BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENI TECHNICKE V BRNE

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION

FAKULTA ELEKTROTECHNIKY
A KOMUNIKACNICH TECHNOLOGII

DEPARTMENT OF RADIO ELECTRONICS

USTAV RADIOELEKTRONIKY

COMPUTER VISION AND HAND GESTURES DETECTION
AND FINGERS TRACKING

POCITACOVE VIDENI A DETEKCE GEST RUKOU A PRSTU

MASTER'S THESIS
DIPLOMOVA PRACE

AUTHOR Bc. Tomas Bravenec
AUTOR PRACE
SUPERVISOR doc. Ing. Tomas Fryza, Ph.D.

VEDOUCI PRACE

BRNO 2019

VYSOKE UCENI FAKULTA ELEKTROTECHNIKY

TECHNICKE A KOMUNIKACNICH
V BRNE TECHNOLOGII

Diplomova prace

magistersky navazujici studijni obor Elektronika a sdélovaci technika
Ustav radioelektroniky

Student: Bc. Tomas Bravenec ID: 173619
Roénik: 2 Akademicky rok: 2018/19
NAZEV TEMATU:

Pocitacové vidéni a detekce gest rukou a prsti

POKYNY PRO VYPRACOVANI:

Prace je zaméfena do oblasti detekce objektd v obraze/video sekvencich. Konkrétné se jedna o detekci
a rozpoznavani gest rukou a trackovani jednotlivych prstd. Prostudujte dostupné projekty, programy a funkce
umozhujici detekovat pohyby rukou a klasifikovat jejich gesta. Uvazujte dostupné knihovny pro pocitacové vidéni
v jazycich Python, nebo C. Vytvorite snimaci fetézec a ovéfte fungovani, pfip. limity takovychto feSeni na PC.

Provedte detailni testovani vaseho snimaciho systému. Aplikujte na dynamickych video sekvencich s obtizné
detekovatelnymi pohyby, napf. gesta raperu. Vytvofte popis navrzenych funkci a zvefejnéte je na GitHubu, ¢i
podobném ulozisti open souce projektll. Dbejte na rosifitelnost systému pro snadné vkladani novych detekujicich
gest.

DOPORUCENA LITERATURA:
[1] OpenCV [online]. 2018 [cit. 2018-05-16]. Dostupné z: http://opencv.org/

[2] Into Robotics. 9 OpenCYV tutorials to detect and recognize hand gestures [online]. 2018 [cit. 2018-05-16].
Dostupné z: https://www.intorobotics.com/9-opencv-tutorials-hand-gesture-detection-recognition/

Termin zadani: 4.2.2019 Termin odevzdani: 16.5.2019

Vedouci prace: doc. Ing. Tomas Fryza, Ph.D.
Konzultant:

prof. Ing. Tomas Kratochvil, Ph.D.
pfedseda oborové rady

UPOZORNENI:

Autor diplomové prace nesmi pfi vytvareni diplomové prace porusit autorska prava tfetich osob, zejména nesmi zasahovat nedovolenym
zpUsobem do cizich autorskych prav osobnostnich a musi si byt pIné védom nasledku poru$eni ustanoveni § 11 a nasledujicich autorského
zakona €. 121/2000 Sb., véetné moznych trestnépravnich dusledkl vyplyvajicich z ustanoveni ¢asti druhé, hlavy VI. dil 4 Trestniho zakoniku
€.40/2009 Sb.

Fakulta elektrotechniky a komunika¢nich technologii, Vysoké uceni technické v Brné / Technicka 3058/10 / 616 00 / Brno

ABSTRACT

This master's thesis is focused on hand gestures and finger detection in still images and
video sequences. The thesis contains a summary of different approaches to hand gesture
detections, advantages and disadvantages of each approach. The thesis also includes
the realization of the platform independent application written in Python using OpenCV
and PyTorch libraries, that can show a selected image or play a video sequence with

highlighted recognized gestures.

KEYWORDS

Computer vision, hand detection, gesture recognition, image processing, video
processing, OpenCV, PyTorch, Python, Deep Learning, convolutional neural networks,

machine learning

ABSTRAKT

Diplomova prace je zaméfena na detekci a rozpoznani gest rukou a prstil ve statickych
obrazech i video sekvencich. Prace obsahuje shrnuti nékolika rliznych pristupli k samotné
detekci a také jejich vyhody i nevyhody. V praci je téz obsazena realizace
multiplatformni aplikace napsané v Pythonu s pouZzitim knihoven OpenCV a PyTorch,
kterd dokaze zobrazit vybrany obraz nebo prehrat video se zvyraznénim rozpoznanych

gest.

KLICOVA SLOVA

Pocitacové vidéni, detekce rukou, rozpoznani gest, zpracovani obrazu, zpracovani videa,

OpenCV, PyTorch, Python, Deep Learning, konvolu¢ni neuronové sité, strojové uceni

ROZSIRENY ABSTRAKT

Postupem casu, tak jak to vypocetni vykon dovoluje oblast pocitaCového vidéni nabira
na popularité. A neni se cemu divit, pocitace i telefony jenz pouzivame kazdy den maji
dostatek vypocetniho vykonu pro analyzu obrazli a video sekvenci v redlném Ccase.
Napriklad nase mobilni telefony jsou ve vétsiné pripadli rozpoznat tvare ve fotografiich
a v nékterych pripadech pochopit i jednoducha gesta rukou, jako napriklad vzdalena
spoust pro porizeni fotografie, aniz bychom byli nuceni se dotknout telefonu. Pocitace
jsou velmi schopné téchto snadnych detekci, pokud vidi celé tvare nebo ruku, co ale
v pripadé kdy ruce a prsty nejsou snadno viditelné? To je problém, pro ktery neni snadné
reseni.

Analyza gest rukou poskytuje dalsi zplisob pochopeni lidského chovani ve video
sekvencich pro zrakové postizené, nebo zplsob prekladu znakové reci na text. DalSimi
priklady vyuziti analyzy gest mohou byt systémy ovladané pomoci gest v automobilovém
primyslu, nebo analyza neverbalni komunikace mezi zlocinci zachycenymi na

bezpecnostni kamery.

V této praci jsou predstaveny mozné zplsoby detekce rukou a samotnych gest,

které jsou nasledné popsany a porovnany vcetné jejich kladli a zapord.

Hlavni zaméfeni prace je na tvorbu multiplatformni aplikace urcené pro detekci
rukou a rozpoznani gest. Zakladem této aplikace je programovaci jazyk Python

v 7

s knihovnami pro pocitacové vidéni.

Validace vysledkl aplikace je provedena pomoci video sekvenci s rozdilnou
obtiznosti viditelnosti rukou porizenymi za GCelem testovani aplikace a s vyuzitim

nahodnych videi nalezenych na internetu pro zjisténi Uspésnosti detekce.

II

BRAVENEC, Tomas. Pocitacové vidéni a detekce gest rukou a prsti. Brno, 2019.
Dostupné také z: https://www.vutbr.cz/studenti/zav-prace/detail /118437.
Diplomova prace. Vysoké uceni technické v Brné, Fakulta elektrotechniky a
komunikacnich technologii, Ustav radioelektroniky. Vedouci prace Tomés Fryza.

III

DECLARATION

| declare that | have written the master's thesis titled “Computer vision and hand
gestures detection and fingers tracking” independently, under the guidance of the
advisor and using exclusively the technical references and other sources of information
cited in the paper and listed in the comprehensive bibliography at the end of the thesis.

As the author | furthermore declare that, with respect to the creation of this
master’s thesis, | have not infringed any copyright or violated anyone's personal and/or
ownership rights. In this context, | am fully aware of the consequences of breaking
Regulation S11 of the Copyright Act No. 121/2000 Coll. of the Czech Republic, as
amended, and of any breach of rights related to intellectual property or introduced
within amendments to relevant Acts such as the Intellectual Property Act or the
Criminal Code, Act No. 40/2009 Coll., Section 2, Head VI, Part 4.

author's signature

v

PROHLASENI

Prohlasuji, ze svou diplomovou praci na téma , Pocitacové vidéni a detekce gest rukou
a prstd” jsem vypracoval samostatné pod vedenim vedouciho diplomové
prace a s pouzitim odborné literatury a dalSich informacnich zdrojii, které jsou vSechny

citovany v praci a uvedeny v seznamu literatury na konci prace.

Jako autor uvedené diplomové prace dale prohlasuji, ze v souvislosti s vytvorenim
této diplomové prace jsem neporusil autorska prava tretich osob, zejména jsem nezasahl
nedovolenym zpiisobem do cizich autorskych prav osobnostnich a/nebo majetkovych
a jsem si plné védom nasledkii poruseni ustanoveni S11 a nasledujicich autorského
zakona ¢. 121/2000 Sb., o pravu autorském, o pravech souvisejicich s pravem autorskym
a o zméné nékterych zadkond (autorsky zadkon), ve znéni pozdéjsich predpisii, vietné
moznych trestnépravnich disledkl vyplyvajicich z ustanoveni ¢asti druhé, hlavy VI. dil
4 Trestniho zakoniku &. 40/2009 Sb.

podpis autora

ACKNOWLEDGEMENT

| would like to thank to the supervisor of this thesis doc. Ing. Tomas Fryza, Ph.D. for
professional guidance, consultations and work suggestions.

author’s signature

VI

PODEKOVANI

Rad bych podékoval vedoucimu diplomové prace panu doc. Ing. Tomasi Fryzovi, Ph.D.
za odborné vedeni, konzultace a podnétné navrhy k praci.

podpis autora

VII

Contents

List of Figures
List of Tables
Listings
Introduction

1 Hand and gesture recognition

1.1 Contour analysis........ccccccvviiiiiiiiiiiiiiiiii
1.2 Curve fittingooovviiiiiiiii
1.3 Model fittingoovvviiiiiiiiiiiiiiii

1.3.1 Multiple angle model fittingcccccccvvviiiiiiiie.
1.4 Depth based hand detection...........ccccccvviiiiiiii.
1.5 Deep learning............ooeevvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1.5.1 Convolutional neural networksccccovvnnine.

2 Realization

2.1 Hand detectionoo.oeeeeeee e
2.1.1 Oxford hands dataset......ccooeevveeeieieiieiieieeieei
2.1.2 FEgoHands datasetcccooouiimmiiiiiiiiiiiiiiiiiiiiiins

2.1.3 New Zealand Sign Language Dictionary

2.1.4 MPII Human pose estimation dataset
2.1.5 Neural network — YOLOV2........oooooiiiiiiiiiii

2.1.6 Modifying the YOLOv2 neural network

2.1.7 Training neural networkcccccociiiiiiiiiiiiiiininns
2.2 Finger detection...........ccoouuiiiiiiiiiiiiiiiiiiii
2.2.1 Left hand detection..........ccccvveiiiiiiiiiiniiieee,
2.2.2 Model cOnversionccccceeuuuiiiiiiiiiiiiiiiiiiiiiiiiiiians
2.3 Gesture recognition...........cccvvvvviiiiiiiiiiiiiiiiiiiiii
2.3.1 Finger bendscoooviiiiiiiiiiiiiii e

VIII

XI

XIII

XIV

2.3.2 Finger SPreaduuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiii e 22

2.3.3 Thumb POSTtION.uuuiiiiiiiiiiiiiiiiiiiie 23
2.3.4 Thumb tip POSTEION ..evvvieiiiieeeeii e 24
2.3.5 Thumb dir€Ctionuueuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeees 25
2.3.6 Hand orientation.............cccoooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 27
2.3.7 Gesture definition format...........ccccoiiiiiiiiiiii 28
2.4 Graphical user interface............cccccoooiii 29
2.4 1 MAIIN SCTOEIL....ueeeiiiiiiiii et 30
242 SEEEITIES «oeieiiiiii e 31
2.4.3 Record panel and SEttings.............uueuuimiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiines 31
244 InfOo PANELuiiiiiiiiiii e 33
2.5 Application developmentuuuuueiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiaees 33
2.5.1 Models downloadeuiiiiiiiiiiiiiiiiiiiiiiiiii 34
2.5.2 Background logicC............uuuiiiiiiiiiiiiiiiiiiiiiiiii 34
2.5.3 Multi-threaded processing.............cccccueueeiiimiiiiiiiiiiiiiiiiiiiiiiiiiienanes 35
2.5.:4 LOZZINE «oeeeiiii e 35
2.6 Application PrerequisSiteseueeeiieiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiiiaeaanes 36
2.6.1 Source code TEPOSITEOTY «.oivuiiiiiiiiiiieeiiiie e 36
2.6.2 Hardware requir€ments.............uuuuuuuiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiees 36
2.6.3 Software requirements — Microsoft Windowscccccccuuuvuennn. 37
2.6.4 Software requirements — LINUXuuuuuiriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinenns 38

3 Dataset creation 39
3.1 Obtaining IMAGESvvviiiieeiiiiiie e e 39
3.1.1 Combining existing datasetsccccooviiiiiiiiiiiiiiii, 39
3.1.2 Recording own datauuuuiiiiiiiiiiiiiiiiiiiiiiiiii 39
3.1.3 Getting videos from the internetccccccciiiiiiii, 40
3.2 Annotation of IMAages..........ccoviiiiiiiiiiiie e 40
3.2.1 To00l Labellmg.uuuuiiiiiiiiiiiiiiiiiiiiiiiiieee 41
3.2.2 Website SUPerviSe.lycoooiiiiiiiiiiiiiiii e 42

