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ABSTRACT 

Th is master 's thesis is focused on hand gestures and finger detect ion in still images and 

video sequences. T h e thesis contains a summary of different approaches to hand gesture 

detect ions, advantages and disadvantages of each approach. The thesis also includes 

the realization of the platform independent appl icat ion wri t ten in Py thon using O p e n C V 

and P y T o r c h libraries, that can show a selected image or play a video sequence with 

highlighted recognized gestures. 

KEYWORDS 

Computer vision, hand detect ion, gesture recognit ion, image processing, video 

processing, O p e n C V , P y T o r c h , Py thon , Deep Learning, convolut ional neural networks, 

machine learning 

ABSTRAKT 

Diplomová práce je zaměřena na detekci a rozpoznání gest rukou a prstů ve stat ických 

obrazech i video sekvencích. Práce obsahuje shrnutí několika různých přístupů k samotné 

detekci a také jej ich výhody i nevýhody. V práci je též obsažena realizace 

mul t ip la t fo rmní apl ikace napsané v Pythonu s použit ím knihoven O p e n C V a P y T o r c h , 

která dokáže zobrazi t vybraný obraz nebo přehrát video se zvýrazněním rozpoznaných 

gest. 

KLÍČOVÁ SLOVA 

Počítačové vidění, detekce rukou, rozpoznání gest, zpracování obrazu, zpracování videa, 

O p e n C V , P y T o r c h , Py thon , Deep Learning, konvoluční neuronové sítě, strojové učení 
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ROZŠÍŘENÝ ABSTRAKT 

Postupem času, tak jak to výpočetní výkon dovoluje oblast počítačového vidění nabírá 

na populari tě. A není se čemu divit, počítače i telefony jenž používáme každý den mají 

dostatek výpočetního výkonu pro analýzu obrazů a video sekvencí v reálném čase. 

Například naše mobi lní telefony jsou ve většině případů rozpoznat tváře ve fotograf i ích 

a v některých případech pochopit i jednoduchá gesta rukou, jako například vzdálená 

spoušť pro pořízení fotografie, aniž bychom byli nuceni se dotknout telefonu. Počítače 

jsou velmi schopné těchto snadných detekcí, pokud vidí celé tváře nebo ruku, co ale 

v případě kdy ruce a prsty nejsou snadno viditelné? T o je problém, pro který není snadné 

řešení. 

Analýza gest rukou poskytuje další způsob pochopení lidského chování ve video 

sekvencích pro zrakově postižené, nebo způsob překladu znakové řeči na text. Dalšími 

příklady využi t í analýzy gest mohou být systémy ovládané pomocí gest v automobi lovém 

průmyslu, nebo analýza neverbální komunikace mezi zločinci zachycenými na 

bezpečnostní kamery. 

V té to práci jsou představeny možné způsoby detekce rukou a samotných gest, 

které jsou následně popsány a porovnány včetně jej ich kladů a záporů. 

Hlavní zaměření práce je na tvorbu mul t ip la t fo rmní apl ikace určené pro detekci 

rukou a rozpoznání gest. Základem té to aplikace je programovací jazyk Py thon 

s knihovnami pro počítačové vidění. 

Va l idace výsledků aplikace je provedena pomocí video sekvencí s rozdílnou 

obtížností viditelnosti rukou pořízenými za účelem testování aplikace a s využi t ím 

náhodných videí nalezených na internetu pro zj ištění úspěšnosti detekce. 
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Introduction 

For quite some time, the field of computer vision is rising in popularity. A n d there 

is no surprise, that computers and phones we use every day are powerful enough to 

analyze images and video sequences in real time. For example, our mobile phones 

are in most cases capable of recognizing our faces in photos and sometimes they 

can even understand some basic hand gestures for taking a picture without us even 

touching the phone. Computers are quite capable of these easy recognitions when 

they can see the whole face or hand, but what about cases when hands and fingers 

are not visible that well? This is quite an issue that is not that easy to handle. 

Analysis of hand gestures is useful for providing another way of understanding 

what humans are doing in videos for visually impaired or bl ind people or translation 

of sign language to text. Another example could be gesture based controls of some 

systems in automotive industry, to analyze non-verbal communication of criminals 

caught on cameras etc. 

This thesis wi l l introduce multiple ways how hand gestures can be detected 

and the qualities and flaws of each approaches. 

The main part of this thesis is focused on creating a hand gesture detection 

application and its functionality. The application is platform independent and 

written in Py thon wi th libraries for computer vision. 

The evaluation of this application is done using video sequences wi th varying 

difficulty of visible hands captured specifically for testing this application and 

random videos found on the internet to see wi th how high success rates the 

application manages to do its job. 
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1 Hand and gesture recognition 

T o begin wi th gesture recognition, the hand must be detected first. There are a few 

approaches to finding the hand. These approaches differ from easier ones that are 

more susceptible to mistake and are not very robust, to the use of algorithms that 

are hard to confuse. Using these kinds of algorithms have a price: they may need 

significantly more processing power. 

1.1 Contour analysis 

The easiest method is analyzing a grayscale image (Figure 1.1 a)), as there is only 

one condition needed to use in order to get thresholded image (Figure 1.1 b)), if 

the pixel is part of a hand or if it is not. F r o m a thresholded image, it is easy to 

get the contour of a hand and convex hul l around the hand (Figure 1.1 c)). Then 

by the number of convex defects in the convex hul l (Figure 1.1 d)) and the distances 

of these defects from each other, figure out what fingers are extended, and which 

are collapsed. [1] 

Figure 1.1 Contour analysis a) Detected hand b) Thresholded contour c) Detected 

edge and convex hul l d) Detected convex hul l defects [1] 

2 



One of the issues with this approach is the fact, that the hand must be easily 

separable from the background. This can be done either by thresholding, or other 

more complex approaches, such as separation by skin color, background subtraction 

etc. This also means that the algorithm can become easily confused when it comes 

to unusual background patterns or just a sharp change in lighting, causing a rapid 

change in skin color. 

The biggest issue of this method is that it is incapable of recognizing gestures 

if the palm is not facing the camera directly, it also easily fails to identify collapsed 

fingers when the hand rotates. Because of these issues, this method is not suitable 

for detection of more complex gestures or during worse visibi l i ty of the hand. 

1.2 Curve fitting 

Curve fitting, also known as snakes, is one of the less usable methods for hand 

detection, as it is more suitable for hand tracking. This approach needs some init ial 

guess or cooperation from the person using this method [2]. The init ial guess could 

be made by the person matching the curve on screen wi th his hand presented in 

Figure 1.2. After a certain threshold of similarity is passed, tracking can start, and 

the curve is adjusted from the previous frame to match the outline of the hand. A s 

it needs an ini t ial guess, this method is not a very good choice for detection in video 

sequences, that are not prepared for detection using this approach. 

Figure 1.2 Curve fitting [2] 

1.3 Model fitting 

Another approach to gesture recognition is creating a vir tual model of a hand, 

composed from "bones" and "joints" like in a real hand. A t first, it uses contour 

analysis or depth image analysis if it is available in the source to detect fingertips, 

followed by connecting detected fingertips to the model, so the model joints can 



bend and recreate the gesture in a vir tual environment [3]. A n image of a vir tual 

model is in Figure 1.3. 

Figure 1.3 Skeleton of the hand model [3] 

The problem here is again, that from certain angles, the model may not be 

properly connected to fingertips, which wi l l cause unpredictable behavior, like 

guessing an incorrect gesture or losing focus on the hand itself [4]. O n the other 

hand, systems like this could be easily modified to recognize more gestures by 

simply adding another configuration of the hand model wi th a description of how 

the fingers are bent. 

1.3.1 Multiple angle model fitting 

T o make model fitting more accurate, more cameras can be used to capture hand 

movements from different angles, so the fingertips are always visible and can be 

connected to the model's end points at any moment. 

This extension of model fitting is not usable for common video sequences, as 

they are not shot from different angles at the same time. This means that even 

though multiple angle model fitting can be more accurate, it is more useful in real 

time translation of sign language, where the person stands or sits in front of couple 

of cameras. 
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1.4 Depth based hand detection 

Another way of detecting hands, not from existing video sequences but rather in 

real time is based around capturing not only color but also depth. This can be done 

using special capturing devices like Microsoft Kinect its capture of scene depth in 

the image of a human's arm is in Figure 1.4. F r o m this image it is obvious that the 

depth levels have lower resolution than color, which means that objects like a hand 

wi l l mostly be on one or two neighboring distance layers, making hand detection 

significantly easier than from a color image. 

Figure 1.4 Microsoft Kinects depth capture [5] 

The approach using depth to detect a hand has its positives, it does not care 

about background or lighting [5]. Its downside is if there is another object at the 

same distance as the hand in the depth map; the hand and object could blend 

together, though it is not that difficult to split it again by combining depth and 

color layers. This way the hand can be separated by selecting only the skin colored 

part of the depth layer on which the hand is located. 

As is obvious from the fact that it needs data captured with a depth sensor, 

this approach is unusable when it comes to hand detection from normal images and 

video sequences. 

5 



1.5 Deep learning 

In the last couple of years, the field of machine learning started to gain in 

popularity, as the main l imitat ion in the past, the processing power, is more 

accessible than ever before. Considering the advancements in general purpose 

computing using graphics processors, the times needed to train artificial neural 

networks on a regular computer at home are comparable to times that were needed 

just a few years back on a supercomputer. 

The deep learning itself is a subset of machine learning, that today makes use 

mostly of deep neural networks (these networks contain more than two layers of 

non-linear processing between input and output layers) to learn from huge amounts 

of data to solve problems without being explicitly programmed to do that. Typica l 

representation of a deep learning neural network is in Figure 1.5. There are also 

other algorithms like recurrent neural networks, deep belief networks or deep 

Boltzmann machines that are part of deep learning, but they are not as widely used 

as deep learning neural networks. [6] 

Deep learning 

Hidden Hidden Hidden 

Figure 1.5 General deep learning neural network [7] 

1.5.1 Convolutional neural networks 

When it comes to image processing using deep learning, the most frequently used 

variant of a neural network is a convolutional neural network. This kind of network 

contains a couple of convolutional layers. The filters of these layers are acquired 

during the training process of the network and wi th appropriate training data. After 

the convolutional layers usually comes the pooling layer to reduce the amount of 



data for the next layer. The next layer is usually a single flattening layer followed 

by classic fully connected layers [8]. Architecture of the convolutional neural 

network is in Figure 1.6. 

