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A B S T R A C T 
When working with stochastic programming problems, we frequently encounter op­
timization problems that are too large to be processed by routine methods of math­
ematical programming. However, in some cases the problem structure allows for a 
use of specialized decomposition methods that (when uti l izing said structure) can 
be employed to efficiently solve very large optimization problems. This work focuses 
on two classes of stochastic programming problems that have an exploitable struc­
ture, namely two-stage stochastic programming problems and chance constrained 
problems, and the advanced decomposition methods that can be used to solve opti­
mization problems in these two classes. We describe a novel warm-start cuts for the 
Generalized Benders Decomposition, which is used as a methods for the two-stage 
stochastic programming problems. For the class of chance constraint problems, we 
introduce an original decomposition method, that we named the Pool & Discard 
algorithm. The usefulness of the described decomposition methods is demonstrated 
on several examples and engineering applications. 

K E Y W O R D S 
stochastic optimization, stochastic programming, decomposition methods, two-stage 
stochastic programming problems, chance constrained problems 

A B S T R A K T 
P ř i práci s úlohami stochast ického programování se často se tkáváme s optimali­

začními problémy, které jsou příliš rozsáhlé na to, aby byly zpracovány pomocí 
ru t inních metod matema t i ckého programování . Nicméně, v některých př ípadech 
mají tyto problémy vhodnou strukturu, umožňující použi t í specializovaných dekom­

pozičních metod, které lze použí t při řešení rozsáhlých opt imal izačních problémů. 
Tato práce se zabývá dvěma t ř ídami úloh stochast ického programování , které mají 
speciální strukturu, a to dvous tupňovými s tochast ickými úlohami a úlohami s 
pravděpodobnos tn ím omezením, a pokroči lými dekompozičními metodami, které lze 
použí t k řešení problému v těchto dvou t ř ídách. V práci popisujeme novou metodu 
pro tvorbu "warm­start" řezů pro metodu zvanou "Generalized Benders Decompo­

sition", k te rá se používá při řešení dvous tupňových s tochast ických problémů. Pro 
t ř í du úloh s pravděpodobnos tn ím omezením zde uvádíme originální dekompoziční 
metodu, kterou jsme nazvali "Pool & Discard algoritmus". Užitečnost popsaných 
dekompozičních metod je u k á z á n a na několika příkladech a inženýrských aplikacích. 
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s tochast ická optimalizace, stochast ické programování , dekompoziční metody, 
úlohy dvous tupňového stochast ického programování , úlohy s pravděpodobnos tn ím 
omezením 
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C H A P T E R 

Introduction to Stochastic 
Programming 
There are numerous introductory texts for stochastic programming. Among the 

ones we can recommend are the well-known books [50], [92], [14], and [98]. Since 

the purpose of this text is not to present a new insight into stochastic programming 

as such, we wi l l use for our introduction some parts and arguments from (in our 

opinion) an exceptional text [83]. 

1.1 | Introduction 

In our daily life we perpetually make decisions under uncertainty and, moreover, we 

would certainly like to make these decisions in a reasonably optimal way. We can 

model the decision making as specifying an objective function F(x, £) , depending on 

decision vector x G ^tnx and vector £ e K™5 of uncertain parameters, and optimizing 

(say minimizing) F(x,£) over x varying in a permissible (feasible) set X C ^tnx. 

Needless to say, such an optimization problem is not well defined (i.e. cannot be 

solved as such) since our objective depends on an unknown and uncertain value of £. 

One possible way of dealing wi th this issue is to optimize the objective on average. 

That is, we assume that £ is a random vector, wi th known probability distribution 

V having support S C 3?™5, and the following optimization problem is formulated 

minimize f(x) — Mp[F(x, £)], (1.1.1) 

where it is assumed that the considered expectations are well defined, i.e., F(x, •) is 

measurable and P-integrable (see [98]). 

In particular, the formulation (1.1.1) can be applied to the so-called two-stage 

stochastic programming problem with recourse (investigated in more detail in the 

following section and in chapters 2 and 3), pioneered by Beale [7] and Dantzig [24]. 

That is, the optimization problem at hand is divided into two decision stages. A t 

the first stage (sometimes called the planning stage) one has to make a decision 
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on the basis of some available information. A t the second stage (sometimes called 

the operational stage), after a realization of the uncertain data becomes known, 

an optimal second-stage decision is made. Such stochastic programming problem 

can be written in the form (1.1.1) wi th F(x,£) including the optimal value of the 

second-stage problem. 

It is important to note that in the formulation (1.1.1) all uncertainties are con­

centrated in the objective function while the feasible set X is supposed to be known 

(deterministic). In many cases the feasible set itself is delimited by constraints which 

depend on uncertain parameters. In some cases one can reasonably formulate such 

problems in the form (1.1.1) by introducing penalties for possible infeasibilities. A n ­

other option is to try to optimize the objective subject to satisfying constraints for 

all values of the unknown parameters in a chosen (uncertain) region. This approach 

is called robust optimization (see [9]) and has seen a significant increase in interest 

over the past two decades (following the advances in convex, conic and semidefinite 

programming, see [10]). Enforcing the satisfaction of the constraints for a l l possible 

realizations of random data may result in a too conservative solution and, more rea­

sonably, one may try to satisfy the constraints wi th a high (close to one) probability 

instead. This leads to the chance, or probabilistic, constraints formulation which is 

going back to Charnes and Cooper [23]. 

There are a few natural questions which arise wi th respect to formulation (1.1.1) 

[83]: 

(i) How do we know the probability distribution V? In some cases one has his­

torical data which can be used to obtain a reasonably accurate estimate of 

the corresponding probability distribution. However, this happens in rather 

specific/rare situations and often the probability distribution either cannot 

be accurately estimated or changes with time. Even worse, in many cases 

one deals wi th scenarios (i.e., possible realizations of the random data) wi th 

the associated probabilities assigned by a subjective judgment of a supposed 

"expert". 

(ii) Why, at the first stage, do we optimize the expected value of the second-stage 

optimization problem? If the optimization procedure is repeated many times, 

wi th the same probability distribution of the data, then it could be argued 

by employing the Law of Large Numbers that this gives an optimal decision 

on average. However, if in the process, because of the variability of the data 

one looses all its capital, it does not help that the decisions were optimal on 

average. 

(iii) How difficult is it to solve the stochastic programming problem (1.1.1)? Eval ­

uation of the expected value function f(x) involves calculation of the corre­

sponding multivariate integrals. Only in rather specific cases it can be done 
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analytically. Therefore, typically, one employs a finite discretization of the 

random data which allows to write the expectation in a form of summation. 

Note, however, that if the random vector £ has elements that are inde­

pendent of each other, each wi th just 3 possible realizations, then the total 

number of scenarios is 3™5, i.e., the number of scenarios grows exponentially 

fast with dimension of the data vector. 

