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České Budějovice 2022



Belov, S., 2022: Numerical simulations of dynamic processes in the solar corona. Mgr. Thesis,

in English. – 54 p., Faculty of Science, University of South Bohemia, České Budějovice, Czech
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Abstract

This master’s thesis deals with 3D numerical simulations of turbulent flow past magnetic struc-

tures in the solar corona, focusing on the phenomenon of vortex shedding. This phenomenon

is well known in hydrodynamic conditions. Still, it has not yet been satisfactorily investigated

in magnetohydrodynamic (MHD) conditions, such as in the solar atmosphere, where its oc-

currence has been suggested by several studies and may explain some oscillatory phenomena.

Numerical code Lare3d is used for the simulations.
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1 Introduction

Solar physics is now one of the most dynamic astronomical branches. The understanding of

the Sun has undergone a significant revolution in recent decades thanks to theoretical advances

and observations. These include advances in analytical and computational methods and both

terrestrial and space observations – see, for example, SoHO (Solar and Heliospheric Obser-

vatory), SDO (Solar Dynamics Observatory) [34], Parker Solar Probe [27] and Solar Orbiter

[1].

Despite this progress, several important issues in solar physics have not yet been satisfactorily

explained. For example, the physical processes heating the upper layers of the solar atmosphere

have not been clearly identified. The Sun affects the Earth’s climate and space weather [34],

and due to its proximity to the Earth and its similarity to other stars, it plays an essential role

in astrophysics [15]. Addressing these issues is therefore important both for a better ability to

predict dangerous events in space weather and for gaining knowledge of other astrophysical

systems [11].

This master’s thesis is focused on dynamic processes in the solar corona, the outer layer of

the solar atmosphere. This region is formed by an almost fully ionized plasma of a very high

temperature [2], which is partly propagated into interplanetary space in the form of the solar

wind but also kept in closed magnetic structures such as coronal loops [11].

The main task of the thesis is to perform a parametric study of turbulent processes taking

place in the vicinity of these magnetic structures through numerical simulations, focusing on

the phenomenon of vortex shedding. This phenomenon consists in the periodic formation of

vortices during the flow around a cylindrical body (or another body causing high drag) [42]

and will be described in more detail in a later chapter. The aim of this study is to determine the

influence of the solar corona environment on the course and parameters of this phenomenon,
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the occurrence of which is still lacking direct observational evidence in this environment. In

hydrodynamics, the vortex shedding phenomenon is well known [35], but it has not yet been

satisfactorily investigated in environments with a magnetic field [22], such as the solar corona,

where it can explain some oscillating phenomena [29, 31, 35].

Numerical simulations of the vortex shedding phenomenon in two spatial dimensions have

already been performed in bachelor thesis [8]. There, a hydrodynamic case in a gravity-free

medium was investigated to determine the regularity of this phenomenon under different flow

velocities and obstacle sizes and verify the model’s functionality. One of the simulations was

then repeated with the addition of a magnetic field perpendicular to the flow plane (using a

so-called 2.5D model). In the current thesis, this model is extended to three dimensions and

applied to the environment of the solar corona.

1.1 The solar corona

The solar corona is the highest layer of the solar atmosphere. It extends over the chromosphere

at an altitude of about 2500 km above the visible surface of the Sun, or photosphere (see Fig.

1.1), to the interplanetary space [23] and consists of a sparse, almost fully ionized very high

temperature plasma [2].

Figure 1.1: A scheme of the solar atmosphere and magnetic structures observed in it. Taken and edited

from [28].
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The scheme of the solar atmosphere with indicated structures, which will be mentioned below,

is in Fig. 1.1. The temperature and density profile of the solar atmosphere according to the so-

called C7 model [6] can be seen in Fig. 1.2, which shows that its temperature slowly increases

at the chromosphere base and extremely rapidly increases from ∼ 104 K up to ∼ 106 K in

the transition region between the chromosphere and corona. The coronal density in the lower

region is of the order of 10−12 kg ·m−3 [23].

Figure 1.2: The temperature and density of the solar atmosphere as a function of height according to

the so-called C7 model [6]. Taken from [19].

1.1.1 Magnetic structures

The movement of coronal plasma and particles that escape from the corona and form the solar

wind is strongly influenced by the solar magnetic field. Its field lines directly determine the

direction of this movement [37]. This magnetic field is highly variable, which is associated

with the eleven-year cycle of solar activity during which the polarity of the Sun changes [30].

In the solar atmosphere, open field and closed field regions can be distinguished, as can be

seen in Fig. 1.3. Open field regions are always located in the polar regions (depending on the

period of solar activity, they can extend further) and reach up to interplanetary space. In closed
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field regions, on the other hand, there are mostly closed magnetic field lines, reaching much

smaller heights in the corona [37].

Coronal plasma can propagate freely into interplanetary space, or the heliosphere, only if the

magnetic field lines reach this distance. In the case of the open field region, it is the so-called

fast solar wind, which reaches speeds of∼ 750 km · s−1 [30]. These field lines act as tubes into

which plasma flows from the chromosphere and is carried into the interplanetary space as it

passes through the corona [37].

Figure 1.3: An image of the Sun taken during the total solar eclipse in Chile in 2019, enabling to see

the solar corona and the structure of the solar magnetic field. The open field regions, from where the

coronal plasma propagates freely into inteplanetary space, and the close field regions, where the plasma

density is increased due to the coronal loops, can be distiguished. In this image the Sun is close to the

minimum phase of the solar activity cycle, when its magnetic field is most bipolar. Taken from [13].