H I D D E N L A Y E R S CLASSIFICATION 

Figure 1.6 Architecture of convolutional neural network [9] 

The reason for using convolutional neural networks for hand detection is 

simple: wi th correct training data, the network can learn itself what to look for, 

what is important and what is not. Of course, this is not based only on the training 

data, but on the model of the neural network. This means that every neural network 

is built differently, from a different number of layers and neurons in each layer. 

Almost every convolutional neural network that works wi th images takes an 

input image in R G B color space. This is because after experimentations wi th other 

color spaces like H S V , L U V and other ones used in computer vision applications, 

the network which trained on images in R G B color space provided higher accuracy 

of predictions than the same network trained on images in different color space [10]. 

Convolutional neural networks could also be divided into two different groups, 

depending on the type of input and output. If the input image is a single object in 

the center of the image and the neural network is supposed to predict what kind of 

object it is, this category is called classifiers. O n the other hand, if the image 

contains many different objects al l over the place, and the neural networks output 

is supposed to be a prediction of bounding boxes and what kind of object is in each 

bounding box, these neural networks are called detectors. 
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2 Realization 

The whole result of this thesis can be divided into parts. First , there is a need to 

detect a hand in the image before it can be recognized as a gesture. So, the second 

part is obviously rule based gesture classification, which should also be easily 

expandable. In the end the working application should be wrapped in multiplatform 

easy to use graphical user interface wi th easy gesture addition, an image and video 

viewer wi th detected gesture highlighting and logging of detected gestures into 

a file. 

2.1 Hand detection 

When it comes to detecting hands in various positions and different environments, 

it is quite difficult to assess some rules to detect hands accurately. For example, 

fist looks very different from open palm. For this very reason the approach of deep 

learning was selected. This process consists of creating or finding and adjusting 

existing datasets for this very purpose. W i t h the prepared dataset the next step is 

creating a neural network from scratch or using an already existing and tested 

architecture and retraining it for the purpose of hand detection. 

2.1.1 Oxford hands dataset 

Before training a neural network, there must exist some data to train the network 

on. The first choice for a dataset was oxford hands dataset [11], as its already 

annotated. Its diverse images of hands in very different situations, poses etc. seemed 

like a great way to train a neural network that would generalize well and provide 

good results. This was not the case, even after training on this dataset for several 

days, the results were not good. This could have been because of the lower 

resolution of the images; a few of those images from the dataset are in Figure 2.1. 

Figure 2.1 Images included in Oxford hands dataset [11] 
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2.1.2 EgoHands dataset 

For the purpose of this thesis the EgoHands dataset [12] was chosen, due to its 

high-resolution images wi th already existing annotations and wide range of hand 

poses in a few different locations. This dataset contains 4400 training and 400 

validation images as shown in Figure 2.2. Each picture includes at least one hand 

and maximally 4 hands, and these hands are not always clearly visible, as they can 

be obstructed from the camera by other hands or objects in the scene. 

Figure 2.2 Images included in EgoHands dataset [12] 

The annotations included in the dataset also had to be modified, as the original 

annotations were differentiating between left and right hand and even from which 

point of view is the hand captured. Annotations were also in different format than 

was needed for training the selected neural network. Conversion and annotation 

modification were done using simple python script. Modified annotations are shown 

in Figure 2.3 as yellow rectangles around hands. 

Figure 2.3 Modified annotations in EgoHands dataset [12] 

2.1.3 New Zealand Sign Language Dictionary 

The Ego Hands dataset is not completely universal, as it misses some hand gestures. 

Due to this reason the dataset was expanded wi th images from New Zealand Sign 

Language dictionary [13]. A s the name suggests, this dictionary contains video 

sequences of humans presenting different signs of sign language. A s there are a lot 



of videos in the dictionary, only 10 videos were used for dataset expansion. F r o m 

these videos, a total of 515 frames were taken for training and 231 frames for 

validation. The videos provide quite a big range of different gestures. This diversity 

helps in recognition of hand poses that are not present in the EgoHands dataset. 

Unlike images from EgoHands dataset, these images have a very similar 

background, which means it is not a very good idea to train the neural network 

wi th images only from this dictionary. Some of the hand gestures contained in 

videos from New Zealand Sign Language dictionary are presented in Figure 2.4. 

Figure 2.4 Images from videos in New Zealand Sign Language dictionary [13] 

Unlike for images from EgoHands dataset, for frames from videos in this 

dataset the annotations did not exist. Because of that these had to be created from 

scratch. Few images with displayed bounding boxes are in Figure 2.5. 

Figure 2.5 Annotated images from New Zealand Sign Language dictionary [13] 

2.1.4 MPII Human pose estimation dataset 

T o make the training dataset even more robust, small part of the M P I I Human 

pose estimation dataset [14], was used. Because the dataset is not focused on hands, 

they are not visible on many pictures from this dataset. For training 483 images 

were selected and 215 images for validation. O n the used images, people are doing 

many different activities in a wide range of environments, from playing musical 

instruments or cooking in the kitchen to working wi th power tools. Some of the 

images even have people wearing gloves to farther improve chances of hand 

detection in difficult conditions as the detector cannot rely on skin color. Example 

of images from this dataset are in Figure 2.6. 
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Figure 2.6 Images contained in the M P I I Human Pose dataset [14] 

Just like wi th images from the New Zealand Sign Language dictionary, the 

images from the M P I I Human Pose dataset do not have annotations of hands 

needed for training neural networks and these annotations had to be created. 

Images from this dataset wi th showed bounding boxes are in Figure 2.7. 

Figure 2.7 Images from M P I I Human Pose dataset wi th annotations [14] 

2.1.5 Neural network - YOLOv2 

Instead of creating and testing new architectures of neural networks the 

architecture Y O L O v 2 [15] (You Only Look Once v2) was selected. This means, that 

instead of testing if the neural networks architecture is designed correctly for 

predicting bounding boxes, it just needed to be adjusted to only look for one class 

and then be retrained for detection using a previously selected dataset. 

Y O L O v 2 is a fully convolutional neural network created out of 23 convolutional 

layers, 5 pooling layers, 2 routing layers, a reorganization layer and wi th a single 

detection layer. The relatively low depth of the network makes it work very well in 

real time processing. 

The function of convolutional layers is obvious from their name. Pooling layers 

on the other hand might not be that obvious. These layers reduce the spatial 

dimensions of their input but keep their depth. Usually this reduction is done by 

a factor of 2. There are two different versions of pooling layers, Y O L O v 2 uses max 

pooling, which means that the input is divided into small squares, where dimensions 
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of the square are the factor of the pooling layer. For Y O L O v 2 , the input is divided 

into grids of 2 by 2 values and on the output of the layer is only the highest value 

from this grid. The other variant of this layer uses average pooling which, as its 

name suggests, the output produces an average value for each of the input grids. 

Reorganization layers have a similar function to pooling layers, as these layers 

also change the dimensions of their input, but unlike pooling layers, they also 

change the depth and keep al l the input values. A s the name of the layers hint, the 

input is reorganized in a way that a single channel on the input wi l l become more 

channels on the output depending on the settings of the layer. The reorganization 

layer in Y O L O v 2 uses a stride of 2, which means that the spatial dimensions in 

both directions would be halved and depth would grow four times. 

Because the neural network uses routing layers, it means that the network 

actually does not run al l of the layers sequentially, but rather works up to the 

routing layer sequentially and then takes the output of the layer to which the 

routing layer points to instead of taking output of the layer that preceeds it. 

Another option is if the routing layer points to multiple different layers, in that 

case al l the outputs of layers pointed to are concatenated. The function of routing 

layers is clearly displayed in graphical representation of Y O L O v 2 wi th purple 

arrows in Figure 2.8. In this figure the horizontal numbers bellow layers signify how 

many convolutional filters are present in that layer, and angled numbers signify the 

spatial dimensions of all the layers since the last pooling or reorganization layer. 

Input dimensions for each convolutional layer are the dimensions of the previous 

layer times the amount of filters in that layer. 

yyy y 
-

/ / / 

/A Convolutional 
layer 

/ 

V 
Pooling 

layer 
Reorganization 

layer 
Detection 

layer 
Concatenation 

of layers 

Figure 2.8 Y O L O v 2 network architecture 
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2.1.6 Modifying the YOLOv2 neural network 

The actual network architecture is defined in the configuration file and the weights 

file. The original network's configuration file and its pretrained weights can be 

downloaded from the website [16]. The configuration file had to be slightly adjusted 

to look for only one class, which meant changing the number of classes in the 

detection layer and changing the filter count in the preceding convolutional layer 

to the appropriate amount for the number of classes in detection layers. These 

changes in the last two layers in the configuration file are in bold in Lis t ing 2.1. 

Lis t ing 2.1 Modifications of Y O L O v 2 neural network's configuration 
233 [convolutional] 
234 size=l 
235 stride=l 
236 pad=l 
237 filters=30 
238 activation=linear 
239 
240 [region] 
241 anchors=l.3221,1.73145, 3.19275,4.00944, 5.05587,8.09892, 9.47112,4.84053, 
242 11.2364,10.0071 

bias_match=l 
243 classes=l 
244 coords=4 
245 num=5 
246 softmax=l 
247 jitter=.3 
248 rescore=l 

The filter count in the last convolutional layer before the detection layer is 

calculated from the count of classes that the neural network is supposed to be 

detecting by the equation [17]: 

filters = (classes + coords + 1) • mum 
(2.1) 

Where coords represent the four attributes of bounding boxes (x, y, width and 

height), constant 1 is for confidence wi th which the object is detected and num 
stands for the number of anchor pairs in the region layer. 