It turns out that there is a close connection between questions (i) and (ii). A s far 

as question (i) is concerned, one can approach it from the so-called distributionally 

robust point of view (see [111]). Suppose that a plausible family B of probability 

distributions, of the random data vector £, can be identified. Consequently, the 

"worst-case distribution" minimax problem 

minimize f(x) — supE-p[F(x, £)], (1-1-2) 

is formulated. This worst-case approach to decision making is not new - it was also 

discussed extensively in the stochastic programming literature (see, e.g., [114], [29], 

[102]). 

Question (ii) has also a long history. One can optimize a weighted sum of the 

expected value and a term representing variability of the second-stage objective 

function. For example, we can try to minimize 

/ ( x ) = E [ F ( x , 0 ] + c V a r [ F ( x , 0 ] , (1-1-3) 

where c > 0 is a chosen constant - this rather famous approach goes back to 

Markowitz [76]. The additional (variance) term in (1.1.3) can be viewed as a risk 

measure of the second-stage (optimal) outcome. It should be noted, however, that 

adding the variance term may destroy convexity of the function /(•) even if F(x,£) 

is convex for all realizations of £ (cf., [107]). A n axiomatic approach to a mathe­

matical theory of risk measures was suggested by [4]. Even more information about 

risk modeling and management can be found in the book [89]. 

1.2 | Complexity of Two-Stage Stochastic Programs 
In this section we briefly examine question (iii) mentioned above, that is, how diffi­

cult is to solve a stochastic program. The problem (1.1.1) is a problem of minimizing 

a deterministic objective f(x) that is given implicitly. We should expect that solving 

this problem is at least as hard as minimizing f(x),x G X, in the case where f(x) is 

given explicitly, say by a "closed form analytic expression". Alternatively, we have 

at our disposal an "oracle" that provides us wi th the values and the derivatives of 

f(x) at every queried point. For the problems of minimization of f(x),x G X, wi th 
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explicitly given objective, the known "efficiently solvable case" this is the convex 

programming case [17]. That is, X is a closed convex set and / : X —> 3? is a 

convex function. It is known that generic convex programming problems satisfying 

mi ld computability and boundedness assumptions can be solved in polynomial time 

(see [84]). O n the other hand, solving typical nonconvex problems turns out to be 

an NP-hard task [10]. Consequently, when speaking about conditions under which 

the stochastic program (1.1.1) is efficiently solvable, it is reasonable to assume that 

X is a closed convex set, and /(•) is convex on X. Additionally, we gain from a 

technical point (and do not lose much from practical viewpoint) by assuming X to 

be bounded. These assumptions (plus mi ld technical conditions) would be sufficient 

to make (1.1.1) "easy" to solve, if f(x) were given explicitly. However, in stochastic 

programming it makes no sense to assume that we can compute efficiently the ex­

pectation in (1.1.1), i.e., we have no way of obtaining an explicit representation of 

f(x). If it were so, there would be no need to treat (1.1.1) as a stochastic program. 

However, some stochastic programming problems of the form (1.1.1) can be 

solved reasonably efficiently by using Monte Carlo sampling techniques if the prob­

ability distribution of the random data is not "too bad" and if certain general con­

ditions are satisfied (see [101] and [74]). Regarding the above statement, we should 

clarify what do we mean by "solving" stochastic programming problems. Let us con­

sider, for example, two-stage linear stochastic programming problems wi th recourse. 

Such problems can be written in the form (1.1.1) wi th 

X = {x : Ax = b, x > 0} and F(x, f) = cTx + Q(x, £), 

resulting in the so called "first-stage" problem: 

minimize cTx + E-p \Q (x, £) ] 
*>° (1.2.1) 

subject to Ax = b, 

where Q(x,£) is the optimal value of the so called "second-stage" problem: 

minimize qTy 
v>° (1.2.2) 

subject to Tx + Wy > h. 

Here T and W are matrices of appropriate dimensions and £ G K n « is a vector 

whose elements are composed from elements of vectors q and h and matrices T and 

W which, in the considered problem, are assumed to be random. If we assume 

that the random data vector has a finite number K of realizations (also called 

"scenarios") = (<?fc, Wk, Tk, h^) wi th respective probabilities k — 1 , K , then 

the two-stage problem can be written as one large linear programming problem, also 
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called a "deterministic equivalent" problem: 

minimize cTx + J2k=i PkQkVk 

subject to Ax = b. 

Tkx + WkVk > hk, 
x>0,yk>0, k 

k 

1,. . . 

1, . . . K 

K. 

(1.2.3) 

If the number of scenarios K is not "too large", then the above linear program­

ming problem (1.2.3) can be solved to reasonable accuracy in an acceptable time. 

However, even a coarse discretization of the probability distribution of £ typically 

results in an exponential growth of the number of scenarios wi th increase of the 

number of random parameters (this is the particular manifestation of "the curse 

of dimensionality" in stochastic programming, see [50]). For example, assume that 

the components of the random vector £ are mutually independently distributed each 

having a small number r of possible realizations. Then the size of the corresponding 

input data grows linearly in (and r) while the number of scenarios K = rn^ grows 

exponentially. 

It should noted that from a practical point of view, at least typically, it does not 

make sense to try to solve a stochastic programming problem wi th a high precision. 

A n y numerical error resulting from an inaccurate estimation of the involved proba­

bil i ty distributions, modeling errors, etc., can have far worse consequences than such 

an optimization error. The authors of [83] argue that two-stage stochastic problems 

can be solved efficiently wi th a reasonable accuracy provided that the following 

conditions are met: 

(a) The feasible set X is fixed (deterministic). 

(b) For al l x G X and £ G S the objective function F(x,£) is real valued. 

(c) The considered stochastic programming problem can be solved efficiently if 

the number of scenarios is not "too large". 

When applied to two-stage stochastic programming, the above conditions (a) and 

(b) mean that the recourse is relatively complete (meaning that for every x G X and 

every possible realization of random data, the second-stage problem is feasible) and 

the second-stage problem is bounded from below. The above condition (c) certainly 

holds in the case of two-stage linear stochastic programming with recourse. 

To proceed further let us consider the following Monte Carlo sampling approach 

- assume that we can generate an i . i .d (independent and identically distributed) 

random sample £ 1 , . . . , £ N of N realizations of the considered random vector. Then 

we can estimate the expected value function f(x) by the sample mean 
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Consequently, we approximate the true problem (1.1.1) by the problem: 

minimize / J V ( X ) . (1.2.5) 

We refer to (1.2.5) as the Sample Average Approximat ion ( S A A ) problem. The 

optimal value vn and the set Sn of optimal solutions of the S A A problem (1.2.5) 

provide estimates of their true counterparts of problem (1.1.1). It should be em­

phasized that once the sample is generated, / J V ( X ) becomes a deterministic function 

and problem (1.2.5) becomes a stochastic programming problem wi th TV scenarios 

. . . , £ N taken wi th equal probabilities 1/iV. It also should be mentioned that the 

S A A method is not an algorithm, as we still have to solve the S A A problem (1.2.5) 

by employing an appropriate algorithm. 