4 Evaluation and testing 43

4.1 Hand deteCtion ..o 44

4.1.1 Detection aCCUTACY ...coceveieieieieiei e 45

4.1.2 Detection SPeed..........uuiiiiiiiiiiiii e 46

4.2 Hand key points detection............cccocoo 46

4.2.1 Left hand recoOgnitionccuvviiiiiiiiiiiiiee e 47

4.2.2 Half Precision calculationoooeee v 48

4.3 Gesture ClasSIICATION « .. ve e 49

5 Expansion possibilities 52
5.1 Detector MOAIfICAtIONS . ..ueen e 52

5.2 Key points post ProCeSSINGcoouuiiiiiiiiiiiiiiiiiiiiie e 52
Conclusion 53
References 55
List of Symbols and Abbreviations 59
Attachments 60

List of Figures

Figure 1.1 Contour analysis..........ccccccciiiiiiiiiiiiiii 2
Figure 1.2 Curve fitting [2]coooooiiiiii e 3
Figure 1.3 Skeleton of the hand model [3].......cccoooiiiiiiiiiiiiiiii i, 4
Figure 1.4 Microsoft Kinects depth capture [5]cccovviiiiiiiiiiiiiiiiiiiciiciie 5
Figure 1.5 General deep learning neural network [7]........coccoooiiiiiiniiiiiinn., 6
Figure 1.6 Architecture of convolutional neural network [9]..........cccccooiiiiiis, 7
Figure 2.1 Images included in Oxford hands dataset [11].......cc.cccooiiiiiiiiiiis, 8
Figure 2.2 ITmages included in EgoHands dataset [12]........cccccoooiiiiiiiiiiiiinicennnn 9
Figure 2.3 Modified annotations in EgoHands dataset [12]........ccccccoociiiiiiiniinns, 9

Figure 2.4 Tmages from videos in New Zealand Sign Language dictionary [13]10

Figure 2.5 Annotated images from New Zealand Sign Language dictionary [13]..10

Figure 2.6 Images contained in the MPII Human Pose dataset [14]..................... 11
Figure 2.7 Images from MPII Human Pose dataset with annotations [14]............ 11
Figure 2.8 YOLOvV2 network architecturecooooviiiiiiiiiiiiiie 12
Figure 2.9 Training loss after each epoch...............o.ooo 14
Figure 2.10 Area of Overlap and Area of Union...........cccccceiiiiiiiiiiiiiiinii 15
Figure 2.11 Graphical meaning of Precision and Recall [22]............c.cccceeeeinn. 16
Figure 2.12 Precision, recall and F-score after each training epoch 17
Figure 2.13 Heatmaps generated for index finger...........ccccccoviiiiiniin 17
Figure 2.14 Hand key points and combined heatmap generated by CNN 18
Figure 2.15 Normal and modified input for hand key point detection.................. 19
Figure 2.16 Combined heatmaps generated by CNN out of modified input 19
Figure 2.17 Finger bend statescccooii 22
Figure 2.18 Finger spread states.........ccccoooiiiiii 23
Figure 2.19 Thumb position states............cccccciiiiiiii 24
Figure 2.20 Thumb tip position..........cccccooiiiiii 25
Figure 2.21 The output of function arctan2 [28]ccooiiviiiiiiiiiii 26

XI

Figure 2.22 Thumb directions...........ccccccooiiiiiii 27

Figure 2.23 Hand directions..........cccccooiiiii 27
Figure 2.24 Created application windowccccoooiiiii 30
Figure 2.25 Detection settings available in applicationcccooooo 31
Figure 2.26 Record panel and record settings.............ccccccccoiiiiiii . 32
Figure 2.27 Application’s info panel.................cccooiiiii 33
Figure 3.1 Custom images for dataset extensionccooooii . 40
Figure 3.2 Images from YouTube videos [36], [37] ...ccccovviiiiiiiiiiiiiiiiiiieiieee, 40
Figure 3.3 Annotation tool Labellmgccccccoiiiiiiiee 41
Figure 3.4 Annotation tool SUPErviSelycccccoiiiiiiiiiiiiieiiiiiiiee e 42
Figure 4.1 Comparison of ground truth and CNNs prediction [14]...........cccce.e. 45
Figure 4.2 Incorrect detections [14]coocoiiiiiiiiiiiiiiiiiiccceee 45
Figure 4.3 Undetected hands [12]ccoooiiiiiiiiiiiiiiiiiii e 46
Figure 4.4 Images from the evaluation dataset with hand annotations 47
Figure 4.5 Left and right hand with similar key point distribution...................... 47
Figure 4.6 Confusion matrix for recognition of left and right hand 48
Figure 4.7 Effect of half precision on hand key points detection [42].................... 49
Figure 4.8 Predefined gestures...........cccccoii 49
Figure 4.9 Incorrect hand key points detectionccoooooo 50
Figure 4.10 Gesture recognition evaluation imagesccccccoovviiiiiiiiiieeiinnninnnn. 50
Figure 4.11 Confusion matrix for predicted gestures..............cccoccccii 51

XII

List of Tables

Table 4.1 GPU used for evaluation and testingcccoccoooi
Table 4.2 CPUs used for evaluation and testing...........ccccccceviiiniiinin,

Table 4.3 Detection speed comparison between GPU and CPU...........................

XIII

Listings

Listing 2.1 Modifications of YOLOv2 neural network’s configuration 13
Listing 2.2 Gesture definition format — main categories............cccccciiiiiinininnn. 28
Listing 2.3 Gesture definition format — keyword “any”..............cccoocoooiii 29
Listing 2.4 Hello world in KV language............ccccccoioiiii 29
Listing 2.5 Log header and record format for static images............ccccccceevinnnnnnn. 36
Listing 2.6 Log header and record format for video sequences...................ccc.o.... 36
Listing 2.7 Python packages installation command on Microsoft Windows 37
Listing 2.8 Python packages installation command on Linux..............ccccccoco. 38
Listing 3.1 Format of image annotations for YOLO based networks.................... 41

XIV

Introduction

For quite some time, the field of computer vision is rising in popularity. And there
is no surprise, that computers and phones we use every day are powerful enough to
analyze images and video sequences in real time. For example, our mobile phones
are in most cases capable of recognizing our faces in photos and sometimes they
can even understand some basic hand gestures for taking a picture without us even
touching the phone. Computers are quite capable of these easy recognitions when
they can see the whole face or hand, but what about cases when hands and fingers
are not visible that well? This is quite an issue that is not that easy to handle.

Analysis of hand gestures is useful for providing another way of understanding
what humans are doing in videos for visually impaired or blind people or translation
of sign language to text. Another example could be gesture based controls of some
systems in automotive industry, to analyze non-verbal communication of criminals

caught on cameras etc.

This thesis will introduce multiple ways how hand gestures can be detected
and the qualities and flaws of each approaches.

The main part of this thesis is focused on creating a hand gesture detection
application and its functionality. The application is platform independent and

written in Python with libraries for computer vision.

The evaluation of this application is done using video sequences with varying
difficulty of visible hands captured specifically for testing this application and
random videos found on the internet to see with how high success rates the
application manages to do its job.

1 Hand and gesture recognition

To begin with gesture recognition, the hand must be detected first. There are a few
approaches to finding the hand. These approaches differ from easier ones that are
more susceptible to mistake and are not very robust, to the use of algorithms that
are hard to confuse. Using these kinds of algorithms have a price: they may need
significantly more processing power.

1.1 Contour analysis

The easiest method is analyzing a grayscale image (Figure 1.1 a)), as there is only
one condition needed to use in order to get thresholded image (Figure 1.1 b)), if
the pixel is part of a hand or if it is not. From a thresholded image, it is easy to
get the contour of a hand and convex hull around the hand (Figure 1.1 ¢)). Then
by the number of convex defects in the convex hull (Figure 1.1 d)) and the distances
of these defects from each other, figure out what fingers are extended, and which
are collapsed. [1]

Figure 1.1 Contour analysis a) Detected hand b) Thresholded contour ¢) Detected
edge and convex hull d) Detected convex hull defects [1]

One of the issues with this approach is the fact, that the hand must be easily
separable from the background. This can be done either by thresholding, or other
more complex approaches, such as separation by skin color, background subtraction
etc. This also means that the algorithm can become easily confused when it comes
to unusual background patterns or just a sharp change in lighting, causing a rapid
change in skin color.

The biggest issue of this method is that it is incapable of recognizing gestures
if the palm is not facing the camera directly, it also easily fails to identify collapsed
fingers when the hand rotates. Because of these issues, this method is not suitable
for detection of more complex gestures or during worse visibility of the hand.

1.2 Curve fitting

Curve fitting, also known as snakes, is one of the less usable methods for hand
detection, as it is more suitable for hand tracking. This approach needs some initial
guess or cooperation from the person using this method [2]. The initial guess could
be made by the person matching the curve on screen with his hand presented in
Figure 1.2. After a certain threshold of similarity is passed, tracking can start, and
the curve is adjusted from the previous frame to match the outline of the hand. As
it needs an initial guess, this method is not a very good choice for detection in video
sequences, that are not prepared for detection using this approach.

9.04984 7

&

Figure 1.2 Curve fitting [2]

1.3 Model fitting

Another approach to gesture recognition is creating a virtual model of a hand,
composed from “bones” and “joints” like in a real hand. At first, it uses contour
analysis or depth image analysis if it is available in the source to detect fingertips,
followed by connecting detected fingertips to the model, so the model joints can

bend and recreate the gesture in a virtual environment [3]. An image of a virtual
model is in Figure 1.3.

IP: 1 DOF
MP: 1 DOF

Palm: & DOF

: 1 DOF

PIP: 1 DOF

. DIP: 1 DOF

Figure 1.3 Skeleton of the hand model [3]

The problem here is again, that from certain angles, the model may not be
properly connected to fingertips, which will cause unpredictable behavior, like
guessing an incorrect gesture or losing focus on the hand itself [4]. On the other
hand, systems like this could be easily modified to recognize more gestures by
simply adding another configuration of the hand model with a description of how
the fingers are bent.

1.3.1 Multiple angle model fitting

To make model fitting more accurate, more cameras can be used to capture hand
movements from different angles, so the fingertips are always visible and can be
connected to the model’s end points at any moment.

This extension of model fitting is not usable for common video sequences, as
they are not shot from different angles at the same time. This means that even
though multiple angle model fitting can be more accurate, it is more useful in real
time translation of sign language, where the person stands or sits in front of couple
of cameras.

1.4 Depth based hand detection

Another way of detecting hands, not from existing video sequences but rather in
real time is based around capturing not only color but also depth. This can be done
using special capturing devices like Microsoft Kinect its capture of scene depth in
the image of a human’s arm is in Figure 1.4. From this image it is obvious that the
depth levels have lower resolution than color, which means that objects like a hand
will mostly be on one or two neighboring distance layers, making hand detection
significantly easier than from a color image.

Figure 1.4 Microsoft Kinects depth capture [5]

The approach using depth to detect a hand has its positives, it does not care
about background or lighting [5]. Its downside is if there is another object at the
same distance as the hand in the depth map; the hand and object could blend
together, though it is not that difficult to split it again by combining depth and
color layers. This way the hand can be separated by selecting only the skin colored
part of the depth layer on which the hand is located.

As is obvious from the fact that it needs data captured with a depth sensor,
this approach is unusable when it comes to hand detection from normal images and
video sequences.

1.5 Deep learning

In the last couple of years, the field of machine learning started to gain in
popularity, as the main limitation in the past, the processing power, is more
accessible than ever before. Considering the advancements in general purpose
computing using graphics processors, the times needed to train artificial neural
networks on a regular computer at home are comparable to times that were needed

just a few years back on a supercomputer.

The deep learning itself is a subset of machine learning, that today makes use
mostly of deep neural networks (these networks contain more than two layers of
non-linear processing between input and output layers) to learn from huge amounts
of data to solve problems without being explicitly programmed to do that. Typical
representation of a deep learning neural network is in Figure 1.5. There are also
other algorithms like recurrent neural networks, deep belief networks or deep
Boltzmann machines that are part of deep learning, but they are not as widely used

as deep learning neural networks. [6]

Deep learning

Hidden Hidden Hidden

Y
N AN/
NS S NS AT NS AT N4
o‘e&xg«"’/“\‘,\‘,&&"’
<>

N>
/»\\ X253
X > <> <> & <>
KSR KKK
TN ""/‘*"‘\‘ ,,‘)"\\

g
4

L
P
s
WD

)
(s
K
4

()

X
WOk
9%
05
L
N

®
Vi
§o

AR 7
S SIRN~E

7 PN _,,i‘i%}“_
N N\TS
/

Figure 1.5 General deep learning neural network [7]

SN

1.5.1 Convolutional neural networks

When it comes to image processing using deep learning, the most frequently used
variant of a neural network is a convolutional neural network. This kind of network
contains a couple of convolutional layers. The filters of these layers are acquired
during the training process of the network and with appropriate training data. After
the convolutional layers usually comes the pooling layer to reduce the amount of

data for the next layer. The next layer is usually a single flattening layer followed
by classic fully connected layers [8]. Architecture of the convolutional neural
network is in Figure 1.6.