In the closed field regions, structures called coronal loops are very abundant. They arise due

to the flow of plasma from the chromosphere, which fills them and is kept in them due to

closed magnetic field lines, which directly determine their shape [37]. Due to the densely

contained plasma, they can radiate intensely at extreme ultraviolet and X-ray wavelengths

[28]. In coronal loops with the bases further apart, the plasma density is lower [17]. Large

loops form the basis for structures called coronal streamers, which reach into interplanetary

space through an open structure called stalk and are the source of the so-called slow solar wind
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[28], whose average speed is ∼ 350 km · s−1 [30]. Figure 1.4 shows an ultraviolet image of the

solar surface capturing coronal loops.

Other magnetic structures that can be observed in the solar corona are prominences. They

are formed by chromospheric matter protruding in the corona, which makes them on the or-

der of a hundred times denser and cooler than the environment in which they are embedded

[2]. Typically, they reach heights of 10–100 Mm and are composed of 15–20 threads with a

200–400 km width [5]. When observed above the solar limb, against the dark sky background,

they take the form of bright clouds – see Fig. 1.5, while when observed on the solar disk, they

appear as dark, thin and long features and are called filaments [2]. According to their dynamic

nature, they can be divided into quiescent and eruptive prominences. Quiescent prominences

are stable structures that last up to several months [5], probably supported against gravity by

forces of magnetic origin [4, 7]. Eruptive prominences are usually associated with solar flares

and coronal mass ejections (see Sec. 1.1.2) [5].

Figure 1.4: Image of the solar surface and coronal loops taken in extreme ultraviolet light by the

TRACE satellite. Taken from [28].

5



Figure 1.5: Image of an erupting prominence taken by SoHO spacecraft’s Extreme Ultraviolet Imaging

Telescope. Taken and edited from [33].

1.1.2 Explosive phenomena in the solar atmosphere

In the solar atmosphere, explosive phenomena, such as solar flares and coronal mass ejections,

take place in a matter of seconds to hours [2]. These events occur due to the energy release

by magnetic reconnection (the process when magnetic field lines in plasma break and realign)

[34] and are particularly explosive when the Sun is at the maximum phase of the Solar activity

cycle [2].

Solar flares are the most explosive form of solar activity. These are sudden releases of energy

leading to the enhancement of electromagnetic radiation over a very wide spectrum and motion

of mass, particles and waves. In a large flare, 1025 J of energy may be released. At ground-based

observatories, flares are observed as sudden chromospheric brightening [2].

Coronal mass ejections (CMEs) – see Fig. 1.6 – are expulsions of large clusters of plasma

from the corona, which then travel into interplanetary space [17]. They are associated with

prominence eruptions and are often accompanied by large flares [41]. These discharges are

a significant source of solar wind in the equatorial region. The ejected plasma clusters can

have different dimensions and velocities. Some are in the form of loops or bubbles or have an
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Figure 1.6: A CME (in the upper left) captured on 4th January 2002 by the SOHO/LASCO C2 corono-

graph. The view of the solar disk is blocked by an occulting disk with a radius of 1.7R�, where R� is

the solar radius. Taken from [20].

irregular shape. Their mass ranges from 1012 to 1013 kg, the propagation speed usually reaches

200–500 km · s−1 [17].

1.1.3 Coronal waves

Plasma waves are ubiquitous in the cosmic plasma and are also observed in the solar plasma

[43]. These include Alfvén waves, which cause transverse waves of the magnetic field, not

causing density changes in the medium. Furthermore, magnetoacoustic waves can propagate

in plasma. These, in turn, are conditioned by its compressibility [9] and can be considered as

sound waves modified by the magnetic field of the environment [34].

Magnetoacoustic waves are divided into slow and fast magnetoacoustic waves according to

the direction of their movement with respect to the magnetic field lines. The slow are very

anisotropic and cannot move perpendicularly to the magnetic field lines, while the fast are

almost isotropic, however, they move a little easier perpendicularly to the magnetic field lines

[23].
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The phase velocity distribution of the Alfvén and fast and slow magnetoacoustic waves can be

plotted by a Friedrichs diagram [24] – see Fig. 1.7. These waves, also called magnetohydrody-

namic (MHD) waves, have a spatial scale much larger than the ion gyroradii and a time scale

much larger than the ion gyroperiods, and they are non-relativistic. Therefore, they can be de-

scribed by the MHD approach, where the plasma is viewed as an electrically conductive fluid

and the MHD equations describe its motion (see Sec. 2.3). MHD waves, as well as magnetic

reconnection, are one of the general model classes of heating of the chromosphere and corona

[34].

Figure 1.7: A Friedrichs diagram plotted for vs > vA > vf, where vs,vA and vf are the velocities of

slow magnetoacoustic waves, Alfvén waves and fast magnetoacoustic waves, respectively, showing the

distribution of their phase velocity components parallel and perpendicular to the equilibrium magnetic

field. Taken from [24].

In the solar corona, magnetoacoustic waves can be observed in several modes. Structures of a

cylinder-like form, and therefore also magnetic structures in the corona, are very good waveg-

uides for acoustic or magnetoacoustic waves. Such structures are also quite commonly found

in laboratory plasma and are called pinches [23].

