
T
BRNO UNIVERSITY DF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND

COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF RADIO ELECTRONICS
ÚSTAV RÁDIOELEKTRONIKY

COMPUTER VISION AND HAND GESTURES DETECTION
AND FINGERS TRACKING
POČÍTAČOVÉ VIDĚNÍ A DETEKCE GEST RUKOU A PRSTŮ

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. Tomáš Bravenec
AUTOR PRÁCE

SUPERVISOR doc. Ing. Tomáš Frýza, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2019

VYSOKÉ UČENÍ FAKULTA ELEKTROTECHNIKY
TECHNICKÉ A KOMUNIKAČNÍCH
V BRNĚ TECHNOLOGIÍ

Diplomová práce
magisterský navazující studijní obor Elektronika a sdělovací technika

Ústav rádioelektroniky

Student: Bc. Tomáš Bravenec / D ; 173619

Ročník: 2 Akademický rok: 2018/19

NÁZEV TÉMATU:

Počítačové vidění a detekce gest rukou a prstů

P O K Y N Y P R O VYPRACOVÁNÍ:

Práce je zaměřena do oblasti detekce objektů v obraze/video sekvencích. Konkrétně se jedná o detekci

a rozpoznávání gest rukou a trackování jednotlivých prstů. Prostudujte dostupné projekty, programy a funkce

umožňující detekovat pohyby rukou a klasifikovat jejich gesta. Uvažujte dostupné knihovny pro počítačové vidění

v jazycích Python, nebo C. Vytvořte snímací řetězec a ověřte fungování, příp. limity takovýchto řešení na P C .

Proveďte detailní testování vašeho snímacího systému. Aplikujte na dynamických video sekvencích s obtížně

detekovatelnými pohyby, např. gesta raperů. Vytvořte popis navržených funkcí a zveřejněte je na GitHubu, či

podobném úložišti open souce projektů. Dbejte na rošiřitelnost systému pro snadné vkládání nových detekujících

gest.

DOPORUČENÁ L I T E R A T U R A :

[1] OpenCV [online]. 2018 [cit. 2018-05-16]. Dostupné z: http://opencv.org/

[2] Into Robotics. 9 OpenCV tutorials to detect and recognize hand gestures [online]. 2018 [cit. 2018-05-16].

Dostupné z: https://www.intorobotics.com/9-opencv-tutorials-hand-gesture-detection-recognition/

Termín zadání: 4.2.2019 Termín odevzdání: 16.5.2019

Vedoucí práce: doc. Ing. Tomáš Frýza, Ph.D.

Konzultant:

prof. Ing. Tomáš Kratochví l , Ph .D.
předseda oborové rady

UPOZORNĚNÍ:
Autor diplomové práce nesmí při vytváření diplomové práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným
způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského
zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku
č.40/2009 Sb.

Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně / Technická 3058/10 / 616 00 / Brno

http://opencv.org/
https://www.intorobotics.com/9-opencv-tutorials-hand-gesture-detection-recognition/

ABSTRACT

Th is master 's thesis is focused on hand gestures and finger detect ion in still images and

video sequences. T h e thesis contains a summary of different approaches to hand gesture

detect ions, advantages and disadvantages of each approach. The thesis also includes

the realization of the platform independent appl icat ion wri t ten in Py thon using O p e n C V

and P y T o r c h libraries, that can show a selected image or play a video sequence with

highlighted recognized gestures.

KEYWORDS

Computer vision, hand detect ion, gesture recognit ion, image processing, video

processing, O p e n C V , P y T o r c h , Py thon , Deep Learning, convolut ional neural networks,

machine learning

ABSTRAKT

Diplomová práce je zaměřena na detekci a rozpoznání gest rukou a prstů ve stat ických

obrazech i video sekvencích. Práce obsahuje shrnutí několika různých přístupů k samotné

detekci a také jej ich výhody i nevýhody. V práci je též obsažena realizace

mul t ip la t fo rmní apl ikace napsané v Pythonu s použit ím knihoven O p e n C V a P y T o r c h ,

která dokáže zobrazi t vybraný obraz nebo přehrát video se zvýrazněním rozpoznaných

gest.

KLÍČOVÁ SLOVA

Počítačové vidění, detekce rukou, rozpoznání gest, zpracování obrazu, zpracování videa,

O p e n C V , P y T o r c h , Py thon , Deep Learning, konvoluční neuronové sítě, strojové učení

I

ROZŠÍŘENÝ ABSTRAKT

Postupem času, tak jak to výpočetní výkon dovoluje oblast počítačového vidění nabírá

na populari tě. A není se čemu divit, počítače i telefony jenž používáme každý den mají

dostatek výpočetního výkonu pro analýzu obrazů a video sekvencí v reálném čase.

Například naše mobi lní telefony jsou ve většině případů rozpoznat tváře ve fotograf i ích

a v některých případech pochopit i jednoduchá gesta rukou, jako například vzdálená

spoušť pro pořízení fotografie, aniž bychom byli nuceni se dotknout telefonu. Počítače

jsou velmi schopné těchto snadných detekcí, pokud vidí celé tváře nebo ruku, co ale

v případě kdy ruce a prsty nejsou snadno viditelné? T o je problém, pro který není snadné

řešení.

Analýza gest rukou poskytuje další způsob pochopení lidského chování ve video

sekvencích pro zrakově postižené, nebo způsob překladu znakové řeči na text. Dalšími

příklady využi t í analýzy gest mohou být systémy ovládané pomocí gest v automobi lovém

průmyslu, nebo analýza neverbální komunikace mezi zločinci zachycenými na

bezpečnostní kamery.

V té to práci jsou představeny možné způsoby detekce rukou a samotných gest,

které jsou následně popsány a porovnány včetně jej ich kladů a záporů.

Hlavní zaměření práce je na tvorbu mul t ip la t fo rmní apl ikace určené pro detekci

rukou a rozpoznání gest. Základem té to aplikace je programovací jazyk Py thon

s knihovnami pro počítačové vidění.

Va l idace výsledků aplikace je provedena pomocí video sekvencí s rozdílnou

obtížností viditelnosti rukou pořízenými za účelem testování aplikace a s využi t ím

náhodných videí nalezených na internetu pro zj ištění úspěšnosti detekce.

II

B R A V Ě N E C , T o m á š . Počítačové vidění a detekce gest rukou a prstů. Brno, 2019.

Dos tupné t aké z: https:/ /www.vutbr.cz/studenti/zav-prace/detail /118437.

Dip lomová práce . Vysoké učení technické v Brně , Fakul ta elektrotechniky a

komunikačn ích technologií , Ú s t a v rádioelektroniky. Vedoucí práce T o m á š Frýza .

III

https://www.vutbr.cz/studenti/zav-prace/detail/118437

DECLARATION

I declare that I have written the master 's thesis t i t led "Compu te r vision and hand

gestures detection and fingers t rack ing" independently, under the guidance of the

advisor and using exclusively the technical references and other sources of information

cited in the paper and listed in the comprehensive bibl iography at the end of the thesis.

A s the author I furthermore declare that, with respect to the creation of this

master 's thesis, I have not infringed any copyright or violated anyone's personal and /o r

ownership rights. In this context, I am fully aware of the consequences of breaking

Regulat ion S l l of the Copyr ight A c t No . 121 /2000 Co l l . of the Czech Republ ic, as

amended, and of any breach of rights related to intel lectual property or introduced

within amendments to relevant Ac t s such as the Intellectual Property A c t or the

Cr iminal Code, A c t No . 4 0 / 2 0 0 9 Co l l . , Sect ion 2, Head VI , Par t 4.

Brno

author 's signature

IV

PROHLÁŠENÍ

Prohlašuji , že svou diplomovou práci na téma „Počítačové vidění a detekce gest rukou

a prs tů" jsem vypracoval samostatně pod vedením vedoucího diplomové

práce a s použit ím odborné l iteratury a dalších informačních zdrojů, které jsou všechny

ci továny v práci a uvedeny v seznamu literatury na konci práce.

Jako autor uvedené diplomové práce dále prohlašuji, že v souvislosti s vytvořením

té to diplomové práce jsem neporušil autorská práva třet ích osob, zejména jsem nezasáhl

nedovoleným způsobem do cizích autorských práv osobnostních a /nebo majetkových

a jsem si plně vědom následků porušení ustanovení S i l a následujících autorského

zákona č. 121 /2000 Sb. , o právu autorském, o právech souvisejících s právem autorským

a o změně některých zákonů (autorský zákon), ve znění pozdějších předpisů, včetně

možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI . díl

4 Trestního zákoníku č. 4 0 / 2 0 0 9 Sb.

Brno

podpis autora

V

A C K N O W L E D G E M E N T

I would like to thank to the supervisor of this thesis doc. Ing. T o m a s Fryza, P h . D . for

professional guidance, consultat ions and work suggestions.

Brno

author 's signature

VI

PODĚKOVÁNÍ

Rád bych poděkoval vedoucímu diplomové práce panu doc. Ing. Tomáši Frýzovi, P h . D .

za odborné vedení, konzultace a podnětné návrhy k práci.