— cAR

— TRUCK

— VAN
O

[] — eicyere

FULLY
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN RULY o SOFTMAX
HIDDEN LAYERS CLASSIFICATION

Figure 1.6 Architecture of convolutional neural network [9]

The reason for using convolutional neural networks for hand detection is
simple: with correct training data, the network can learn itself what to look for,
what is important and what is not. Of course, this is not based only on the training
data, but on the model of the neural network. This means that every neural network
is built differently, from a different number of layers and neurons in each layer.

Almost every convolutional neural network that works with images takes an
input image in RGB color space. This is because after experimentations with other
color spaces like HSV, LUV and other ones used in computer vision applications,
the network which trained on images in RGB color space provided higher accuracy
of predictions than the same network trained on images in different color space [10].

Convolutional neural networks could also be divided into two different groups,
depending on the type of input and output. If the input image is a single object in
the center of the image and the neural network is supposed to predict what kind of
object it is, this category is called classifiers. On the other hand, if the image
contains many different objects all over the place, and the neural networks output
is supposed to be a prediction of bounding boxes and what kind of object is in each
bounding box, these neural networks are called detectors.

2 Realization

The whole result of this thesis can be divided into parts. First, there is a need to
detect a hand in the image before it can be recognized as a gesture. So, the second
part is obviously rule based gesture classification, which should also be easily
expandable. In the end the working application should be wrapped in multiplatform
easy to use graphical user interface with easy gesture addition, an image and video
viewer with detected gesture highlighting and logging of detected gestures into
a file.

2.1 Hand detection

When it comes to detecting hands in various positions and different environments,
it is quite difficult to assess some rules to detect hands accurately. For example,
fist looks very different from open palm. For this very reason the approach of deep
learning was selected. This process consists of creating or finding and adjusting
existing datasets for this very purpose. With the prepared dataset the next step is
creating a neural network from scratch or using an already existing and tested
architecture and retraining it for the purpose of hand detection.

2.1.1 Oxford hands dataset

Before training a neural network, there must exist some data to train the network
on. The first choice for a dataset was oxford hands dataset [11], as its already
annotated. Its diverse images of hands in very different situations, poses etc. seemed
like a great way to train a neural network that would generalize well and provide
good results. This was not the case, even after training on this dataset for several
days, the results were not good. This could have been because of the lower
resolution of the images; a few of those images from the dataset are in Figure 2.1.

2.1.2 EgoHands dataset

For the purpose of this thesis the EgoHands dataset [12] was chosen, due to its
high-resolution images with already existing annotations and wide range of hand
poses in a few different locations. This dataset contains 4400 training and 400
validation images as shown in Figure 2.2. Each picture includes at least one hand
and maximally 4 hands, and these hands are not always clearly visible, as they can
be obstructed from the camera by other hands or objects in the scene.

Figure 2.2 Tmages included in EgoHands dataset [12]

The annotations included in the dataset also had to be modified, as the original
annotations were differentiating between left and right hand and even from which
point of view is the hand captured. Annotations were also in different format than
was needed for training the selected neural network. Conversion and annotation
modification were done using simple python script. Modified annotations are shown
in Figure 2.3 as yellow rectangles around hands.

[12]

2.1.3 New Zealand Sign Language Dictionary

The Ego Hands dataset is not completely universal, as it misses some hand gestures.
Due to this reason the dataset was expanded with images from New Zealand Sign
Language dictionary [13]. As the name suggests, this dictionary contains video
sequences of humans presenting different signs of sign language. As there are a lot

of videos in the dictionary, only 10 videos were used for dataset expansion. From
these videos, a total of 515 frames were taken for training and 231 frames for
validation. The videos provide quite a big range of different gestures. This diversity
helps in recognition of hand poses that are not present in the EgoHands dataset.
Unlike images from EgoHands dataset, these images have a very similar
background, which means it is not a very good idea to train the neural network
with images only from this dictionary. Some of the hand gestures contained in
videos from New Zealand Sign Language dictionary are presented in Figure 2.4.

Figure 2.4 Tmages from videos in New Zealand Sign Language dictionary [13]

Unlike for images from EgoHands dataset, for frames from videos in this
dataset the annotations did not exist. Because of that these had to be created from
scratch. Few images with displayed bounding boxes are in Figure 2.5.

Figure 2.5 Annotated images from New Zealand Sign Language dictionary [13]

2.1.4 MPIl Human pose estimation dataset

To make the training dataset even more robust, small part of the MPII Human
pose estimation dataset [14], was used. Because the dataset is not focused on hands,
they are not visible on many pictures from this dataset. For training 483 images
were selected and 215 images for validation. On the used images, people are doing
many different activities in a wide range of environments, from playing musical
instruments or cooking in the kitchen to working with power tools. Some of the
images even have people wearing gloves to farther improve chances of hand
detection in difficult conditions as the detector cannot rely on skin color. Example
of images from this dataset are in Figure 2.6.

10

’ =_r}v - S : - = -~
Figure 2.6 Images contained in the MPII Human Pose dataset [14]

Just like with images from the New Zealand Sign Language dictionary, the
images from the MPII Human Pose dataset do not have annotations of hands
needed for training neural networks and these annotations had to be created.
Images from this dataset with showed bounding boxes are in Figure 2.7.

Figure 2.7 Images from MPII Human Pose dataset with annotations [14]

2.1.5 Neural network — YOLOv2

Instead of creating and testing new architectures of neural networks the
architecture YOLOv2 [15] (You Only Look Once v2) was selected. This means, that
instead of testing if the neural networks architecture is designed correctly for
predicting bounding boxes, it just needed to be adjusted to only look for one class
and then be retrained for detection using a previously selected dataset.

YOLOv2 is a fully convolutional neural network created out of 23 convolutional
layers, 5 pooling layers, 2 routing layers, a reorganization layer and with a single
detection layer. The relatively low depth of the network makes it work very well in

real time processing.

The function of convolutional layers is obvious from their name. Pooling layers
on the other hand might not be that obvious. These layers reduce the spatial
dimensions of their input but keep their depth. Usually this reduction is done by
a factor of 2. There are two different versions of pooling layers, YOLOv2 uses max
pooling, which means that the input is divided into small squares, where dimensions

11

of the square are the factor of the pooling layer. For YOLOv2, the input is divided
into grids of 2 by 2 values and on the output of the layer is only the highest value
from this grid. The other variant of this layer uses average pooling which, as its
name suggests, the output produces an average value for each of the input grids.

Reorganization layers have a similar function to pooling layers, as these layers
also change the dimensions of their input, but unlike pooling layers, they also
change the depth and keep all the input values. As the name of the layers hint, the
input is reorganized in a way that a single channel on the input will become more
channels on the output depending on the settings of the layer. The reorganization
layer in YOLOvV2 uses a stride of 2, which means that the spatial dimensions in
both directions would be halved and depth would grow four times.

Because the neural network uses routing layers, it means that the network
actually does not run all of the layers sequentially, but rather works up to the
routing layer sequentially and then takes the output of the layer to which the
routing layer points to instead of taking output of the layer that preceeds it.
Another option is if the routing layer points to multiple different layers, in that
case all the outputs of layers pointed to are concatenated. The function of routing
layers is clearly displayed in graphical representation of YOLOv2 with purple
arrows in Figure 2.8. In this figure the horizontal numbers bellow layers signify how
many convolutional filters are present in that layer, and angled numbers signify the
spatial dimensions of all the layers since the last pooling or reorganization layer.
Input dimensions for each convolutional layer are the dimensions of the previous
layer times the amount of filters in that layer.

Convolutlonal Pooling Reorgamzatlon Detection Concatenation
layer layer layer layer % of layers

Figure 2.8 YOLOv2 network architecture

12

233
234
235
236
237
238
239
240
241
242

243
244
245
246
247
248

2.1.6 Modifying the YOLOv2 neural network

The actual network architecture is defined in the configuration file and the weights
file. The original network’s configuration file and its pretrained weights can be
downloaded from the website [16]. The configuration file had to be slightly adjusted
to look for only one class, which meant changing the number of classes in the
detection layer and changing the filter count in the preceding convolutional layer
to the appropriate amount for the number of classes in detection layers. These
changes in the last two layers in the configuration file are in bold in Listing 2.1.

Listing 2.1 Modifications of YOLOv2 neural network’s configuration

[convolutionall]

size=1

stride=1

pad=1

filters=30
activation=linear

[region]

anchors=1.3221,1.73145, 3.19275,4.00944, 5.05587,8.09892, 9.47112,4.84053,
11.2364,10.0071

bias_match=1

classes=1

coords=4

num=>5

softmax=1

jitter=.3

rescore=1

The filter count in the last convolutional layer before the detection layer is
calculated from the count of classes that the neural network is supposed to be
detecting by the equation [17]:

filters = (classes + coords + 1) - num (2.1)

Where coords represent the four attributes of bounding boxes (x, y, width and
height), constant 1 is for confidence with which the object is detected and num
stands for the number of anchor pairs in the region layer.

Anchor pairs represent initial sizes of bounding boxes in the detection layer,
which is for YOLOv2 13x13 pixels, before the closest one to the detected object is
resized. Anchors can be calculated from training data using K-Means clustering,
but for detection of hands it is not necessary as hands can be in pretty much in
any shape, just like all the different objects in the default networks configuration.

13

2.1.7 Training neural network

With the configuration file modified for the need of hand detection, the only thing
remaining is training the network itself. For this purpose, the interpreter for YOLO
based neural networks for deep learning framework PyTorch [18] was used [19]. As
it is just an interpreter for training and detecting there was no need to change the
code, because the changes to the neural networks were in their configuration files.

The neural network was trained for 150 epochs, where one epoch means a single
pass through all the training data. The training was stopped after 150 epochs passed
as the training loss and validation did not change much since epoch 100. Used
weights were from training epoch 100 to prevent the issue of overfitting, that is a
state of a neural network in which the network learned exact details of images and
did not generalize very well or at all, even though the predictions are great on the
training set, predictions on never before seen data are poor.

Training loss can be calculated in many ways. In the case of YOLOv2, it is
divided into three components. The first is coordination loss, which represents how
wrong the network was in detecting the location of the object in the image from
the ground truth. The second component is confidence loss, which represents how
much the neural network is sure about the detection. The last of the three errors,
error in object classification, is calculated as binary cross entropy. As the modified
network detects only a single object, this error is equal to zero. The final training
loss is calculated as the sum of previously mentioned errors. Training loss of the
neural network after each training epoch is in Figure 2.9.

Training loss after every epoch

0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

Loss

80 90 100 110 120 130 140 150
Epoch [-]

Figure 2.9 Training loss after each epoch

14

After a set number of epochs, the validation process was started. For the
purpose of higher precision of displaying these data, the validation process was run
after every epoch. This process consists of comparing ground truth bounding boxes
and bounding boxes predicted by the network on images not used for training the
network. The decision if the network predicted correctly is done using intersection
over union (loU) between prediction and ground truth calculated by equation (2.2).
If the ratio of intersection over union is higher than the set threshold, in this case
0.5, then the network’s predictions are accepted as correct.

ToU = Area of Overlap (2'2)

Area of Union

Figure 2.10 visually presents the area of union and area of overlap with red
overlay in an image of detected hand (blue rectangle) and ground truth (green

rectangle) for the same hand.

Figure 2.10 Area of Overlap and Area of Union

During validation, three values defining the accuracy of the network are
calculated, two of these values are Precision and Recall [20], [21]. Precision is
defined as:

.. TP
Precision = (2.3)
TP+FP

Where TP means True Positive and corresponds to the amount of correct
detections and FP stands for False Positive and matches the amount of incorrect
predictions. If the neural network did not make incorrect predictions, the Precision
of the network would be 1.

Recall is defined similarly to precision but instead of incorrect predictions, the
number of undetected objects from the ground truth image is used in the equation:

15

Recall = —= (2.4)
TP+FN

Where FN stands for False Negative and represents the mentioned undetected
number of hands in an image. If Recall equals 1, the neural network detected all
the objects in the validation dataset. To better understand what Precision and
Recall mean, Figure 2.11 explains it very well.

Relevant elements
I 1

False Negatives True Negatives
° ~ fo) How many selected How many relevant
® o items are relevant? items are selected?
True Positives False Positives
Precision = —— Recall =

Selected elements

Figure 2.11 Graphical meaning of Precision and Recall [22]

The last of the three values describing the result of validation is F-score, it is
used to measure validation accuracy as a whole and it is calculated as harmonic
mean of Precision and Recall [23]:

Precision - Recall (2.5)

F-score= 2 - —
Precision+Recall

From Figure 2.12 is clearly visible that training produced the biggest changes
in precision in the first epochs. That is because at the beginning of training, the
network’s weights were trained for detecting multiple different objects and the
changes had to be big to start detecting hands, this is done by used settings in the
configuration file for training. At first, the network needs to learn more aggressively.
A typical starting value of learning rate is 0.001 to quickly learn basic features of
hands. After some time, in this case 40 000 steps, which equals to 66 epochs with
training batch size of 8, the learning rate was lowered to 0.0001 to prevent too big
of a jump in weights values and start learning finer features of hands. The learning
rate was lowered again after epoch 95 to further decrease the difference between

16

weights and slow down learning, which was not necessary as the validation results
stayed pretty much the same since epoch 90.