The magnetoacoustic waves in the solar corona can be either standing or progressive. Standing

waves can be observed in closed magnetic structures, while progressive waves can be observed

in open or locally in closed structures (in parts of long coronal loops when the wave has not

bounced from the loop footpoint) [23].
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Coronal waves can also be either longitudinal or transverse. The simplest longitudinal waves

are called sausage mode waves, these are symmetrical perturbations in magnetic structures

which do not disturb the symmetry axis [23]. An intensively studied example of transverse

coronal waves are kink mode waves [31]. Fig. 1.8 shows a transverse section of a loop in

kink mode at two different phases. Fig. 1.9 shows a longitudinal section of a progressive and

standing kink mode wave.

Figure 1.8: A transverse section of a coronal loop modelled as a straight cylinder in kink mode at two

different phases, displaying the density perturbation and velocity field. The dashed circle shows the

original profile of the loop. Taken from [40].

Kink mode waves were first observed by the TRACE satellite on 14th July 1998 as oscillating

displacements of coronal loops shortly after a solar flare, and these oscillations were most

likely generated by it [32]. Since then, kink mode waves in coronal loops have been observed

many times in association with solar flares and CMEs, and more observational evidence of

their role in the excitation of these waves has been obtained [25, 44]. Furthermore, in [31], the

possible role of vortex shedding (see Sec. 1.2) in their excitation is discussed.

Prominences are also subject to oscillatory motions of various types that can be interpreted in

terms of MHD waves. These oscillations have been classified according to different param-

eters, such as amplitude or period. The so-called large-amplitude oscillations (with velocity

amplitudes given as ≥ 20km · s−1) are often associated to an energic event that leads to os-
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Figure 1.9: Longitudinal sections of a coronal loop modeled as a straight cylinder in kink mode, dis-

playing the density perturbation and velocity field – a progressive wave (on the left) and a standing

wave (on the right). The dashed lines show the original profile of the loop. Taken from [40].

cillation in the whole prominence or its large part. The so-called small-amplitude oscillations

(with velocity amplitudes given as ≤ 3km · s−1) generally affect only a small volume of the

prominence [4] and are a much more common phenomenon [39]. The characteristic oscillation

periods can be classified in these ranges:≤ 1min,≤ 1–20min,≤ 20–40min and≤ 40–100min,

which are referred to as very short, short, intermediate and long [7].

1.2 Vortex shedding

Over a wide range of Reynolds number values, fluid flow around bluff bodies, such as a cylin-

der (with the longitudinal axis perpendicular to the flow direction), leads to the formation of

a chain of vortices that form just behind the obstacle and disconnect from it alternately from

each side. This periodic vortex formation is called vortex shedding. The regular chain created
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as a result of this phenomenon – see Fig. 1.10 – is then called Kármán vortex street after the

American scientist of Hungarian origin Theodor von Kármán (1881–1963) [42].

This phenomenon has been widely studied in hydrodynamic conditions in both science and

mechanical engineering. It has also been studied by some numerical simulations in magnetic

field environments, mainly in two spatial dimensions, see, for example, [12, 22, 36]. Observa-

tions suggest the possibility of its occurrence in the solar atmosphere [35]. For example, radial

and azimuthal oscillations that may be related to self-oscillating processes such as vortex shed-

ding have been observed in CMEs [29]. Furthermore, it is a possible mechanism for excitation

of kink mode oscillations in coronal loops [31]. In magnetohydrodynamic conditions, however,

it is less well understood [22] and its direct observational evidence is still missing [35].

The vortex shedding frequency f depends on the flow velocity v and the obstacle charac-

teristic dimension (in this case, on the inner diameter of the loop d). These parameters are

linked by the Strouhal number, named after the Czech experimental physicist Vincenc Strouhal

(1850–1922) [22]:

St =
f d
v
. (1.1)

During fluid flow around a cylindrical body in hydrodynamic conditions, St is around 0.2 for a

wide range of Re values [42]. It has not been systematically and in detail examined in magnetic

field environments [22], but has been observed in some numerical simulations, see for example

[12, 22], where it was also close to the stated value.

Article [31] presents a model explaining the possibility of excitation of kink mode oscillations

in coronal loops by the vortex shedding phenomenon. In this model, the bluff obstacle is pre-

sented by the upper, horizontal section of a cylindrical coronal loop surrounded by vertical

flow originating from a CME. These conditions can cause vortex shedding, which periodi-

cally exerts a force on the loop, alternately from each side. If the magnetic field of the plasma

flowing around the loop is parallel to its axis, this force is perpendicular to the loop axis and

the flow direction, as indicated in Fig. 1.11. The loop is then periodically moved horizontally

by this force and returned to the equilibrium position. If this force resonates with the natural

frequency of the loop, kink mode oscillation is excited [31]. This mechanism was numerically

studied in a 3D MHD model in [26].
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Figure 1.10: Simulation of the Kármán vortex street phenomenon behind a cylindrical body. Taken and

edited from [14].

Figure 1.11: Excitation of transverse waves in coronal loops at vertical flow caused by CME and the

subsequent vortex shedding. The grey circle represents the cross-section of the top of the loop. The ver-

tical arrows indicate the flow direction at velocity v0. The external magnetic field Be is oriented parallel

to the magnetic field of the loop section. Forces Fa, Ft periodically act on the loop in the horizontal

direction. Taken from [31].
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2 Numerical models

2.1 Numerical code Lare3d

The numerical simulations in this thesis were performed using the numerical code Lare3d1

(Lagrangian remap 3D code). It is a freeware numerical code used to solve the MHD equations

in three spatial dimensions. It was developed at the University of Warwick in the Fortran 90

programming language. The code also exists in the variant for 2D simulations under the name

Lare2d. Both codes are collectively referred to as LareXd [3].