Brno

podpis autora

VII

Contents

List of Figures XI

List of Tables XIII

Listings XIV

Introduction 1

1 Hand and gesture recognition 2

1.1 Contour analysis 2

1.2 Curve fitting 3

1.3 Model fitting 3

1.3.1 Mul t ip le angle model fitting 4

1.4 Depth based hand detection 5

1.5 Deep learning 6

1.5.1 Convolutional neural networks 6

2 Realization 8

2.1 Hand detection 8

2.1.1 Oxford hands dataset 8

2.1.2 EgoHands dataset 9

2.1.3 New Zealand Sign Language Dictionary 9

2.1.4 M P I I Human pose estimation dataset 10

2.1.5 Neural network - Y O L O v 2 11

2.1.6 Modifying the Y O L O v 2 neural network 13

2.1.7 Training neural network 14

2.2 Finger detection 17

2.2.1 Left hand detection 18

2.2.2 Model conversion 20

2.3 Gesture recognition 20

2.3.1 Finger bends 21

VIII

2.3.2 Finger spread 22

2.3.3 Thumb position 23

2.3.4 Thumb tip position 24

2.3.5 Thumb direction 25

2.3.6 Hand orientation 27

2.3.7 Gesture definition format 28

2.4 Graphical user interface 29

2.4.1 M a i n screen 30

2.4.2 Settings 31

2.4.3 Record panel and settings 31

2.4.4 Info panel 33

2.5 Appl icat ion development 33

2.5.1 Models download 34

2.5.2 Background logic 34

2.5.3 Multi-threaded processing 35

2.5.4 Logging 35

2.6 Appl icat ion prerequisites 36

2.6.1 Source code repository 36

2.6.2 Hardware requirements 36

2.6.3 Software requirements - Microsoft Windows 37

2.6.4 Software requirements - L inux 38

3 Dataset creation 39

3.1 Obtaining images 39

3.1.1 Combining existing datasets 39

3.1.2 Recording own data 39

3.1.3 Gett ing videos from the internet 40

3.2 Annotat ion of images 40

3.2.1 Too l Labell ing 41

3.2.2 Website Supervise. ly 42

IX

4 Evaluation and testing 43

4.1 Hand detection 44

4.1.1 Detection accuracy 45

4.1.2 Detection speed 46

4.2 Hand key points detection 46

4.2.1 Left hand recognition 47

4.2.2 Half Precision calculation 48

4.3 Gesture classification 49

5 Expansion possibilities 52

5.1 Detector modifications 52

5.2 K e y points post processing 52

Conclusion 53

References 55

List of Symbols and Abbreviations 59

Attachments 60

X

List of Figures

Figure 1.1 Contour analysis 2

Figure 1.2 Curve fitting [2] 3

Figure 1.3 Skeleton of the hand model [3] 4

Figure 1.4 Microsoft Kinects depth capture [5] 5

Figure 1.5 General deep learning neural network [7] 6

Figure 1.6 Architecture of convolutional neural network [9] 7

Figure 2.1 Images included in Oxford hands dataset [11] 8

Figure 2.2 Images included in EgoHands dataset [12] 9

Figure 2.3 Modified annotations in EgoHands dataset [12] 9

Figure 2.4 Images from videos in New Zealand Sign Language dictionary [13]10

Figure 2.5 Annotated images from New Zealand Sign Language dictionary [13] ..10

Figure 2.6 Images contained in the M P I I Human Pose dataset [14] 11

Figure 2.7 Images from M P I I Human Pose dataset wi th annotations [14] 11

Figure 2.8 Y O L O v 2 network architecture 12

Figure 2.9 Training loss after each epoch 14

Figure 2.10 Area of Overlap and Area of Union 15

Figure 2.11 Graphical meaning of Precision and Recall [22] 16

Figure 2.12 Precision, recall and F-score after each training epoch 17

Figure 2.13 Heatmaps generated for index finger 17

Figure 2.14 Hand key points and combined heatmap generated by C N N 18

Figure 2.15 Normal and modified input for hand key point detection 19

Figure 2.16 Combined heatmaps generated by C N N out of modified input 19

Figure 2.17 Finger bend states 22

Figure 2.18 Finger spread states 23

Figure 2.19 Thumb position states 24

Figure 2.20 Thumb t ip position 25

Figure 2.21 The output of function arctan2 [28] 26

XI

Figure 2.22 Thumb directions 27

Figure 2.23 Hand directions 27

Figure 2.24 Created application window 30

Figure 2.25 Detection settings available in application 31

Figure 2.26 Record panel and record settings 32

Figure 2.27 Applicat ion's info panel 33

Figure 3.1 Custom images for dataset extension 40

Figure 3.2 Images from YouTube videos [36], [37] 40

Figure 3.3 Annotat ion tool Label l ing 41

Figure 3.4 Annotat ion tool Supervisely 42

Figure 4.1 Comparison of ground truth and C N N s prediction [14] 45

Figure 4.2 Incorrect detections [14] 45

Figure 4.3 Undetected hands [12] 46

Figure 4.4 Images from the evaluation dataset wi th hand annotations 47

Figure 4.5 Left and right hand wi th similar key point distribution 47

Figure 4.6 Confusion matrix for recognition of left and right hand 48

Figure 4.7 Effect of half precision on hand key points detection [42] 49

Figure 4.8 Predefined gestures 49

Figure 4.9 Incorrect hand key points detection 50

Figure 4.10 Gesture recognition evaluation images 50

Figure 4.11 Confusion matrix for predicted gestures 51

XII

List of Tables

Table 4.1 G P U used for evaluation and testing 43

Table 4.2 C P U s used for evaluation and testing 44

Table 4.3 Detection speed comparison between G P U and C P U 46

XIII

Listings

List ing 2.1 Modifications of Y O L O v 2 neural network's configuration 13

Lis t ing 2.2 Gesture definition format - main categories 28

Lis t ing 2.3 Gesture definition format - keyword "any" 29

Lis t ing 2.4 Hello world in K V language 29

Lis t ing 2.5 Log header and record format for static images 36

Lis t ing 2.6 Log header and record format for video sequences 36

Lis t ing 2.7 Py thon packages installation command on Microsoft Windows 37

Lis t ing 2.8 Py thon packages installation command on Linux 38

Lis t ing 3.1 Format of image annotations for Y O L O based networks 41

XIV

Introduction

For quite some time, the field of computer vision is rising in popularity. A n d there

is no surprise, that computers and phones we use every day are powerful enough to

analyze images and video sequences in real time. For example, our mobile phones

are in most cases capable of recognizing our faces in photos and sometimes they

can even understand some basic hand gestures for taking a picture without us even

touching the phone. Computers are quite capable of these easy recognitions when

they can see the whole face or hand, but what about cases when hands and fingers

are not visible that well? This is quite an issue that is not that easy to handle.

Analysis of hand gestures is useful for providing another way of understanding

what humans are doing in videos for visually impaired or bl ind people or translation

of sign language to text. Another example could be gesture based controls of some

systems in automotive industry, to analyze non-verbal communication of criminals

caught on cameras etc.

This thesis wi l l introduce multiple ways how hand gestures can be detected

and the qualities and flaws of each approaches.

The main part of this thesis is focused on creating a hand gesture detection

application and its functionality. The application is platform independent and

written in Py thon wi th libraries for computer vision.

The evaluation of this application is done using video sequences wi th varying

difficulty of visible hands captured specifically for testing this application and

random videos found on the internet to see wi th how high success rates the

application manages to do its job.

1

1 Hand and gesture recognition

T o begin wi th gesture recognition, the hand must be detected first. There are a few

approaches to finding the hand. These approaches differ from easier ones that are

more susceptible to mistake and are not very robust, to the use of algorithms that

are hard to confuse. Using these kinds of algorithms have a price: they may need

significantly more processing power.

1.1 Contour analysis

The easiest method is analyzing a grayscale image (Figure 1.1 a)), as there is only

one condition needed to use in order to get thresholded image (Figure 1.1 b)), if

the pixel is part of a hand or if it is not. F r o m a thresholded image, it is easy to

get the contour of a hand and convex hul l around the hand (Figure 1.1 c)). Then

by the number of convex defects in the convex hul l (Figure 1.1 d)) and the distances

of these defects from each other, figure out what fingers are extended, and which

are collapsed. [1]

Figure 1.1 Contour analysis a) Detected hand b) Thresholded contour c) Detected

edge and convex hul l d) Detected convex hul l defects [1]

2

One of the issues with this approach is the fact, that the hand must be easily

separable from the background. This can be done either by thresholding, or other

more complex approaches, such as separation by skin color, background subtraction

etc. This also means that the algorithm can become easily confused when it comes

to unusual background patterns or just a sharp change in lighting, causing a rapid

change in skin color.

The biggest issue of this method is that it is incapable of recognizing gestures

if the palm is not facing the camera directly, it also easily fails to identify collapsed

fingers when the hand rotates. Because of these issues, this method is not suitable

for detection of more complex gestures or during worse visibi l i ty of the hand.

1.2 Curve fitting

Curve fitting, also known as snakes, is one of the less usable methods for hand

detection, as it is more suitable for hand tracking. This approach needs some init ial

guess or cooperation from the person using this method [2]. The init ial guess could

be made by the person matching the curve on screen wi th his hand presented in

Figure 1.2. After a certain threshold of similarity is passed, tracking can start, and

the curve is adjusted from the previous frame to match the outline of the hand. A s

it needs an ini t ial guess, this method is not a very good choice for detection in video

sequences, that are not prepared for detection using this approach.

Figure 1.2 Curve fitting [2]

1.3 Model fitting

Another approach to gesture recognition is creating a vir tual model of a hand,

composed from "bones" and "joints" like in a real hand. A t first, it uses contour

analysis or depth image analysis if it is available in the source to detect fingertips,

followed by connecting detected fingertips to the model, so the model joints can

bend and recreate the gesture in a vir tual environment [3]. A n image of a vir tual

model is in Figure 1.3.

Figure 1.3 Skeleton of the hand model [3]

The problem here is again, that from certain angles, the model may not be

properly connected to fingertips, which wi l l cause unpredictable behavior, like

guessing an incorrect gesture or losing focus on the hand itself [4]. O n the other

hand, systems like this could be easily modified to recognize more gestures by

simply adding another configuration of the hand model wi th a description of how

the fingers are bent.

1.3.1 Multiple angle model fitting

T o make model fitting more accurate, more cameras can be used to capture hand

movements from different angles, so the fingertips are always visible and can be

connected to the model's end points at any moment.

This extension of model fitting is not usable for common video sequences, as

they are not shot from different angles at the same time. This means that even

though multiple angle model fitting can be more accurate, it is more useful in real

time translation of sign language, where the person stands or sits in front of couple

of cameras.

4

1.4 Depth based hand detection

Another way of detecting hands, not from existing video sequences but rather in

real time is based around capturing not only color but also depth. This can be done

using special capturing devices like Microsoft Kinect its capture of scene depth in

the image of a human's arm is in Figure 1.4. F r o m this image it is obvious that the

depth levels have lower resolution than color, which means that objects like a hand

wi l l mostly be on one or two neighboring distance layers, making hand detection

significantly easier than from a color image.

Figure 1.4 Microsoft Kinects depth capture [5]

The approach using depth to detect a hand has its positives, it does not care

about background or lighting [5]. Its downside is if there is another object at the

same distance as the hand in the depth map; the hand and object could blend

together, though it is not that difficult to split it again by combining depth and

color layers. This way the hand can be separated by selecting only the skin colored

part of the depth layer on which the hand is located.

As is obvious from the fact that it needs data captured with a depth sensor,

this approach is unusable when it comes to hand detection from normal images and

video sequences.

5

1.5 Deep learning

In the last couple of years, the field of machine learning started to gain in

popularity, as the main l imitat ion in the past, the processing power, is more

accessible than ever before. Considering the advancements in general purpose

computing using graphics processors, the times needed to train artificial neural

networks on a regular computer at home are comparable to times that were needed

just a few years back on a supercomputer.

The deep learning itself is a subset of machine learning, that today makes use

mostly of deep neural networks (these networks contain more than two layers of

non-linear processing between input and output layers) to learn from huge amounts

of data to solve problems without being explicitly programmed to do that. Typica l

representation of a deep learning neural network is in Figure 1.5. There are also

other algorithms like recurrent neural networks, deep belief networks or deep

Boltzmann machines that are part of deep learning, but they are not as widely used

as deep learning neural networks. [6]

Deep learning

Hidden Hidden Hidden

Figure 1.5 General deep learning neural network [7]

1.5.1 Convolutional neural networks

When it comes to image processing using deep learning, the most frequently used

variant of a neural network is a convolutional neural network. This kind of network

contains a couple of convolutional layers. The filters of these layers are acquired

during the training process of the network and wi th appropriate training data. After

the convolutional layers usually comes the pooling layer to reduce the amount of

data for the next layer. The next layer is usually a single flattening layer followed

by classic fully connected layers [8]. Architecture of the convolutional neural

network is in Figure 1.6.

H I D D E N L A Y E R S CLASSIFICATION

Figure 1.6 Architecture of convolutional neural network [9]

The reason for using convolutional neural networks for hand detection is

simple: wi th correct training data, the network can learn itself what to look for,

what is important and what is not. Of course, this is not based only on the training

data, but on the model of the neural network. This means that every neural network

is built differently, from a different number of layers and neurons in each layer.

Almost every convolutional neural network that works wi th images takes an

input image in R G B color space. This is because after experimentations wi th other

color spaces like H S V , L U V and other ones used in computer vision applications,

the network which trained on images in R G B color space provided higher accuracy

of predictions than the same network trained on images in different color space [10].

Convolutional neural networks could also be divided into two different groups,

depending on the type of input and output. If the input image is a single object in

the center of the image and the neural network is supposed to predict what kind of

object it is, this category is called classifiers. O n the other hand, if the image

contains many different objects al l over the place, and the neural networks output

is supposed to be a prediction of bounding boxes and what kind of object is in each

bounding box, these neural networks are called detectors.

7

2 Realization

The whole result of this thesis can be divided into parts. First , there is a need to

detect a hand in the image before it can be recognized as a gesture. So, the second

part is obviously rule based gesture classification, which should also be easily

expandable. In the end the working application should be wrapped in multiplatform

easy to use graphical user interface wi th easy gesture addition, an image and video

viewer wi th detected gesture highlighting and logging of detected gestures into

a file.

2.1 Hand detection

When it comes to detecting hands in various positions and different environments,

it is quite difficult to assess some rules to detect hands accurately. For example,

fist looks very different from open palm. For this very reason the approach of deep

learning was selected. This process consists of creating or finding and adjusting

existing datasets for this very purpose. W i t h the prepared dataset the next step is

creating a neural network from scratch or using an already existing and tested

architecture and retraining it for the purpose of hand detection.

2.1.1 Oxford hands dataset

Before training a neural network, there must exist some data to train the network

on. The first choice for a dataset was oxford hands dataset [11], as its already

annotated. Its diverse images of hands in very different situations, poses etc. seemed

like a great way to train a neural network that would generalize well and provide

good results. This was not the case, even after training on this dataset for several

days, the results were not good. This could have been because of the lower

resolution of the images; a few of those images from the dataset are in Figure 2.1.

Figure 2.1 Images included in Oxford hands dataset [11]

8

2.1.2 EgoHands dataset

For the purpose of this thesis the EgoHands dataset [12] was chosen, due to its

high-resolution images wi th already existing annotations and wide range of hand

poses in a few different locations. This dataset contains 4400 training and 400

validation images as shown in Figure 2.2. Each picture includes at least one hand

and maximally 4 hands, and these hands are not always clearly visible, as they can

be obstructed from the camera by other hands or objects in the scene.

Figure 2.2 Images included in EgoHands dataset [12]

The annotations included in the dataset also had to be modified, as the original

annotations were differentiating between left and right hand and even from which

point of view is the hand captured. Annotations were also in different format than

was needed for training the selected neural network. Conversion and annotation

modification were done using simple python script. Modified annotations are shown

in Figure 2.3 as yellow rectangles around hands.