B y the Law of Large Numbers we have that / J V ( X ) converges (pointwise in x) 

w.p. 1 (with probability 1) to f(x) as TV tends to infinity (see [101]). Consequently, 

it is natural to expect for vn and Sn to converge to their counterparts of the true 

problem (1.1.1) w.p. 1 as TV tends to infinity. Such convergence results can be proved 

under mi ld regularity conditions (see [52]). However, for a fixed x 6 X, convergence 

of /AT(x) to f(x) is notoriously slow. B y the Central L imi t Theorem it is of order 

0(N~1/2). This rate of convergence can be improved, sometimes even significantly, 

by different variance reduction methods. Nonetheless, by using the Monte Carlo (or 

Quasi-Monte Carlo) techniques one cannot evaluate the expected value f(x) very 

accurately. 

Since, at least generally speaking, nonconvex problems are hard to solve already 

in the deterministic case, when discussing the question of what is and is not easy in 

stochastic programming, it makes sense to restrict ourselves wi th convex problems 

(1.1.1). Thus, it is assumed by default that X is a closed and bounded convex 

set, and / : X —> 3? is convex. A s discussed above, these assumptions would be 

sufficient to make (1.1.1) easy to solve, provided that f(x) were given explicitly, but 

the latter is not what we assume in stochastic programming. What we usually (and 

everywhere below) do assume in stochastic programming is that: 

(i) The function F(x,£) is given explicitly, so that we can compute efficiently its 

value (and perhaps the derivatives in x) at every given pair (x,£) G X x S. 

(ii) We have access to a mechanism which is capable of sampling from the distribu­

tion V, that is, we can generate a sample £ 2 , . . . of independent realizations 

of e 

When applied to two-stage stochastic programming with recourse these assumptions 

require that the recourse is relatively complete. If it were not the case and for some 

x G X and ( G H the second-stage problem is infeasible, we can formally set the 

value F(x, £) of the second-stage problem to be +oo. In order to avoid such infinite 

penalizations one can introduce a finite penalty for infeasibility. Although, in some 
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cases, this can reasonably solve the problem, in other situations the infeasibility may 

result in a catastrophic event. In that case the penalty could be enormous - in a 

sense, in such situation "nothing works". 

It is NP-ha rd even to check whether a given first-stage decision x G X leads to 

feasible, wi th probability 1, second-stage problem, and even in the case when the 

second-stage problem looks as simple as 

wi th only the second-stage right hand side vector h = h(£) being random (see [83] 

for the explaining example). 

Thus, if a two-stage (linear) problem has no relatively complete recourse (which 

in many applications is a rule rather than an exception), it is, in general, NP-hard 

just to find a feasible first-stage solution x (one which results in finite f(x)), not 

speaking about minimizing over these x's. A s was mentioned above, the standard 

way to avoid, to some extent, this difficulty is to construct a penalized problem. 

For example, we can replace the second stage problem (1.2.2) wi th the penalized 

version: 

where e is vector of ones, and the parameter R » 1 plays the role of the penalty 

coefficient. W i t h this particular penalization, the second stage problem becomes 

always feasible. A t the same time, one can hope that wi th large enough penalty co­

efficient r , the first-stage optimal solution wi l l lead to "nearly always nearly feasible" 

second-stage problems, provided that the original problem is feasible. Unfortunately, 

in the situation where one cannot tolerate arising, with probability bigger than a, 

a second-stage infeasibility z bigger than r (here a and r are given thresholds), the 

penalty parameter R should be of order of ( a r ) " 1 (see [83]). 

1.3 | Chance Constraints 

A more natural way to handle two-stage stochastic problems without complete re­

course is to impose so called chance constraints. The meaning of them is to require 

that a probability of insolvability of the second-stage problem is at most e << 1 in­

stead of being 0. The reasoning behind this idea is twofold: first, from the practical 

viewpoint, "highly unlikely" events are not considered "too dangerous": why should 

we bother about a marginal chance, like 10~ 6 , for the second stage to be infeasible, 

given that the level of various inaccuracies and errors in our model, especially when 

minimize qTy 
y 

subject to Tx + Wy > h, 

minimize qTy + Rz 
y>0,z>0 

subject to Tx + Wy > h — ze, 
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it comes to its probabilistic data, can be by orders of magnitude larger than 10~ 6? 

Second, while it might be very difficult (or borderline impossible) to check whether a 

given first-stage solution results in a feasible (w.p. 1) second-stage problem, it seems 

to be possible to check whether this probability is at least 1 — e by applying Monte 

Carlo simulation. Also, note that the chance constraints arise naturally not only in 

the context of two-stage problems without complete recourse, but in a much more 

general situations of solving a constrained optimization problem wi th the problem 

data affected by stochastic uncertainty. Therefore, it is reasonable to ask a question 

how could one process numerically a chance constraint: 

(P(x)=V{g(x,O<0}>l-e, (1.3.1) 

where x is the decision vector, £ is the random disturbance with, say, a known 

distribution, and e << 1 is a given tolerance. 

The idea of chance constraints originates from Charnes and Cooper [23] and 

is one of the oldest concepts in Operations Research. Unfortunately, more than a 

half of a century later, this concept still cannot be treated as practical. The first 

reason being that it is usually extremely difficult to verify exactly whether this 

constraint is satisfied at a given point. This problem is difficult already in the case 

of a single linear constraint g(x, £) = (a + £ ) T x wi th perturbations (uncertainty in 

the problem data) £ uniformly distributed in a box [83]. Another serious problem 

is that usually constraint (1.3.1), even wi th very simple, say bi-affine in x and in 

£, function g(x,£) and a simple-looking distribution of £ (like uniform in a box) 

defines a nonconvex feasible set in the space of decision variables, which makes the 

subsequent optimization over this set of even pretty simple - just linear - objectives 

very problematic. 

There is a generic case when the feasible set given by a chance constraint is 

convex. This is the case when the constraint can be represented in the form (x, £) € 

C, where C is a closed and convex set, and the distribution V of the random vector 

£ G 3?™5 is logarithmically quasi-concave, meaning that 

V(XA + (1 - X)B) > max[P(A),V(B)] 

for all closed and convex sets A,B C K n « (cf., Prekopa [92]). Examples of this 

case include uniform distributions on closed and bounded convex domains, normal 

distribution and every distribution on 3?™« wi th density p(£) with respect to the 

Lebesgue measure such that the function p _ 1 / / ™ 5 (£) is convex. The related result 

(due to Prekopa [92]) is that in the situation in question, the set {x : V({£ : (x, £) e 

C) > a} is closed and convex for every a. 

Aside from few special cases, the chance constraint (1.3.1) "as it is" appears to 

be "too difficult" for efficient numerical processing. What we aim to do is to replace 
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it wi th its "tractable approximation". For the time being, there exist two approaches 

to building such an approximation: "deterministic" and "scenario". 