Anchor pairs represent ini t ial sizes of bounding boxes in the detection layer, 

which is for Y O L O v 2 13x13 pixels, before the closest one to the detected object is 

resized. Anchors can be calculated from training data using K-Means clustering, 

but for detection of hands it is not necessary as hands can be in pretty much in 

any shape, just like al l the different objects in the default networks configuration. 
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2.1.7 Training neural network 

W i t h the configuration file modified for the need of hand detection, the only thing 

remaining is training the network itself. For this purpose, the interpreter for Y O L O 

based neural networks for deep learning framework P y T o r c h [18] was used [19]. As 

it is just an interpreter for training and detecting there was no need to change the 

code, because the changes to the neural networks were in their configuration files. 

The neural network was trained for 150 epochs, where one epoch means a single 

pass through al l the training data. The training was stopped after 150 epochs passed 

as the training loss and validation did not change much since epoch 100. Used 

weights were from training epoch 100 to prevent the issue of overfitting, that is a 

state of a neural network in which the network learned exact details of images and 

did not generalize very well or at al l , even though the predictions are great on the 

training set, predictions on never before seen data are poor. 

Training loss can be calculated in many ways. In the case of Y O L O v 2 , it is 

divided into three components. The first is coordination loss, which represents how 

wrong the network was in detecting the location of the object in the image from 

the ground truth. The second component is confidence loss, which represents how 

much the neural network is sure about the detection. The last of the three errors, 

error in object classification, is calculated as binary cross entropy. A s the modified 

network detects only a single object, this error is equal to zero. The final training 

loss is calculated as the sum of previously mentioned errors. Training loss of the 

neural network after each training epoch is in Figure 2.9. 

Training loss after every epoch 
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Figure 2.9 Training loss after each epoch 
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After a set number of epochs, the validation process was started. For the 

purpose of higher precision of displaying these data, the validation process was run 

after every epoch. This process consists of comparing ground truth bounding boxes 

and bounding boxes predicted by the network on images not used for training the 

network. The decision if the network predicted correctly is done using intersection 

over union (IoU) between prediction and ground t ruth calculated by equation (2.2). 

If the ratio of intersection over union is higher than the set threshold, in this case 

0.5, then the network's predictions are accepted as correct. 

. TT Area of Overlap IoU = -
Area of Union 

(2.2) 

Figure 2.10 visually presents the of union and of overlap wi th red 

overlay in an image of detected hand (blue rectangle) and ground truth (green 

rectangle) for the same hand. 

Figure 2.10 Area of Overlap and Area of Union 

During validation, three values defining the accuracy of the network are 

calculated, two of these values are Precision and Recall [20], [21]. Precision is 

defined as: 

Precision = (2.3) 
TP+FP 

Where TP means True Positive and corresponds to the amount of correct 

detections and FP stands for False Positive and matches the amount of incorrect 

predictions. If the neural network did not make incorrect predictions, the Precision 

of the network would be 1. 

Recall is defined similarly to precision but instead of incorrect predictions, the 

number of undetected objects from the ground truth image is used in the equation: 
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Recall = TP 
TP+FN 

(2.4) 

Where FN stands for False Negative and represents the mentioned undetected 

number of hands in an image. If Recall equals 1, the neural network detected all 

the objects in the validation dataset. To better understand what Precision and 

Recall mean, Figure 2.11 explains it very well. 

Relevant elements 

False Negatives True Negatives 

• • • ° o 

• 
1 • ° \° 

True Positives False Positives | 

V • • O J • o / ° 
• • / o 
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How many selected 
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Precision = 
i 

How many relevant 
items are selected? 

Recall = 

[ 
Selected elements 

Figure 2.11 Graphical meaning of Precision and Recall [22] 

The last of the three values describing the result of validation is F-score, it is 

used to measure validation accuracy as a whole and it is calculated as harmonic 

mean of Precision and Recall [23]: 

F-score = 2 
Precision • Recall 
Precision+Recall 

(2.5) 

F r o m Figure 2.12 is clearly visible that training produced the biggest changes 

in precision in the first epochs. That is because at the beginning of training, the 

network's weights were trained for detecting multiple different objects and the 

changes had to be big to start detecting hands, this is done by used settings in the 

configuration file for training. A t first, the network needs to learn more aggressively. 

A typical starting value of learning rate is 0.001 to quickly learn basic features of 

hands. After some time, in this case 40 000 steps, which equals to 66 epochs wi th 

training batch size of 8, the learning rate was lowered to 0.0001 to prevent too big 

of a jump in weights values and start learning finer features of hands. The learning 

rate was lowered again after epoch 95 to further decrease the difference between 
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weights and slow down learning, which was not necessary as the validation results 

stayed pretty much the same since epoch 90. 

Neural networks precision, recall and F-score after each 
training epoch 

I o.o F 1 I 1 I 1 I 1 I • I • I • I • I • I • I 1 I 1 I 1 I • I • I 

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

Epoch [ - ] 

Precission Recall F-Score 

Figure 2.12 Precision, recall and F-score after each training epoch 

2.2 Finger detection 

For finger detection a pretrained neural network trained for detection of hand key 

points was used. This neural network is part of the project OpenPose [24]. 

OpenPose uses a neural network architecture called convolutional pose machines 

[25] to detect key points of specific parts of the human body. Out of the four 

networks, used convolutional pose machine is focused on hand key points detection 

[26]. This network takes as an input a single image, in which is supposed to be 

a single hand. F r o m this image the network on the output generates 22 heatmaps. 

A n example image from which these heatmaps are generated and heatmaps for each 

key point of index finger are in Figure 2.13. 

Figure 2.13 Heatmaps generated for index finger 



Each of the first 21 heatmaps represent an approximate position of a single key 

point in the image and the last heatmap represents the background. F r o m these 

heatmaps can be easily found the location of maximum, which represents the 

location of the found key point. After al l the key points from all heatmaps are 

found, the gesture recognition process can be started. The detected key points are 

numbered and connected to create hand skeleton and al l the heatmaps combined 

into one can be seen in Figure 2.14. 

Figure 2.14 Hand key points and combined heatmap generated by C N N 

One of the biggest downsides of OpenPose is the fact that it is trained to only 

detect key points of right hands. That means that the results of detection for the 

left hand are much worse than when using detection for the right hand. This issue 

can be avoided by flipping the image horizontally to effectively run the model over 

the right hand, followed up by flipping the detected key points around again to fit 

the left hand [26]. 

2.2.1 Left hand detection 

A s mentioned, the hand key point detector was not trained to detect key points of 

left hands [26]. If the hand is right or left, there is no issue in running the detection 

once wi th the only difference being the flipped input and, in the end, flipping the 

key points back. But if the hand could be either left or right, it is a different story. 

T o battle this issue without doubling up the time needed for key point detection 

by running the detection again over the horizontally flipped input image if the 

results are not as expected, the flipped image is being concatenated to the original 

input image as is in Figure 2.15 and the detection is being run over this modified 
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input. This way the time needed for detection stays approximately the same as the 

network runs only once. 

Figure 2.15 Normal and modified input for hand key point detection 

Whi le running the detection over input that contains two hands, more post 

processing is needed to correctly identify if the hand is left or right and to get the 

correct key points out of the detection output. For this is used the fact that the 

network generates heatmaps, instead of just coordinates, that helps in the fact that 

there are peaks in the heatmaps for finger detected in the original and in the flipped 

half of the network's input image. A l l the heatmaps of this modified input combined 

are in Figure 2.16. F r o m the heatmap it is visible that in the right half of the image 

wi th flipped left hand, the values are generally higher and more pronounced. The 

reason for that is that the network is not as sure about the detection for a left hand. 

For the same reason, the detection for a right hand produces better results. It all 

comes down to the fact that the network was trained only over right hands. 

o S • • 4 
% I 

Figure 2.16 Combined heatmaps generated by C N N out of modified input 
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The fact that the values are generally higher in one half of the output 

heatmaps, it can then be used to deduce if the higher values are in the original half 

of the image or the flipped one. If there are more higher values in the original half, 

the hand is considered as right and similarly, if more of the higher values are in the 

flipped side of the heatmap, the hand is considered as left. This approach is also 

beneficial because it can help later in gesture recognition wi th l imit ing gestures only 

to one hand. 

2.2.2 Model conversion 

The hand detector uses the interpreter of the Darknet framework written on top of 

PyTorch , on the other hand the hand key point detector uses Caffe as it's backend 

framework. A s P y T o r c h provides easy installation using python's package installer 

pip, while supporting a l l versions of python and C U D A , Caffe needs to be compiled 

before usage. Due to this, the hand key point detector was converted to use 

P y T o r c h . For the conversion, the ut i l i ty M M d n n developed by Microsoft, was used 

for converting the model between different deep learning frameworks [27]. 

2.3 Gesture recognition 

F r o m the detected key points, it is possible to get al l the information needed for 

classifying gestures. A s the key points are in a list of vertical and horizontal 

coordinates the distances between key points can be used to determine the pose of 

each finger and the angle of the line given by these points and the horizontal axis 

indicates the direction the hand or finger is pointed to. 

Distance d between the key points p and q can be calculated as a Euclidean 

distance for 2-dimensional space: 

Where p x and qt are horizontal coordinates of both key points and p2 and q2 

represent vertical coordinates. In implementation, for most of the distance 

comparisons, one of the compared distances is weighted by a constant C, to account 

for different lengths of finger sections. Except of distances, the angle the thumb or 

the hand is in relative to the horizontal axis is also used. A l l the poses the finger 

can be in or the direction the hand can point in, can then be written into gesture 

definition file. 

A l l the states of fingers, that are analyzed have two options over those needed 

(2.6) 
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for complete gesture description. State none allows the finger not to be detected 

while st i l l being able to correctly classify the gesture. State any then completely 

skips the category during the matching of detected hand pose to one of the 

predefined gestures. That means the gesture does not need the finger detected, or 

in any specific state. 