Figure 2.3 Modified annotations in EgoHands dataset [12]

2.1.3 New Zealand Sign Language Dictionary

The Ego Hands dataset is not completely universal, as it misses some hand gestures.

Due to this reason the dataset was expanded wi th images from New Zealand Sign

Language dictionary [13]. A s the name suggests, this dictionary contains video

sequences of humans presenting different signs of sign language. A s there are a lot

of videos in the dictionary, only 10 videos were used for dataset expansion. F r o m

these videos, a total of 515 frames were taken for training and 231 frames for

validation. The videos provide quite a big range of different gestures. This diversity

helps in recognition of hand poses that are not present in the EgoHands dataset.

Unlike images from EgoHands dataset, these images have a very similar

background, which means it is not a very good idea to train the neural network

wi th images only from this dictionary. Some of the hand gestures contained in

videos from New Zealand Sign Language dictionary are presented in Figure 2.4.

Figure 2.4 Images from videos in New Zealand Sign Language dictionary [13]

Unlike for images from EgoHands dataset, for frames from videos in this

dataset the annotations did not exist. Because of that these had to be created from

scratch. Few images with displayed bounding boxes are in Figure 2.5.

Figure 2.5 Annotated images from New Zealand Sign Language dictionary [13]

2.1.4 MPII Human pose estimation dataset

T o make the training dataset even more robust, small part of the M P I I Human

pose estimation dataset [14], was used. Because the dataset is not focused on hands,

they are not visible on many pictures from this dataset. For training 483 images

were selected and 215 images for validation. O n the used images, people are doing

many different activities in a wide range of environments, from playing musical

instruments or cooking in the kitchen to working wi th power tools. Some of the

images even have people wearing gloves to farther improve chances of hand

detection in difficult conditions as the detector cannot rely on skin color. Example

of images from this dataset are in Figure 2.6.

10

Figure 2.6 Images contained in the M P I I Human Pose dataset [14]

Just like wi th images from the New Zealand Sign Language dictionary, the

images from the M P I I Human Pose dataset do not have annotations of hands

needed for training neural networks and these annotations had to be created.

Images from this dataset wi th showed bounding boxes are in Figure 2.7.

Figure 2.7 Images from M P I I Human Pose dataset wi th annotations [14]

2.1.5 Neural network - YOLOv2

Instead of creating and testing new architectures of neural networks the

architecture Y O L O v 2 [15] (You Only Look Once v2) was selected. This means, that

instead of testing if the neural networks architecture is designed correctly for

predicting bounding boxes, it just needed to be adjusted to only look for one class

and then be retrained for detection using a previously selected dataset.

Y O L O v 2 is a fully convolutional neural network created out of 23 convolutional

layers, 5 pooling layers, 2 routing layers, a reorganization layer and wi th a single

detection layer. The relatively low depth of the network makes it work very well in

real time processing.

The function of convolutional layers is obvious from their name. Pooling layers

on the other hand might not be that obvious. These layers reduce the spatial

dimensions of their input but keep their depth. Usually this reduction is done by

a factor of 2. There are two different versions of pooling layers, Y O L O v 2 uses max

pooling, which means that the input is divided into small squares, where dimensions

11

of the square are the factor of the pooling layer. For Y O L O v 2 , the input is divided

into grids of 2 by 2 values and on the output of the layer is only the highest value

from this grid. The other variant of this layer uses average pooling which, as its

name suggests, the output produces an average value for each of the input grids.

Reorganization layers have a similar function to pooling layers, as these layers

also change the dimensions of their input, but unlike pooling layers, they also

change the depth and keep al l the input values. A s the name of the layers hint, the

input is reorganized in a way that a single channel on the input wi l l become more

channels on the output depending on the settings of the layer. The reorganization

layer in Y O L O v 2 uses a stride of 2, which means that the spatial dimensions in

both directions would be halved and depth would grow four times.

Because the neural network uses routing layers, it means that the network

actually does not run al l of the layers sequentially, but rather works up to the

routing layer sequentially and then takes the output of the layer to which the

routing layer points to instead of taking output of the layer that preceeds it.

Another option is if the routing layer points to multiple different layers, in that

case al l the outputs of layers pointed to are concatenated. The function of routing

layers is clearly displayed in graphical representation of Y O L O v 2 wi th purple

arrows in Figure 2.8. In this figure the horizontal numbers bellow layers signify how

many convolutional filters are present in that layer, and angled numbers signify the

spatial dimensions of all the layers since the last pooling or reorganization layer.

Input dimensions for each convolutional layer are the dimensions of the previous

layer times the amount of filters in that layer.

yyy y
-

/ / /

/A Convolutional
layer

/

V
Pooling

layer
Reorganization

layer
Detection

layer
Concatenation

of layers

Figure 2.8 Y O L O v 2 network architecture

12

2.1.6 Modifying the YOLOv2 neural network

The actual network architecture is defined in the configuration file and the weights

file. The original network's configuration file and its pretrained weights can be

downloaded from the website [16]. The configuration file had to be slightly adjusted

to look for only one class, which meant changing the number of classes in the

detection layer and changing the filter count in the preceding convolutional layer

to the appropriate amount for the number of classes in detection layers. These

changes in the last two layers in the configuration file are in bold in Lis t ing 2.1.

Lis t ing 2.1 Modifications of Y O L O v 2 neural network's configuration
233 [convolutional]
234 size=l
235 stride=l
236 pad=l
237 filters=30
238 activation=linear
239
240 [region]
241 anchors=l.3221,1.73145, 3.19275,4.00944, 5.05587,8.09892, 9.47112,4.84053,
242 11.2364,10.0071

bias_match=l
243 classes=l
244 coords=4
245 num=5
246 softmax=l
247 jitter=.3
248 rescore=l

The filter count in the last convolutional layer before the detection layer is

calculated from the count of classes that the neural network is supposed to be

detecting by the equation [17]:

filters = (classes + coords + 1) • mum
(2.1)

Where coords represent the four attributes of bounding boxes (x, y, width and

height), constant 1 is for confidence wi th which the object is detected and num
stands for the number of anchor pairs in the region layer.

Anchor pairs represent ini t ial sizes of bounding boxes in the detection layer,

which is for Y O L O v 2 13x13 pixels, before the closest one to the detected object is

resized. Anchors can be calculated from training data using K-Means clustering,

but for detection of hands it is not necessary as hands can be in pretty much in

any shape, just like al l the different objects in the default networks configuration.

13

2.1.7 Training neural network

W i t h the configuration file modified for the need of hand detection, the only thing

remaining is training the network itself. For this purpose, the interpreter for Y O L O

based neural networks for deep learning framework P y T o r c h [18] was used [19]. As

it is just an interpreter for training and detecting there was no need to change the

code, because the changes to the neural networks were in their configuration files.

The neural network was trained for 150 epochs, where one epoch means a single

pass through al l the training data. The training was stopped after 150 epochs passed

as the training loss and validation did not change much since epoch 100. Used

weights were from training epoch 100 to prevent the issue of overfitting, that is a

state of a neural network in which the network learned exact details of images and

did not generalize very well or at al l , even though the predictions are great on the

training set, predictions on never before seen data are poor.

Training loss can be calculated in many ways. In the case of Y O L O v 2 , it is

divided into three components. The first is coordination loss, which represents how

wrong the network was in detecting the location of the object in the image from

the ground truth. The second component is confidence loss, which represents how

much the neural network is sure about the detection. The last of the three errors,

error in object classification, is calculated as binary cross entropy. A s the modified

network detects only a single object, this error is equal to zero. The final training

loss is calculated as the sum of previously mentioned errors. Training loss of the

neural network after each training epoch is in Figure 2.9.

Training loss after every epoch

0.50 - i

0.45 -

0.40 -

0.35 -

0.30 -

S 0.25 -

0.20 -

0.15 -

0.10 -

0.05 -

0.00 -

0.50 - i

0.45 -

0.40 -

0.35 -

0.30 -

S 0.25 -

0.20 -

0.15 -

0.10 -

0.05 -

0.00 -

0.50 - i

0.45 -

0.40 -

0.35 -

0.30 -

S 0.25 -

0.20 -

0.15 -

0.10 -

0.05 -

0.00 -

0.50 - i

0.45 -

0.40 -

0.35 -

0.30 -

S 0.25 -

0.20 -

0.15 -

0.10 -

0.05 -

0.00 -

0.50 - i

0.45 -

0.40 -

0.35 -

0.30 -

S 0.25 -

0.20 -

0.15 -

0.10 -

0.05 -

0.00 -

0.50 - i

0.45 -

0.40 -

0.35 -

0.30 -

S 0.25 -

0.20 -

0.15 -

0.10 -

0.05 -

0.00 -

0.50 - i

0.45 -

0.40 -

0.35 -

0.30 -

S 0.25 -

0.20 -

0.15 -

0.10 -

0.05 -

0.00 -

0.50 - i

0.45 -

0.40 -

0.35 -

0.30 -

S 0.25 -

0.20 -

0.15 -

0.10 -

0.05 -

0.00 -

0.50 - i

0.45 -

0.40 -

0.35 -

0.30 -

S 0.25 -

0.20 -

0.15 -

0.10 -

0.05 -

0.00 -

0.50 - i

0.45 -

0.40 -

0.35 -

0.30 -

S 0.25 -

0.20 -

0.15 -

0.10 -

0.05 -

0.00 - — • — — • — — • — —1—1 h - 1 —1—1 — 1 — — 1 — — • — — • — —1—1 1—1—1 h-1—1
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Epoch [-]

Figure 2.9 Training loss after each epoch

14

After a set number of epochs, the validation process was started. For the

purpose of higher precision of displaying these data, the validation process was run

after every epoch. This process consists of comparing ground truth bounding boxes

and bounding boxes predicted by the network on images not used for training the

network. The decision if the network predicted correctly is done using intersection

over union (IoU) between prediction and ground t ruth calculated by equation (2.2).

If the ratio of intersection over union is higher than the set threshold, in this case

0.5, then the network's predictions are accepted as correct.

. TT Area of Overlap IoU = -
Area of Union

(2.2)

Figure 2.10 visually presents the of union and of overlap wi th red

overlay in an image of detected hand (blue rectangle) and ground truth (green

rectangle) for the same hand.

Figure 2.10 Area of Overlap and Area of Union

During validation, three values defining the accuracy of the network are

calculated, two of these values are Precision and Recall [20], [21]. Precision is

defined as:

Precision = (2.3)
TP+FP

Where TP means True Positive and corresponds to the amount of correct

detections and FP stands for False Positive and matches the amount of incorrect

predictions. If the neural network did not make incorrect predictions, the Precision

of the network would be 1.

Recall is defined similarly to precision but instead of incorrect predictions, the

number of undetected objects from the ground truth image is used in the equation:

15

Recall = TP
TP+FN

(2.4)

Where FN stands for False Negative and represents the mentioned undetected

number of hands in an image. If Recall equals 1, the neural network detected all

the objects in the validation dataset. To better understand what Precision and

Recall mean, Figure 2.11 explains it very well.

Relevant elements

False Negatives True Negatives

• • • ° o

•
1 • ° \°

True Positives False Positives |

V • • O J • o / °
• • / o

o o

How many selected
items are relevant?

Precision =
i

How many relevant
items are selected?

Recall =

[
Selected elements

Figure 2.11 Graphical meaning of Precision and Recall [22]

The last of the three values describing the result of validation is F-score, it is

used to measure validation accuracy as a whole and it is calculated as harmonic

mean of Precision and Recall [23]:

F-score = 2
Precision • Recall
Precision+Recall

(2.5)

F r o m Figure 2.12 is clearly visible that training produced the biggest changes

in precision in the first epochs. That is because at the beginning of training, the

network's weights were trained for detecting multiple different objects and the

changes had to be big to start detecting hands, this is done by used settings in the

configuration file for training. A t first, the network needs to learn more aggressively.

A typical starting value of learning rate is 0.001 to quickly learn basic features of

hands. After some time, in this case 40 000 steps, which equals to 66 epochs wi th

training batch size of 8, the learning rate was lowered to 0.0001 to prevent too big

of a jump in weights values and start learning finer features of hands. The learning

rate was lowered again after epoch 95 to further decrease the difference between

1G

weights and slow down learning, which was not necessary as the validation results

stayed pretty much the same since epoch 90.

Neural networks precision, recall and F-score after each
training epoch

I o.o F 1 I 1 I 1 I 1 I • I • I • I • I • I • I 1 I 1 I 1 I • I • I

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Epoch [-]

Precission Recall F-Score

Figure 2.12 Precision, recall and F-score after each training epoch

2.2 Finger detection

For finger detection a pretrained neural network trained for detection of hand key

points was used. This neural network is part of the project OpenPose [24].