The code uses the Lagrangian-remap method (see schematic in Fig. 2.1), splitting each timestep

into a Lagrangian step followed by a remap step [3], which does not involve adapting the grid

resolution. When the medium is deformed, the grid evolves according to the fluid flow that

caused this deformation. After that, the grid is remapped onto its original state, which (apart

from the interpolation inaccuracies) does not affect the fluid variables and only transfers them

to the cells of the remapped grid [21].

Figure 2.1: A schematic of the Lagrangian-remap method. Taken from [21].

1https://warwick.ac.uk/fac/sci/physics/research/cfsa/people/tda/larexd/

13

https://warwick.ac.uk/fac/sci/physics/research/cfsa/people/tda/larexd/


The grid and structure of numerical code Lare2d are already described in bachelor thesis [8].

Hence only the difference between the grid of the Lare3d code and its two-dimensional variant

is explained below.

The grid consists of nx×ny×nz cells, denoted by coordinates ix, iy and iz. As in the numerical

code Lare2d, a staggered grid is used here, which means different positions at the cell are used

to define different types of variables. This grid in three dimensions is illustrated in Fig. 2.2.

The coordinates of the cell vertices are variables xbi, ybi and zbi (boundary), while the cell cen-

tre coordinates are variables xci, yci and zci (centre). Therefore, for example, the By magnetic

field component is defined at (xci,ybi,zci). The gravitational acceleration is set in the z-axis

direction and at the same position at the cell as the vz velocity component [3].

Figure 2.2: A cell of a 3D staggered grid. Scalars are defined at the centre, velocity components and

gravitational acceleration are defined at the vertices, and magnetic field components are defined in the

middle of the faces. Taken from [3].

2.2 Normalization

The normalizing constants used for magnetic field, density and length in the numerical simu-

lations, which correspond to typical values in the solar corona, are defined as follows:

• B = B0B̂, B0 = 10G
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• ρ = ρ0ρ̂, ρ0 = 10−12 kg ·m−3

• x = L0x̂, L0 = 106 m

The diacritical mark ˆ is used to distinguish quantities expressed in dimensionless form. The

normalizing constants of other quantities are derived from these constants, as explained in the

LareXd manual [3]. Below are the normalizing constants of velocity, time and temperature,

including their derivation.

• v0 =
B0√
µ0ρ0

= 8.92 ·105 m · s−1

• t0 =
L0
v0

= 1.12s

• T0 =
ε0m̄
kB

= 1.16 ·108 K, where ε0 = v0
2 is the specific internal energy density normaliz-

ing constant and m̄ is the average mass of ions in the plasma

2.3 Governing equations

The resistivity is not considered in our numerical simulations, so the fluid description was

performed using the ideal MHD equations. They can be written in the following form:

∂ρ

∂ t
+∇∇∇ ·ρv = 0, (2.1)

ρ
∂v
∂ t

+ρ(v ·∇∇∇)v+∇∇∇p− 1
µ0

(∇∇∇×B)×B = 0, (2.2)

∂ p
∂ t

+v ·∇∇∇p+ γ p∇∇∇ ·v = 0, (2.3)

∂B
∂ t
−∇∇∇× (v×B) = 0, (2.4)

∇∇∇ ·B = 0, (2.5)

where all the terms have their usual meaning or are also included in the List of symbols.

Equation (2.5), one of the Maxwell’s equations, expresses the absence of magnetic monopoles.

In the case of considering the solar gravitational field, Euler’s equation of motion (2.2), in addi-

tion to the Lorentz force, expressed by the term
1
µ0

(∇∇∇×B)×B, also includes the gravitational
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force [18, 23] with g� = 274m · s−2. This equation can then be written as follows:

ρ
∂v
∂ t

+ρ(v ·∇∇∇)v+∇∇∇p− 1
µ0

(∇∇∇×B)×B−ρg� = 0. (2.6)

When the magnetic field is not considered, on the contrary, the Lorentz force is not calculated

in the equation, and the induction equation (2.4) is not solved. Therefore, the equations change

to the HD form.

In the simulations, fully ionized plasma was considered (and therefore γ = 5
3 ) with an average

mass of ions m̄ = 1.2mp (and therefore an average particle mass of 0.6mp), typical for solar

corona [3].

2.4 Simulation box

Figure 2.3 illustrates the simulation box used and some settings common to all simulations.

The simulation box has a size of x× y× z, where x = 5Mm, y = 5Mm, z = 20Mm. It is

composed of 100× 100× 400 cells, so the space step length is ∆x = 0.05Mm, and the time

step length ∆ t was computed throughout the simulations according to the Courant–Friedrichs–

Lewy (CFL) condition [10]. There is a rigid stationary cylindrical obstacle with a centre at

x̂ = 0, ŷ = 0, ẑ = 5, which was positioned so that its longitudinal axis was perpendicular to

the flow plane. This obstacle represents the upper section of a magnetic structure, such as a

prominence thread, which can be considered approximately a cylinder.