If the hand pose does not match any of the predefined gestures, the output of 

pose to gesture matching returns unknown, instead of the gesture name. O n the 

other hand, if the hand pose fit more than one gesture, the one that comes 

alphabetically first is returned. 

2.3.1 Finger bends 

The first thing needed for gesture classification is the state of bend for each finger. 

For al l fingers except for thumb, which does not have a state of full bend, the bend 

state is defined in the gesture definition file by one of three states: 

• straight 

• partly bent 

• fully bent 

As is obvious, straight state means that the distance between the base and the 

t ip of the finger is approximately the same as the sum of distances between al l the 

four key points defining a finger. For the thumb, a partial bend is selected if it does 

not pass as straight. The condition that needs to be met for a finger to be considered 

straight is defined by equation (2.7) below. The distances that need to be of similar 

value for passing as straight are shown as blue lines in Figure 2.17 a): 

Where n is the index of a key point at the base of a finger and can have a 

value of 5, 9, 13 or 17 and fcj is a key point wi th an index i. This is not possible to 

use for the thumb as it has only two sections in a finger. Due to this the equation 

needed to be modified: 

n+2 

(2.7) 
i=n 

3 

i=2 
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Because the thumb is calculated only once and key points do not change 

indexes, the equation uses fixed index numbering for the distance between the base 

and the tip of the thumb. 

If the finger does not pass the condition for being in the straight state, the type 

of bend is chosen with another distance comparison. F u l l bend uses a comparison 

of distances between the base and the t ip of a finger and the length of the middle 

out of the three links defining a finger. If the base to the t ip distance is smaller 

than the length of the middle link, the bend state is considered as fully bent, 

otherwise the partial bent state is selected. This can be described with inequation 

(2.9). Compared distances for a partial bent are shown wi th blue lines in Figure 

2.17 b) and for full bent in Figure 2.17 c). 

C • d(kn, kn+3) < d(kn+1, kn+2) (2.9) 

Figure 2.17 Finger bend states a) straight b) partly bent c) fully bent 

2.3.2 Finger spread 

Another important parameter needed for gesture recognition signifies how far the 

fingertips are spread from each other. This parameter is just like finger bend state 

calculated using the distance between two points and is always defined for two 

neighboring fingers. In the gesture definition file, the spread of fingers is defined 

wi th one out of two possible states: 

• far 

• close 
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The state is decided from comparing distances between bases and the tips of 

fingers, except for the gap between the little finger and the ring finger, as the tip 

of the little finger is approximately one section of a finger lower than the t ip of ring 

finger. Due to this, for calculating the distance between these fingers, the bottom 

part of the last link of the ring finger is used, instead of its t ip. The state is then 

decided depending on the result of inequation: 

C • d(kn, kn+4) < d(kn+3, kn+7) (2.10) 

Where kn stands for the key point at the base of the index, middle or ring 

finger. In the case where the distance between the fingertips is bigger than the 

distance between their bases, as is visible in Figure 2.18 a), the far state is selected. 

If the tips of neighboring fingers are nearly the same or a shorter distance from 

each other than bases as can be seen in Figure 2.18 b), the close state is selected. 

Figure 2.18 Finger spread states a) far b) close 

2.3.3 Thumb position 

Next on the list of finger poses is the position of the thumb. The thumb in general 

can be in three different poses against the palm, these poses are in gesture definition 

named as: 

• over 

• close 

• far 

A t first, the option if the thumb is placed over the palm is tested wi th 

comparison of two distances. The distances between the tip of the thumb and bases 

2;-! 



of the middle finger and the index are compared. In the case where the distance to 

the base of the middle finger is smaller than to the base of index finger, the thumb 

is considered as over the palm, as can be seen in Figure 2.19 a) or defined by 

inequation: 

C • d(/c 4 , k5) < d(/c 4, k9) (2.11) 

If the thumb does not fit the rules to be over the palm, the decision about its 

closeness to the palm is made. For this decision are needed the distances between 

the base of the index finger and key points at the t ip of the thumb and in the 

middle of the thumb. Unless the distance to the tip of the thumb is approximately 

the same or shorter than to the middle of the thumb the position of the thumb is 

close to the palm as in Figure 2.19 b), otherwise if it is like in Figure 2.19 c) the 

thumb position is considered as far from the palm. 

Figure 2.19 Thumb position states a) over b) close c) far 

2.3.4 Thumb tip position 

Some hand gestures depend on the distance between the t ip of the thumb and tip 

of other fingers. It may be very important to determine whether the fingertips are 

very close to each other and even touching. In the gesture definition this state is 

defined by an array of al l the fingers the thumb is touching or with options for 

detection: 

• index 

• middle 

• ring 

• little 
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Just like wi th previous poses, the decision is based on the comparison of 

distances; in this case three, instead of two, for a higher chance of correct pose 

estimation. One of the distances lays between the tips of the thumb and the finger 

that the thumb might be touching. If this distance is shorter than the length of the 

last link of the thumb, as is described by equation (2.9) or in Figure 2.20 a), the 

fingers are considered close enough and the finger name is added into an array of 

al l other fingers the thumb is close to. Otherwise the situation might resemble the 

pose the hand is in Figure 2.20 b). 

d(k4, kn+3) < d(k3, k4) (2.12) 

Where k stands for key point wi th specific index. K e y points are in absolute 

states, because the same index always represent the same key point. K e y point kn 

stands for the base of the finger the thumb might be touching. 

Figure 2.20 Thumb tip position a) index finger b) none 

2.3.5 Thumb direction 

In some cases, the gesture may also need the direction of the thumb, be it pointing 

downwards, upwards, left or right. Just like al l other states of fingers, this is defined 

in the gesture definition file wi th states: 

• up 

• down 

• left 

• right 

Unlike wi th previous finger states, the direction of the thumb is calculated as 
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an angle between the line defined by two points and positive direction of horizontal 

axis. F r o m the coordinates of the two points, the following can be calculated: the 

sides of a right triangle. These sides can then be used to calculate the angle wi th 

the trigonometry function arc tangent. This function returns value in range from 
It 7T 

— to - , which is not enough to determine direction. Because of this, the conditional 

function for arc tangent called arctan2 which takes in consideration the sign of 

both input arguments and its output range is from —71 to 71 in radians or from —180 

to 180 degrees after conversion, which covers al l the directions possible in 

2-dimensional space, is used: 

arctan2(y,x) = * 

r t a n - 1 ^ ) , i f x > 0 

t a n - 1 Q + 7T, if x < 0 and y > 0 

t a n - 1 Q - n, if x < 0 and y < 0 

+ | , if x = 0 and y > 0 

- | , if x = 0 a n d y < 0 

undefined, if x = 0 and y = 0 

(2.13) 

Where output of the arctan2 function is the calculated angle, and arguments 

x and y are points defining the hypotenuse of the right triangle. For the calculation, 

points at the t ip of the thumb and point at the base of the thumb are used. F rom 

the angle, it is then easy to decide which direction the thumb is pointing to. 

Graphical representation of the arctan2 function is in Figure 2.21. 

Figure 2.21 The output of function arctan2 [28] 

The thumb can be directed up as is in Figure 2.22 a) which happens if the 
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calculated angle is within the range of 45 to 135 degrees. Similarly, if the thumb is 

pointing to the right, which can be seen in Figure 2.22 b), the range the angle must 

fit into is from —45 to 45 degrees. In the case where the thumb is facing downwards, 

which is shown in Figure 2.22 c), the needed range of degrees is from —45 to —135. 

If the thumb is pointing to the left like in Figure 2.22 d), the range is the remainder 

to fulfill the whole 360 degrees from —135 to —180 and from 135 to 180 degrees. 

Figure 2.22 Thumb directions a) up b) right c) down d) left 

2.3.6 Hand orientation 

The last of the parameters defining hand pose focuses on the direction the hand is 

pointing to. It is calculated very similarly to the thumb direction and uses the same 

group of five states for the definition of gesture: 

• up 

• down 

• left 

• right 

To determine the direction the hand is pointing to, the angle between the base 

of the hand and averaged coordinates of the bases of fingers is needed. The angle 

is then calculated the same way as wi th thumb direction using equation (2.13). 

Similarly, the direction is then determined by the same rules as the direction of the 

thumb. Figure 2.23 represents al l the recognized hand directions. 

Figure 2.23 Hand directions a) up b) right c) down d) left 
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2.3.7 Gesture definition format 

Each gesture is defined by a single J S O N file in the gestures folder. These files 

contain a readable and easily modifiable structure wi th the name of the gesture and 

the definition of poses the finger can be in for the one gesture. The general structure 

of the gesture definition file is in Lis t ing 2.2 wi th al l the main level categories. 

Lis t ing 2.2 Gesture definition format - main categories 
{ 

"name" : , 
"hand": [ 

] 
"finger_bends" : { 

h 
"finger_spreads" : { 

h 
"thumb_position" : [ 

] , 
"thumb-tip": [ 

] , 
"thumb-direction" [ 

] , 
"hand-direction": [ 

] 
} 

Except for the gesture name, al l the possible states are always in the square 

brackets, which are in J S O N format used to encapsulate array members. The states 

are then string names of enumeration types used in the application code, to make 

readability by the human eye easier. 

Cur ly brackets are used to represent objects; members of an object are then 

represented by a string name and the corresponding value. In this case the values 

are mostly arrays and other objects. Objects are used for finger bend states where 

the name of the member value is necessary to differentiate between fingers and for 

finger spreads to distinguish for which fingers the spread is in between. The final 

bend state and spread of fingers is again defined as an array of string names. 

To allow the hand or pose of finger to be in any state possible and to skip the 
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category in gesture matching, the keyword "any" can be used to indicate that the 

category does not matter. For example, keyword "any" can be used to identify that 

the gesture can work for both the left and right hand. Two definitions, one using 

a list of string names and the second one wi th only the keyword "any" but wi th 

the same outcome are in Lis t ing 2.3. 