W i t h the deterministic approach, one replaces (1.3.1) with a properly chosen 

deterministic constraint 

M*) < 0, (1.3.2) 

which is a "safe computationally tractable" (see [82]) approximation of (1.3.1), wi th 

the latter notion defined as follows: 

1. "Safety" means that the validity of (1.3.2) is a sufficient condition for the 

validity of (1.3.1). 

2. "Tractabili ty" means that (1.3.2) is an explicitly given convex constraint. 

To give an example, consider a randomly perturbed linear constraint, that is, sup­

pose that 

g(x,0 = (a + MOTx, 

where the deterministic vector a is the "nominal data", M is a given deterministic 

matrix of appropriate dimension and £ = ( £ i , . . . , £„ 5 ) is a tuple of independent 

scalar random variables wi th zero mean and "of order of 1", i.e. 

E [exp(& 2 )] < exp{ l} , i = l,...,ne, 

e.g., & can have a distribution supported on the interval [—1,1], or can have normal 

distribution jV(0 , 2~ 1 / / 2 ) , % = l , . . . , n ^ . In such a case, using standard results on 

probabilities of large deviations for sums of "light ta i l " independent random variables 

wi th zero means, one can verify that when e G (0,1) and Q(e) = 0 ( l ) ^ / l o g ( l / e ) wi th 

properly chosen absolute constant 0(1) , then the validity of the convex constraint 

aTx + tt(e)VxTMMTx < 0 (1.3.3) 

is a sufficient condition for the validity of (1.3.1) (see [83]). 

The rather straightforward result we have just described is very attractive. First, 

it does not assume a detailed knowledge of the distribution of £. Second, the approx­

imation, although being more complicated than a linear constraint we start with, 

stil l is pretty simple (it is called a second-order cone constraint [17]). Modern con­

vex optimization techniques can process routinely to high accuracy problems wi th 

thousands of decision variables and thousands of constraints of the form (1.3.3). 

Th i rd , the approximation is "not too conservative", as the "safety" parameter f2(e) 

grows pretty slowly as e —> 0. 

In contrast to this "highly specialized and heavily restricted" approach we have 

just considered, the scenario-based approach is completely universal. A l l we do 

is generate a sample £ 1 , . . . , £ N of N "scenarios" - independent realizations of the 
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random disturbance £ and approximate the chance constraint (1.3.1) by the random 

system of inequalities 

g(x,e)<0, j = l,...,N. (1.3.4) 

Extremely nice features of this approach are its generality and computational 

tractability - whenever g(x,£) is convex in x and efficiently computable, (1.3.4) 

becomes a system of explicitly given convex constraints and as such can be efficiently 

processed numerically, provided that the number of scenarios TV is not prohibitively 

large. The question, of course, is how large should be the sample in order to ensure, 

wi th reliability close to 1, that every feasible solution to (1.3.4) satisfies the chance 

constraint (1.3.1). This wi l l be answered in much more detail in Chapter 4, where 

we describe a novel method of handling the scenario-based approach. 

1.4 | Decomposition Methods 

In this section we give a brief review of some of the decomposition methods used in 

stochastic programming, which is based on an computational study [117]. We wi l l 

mainly focus on solving the "deterministic reformulation" of the problem (1.2.3), 

wi th a finite and fixed number of scenarios K. Other approaches, such as the 

stochastic decomposition by Higle and Sen [46], wi l l be omitted for the sake of 

brevity. The deterministic equivalent problem can be solved as a linear programming 

problem by one of the variants of the simplex method or by a interior-point method 

(see [85]). However, the problem (1.2.3) has a particular structure - for each scenario, 

a subproblem is included that describes the second stage decision associated wi th 

the corresponding scenario realization. The subproblems are linked by the first stage 

decision variables, resulting in a so called "L-shaped" structure. The authors of [25] 

noticed that the dual of (1.2.3) fits the structural requirements for the Dantzig-Wolfe 

decomposition [26]. 

Van Slyke and Wets [108] developed a cutting-plane algorithm for the first stage 

problem (1.2.1) - their so called "L-shaped method" builds respective cutting plane 

models of the feasible domain (feasibility cuts) and of the expected recourse (opti-

mality cuts). In its original form, the L-shaped method works on the aggregated 

problem (for more detail on the aggregation/disaggregation, cf. Section 2). A mul-

ticut version that works on the disaggregated problem was proposed by Birge and 

Louveaux [13]. There is a close connection between decomposition and cutting-plane 

approaches. The following approaches yield methods that are in principle identical: 

• Cutting-plane method for either the disaggregated problem or the aggregated 

problem. 
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• Dantzig-Wolfe decomposition [26] applied to the dual of the deterministic 

equivalent problem (1.2.3). 

• Benders decomposition [11] applied to the deterministic equivalent problem 

(1.2.3). 

Cutting-plane approaches have the advantage that they provide a nice visual i l ­

lustration of how the cuts are generated. A classical overview of decomposition 

methods can be found in [98]. 

The difference between the aggregated and the disaggregated problem formula­

tions may result in a substantial difference in the efficiency of the solution methods 

- in the disaggregated version, more information is stored in the master problem 

(more cuts are added), hence the number of master iterations is reduced, but each 

iteration takes longer time to compute. Birge and Louveaux [14] conclude that the 

multicut approach is in general more effective when the number of the scenarios is 

not significantly larger than the number of the constraints in the first-stage problem. 

This claim is based on the numerical results [13] and [37]. 

It was observed that successive iterations of the cutting-plane methods did not 

generally produce an orderly progression of solutions - while the change in objective 

value from one iteration to the next may be very small, even zero, a wide differ­

ence may exist between corresponding values of the first-stage variables (what was 

dubbed a "flat objective function" in [53]). This feature of zigzagging in cutting-

plane methods is the consequence of using a linear approximation. Improved meth­

ods were developed that use quadratic approximation: proximal point method by 

Rockafellar [93], and bundle methods by K i w i e l [54] and Lemarechal [63]. These 

methods construct a sequence of stability centers together wi th the sequence of the 

iterates. When computing the next iterate, getting away from the current stability 

center is penalized. 

The Regularized Decomposition method of Ruszczyhski [97] is a bundle-type 

method applied to the minimization of the sum of polyhedral convex functions over 

a convex polyhedron, hence this method fits the disaggregated problem. The Regu­

larized Decomposition method emphasizes keeping the master problem as small as 

possible (which is achieved by an effective constraint reduction strategy). A quite 

recent discussion of the Regularized Decomposition method can be found in [98]. 

A more recent development in convex programming is the level method of 

Lemarechal et al. [64]. This is a special bundle-type method that uses level sets of 

the model functions for regularization. Fabian [32] developed inexact versions of the 

level method and the constrained level method. The inexact methods use approx­

imate data to construct models of the objective and constraint functions. A t the 

start of the procedure, a rough approximation is used, and the accuracy is gradually 

increased as the optimum is approached. 
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The box-constrained trust-region method of Linderoth and Wright [67] solves 

the disaggregated problem, and uses a special trust-region approach. Trust-region 

methods construct a sequence of stability centers together wi th the sequence of the 

iterates. Trust regions are constructed around the stability centers, and the next 

iterate is selected from the current trust region. The constructed trust regions are 

box-shaped, hence the resulting master problems remain linear. The size of the trust 

region is continually adapted depending on the quality of the current solution. 