OpenPose uses a neural network architecture called convolutional pose machines

[25] to detect key points of specific parts of the human body. Out of the four

networks, used convolutional pose machine is focused on hand key points detection

[26]. This network takes as an input a single image, in which is supposed to be

a single hand. F r o m this image the network on the output generates 22 heatmaps.

A n example image from which these heatmaps are generated and heatmaps for each

key point of index finger are in Figure 2.13.

Figure 2.13 Heatmaps generated for index finger

Each of the first 21 heatmaps represent an approximate position of a single key

point in the image and the last heatmap represents the background. F r o m these

heatmaps can be easily found the location of maximum, which represents the

location of the found key point. After al l the key points from all heatmaps are

found, the gesture recognition process can be started. The detected key points are

numbered and connected to create hand skeleton and al l the heatmaps combined

into one can be seen in Figure 2.14.

Figure 2.14 Hand key points and combined heatmap generated by C N N

One of the biggest downsides of OpenPose is the fact that it is trained to only

detect key points of right hands. That means that the results of detection for the

left hand are much worse than when using detection for the right hand. This issue

can be avoided by flipping the image horizontally to effectively run the model over

the right hand, followed up by flipping the detected key points around again to fit

the left hand [26].

2.2.1 Left hand detection

A s mentioned, the hand key point detector was not trained to detect key points of

left hands [26]. If the hand is right or left, there is no issue in running the detection

once wi th the only difference being the flipped input and, in the end, flipping the

key points back. But if the hand could be either left or right, it is a different story.

T o battle this issue without doubling up the time needed for key point detection

by running the detection again over the horizontally flipped input image if the

results are not as expected, the flipped image is being concatenated to the original

input image as is in Figure 2.15 and the detection is being run over this modified

18

input. This way the time needed for detection stays approximately the same as the

network runs only once.

Figure 2.15 Normal and modified input for hand key point detection

Whi le running the detection over input that contains two hands, more post

processing is needed to correctly identify if the hand is left or right and to get the

correct key points out of the detection output. For this is used the fact that the

network generates heatmaps, instead of just coordinates, that helps in the fact that

there are peaks in the heatmaps for finger detected in the original and in the flipped

half of the network's input image. A l l the heatmaps of this modified input combined

are in Figure 2.16. F r o m the heatmap it is visible that in the right half of the image

wi th flipped left hand, the values are generally higher and more pronounced. The

reason for that is that the network is not as sure about the detection for a left hand.

For the same reason, the detection for a right hand produces better results. It all

comes down to the fact that the network was trained only over right hands.

o S • • 4
% I

Figure 2.16 Combined heatmaps generated by C N N out of modified input

19

The fact that the values are generally higher in one half of the output

heatmaps, it can then be used to deduce if the higher values are in the original half

of the image or the flipped one. If there are more higher values in the original half,

the hand is considered as right and similarly, if more of the higher values are in the

flipped side of the heatmap, the hand is considered as left. This approach is also

beneficial because it can help later in gesture recognition wi th l imit ing gestures only

to one hand.

2.2.2 Model conversion

The hand detector uses the interpreter of the Darknet framework written on top of

PyTorch , on the other hand the hand key point detector uses Caffe as it's backend

framework. A s P y T o r c h provides easy installation using python's package installer

pip, while supporting a l l versions of python and C U D A , Caffe needs to be compiled

before usage. Due to this, the hand key point detector was converted to use

P y T o r c h . For the conversion, the ut i l i ty M M d n n developed by Microsoft, was used

for converting the model between different deep learning frameworks [27].

2.3 Gesture recognition

F r o m the detected key points, it is possible to get al l the information needed for

classifying gestures. A s the key points are in a list of vertical and horizontal

coordinates the distances between key points can be used to determine the pose of

each finger and the angle of the line given by these points and the horizontal axis

indicates the direction the hand or finger is pointed to.

Distance d between the key points p and q can be calculated as a Euclidean

distance for 2-dimensional space:

Where p x and qt are horizontal coordinates of both key points and p2 and q2

represent vertical coordinates. In implementation, for most of the distance

comparisons, one of the compared distances is weighted by a constant C, to account

for different lengths of finger sections. Except of distances, the angle the thumb or

the hand is in relative to the horizontal axis is also used. A l l the poses the finger

can be in or the direction the hand can point in, can then be written into gesture

definition file.

A l l the states of fingers, that are analyzed have two options over those needed

(2.6)

20

for complete gesture description. State none allows the finger not to be detected

while st i l l being able to correctly classify the gesture. State any then completely

skips the category during the matching of detected hand pose to one of the

predefined gestures. That means the gesture does not need the finger detected, or

in any specific state.

If the hand pose does not match any of the predefined gestures, the output of

pose to gesture matching returns unknown, instead of the gesture name. O n the

other hand, if the hand pose fit more than one gesture, the one that comes

alphabetically first is returned.

2.3.1 Finger bends

The first thing needed for gesture classification is the state of bend for each finger.

For al l fingers except for thumb, which does not have a state of full bend, the bend

state is defined in the gesture definition file by one of three states:

• straight

• partly bent

• fully bent

As is obvious, straight state means that the distance between the base and the

t ip of the finger is approximately the same as the sum of distances between al l the

four key points defining a finger. For the thumb, a partial bend is selected if it does

not pass as straight. The condition that needs to be met for a finger to be considered

straight is defined by equation (2.7) below. The distances that need to be of similar

value for passing as straight are shown as blue lines in Figure 2.17 a):

Where n is the index of a key point at the base of a finger and can have a

value of 5, 9, 13 or 17 and fcj is a key point wi th an index i. This is not possible to

use for the thumb as it has only two sections in a finger. Due to this the equation

needed to be modified:

n+2

(2.7)
i=n

3

i=2

21

Because the thumb is calculated only once and key points do not change

indexes, the equation uses fixed index numbering for the distance between the base

and the tip of the thumb.

If the finger does not pass the condition for being in the straight state, the type

of bend is chosen with another distance comparison. F u l l bend uses a comparison

of distances between the base and the t ip of a finger and the length of the middle

out of the three links defining a finger. If the base to the t ip distance is smaller

than the length of the middle link, the bend state is considered as fully bent,

otherwise the partial bent state is selected. This can be described with inequation

(2.9). Compared distances for a partial bent are shown wi th blue lines in Figure

2.17 b) and for full bent in Figure 2.17 c).

C • d(kn, kn+3) < d(kn+1, kn+2) (2.9)

Figure 2.17 Finger bend states a) straight b) partly bent c) fully bent

2.3.2 Finger spread

Another important parameter needed for gesture recognition signifies how far the

fingertips are spread from each other. This parameter is just like finger bend state

calculated using the distance between two points and is always defined for two

neighboring fingers. In the gesture definition file, the spread of fingers is defined

wi th one out of two possible states:

• far

• close

22

The state is decided from comparing distances between bases and the tips of

fingers, except for the gap between the little finger and the ring finger, as the tip

of the little finger is approximately one section of a finger lower than the t ip of ring

finger. Due to this, for calculating the distance between these fingers, the bottom

part of the last link of the ring finger is used, instead of its t ip. The state is then

decided depending on the result of inequation:

C • d(kn, kn+4) < d(kn+3, kn+7) (2.10)

Where kn stands for the key point at the base of the index, middle or ring

finger. In the case where the distance between the fingertips is bigger than the

distance between their bases, as is visible in Figure 2.18 a), the far state is selected.

If the tips of neighboring fingers are nearly the same or a shorter distance from

each other than bases as can be seen in Figure 2.18 b), the close state is selected.

Figure 2.18 Finger spread states a) far b) close

2.3.3 Thumb position

Next on the list of finger poses is the position of the thumb. The thumb in general

can be in three different poses against the palm, these poses are in gesture definition

named as:

• over

• close

• far

A t first, the option if the thumb is placed over the palm is tested wi th

comparison of two distances. The distances between the tip of the thumb and bases

2;-!

of the middle finger and the index are compared. In the case where the distance to

the base of the middle finger is smaller than to the base of index finger, the thumb

is considered as over the palm, as can be seen in Figure 2.19 a) or defined by

inequation:

C • d(/c 4 , k5) < d(/c 4, k9) (2.11)

If the thumb does not fit the rules to be over the palm, the decision about its

closeness to the palm is made. For this decision are needed the distances between

the base of the index finger and key points at the t ip of the thumb and in the

middle of the thumb. Unless the distance to the tip of the thumb is approximately

the same or shorter than to the middle of the thumb the position of the thumb is

close to the palm as in Figure 2.19 b), otherwise if it is like in Figure 2.19 c) the

thumb position is considered as far from the palm.

Figure 2.19 Thumb position states a) over b) close c) far

2.3.4 Thumb tip position

Some hand gestures depend on the distance between the t ip of the thumb and tip

of other fingers. It may be very important to determine whether the fingertips are

very close to each other and even touching. In the gesture definition this state is

defined by an array of al l the fingers the thumb is touching or with options for

detection:

• index

• middle

• ring

• little

24

Just like wi th previous poses, the decision is based on the comparison of

distances; in this case three, instead of two, for a higher chance of correct pose

estimation. One of the distances lays between the tips of the thumb and the finger

that the thumb might be touching. If this distance is shorter than the length of the

last link of the thumb, as is described by equation (2.9) or in Figure 2.20 a), the

fingers are considered close enough and the finger name is added into an array of

al l other fingers the thumb is close to. Otherwise the situation might resemble the

pose the hand is in Figure 2.20 b).

d(k4, kn+3) < d(k3, k4) (2.12)

Where k stands for key point wi th specific index. K e y points are in absolute

states, because the same index always represent the same key point. K e y point kn

stands for the base of the finger the thumb might be touching.

Figure 2.20 Thumb tip position a) index finger b) none

2.3.5 Thumb direction

In some cases, the gesture may also need the direction of the thumb, be it pointing

downwards, upwards, left or right. Just like al l other states of fingers, this is defined

in the gesture definition file wi th states:

• up

• down

• left

• right

Unlike wi th previous finger states, the direction of the thumb is calculated as

25

an angle between the line defined by two points and positive direction of horizontal

axis. F r o m the coordinates of the two points, the following can be calculated: the

sides of a right triangle. These sides can then be used to calculate the angle wi th

the trigonometry function arc tangent. This function returns value in range from
It 7T

— to - , which is not enough to determine direction. Because of this, the conditional

function for arc tangent called arctan2 which takes in consideration the sign of

both input arguments and its output range is from —71 to 71 in radians or from —180

to 180 degrees after conversion, which covers al l the directions possible in

2-dimensional space, is used:

arctan2(y,x) = *

r t a n - 1 ^) , i f x > 0

t a n - 1 Q + 7T, if x < 0 and y > 0

t a n - 1 Q - n, if x < 0 and y < 0

+ | , if x = 0 and y > 0

- | , if x = 0 a n d y < 0

undefined, if x = 0 and y = 0

(2.13)

Where output of the arctan2 function is the calculated angle, and arguments

x and y are points defining the hypotenuse of the right triangle. For the calculation,

points at the t ip of the thumb and point at the base of the thumb are used. F rom

the angle, it is then easy to decide which direction the thumb is pointing to.

Graphical representation of the arctan2 function is in Figure 2.21.

Figure 2.21 The output of function arctan2 [28]

The thumb can be directed up as is in Figure 2.22 a) which happens if the

2(i

calculated angle is within the range of 45 to 135 degrees. Similarly, if the thumb is

pointing to the right, which can be seen in Figure 2.22 b), the range the angle must

fit into is from —45 to 45 degrees. In the case where the thumb is facing downwards,

which is shown in Figure 2.22 c), the needed range of degrees is from —45 to —135.

If the thumb is pointing to the left like in Figure 2.22 d), the range is the remainder

to fulfill the whole 360 degrees from —135 to —180 and from 135 to 180 degrees.

Figure 2.22 Thumb directions a) up b) right c) down d) left

2.3.6 Hand orientation

The last of the parameters defining hand pose focuses on the direction the hand is

pointing to. It is calculated very similarly to the thumb direction and uses the same

group of five states for the definition of gesture:

• up

• down

• left

• right

To determine the direction the hand is pointing to, the angle between the base

of the hand and averaged coordinates of the bases of fingers is needed. The angle

is then calculated the same way as wi th thumb direction using equation (2.13).

Similarly, the direction is then determined by the same rules as the direction of the

thumb. Figure 2.23 represents al l the recognized hand directions.