Neural networks precision, recall and F-score after each

training epoch

1.0
.09
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

]

Precision, recall and F-score

0 10 20 30 40 50 60 70 8 90 100 110 120 130 140 150
Epoch [-]

Precission Recall F-Score

Figure 2.12 Precision, recall and F-score after each training epoch

2.2 Finger detection

For finger detection a pretrained neural network trained for detection of hand key
points was used. This neural network is part of the project OpenPose [24].
OpenPose uses a neural network architecture called convolutional pose machines
[25] to detect key points of specific parts of the human body. Out of the four
networks, used convolutional pose machine is focused on hand key points detection
[26]. This network takes as an input a single image, in which is supposed to be
a single hand. From this image the network on the output generates 22 heatmaps.
An example image from which these heatmaps are generated and heatmaps for each
key point of index finger are in Figure 2.13.

;
:
A .

Figure 2.13 Heatmaps generated for index finger

17

Each of the first 21 heatmaps represent an approximate position of a single key
point in the image and the last heatmap represents the background. From these
heatmaps can be easily found the location of maximum, which represents the
location of the found key point. After all the key points from all heatmaps are
found, the gesture recognition process can be started. The detected key points are
numbered and connected to create hand skeleton and all the heatmaps combined
into one can be seen in Figure 2.14.

Figure 2.14 Hand key points and combined heatmap generated by CNN

One of the biggest downsides of OpenPose is the fact that it is trained to only
detect key points of right hands. That means that the results of detection for the
left hand are much worse than when using detection for the right hand. This issue
can be avoided by flipping the image horizontally to effectively run the model over
the right hand, followed up by flipping the detected key points around again to fit
the left hand [26].

2.2.1 Left hand detection

As mentioned, the hand key point detector was not trained to detect key points of
left hands [26]. If the hand is right or left, there is no issue in running the detection
once with the only difference being the flipped input and, in the end, flipping the
key points back. But if the hand could be either left or right, it is a different story.
To battle this issue without doubling up the time needed for key point detection
by running the detection again over the horizontally flipped input image if the
results are not as expected, the flipped image is being concatenated to the original
input image as is in Figure 2.15 and the detection is being run over this modified

18

input. This way the time needed for detection stays approximately the same as the

network runs only once.

i o

Figure 2.15 Normal and modified input for hand key point detection

While running the detection over input that contains two hands, more post
processing is needed to correctly identify if the hand is left or right and to get the
correct key points out of the detection output. For this is used the fact that the
network generates heatmaps, instead of just coordinates, that helps in the fact that
there are peaks in the heatmaps for finger detected in the original and in the flipped
half of the network’s input image. All the heatmaps of this modified input combined
are in Figure 2.16. From the heatmap it is visible that in the right half of the image
with flipped left hand, the values are generally higher and more pronounced. The
reason for that is that the network is not as sure about the detection for a left hand.
For the same reason, the detection for a right hand produces better results. It all
comes down to the fact that the network was trained only over right hands.

Figure 2.16 Combined heatmaps generated by CNN out of modified input

19

The fact that the values are generally higher in one half of the output
heatmaps, it can then be used to deduce if the higher values are in the original half
of the image or the flipped one. If there are more higher values in the original half,
the hand is considered as right and similarly, if more of the higher values are in the
flipped side of the heatmap, the hand is considered as left. This approach is also
beneficial because it can help later in gesture recognition with limiting gestures only
to one hand.

2.2.2 Model conversion

The hand detector uses the interpreter of the Darknet framework written on top of
PyTorch, on the other hand the hand key point detector uses Caffe as it’s backend
framework. As PyTorch provides easy installation using python’s package installer
pip, while supporting all versions of python and CUDA, Caffe needs to be compiled
before usage. Due to this, the hand key point detector was converted to use
PyTorch. For the conversion, the utility MMdnn developed by Microsoft, was used
for converting the model between different deep learning frameworks [27].

2.3 Gesture recognition

From the detected key points, it is possible to get all the information needed for
classifying gestures. As the key points are in a list of vertical and horizontal
coordinates the distances between key points can be used to determine the pose of
each finger and the angle of the line given by these points and the horizontal axis
indicates the direction the hand or finger is pointed to.

Distance d between the key points p and g can be calculated as a Euclidean
distance for 2-dimensional space:

dp.q) = \/(P1 —q1)*+ (p2 — q2)* (2.6)

Where p; and q; are horizontal coordinates of both key points and p, and q,
represent vertical coordinates. In implementation, for most of the distance
comparisons, one of the compared distances is weighted by a constant C, to account
for different lengths of finger sections. Except of distances, the angle the thumb or
the hand is in relative to the horizontal axis is also used. All the poses the finger
can be in or the direction the hand can point in, can then be written into gesture
definition file.

All the states of fingers, that are analyzed have two options over those needed

20

for complete gesture description. State none allows the finger not to be detected
while still being able to correctly classify the gesture. State any then completely
skips the category during the matching of detected hand pose to one of the
predefined gestures. That means the gesture does not need the finger detected, or
in any specific state.

If the hand pose does not match any of the predefined gestures, the output of
pose to gesture matching returns unknown, instead of the gesture name. On the
other hand, if the hand pose fit more than one gesture, the one that comes
alphabetically first is returned.

2.3.1 Finger bends

The first thing needed for gesture classification is the state of bend for each finger.
For all fingers except for thumb, which does not have a state of full bend, the bend
state is defined in the gesture definition file by one of three states:

e straight
e partly bent
o fully bent

As is obvious, straight state means that the distance between the base and the
tip of the finger is approximately the same as the sum of distances between all the
four key points defining a finger. For the thumb, a partial bend is selected if it does
not pass as straight. The condition that needs to be met for a finger to be considered
straight is defined by equation (2.7) below. The distances that need to be of similar
value for passing as straight are shown as blue lines in Figure 2.17 a):

n+2

€Y dlnkisn) ~ dlkn, Fonss) (2.7)
i=n

Where n is the index of a key point at the base of a finger and can have a
value of 5, 9, 13 or 17 and k; is a key point with an index i. This is not possible to
use for the thumb as it has only two sections in a finger. Due to this the equation
needed to be modified:

3
€ dlky ki) ~ Al) (2.8)
i=2

21

Because the thumb is calculated only once and key points do not change
indexes, the equation uses fixed index numbering for the distance between the base
and the tip of the thumb.

If the finger does not pass the condition for being in the straight state, the type
of bend is chosen with another distance comparison. Full bend uses a comparison
of distances between the base and the tip of a finger and the length of the middle
out of the three links defining a finger. If the base to the tip distance is smaller
than the length of the middle link, the bend state is considered as fully bent,
otherwise the partial bent state is selected. This can be described with inequation
(2.9). Compared distances for a partial bent are shown with blue lines in Figure
2.17 b) and for full bent in Figure 2.17 c).

C- d(kn' kn+3) < d(kn+1' kn+2) (2.9)

Figure 2.17 Finger bend states a) straight b) partly bent c) fully bent

2.3.2 Finger spread

Another important parameter needed for gesture recognition signifies how far the
fingertips are spread from each other. This parameter is just like finger bend state
calculated using the distance between two points and is always defined for two
neighboring fingers. In the gesture definition file, the spread of fingers is defined
with one out of two possible states:

e far

e close

22

The state is decided from comparing distances between bases and the tips of
fingers, except for the gap between the little finger and the ring finger, as the tip
of the little finger is approximately one section of a finger lower than the tip of ring
finger. Due to this, for calculating the distance between these fingers, the bottom
part of the last link of the ring finger is used, instead of its tip. The state is then
decided depending on the result of inequation:

C- d(kn; kn+4-) < d(kn+3: kn+7) (2.10)

Where k,, stands for the key point at the base of the index, middle or ring
finger. In the case where the distance between the fingertips is bigger than the
distance between their bases, as is visible in Figure 2.18 a), the far state is selected.
If the tips of neighboring fingers are nearly the same or a shorter distance from
cach other than bases as can be seen in Figure 2.18 b), the close state is selected.

Figure 2.18 Finger spread states a) far b) close

2.3.3 Thumb position

Next on the list of finger poses is the position of the thumb. The thumb in general
can be in three different poses against the palm, these poses are in gesture definition

named as:
e over
e close
e far

At first, the option if the thumb is placed over the palm is tested with
comparison of two distances. The distances between the tip of the thumb and bases

23

of the middle finger and the index are compared. In the case where the distance to
the base of the middle finger is smaller than to the base of index finger, the thumb
is considered as over the palm, as can be seen in Figure 2.19 a) or defined by

inequation:

C-d(ky, ks) < d(ky, ko) (2.11)

If the thumb does not fit the rules to be over the palm, the decision about its
closeness to the palm is made. For this decision are needed the distances between
the base of the index finger and key points at the tip of the thumb and in the
middle of the thumb. Unless the distance to the tip of the thumb is approximately
the same or shorter than to the middle of the thumb the position of the thumb is
close to the palm as in Figure 2.19 b), otherwise if it is like in Figure 2.19 c) the
thumb position is considered as far from the palm.

Figure 2.19 Thumb position states a) over b) close c) far

2.3.4 Thumb tip position

Some hand gestures depend on the distance between the tip of the thumb and tip
of other fingers. It may be very important to determine whether the fingertips are
very close to each other and even touching. In the gesture definition this state is
defined by an array of all the fingers the thumb is touching or with options for

detection:
e index
e middle
® ring
o little

24

Just like with previous poses, the decision is based on the comparison of
distances; in this case three, instead of two, for a higher chance of correct pose
estimation. One of the distances lays between the tips of the thumb and the finger
that the thumb might be touching. If this distance is shorter than the length of the
last link of the thumb, as is described by equation (2.9) or in Figure 2.20 a), the
fingers are considered close enough and the finger name is added into an array of
all other fingers the thumb is close to. Otherwise the situation might resemble the
pose the hand is in Figure 2.20 b).

d(ky, kni3) < d(ks, ky) (2.12)

Where k stands for key point with specific index. Key points are in absolute
states, because the same index always represent the same key point. Key point k,
stands for the base of the finger the thumb might be touching.

Figure 2.20 Thumb tip position a) index finger b) none

2.3.5 Thumb direction

In some cases, the gesture may also need the direction of the thumb, be it pointing
downwards, upwards, left or right. Just like all other states of fingers, this is defined
in the gesture definition file with states:

* up
e down
o left

e right

Unlike with previous finger states, the direction of the thumb is calculated as

25

an angle between the line defined by two points and positive direction of horizontal
axis. From the coordinates of the two points, the following can be calculated: the
sides of a right triangle. These sides can then be used to calculate the angle with
the trigonometry function arc tangent. This function returns value in range from
— g to g, which is not enough to determine direction. Because of this, the conditional

function for arc tangent called arctan2 which takes in consideration the sign of
both input arguments and its output range is from —x to m in radians or from —180
to 180 degrees after conversion, which covers all the directions possible in
2-dimensional space, is used:

(tan’! (Z), ifx >0

X
tan™? (—) +m, ifx<O0andy >0
_1 .
arctan2(y, x) = < tan (—) —m, ifx<0andy <0 (2.13)
+—, ifx=0andy >0
——,ifx=0andy <0
\ undefined, ifx =0andy =0

Where output of the arctan2 function is the calculated angle, and arguments
x and y are points defining the hypotenuse of the right triangle. For the calculation,
points at the tip of the thumb and point at the base of the thumb are used. From
the angle, it is then easy to decide which direction the thumb is pointing to.
Graphical representation of the arctan2 function is in Figure 2.21.

arctan2(y, x)

—7r 4

Figure 2.21 The output of function arctan2 [28]

The thumb can be directed up as is in Figure 2.22 a) which happens if the

26

calculated angle is within the range of 45 to 135 degrees. Similarly, if the thumb is
pointing to the right, which can be seen in Figure 2.22 b), the range the angle must
fit into is from —45 to 45 degrees. In the case where the thumb is facing downwards,
which is shown in Figure 2.22 c), the needed range of degrees is from —45 to —135.
If the thumb is pointing to the left like in Figure 2.22 d), the range is the remainder
to fulfill the whole 360 degrees from —135 to —180 and from 135 to 180 degrees.

a7

Figure 2.22 Thumb directions a) up b) right ¢) down d) left

2.3.6 Hand orientation

The last of the parameters defining hand pose focuses on the direction the hand is
pointing to. It is calculated very similarly to the thumb direction and uses the same

group of five states for the definition of gesture:

e up
e down
o left

e right

To determine the direction the hand is pointing to, the angle between the base
of the hand and averaged coordinates of the bases of fingers is needed. The angle
is then calculated the same way as with thumb direction using equation (2.13).
Similarly, the direction is then determined by the same rules as the direction of the

thumb. Figure 2.23 represents all the recognized hand directions.