Different approaches, such as the Progressive hedging method [95], are a variant 

of the operator splitting method [27]. A more thorough description of these (and 

some more) methods can be found in the chapter on decomposition methods written 

by Ruszczyhski in [98]. 



C H A P T E R 

Warm-Start Cuts for Generalized 
Benders Decomposition 

This chapter is based on the original published article [57]. The only changes were 

notation/formatting ones to blend in wi th the rest of the text and a correction 

of a handful of misprints. It describes a decomposition algorithm suitable for two-

stage convex stochastic problems called the Generalized Benders Decomposition and 

presents a a new reformulation that incorporates a lower bound cut that serves as 

a warm-start, decreasing the overall computation time. 

2.1 | Introduction 

In stochastic programming, we usually have to deal wi th problems that are large-

scale but have a special structure [14]. Proper util ization of this special structure 

is the key part in the construction of any practically usable algorithm. One of the 

most widely used algorithms for two-stage stochastic linear programs is the L-shaped 

method developed by Van Slyke and Wets [108]. This method is based on (or, as 

the authors of the method wrote in the original paper: "is essentially the same as") 

the algorithm developed by Benders in [11] known as the Benders Decomposition. 

Over the years, numerous extensions for the L-shaped method have been proposed. 

A summary of the ones that are currently used can be found in [112] and [117]. 

A further generalization of the Benders decomposition for nonlinear convex prob­

lems ([6], [17]) was proposed by Geoffrion in [38] and was named the Generalized 

Benders Decomposition ( G B D ) . The method found its main use as a solution tech­

nique for mixed-integer nonlinear problems, described in [33] and [34]. 

In this paper, we describe a formulation of the G B D that suits the particular 

structure of two-stage stochastic programming problems. After that, we introduce 

a reformulation that enables us to add a lower bound cut, which acts as a "warm-

start" for the algorithm. A s the lower bound cut, we decided to use the one that 

we can compute wi th the least effort. A s there have been several lower bounds 



14 
C H A P T E R 2. WARM-START CUTS FOR GENERALIZED BENDERS 

DECOMPOSITION 

proposed for stochastic programs (for example in [14],[72] and [73]) the question of 

the appropriate one for our problem wi l l be left open for future research. 

2.2 | M a i n Ideas 

In this section, we give a brief insight into the G B D , as it is not our intention to 

devote several pages to its thorough description. A n interested reader can find an in-

depth analysis of the method in the original paper [38] and in the works of Floudas 

in [33] and [34]. 

The problems G B D aims to solve are of the form: 

minimize f(x,y) 
x,v J K , y j (2.2.1) 

subject to G(x, y) < 0, x G X,y G Y, 

where x G X C y G Y C 3?™2, / : x 3?™2 —> 3? is a real-valued objective 

function and G : x 3?™2 —y 3? m is an m-vector of constraint functions. The 

variable x is called a complicating variable in the sense that (2.2.1) is a much easier 

optimization problem in y when x is temporarily held fixed. The following conditions 

are required: 

C I : Y is a nonempty, convex set and the functions / and G are convex for each 

fixed x G X. 

C2: The set 

Zx = {z G W1 : G{x, y)<z for some y G Y}, (2.2.2) 

is closed for each fixed x G X. 

C3: For each fixed x G X fl V, where 

V = {x : G(x, y) < 0, for some y G Y}, (2.2.3) 

one of the following conditions holds: 

(i) the problem (2.2.1) has a finite solution and has an optimal multiplier 

vector for the inequalities. 

(ii) the problem (2.2.1) is unbounded, that is, its objective function value 

goes to — oo. 

This covers quite a wide range of problems [33]. The particular situation we are 

interested in is when / and G are linearly separable in x and y, i.e. 

f(x,y) = fi(x) + f2(y), ( 2 2 4 ) 

G(x,y) = G1(x) + G2(y). 

The basic idea in G B D is the generation, at each iteration, of an upper bound and 

a lower bound on the optimal objective function value of (2.2.1). The upper bound 
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results from a subproblem, while the lower bound results from a master problem. 

The subproblem corresponds to the problem (2.2.1) with fixed x-variable (i.e., it is in 

the £/-space only), and its solution provides information about the upper bound and 

the Lagrange multipliers ([6], [17]) associated wi th the inequality constraints. The 

master problem is derived via nonlinear duality theory, makes use of the Lagrange 

multipliers obtained in the subproblem, and its solution provides information about 

the lower bound, as well as the next set of fixed x-variable to be used subsequently 

in the subproblem [33]. 

2.3 | G B D for Two-Stage Stochastic Programming 
Problems 

In stochastic programming linear separability of the objective function and con­

straints is a very common property. Especially the two-stage stochastic program­

ming problems can be often linearly separated into the functions concerning only the 

first-stage and the second-stage decision variables - this is the raison d'etre of the 

following passages, and it is why we believe that the G B D (in its slightly modified 

form) is a well-suited algorithm for these kinds of problems. 

2.3.1 | Problem Formulation 

Let us consider the following problem: 

K 
minimize fx{x) + £ p(£k)f2(yk,£k) 
x,yi,...,yK k = i 

subject to G\\{x) < 0, (2.3.1) 

where fi : —> 3? is a convex function, all mi constraint functions Gu : —> 

3? m i are convex, and for all e S with |S | = K finite, G2i{ik) is a m2 x ^ i matrix, 

.M",£fc) : 3̂ ™2 —> 9ft is convex, all m2 constraint functions G22(-,£k) '• 9ft™2 —> 9ft™-2 

K 
are convex, P ( f = £ f e) = p(£ f e) > 0, £ p(£ f e) = 1. 

k=l 

The master problem corresponding to (2.3.1) has the following form: 

minimize f\ (x) + 9 
x,9 

subject to Gn(x) < 0, ^ 3 2) 

DiX < di, i = l,...,p, 

EjX-O^ej, j = l , . . . , r , 



16 
C H A P T E R 2. WARM-START CUTS FOR GENERALIZED BENDERS 

DECOMPOSITION 

where 0 G 3? serves as the lower bound on the second stage objective value. The 

meaning of matrices D, E and vectors d, e wil l be fully discussed in the actual so­

lution procedure. These matrices and vectors correspond to the feasibility and 

optimality cuts derived from the solutions of the subproblem. 

Because of the structure of the two­stage stochastic programming problems, the 

subproblem separates into K independent subproblems (one for each scenario) in 

the form: 
minimize f2(Vk,Ck) 

subject to G2i{ik)x + G22(yk,£k) < 0. 

Remark 2.3.1 Regarding our notation ­ one could use k instead of ^ in the for­

mulations above (and in the ones that will follow). The use of £ is standard in the 

stochastic programming literature. 