Lis t ing 2.3 Gesture definition format - keyword "any" 
"hand": [ "hand": [ 

" l e f t " , "any" 
"right", ] 
"unknown" 

] 

2.4 Graphical user interface 

T o ensure ease of use, a graphical user interface for the application was created. 

For this purpose, the open-source cross platform Python library K i v y [29] was used. 

K i v y uses event-based programming, resulting in the application running in super 

loop and just responding to event callbacks from the user interface. The U I can be 

designed either directly from Python, which can become very confusing wi th bigger 

projects, or by using K i v y proprietary language called K V , in which a tree structure 

of widgets wi th rule-based properties can be defined. Hello W o r l d type of 

application U I using K V language is in Lis t ing 2.4. 

Lis t ing 2.4 Hello world in K V language 
#:kivy 1.10.1 

BoxLayout: 
orientation: ' v e r t i c a l ' 

Label: 
text: 'Hello ' + 'World!' 

Button: 
text: 'Close' 
onpress: exit() 

This simple application wi l l be composed of two widgets, label occupying the 

top half and button in the lower half of the window. K V language can also use 

simple python commands and conditions in its properties. This is presented wi th 

the concatenation of strings in the text property of the label. Python function calls 

can be also used, like exitQ function call in the on press event callback. 
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2.4.1 Main screen 

The application is designed to use a single screen, which contains a video player 

wi th a hide-able control panel at the bottom of the screen, which contains the 

typical play/pause button, option to go through the video frame by frame in either 

direction, position slider for easy navigation in the video, current time in the video 

and the length of the input sequence followed up by a quick screenshot button. A t 

the top of the application window is located an action bar containing function 

buttons at the top. 

Each button launches a callback function which results in opening a popup 

overlay wi th file browser, setting the video source to camera, sliding a panel wi th 

more options into the screen, button that reloads the source file or enables log 

saving. The base screen of the application is in Figure 2.24. 

•( Computer vision and hand gestures detection and fingers t... H * | g ^Jj 

- / - Snap 

Figure 2.24 Created application window 

In the design of the application, most of the used icons belong to the open-

source icon pack called Open Iconic [30] wi th the colors changed to fit the dark 

interface, and some icons were made from scratch, such as the icon for save image 

button because Open Iconic d id not contain an icon usable for this function. 



2.4.2 Settings 

The settings panel contains options for configuring the detection itself. One of the 

options is the usage of N V I D I A C U D A which is by default turned on if the system 

contains a supported G P U . Other options allow the hand detector, finger detector 

or gesture matching to be disabled, which can be done if the G P U does not have 

enough video memory to fit both neural networks into it or the functionality just 

is not needed. To be able to use this application wi th G P U s wi th less amount of 

memory, the option to use only half precision floating point models is available. 

This may also produce faster processing on supported G P U s but for the cost of 

possibly lower accuracy. Half precision is also not available for use on C P U s , so the 

option is automatically disabled if the N V I D I A C U D A is not used. 

More cosmetic options include the drawing of hand skeletons, joints or detected 

bounding boxes into the image or the frame of a video sequence. The last two 

options represent the frame rate the detection should try to get if the hardware is 

powerful enough; the base frame rate of video or camera is set when the source is 

selected, and how many frames should be skipped between detections, which is by 

default 0. The settings panel is shown in Figure 2.25. 

<J V)p Computer vision and hand gestures detection and fingers 1... * L O i 

Use NVIDIA CUDA: Use hand detector: 

Use keypoint detector: Use half precision: 

Use gesture matching: Draw Boxes: 

Draw skeleton: 

Target FP3: 

Draw skeleton joints: 

Skip Frames: 

Figure 2.25 Detection settings available in application 

Except for the settings that change the processing unit and precision of 

calculation, this is because big data transfers of models between G P U and system 

memory or the need to reload weights, al l of the settings can be toggled during 

detection and the new setup is used for detection over the next frame. 

2.4.3 Record panel and settings 

Saving the video is designed in a slightly different way than is usual for applications 

working wi th video sequences. Instead of saving the whole video and waiting for 
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the whole video to be processed, the saving is done using a recorder. The recorder 

can be launched at any moment in the video and can be paused to allow skipping 

of certain parts of the video. The record panel also includes optional toggle to save 

log during the output video saving. Bo th expanded record panel and record settings 

panel are shown in Figure 2.26. 

Figure 2.26 Record panel and record settings 

A l l the settings are set automatically after opening a video or loading up 

a camera to match the resolution and frame rate of the input. This does not mean 

that the settings cannot be different, as the frame rate and resolution can be 

changed to almost anything and the frames wi l l then be resized and written wi th 

the frame rate set before the recording is started. 

The advanced record settings contain a single text box, in which can be written 

F o u r C C (four-character code) defining an encoder that is to be used while 

generating an output video sequence. There are many F o u r C C sequences [31], but 

it is impossible to say upfront which wi l l work on specific systems. Because this is 

the only place for the user to input an incorrect setting, a warning about possible 

application crash is also included. Most common F o u r C C codes are M J P G , D I V X , 

H264 but there are many more. B y default, F o u r C C used by the application is 
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M J P G , which stands for the codec Mot ion J P G and should be available wi th every 

O p e n C V build, but the produced output file is very large compared to more 

advanced codecs like D I V X or H264. 

The approach of using a recorder also allows changes in detection settings 

during the saving process, like disabling hand detector, changing target frame rate 

or just turning off the rendering of hand skeletons. 

2.4.4 Info panel 

Last of the UI elements is panel containing information about the application, 

version of python and versions of used libraries, hyperlinks to project repository 

and university website and contact email. Expanded info panel is in Figure 2.27. 

I C •* L O i 

• 
Computer vision and hand gestures 

detection and fingers tracking 

Author: Tomas Bravenec 

Email : xbrave01@vu1br.cz 

Web: www.vutbr.cz/ 

Repository: git lab.com/... 

Python version: 
Python: 3.6 

Python libraries: 
OpenCV: 4.0.0 

PyTorch: 1.0.1 

Numpy: 1.15.4 

Figure 2.27 Applicat ion's info panel 

2.5 Application development 

The whole application can be divided into four parts. Three of these parts represent 

the whole process from hand detection to the final gesture recognition. The last 

part of the application is the user interface, which is then by callbacks and rule-

based functions connected wi th the computational part of the application. 

mailto:xbrave01@vu1br.cz
http://www.vutbr.cz/
http://gitlab.com/


2.5.1 Models download 

Because of the size of the weights for both neural networks, these are not included 

in the source code repository. There are two options on how to download these. 

Either the weights wi l l be downloaded at first launch of the application, showing 

the progress of the weights download in the terminal window, before the U I loads 

or downloading them manually before launching the main application by running 

the script g e t m o d e l s . p y from the repository [32]. The result is the same as the 

application calls the functions from ge tmode l s . py on every launch to check if the 

models are present and downloads them if they are not. 

2.5.2 Background logic 

The logic behind the complete gesture detection is divided into three python 

modules. Hand key point detection and gesture matching are in their own modules. 

Hand detection is included in the module wi th the wrapper class. 

The hand detection neural network contains al l the logic in the Darknet 

interpreter python package, and the only preprocessing needed is conversion of color 

format from B G R to R G B . That means the function call for prediction over an 

input image is included in the wrapper class without any postprocessing. 

The situation is different when it comes to the hand key point detector from 

the project OpenPose, because the weights have been converted to PyTorch , the 

whole preprocessing and postprocessing had to be written from scratch. Even if 

that was not the case, because of the decision making in the case of the left or right 

hand, the implementation would be very different anyway. 

Gesture recognition, unlike either of the detections is tied to the hand key 

points detector and subsequently cannot be launched on its own. Gesture matching 

consists of getting the pose out of the key points, which is then followed up by 

gesture matching. The main idea behind the algorithm is to check if the current 

parameter of the pose can be in the defined gesture. If any of the pose parameters 

cannot be in the tested gesture, that gesture is removed from the list and the next 

definition is tested. The best-case scenario would end up in either an empty list or 

a list wi th a single remaining gesture definition left for an unrecognized gesture and 

a recognized gesture respectively. In the case the list contains more than one gesture 

definition, the one first loaded into memory is used as the resulting gesture. 

The whole detection logic is wrapped in the hand tracker class that provides 

a single function to provide complete detection from a static image or a single 

frame of a video sequence. The class also contains functions and state variables to 

allow for changing detection settings. 
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These functions are useful for easy binding to the switches in the application's 

settings, that allow to easily change the output from the prediction function. Some 

of these changes though cannot be done during detection and can only be made 

while the detection is not running. 

2.5.3 Multi-threaded processing 

T o make the UI of the application responsive without freezing the U I during tasks 

that need a lot of time for calculation, the processing logic of the neural networks 

was moved to a separate thread. This means that the application's UI stays 

responsive even during time consuming detection. T o keep full control of this 

thread, the control is done using simple semaphores. One that keeps the thread 

running and the second, that allows the processing to start. If the thread is running, 

but processing is stopped, the thread is put to sleep for half a second, before it 

checks if processing is required or not. The main reason for this delay is to make 

the application use less processing power at the time of not doing anything. The 

processing thread is also created only at the time of changing the source for 

detection, and only after the previously running thread stops. This approach makes 

threading relatively easy, because there are always at most two threads running. 

2.5.4 Logging 

The application includes two logging systems, one runs only during recording and 

the second one runs al l the time. Even though logging is always running, the log is 

saved only if the option is selected. 

If the option to save log is used and the source is a video, the log wi l l be saved 

on a change or reload of the source file. This approach ensures that the log contains 

information about every processed frame and is the only option, because of the 

atypical saving system. The log for an image is saved only if the processed image 

is saved and log for a camera feed is not taken at al l as there is no video information 

to compare it to after the frames from the camera are processed. 