VER>

Figure 2.23 Hand directions a) up b) right ¢) down d) left

27

2.3.7 Gesture definition format

Each gesture is defined by a single JSON file in the gestures folder. These files
contain a readable and easily modifiable structure with the name of the gesture and
the definition of poses the finger can be in for the one gesture. The general structure
of the gesture definition file is in Listing 2.2 with all the main level categories.

Listing 2.2 Gesture definition format — main categories

llnamell : ll."” s
"hand": [

]

"finger_ bends": {

s

"finger_spreads": {

},

"thumb_position": [

] 2
"thumb-tip": [

1,

"thumb-direction": [

1,

"hand-direction": [

Except for the gesture name, all the possible states are always in the square
brackets, which are in JSON format used to encapsulate array members. The states
are then string names of enumeration types used in the application code, to make
readability by the human eye easier.

Curly brackets are used to represent objects; members of an object are then
represented by a string name and the corresponding value. In this case the values
are mostly arrays and other objects. Objects are used for finger bend states where
the name of the member value is necessary to differentiate between fingers and for
finger spreads to distinguish for which fingers the spread is in between. The final
bend state and spread of fingers is again defined as an array of string names.

To allow the hand or pose of finger to be in any state possible and to skip the

28

© 00 N O O W N =

=
= O

category in gesture matching, the keyword “any” can be used to indicate that the
category does not matter. For example, keyword “any” can be used to identify that
the gesture can work for both the left and right hand. Two definitions, one using
a list of string names and the second one with only the keyword “any” but with
the same outcome are in Listing 2.3.

Listing 2.3 Gesture definition format — keyword “any”
"hand": ["hand": [
"left", "any"
"right",]
"unknown"

2.4 Graphical user interface

To ensure ease of use, a graphical user interface for the application was created.
For this purpose, the open-source cross platform Python library Kivy [29] was used.
Kivy uses event-based programming, resulting in the application running in super
loop and just responding to event callbacks from the user interface. The Ul can be
designed either directly from Python, which can become very confusing with bigger
projects, or by using Kivy proprietary language called KV, in which a tree structure
of widgets with rule-based properties can be defined. Hello World type of
application UI using KV language is in Listing 2.4.

Listing 2.4 Hello world in KV language

#:kivy 1.10.1

BoxLayout:
orientation: ‘vertical’

Label:
text: ‘Hello ’ + ‘World!’

Button:
text: ‘Close’

on_press: exit()

This simple application will be composed of two widgets, label occupying the
top half and button in the lower half of the window. KV language can also use
simple python commands and conditions in its properties. This is presented with
the concatenation of strings in the text property of the label. Python function calls
can be also used, like exit() function call in the on_ press event callback.

29

2.4.1 Main screen

The application is designed to use a single screen, which contains a video player
with a hide-able control panel at the bottom of the screen, which contains the
typical play/pause button, option to go through the video frame by frame in either
direction, position slider for easy navigation in the video, current time in the video
and the length of the input sequence followed up by a quick screenshot button. At
the top of the application window is located an action bar containing function
buttons at the top.

Each button launches a callback function which results in opening a popup
overlay with file browser, setting the video source to camera, sliding a panel with
more options into the screen, button that reloads the source file or enables log
saving. The base screen of the application is in Figure 2.24.

(YW Computer vision and hand gestures detection and fingers t... ﬁ

Figure 2.24 Created application window

In the design of the application, most of the used icons belong to the open-
source icon pack called Open Iconic [30] with the colors changed to fit the dark
interface, and some icons were made from scratch, such as the icon for save image

button because Open Iconic did not contain an icon usable for this function.

30

2.4.2 Settings

The settings panel contains options for configuring the detection itself. One of the
options is the usage of NVIDIA CUDA which is by default turned on if the system
contains a supported GPU. Other options allow the hand detector, finger detector
or gesture matching to be disabled, which can be done if the GPU does not have
enough video memory to fit both neural networks into it or the functionality just
is not needed. To be able to use this application with GPUs with less amount of
memory, the option to use only half precision floating point models is available.
This may also produce faster processing on supported GPUs but for the cost of
possibly lower accuracy. Half precision is also not available for use on CPUs, so the
option is automatically disabled if the NVIDIA CUDA is not used.

More cosmetic options include the drawing of hand skeletons, joints or detected
bounding boxes into the image or the frame of a video sequence. The last two
options represent the frame rate the detection should try to get if the hardware is
powerful enough; the base frame rate of video or camera is set when the source is
selected, and how many frames should be skipped between detections, which is by
default 0. The settings panel is shown in Figure 2.25.

L]
{ W Computer vision and hand gestures detection and fingers t... @

Use NVIDIA CUDA: " oN Use hand detector:
Use keypoint detector: " oN Use half precision:
Use gesture matching: " oN Draw Boxes:

Draw skeleton: " oN Draw skeleton joints:
Target FPS: u Skip Frames: m

Figure 2.25 Detection settings available in application

Except for the settings that change the processing unit and precision of
calculation, this is because big data transfers of models between GPU and system
memory or the need to reload weights, all of the settings can be toggled during
detection and the new setup is used for detection over the next frame.

2.4.3 Record panel and settings

Saving the video is designed in a slightly different way than is usual for applications
working with video sequences. Instead of saving the whole video and waiting for

31

the whole video to be processed, the saving is done using a recorder. The recorder
can be launched at any moment in the video and can be paused to allow skipping
of certain parts of the video. The record panel also includes optional toggle to save
log during the output video saving. Both expanded record panel and record settings
panel are shown in Figure 2.26.

L] &
< %W Computer vision and hand gestures detection and fingers t... H c [] “ a 1

Output video file:

D:\Qutput_Video.avi H

— Qutput FPS:
o Output resolution:
o]

Hide advanced
Change of these settings might m

cause the application to crash!

FourCC Encoder ID:

MJPG

FourCC must also match output
video container. Possible FourCC:
MJPG, DIVX, H264 and more...

Figure 2.26 Record panel and record settings

All the settings are set automatically after opening a video or loading up
a camera to match the resolution and frame rate of the input. This does not mean
that the settings cannot be different, as the frame rate and resolution can be
changed to almost anything and the frames will then be resized and written with
the frame rate set before the recording is started.

The advanced record settings contain a single text box, in which can be written
FourCC (four-character code) defining an encoder that is to be used while
generating an output video sequence. There are many FourCC sequences [31], but
it is impossible to say upfront which will work on specific systems. Because this is
the only place for the user to input an incorrect setting, a warning about possible
application crash is also included. Most common FourCC codes are MJPG, DIVX,
H264 but there are many more. By default, FourCC used by the application is

32

MJPG, which stands for the codec Motion JPG and should be available with every
OpenCV build, but the produced output file is very large compared to more
advanced codecs like DIVX or H264.

The approach of using a recorder also allows changes in detection settings
during the saving process, like disabling hand detector, changing target frame rate
or just turning off the rendering of hand skeletons.

2.4.4 Info panel

Last of the Ul elements is panel containing information about the application,
version of python and versions of used libraries, hyperlinks to project repository
and university website and contact email. Expanded info panel is in Figure 2.27.

] k Ld
(W Computer vision and hand gestures detection and fingers t... H ([] L ﬂ 'L

Computer vision and hand gestures
detection and fingers tracking
Author: Tomas Bravenec
Email: xbrave01@vutbr.cz

Web:
Repository:

Python version:
Python: 36

Python libraries:
OpenCV: 4.00

PyTorch: 1.0.1

Numpy: 1.15.4

Kivy: 1.10.1
Figure 2.27 Application’s info panel

2.5 Application development

The whole application can be divided into four parts. Three of these parts represent
the whole process from hand detection to the final gesture recognition. The last
part of the application is the user interface, which is then by callbacks and rule-
based functions connected with the computational part of the application.

33

2.5.1 Models download

Because of the size of the weights for both neural networks, these are not included
in the source code repository. There are two options on how to download these.
Either the weights will be downloaded at first launch of the application, showing
the progress of the weights download in the terminal window, before the UI loads
or downloading them manually before launching the main application by running
the script get_models.py from the repository [32]. The result is the same as the
application calls the functions from get models.py on every launch to check if the
models are present and downloads them if they are not.

2.5.2 Background logic

The logic behind the complete gesture detection is divided into three python
modules. Hand key point detection and gesture matching are in their own modules.
Hand detection is included in the module with the wrapper class.

The hand detection neural network contains all the logic in the Darknet
interpreter python package, and the only preprocessing needed is conversion of color
format from BGR to RGB. That means the function call for prediction over an
input image is included in the wrapper class without any postprocessing.

The situation is different when it comes to the hand key point detector from
the project OpenPose, because the weights have been converted to PyTorch, the
whole preprocessing and postprocessing had to be written from scratch. Even if
that was not the case, because of the decision making in the case of the left or right
hand, the implementation would be very different anyway.

Gesture recognition, unlike either of the detections is tied to the hand key
points detector and subsequently cannot be launched on its own. Gesture matching
consists of getting the pose out of the key points, which is then followed up by
gesture matching. The main idea behind the algorithm is to check if the current
parameter of the pose can be in the defined gesture. If any of the pose parameters
cannot be in the tested gesture, that gesture is removed from the list and the next
definition is tested. The best-case scenario would end up in either an empty list or
a list with a single remaining gesture definition left for an unrecognized gesture and
a recognized gesture respectively. In the case the list contains more than one gesture
definition, the one first loaded into memory is used as the resulting gesture.

The whole detection logic is wrapped in the hand tracker class that provides
a single function to provide complete detection from a static image or a single
frame of a video sequence. The class also contains functions and state variables to
allow for changing detection settings.

34

These functions are useful for easy binding to the switches in the application’s
settings, that allow to easily change the output from the prediction function. Some
of these changes though cannot be done during detection and can only be made

while the detection is not running.

2.5.3 Multi-threaded processing

To make the Ul of the application responsive without freezing the Ul during tasks
that need a lot of time for calculation, the processing logic of the neural networks
was moved to a separate thread. This means that the application’s Ul stays
responsive even during time consuming detection. To keep full control of this
thread, the control is done using simple semaphores. One that keeps the thread
running and the second, that allows the processing to start. If the thread is running,
but processing is stopped, the thread is put to sleep for half a second, before it
checks if processing is required or not. The main reason for this delay is to make
the application use less processing power at the time of not doing anything. The
processing thread is also created only at the time of changing the source for
detection, and only after the previously running thread stops. This approach makes
threading relatively easy, because there are always at most two threads running.

2.5.4 Logging

The application includes two logging systems, one runs only during recording and
the second one runs all the time. Even though logging is always running, the log is
saved only if the option is selected.

If the option to save log is used and the source is a video, the log will be saved
on a change or reload of the source file. This approach ensures that the log contains
information about every processed frame and is the only option, because of the
atypical saving system. The log for an image is saved only if the processed image
is saved and log for a camera feed is not taken at all as there is no video information
to compare it to after the frames from the camera are processed.

The situation is different if the recording is running. At the start of the
recording, a second logging object is created, which records every information about
every frame saved into the output video file. This also means the logging object
starts indexing the frames from zero and uses the output framerate to calculate the
timestamp in the log to match the output video.

The logs always contain a header, which for images contains the output image
path and the dimensions of the image. The log then contains a single line for each
of the hands in the image. These records contain the information about the

35

bounding box in normalized format and string representation of the detected hand
and gesture. In the case the hand detector is not used, the bounding box location
is put in the center of the picture with a width and height matching the dimensions
of the image. If the hand key point detector or gesture matching is not used, the
word “unknown” is used in the log. If the gesture does not match any of the defined
gestures, the word “unknown” is used instead of the gesture name. The format of
the log with header and record is in Listing 2.5

Listing 2.5 Log header and record format for static images
<filename>, Shape: <width>x<height>
<x> <y> <width> <height> <hand> <gesture>

The format of the log header for video sequences compared to the log for
a single image also includes information about the video framerate. The records of
the log then also include frame index and calculated timestamp from the frame
index and the framerate. After these two new values, the format is the same, with
the bounding box information in normalized format and the string representation
of the hand and gesture. Format of the log for video sequence with all the

information is in Listing 2.6.

Listing 2.6 Log header and record format for video sequences
<filename>, FPS: <framerate>, Shape: <width>x<height>
<frame> <time> <x> <y> <width> <height> <hand> <gesture>

2.6 Application prerequisites

The created application uses very memory and computationally intensive methods
of image processing, so the hardware of the system must be appropriate. There are
prerequisites when it comes to both the hardware and the software of the system.

2.6.1 Source code repository

The application’s source code, including full change history and step by step
installation guide for both Microsoft Windows and Linux based systems, is stored
completely in a git repository [32].

2.6.2 Hardware requirements

When it comes to processing using a CPU, which is possible but not recommended
because of long processing times, the system should have at least 8 GB of system
memory, but 16 GB or more is recommended, as the system itself normally uses at

36

least 2 GB on its own, and 6 GB is then easily filled with the weights of both neural
networks and processed image, and in the worst case scenario the system might
start moving data into swap. This can then result in a very unresponsive system,
not just the application behavior.

