. 

Because neural networks need a lot of training data to produce usable results, 
the training dataset was created with a combination of the EgoHands dataset, MPII 
Human Pose estimation dataset and a couple of videos from the New Zealand Sign 
Language dictionary. The combined dataset provided a high variety of hands in 
different environments, lighting and poses, and contained over 6000 images, usually 
with more than one hand in each. After training, the neural network YOLOv2 
resulted in very good detection results with 89.2% of all relevant objects, in this 
case hands, detected. Out of all the detections, the network managed to find the 
hands properly in 85.7% of all cases. 

The hand detection specific neural network was necessary due to the usage of 
another neural network, for predicting hand key points, which needs an image with 
only a single hand. This network is one of the networks used in the project 
OpenPose and can predict the position of fingers, even if the fingers are hidden 
from the camera view. 

Even though the network is from the project OpenPose, the processing of the 
image before and after the forward pass through the neural network is completely 
different from the OpenPose implementation. The additional processing adds the 
capability to recognize whether the hand sent through the network was left or right 
correctly in almost 95% of all cases, which adds the possibility to implement gesture 
recognition with gestures specific for either left or right hand. 
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The biggest downside of using the neural network from the project OpenPose 
is quite slow processing due to the sheer size of the network. But with more and 
more powerful hardware available every couple of years, this issue will cease to be 
a problem in the future. 

The expandable gesture recognition part of the whole system works with 
comparisons of Euclidean distances between important key points. Depending on 
those distances, the system predicts the pose the finger or fingers are in. Since the 
gesture recognition highly depends on the output of the neural network for the 
hand key point detection, the success rate cannot be as high as it could be, if the 
locations of hand key points were not predicted but known for certain. Even then, 
the tested gestures were recognized correctly in 79.8% of all the cases in the 
evaluation set of images.  

The gestures the system tries to detect are defined in the gesture definition 
files and new gestures can be easily added by creating a new gesture definition file 
in the gestures folder. These definition files should contain the new description of 
the poses the fingers of the hand can be in. 

When it comes to detection performance, there is no comparison between  the 
CPU and the GPU, even when using a modern desktop CPU; an old laptop GPU 
is a much better choice for running neural networks, due to their parallel nature. 
That said, the CPU in the system should not be bad either, as the application 
might run into performance issues due to bottlenecking.  

The whole detection logic is then connected to a  graphical user interface, that 
makes the interaction with the logic easy and user friendly while providing 
additional functionality compared to using just the script included in the module 
with hand tracking class. 

 The UI of the application is composed out of a video player, which allows for  
easy presentation of the processing output, stepping through a video frame by frame 
in both directions and using a slider for skipping parts of the video completely. 
Through the UI it is also possible to get to the recording system that allows  to 
save video easily, with the option to change the detection settings during the 
detection itself. The application also allows to save all the detected bounding boxes, 
and gestures into a log. 

The logic behind the detection of the hands could be improved in the future 
by further expanding the training dataset and retraining the neural network, or 
even replacing it with  another YOLO based network. Improvements could also be 
done on the hand key point detection network, by smoothing out the key points 
locations and fixing incorrect key point locations with position approximations.
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List of Symbols and Abbreviations 
𝑘𝑘𝑖𝑖 Hand key point with index 𝑖𝑖 

𝐶𝐶 Weighting constant 

  

GPU Graphics Processing Unit 

CPU Central Processing Unit 

CNN Convolutional Neural Network 

YOLO You Only Look Once 

OS Operating System 

IoU Intersection over Union 

TP True Positive 

FP False Positive 

FN False Negative 
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Attachments 
Complete structure of the git repository [32] containing the source code, icons and 
images used in the development of the application: 
 
 \ ........................................... root of the repository 
 ├─.git 
 ├─cfg ................................. configuration files for CNNs 
 │ ├─keypoints.py 
 │ └─yolov2.cfg 
 ├─darknet .............................. darknet interpreter package 
 │ ├─__init__.py 
 │ ├─cfg.py 
 │ ├─darknet.py 
 │ ├─region_layer.py 
 │ ├─utils.py 
 │ └─yolo_layer.py 
 ├─data .................................. images used in UI elements 
 │ ├─icons  
 │ │ ├─app.ico 
 │ │ ├─cog.png 
 │ │ ├─file.png 
 │ │ ├─floppy.png 
 │ │ ├─image.png 
 │ │ ├─info.png 
 │ │ ├─log.png 
 │ │ ├─media-pause.png 
 │ │ ├─media-pause-disabled.png 
 │ │ ├─media-play.png 
 │ │ ├─media-play-disabled.png 
 │ │ ├─media-record.png 
 │ │ ├─media-record-disabled.png 
 │ │ ├─media-step-backward.png 
 │ │ ├─media-step-backward-disabled.png 
 │ │ ├─media-step-forward.png 
 │ │ ├─media-step-forward-disabled.png 
 │ │ ├─media-stop.png 
 │ │ ├─reload.png 
 │ │ ├─reload-disabled.png 
 │ │ └─video.png 
 │ └─logos 
 │  └─BUT_symbol_RGB_EN.png 
 ├─enums ........................... package with enumeration modules 
 │ ├─__init__.py 
 │ ├─finger_bends.py 
 │ ├─finger_spread.py 
 │ ├─hand_directions.py 
 │ ├─hands.py 
 │ ├─input_types.py 
 │ ├─thumb_directions.py 
 │ ├─thumb_positions.py 
 │ └─thumb_tip_positions.py 



61 

 

 ├─gestures ................................ gesture definition files 
 │ ├─five.json
 │ ├─four.json 
 │ ├─ok.json 
 │ ├─one.json 
 │ ├─three.json 
 │ ├─thumbs_down.json 
 │ ├─thumbs_up.json 
 │ └─two.json 
 ├─.gitignore 
 ├─constants.py 
 ├─get_models.py 
 ├─hand_gestures.py 
 ├─hand_keypoints.py 
 ├─hand_tracking.py 
 ├─LICENSE 
 ├─logger.py 
 ├─main.kv 
 ├─main_app.py .......................................... main script 
 ├─README.md 
 ├─requirements.txt ....................... list of required packages 
 └─utils.py 
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