The situation is different if the recording is running. A t the start of the 

recording, a second logging object is created, which records every information about 

every frame saved into the output video file. This also means the logging object 

starts indexing the frames from zero and uses the output framerate to calculate the 

timestamp in the log to match the output video. 

The logs always contain a header, which for images contains the output image 

path and the dimensions of the image. The log then contains a single line for each 

of the hands in the image. These records contain the information about the 



bounding box in normalized format and string representation of the detected hand 

and gesture. In the case the hand detector is not used, the bounding box location 

is put in the center of the picture wi th a width and height matching the dimensions 

of the image. If the hand key point detector or gesture matching is not used, the 

word "unknown" is used in the log. If the gesture does not match any of the defined 

gestures, the word "unknown" is used instead of the gesture name. The format of 

the log wi th header and record is in Lis t ing 2.5 

Lis t ing 2.5 Log header and record format for static images 
<filename>, Shape: <width>x<height> 
<x> <y> <width> <height> <hand> <gesture> 

The format of the log header for video sequences compared to the log for 

a single image also includes information about the video framerate. The records of 

the log then also include frame index and calculated timestamp from the frame 

index and the framerate. After these two new values, the format is the same, wi th 

the bounding box information in normalized format and the string representation 

of the hand and gesture. Format of the log for video sequence wi th al l the 

information is in Lis t ing 2.6. 

Lis t ing 2.6 Log header and record format for video sequences 
<filename>, FPS: <framerate>, Shape: <width>x<height> 
<frame> <time> <x> <y> <width> <height> <hand> <gesture> 

2.6 Application prerequisites 

The created application uses very memory and computationally intensive methods 

of image processing, so the hardware of the system must be appropriate. There are 

prerequisites when it comes to both the hardware and the software of the system. 

2.6.1 Source code repository 

The application's source code, including full change history and step by step 

installation guide for both Microsoft Windows and Linux based systems, is stored 

completely in a git repository [32]. 

2.6.2 Hardware requirements 

When it comes to processing using a C P U , which is possible but not recommended 

because of long processing times, the system should have at least 8 G B of system 

memory, but 16 G B or more is recommended, as the system itself normally uses at 



least 2 G B on its own, and 6 G B is then easily filled wi th the weights of both neural 

networks and processed image, and in the worst case scenario the system might 

start moving data into swap. This can then result in a very unresponsive system, 

not just the application behavior. 

If the system contains a supported N V I D I A G P U , the system memory can be 

just 8 G B , but the G P U memory should have at least 6 G B be for smooth 

functionality. W i t h either the hand detector or the hand key point detector disabled 

and wi th half precision processing enabled, the application can run even on cards 

wi th 2 G B of video memory. 

There is no requirement on the C P U performance, but for the best 

performance, the model of C P U should not bottleneck the G P U available in the 

system and vice versa. The result of bottlenecking is lower frame rate in the example 

as a result of the C P U not serving the images for processing quickly enough or the 

G P U waiting for the commands from the C P U , so the load of the G P U is nowhere 

near the load it could be wi th adequate C P U . 

2.6.3 Software requirements - Microsoft Windows 

The application on the operating system Microsoft Windows, only needs installation 

of 64-bit Py thon version 3.6 wi th pip package manager installed. Al though the 

Py thon version can be higher, the link to P y T o r c h package wheel in 

requirements.txt would have to be changed according to P y T o r c h Get Started 

guide [33]. The python installation should also be added into the system path during 

installation to ensure there would be no issues during package installation process. 

The N V I D I A video driver corresponding to the version of the C U D A toolkit, the 

P y T o r c h package has been compiled with, installed is also necessary, if the 

accelerated G P U computing is to be used. The minimal video driver version can be 

found in N V I D I A C U D A documentation [34]. The full installation of the N V I D I A 

C U D A Toolkit is not necessary as P y T o r c h already comes wi th prebuild binaries 

needed for G P U accelerated computation. 

A l l the Py thon packages needed are in file in the root of the repository 

requirements.txt and can al l be installed wi th the command in List ing 2.7. To allow 

usage of the same requirements.txt on Microsoft Windows and on L inux based 

systems, the OS specific packages are marked inside the file wi th environmental 

markers. 

Lis t ing 2.7 Py thon packages installation command on Microsoft Windows 
python -m pip i n s t a l l - r requirements.txt 
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2.6.4 Software requirements - Linux 

Just like wi th Microsoft Windows, the recommended Python version is 3.6 in 64-bit 

version, higher versions of Py thon can be used, but the links to the P y T o r c h wheel 

in requirements.txt needs to be changed for the same reasons as for installation 

in Microsoft Windows and the new link can be found using Get Started guide on 

P y T o r c h website [33]. Unlike wi th Microsoft Windows, L inux based systems need 

a few packages installed through the system package manager. The main package 

in question is the framework for graphical user interface K i v y and its dependencies, 

as mentioned in the K i v y installation guide for L inux [35]. The Py thon installation 

also needs packages: 

• cython 

• setuptools 

• wheels 

These packages are needed to bui ld the K i v y wheel before the installation itself. 

Just like wi th Microsoft Windows, the appropriate N V I D I A video driver [34] is 

necessary for P y T o r c h to allow N V I D A C U D A in application settings. After that 

the setup is like the setup process in Microsoft Windows. A l l the python packages 

are in the same file requirements.txt and on L inux can be installed wi th 

command in Lis t ing 2.8. 

Lis t ing 2.8 Python packages installation command on L inux 
pip3 i n s t a l l - r requirements.txt 
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3 Dataset creation 

Using only the EgoHands dataset [12], the application provided good detection 

results, when it came to hands doing stuff on a table, like playing chess or Jenga. 

W h i c h makes sense as it is created out of multiple video scenes where people play 

cards, chess and Jenga. This also means, that the results when it comes to hand 

detection in various poses, considerably different to the actions that the dataset 

was created on, were not exactly good. The same thing applies for M P I I Human 

Pose dataset, as it contains people in various poses, training neural networks for 

detection of hands using only this dataset provides disappointing results. Similarly, 

for the New Zealand Sign Language dictionary, which contains images in similar 

settings without more widely varied conditions. That meant that the datasets had 

to be expanded to create a more varied set of images. 

3.1 Obtaining images 

T o be sure that the dataset contains most of the gestures humans can do wi th their 

hands, it is v i ta l to use images that contain these gestures in different environments, 

lighting, poses and so on. For this very reason, it is a good idea to combine existing 

datasets or use frames from videos that are on the internet and create own data by 

recording what the network should train on. 

3.1.1 Combining existing datasets 

The easiest way of expanding datasets is to combine two of them together. 

Especially if both datasets include annotations of the object needed for training. In 

that case, combining datasets is just about converting annotations into the required 

format. If the dataset does not have desired annotations, then these must be created 

manually using one of the labeling tools. 

This is the method used in expanding the EgoHands dataset wi th images from 

the New Zealand Sign Language dictionary and the M P I I Human Pose dataset. As 

mentioned before, neither of these had required annotations, so these were created 

manually. 

3.1.2 Recording own data 

For the purpose of recording own data, Py thon script saving a frame from a webcam 

after a set interval or selecting frames from a video sequence recorded on a camera 

can be used. Either of these approaches is usable in this case, although the recording 



device should have high quality image capturing, as the neural network provides 

better results if trained on images wi th higher resolutions, rather than lower 

resolution images. A n example of such images wi th ground truth annotations are 

in Figure 3.1. This approach was used to create evaluation dataset for left hand 

recognition and gesture classification part of the application. 

Figure 3.1 Custom images for dataset extension 

3.1.3 Getting videos from the internet 

Another way of modifying the existing dataset is using frames from videos wi th 

license that is allowing reuse of the content, that can be found on the internet. 

A couple of frames from videos from YouTube can be seen in Figure 3.2. Scraping 

videos from the internet is a viable option, but this approach to dataset extension 

was not necessary as the three combined sets of images provided a high variety of 

training data. 

Figure 3.2 Images from YouTube videos [36], [37] 

3.2 Annotation of images 

Annotat ion can be done in two ways. One way is by manually creating files and 

measuring distances from the corner of an image followed by width and height of 

the object. The data must then be manually inserted into a file. This approach is 

not ideal as doing this for thousands of images would be extremely ineffective. 
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Because of this, annotation tools are much more effective. Their purpose is to create 

annotations in the format that would work for a specific network or in some format, 

which could be easily transformed into another. The process of creating the 

annotation is mostly automatic, the only thing that must be done is manually 

selecting the object that needs to be annotated and the tools take care of the rest. 

3.2.1 Tool Labelling 

The Y O L O v 3 neural network needs specifically annotated images for training. The 

annotation consists of a single txt file for each image, that contains the ground 

truth information about objects for which the network should train and their 

bounding boxes; each object in the image is placed on a new line. The locations and 

dimensions of bounding boxes are in normalized format independent of the image 

resolution and object class is represented by its index. The format of these 

annotation files is in List ing 3.1. 

Lis t ing 3.1 Format of image annotations for Y O L O based networks 
<class> <x> <y> <width> <height> 

For annotating al l the additional images the multiplatform application 

Label l ing [38] was used, which can generate annotation files in the correct format 

from the bounding boxes drawn into the image. User interface of Label l ing is shown 

in Figure 3.3. 

•f labelling D:\Repos\hardtrackJng\image5VtraJn\Jmg\CHESS_LIVINGR00M_S_B_framO57D.jpg 

Figure 3.3 Annotat ion tool Label l ing 
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These annotations are usable only wi th neural networks based on Y O L O 

architecture, but can be easily converted for use wi th any other neural network 

wi th simple scripts written in python. After annotating, the dataset was ready for 

training the neural network. 

3.2.2 Website Supervise.ly 

Another very useful tool for dataset annotations is the website called Supervisely 

[39]. This online based tool is very capable as it can create the annotations in its 

editor, which is shown in Figure 3.4. It can also show statistics like how many 

images are left to annotate, and even the percentage of image space, that is occupied 

by the objects. 