Figure 2.23 Hand directions a) up b) right c) down d) left

27

2.3.7 Gesture definition format

Each gesture is defined by a single J S O N file in the gestures folder. These files

contain a readable and easily modifiable structure wi th the name of the gesture and

the definition of poses the finger can be in for the one gesture. The general structure

of the gesture definition file is in Lis t ing 2.2 wi th al l the main level categories.

Lis t ing 2.2 Gesture definition format - main categories
{

"name" : ,
"hand": [

]
"finger_bends" : {

h
"finger_spreads" : {

h
"thumb_position" : [

] ,
"thumb-tip": [

] ,
"thumb-direction" [

] ,
"hand-direction": [

]
}

Except for the gesture name, al l the possible states are always in the square

brackets, which are in J S O N format used to encapsulate array members. The states

are then string names of enumeration types used in the application code, to make

readability by the human eye easier.

Cur ly brackets are used to represent objects; members of an object are then

represented by a string name and the corresponding value. In this case the values

are mostly arrays and other objects. Objects are used for finger bend states where

the name of the member value is necessary to differentiate between fingers and for

finger spreads to distinguish for which fingers the spread is in between. The final

bend state and spread of fingers is again defined as an array of string names.

To allow the hand or pose of finger to be in any state possible and to skip the

28

category in gesture matching, the keyword "any" can be used to indicate that the

category does not matter. For example, keyword "any" can be used to identify that

the gesture can work for both the left and right hand. Two definitions, one using

a list of string names and the second one wi th only the keyword "any" but wi th

the same outcome are in Lis t ing 2.3.

Lis t ing 2.3 Gesture definition format - keyword "any"
"hand": ["hand": [

" l e f t " , "any"
"right",]
"unknown"

]

2.4 Graphical user interface

T o ensure ease of use, a graphical user interface for the application was created.

For this purpose, the open-source cross platform Python library K i v y [29] was used.

K i v y uses event-based programming, resulting in the application running in super

loop and just responding to event callbacks from the user interface. The U I can be

designed either directly from Python, which can become very confusing wi th bigger

projects, or by using K i v y proprietary language called K V , in which a tree structure

of widgets wi th rule-based properties can be defined. Hello W o r l d type of

application U I using K V language is in Lis t ing 2.4.

Lis t ing 2.4 Hello world in K V language
#:kivy 1.10.1

BoxLayout:
orientation: ' v e r t i c a l '

Label:
text: 'Hello ' + 'World!'

Button:
text: 'Close'
onpress: exit()

This simple application wi l l be composed of two widgets, label occupying the

top half and button in the lower half of the window. K V language can also use

simple python commands and conditions in its properties. This is presented wi th

the concatenation of strings in the text property of the label. Python function calls

can be also used, like exitQ function call in the on press event callback.

29

2.4.1 Main screen

The application is designed to use a single screen, which contains a video player

wi th a hide-able control panel at the bottom of the screen, which contains the

typical play/pause button, option to go through the video frame by frame in either

direction, position slider for easy navigation in the video, current time in the video

and the length of the input sequence followed up by a quick screenshot button. A t

the top of the application window is located an action bar containing function

buttons at the top.

Each button launches a callback function which results in opening a popup

overlay wi th file browser, setting the video source to camera, sliding a panel wi th

more options into the screen, button that reloads the source file or enables log

saving. The base screen of the application is in Figure 2.24.

•(Computer vision and hand gestures detection and fingers t... H * | g ^Jj

- / - Snap

Figure 2.24 Created application window

In the design of the application, most of the used icons belong to the open-

source icon pack called Open Iconic [30] wi th the colors changed to fit the dark

interface, and some icons were made from scratch, such as the icon for save image

button because Open Iconic d id not contain an icon usable for this function.

2.4.2 Settings

The settings panel contains options for configuring the detection itself. One of the

options is the usage of N V I D I A C U D A which is by default turned on if the system

contains a supported G P U . Other options allow the hand detector, finger detector

or gesture matching to be disabled, which can be done if the G P U does not have

enough video memory to fit both neural networks into it or the functionality just

is not needed. To be able to use this application wi th G P U s wi th less amount of

memory, the option to use only half precision floating point models is available.

This may also produce faster processing on supported G P U s but for the cost of

possibly lower accuracy. Half precision is also not available for use on C P U s , so the

option is automatically disabled if the N V I D I A C U D A is not used.

More cosmetic options include the drawing of hand skeletons, joints or detected

bounding boxes into the image or the frame of a video sequence. The last two

options represent the frame rate the detection should try to get if the hardware is

powerful enough; the base frame rate of video or camera is set when the source is

selected, and how many frames should be skipped between detections, which is by

default 0. The settings panel is shown in Figure 2.25.

<J V)p Computer vision and hand gestures detection and fingers 1... * L O i

Use NVIDIA CUDA: Use hand detector:

Use keypoint detector: Use half precision:

Use gesture matching: Draw Boxes:

Draw skeleton:

Target FP3:

Draw skeleton joints:

Skip Frames:

Figure 2.25 Detection settings available in application

Except for the settings that change the processing unit and precision of

calculation, this is because big data transfers of models between G P U and system

memory or the need to reload weights, al l of the settings can be toggled during

detection and the new setup is used for detection over the next frame.

2.4.3 Record panel and settings

Saving the video is designed in a slightly different way than is usual for applications

working wi th video sequences. Instead of saving the whole video and waiting for

31

the whole video to be processed, the saving is done using a recorder. The recorder

can be launched at any moment in the video and can be paused to allow skipping

of certain parts of the video. The record panel also includes optional toggle to save

log during the output video saving. Bo th expanded record panel and record settings

panel are shown in Figure 2.26.

Figure 2.26 Record panel and record settings

A l l the settings are set automatically after opening a video or loading up

a camera to match the resolution and frame rate of the input. This does not mean

that the settings cannot be different, as the frame rate and resolution can be

changed to almost anything and the frames wi l l then be resized and written wi th

the frame rate set before the recording is started.

The advanced record settings contain a single text box, in which can be written

F o u r C C (four-character code) defining an encoder that is to be used while

generating an output video sequence. There are many F o u r C C sequences [31], but

it is impossible to say upfront which wi l l work on specific systems. Because this is

the only place for the user to input an incorrect setting, a warning about possible

application crash is also included. Most common F o u r C C codes are M J P G , D I V X ,

H264 but there are many more. B y default, F o u r C C used by the application is

32

M J P G , which stands for the codec Mot ion J P G and should be available wi th every

O p e n C V build, but the produced output file is very large compared to more

advanced codecs like D I V X or H264.

The approach of using a recorder also allows changes in detection settings

during the saving process, like disabling hand detector, changing target frame rate

or just turning off the rendering of hand skeletons.

2.4.4 Info panel

Last of the UI elements is panel containing information about the application,

version of python and versions of used libraries, hyperlinks to project repository

and university website and contact email. Expanded info panel is in Figure 2.27.

I C •* L O i

•
Computer vision and hand gestures

detection and fingers tracking

Author: Tomas Bravenec

Email : xbrave01@vu1br.cz

Web: www.vutbr.cz/

Repository: git lab.com/...

Python version:
Python: 3.6

Python libraries:
OpenCV: 4.0.0

PyTorch: 1.0.1

Numpy: 1.15.4

Figure 2.27 Applicat ion's info panel

2.5 Application development

The whole application can be divided into four parts. Three of these parts represent

the whole process from hand detection to the final gesture recognition. The last

part of the application is the user interface, which is then by callbacks and rule-

based functions connected wi th the computational part of the application.

mailto:xbrave01@vu1br.cz
http://www.vutbr.cz/
http://gitlab.com/

2.5.1 Models download

Because of the size of the weights for both neural networks, these are not included

in the source code repository. There are two options on how to download these.

Either the weights wi l l be downloaded at first launch of the application, showing

the progress of the weights download in the terminal window, before the U I loads

or downloading them manually before launching the main application by running

the script g e t m o d e l s . p y from the repository [32]. The result is the same as the

application calls the functions from ge tmode l s . py on every launch to check if the

models are present and downloads them if they are not.

2.5.2 Background logic

The logic behind the complete gesture detection is divided into three python

modules. Hand key point detection and gesture matching are in their own modules.

Hand detection is included in the module wi th the wrapper class.

The hand detection neural network contains al l the logic in the Darknet

interpreter python package, and the only preprocessing needed is conversion of color

format from B G R to R G B . That means the function call for prediction over an

input image is included in the wrapper class without any postprocessing.

The situation is different when it comes to the hand key point detector from

the project OpenPose, because the weights have been converted to PyTorch , the

whole preprocessing and postprocessing had to be written from scratch. Even if

that was not the case, because of the decision making in the case of the left or right

hand, the implementation would be very different anyway.

Gesture recognition, unlike either of the detections is tied to the hand key

points detector and subsequently cannot be launched on its own. Gesture matching

consists of getting the pose out of the key points, which is then followed up by

gesture matching. The main idea behind the algorithm is to check if the current

parameter of the pose can be in the defined gesture. If any of the pose parameters

cannot be in the tested gesture, that gesture is removed from the list and the next

definition is tested. The best-case scenario would end up in either an empty list or

a list wi th a single remaining gesture definition left for an unrecognized gesture and

a recognized gesture respectively. In the case the list contains more than one gesture

definition, the one first loaded into memory is used as the resulting gesture.

The whole detection logic is wrapped in the hand tracker class that provides

a single function to provide complete detection from a static image or a single

frame of a video sequence. The class also contains functions and state variables to

allow for changing detection settings.

34

These functions are useful for easy binding to the switches in the application's

settings, that allow to easily change the output from the prediction function. Some

of these changes though cannot be done during detection and can only be made

while the detection is not running.

2.5.3 Multi-threaded processing

T o make the UI of the application responsive without freezing the U I during tasks

that need a lot of time for calculation, the processing logic of the neural networks

was moved to a separate thread. This means that the application's UI stays

responsive even during time consuming detection. T o keep full control of this

thread, the control is done using simple semaphores. One that keeps the thread

running and the second, that allows the processing to start. If the thread is running,

but processing is stopped, the thread is put to sleep for half a second, before it

checks if processing is required or not. The main reason for this delay is to make

the application use less processing power at the time of not doing anything. The

processing thread is also created only at the time of changing the source for

detection, and only after the previously running thread stops. This approach makes

threading relatively easy, because there are always at most two threads running.

2.5.4 Logging

The application includes two logging systems, one runs only during recording and

the second one runs al l the time. Even though logging is always running, the log is

saved only if the option is selected.

If the option to save log is used and the source is a video, the log wi l l be saved

on a change or reload of the source file. This approach ensures that the log contains

information about every processed frame and is the only option, because of the

atypical saving system. The log for an image is saved only if the processed image

is saved and log for a camera feed is not taken at al l as there is no video information

to compare it to after the frames from the camera are processed.

The situation is different if the recording is running. A t the start of the

recording, a second logging object is created, which records every information about

every frame saved into the output video file. This also means the logging object

starts indexing the frames from zero and uses the output framerate to calculate the

timestamp in the log to match the output video.

The logs always contain a header, which for images contains the output image

path and the dimensions of the image. The log then contains a single line for each

of the hands in the image. These records contain the information about the

bounding box in normalized format and string representation of the detected hand

and gesture. In the case the hand detector is not used, the bounding box location

is put in the center of the picture wi th a width and height matching the dimensions

of the image. If the hand key point detector or gesture matching is not used, the

word "unknown" is used in the log. If the gesture does not match any of the defined

gestures, the word "unknown" is used instead of the gesture name. The format of

the log wi th header and record is in Lis t ing 2.5

Lis t ing 2.5 Log header and record format for static images
<filename>, Shape: <width>x<height>
<x> <y> <width> <height> <hand> <gesture>

The format of the log header for video sequences compared to the log for

a single image also includes information about the video framerate. The records of

the log then also include frame index and calculated timestamp from the frame

index and the framerate. After these two new values, the format is the same, wi th

the bounding box information in normalized format and the string representation

of the hand and gesture. Format of the log for video sequence wi th al l the

information is in Lis t ing 2.6.

Lis t ing 2.6 Log header and record format for video sequences
<filename>, FPS: <framerate>, Shape: <width>x<height>
<frame> <time> <x> <y> <width> <height> <hand> <gesture>

2.6 Application prerequisites

The created application uses very memory and computationally intensive methods

of image processing, so the hardware of the system must be appropriate. There are

prerequisites when it comes to both the hardware and the software of the system.

2.6.1 Source code repository

The application's source code, including full change history and step by step

installation guide for both Microsoft Windows and Linux based systems, is stored

completely in a git repository [32].