2.5 Boundary conditions

Because the simulation box represents a domain of a larger system, open boundaries were set

on the x and z axes so that the fluid could move freely beyond them. Since the By magnetic field

component was applied in each MHD simulation, as shown in Fig. 2.3, and open boundaries

implemented in LareXd are only accurate if the magnetic field does not significantly change

from the initial magnetic field [3], periodic boundary conditions had to be set on the y-axis.
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Figure 2.3: Initial velocity distribution and the magnetic field orientation inside and out of the cylin-

drical obstacle (Bi, Be) in the initial state. The cylindrical obstacle is marked in blue. The green arrow

indicates the initial flow direction.
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3 Numerical simulations and results

The parametric study in this thesis includes one numerical simulation of flow past a cylindrical

body under hydrodynamic (HD) conditions and five in a magnetic field environment, each with

a different initial value of magnetic field constant throughout the simulation box, including

the obstacle. It allowed us to evaluate the effect of the magnetic field on the frequency of the

vortex shedding process. Another simulation was performed with the addition of a gravitational

field and a stronger magnetic field inside the cylindrical body, which was supposed to make

the model more consistent with the real coronal environment and magnetic structures. Each

simulation lasted at least 1000 t0 time units, the interval between the output snapshots is 5 t0

time units.

3.1 Initial conditions

The parameters set in the initial conditions of each simulation, expressed in SI units, are sum-

marized in Tab. 3.1 and will be explained in the following sections. The parameters of the

cylindrical body roughly correspond to typical parameters of prominences inferred from SoHO

measurements and other sources [5].

3.1.1 Flow speed

A cylindrical area with constant zero velocity was defined in the simulation box to introduce

a rigid stationary cylindrical obstacle. Furthermore, a boundary condition was determined for

the vz velocity component of the fluid flowing from the bottom wall of the box in the z-axis

direction. These speed conditions were set in the file initial_conditions.f90 and also in
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Table 3.1: Parameters set in the initial conditions of each simulation, expressed in SI units.

HD MHD MHD with gravity

ρe [kg ·m−3] 10−12 10−12 10−12 (at z = 5Mm)

ρi [kg ·m−3] 10−11 10−11 10−11

Te [K] 2 ·106 2 ·106 2 ·106

Ti [K] 2 ·105 2 ·105 2 ·104

Bye [T] 0

10−4

2 ·10−4

3 ·10−4

4 ·10−4

5 ·10−4

10−4

Byi [T] 0

10−4

2 ·10−4

3 ·10−4

4 ·10−4

5 ·10−4

2.268 ·10−4

r2 [m2] 1011 1011 1011

vzinit [m · s−1] 8.921 ·104 8.921 ·104 8.921 ·104

g� [m · s−2] 0 0 274

lagran.F90 to apply at each time step. The following command was inserted in the appropri-

ate blocks:

DO iz = -2,nz+2

DO iy = -2,ny+2

DO ix = -2,nx+2

IF ((xb(ix)**2.0_num + (zb(iz)-z_pos)**2.0_num).le.(r_2)) THEN

vx(ix, iy, iz) = 0.0_num

vy(ix, iy, iz) = 0.0_num

vz(ix, iy, iz) = 0.0_num

END IF
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IF (zb(iz).le.v_pos) THEN

vz(ix,iy,iz) = v_init

END IF

END DO

END DO

END DO

Variables z_pos, r_2 (r̂2), v_init (v̂zinit) and v_pos represent the position of the cylinder

centre on the z-axis, the square of the cylinder radius, the velocity of the fluid advancing from

the bottom wall of the box in the z-axis direction and the farthest position on the z-axis for

which this velocity applies, respectively. The initial velocity in the rest of the box was left at

zero.

As shown in Fig. 2.3, variable v_pos was set to 1. Because near the position corresponding to

value v_pos there is a sharp increase in velocity at the beginning of the simulation, causing

significant numerical errors, it was necessary to choose a high enough value for z_pos to

prevent these errors from occurring near the cylindrical obstacle. Therefore, a value of 5 was

chosen.

This flow mimics a CME. Although its speed can take on a wide range of values, variable vzinit

was set so that it did not exceed the characteristic velocity in the given environment, which is

the speed of sound for HD conditions and the Alfvén speed for MHD conditions. Therefore,

no shock waves were generated, which could lead to significant numerical errors due to the

resolution used.

3.1.2 Mass density

Variable ρe in Tab. 3.1 expresses the initial mass density in the entire volume of the box outside

the cylindrical obstacle, except in the case of the gravitational field.

In the simulation with a gravitational field, mass density stratification of the solar atmosphere

with the initial state according to the following relation was considered:

ρ(h) = ρ(0) · exp
(
− h

λ

)
, (3.1)
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where λ = kBT
µmpg�

is the pressure scale height [5] and h is the considered height. For application

to the numerical simulations, this relation was converted to a dimensionless form, expressed

as follows:

ρ̂(ĥ) = ρ̂(0) · exp

(
−µ ĝ�ĥ

T̂

)
, (3.2)

where µ = 0.6, ρ̂(0) = ρ̂e and the height ĥ expresses the position on axis z subtracted by the

value z_pos. Therefore, in the simulation with a gravitational field, ρ̂e is the initial density at

height z_pos.

Next, it was necessary to set the mass density inside the cylindrical obstacle (ρ̂i) for which

variable rho_in was introduced. These initial conditions were introduced into the file ini-

tial_conditions.f90 using the following cycle:

DO ix = -1, nx+2,

DO iy = -1, ny+2

DO iz = -1, nz+2

rho(ix,iy,iz) = rho_0 * exp(-0.6_num * grav(iz) * (zc(iz) - z_pos) /

temperature(ix,iy,iz))↪→

IF ((xc(ix)**2.0_num + (zc(iz)-z_pos)**2.0_num).le.(r_2)) THEN

rho(ix,iy,iz) = rho_in

END IF

END DO

END DO

END DO

A corresponding command was also included in the lagran.F90 file to keep the density inside

the obstacle constant throughout the simulation.