Even though it seems like it can do a lot already, the functionality does not 

end here, Supervisely has also implemented data transformation language, that can 

easily divide the dataset into multiple smaller datasets, which is useful for creating 

subsets of the dataset for training and evaluation. Another interesting feature is 

data augmentation, which extends the dataset by color shifting, flipping and 

rotating existing images. 

Figure 3.4 Annotat ion tool Supervisely 

O n top of that, supervisely also contains the means to train a few predefined 

networks using the annotated and augmented datasets. This feature though is not 

implemented on the website itself but needs a separate L inux based system wi th 

N V I D I A C U D A support, as the website wi l l only control the machine that wi l l do 

the computing. 
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4 Evaluation and testing 

A s wi th any deep learning applications, it is highly recommended to use G P U s to 

speed up the forward pass of input data through the neural network and out of the 

output. Most of the deep learning frameworks like TensorFlow, P y T o r c h and others 

use N V I D I A C U D A for this purpose. The framework used for training and then 

testing was PyTorch , because of this, the G P U s used to evaluate the performance 

of the application are only from N V I D I A . A s there is pretty much no point in 

creating a hand detection solution wi th hardware that almost no one has, one of 

the G P U s used is a few generations behind current ones and targeted on laptops, 

which means it is less powerful than its desktop counterpart. The second tested 

G P U is targeted at desktops and is a single generation ahead of the laptop one. 

Even then, the desktop G P U belonged to the mid-range and was nowhere near as 

powerful as the most expensive G P U s from the same generation. Parameters of 

both tested graphics cards are listed in Table 4.1. 

Table 4.1 G P U used for evaluation and testing 

NVIDIA GeForce G T X 
850M 

NVIDIA GeForce G T X 
1060 

C U D A cores 640 1280 

Base core clock 0.901 GHz 1.607 GHz 

Max boost clock 1.084 GHz 1.835 GHz 

Memory 2 G B 6 G B 

Memory bandwidth 80.0 G B / s 192.2 G B / s 

Memory type DDR3 GDDR5 

Manufacturing process 28 nm 16 nm 

Architecture Maxwell Pascal 

Target system Laptop Desktop 

Launch date March 2014 July 2016 

There are some options to get even better performance out of the graphics 

cards, if they support it. Because the architecture of the G P U s changes a lot in 

between generations, these usually do not differ just in the performance 

improvements but also in the features of the G P U s . For example, compared to the 

Maxwel l architecture, graphics cards based on the Pascal architecture support 
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mixed precision processing [40]. In practice, this means that lowering the precision 

of the data types from 32-bit floating point to the floating point represented wi th 

only 16 bits, not just the memory requirements but also the time needed for 

processing wi l l be cut in half. Another improvement in performance could be gained 

wi th G P U s based on the V o l t a architectures, some G P U s based on the Tur ing 

architecture and possibly architectures released in the future. Graphics cards based 

on these architectures may contain not just C U D A cores, but also tensor cores [41]. 

Tensor cores are specifically optimized computing cores for matrix operations which 

are used at the core of deep learning applications. 

Just for good measure, testing was also done on C P U s available in systems 

wi th tested G P U s , to show the performance loss on systems without a G P U from 

N V I D I A . Same as for the tested G P U s , testing was done on a few years old laptop 

processor to show how quickly the neural network can detect hands on lower end 

hardware and on much newer desktop C P U to show the difference in performance 

achievable wi th a more modern C P U . Tested C P U parameters are in Table 4.2. 

Table 4.2 C P U s used for evaluation and testing 
Intel Core i7 4700HQ Intel Core i5 8400 

Cores 4 6 

Threads 8 6 

Base core clock 2.4 GHz 2.8 GHz 

Max boost clock 3.4 GHz 4.0 GHz 

Memory 16 G B 8 G B 

Memory type DDR3 DDR4 

Manufacturing process 22 nm 14 nm 

Architecture Haswell Coffee Lake 

Target system Laptop Desktop 

Launch date June 2013 October 2017 

4.1 Hand detection 

O n the hand detection testing can be looked at from two angles, accuracy and 

speed. Accuracy of the network is calculated during training, so it can be evaluated 

subjectively. O n the other hand, the speed of detection can be easily measured. 
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4.1.1 Detection accuracy 

F r o m predictions made on the validation dataset, most of the time the hands are 

detected correctly, and predictions of bounding boxes are very close to actual 

ground truths. The comparison of ground t ruth and predictions made by the neural 

network can be seen in Figure 4.1. 

Figure 4.1 Comparison of ground truth and C N N s prediction [14] a) ground truth 

b) predictions by neural network 

Even though most of the time the trained neural network manages to detect 

hands correctly there are times it can get confused and show incorrect detections. 

This can happen when the image is blurry, hands are obscured from full view by 

other objects, the objects look from a certain angle as human hands or just make 

incorrect predictions without a reason. These situations can be seen in Figure 4.2 

where in one image two hands are detected as one, just like an ear and a tool in a 

belt, or in the second image where the design on the jersey of one of the basketball 

players is recognized as a hand. O n the other hand, from this second image, it can 

be taken as fact that hand detection works on various skin colors. 

Figure 4.2 Incorrect detections [14] 

Because the hands from the first-person point of view included in the 

EgoHands dataset were not used for training the neural network, hands from this 

perspective are mostly not being recognized either. In Figure 4.3 are shown 

examples of missed detections from the first-person point of view. 
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Figure 4.3 Undetected hands [12] 

4.1.2 Detection speed 

T o make things clear, the neural network has a fixed input size, which means that 

all input frames are resized to the resolution set in the configuration file of the 

neural network before it was trained. In this case, the resolution is 416x416 pixels. 

A s expected, the times needed for running the detector on any of the available 

C P U s provided unexceptional results as low as 0.61 frames per second using a 

mobile processor, the desktop C P U even though four generations newer and wi th 

higher clock speed, managed to be only three times as quick. Using the G P U s 

provided much better results, even the older mobile graphics card easily 

outperformed both tested C P U s by a big margin and managed to get to more than 

three times higher framerate than the desktop C P U . Al though the mobile G P U did 

beat both C P U s by a big difference, using a newer desktop G P U provided a massive 

performance increase, although not as high as it could be, due to the bottlenecking 

of the graphics card by the C P U in the system. A l l the measured frame rates and 

times needed to process a single frame of a video sequence are listed in Table 4.3. 

Table 4.3 Detection speed comparison between G P U and C P U 

Frames / second ms / frame 

Intel Core i7 4700HQ 0.61 1639.34 

Intel Core i5 8400 1.83 546.45 

NVIDIA GeForce G T X 850M 6.81 146.84 

NVIDIA GeForce G T X 1060 6GB 28.91 34.59 

4.2 Hand key points detection 

A s the key point detector belongs to the project OpenPose, the evaluation of the 

neural network model was already done in paper [26]. What can be tested and does 

not belong to the original paper, is the decision if the hand is left or right. 
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4.2.1 Left hand recognition 

Since OpenPose uses another neural network, specifically for human pose 

estimation, the decision for which hand the pass through the network should be is 

quite straight forward. The implementation is vastly different from the one used. 

Because of that, the accuracy of the current implementation had to be evaluated. 

For the evaluation, 147 hands were used in a set of 101 testing images that 

contain people showing hands wi th different gestures using either one or both of 

their hands. This set of images was also taken wi th varying lighting conditions and 

in different environments. Two of the pictures from this testing set wi th annotations 

of left and right hand are in Figure 4.4. 

Figure 4.4 Images from the evaluation dataset wi th hand annotations 

The implementation of the hand classifier managed to correctly classify the 

hand in 94.5% of al l tested cases. Exceptions to the correct detections are mostly 

the cases when the hand is positioned in a way that can resemble the other hand. 

This situation usually occurs at moments when it is not clear from the image cutout 

containing the hand, which hand it is. A situation like this, where the neural 

network can be mistaken by the very similar outlines and pretty much the same 

distribution of key points, is depicted in Figure 4.5, and even in this situation the 

incorrect detection is not certain and depends on the quality of the input image. 

Figure 4.5 Left and right hand wi th similar key point distribution 
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To represent both correct and incorrect classifications of hands, the confusion 

matrix in Figure 4.6 was created. F r o m this matrix it is visible that only in a few 

instances the classification was not accurate, and the number of incorrect 

classifications is insignificant when compared to the number of correct ones. F r o m 

the confusion matrix it is clearly visible that the logic behind the hand classifier is 

accurate in most cases. 

Confusion matrix of left/right hand classification 
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Figure 4.6 Confusion matrix for recognition of left and right hand 

4.2.2 Half Precision calculation 

Even though the full evaluation of the hand key point detector was not necessary, 

due to the option of using half precision floating points, the accuracy can be lower 

than expected. This issue was encountered when working wi th the neural network 

only once using an image found on the internet, where the usage of half precision 

made a difference. Whi le using single precision, the hands and hand key points were 

detected correctly and the gesture classificator predicted both gestures correctly as 

is in Figure 4.7 a) even though the second key point of the ring finger on the left 

hand is slightly off the correct position. O n the other hand while using half 

precision, the second key point of the index finger on the right hand was not 

detected correctly which is in Figure 4.7 b), which might have been due to overflow 
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in one or more of the layers in the neural network. This resulted in incorrect pose 

estimation and wrong gesture classification. Even though there was a difference in 

the predicted key points of the right hand, key points of the left hand stayed the 

same, no matter the precision used for calculation. 

4.3 Gesture classification 

For the purpose of testing the gesture recognition system, eight gestures were 

predefined. These gestures were also included in the creation of the dataset for 

evaluating the hand and gesture classifier. A l l the predefined gestures are presented 

in Figure 4.8. 

Figure 4.8 Predefined gestures a) One b) Two c) Three d) Four e) Five 

f) O K g) Thumbs up h) Thumbs down 

Correct classification of a gesture is ultimately dependent on the predicted 

hand key points positions. This makes evaluation of gesture classification quite 

difficult, because the error might not be in the gesture classification, but in the 

output of the key point detector. 