2.6.2 Hardware requirements

When it comes to processing using a C P U , which is possible but not recommended

because of long processing times, the system should have at least 8 G B of system

memory, but 16 G B or more is recommended, as the system itself normally uses at

least 2 G B on its own, and 6 G B is then easily filled wi th the weights of both neural

networks and processed image, and in the worst case scenario the system might

start moving data into swap. This can then result in a very unresponsive system,

not just the application behavior.

If the system contains a supported N V I D I A G P U , the system memory can be

just 8 G B , but the G P U memory should have at least 6 G B be for smooth

functionality. W i t h either the hand detector or the hand key point detector disabled

and wi th half precision processing enabled, the application can run even on cards

wi th 2 G B of video memory.

There is no requirement on the C P U performance, but for the best

performance, the model of C P U should not bottleneck the G P U available in the

system and vice versa. The result of bottlenecking is lower frame rate in the example

as a result of the C P U not serving the images for processing quickly enough or the

G P U waiting for the commands from the C P U , so the load of the G P U is nowhere

near the load it could be wi th adequate C P U .

2.6.3 Software requirements - Microsoft Windows

The application on the operating system Microsoft Windows, only needs installation

of 64-bit Py thon version 3.6 wi th pip package manager installed. Al though the

Py thon version can be higher, the link to P y T o r c h package wheel in

requirements.txt would have to be changed according to P y T o r c h Get Started

guide [33]. The python installation should also be added into the system path during

installation to ensure there would be no issues during package installation process.

The N V I D I A video driver corresponding to the version of the C U D A toolkit, the

P y T o r c h package has been compiled with, installed is also necessary, if the

accelerated G P U computing is to be used. The minimal video driver version can be

found in N V I D I A C U D A documentation [34]. The full installation of the N V I D I A

C U D A Toolkit is not necessary as P y T o r c h already comes wi th prebuild binaries

needed for G P U accelerated computation.

A l l the Py thon packages needed are in file in the root of the repository

requirements.txt and can al l be installed wi th the command in List ing 2.7. To allow

usage of the same requirements.txt on Microsoft Windows and on L inux based

systems, the OS specific packages are marked inside the file wi th environmental

markers.

Lis t ing 2.7 Py thon packages installation command on Microsoft Windows
python -m pip i n s t a l l - r requirements.txt

37

2.6.4 Software requirements - Linux

Just like wi th Microsoft Windows, the recommended Python version is 3.6 in 64-bit

version, higher versions of Py thon can be used, but the links to the P y T o r c h wheel

in requirements.txt needs to be changed for the same reasons as for installation

in Microsoft Windows and the new link can be found using Get Started guide on

P y T o r c h website [33]. Unlike wi th Microsoft Windows, L inux based systems need

a few packages installed through the system package manager. The main package

in question is the framework for graphical user interface K i v y and its dependencies,

as mentioned in the K i v y installation guide for L inux [35]. The Py thon installation

also needs packages:

• cython

• setuptools

• wheels

These packages are needed to bui ld the K i v y wheel before the installation itself.

Just like wi th Microsoft Windows, the appropriate N V I D I A video driver [34] is

necessary for P y T o r c h to allow N V I D A C U D A in application settings. After that

the setup is like the setup process in Microsoft Windows. A l l the python packages

are in the same file requirements.txt and on L inux can be installed wi th

command in Lis t ing 2.8.

Lis t ing 2.8 Python packages installation command on L inux
pip3 i n s t a l l - r requirements.txt

;-!8

3 Dataset creation

Using only the EgoHands dataset [12], the application provided good detection

results, when it came to hands doing stuff on a table, like playing chess or Jenga.

W h i c h makes sense as it is created out of multiple video scenes where people play

cards, chess and Jenga. This also means, that the results when it comes to hand

detection in various poses, considerably different to the actions that the dataset

was created on, were not exactly good. The same thing applies for M P I I Human

Pose dataset, as it contains people in various poses, training neural networks for

detection of hands using only this dataset provides disappointing results. Similarly,

for the New Zealand Sign Language dictionary, which contains images in similar

settings without more widely varied conditions. That meant that the datasets had

to be expanded to create a more varied set of images.

3.1 Obtaining images

T o be sure that the dataset contains most of the gestures humans can do wi th their

hands, it is v i ta l to use images that contain these gestures in different environments,

lighting, poses and so on. For this very reason, it is a good idea to combine existing

datasets or use frames from videos that are on the internet and create own data by

recording what the network should train on.

3.1.1 Combining existing datasets

The easiest way of expanding datasets is to combine two of them together.

Especially if both datasets include annotations of the object needed for training. In

that case, combining datasets is just about converting annotations into the required

format. If the dataset does not have desired annotations, then these must be created

manually using one of the labeling tools.

This is the method used in expanding the EgoHands dataset wi th images from

the New Zealand Sign Language dictionary and the M P I I Human Pose dataset. As

mentioned before, neither of these had required annotations, so these were created

manually.

3.1.2 Recording own data

For the purpose of recording own data, Py thon script saving a frame from a webcam

after a set interval or selecting frames from a video sequence recorded on a camera

can be used. Either of these approaches is usable in this case, although the recording

device should have high quality image capturing, as the neural network provides

better results if trained on images wi th higher resolutions, rather than lower

resolution images. A n example of such images wi th ground truth annotations are

in Figure 3.1. This approach was used to create evaluation dataset for left hand

recognition and gesture classification part of the application.

Figure 3.1 Custom images for dataset extension

3.1.3 Getting videos from the internet

Another way of modifying the existing dataset is using frames from videos wi th

license that is allowing reuse of the content, that can be found on the internet.

A couple of frames from videos from YouTube can be seen in Figure 3.2. Scraping

videos from the internet is a viable option, but this approach to dataset extension

was not necessary as the three combined sets of images provided a high variety of

training data.

Figure 3.2 Images from YouTube videos [36], [37]

3.2 Annotation of images

Annotat ion can be done in two ways. One way is by manually creating files and

measuring distances from the corner of an image followed by width and height of

the object. The data must then be manually inserted into a file. This approach is

not ideal as doing this for thousands of images would be extremely ineffective.

40

Because of this, annotation tools are much more effective. Their purpose is to create

annotations in the format that would work for a specific network or in some format,

which could be easily transformed into another. The process of creating the

annotation is mostly automatic, the only thing that must be done is manually

selecting the object that needs to be annotated and the tools take care of the rest.

3.2.1 Tool Labelling

The Y O L O v 3 neural network needs specifically annotated images for training. The

annotation consists of a single txt file for each image, that contains the ground

truth information about objects for which the network should train and their

bounding boxes; each object in the image is placed on a new line. The locations and

dimensions of bounding boxes are in normalized format independent of the image

resolution and object class is represented by its index. The format of these

annotation files is in List ing 3.1.

Lis t ing 3.1 Format of image annotations for Y O L O based networks
<class> <x> <y> <width> <height>

For annotating al l the additional images the multiplatform application

Label l ing [38] was used, which can generate annotation files in the correct format

from the bounding boxes drawn into the image. User interface of Label l ing is shown

in Figure 3.3.

•f labelling D:\Repos\hardtrackJng\image5VtraJn\Jmg\CHESS_LIVINGR00M_S_B_framO57D.jpg

Figure 3.3 Annotat ion tool Label l ing

41

file://D:/Repos/hardtrackJng/image5VtraJn/Jmg/CHESS_LIVINGR00M_S_B_framO57D.jpg

These annotations are usable only wi th neural networks based on Y O L O

architecture, but can be easily converted for use wi th any other neural network

wi th simple scripts written in python. After annotating, the dataset was ready for

training the neural network.

3.2.2 Website Supervise.ly

Another very useful tool for dataset annotations is the website called Supervisely

[39]. This online based tool is very capable as it can create the annotations in its

editor, which is shown in Figure 3.4. It can also show statistics like how many

images are left to annotate, and even the percentage of image space, that is occupied

by the objects.

Even though it seems like it can do a lot already, the functionality does not

end here, Supervisely has also implemented data transformation language, that can

easily divide the dataset into multiple smaller datasets, which is useful for creating

subsets of the dataset for training and evaluation. Another interesting feature is

data augmentation, which extends the dataset by color shifting, flipping and

rotating existing images.

Figure 3.4 Annotat ion tool Supervisely

O n top of that, supervisely also contains the means to train a few predefined

networks using the annotated and augmented datasets. This feature though is not

implemented on the website itself but needs a separate L inux based system wi th

N V I D I A C U D A support, as the website wi l l only control the machine that wi l l do

the computing.

42

4 Evaluation and testing

A s wi th any deep learning applications, it is highly recommended to use G P U s to

speed up the forward pass of input data through the neural network and out of the

output. Most of the deep learning frameworks like TensorFlow, P y T o r c h and others

use N V I D I A C U D A for this purpose. The framework used for training and then

testing was PyTorch , because of this, the G P U s used to evaluate the performance

of the application are only from N V I D I A . A s there is pretty much no point in

creating a hand detection solution wi th hardware that almost no one has, one of

the G P U s used is a few generations behind current ones and targeted on laptops,

which means it is less powerful than its desktop counterpart. The second tested

G P U is targeted at desktops and is a single generation ahead of the laptop one.

Even then, the desktop G P U belonged to the mid-range and was nowhere near as

powerful as the most expensive G P U s from the same generation. Parameters of

both tested graphics cards are listed in Table 4.1.

Table 4.1 G P U used for evaluation and testing

NVIDIA GeForce G T X
850M

NVIDIA GeForce G T X
1060

C U D A cores 640 1280

Base core clock 0.901 GHz 1.607 GHz

Max boost clock 1.084 GHz 1.835 GHz

Memory 2 G B 6 G B

Memory bandwidth 80.0 G B / s 192.2 G B / s

Memory type DDR3 GDDR5

Manufacturing process 28 nm 16 nm

Architecture Maxwell Pascal

Target system Laptop Desktop

Launch date March 2014 July 2016

There are some options to get even better performance out of the graphics

cards, if they support it. Because the architecture of the G P U s changes a lot in

between generations, these usually do not differ just in the performance

improvements but also in the features of the G P U s . For example, compared to the

Maxwel l architecture, graphics cards based on the Pascal architecture support

43

mixed precision processing [40]. In practice, this means that lowering the precision

of the data types from 32-bit floating point to the floating point represented wi th

only 16 bits, not just the memory requirements but also the time needed for

processing wi l l be cut in half. Another improvement in performance could be gained

wi th G P U s based on the V o l t a architectures, some G P U s based on the Tur ing

architecture and possibly architectures released in the future. Graphics cards based

on these architectures may contain not just C U D A cores, but also tensor cores [41].

Tensor cores are specifically optimized computing cores for matrix operations which

are used at the core of deep learning applications.

Just for good measure, testing was also done on C P U s available in systems

wi th tested G P U s , to show the performance loss on systems without a G P U from

N V I D I A . Same as for the tested G P U s , testing was done on a few years old laptop

processor to show how quickly the neural network can detect hands on lower end

hardware and on much newer desktop C P U to show the difference in performance

achievable wi th a more modern C P U . Tested C P U parameters are in Table 4.2.

Table 4.2 C P U s used for evaluation and testing
Intel Core i7 4700HQ Intel Core i5 8400

Cores 4 6

Threads 8 6

Base core clock 2.4 GHz 2.8 GHz

Max boost clock 3.4 GHz 4.0 GHz

Memory 16 G B 8 G B

Memory type DDR3 DDR4

Manufacturing process 22 nm 14 nm

Architecture Haswell Coffee Lake

Target system Laptop Desktop

Launch date June 2013 October 2017

4.1 Hand detection

O n the hand detection testing can be looked at from two angles, accuracy and

speed. Accuracy of the network is calculated during training, so it can be evaluated

subjectively. O n the other hand, the speed of detection can be easily measured.

44

4.1.1 Detection accuracy

F r o m predictions made on the validation dataset, most of the time the hands are

detected correctly, and predictions of bounding boxes are very close to actual

ground truths. The comparison of ground t ruth and predictions made by the neural

network can be seen in Figure 4.1.

Figure 4.1 Comparison of ground truth and C N N s prediction [14] a) ground truth

b) predictions by neural network

Even though most of the time the trained neural network manages to detect

hands correctly there are times it can get confused and show incorrect detections.

This can happen when the image is blurry, hands are obscured from full view by

other objects, the objects look from a certain angle as human hands or just make

incorrect predictions without a reason. These situations can be seen in Figure 4.2

where in one image two hands are detected as one, just like an ear and a tool in a

belt, or in the second image where the design on the jersey of one of the basketball

players is recognized as a hand. O n the other hand, from this second image, it can

be taken as fact that hand detection works on various skin colors.