2.3.2 I Solution Procedure 

The following algorithm is an implementation of the G B D inspired by [38] and 

[33]. The single difference (apart from the notation) is that the separability of the 

subproblem into K independent subproblems is taken into account. A t the start 

of the procedure, the matrices D, E and vectors d, e are empty (they store the 

successive cuts as the iterations progress). 

To our best knowledge, this is the first implementation of the G B D for two­stage 

stochastic convex programming problems of the form (2.3.1). 

Step 0. Set c = 0, r = 0, and e > 0. 

Step 1. Solve (2.3.2) and obtain (x, 0). The optimal objective value of (2.3.2) gives 

us a lower bound on optimal objective value of (2.3.1). 

Step 2. For fixed x = x solve all K subproblems (2.3.3). One of two possibilities 

can happen. 

Step 2A. For some k the subproblem (2.3.3) is infeasible. Solve the following 

problem: 

minimize IMI i 
yk,v>o (2.3.4) 

subject to G2l(£k)x + G22(yk,£k) < v, 

where v G Jř™­2 is a decision vector representing "slacks" in the constraints. 

Get (ýk,v) and from its dual obtain the optimal Lagrange multipliers A. Set 

c = c + 1. A d d a new row to the matrix D and vector d in (2.3.2): 

Dc = A T G 2 1 ( £ f c ) , 4 = \T(­G22(yk,£k)). (2.3.5) 

Return to Step 1. 
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Step 2B. A l l the subproblems have finite optimal values, we obtained (y~k,uk), 

where uk are optimal Lagrange multipliers. The evaluation of the objective of 

(2.3.1) at (x, yi,..., yx) gives us an upper bound on its optimal value. Check 

for optimality: if 
K 

e + €>J2p(Zk)f2(yk,Zk), (2.3.6) 
fe=l 

terminate, (x,y~i,..., yx) are e-optimal [38]. Otherwise, set r = r + 1 and add 

a new row to the matrix E and vector e in (2.3.2): 

Er= Epfc)(^21&)) , 
(2.3.7) 

er = - E p(£k)(f2(yk,£k) + ul(G22(yk,£k))-
fc=i 

Return to Step 1. 

Remark 2.3.2 In Step 1, before any optimality cut is added, 6 as well as the optimal 

objective value of (2.3.2) will be -co. For computational reasons it is advisable to 

include a lower bound on 9 in the actual implementation of the algorithm. 

Remark 2.3.3 If X C V (i.e., in the case of complete or relatively complete re­

course [14]), the Step 2A is never needed and for a given e > 0 the GBD terminates 

in a finite number of iterations. If however, X <£. V, then we may need to solve Step 

2A infinitely many successive times. In such a case, to preserve finite e-convergence, 

we can modify the procedure so as to finitely truncate any excessively long sequence 

of successive executions of Step 2A and go to Step 2B with x equal to the extrapolated 

limit point which is assumed to belong to X fl V, see [33] or [34]-

2.4 I Reformulation with Bounding Cut 

In this section, we introduce a novel reformulation of the master problem (2.3.2) that 

includes bounds obtained from problems, that can be thought of as predecessors of 

the two-stage stochastic programming problem (2.3.1). The definitions of these 

problems, as well as their subsequent relations, are based on [71]. 

2.4.1 I Bounds 

Let us define 
minimize fi(xk) + f2(yk, £fc) 

X k,Vk 

subject to Gn(xk) < 0, (2-4.1) 

G21xk + G2 2(yfc,£fc) < 0-
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as the optimization problem for one particular realization e S and denote its 

optimal objective function value as z(£fc). The wait-and-see solution is the solution 

without nonanticipativity constraints (i.e. all scenarios are treated and optimized 

separately). We wi l l denote the average of the optimal objective values of (2.4.1) 

(when treated separately) as: 

W S = £ > ( & ) * ( & ) • (2-4.2) 
fe=i 

Now we may compare this wait-and-see solution to the solution of (2.3.1). We wi l l 

denote the optimal objective value of (2.3.1) as R P (the recourse problem [14]). The 

following inequality holds for any stochastic program: 

W S < R P . (2.4.3) 

From this, we can see that W S creates a valid lower bound on the harder problem 

we are aiming to solve. The idea behind the reformulation is to include such a valid 

lower bound to the algorithmic procedure to "jumpstart" it and by doing so save on 

iterations, and, as a result, save on the overall computational effort and time. 

For practical purposes, many people would believe that finding the wait-and-see 

solution is stil l too much work. A natural temptation is to solve a much simpler 

problem: the one obtained by replacing all random variables by their expected 

values. This is called the expected value problem, which is simply 

EV = z(0, (2.4.4) 

K 
where f = £ p(&)&-

fc=i 

2.4.2 | Reformulation 

Although W S is a valid bound, the computational effort for its enumeration is much 

higher compared to the effort to compute E V (if |S | = K, then computing E V is 

K times faster). However, E V does not necessarily have to play the role of a lower 

bound on R P ; there are instances, where R P < E V . For the purpose of deriving the 

reformulation, we wi l l , for now, suppose that E V is, in fact, a valid lower bound on 

R P . The discussion on what is going to occur when it is not wi l l follow shortly after. 

Suppose 

E V < R P , (2.4.5) 

holds, then 

AO*) + X > f e ) A ( 2 / f c , 6 ) > E V , (2.4.6) 
fc=i 
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holds for the optimum of (2.3.1). This inequality cannot be added directly to (2.3.1) 

since it would cease to be a convex program. The reformulation we propose does 

not directly alter (2.3.1) but is instead aimed at the master problem (2.3.2). A new 

variable z is introduced to bound the first-stage objective from above (by minimizing 

this variable we effectively minimize the first-stage objective itself) 

fi(x) < z, (2.4.7) 

which is a convexity preserving inequality. Furthermore, this new variable z added 

to the variable representing the second stage 9 form a lower bound on the overall 

objective function. Finally, the bound 

z + 9 > E V , (2.4.8) 

since it is affme, can be added to (2.3.2), and the reformulation of the problem is 

minimize z + 9 
z,x,8 

subject to fi(x) < z, 

Gu(x) < 0, ^ 2 4 

z + 9>EV, 

DiX <di, % = 1, . . . ,p, 

EjX — 9 < ej, j = 1 , . . . , r. 

After this reformulation, the algorithm continues as usual, arriving at an e-optimal 

solution in, preferably, a shorter time than its original counterpart (we wi l l see the 

results of some numerical examples in later sections). 

Now, let us address what happens if (2.4.5) does not hold. One of two possibilities 

can occur, namely, that optimal objective function value (as determined by the 

algorithm) wi l l be equal to E V , or that the problem wi l l be infeasible. The price 

we pay for mistakenly using the cuts (2.4.5) is, in both cases, one iteration of the 

algorithm - i.e. after one iteration we can assess, if our algorithm wi l l arrive at 

the desired solution, and, either restart it without (2.4.5) (possibly including W S 

instead), or continue. 