To evaluate, the same set of 101 images used to evaluate the classification of 

the left or right hand was used. These images were manually labeled wi th the 

gestures shown in them. If the label matched the predicted gesture or was unknown 

because the gesture was not in the predefined set, the prediction was taken as 

49 



correct. In the case the hand key point detector produced a result that was 

obviously wrong, like in Figure 4.9, that detection was not used in the calculation 

of the success rate of the gesture classificator as it does not objectively represent 

the error in the gesture classification. 

Figure 4.9 Incorrect hand key points detection 

The images from the evaluation dataset used for classification contained either 

a single hand, where hand detection was not necessary, or wi th multiple hands in 

various poses wi th the need for the hand detector. Bo th cases of the evaluated 

images are displayed in Figure 4.10. 

Figure 4.10 Gesture recognition evaluation images 

The success rate was then calculated as a simple ratio between the correct 

classifications and total hand gestures used for testing. This produced a success rate 

of 79.8%. The success rate had to be from the beginning lower than the success rate 

of the left- or right-hand detection, because if the key points were meant for the 

other hand, they are most of the time not very usable for further gesture matching. 

The reason for slightly lower success rate of gesture matching is the hand key point 

detection neural network. Because the fingers can be hidden from the view, the 

neural network must guess the pose, the finger might be in. The key points of a 

finger can be predicted in a position that does not match the gesture rules. Because 
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of this, even though subjectively the hand pose fits the gesture, it does not actually 

pass the rules. 

The evaluation dataset contains 119 hands, on which the hand key point 

detector subjectively predicts the locations of key points correctly. Out of these 119 

hands, each of the tested gestures was represented wi th approximately 10 to 18 

occurrences in the dataset. O n top of the tested gestures, 16 hand poses that did 

not match any of the predefined gestures were included to also test if the gesture 

matching logic understands the unknown hand poses correctly. F rom the results, 

a confusion matrix in Figure 4.11 was also created for visual representation of the 

accuracy. A s is visible, most of the classifications are on the main diagonal, which 

means these classifications were correct, and if they were not, in most cases the 

gesture was classified as an unknown gesture. 

Confusion matrix of gesture classification 
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5 Expansion possibilities 

The computational backend of the application could be expanded in the future to 

provide better detection results and additional functionality. 

5.1 Detector modifications 

A s the neural network used for hand detection does make mistakes, the result could 

be further improved without modifying the code by retraining Y O L O v 2 wi th an 

even more diverse dataset of hands, or by replacing the neural network by 

a different Y O L O based architecture. The successor of Y O L O v 2 , Y O L O v 3 [43] 

already exists and should produce much better results because it uses not just one 

but three detection layers, each in different scale of the input image, but due to 

much higher performance requirements, the older version was used. Changing the 

detector can be easily done by just swapping the configuration file and the 

corresponding weights for another Y O L O based neural network. 

5.2 Key points post processing 

The OpenPose key point detector produces output wi th a lot of ji t ter that can be 

expected as the detection is always done on a single frame, but it could also be 

improved by performing detection over a time window, and smoothing out the 

detection in the frame at the center of the window. The result would then provide 

a smoother less jumpy movement of the drawn hand skeletons. That would be 

easier to match the gesture to. 

This detection over a time window could also be used to fix incorrect detection 

between a couple of frames. Whi le in the majority of the frames the finger would 

be detected in a similar place and in the middle of the window there would occur 

a sudden jump in the location of the key points, followed up by returning to 

a location very similar to the previously detected sequence, the incorrect location 

of key point could be replaced by approximating the key points position. 

Both approaches would result in smoother, higher quality detection, although 

for the price of losing real time processing, depending on the size of the detection 

window. 

->2 



Conclusion 

The goal of this master's thesis was to study and analyze possible approaches to 

hand detection, gesture recognition and finger tracking, select one of the possible 

approaches to the issue and create a multiplatform application capable of processing 

images, video sequences and a camera stream. 

Most of the approaches to hand detection expect at least some kind of 

cooperation wi th the person in front of the camera, be it wearing colored gloves to 

easily detect important points of the hand, or just expecting the hand to be in 

a pre-defined part of the image. Other approaches might require specialized 

hardware for video capture wi th depth channel and so on. These issues made most 

of the generally used approaches unusable. 

To create a system capable of hand detection that is not dependent on lighting 

or the environment, it is almost impossible to use a rule-based system. That might 

result in confusion during detection in situations not thought about during the 

creation of the system. To avoid these issues and to create much more robust hand 

detection the approach using a neural network was chosen. 

Because neural networks need a lot of training data to produce usable results, 

the training dataset was created wi th a combination of the EgoHands dataset, M P I I 

Human Pose estimation dataset and a couple of videos from the New Zealand Sign 

Language dictionary. The combined dataset provided a high variety of hands in 

different environments, lighting and poses, and contained over 6000 images, usually 

wi th more than one hand in each. After training, the neural network Y O L O v 2 

resulted in very good detection results wi th 89.2% of al l relevant objects, in this 

case hands, detected. Out of al l the detections, the network managed to find the 

hands properly in 85.7% of al l cases. 

The hand detection specific neural network was necessary due to the usage of 

another neural network, for predicting hand key points, which needs an image wi th 

only a single hand. This network is one of the networks used in the project 

OpenPose and can predict the position of fingers, even if the fingers are hidden 

from the camera view. 

Even though the network is from the project OpenPose, the processing of the 

image before and after the forward pass through the neural network is completely 

different from the OpenPose implementation. The additional processing adds the 

capability to recognize whether the hand sent through the network was left or right 

correctly in almost 95% of al l cases, which adds the possibility to implement gesture 

recognition wi th gestures specific for either left or right hand. 



The biggest downside of using the neural network from the project OpenPose 

is quite slow processing due to the sheer size of the network. But wi th more and 

more powerful hardware available every couple of years, this issue wi l l cease to be 

a problem in the future. 

The expandable gesture recognition part of the whole system works wi th 

comparisons of Euclidean distances between important key points. Depending on 

those distances, the system predicts the pose the finger or fingers are in. Since the 

gesture recognition highly depends on the output of the neural network for the 

hand key point detection, the success rate cannot be as high as it could be, if the 

locations of hand key points were not predicted but known for certain. Even then, 

the tested gestures were recognized correctly in 79.8% of al l the cases in the 

evaluation set of images. 

The gestures the system tries to detect are defined in the gesture definition 

files and new gestures can be easily added by creating a new gesture definition file 

in the gestures folder. These definition files should contain the new description of 

the poses the fingers of the hand can be in . 

When it comes to detection performance, there is no comparison between the 

C P U and the G P U , even when using a modern desktop C P U ; an old laptop G P U 

is a much better choice for running neural networks, due to their parallel nature. 

That said, the C P U in the system should not be bad either, as the application 

might run into performance issues due to bottlenecking. 

The whole detection logic is then connected to a graphical user interface, that 

makes the interaction wi th the logic easy and user friendly while providing 

additional functionality compared to using just the script included in the module 

wi th hand tracking class. 

The U I of the application is composed out of a video player, which allows for 

easy presentation of the processing output, stepping through a video frame by frame 

in both directions and using a slider for skipping parts of the video completely. 

Through the UI it is also possible to get to the recording system that allows to 

save video easily, wi th the option to change the detection settings during the 

detection itself. The application also allows to save al l the detected bounding boxes, 

and gestures into a log. 

The logic behind the detection of the hands could be improved in the future 

by further expanding the training dataset and retraining the neural network, or 

even replacing it wi th another Y O L O based network. Improvements could also be 

done on the hand key point detection network, by smoothing out the key points 

locations and fixing incorrect key point locations wi th position approximations. 
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List of Symbols and Abbreviations 

h Hand key point wi th index i 

C Weight ing constant 

G P U Graphics Processing Uni t 

C P U Central Processing Uni t 

C N N Convolutional Neural Network 

Y O L O Y o u Only Look Once 

OS Operating System 

IoU Intersection over Union 

T P True Positive 

F P False Positive 

F N False Negative 



Attachments 

Complete structure of the git repository [32] containing the source code, icons and 
images used in the development of the application: 

— i n i t . py 
—cfg-py 
—darknet.py 
—region_layer.py 
— u t i l s . p y 
'—yolo_layer.py 

— d a t a images used i n UI elements 
— i c o n s 

—app.ico 
—cog.png 
— f i l e . p n g 
—floppy.png 
—image.png 
—info.png 
— l o g . png 
—media-pause.png 
—media-pause-disabled.png 
—media-play.png 
—media-play-disabled.png 
—media-record.png 
—media-record-disabled.png 
—media-step-backward.png 
—media-step-backward-disabled.png 
—media-step-f orward.png 
—media-step-forward-disabled.png 
—media-stop.png 
—reload.png 
—reload-disabled.png 
'—video.png 

'—logos 
I—BUT_symbol_RGB_EN.png 

—enums package with enumeration modules 
— i n i t .py 
— f inger_bends.py 
— f inger_spread.py 
—hand_directions.py 
—hands.py 
—input_types.py 
—thumb_directions.py 
—thumb_positions.py 
I—thumb_tip_positions.py 

\ root of the repository 
— .git 

configuration f i l e s f o r CNNs 
tkeypoints .py 

y o l o v 2.cfg 
•darknet darknet interpreter package 
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gestures gesture d e f i n i t i o n f i l e s 
— f i v e . j son 
— f o u r . j s o n 
—ok.json 
—one.json 
—three.json 
—thumbs_down.j son 
—thumbs_up.j son 
—two.j son 
.gitignore 
•constants .py 
•get_models .py 
•hand_gestures. py 
•hand_keypoints. py 
•hand_tracking. py 
•LICENSE 
•logger, py 
•main. kv 
-main_app.py main s c r i p t 
-README, md 
•requirements.txt l i s t of required packages 
- u t i l s .py 
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