If the system contains a supported NVIDIA GPU, the system memory can be
just 8 GB, but the GPU memory should have at least 6 GB be for smooth
functionality. With either the hand detector or the hand key point detector disabled
and with half precision processing enabled, the application can run even on cards
with 2 GB of video memory.

There is no requirement on the CPU performance, but for the best
performance, the model of CPU should not bottleneck the GPU available in the
system and vice versa. The result of bottlenecking is lower frame rate in the example
as a result of the CPU not serving the images for processing quickly enough or the
GPU waiting for the commands from the CPU, so the load of the GPU is nowhere
near the load it could be with adequate CPU.

2.6.3 Software requirements — Microsoft Windows

The application on the operating system Microsoft Windows, only needs installation
of 64-bit Python version 3.6 with pip package manager installed. Although the
Python version can be higher, the link to PyTorch package wheel in
requirements.txt would have to be changed according to PyTorch Get Started
guide [33]. The python installation should also be added into the system path during
installation to ensure there would be no issues during package installation process.
The NVIDIA video driver corresponding to the version of the CUDA toolkit, the
PyTorch package has been compiled with, installed is also necessary, if the
accelerated GPU computing is to be used. The minimal video driver version can be
found in NVIDIA CUDA documentation [34]. The full installation of the NVIDIA
CUDA Toolkit is not necessary as PyTorch already comes with prebuild binaries
needed for GPU accelerated computation.

All the Python packages needed are in file in the root of the repository
requirements.txt and can all be installed with the command in Listing 2.7. To allow
usage of the same requirements.txt on Microsoft Windows and on Linux based
systems, the OS specific packages are marked inside the file with environmental
markers.

Listing 2.7 Python packages installation command on Microsoft Windows

| python -m pip install -r requirements.txt

37

2.6.4 Software requirements — Linux

Just like with Microsoft Windows, the recommended Python version is 3.6 in 64-bit
version, higher versions of Python can be used, but the links to the PyTorch wheel
in requirements.txt needs to be changed for the same reasons as for installation
in Microsoft Windows and the new link can be found using Get Started guide on
PyTorch website [33]. Unlike with Microsoft Windows, Linux based systems need
a few packages installed through the system package manager. The main package
in question is the framework for graphical user interface Kivy and its dependencies,
as mentioned in the Kivy installation guide for Linux [35]. The Python installation

also needs packages:

e cython
e setuptools

e wheels

These packages are needed to build the Kivy wheel before the installation itself.
Just like with Microsoft Windows, the appropriate NVIDIA video driver [34] is
necessary for PyTorch to allow NVIDA CUDA in application settings. After that
the setup is like the setup process in Microsoft Windows. All the python packages
are in the same file requirements.txt and on Linux can be installed with

command in Listing 2.8.

Listing 2.8 Python packages installation command on Linux
pip3 install -r requirements.txt

38

3 Dataset creation

Using only the EgoHands dataset [12], the application provided good detection
results, when it came to hands doing stuff on a table, like playing chess or Jenga.
Which makes sense as it is created out of multiple video scenes where people play
cards, chess and Jenga. This also means, that the results when it comes to hand
detection in various poses, considerably different to the actions that the dataset
was created on, were not exactly good. The same thing applies for MPII Human
Pose dataset, as it contains people in various poses, training neural networks for
detection of hands using only this dataset provides disappointing results. Similarly,
for the New Zealand Sign Language dictionary, which contains images in similar
settings without more widely varied conditions. That meant that the datasets had
to be expanded to create a more varied set of images.

3.1 Obtaining images

To be sure that the dataset contains most of the gestures humans can do with their
hands, it is vital to use images that contain these gestures in different environments,
lighting, poses and so on. For this very reason, it is a good idea to combine existing
datasets or use frames from videos that are on the internet and create own data by
recording what the network should train on.

3.1.1 Combining existing datasets

The easiest way of expanding datasets is to combine two of them together.
Especially if both datasets include annotations of the object needed for training. In
that case, combining datasets is just about converting annotations into the required
format. If the dataset does not have desired annotations, then these must be created
manually using one of the labeling tools.

This is the method used in expanding the EgoHands dataset with images from
the New Zealand Sign Language dictionary and the MPII Human Pose dataset. As
mentioned before, neither of these had required annotations, so these were created
manually.

3.1.2 Recording own data

For the purpose of recording own data, Python script saving a frame from a webcam
after a set interval or selecting frames from a video sequence recorded on a camera
can be used. Either of these approaches is usable in this case, although the recording

39

device should have high quality image capturing, as the neural network provides
better results if trained on images with higher resolutions, rather than lower
resolution images. An example of such images with ground truth annotations are
in Figure 3.1. This approach was used to create evaluation dataset for left hand
recognition and gesture classification part of the application.

Figure 3.1 Custom images for dataset extension

3.1.3 Getting videos from the internet

Another way of modifying the existing dataset is using frames from videos with
license that is allowing reuse of the content, that can be found on the internet.
A couple of frames from videos from YouTube can be seen in Figure 3.2. Scraping
videos from the internet is a viable option, but this approach to dataset extension
was not necessary as the three combined sets of images provided a high variety of

training data.

Figure 3.2 Images from YouTube videos [36], [37]

3.2 Annotation of images

Annotation can be done in two ways. One way is by manually creating files and
measuring distances from the corner of an image followed by width and height of
the object. The data must then be manually inserted into a file. This approach is
not ideal as doing this for thousands of images would be extremely ineffective.

40

Because of this, annotation tools are much more effective. Their purpose is to create
annotations in the format that would work for a specific network or in some format,
which could be easily transformed into another. The process of creating the
annotation is mostly automatic, the only thing that must be done is manually
selecting the object that needs to be annotated and the tools take care of the rest.

3.2.1 Tool Labellmg

The YOLOvV3 neural network needs specifically annotated images for training. The
annotation consists of a single txt file for each image, that contains the ground
truth information about objects for which the network should train and their
bounding boxes; each object in the image is placed on a new line. The locations and
dimensions of bounding boxes are in normalized format independent of the image
resolution and object class is represented by its index. The format of these
annotation files is in Listing 3.1.

Listing 3.1 Format of image annotations for YOLO based networks
| <class> <x> <y> <width> <height> |

For annotating all the additional images the multiplatform application
Labellmg [38] was used, which can generate annotation files in the correct format
from the bounding boxes drawn into the image. User interface of Labellmg is shown
in Figure 3.3.

labellmg D:\Repos\handtracking\images\train\img\CHESS_LIVINGROOM_S_B_frame_1570.jpg - O
File Edit View Help
- ~ | Box Labels & x
74 [diffait
Open
Use default label
e hand
Open Dir hand
Change Save Dir Fle List 8
B DA\Reposihanditracking\imagesitrainime A
Di\Reposthandtrackinglimagesitraintimg
NextImage Di\Reposthandtrackinglimagesitraintimg
DA\Reposthandtrackinglimages\traintimg
L DA\Reposihanditracking\imagesitraintime
E— DA\Repos\handitracking\imagesitraintime
DA\Repos\handitracking\imagesitraintimg
(=] DiiRepos\handiracking\images\trainiime
= Di\Reposthandtrackinglimagesitraintimg
Save Di\Reposthandtrackinglimagesitraintimg
DA\Reposihandtrackinglimagesitraintimg
yobo DA\Reposihanditracking\imagesitraintimg
‘oo DA\Reposihanditracking\imagesitraintimg
DA\Reposihandtrackinglimagestrainiimg
Di\Reposthandtrackinglimagesitraintimg
= Di\Reposthandtrackinglimagesitraintimg
Create DA\Reposihanditrackinglimagesitraintimg
(= 2 D:\Repos\handtracking\images\train\ime
E DA\Reposihanditracking\imagesitraintimg
o DiAReposihandtrackinglimagesitrainiime
T D#\Reposihandtracking\imagesttrainime
Di\Reposthandtrackinglimagesitraintimg
DA\Reposthandtracking\imagesitraintimg
DA\Reposihanditracking\imagesitraintime
¥ || D:\Repos\handtracking\images\traintime ¥
¥ < > < >

X: 749, Y2 447

Figure 3.3 Annotation tool Labellmg

41

These annotations are usable only with neural networks based on YOLO
architecture, but can be easily converted for use with any other neural network
with simple scripts written in python. After annotating, the dataset was ready for
training the neural network.

3.2.2 Website Supervise.ly

Another very useful tool for dataset annotations is the website called Supervisely
[39]. This online based tool is very capable as it can create the annotations in its
editor, which is shown in Figure 3.4. It can also show statistics like how many
images are left to annotate, and even the percentage of image space, that is occupied
by the objects.

Even though it seems like it can do a lot already, the functionality does not
end here, Supervisely has also implemented data transformation language, that can
easily divide the dataset into multiple smaller datasets, which is useful for creating
subsets of the dataset for training and evaluation. Another interesting feature is
data augmentation, which extends the dataset by color shifting, flipping and
rotating existing images.

n « PUZZLE_COURTYARD_T_H_frame_0082] (o] 4} = 2 cd

EgoHands Settings Screenshot Fullscreen Hotkeys Help tbravenec

® IMAGES 4381
<1 69 70@72 73 - 88 > Goto
»= PUZZLE_COURTYARD_T_H_frame_00¢

€3 M17daysago
PUZZLE_COURTYARD_T_H_frame_00%
3 B17daysago
PUZZLE_COURTYARD_T_H_frame_01C
*3 M17daysago

PUZZLE_COURTYARD_T_H_frame_01¢
®4 P17 dave ann

® FIGURES 3(5)
& S Class 92 2o
#1 ® hand 4% -
“2 ® hand @ WO

“3 ® hand 10% ©

4 HISTORY 7

Figure 3.4 Annotation tool Supervisely

On top of that, supervisely also contains the means to train a few predefined
networks using the annotated and augmented datasets. This feature though is not
implemented on the website itself but needs a separate Linux based system with
NVIDIA CUDA support, as the website will only control the machine that will do
the computing.

42

4 Evaluation and testing

As with any deep learning applications, it is highly recommended to use GPUs to
speed up the forward pass of input data through the neural network and out of the
output. Most of the deep learning frameworks like TensorFlow, PyTorch and others
use NVIDIA CUDA for this purpose. The framework used for training and then
testing was PyTorch, because of this, the GPUs used to evaluate the performance
of the application are only from NVIDIA. As there is pretty much no point in
creating a hand detection solution with hardware that almost no one has, one of
the GPUs used is a few generations behind current ones and targeted on laptops,
which means it is less powerful than its desktop counterpart. The second tested
GPU is targeted at desktops and is a single generation ahead of the laptop one.
Even then, the desktop GPU belonged to the mid-range and was nowhere near as
powerful as the most expensive GPUs from the same generation. Parameters of
both tested graphics cards are listed in Table 4.1.

Table 4.1 GPU used for evaluation and testing

NVIDIA GeForce GTX | NVIDIA GeForce GTX

850M 1060
CUDA cores 640 1280
Base core clock 0.901 GHz 1.607 GHz
Max boost clock 1.084 GHz 1.835 GHz
Memory 2 GB 6 GB
Memory bandwidth 80.0 GB/s 192.2 GB/s
Memory type DDR3 GDDR5
Manufacturing process 28 nm 16 nm
Architecture Maxwell Pascal
Target system Laptop Desktop
Launch date March 2014 July 2016

There are some options to get even better performance out of the graphics

cards, if they support it. Because the architecture of the GPUs changes a lot in
between generations, these usually do not differ just in the performance
improvements but also in the features of the GPUs. For example, compared to the
Maxwell architecture, graphics cards based on the Pascal architecture support

43

mixed precision processing [40]. In practice, this means that lowering the precision
of the data types from 32-bit floating point to the floating point represented with
only 16 bits, not just the memory requirements but also the time needed for
processing will be cut in half. Another improvement in performance could be gained
with GPUs based on the Volta architectures, some GPUs based on the Turing
architecture and possibly architectures released in the future. Graphics cards based
on these architectures may contain not just CUDA cores, but also tensor cores [41].
Tensor cores are specifically optimized computing cores for matrix operations which
are used at the core of deep learning applications.

Just for good measure, testing was also done on CPUs available in systems
with tested GPUs, to show the performance loss on systems without a GPU from
NVIDIA. Same as for the tested GPUs, testing was done on a few years old laptop
processor to show how quickly the neural network can detect hands on lower end
hardware and on much newer desktop CPU to show the difference in performance
achievable with a more modern CPU. Tested CPU parameters are in Table 4.2.

Table 4.2 CPUs used for evaluation and testing

Intel Core i7 4700HQ Intel Core i5 8400
Cores 4 6
Threads 8 6
Base core clock 2.4 GHz 2.8 GHz
Max boost clock 3.4 GHz 4.0 GHz
Memory 16 GB 8 GB
Memory type DDR3 DDR4
Manufacturing process 22 nm 14 nm
Architecture Haswell Coffee Lake
Target system Laptop Desktop
Launch date June 2013 October 2017

4.1 Hand detection

On the hand detection testing can be looked at from two angles, accuracy and
speed. Accuracy of the network is calculated during training, so it can be evaluated
subjectively. On the other hand, the speed of detection can be easily measured.