However, certain situations can happen when we restart the algorithm without 

(2.4.5) and get the same result again. This occurs if the original problem is infeasible 

(in which case we have some serious model or data issues) or if E V = R P , in that 

case we would have to run the entire algorithm only to arrive at the same objective 

function value (which is a bit unfortunate, but unavoidable). 

Another important question is if the cut (2.4.5) is worth having an additional 

variable. The numerical examples we provide in the later sections should supply us 

wi th some, although not definitive, insight into this issue. 



20 
C H A P T E R 2. WARM-START CUTS FOR GENERALIZED BENDERS 

DECOMPOSITION 

Lastly, the question whether or not it is better to use the guaranteed lower 

bound in W S is also present. A s we mentioned earlier, W S is computationally much 

more expensive than E V . In the examples that wi l l follow we did not carry any 

examination of the W S bound, nor of any other possible bound. This is one of the 

that require further future investigation. 

The solution procedure can be summarized in the following steps: 

Step 0. Solve the expected value problem to get E V (2.4.4). Set p = 0 , r = 0, and 

e > 0. Solve (2.4.9) and obtain (z,x,0). If z + 9 — E V , terminate (and use 

the original method without the E V cut, or use W S instead). Otherwise, go 

to Step 2. 

Step 1. Solve (2.4.9) and obtain (z,x,0). 

Step 2., Step 2A. , Step 2B. The same as in section 2.3.2. 

2.5 | Bunching and Multicuts 

Just as in the linear case with the L-shaped method, different implementations of 

the algorithm can be researched for improving its performance ([14],[112]). Two 

possible adjustments suitable for G B D - bunching and the multicut formulation 

wi l l be discussed and brought into the numerical examination. 

Bunching, as the name suggests, is a technique that instead of the full scenario 

decomposition uses "bunches" of scenarios and decomposes the original problem 

alongside these bunches. Having L bunches of scenarios and sets of indices Bi ^ 

0, / = 1,...,L, such that B{ H = 0 for % ^ j and Uf=i Bt = { 1 , . . . , K}. The 

subproblems (2.3.3) for each bunch / have the form 

minimize E p(£k)f2(yk,£k) 
yk,k€Bl k e B l (2.5.1) 

subject to G21(£k)x + G22(yk,^k) < 0, /c G B{. 

The feasibility and optimality cuts in Step 2A. and Step 2B. of the algorithm are 

changed accordingly. The feasibility cut in Step 2A. becomes 

A > = £ tfGniZk), dp = - J 2 ^G22(yk^k), (2.5.2) 
k£B{ k£B{ 

and the optimality cut in Step 2B. becomes 

L 
Er = E E uT

kG2l{£k) 1=1 keB; 
L 
E E p(£k)(f2(yk,£k) + u%G22(yk^k) 
1=1 keBi 

(2.5.3) 

where and uk are the Lagrange multipliers corresponding to the inequalities from 

scenario k G B\. 
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In the linear case, bunching comes from the idea that several second-stage prob­

lems might have the same optimal basis [14]. In the convex case, the justification is 

a bit different. Our argumentation is purely in the realm of the actual computation 

- it is sometimes faster (due to a non-zero initialization time, etc.) to compute a 

larger instance containing several separable problems than to solve these problems 

separately. The examples wi l l show, up to a certain point, exactly this k ind of 

behavior. 

The multicut formulation comprises of developing one cut for every second-stage 

problem (i.e. for every scenario) instead of the aggregated cut introduced in (2.3.2). 

It results in adding a separate 9k for each scenario and as a consequence in a much 

greater number of cuts which more accurately describe the recourse function [14]. 

The master problem for multicut formulation has the following form (without the 

additional cut developed in the previous section) 

K 
minimize fi(x) + J2 &k 

X,6l,...,6K k=l 

subject to Gn(x) < 0, 

DiX<di, i = l,...,c, (2-5-4) 

E m x - 9 k < ej(fc), j(k) = 1,.. .,r(k). 

k = l,...,K, 

where r(k) and j(k) indices are related to the k-th subproblem, see the steps below. 

In this case, the feasibility cuts remain the same, but the remaining steps require 

the following changes: 

Step 0. - Mult icut Set c = 0, r(k) = 0, for k = 1 , . . . , K and e > 0. 

Step 1. — Mult icut Solve (2.5.4) and obtain (x,0i,...,, 9K)-

Step 2. — Mult icut For fixed x = x solve all K subproblems (2.3.3). One of two 

possibilities can happen. 

Step 2A. - Mult icut A s before. 

Step 2B. — Mult icut A l l the subproblems have finite optimal values, we obtained 

{Vki uk)i where uk are optimal Lagrange multipliers. For k — 1 , . . . , K if 

9k + e<p^k)h(yk^k), (2.5.5) 

set r(k) = r(k) + 1 and add a new row to the matrix E and vector e in (2.5.4): 

Er(k) = p ( & ) ( U k G 2 l ( & ) ) > ( 2 5 g) 

er(k) = -P(tk)(f2(yk,tk) +ulG22(yk,£k)). 

If (2.5.5) does not hold for any k, terminate. Otherwise, return to Step 1. 

Even though this formulation provides a more accurate description of the re­

course function, its usefulness in the convex case is highly ambiguous. The number 
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of variables in the master problem is much larger than in the original algorithm and 

the number of constraints (cuts) added in each iteration is also much higher. 

2.6 | Numerical Examples 

To test the above mentioned theoretical concepts, we designed two convex two-stage 

problems. O n these problems, we compare the performance of different variations 

of the G B D as well as a formulation without any decomposition (denoted as full 

recourse problems). 

The implementation was done in MATLAB using its embedded f mincon solver and 

the state-of-the-art conic solvers SeDuMi and SDPT3 [78] (which are a part of the 

CVX modeling system, see [39] and [40]). Al though the examples are not derived 

from any applied problems, they provide a valid insight into the advantages and 

disadvantages of the presented methods. 

2.6.1 | Example 1 

The first example investigates the following problem 

K 
minimize (xx - 4 ) 4 + (x2 - 3) 4 + £ Vkiflk^'1 + qK2y\ 2) 

subject to x2 — ln (x i + 1) — 1 < 0, 

x2 + x\ - 8 < 0, 

xi,x2 > 0, 

x\ + hkjl - ykjl < 0, k = l,...,K, 

x2 + hk)2 - yk)2 < 0, k = l,...,K, 

where the random parameters q and h are q ~ | A ( 0 , 3 ) | , h ~ 0.7- \N(0,1)| + 0.5. The 

scenarios are then constructed using the usual Monte Carlo sampling, the number 

of scenarios wi l l vary to demonstrate the performance of the different approaches. 