3.1.3 Magnetic field

In the case of considering a magnetic field, only its y component, perpendicular to the flow

plane, was introduced (see Fig. 2.3).
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As shown in Tab. 3.1, the magnetic fields inside and outside the cylinder (Byi and Bye, respec-

tively) in the MHD simulations in a gravity-free medium are always equal. In this case, the

constant initial magnetic field will be referred to as By.

3.1.4 Equilibrium condition

The equilibrium equation for media with the presence of magnetic forces reads [9]:

∇∇∇

(
p+

B2

2µ0

)
=

1
µ0

(B ·∇∇∇) ·B. (3.3)

For the initial state of the simulations, when the right side of Eq. (3.3) is zero, the equilibrium

equation is expressed as:

p+
B2

2µ0
= const., (3.4)

which means the sum of the gas and magnetic pressures:

p =
ρkBT
µmp

, pmag =
B2

2µ0
,

respectively, is constant. Hence, it was necessary to set the initial sum of gas and magnetic

pressure outside the cylinder to the same value as inside the cylinder. For that, the temperature

inside the cylinder Ti had to be adjusted according to the initial ambient temperature Te and

other setpoints appearing in the latter relations. It was also introduced into the lagran.F90

file to keep constant throughout the simulation.

3.2 Numerical data processing

LareXd numerical code includes packages that allow access to simulation outputs in VisIt1 and

IDL programming language2 [3], which were used in this thesis.

3.2.1 Vorticity

The numerical simulations were graphically represented in the VisIt software. To visualize the

evolution of the flow, including the formation of vortices, a colormap of the y component of
1https://wci.llnl.gov/simulation/computer-codes/visit/
2https://www.l3harrisgeospatial.com/Software-Technology/IDL
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vorticityωωω, which characterizes the vortex structure of the drag at each point of the continuum,

given by the relation:

ωωω=∇∇∇×v, (3.5)

in the plane y = 0 was created for each recorded time step. In the following chapters, selected

cross-sections are presented for each simulation. The vorticity evolution recorded from each

simulation can be viewed online on the movies accessible from the attached QR codes. The

value of ω̂y is always expressed in units of v̂z0/d̂, so it is the same as after conversion to basic

SI units and can also be referred to as ωy in units of vz0/d.

3.2.2 Relative density change

The density evolution was processed to analyze the vortex shedding period in IDL. From each

simulation, the evolution of the relative density change (∆ρ/ρ0) along axis x at y = 0 and a

selected position on axis z through which each vortex passed was recorded.

After the graphical display of the ∆ρ/ρ0 time course by a colourmap, a suitable position on

axis x was chosen and data were extracted from it (i.e. the ∆ρ/ρ0 time course in a single

point was obtained). The vortex shedding period was determined from them using a software3

for wavelet analysis [16, 38] in the MATLAB programming environment. It was necessary

to choose a suitable position for determining the period of vortex pair formation, where the

density changes caused by the formation of vortices did not interfere too much with minor

density changes.

The values obtained were verified by testing the calculation on different positions. Selected

graphs are presented in the following chapters for each simulation.

3.2.3 Strouhal number calculation

The Strouhal number at each simulation was calculated according to Eq. (1.1). Since the flow

velocity decreases with the height, in this equation, v was taken as the average speed at x̂ =−r̂,

ŷ = 0, ẑ = 4.65 and x̂ = r̂, ŷ = 0, ẑ = 4.65, i.e. close under the obstacle, but far enough from

3http://atoc.colorado.edu/research/wavelets/
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its edge so it does not to approximate to zero. The velocity values were extracted using IDL as

well.

3.3 Simulation in HD conditions

Figure 3.1 shows the distribution of ωy at four time steps in the simulation with a zero mag-

netic field. The first graph shows the beginning of the vortex shedding process when the first

Figure 3.1: Evolution of the ωy distribution in the units of vz0/d in the simulation in HD conditions.

The whole process can be viewed online in the movie linked to the attached QR code.
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Figure 3.2: Evolution of ∆ρ/ρ0 along axis x at ŷ = 0, ẑ = 9 in the simulation in HD conditions. The

black line indicates the x position to which Fig. 3.3 refers.
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Figure 3.3: Evolution of ∆ρ/ρ0 at x̂ = 1, ŷ = 0, ẑ = 9 in the simulation in HD conditions. The range

that was used to calculate St is displayed.
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vortex is about to detach. A structured chain of vortices, i.e. Kármán vortex street, can be

seen already in the second graph. The last graph shows the drag in its developed state. The

attached movie shows that the vortex shedding process begins almost immediately after the

flow reaches the cylindrical obstacle, without the creation of a symmetrical pair of vortices.

The whole simulation lasts until t̂ = 1000.

Figure 3.2 shows the evolution of the relative density change ∆ρ/ρ0 along axis x at ŷ = 0,

ẑ = 9 in this simulation. In Fig. 3.3 are plotted the data for x̂ = 1 in the range that was used

to calculate St. The period value obtained from the evolution of ∆ρ/ρ0 is P̂ = 51.23. The

average flow velocity value obtained as described in Sec. 3.2.3 is v̂ = 0.0635. The Strouhal

number value St = 0.1945 was calculated.

3.4 Simulations with a constant initial magnetic field

Figures 3.4 to 3.8 show the distribution of ωy at four time steps, the same as in Fig. 3.1, for

each of the simulations.

Unlike in the case with a zero magnetic field (Fig. 3.1), two symmetrical vortices are visible in

the first graphs in Figs. 3.4 to 3.8. As the value of By increases, their distance from the obstacle

is greater. A structured chain of vortices, i.e. Kármán vortex street, can be seen only in the

last graphs, which indicates that applying the magnetic field led to a delay in vortex shedding.