44

4.1.1 Detection accuracy

From predictions made on the validation dataset, most of the time the hands are
detected correctly, and predictions of bounding boxes are very close to actual
ground truths. The comparison of ground truth and predictions made by the neural

network can be seen in Figure 4.1.

Figure 4.1 Comparison of ground truth and CNNs prediction [14] a) ground truth
b) predictions by neural network

Even though most of the time the trained neural network manages to detect
hands correctly there are times it can get confused and show incorrect detections.
This can happen when the image is blurry, hands are obscured from full view by
other objects, the objects look from a certain angle as human hands or just make
incorrect predictions without a reason. These situations can be seen in Figure 4.2
where in one image two hands are detected as one, just like an ear and a tool in a
belt, or in the second image where the design on the jersey of one of the basketball
players is recognized as a hand. On the other hand, from this second image, it can
be taken as fact that hand detection works on various skin colors.

Figure 4.2 Incorrect detections [14]

Because the hands from the first-person point of view included in the
EgoHands dataset were not used for training the neural network, hands from this
perspective are mostly not being recognized either. In Figure 4.3 are shown
examples of missed detections from the first-person point of view.

45

Figure 4.3 Undetected hands [12]

4.1.2 Detection speed

To make things clear, the neural network has a fixed input size, which means that
all input frames are resized to the resolution set in the configuration file of the
neural network before it was trained. In this case, the resolution is 416x416 pixels.
As expected, the times needed for running the detector on any of the available
CPUs provided unexceptional results as low as 0.61 frames per second using a
mobile processor, the desktop CPU even though four generations newer and with
higher clock speed, managed to be only three times as quick. Using the GPUs
provided much better results, even the older mobile graphics card easily
outperformed both tested CPUs by a big margin and managed to get to more than
three times higher framerate than the desktop CPU. Although the mobile GPU did
beat both CPUs by a big difference, using a newer desktop GPU provided a massive
performance increase, although not as high as it could be, due to the bottlenecking
of the graphics card by the CPU in the system. All the measured frame rates and
times needed to process a single frame of a video sequence are listed in Table 4.3.

Table 4.3 Detection speed comparison between GPU and CPU

Frames / second ms / frame
Intel Core i7 4700HQ 0.61 1639.34
Intel Core i5 8400 1.83 546.45
NVIDIA GeForce GTX 850M 6.81 146.84
NVIDIA GeForce GTX 1060 6GB 28.91 34.59

4.2 Hand key points detection

As the key point detector belongs to the project OpenPose, the evaluation of the
neural network model was already done in paper [26]. What can be tested and does
not belong to the original paper, is the decision if the hand is left or right.

46

4.2.1 Left hand recognition

Since OpenPose uses another neural network, specifically for human pose
estimation, the decision for which hand the pass through the network should be is
quite straight forward. The implementation is vastly different from the one used.
Because of that, the accuracy of the current implementation had to be evaluated.

For the evaluation, 147 hands were used in a set of 101 testing images that
contain people showing hands with different gestures using either one or both of
their hands. This set of images was also taken with varying lighting conditions and
in different environments. T'wo of the pictures from this testing set with annotations
of left and right hand are in Figure 4.4.

RESTAURAN

i

[
HOP
| Tty

Figure 4.4 Images from the evaluation dataset with hand annotations

The implementation of the hand classifier managed to correctly classify the
hand in 94.5% of all tested cases. Exceptions to the correct detections are mostly
the cases when the hand is positioned in a way that can resemble the other hand.
This situation usually occurs at moments when it is not clear from the image cutout
containing the hand, which hand it is. A situation like this, where the neural
network can be mistaken by the very similar outlines and pretty much the same
distribution of key points, is depicted in Figure 4.5, and even in this situation the

incorrect detection is not certain and depends on the quality of the input image.

Figure 4.5 Left and right hand with similar key point distribution

47

To represent both correct and incorrect classifications of hands, the confusion
matrix in Figure 4.6 was created. From this matrix it is visible that only in a few
instances the classification was not accurate, and the number of incorrect
classifications is insignificant when compared to the number of correct ones. From
the confusion matrix it is clearly visible that the logic behind the hand classifier is
accurate in most cases.

Confusion matrix of left/right hand classification

70
60
Left hand
<
+
=
—
=
e}
=)
j}
= - 30
(@)
Right hand - 20
- 10

Classification

Figure 4.6 Confusion matrix for recognition of left and right hand

4.2.2 Half Precision calculation

Even though the full evaluation of the hand key point detector was not necessary,
due to the option of using half precision floating points, the accuracy can be lower
than expected. This issue was encountered when working with the neural network
only once using an image found on the internet, where the usage of half precision
made a difference. While using single precision, the hands and hand key points were
detected correctly and the gesture classificator predicted both gestures correctly as
is in Figure 4.7 a) even though the second key point of the ring finger on the left
hand is slightly off the correct position. On the other hand while using half
precision, the second key point of the index finger on the right hand was not
detected correctly which is in Figure 4.7 b), which might have been due to overflow

48

in one or more of the layers in the neural network. This resulted in incorrect pose
estimation and wrong gesture classification. Even though there was a difference in
the predicted key points of the right hand, key points of the left hand stayed the
same, no matter the precision used for calculation.

Figure 4.7 Effect of half precision on hand key points detection [42]
a) single precision b) half precision

4.3 Gesture classification

For the purpose of testing the gesture recognition system, eight gestures were
predefined. These gestures were also included in the creation of the dataset for
evaluating the hand and gesture classifier. All the predefined gestures are presented
in Figure 4.8.

VAN A &b

Figure 4.8 Predefined gestures a) One b) Two ¢) Three d) Four e) Five
f) OK g) Thumbs up h) Thumbs down

Correct classification of a gesture is ultimately dependent on the predicted
hand key points positions. This makes evaluation of gesture classification quite
difficult, because the error might not be in the gesture classification, but in the
output of the key point detector.

To evaluate, the same set of 101 images used to evaluate the classification of
the left or right hand was used. These images were manually labeled with the
gestures shown in them. If the label matched the predicted gesture or was unknown
because the gesture was not in the predefined set, the prediction was taken as

49

correct. In the case the hand key point detector produced a result that was
obviously wrong, like in Figure 4.9, that detection was not used in the calculation
of the success rate of the gesture classificator as it does not objectively represent
the error in the gesture classification.

UNKNOWN

The images from the evaluation dataset used for classification contained either
a single hand, where hand detection was not necessary, or with multiple hands in
various poses with the need for the hand detector. Both cases of the evaluated
images are displayed in Figure 4.10.

Figure 4.10 Gesture recognition evaluation images

The success rate was then calculated as a simple ratio between the correct
classifications and total hand gestures used for testing. This produced a success rate
of 79.8%. The success rate had to be from the beginning lower than the success rate
of the left- or right-hand detection, because if the key points were meant for the
other hand, they are most of the time not very usable for further gesture matching.
The reason for slightly lower success rate of gesture matching is the hand key point
detection neural network. Because the fingers can be hidden from the view, the
neural network must guess the pose, the finger might be in. The key points of a
finger can be predicted in a position that does not match the gesture rules. Because

50

of this, even though subjectively the hand pose fits the gesture, it does not actually
pass the rules.

The evaluation dataset contains 119 hands, on which the hand key point
detector subjectively predicts the locations of key points correctly. Out of these 119
hands, each of the tested gestures was represented with approximately 10 to 18
occurrences in the dataset. On top of the tested gestures, 16 hand poses that did
not match any of the predefined gestures were included to also test if the gesture
matching logic understands the unknown hand poses correctly. From the results,
a confusion matrix in Figure 4.11 was also created for visual representation of the
accuracy. As is visible, most of the classifications are on the main diagonal, which
means these classifications were correct, and if they were not, in most cases the
gesture was classified as an unknown gesture.

Confusion matrix of gesture classification

One-d 7 0 0 0 0 0 0 0 3 14
Twoq O 0 0
12
Three{ 0 0 2
10
ﬁ:j Four4{ O 0 4
e 8
o] Fiveq4 0 0 3
!
=}
§ oK 0 0 1 -6
Thums Up4 0 0 3 L4
Thumbs Down { 0 0 0 0 0 0 0 7 3 5
Unknown 4 1 0 0 0 0 0 0 0 15
T T T T T T T T I 0
¢ L FE SR e
R
SN P
RS
N
Classification

Figure 4.11 Confusion matrix for predicted gestures

51

5 Expansion possibilities

The computational backend of the application could be expanded in the future to
provide better detection results and additional functionality.

5.1 Detector modifications

As the neural network used for hand detection does make mistakes, the result could
be further improved without modifying the code by retraining YOLOv2 with an
even more diverse dataset of hands, or by replacing the neural network by
a different YOLO based architecture. The successor of YOLOv2, YOLOv3 [43]
already exists and should produce much better results because it uses not just one
but three detection layers, each in different scale of the input image, but due to
much higher performance requirements, the older version was used. Changing the
detector can be easily done by just swapping the configuration file and the
corresponding weights for another YOLO based neural network.

5.2 Key points post processing

The OpenPose key point detector produces output with a lot of jitter that can be
expected as the detection is always done on a single frame, but it could also be
improved by performing detection over a time window, and smoothing out the
detection in the frame at the center of the window. The result would then provide
a smoother less jumpy movement of the drawn hand skeletons. That would be
easier to match the gesture to.

This detection over a time window could also be used to fix incorrect detection
between a couple of frames. While in the majority of the frames the finger would
be detected in a similar place and in the middle of the window there would occur
a sudden jump in the location of the key points, followed up by returning to
a location very similar to the previously detected sequence, the incorrect location
of key point could be replaced by approximating the key points position.

Both approaches would result in smoother, higher quality detection, although
for the price of losing real time processing, depending on the size of the detection

window.

52

Conclusion

The goal of this master’s thesis was to study and analyze possible approaches to
hand detection, gesture recognition and finger tracking, select one of the possible
approaches to the issue and create a multiplatform application capable of processing

images, video sequences and a camera stream.

Most of the approaches to hand detection expect at least some kind of
cooperation with the person in front of the camera, be it wearing colored gloves to
easily detect important points of the hand, or just expecting the hand to be in
a pre-defined part of the image. Other approaches might require specialized
hardware for video capture with depth channel and so on. These issues made most
of the generally used approaches unusable.

To create a system capable of hand detection that is not dependent on lighting
or the environment, it is almost impossible to use a rule-based system. That might
result in confusion during detection in situations not thought about during the
creation of the system. To avoid these issues and to create much more robust hand
detection the approach using a neural network was chosen.

Because neural networks need a lot of training data to produce usable results,
the training dataset was created with a combination of the EgoHands dataset, MPII
Human Pose estimation dataset and a couple of videos from the New Zealand Sign
Language dictionary. The combined dataset provided a high variety of hands in
different environments, lighting and poses, and contained over 6000 images, usually
with more than one hand in each. After training, the neural network YOLOv2
resulted in very good detection results with 89.2% of all relevant objects, in this
case hands, detected. Out of all the detections, the network managed to find the
hands properly in 85.7% of all cases.

The hand detection specific neural network was necessary due to the usage of
another neural network, for predicting hand key points, which needs an image with
only a single hand. This network is one of the networks used in the project
OpenPose and can predict the position of fingers, even if the fingers are hidden

from the camera view.

Even though the network is from the project OpenPose, the processing of the
image before and after the forward pass through the neural network is completely
different from the OpenPose implementation. The additional processing adds the
capability to recognize whether the hand sent through the network was left or right
correctly in almost 95% of all cases, which adds the possibility to implement gesture
recognition with gestures specific for either left or right hand.

53

The biggest downside of using the neural network from the project OpenPose
is quite slow processing due to the sheer size of the network. But with more and
more powerful hardware available every couple of years, this issue will cease to be
a problem in the future.

The expandable gesture recognition part of the whole system works with
comparisons of Euclidean distances between important key points. Depending on
those distances, the system predicts the pose the finger or fingers are in. Since the
gesture recognition highly depends on the output of the neural network for the
hand key point detection, the success rate cannot be as high as it could be, if the
locations of hand key points were not predicted but known for certain. Even then,
the tested gestures were recognized correctly in 79.8% of all the cases in the
evaluation set of images.

The gestures the system tries to detect are defined in the gesture definition
files and new gestures can be easily added by creating a new gesture definition file
in the gestures folder. These definition files should contain the new description of
the poses the fingers of the hand can be in.

When it comes to detection performance, there is no comparison between the
CPU and the GPU, even when using a modern desktop CPU; an old laptop GPU
is a much better choice for running neural networks, due to their parallel nature.
That said, the CPU in the system should not be bad either, as the application
might run into performance issues due to bottlenecking.

The whole detection logic is then connected to a graphical user interface, that
makes the interaction with the logic easy and user friendly while providing
additional functionality compared to using just the script included in the module
with hand tracking class.