Figure 4.2 Incorrect detections [14]

Because the hands from the first-person point of view included in the

EgoHands dataset were not used for training the neural network, hands from this

perspective are mostly not being recognized either. In Figure 4.3 are shown

examples of missed detections from the first-person point of view.

45

Figure 4.3 Undetected hands [12]

4.1.2 Detection speed

T o make things clear, the neural network has a fixed input size, which means that

all input frames are resized to the resolution set in the configuration file of the

neural network before it was trained. In this case, the resolution is 416x416 pixels.

A s expected, the times needed for running the detector on any of the available

C P U s provided unexceptional results as low as 0.61 frames per second using a

mobile processor, the desktop C P U even though four generations newer and wi th

higher clock speed, managed to be only three times as quick. Using the G P U s

provided much better results, even the older mobile graphics card easily

outperformed both tested C P U s by a big margin and managed to get to more than

three times higher framerate than the desktop C P U . Al though the mobile G P U did

beat both C P U s by a big difference, using a newer desktop G P U provided a massive

performance increase, although not as high as it could be, due to the bottlenecking

of the graphics card by the C P U in the system. A l l the measured frame rates and

times needed to process a single frame of a video sequence are listed in Table 4.3.

Table 4.3 Detection speed comparison between G P U and C P U

Frames / second ms / frame

Intel Core i7 4700HQ 0.61 1639.34

Intel Core i5 8400 1.83 546.45

NVIDIA GeForce G T X 850M 6.81 146.84

NVIDIA GeForce G T X 1060 6GB 28.91 34.59

4.2 Hand key points detection

A s the key point detector belongs to the project OpenPose, the evaluation of the

neural network model was already done in paper [26]. What can be tested and does

not belong to the original paper, is the decision if the hand is left or right.

4(i

4.2.1 Left hand recognition

Since OpenPose uses another neural network, specifically for human pose

estimation, the decision for which hand the pass through the network should be is

quite straight forward. The implementation is vastly different from the one used.

Because of that, the accuracy of the current implementation had to be evaluated.

For the evaluation, 147 hands were used in a set of 101 testing images that

contain people showing hands wi th different gestures using either one or both of

their hands. This set of images was also taken wi th varying lighting conditions and

in different environments. Two of the pictures from this testing set wi th annotations

of left and right hand are in Figure 4.4.

Figure 4.4 Images from the evaluation dataset wi th hand annotations

The implementation of the hand classifier managed to correctly classify the

hand in 94.5% of al l tested cases. Exceptions to the correct detections are mostly

the cases when the hand is positioned in a way that can resemble the other hand.

This situation usually occurs at moments when it is not clear from the image cutout

containing the hand, which hand it is. A situation like this, where the neural

network can be mistaken by the very similar outlines and pretty much the same

distribution of key points, is depicted in Figure 4.5, and even in this situation the

incorrect detection is not certain and depends on the quality of the input image.

Figure 4.5 Left and right hand wi th similar key point distribution

47

To represent both correct and incorrect classifications of hands, the confusion

matrix in Figure 4.6 was created. F r o m this matrix it is visible that only in a few

instances the classification was not accurate, and the number of incorrect

classifications is insignificant when compared to the number of correct ones. F r o m

the confusion matrix it is clearly visible that the logic behind the hand classifier is

accurate in most cases.

Confusion matrix of left/right hand classification

Left hand

Eh
x*
a
o

o

Right hand

SP
Classification

vT

73

66

70

50

- 40

- 30

- 20

10

Figure 4.6 Confusion matrix for recognition of left and right hand

4.2.2 Half Precision calculation

Even though the full evaluation of the hand key point detector was not necessary,

due to the option of using half precision floating points, the accuracy can be lower

than expected. This issue was encountered when working wi th the neural network

only once using an image found on the internet, where the usage of half precision

made a difference. Whi le using single precision, the hands and hand key points were

detected correctly and the gesture classificator predicted both gestures correctly as

is in Figure 4.7 a) even though the second key point of the ring finger on the left

hand is slightly off the correct position. O n the other hand while using half

precision, the second key point of the index finger on the right hand was not

detected correctly which is in Figure 4.7 b), which might have been due to overflow

48

in one or more of the layers in the neural network. This resulted in incorrect pose

estimation and wrong gesture classification. Even though there was a difference in

the predicted key points of the right hand, key points of the left hand stayed the

same, no matter the precision used for calculation.

4.3 Gesture classification

For the purpose of testing the gesture recognition system, eight gestures were

predefined. These gestures were also included in the creation of the dataset for

evaluating the hand and gesture classifier. A l l the predefined gestures are presented

in Figure 4.8.

Figure 4.8 Predefined gestures a) One b) Two c) Three d) Four e) Five

f) O K g) Thumbs up h) Thumbs down

Correct classification of a gesture is ultimately dependent on the predicted

hand key points positions. This makes evaluation of gesture classification quite

difficult, because the error might not be in the gesture classification, but in the

output of the key point detector.

To evaluate, the same set of 101 images used to evaluate the classification of

the left or right hand was used. These images were manually labeled wi th the

gestures shown in them. If the label matched the predicted gesture or was unknown

because the gesture was not in the predefined set, the prediction was taken as

49

correct. In the case the hand key point detector produced a result that was

obviously wrong, like in Figure 4.9, that detection was not used in the calculation

of the success rate of the gesture classificator as it does not objectively represent

the error in the gesture classification.

Figure 4.9 Incorrect hand key points detection

The images from the evaluation dataset used for classification contained either

a single hand, where hand detection was not necessary, or wi th multiple hands in

various poses wi th the need for the hand detector. Bo th cases of the evaluated

images are displayed in Figure 4.10.

Figure 4.10 Gesture recognition evaluation images

The success rate was then calculated as a simple ratio between the correct

classifications and total hand gestures used for testing. This produced a success rate

of 79.8%. The success rate had to be from the beginning lower than the success rate

of the left- or right-hand detection, because if the key points were meant for the

other hand, they are most of the time not very usable for further gesture matching.

The reason for slightly lower success rate of gesture matching is the hand key point

detection neural network. Because the fingers can be hidden from the view, the

neural network must guess the pose, the finger might be in. The key points of a

finger can be predicted in a position that does not match the gesture rules. Because

50

of this, even though subjectively the hand pose fits the gesture, it does not actually

pass the rules.

The evaluation dataset contains 119 hands, on which the hand key point

detector subjectively predicts the locations of key points correctly. Out of these 119

hands, each of the tested gestures was represented wi th approximately 10 to 18

occurrences in the dataset. O n top of the tested gestures, 16 hand poses that did

not match any of the predefined gestures were included to also test if the gesture

matching logic understands the unknown hand poses correctly. F rom the results,

a confusion matrix in Figure 4.11 was also created for visual representation of the

accuracy. A s is visible, most of the classifications are on the main diagonal, which

means these classifications were correct, and if they were not, in most cases the

gesture was classified as an unknown gesture.

Confusion matrix of gesture classification

EH
ö
o

o

One - 7 0 0 0 0 0 0 0 3

Two - 0 10 2 0 0 0 0 0 0

Three - 0 0 9 0 0 0 0 0 2

Four - 0 0 0 9 0 0 0 0 4

Five - 0 0 0 1 13 0 0 0 3

OK - 0 1 0 0 0 10 0 0 1

Thums Up - 0 0 0 0 0 0 15 0 3

Thumbs Down - 0 0 0 0 0 0 0 7 3

Unknown - 1 0 0 0 0 0 0 0 15

* & J> J?
S3 a?

Classification

Figure 4.11 Confusion matrix for predicted gestures

14

12

10

51

5 Expansion possibilities

The computational backend of the application could be expanded in the future to

provide better detection results and additional functionality.

5.1 Detector modifications

A s the neural network used for hand detection does make mistakes, the result could

be further improved without modifying the code by retraining Y O L O v 2 wi th an

even more diverse dataset of hands, or by replacing the neural network by

a different Y O L O based architecture. The successor of Y O L O v 2 , Y O L O v 3 [43]

already exists and should produce much better results because it uses not just one

but three detection layers, each in different scale of the input image, but due to

much higher performance requirements, the older version was used. Changing the

detector can be easily done by just swapping the configuration file and the

corresponding weights for another Y O L O based neural network.

5.2 Key points post processing

The OpenPose key point detector produces output wi th a lot of ji t ter that can be

expected as the detection is always done on a single frame, but it could also be

improved by performing detection over a time window, and smoothing out the

detection in the frame at the center of the window. The result would then provide

a smoother less jumpy movement of the drawn hand skeletons. That would be

easier to match the gesture to.

This detection over a time window could also be used to fix incorrect detection

between a couple of frames. Whi le in the majority of the frames the finger would

be detected in a similar place and in the middle of the window there would occur

a sudden jump in the location of the key points, followed up by returning to

a location very similar to the previously detected sequence, the incorrect location

of key point could be replaced by approximating the key points position.

Both approaches would result in smoother, higher quality detection, although

for the price of losing real time processing, depending on the size of the detection

window.

->2

Conclusion

The goal of this master's thesis was to study and analyze possible approaches to

hand detection, gesture recognition and finger tracking, select one of the possible

approaches to the issue and create a multiplatform application capable of processing

images, video sequences and a camera stream.

Most of the approaches to hand detection expect at least some kind of

cooperation wi th the person in front of the camera, be it wearing colored gloves to

easily detect important points of the hand, or just expecting the hand to be in

a pre-defined part of the image. Other approaches might require specialized

hardware for video capture wi th depth channel and so on. These issues made most

of the generally used approaches unusable.

To create a system capable of hand detection that is not dependent on lighting

or the environment, it is almost impossible to use a rule-based system. That might

result in confusion during detection in situations not thought about during the

creation of the system. To avoid these issues and to create much more robust hand

detection the approach using a neural network was chosen.

Because neural networks need a lot of training data to produce usable results,

the training dataset was created wi th a combination of the EgoHands dataset, M P I I

Human Pose estimation dataset and a couple of videos from the New Zealand Sign

Language dictionary. The combined dataset provided a high variety of hands in

different environments, lighting and poses, and contained over 6000 images, usually

wi th more than one hand in each. After training, the neural network Y O L O v 2

resulted in very good detection results wi th 89.2% of al l relevant objects, in this

case hands, detected. Out of al l the detections, the network managed to find the

hands properly in 85.7% of al l cases.

The hand detection specific neural network was necessary due to the usage of

another neural network, for predicting hand key points, which needs an image wi th

only a single hand. This network is one of the networks used in the project

OpenPose and can predict the position of fingers, even if the fingers are hidden

from the camera view.

Even though the network is from the project OpenPose, the processing of the

image before and after the forward pass through the neural network is completely

different from the OpenPose implementation. The additional processing adds the

capability to recognize whether the hand sent through the network was left or right

correctly in almost 95% of al l cases, which adds the possibility to implement gesture

recognition wi th gestures specific for either left or right hand.

The biggest downside of using the neural network from the project OpenPose

is quite slow processing due to the sheer size of the network. But wi th more and

more powerful hardware available every couple of years, this issue wi l l cease to be

a problem in the future.

The expandable gesture recognition part of the whole system works wi th

comparisons of Euclidean distances between important key points. Depending on

those distances, the system predicts the pose the finger or fingers are in. Since the

gesture recognition highly depends on the output of the neural network for the

hand key point detection, the success rate cannot be as high as it could be, if the

locations of hand key points were not predicted but known for certain. Even then,

the tested gestures were recognized correctly in 79.8% of al l the cases in the

evaluation set of images.

The gestures the system tries to detect are defined in the gesture definition

files and new gestures can be easily added by creating a new gesture definition file

in the gestures folder. These definition files should contain the new description of

the poses the fingers of the hand can be in .

When it comes to detection performance, there is no comparison between the

C P U and the G P U , even when using a modern desktop C P U ; an old laptop G P U

is a much better choice for running neural networks, due to their parallel nature.

That said, the C P U in the system should not be bad either, as the application

might run into performance issues due to bottlenecking.

The whole detection logic is then connected to a graphical user interface, that

makes the interaction wi th the logic easy and user friendly while providing

additional functionality compared to using just the script included in the module

wi th hand tracking class.

The U I of the application is composed out of a video player, which allows for

easy presentation of the processing output, stepping through a video frame by frame

in both directions and using a slider for skipping parts of the video completely.

Through the UI it is also possible to get to the recording system that allows to

save video easily, wi th the option to change the detection settings during the

detection itself. The application also allows to save al l the detected bounding boxes,

and gestures into a log.