Also, a change in the structure of the vortices can be seen in these graphs – they are larger and

have lower vorticity values.

The delay in vortex shedding and the acquisition of lower ωy values depending on the By

value is better seen in the attached movies, where the minimum and maximum values of ωy

are documented for each output snapshot. Furthermore, unlike in the case of a zero magnetic

field, where the vortex shedding process begins almost immediately after the flow reaches the

obstacle, a chaotic turbulent flow takes place for some time, which can also be seen in the

figures. By comparing the movies, it can also be seen that increasing the value of By reduces

the vortex shedding frequency.

Since increasing the value of By led to a delay in vortex shedding, the simulations had to be

prolonged depending on By to provide enough data capturing this process. This was primarily
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important for analyzing its frequency as described in Sec. 3.2.2. Therefore, the simulation with

B̂y = 0.1 lasted until t̂ = 1500, the simulations with B̂y = 0.2 and B̂y = 0.3 lasted until t̂ = 1600

and the simulations with B̂y = 0.4 and B̂y = 0.5 lasted until t̂ = 1700.

Figures 3.9, 3.11, 3.13, 3.15 and 3.17 show the evolution of the relative density change ∆ρ/ρ0

along axis x at ŷ = 0, ẑ = 9 in each of these simulations. In Figs. 3.10, 3.12, 3.14, 3.16 and

3.18 are plotted the data for a chosen x position in the range that was used to calculate St.

Figure 3.4: Evolution of the ωy distribution in the units of vz0/d in the simulation with B̂y = 0.1. The

whole process can be viewed online in the movie linked to the attached QR code.
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Figure 3.5: Evolution of the ωy distribution in the units of vz0/d in the simulation with B̂y = 0.2. The

whole process can be viewed online in the movie linked to the attached QR code.
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Figure 3.6: Evolution of the ωy distribution in the units of vz0/d in the simulation with B̂y = 0.3. The

whole process can be viewed online in the movie linked to the attached QR code.
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Figure 3.7: Evolution of the ωy distribution in the units of vz0/d in the simulation with B̂y = 0.4. The

whole process can be viewed online in the movie linked to the attached QR code.
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Figure 3.8: Evolution of the ωy distribution in the units of vz0/d in the simulation with B̂y = 0.5. The

whole process can be viewed online in the movie linked to the attached QR code.
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Figure 3.9: Evolution of ∆ρ/ρ0 along axis x at ŷ = 0, ẑ = 9 in the simulation with B̂y = 0.1. The black

line indicates the x position to which Fig. 3.10 refers.
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Figure 3.10: Evolution of ∆ρ/ρ0 at x̂ = 1, ŷ = 0, ẑ = 9 in the simulation with B̂y = 0.1. The range that

was used to calculate St is displayed.
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Figure 3.11: Evolution of ∆ρ/ρ0 along axis x at ŷ = 0, ẑ = 9 in the simulation with B̂y = 0.2. The black

line indicates the x position to which Fig. 3.12 refers.
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Figure 3.12: Evolution of ∆ρ/ρ0 at x̂ = 1, ŷ = 0, ẑ = 9 in the simulation with B̂y = 0.2. The range that

was used to calculate St is displayed.
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Figure 3.13: Evolution of ∆ρ/ρ0 along axis x at ŷ = 0, ẑ = 9 in the simulation with B̂y = 0.3. The black

line indicates the x position to which Fig. 3.14 refers.
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Figure 3.14: Evolution of ∆ρ/ρ0 at x̂ = 1, ŷ = 0, ẑ = 9 in the simulation with B̂y = 0.3. The range that

was used to calculate St is displayed.
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Figure 3.15: Evolution of ∆ρ/ρ0 along axis x at ŷ = 0, ẑ = 9 in the simulation with B̂y = 0.4. The black

line indicates the x position to which Fig. 3.16 refers.
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Figure 3.16: Evolution of ∆ρ/ρ0 at x̂ = 1, ŷ = 0, ẑ = 9 in the simulation with B̂y = 0.4. The range that

was used to calculate St is displayed.
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Figure 3.17: Evolution of ∆ρ/ρ0 along axis x at ŷ = 0, ẑ = 9 in the simulation with B̂y = 0.5. The black

line indicates the x position to which Fig. 3.18 refers.
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Figure 3.18: Evolution of ∆ρ/ρ0 at x̂ = 0.3, ŷ = 0, ẑ = 9 in the simulation with B̂y = 0.5. The range

that was used to calculate St is displayed.
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Table 3.2: The obtained values of vortex shedding period, flow velocity and Strouhal number from the

simulations with a constant initial magnetic field

B̂y P̂ v̂ St

0.1 55.67 0.0590 0.1926

0.2 58.44 0.0576 0.1878

0.3 61.34 0.0560 0.1841

0.4 65.75 0.0548 0.1755

0.5 69.49 0.0534 0.1704

The period value obtained from the ∆ρ/ρ0 evolution, the average flow velocity value obtained

as described in Sec. 3.2.3 and the Strouhal number value calculated for each simulation are

summarized in Tab. 3.2.