The UI of the application is composed out of a video player, which allows for
easy presentation of the processing output, stepping through a video frame by frame
in both directions and using a slider for skipping parts of the video completely.
Through the UI it is also possible to get to the recording system that allows to
save video easily, with the option to change the detection settings during the
detection itself. The application also allows to save all the detected bounding boxes,
and gestures into a log.

The logic behind the detection of the hands could be improved in the future
by further expanding the training dataset and retraining the neural network, or
even replacing it with another YOLO based network. Improvements could also be
done on the hand key point detection network, by smoothing out the key points
locations and fixing incorrect key point locations with position approximations.

54

References

1]

S. Vipul, "Gesture Recognition using OpenCV + Python," [Online]. Available:
http://vipulsharma20.blogspot.com/2015/03/gesture-recognition-using-
opencv-python.html.

More Than Technical, "Extending the hand tracker with snakes and
optimizations," 26 May 2013. [Online]. Available:
http://www.morethantechnical.com/2013/05/26/extending-the-hand-tracker-
with-snakes-and-optimizations-w-code-opencv/.

H. Du and E. Charbon, "3D Hand Model Fitting for Virtual Keyboard
System," in 2007 IEEE Workshop on Applications of Computer Vision
(WACV '07), Austin, TX, February 2007. [Online]. Available:
https://ieeexplore.iece.org/document /4118760.

More Than Technical, "Hand gesture recognition via model fitting in energy
minimization w/OpenCV," 28 December 2010. [Online]. Available:
http://www.morethantechnical.com/2010/12/28 /hand-gesture-recognition-
via-model-fitting-in-energy-minimization-wopencv/.

T. Q. Vinh and N. T. Tri, "Hand gesture recognition based on depth image
using kinect sensor," in 2015 2nd National Foundation for Science and
Technology Development Conference on Information and Computer Science
(NICS), Ho Chi Minh, September 2015. [Online]. Available:
https://ieeexplore.iece.org/document/7302218.

Wikipedia contributors, "Deep Learning," Wikipedia, The Free Encyclopedia,
2018. [Online]. Available: https://en.wikipedia.org/wiki/Deep_ learning.

AltexSoft, "Fraud Detection: How Machine Learning Systems Help Reveal
Scams in Fintech, Healthcare, and eCommerce," [Online]. Available:
https://www.altexsoft.com/whitepapers/fraud-detection-how-machine-
learning-systems-help-reveal-scams-in-fintech-healthcare-and-ecommerce /.

V. Gupta, "Learn OpenCV: Image Classification using Convolutional Neural
Networks in Keras," 29 November 2017. [Online]. Available:
https://www.learnopencv.com /image-classification-using-convolutional-

neural-networks-in-keras/.

55

9] S. Patel and J. Pingel, 'Introduction to Deep Learning: What Are
Convolutional Neural Networks?," MathWorks, [Online]. Available:
https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-
convolutional-neural-networks--1489512765771.html.

[10] K. S. Reddy, U. Singh and P. K. Uttam, "Effect of image colourspace on
performance of convolution neural networks," in 2017 2nd IEEE International
Conference on Recent Trends in Electronics, Information Communication
Technology (RTEICT), Bangalore, May 2017. [Online]. Available:
https://ieeexplore.ieee.org/document/8256949.

[11] A. Mittal, A. Zisserman and P. Torr, "Hand detection using multiple
proposals," in British Machine Vision Conference, 2011. [Online]. Available:
http://www.robots.ox.ac.uk/~vgg/data/hands/.

[12] S. Bambach, S. Lee, D. J. Crandall and C. Yu, "Lending A Hand: Detecting
Hands and Recognizing Activities in Complex Egocentric Interactions," in The
IEEE International Conference on Computer Vision (ICCV), Santiago,

December 2015. [Online]. Available: https://iceexplore.ieee.org/document
/7410583,

[13] "New Zealand Sign Language Dictionary," [Online]. Available:
https://www.nzsl.nz/.

[14] M. Andriluka, L. Pishchulin, P. Gehler and S. Bernt, '2D Human Pose
Estimation: New Benchmark and State of the Art Analysis," IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2014.

[15] J. Redmon and A. Farhadi, "YOLO9000: Better, Faster, Stronger," arXiv
preprint arXiv:1612.08242, 2016.

[16] "YOLO: Real-Time Object Detection,” 2016. [Online]. Available:
https://pjreddie.com/darknet /yolov2/.

[17] AlexeyAB, '"Darknet," GitHub, 26 July 2016. [Online]. Available:
https://github.com/AlexeyAB/darknet.

[18] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A.
Desmaison, L. Antiga and A. Lerer, "Automatic differentiation in PyTorch,"
NIPS-W, 2017.

[19] Y.-S. Yun, 'pytorch-0.4-yolov3," GitHub, 2018. [Online]. Available:
https://github.com/andy-yun/pytorch-0.4-yolov3.

56

[20] Google, 'Precision and Recall,” 1 October 2018. [Online]. Available:
https://developers.google.com /machine-learning/crash-course/classification
/precision-and-recall.

[21] R. Padilla, "Metrics for object detection," GitHub, 2018. [Online]. Available:
https://github.com/rafaclpadilla/Object-Detection-Metrics.

[22] Wikipedia contributors, 'Precision and recall," Wikipedia, The Free
Encyclopedia, 2018. [Online]. Available: https://en.wikipedia.org/wiki
/Precision_and_ recall.

[23] Y. Sasaki, "The truth of the F-measure," Teach Tutor Mater, 2007.

[24] CMU Perceptual Computing Lab, "OpenPose: Real-time multi-person
keypoint detection library for body, face, hands, and foot estimation," GitHub,
[Online]. Available: https://github.com/CMU-Perceptual-Computing-Lab
/openpose.

[25] S.-E. Wei, V. Ramakrishna , T. Kanade and Y. Sheikh, "Convolutional pose
machines," CVPR, 2016.

[26] T. Simon, H. Joo, I. Matthews and Y. Sheikh, "Hand Keypoint Detection in
Single Images using Multiview Bootstrapping," CVPR, 2017.

[27] Microsoft, "MMdnn," GitHub, 2017. [Online|. Available: https://github.com
/Microsoft /MMdnn.

[28] Wikipedia contributors, "Atan2," Wikipedia, The Free Encyclopedia, 2019.
[Online]. Available: https://en.wikipedia.org/wiki/Atan2.

[29] "Kivy: Cross-Platform Python Framework for NUI Development," Kivy,
[Online|. Available: https://kivy.org/.

[30] Iconic, "Open Iconic," GitHub, 2014. [Online]. Available: https://github.com

/iconic/open-iconic.

[31] "Video Codecs and Pixel Format," 2011. [Online]. Available:
https://www.fourcc.org/.

[32] T. Bravenec, "Computer vision and hand gestures detection and fingers
tracking," GitLab, 2019. [Online]. Available: https://gitlab.com/tbravenec
/computer-vision-and-hand-gestures-detection-and-fingers-tracking.

[33] PyTorch, "Get Started," [Online]. Available: https://pytorch.org/get-started
/locally/.

o7

[34] NVIDIA Corporation, "CUDA Compatibility," [Online]. Available:
https://docs.nvidia.com /deploy/cuda-compatibility /index.html#binary-
compatibility table-toolkit-driver.

[35] "Kivy: Installation on Linux - Kivy," Kivy, [Online]. Available:
https://kivy.org/doc/stable/installation/installation-linux.html.

[36] T. V. Hemert, "Taran uncut-ish interview," 3 April 2017. [Online]. Available:
https://www.youtube.com/watch?v=Fues_3ZarpE.

[37] Bitwit, "Are Ryzen APUs a GOOD alternative to overpriced GPUs?," 12
February 2018. [Online]. Available: https://www.youtube.com
/watch?v=N1DgTvGxmAQ.

[38] Tzutalin, 'Labellmg," Git code, 2015. [Online]. Available: https://github.com
/tzutalin/labellmg.

[39] Deep Systems LLC, '"Supervisely," 2017. [Online]. Available:
https://supervise.ly/.

[40] M. Harris, "Inside Pascal: NVIDIA’s Newest Computing Platform," 5 April
2016. [Online]. Available: https://devblogs.nvidia.com/inside-pascal/.

[41] E. Kilgariff, H. Moreton, N. Stam and Bell Brandon, "NVIDIA Turing
Architecture In-Depth," 14 September 2018. [Online]. Available:
https://devblogs.nvidia.com /nvidia-turing-architecture-in-depth/.

[42] Freepik, "Graphic resources for everyone," [Online]. Available:
https://www.freepik.com.

[43] J. Redmon and A. Farhadi, "YOLOv3: An Incremental Improvement," arXiv
preprint arXiv:1804.02767, 2018.

[44] HarisIgbal88, "PlotNeuralNet," GitHub, 2018. [Online]. Available:
https://github.com/Harislqbal88/PlotNeuralNet.

58

List of Symbols and Abbreviations

k;
C

GPU
CPU
CNN
YOLO
OS
IoU
TP
FP
FN

Hand key point with index i

Weighting constant

Graphics Processing Unit
Central Processing Unit
Convolutional Neural Network
You Only Look Once
Operating System

Intersection over Union

True Positive

False Positive

False Negative

59

Attachments

Complete structure of the git repository [32] containing the source code, icons and
images used in the development of the application:

N root of the repository

—CEg configuration files for CNNs
—keypoints.py

—yolov2.cfg

—darknet L i darknet interpreter package
—__init__.py

—cfg.py

—darknet . py

—region_layer.py

—utils.py

—yolo_layer.py

—data ... images used in UI elements
—icons

—app.ico

—cCog.png

—file.png

—floppy.png

—image.png

—info.png

—log.png

—media-pause.png

—media-pause-disabled.png

—media-play.png

—media-play-disabled.png

—media-record.png

—media-record-disabled.png

—media-step-backward.png

—media-step-backward-disabled.png

—media-step-forward.png

—media-step-forward-disabled.png

—media-stop.png

—reload.png
—reload-disabled.png
—video.png
—logos
L_BUT_symbol RGB_EN.png
—CNUMS . . vttt ettt package with enumeration modules
—__init__.py

—finger bends.py
—finger spread.py
—hand_directions.py
—hands . py
—input_types.py
—thumb_directions.py
—thumb_positions.py
—thumb_tip_positions.py

60

—gestures L gesture definition files
—five.json

—four. json

—ok. json

—one. json

—three. json

—thumbs_down. json

—thumbs_up. json

—two. json

—.gitignore

—constants.py

—get_models.py

—hand_gestures.py

—hand_keypoints.py

—hand_tracking.py

—LICENSE

—logger.py

—main.kv

—MAIN_APP . PY c vt main script
—README . md

—requirements.txt o list of required packages
—utils.py

61

	Bravenec_Masters_Final
	Abstract
	Keywords
	Abstrakt
	Klíčová slova
	Rozšířený abstrakt
	Declaration
	Prohlášení
	Acknowledgement
	Poděkování
	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	1 Hand and gesture recognition
	1.1 Contour analysis
	1.2 Curve fitting
	1.3 Model fitting
	1.3.1 Multiple angle model fitting

	1.4 Depth based hand detection
	1.5 Deep learning
	1.5.1 Convolutional neural networks

	2 Realization
	2.1 Hand detection
	2.1.1 Oxford hands dataset
	2.1.2 EgoHands dataset
	2.1.3 New Zealand Sign Language Dictionary
	2.1.4 MPII Human pose estimation dataset
	2.1.5 Neural network – YOLOv2
	2.1.6 Modifying the YOLOv2 neural network
	2.1.7 Training neural network

	2.2 Finger detection
	2.2.1 Left hand detection
	2.2.2 Model conversion

	2.3 Gesture recognition
	2.3.1 Finger bends
	2.3.2 Finger spread
	2.3.3 Thumb position
	2.3.4 Thumb tip position
	2.3.5 Thumb direction
	2.3.6 Hand orientation
	2.3.7 Gesture definition format

	2.4 Graphical user interface
	2.4.1 Main screen
	2.4.2 Settings
	2.4.3 Record panel and settings
	2.4.4 Info panel

	2.5 Application development
	2.5.1 Models download
	2.5.2 Background logic
	2.5.3 Multi-threaded processing
	2.5.4 Logging

	2.6 Application prerequisites
	2.6.1 Source code repository
	2.6.2 Hardware requirements
	2.6.3 Software requirements – Microsoft Windows
	2.6.4 Software requirements – Linux

	3 Dataset creation
	3.1 Obtaining images
	3.1.1 Combining existing datasets
	3.1.2 Recording own data
	3.1.3 Getting videos from the internet

	3.2 Annotation of images
	3.2.1 Tool LabelImg
	3.2.2 Website Supervise.ly

	4 Evaluation and testing
	4.1 Hand detection
	4.1.1 Detection accuracy
	4.1.2 Detection speed

	4.2 Hand key points detection
	4.2.1 Left hand recognition
	4.2.2 Half Precision calculation

	4.3 Gesture classification

	5 Expansion possibilities
	5.1 Detector modifications
	5.2 Key points post processing

	Conclusion
	References
	List of Symbols and Abbreviations
	Attachments