The logic behind the detection of the hands could be improved in the future

by further expanding the training dataset and retraining the neural network, or

even replacing it wi th another Y O L O based network. Improvements could also be

done on the hand key point detection network, by smoothing out the key points

locations and fixing incorrect key point locations wi th position approximations.

54

References

[1] S. V i p u l , "Gesture Recognition using O p e n C V + Python," [Online]. Available:

http://vipulsharma20.blogspot.com/2015/03/gesture-recognition-using-

opencv-python.html.

[2] More Than Technical, "Extending the hand tracker wi th snakes and

optimizations," 26 M a y 2013. [Online]. Available:

http: / / www.morethantechnical. com/2013/05/26/extending-the-hand-tracker-

with-snakes-and-optimizations-w-code-opencv/.

[3] H . D u and E . Charbon, "3D Hand Model F i t t ing for V i r t ua l Keyboard

System," in 2007 IEEE Workshop on Applications of Computer Vision

(WACV '07), Aus t in , T X , February 2007. [Online]. Available:

https://ieeexplore.ieee.org/document/4118760.

[4] More Than Technical, "Hand gesture recognition via model fitting in energy

minimization w / O p e n C V , " 28 December 2010. [Online]. Available:

http: / / www.morethantechnical. com/2010/12/28/hand-gesture-recognition-

via-model-fitting-in-energy-minimization-wopencv/.

[5] T . Q. V i n h and N . T. T r i , "Hand gesture recognition based on depth image

using kinect sensor," in 2015 2nd National Foundation for Science and

Technology Development Conference on Information and Computer Science

(NICS), Ho C h i M i n h , September 2015. [Online]. Available:

https://ieeexplore.ieee.org/document/7302218.

[6] Wikipedia contributors, "Deep Learning," Wikipedia , The Free Encyclopedia,

2018. [Online]. Available: ht tps: / /en.wikipedia.org/wiki /Deep learning.

[7] AltexSoft, "Fraud Detection: How Machine Learning Systems Help Reveal

Scams in Fintech, Healthcare, and eCommerce," [Online]. Available:

https:/ / www. altexsoft. com / whitepapers / fraud-detect ion-how-machine-

learning-systems-help-reveal-scams-in-fintech-healthcare-and-ecommerce/.

[8] V . Gupta , "Learn O p e n C V : Image Classification using Convolutional Neural

Networks in Keras," 29 November 2017. [Online]. Available:

https://www.learnopencv.com/image-classification-using-convolutional-

neural-networks-in-keras/.

55

http://vipulsharma20.blogspot.com/2015/03/gesture-recognition-using-
http://www.morethantechnical
https://ieeexplore.ieee.org/document/4118760
http://www.morethantechnical
https://ieeexplore.ieee.org/document/7302218
https://en.wikipedia.org/wiki/Deep
https://www.learnopencv.com/image-classification-using-convolutional-

[9] S. Pate l and J . Pingel, "Introduction to Deep Learning: What Are

Convolutional Neural Networks?," MathWorks , [Online]. Available:

h t tps : / /www. mathworks. com/videos/introduction-to-deep-learning- what-are-

convolut ional-neural-net works—1489512765771. html.

[10] K . S. Reddy, U . Singh and P . K . Ut tam, "Effect of image colourspace on

performance of convolution neural networks," in 2017 2nd IEEE International

Conference on Recent Trends in Electronics, Information Communication

Technology (RTEICT), Bangalore, M a y 2017. [Online]. Available:

https: / / ieeexplore.ieee.org/document /8256949.

[11] A . M i t t a l , A . Zisserman and P . Torr , "Hand detection using multiple

proposals," in British Machine Vision Conference, 2011. [Online]. Available:

http: / / w w w . robots .ox.ac.uk/~vgg / dat a/hands/.

[12] S. Bambach, S. Lee, D . J . Crandal l and C . Y u , "Lending A Hand: Detecting

Hands and Recognizing Activi t ies in Complex Egocentric Interactions," in The

IEEE International Conference on Computer Vision (ICCV), Santiago,

December 2015. [Online]. Available: https://ieeexplore.ieee.org/document

/7410583.

[13] "New Zealand Sign Language Dictionary," [Online]. Available:

ht tps: / /www.nzsl .nz/ .

[14] M . Andr i luka , L . Pishchulin, P . Gehler and S. Bernt, "2D Human Pose

Estimation: New Benchmark and State of the A r t Analysis," IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June 2014.

[15] J . Redmon and A . Farhadi , "YOLO9000: Better, Faster, Stronger," arXiv

preprint arXiv:1612.08242, 2016.

[16] " Y O L O : Real-Time Object Detection," 2016. [Online]. Available:

https : / /pj reddie. com / darknet / yolov2 / .

[17] A l e x e y A B , "Darknet," G i tHub , 26 July 2016. [Online]. Available:

https: / / github. com / A l e x e y A B / darknet.

[18] A . Paszke, S. Gross, S. Chintala, G . Chanan, E . Yang , Z. DeVi to , Z. L i n , A .

Desmaison, L . Ant iga and A . Lerer, "Automatic differentiation in PyTorch,"

NIPS-W, 2017.

[19]Y.-S. Y u n , "pytorch-0.4-yolov3," G i tHub , 2018. [Online]. Available:

ht tps: / /gi thub. com/andy-yun/pytorch-0.4- yolov3.

•r)(i

https://www
http://ieeexplore.ieee.org/
http://ox.ac.uk
https://ieeexplore.ieee.org/document
https://www.nzsl.nz/
https://github

[20] Google, "Precision and Recall," 1 October 2018. [Online]. Available:

https: / / developers.google.com / machine-learning/crash-course / classification

/ precision-and-recall.

[21] R. Padi l la , "Metrics for object detection," G i tHub , 2018. [Online]. Available:

https://github.com/rafaelpadilla/Object-Detection-Metrics.

[22] Wikipedia contributors, "Precision and recall," Wikipedia , The Free

Encyclopedia, 2018. [Online]. Available: ht tps: / /en.wikipedia.org/wiki

/Precis ion and recall.

[23] Y . Sasaki, "The truth of the F-measure," Teach Tutor Mater, 2007.

[24] C M U Perceptual Computing Lab, "OpenPose: Real-time multi-person

keypoint detection library for body, face, hands, and foot estimation," G i tHub ,

[Online]. Available: h t tps : / /g i thub.com/CMU-Perceptual -Comput ing-Lab

/openpose.

[25] S.-E. W e i , V . Ramakrishna , T . Kanade and Y . Sheikh, "Convolutional pose

machines," CVPR, 2016.

[26] T . Simon, H . Joo, I. Matthews and Y . Sheikh, "Hand Keypoint Detection in

Single Images using Mul t iv iew Bootstrapping," CVPR, 2017.

[27] Microsoft, "MMdnn , " G i tHub , 2017. [Online]. Available: ht tps: / /gi thub.com

/ M i c r o s o f t / M M d n n .

[28] Wikipedia contributors, "Atan2," Wikipedia , The Free Encyclopedia, 2019.

[Online]. Available: h t tps : / /en .wikipedia .org/wiki /Atan2.

[29] "Kivy : Cross-Platform Python Framework for N U I Development," K i v y ,

[Online]. Available: h t tps : / /k ivy .org / .

[30] Iconic, "Open Iconic," G i tHub , 2014. [Online]. Available: ht tps: / /gi thub.com

/ iconic / open-iconic.

[31] "Video Codecs and P ixe l Format," 2011. [Online]. Available:

https:/ /www.fourcc.org/.

[32] T . Bravenec, "Computer vision and hand gestures detection and fingers

tracking," G i t L a b , 2019. [Online]. Available: https://gitlab.com/tbravenec

/computer-vision-and-hand-gestures-detection-and-fingers-tracking.

[33] PyTorch , "Get Started," [Online]. Available: https://pytorch.org/get-started

/ loca l ly / .

57

http://developers.google.com
https://github.com/rafaelpadilla/Object-Detection-Metrics
https://en.wikipedia.org/wiki
https://github.com/CMU-Perceptual-Computing-Lab
https://github.com
https://en.wikipedia.org/wiki/Atan2
https://kivy.org/
https://github.com
https://www.fourcc.org/
https://gitlab.com/tbravenec
https://pytorch.org/get-started

[34] N V I D I A Corporation, " C U D A Compatibil i ty," [Online]. Available:

https://docs, nvidia.com/deploy/cuda-compatibil i ty/ index. html#binary-

compatibili ty table-toolkit-driver.

[35] "Kivy : Installation on L inux - K i v y , " K i v y , [Online]. Available:

https: / / k i v y .org/doc / stable / installation / installation-linux.html.

[36] T . V . Hemert, "Taran uncut-ish interview," 3 A p r i l 2017. [Online]. Available:

ht tps: / /www.youtube.com/watch?v=Fues 3ZarpE.

[37] Bi twi t , "Are Ryzen A P U s a G O O D alternative to overpriced GPUs? , " 12

February 2018. [Online]. Available: https:/ /www.youtube.com

/ w a t c h ? v = N l D g T v G x m A Q .

[38] Tzuta l in , "Labelling," Gi t code, 2015. [Online]. Available: ht tps: / /gi thub.com

/ tzuta l in / label lmg.

[39] Deep Systems L L C , "Supervisely," 2017. [Online]. Available:

https://supervise, l y / .

[40] M . Harris, "Inside Pascal: N V I D I A ' s Newest Computing Platform," 5 A p r i l

2016. [Online]. Available: https://devblogs.nvidia.com/inside-pascal/ .

[41] E . Kilgariff, H . Moreton, N . Stam and Be l l Brandon, " N V I D I A Tur ing

Architecture In-Depth," 14 September 2018. [Online]. Available:

https:/ / devblogs. nvidia. com / nvidia-turing-architecture-in-depth / .

[42] Freepik, "Graphic resources for everyone," [Online]. Available:

h t tps : / /www. freepik. com.

[43] J . Redmon and A . Farhadi , " Y O L O v 3 : A n Incremental Improvement," arXiv

preprint arXiv:1804.02767, 2018.

[44] Harislqbal88, "PlotNeuralNet," G i tHub , 2018. [Online]. Available:

ht tps: / /gi thub.com/HarisIqbal88/PlotNeuralNet .

.18

https://docs
http://nvidia.com/deploy/cuda-compatibility/index
https://www.youtube.com/watch?v=Fues
https://www.youtube.com
https://github.com
https://supervise
https://devblogs.nvidia.com/inside-pascal/
https://www
https://github.com/HarisIqbal88/PlotNeuralNet

List of Symbols and Abbreviations

h Hand key point wi th index i

C Weight ing constant

G P U Graphics Processing Uni t

C P U Central Processing Uni t

C N N Convolutional Neural Network

Y O L O Y o u Only Look Once

OS Operating System

IoU Intersection over Union

T P True Positive

F P False Positive

F N False Negative

Attachments

Complete structure of the git repository [32] containing the source code, icons and
images used in the development of the application:

— i n i t . py
—cfg-py
—darknet.py
—region_layer.py
— u t i l s . p y
'—yolo_layer.py

— d a t a images used i n UI elements
— i c o n s

—app.ico
—cog.png
— f i l e . p n g
—floppy.png
—image.png
—info.png
— l o g . png
—media-pause.png
—media-pause-disabled.png
—media-play.png
—media-play-disabled.png
—media-record.png
—media-record-disabled.png
—media-step-backward.png
—media-step-backward-disabled.png
—media-step-f orward.png
—media-step-forward-disabled.png
—media-stop.png
—reload.png
—reload-disabled.png
'—video.png

'—logos
I—BUT_symbol_RGB_EN.png

—enums package with enumeration modules
— i n i t .py
— f inger_bends.py
— f inger_spread.py
—hand_directions.py
—hands.py
—input_types.py
—thumb_directions.py
—thumb_positions.py
I—thumb_tip_positions.py

\ root of the repository
— .git

configuration f i l e s f o r CNNs
tkeypoints .py

y o l o v 2.cfg
•darknet darknet interpreter package

60

gestures gesture d e f i n i t i o n f i l e s
— f i v e . j son
— f o u r . j s o n
—ok.json
—one.json
—three.json
—thumbs_down.j son
—thumbs_up.j son
—two.j son
.gitignore
•constants .py
•get_models .py
•hand_gestures. py
•hand_keypoints. py
•hand_tracking. py
•LICENSE
•logger, py
•main. kv
-main_app.py main s c r i p t
-README, md
•requirements.txt l i s t of required packages
- u t i l s .py

61