3.5 Dependence of the Strouhal number on the magnetic

field

The dependence of the vortex shedding period and Strouhal number on the initial magnetic

field in the simulations described in Secs. 3.3 and 3.4 is plotted in Fig. 3.19 in the left and

right panels, respectively. The period appears to increase linearly, while the Strouhal number

decreases.
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Figure 3.19: The vortex shedding period and Strouhal number vs. the initial magnetic field.
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It can be stated that the increasing density of magnetic field lines perpendicular to the flow

plane interferes with the flow and vortex formation and therefore leads to an increase in the

vortex shedding period and a slight decrease in the flow velocity, which means a Strouhal

number reduction.

3.6 Simulation with Bi > Be in a gravitationally stratified so-

lar atmosphere

Figure 3.20 shows the distribution of ωy at the same four time steps as were shown for the

simulations with a gravity-free medium. Two symmetrical vortices can be seen in the first

graph. A structured chain of vortices, i.e. Kármán vortex street, can be seen in the last two

graphs. This shows that compared to the simulation with the same Bye (see Fig. 3.4), the vortex

shedding process in this simulation begins earlier. Also, the vortices acquire higher vorticity

values, but no significant difference in the structure of the vortices or their pattern can be seen.

Figure 3.21 shows the evolution of the relative density change ∆ρ/ρ0 along axis x at ŷ = 0,

ẑ = 9 in this simulation. In Fig. 3.22 are plotted the data for x̂ = 0.9 in the range that was used

to calculate St.

The period value obtained from the evolution of ∆ρ/ρ0, the average flow speed value ob-

tained as described in Sec. 3.2.3 and the Strouhal number calculated are summarized in Tab.

3.3, where the results from the simulation with the same Bye without a gravitational filed are

included for comparison. A slight decrease in P̂ can be seen. The value of v̂ is higher, even

than the value obtained from the simulation with a zero magnetic field. This led to a decrease

in the Strouhal number.

Table 3.3: The obtained values of vortex shedding period, flow velocity and Strouhal number from the

simulations with B̂ye = 0.1 in a gravity-free and gravity medium.

P̂ v̂ St

Gravity-free medium 55.67 0.0590 0.1926

Gravity medium 54.46 0.0641 0.1811
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The decrease in the vortex shedding period was probably caused by the fact that the initial

mass density above the cylinder centre was lower than in the simulation with a gravity-free

medium due to the mass density stratification, which allowed an easier formation of vortices.

Figure 3.20: Evolution of the ωy distribution in the units of vz0/d in the simulation in a gravitationally

stratified solar atmosphere. The whole process can be viewed online in the movie linked to the attached

QR code.
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Figure 3.21: Evolution of ∆ρ/ρ0 along axis x at ŷ = 0, ẑ = 9 in the simulation in a gravitationally

stratified solar atmosphere. The black line indicates the x position to which Fig. 3.22 refers.
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Figure 3.22: Evolution of ∆ρ/ρ0 at x̂ = 0.9, ŷ = 0, ẑ = 9 in the simulation in a gravitationally stratified

solar atmosphere. The range that was used to calculate St is displayed.
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4 Conclusions

The vortex shedding phenomenon was studied by numerical simulations of flow around a

cylindrical body in hydrodynamic conditions and five MHD environments with different initial

magnetic fields constant throughout the simulation box, including the cylinder. The parametric

study performed using these simulations allowed us to evaluate the effect of the magnetic

field on the vortex shedding frequency and Strouhal number. Furthermore, this phenomenon

was numerically studied in an MHD environment with the solar gravitational field applied,

including the mass density stratification and a cylindrical body with a magnetic field stronger

than the external magnetic field, which was more consistent with the real coronal environment

and magnetic structures.

Although the Strouhal number in MHD conditions has been observed in several studies, its

dependence on the magnetic field has not been properly studied. In this thesis, the Strouhal

number was for the first time parametrically studied in a magnetic field environment in 3D

under conditions similar to those in the solar corona. This parametric study showed that in-

creasing the initial magnetic field perpendicular to the flow plane led to a delay in the vortex

shedding and a decrease in its frequency and the Strouhal number. It also caused changes

in the structure of the vortices – they were larger and acquired lower vorticity values. The

Strouhal number was each time close to the value of 0.2, which is typically stated as the usual

approximate Strouhal number value of vortex shedding.

The application of a solar gravitational field, including the environment mass density stratifica-

tion and a stronger magnetic field inside the cylindrical body, showed that the vortex shedding

process in these conditions occurs in a fashion similar to the gravity-free case with the same

initial external magnetic field, which was constant throughout the whole simulation box, in-
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cluding the cylinder. However, it led to a slight increase in the frequency of vortex shedding,

which began at an earlier time, and a slight decrease in the Strouhal number.

Preliminary results of this thesis were presented at the 16th European Solar Physics Meeting1

by a poster contribution – see documentation in the Appendix.

Further work could include modifying the model by applying a fixed but non-rigid cylindrical

body to perform numerical simulations of oscillations in magnetic structures, where the zero

velocity condition would be kept only in the cylinder bases. Due to the deformation of the

cylindrical body by the fluid flow, it would be problematic to apply fixed values inside it.

Therefore, to avoid destructive deformation, which was happening in our past attempts, the

velocity boundary condition determining the flow could be maintained for a limited time. Also,

multiple cylindrical bodies, which would represent prominence threads, could be applied.

All data obtained by numerical simulations within the solution of this master’s thesis are stored

at the Department of Physics, Faculty of Science, University of South Bohemia in České

Budějovice. The calculations were performed on the computer Dell T3600; Intel© Xeon©

CPU E5-1650 0, 3.20 GHz × 6. The work was supported by the international CZ-RU bilateral

project 21-16508J of the Grant Agency of the Czech Republic.

1https://indico.ict.inaf.it/event/794/
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