The methods and solvers used for solving the problem were: 

• vanilla (original) version of G B D (master and subproblems solved by f mincon); 

• reformulation wi th the E V cut (master and subproblems solved by fmincon); 

• bunching of several scenarios (master and subproblems solved by fmincon); 

• bunching of several scenarios wi th the E V cut (master and subproblems solved 

by fmincon); 

• full recourse problem ( F R P ) solved by fmincon; 

• F R P solved by SDPT3 (as a part of the CVX modeling system); 

• F R P solved by SeDuMi (as a part of the CVX modeling system). 

The required precision for all the methods was set to e = 10~ 5 . The results are sum­

marized in the tables that follow. The Time[s] value represents the computational 
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time it took the procedure to terminate, given the same level of accuracy for all 

methods. The number of scenarios in the first instance is K = 60. The first two 

tables show, how the computational time of the G B D is affected by introducing the 

E V cut: 

Method Vani l la E V cut 

Time[s] 12.26 9.05 

Table 2.1: Computational time [s] for Vani l la version and E V cut, K = 60. 

and by bunching with different sizes of the bunch: 

Bunch size 2 3 5 10 12 15 20 30 

Time s - Without E V cut 7.04 5.08 3.61 2.76 2.64 2.65 2.75 3.22 

Time s] - W i t h E V cut 5.19 3.79 2.75 2.07 2.02 1.99 2.13 2.44 

Table 2.2: Computational time [s] for bunching wi th different sizes of the bunch, 

K = 60. 

A n identical structure is utilized in the case of K — 240 scenarios: 

Method 

Time Is 

Vani l la 

43.84 

E V cut 

35.42 

Bunch size 2 3 5 6 8 10 12 15 

Time s - Without E V cut 24.8 17.7 12.4 11.4 9.9 9.2 8.8 8.7 

Time s - W i t h E V cut 19.9 14.3 10.2 9.2 8.0 7.4 7.2 7.0 

Bunch size 16 20 24 30 40 60 80 120 

Time s - Without E V cut 8.7 8.9 9.4 10.5 12.2 16.8 21.5 25.3 

Time s] - W i t h E V cut 7.0 7.2 7.7 9.5 9.8 13.6 17.3 20.2 

Table 2.3: Computational time [s] for Vani l la , E V cut and bunching, K — 240. 

From these results, we see that the E V cut, as well as efficient bunching, can have a 

strong effect on the overall computation time. The experiments suggest that there 

exists an "optimal" bunch size that is independent of the number of scenarios. For 

this particular problem, it seemed that a bunch size between 12 and 16 was the one. 

For the subsequent computations, the bunch size 15 was chosen. 

In the following table, we compare the computation times for a growing number 

of scenarios using the methods and solvers mentioned above: 
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Number of scenarios 60 240 1,500 2,400 4,800 6,000 

Vani l la 12.3 43.8 258.6 410.1 - -

E V cut 9.1 35.4 208.9 332.7 - -

Bunch 15 2.7 8.7 52.5 78.0 154.75 194.9 

Bunch 15 wi th E V 1.9 7.0 40.1 62.6 124.6 156.4 

F R P - SDPT3 6.1 22.3 139.9 241.7 - -

F R P - SeDuMi 1.4 6.2 32.8 65.2 170.3 242.5 

F R P - f mincon 0.5 12.2 3,000* 3,000* - -

Table 2.4: Computational time [s] for different methods, increasing number of 

scenarios. 

The asterisk^*) denotes that the algorithm did not arrive at the desired precision 

(i.e. even after 3,000s the fmincon did not arrive sufficiently near the optimum). 

The dash(-) means that we did not pursue the analysis in this direction since we 

anticipated results incomparable wi th the more efficient methods. 

These results show that for big enough problems, the efficient implementation 

of G B D , even wi th simpler solvers, can outperform the state-of-the-art solvers. For 

smaller instances, however, these solvers are more efficient (as wi l l be presented in 

the results of the second example). 

2.6.2 | Example 2 

The second example included in our investigation, compared to the first one, adds 

some more first and second-stage variables and non-differentiable functions. These 

are the reason why, in the implementation, the more efficient solvers had to be 

utilized for the solution of the master problem (f mincon performed very poorly in 

this case). The problem in question is the following 

minimize (x\ — 4 ) 4 + (x 2 — 3) 4 + (x^ — 2.5) 2 + 3\xi + x± + 4x$ — 151 
x,yi,...,yk 

K 
+ E Pkiqk,^1 + qk,2yt2 + Qk,3(Vk,3 ~ 2)2 

k=i 
+<lk,i\ykA + Qk,5Vk,5\) 

subject to X2 — l n (x i + 1) — ̂ /x^ + x± + x\ — 10 < 0, 

x2 + x\ + x\ - 10 < 0, 

- X 4 - ^/x^+ 5 <= 0, 

Xi > 0,% = 1, . . . ,5 

Tkx + Wkyk <hk, k = 1,..., K. 

The random parameters q, h, W and T are (using some MATLAB syntax), q ~ | iV(0,1) | , 

h ~ —0.7- \N(0,1)| — 1, W = — 1 5 , M = 5x5 matrix wi th 1 to 3 zeros in each column, 

the rest are 1, T — abs(0.2. * randn(5)). * M. The scenarios are, again, constructed 
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using the Monte Carlo sampling. A s before, we used several methods and solvers 

for solving the problem: 

• vanilla version of G B D (master solved by SeDuMi, subproblems by fmincon); 

• E V cut version (master solved by SeDuMi, subproblems by fmincon); 

• bunching + E V cut (master solved by SeDuMi, subproblems by by fmincon); 

• bunching + E V cut + multicut 

(master solved by SeDuMi, subproblems by fmincon); 

. F R P solved by SDPT3; 

• F R P solved by SeDuMi. 

The required precision for a l l the methods was set to e = 10~ 5 . B y computations 

similar to that of the first example, we found the appropriate bunching size to be 

5. The comparison of the different methods for varying number of scenarios is 

summarized in the following table: 

Number of scenarios 125 250 500 1,000 2,000 3,000 5,000 7,500 

Vani l la 19 45 77 164 313 - - -

E V cut 15 34 61 123 320 - - -

Mult icu t 19 36 134 150 309 - - -

Bunch 5 12 32 44 84 170 255 452 650 

Bunch 5 + E V 9 17 34 71 175 210 364 578 

Bunch 5 + Mul t icu t 11 20 32 74 250 452 - -

Bunch 5 + Mul t icu t + E V 9 15 34 99 256 463 - -

F R P - SDPT3 13 30 64 130 334 - - -

F R P - SeDuMi 1 2 6 15 40 102 355 622 

Table 2.5: Computational time [s] for different methods, increasing number of 

scenarios. 

The results demonstrate the pros and cons of using the G B D algorithm. For smaller 

instances, it is much more efficient to use the appropriate state-of-the-art and free 

solver (SeDuMi) to attack the full recourse formulation. However, for larger problems, 

the bunching variation of the G B D was able to outperform all the rest. The multicut 

variation suffered from a growing size of the master problem and, in this setting, 

cannot be considered as an improvement (a similar behavior for linear problems was 

shown in [112]). 
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2.7 I Conclusion 
In this paper, we introduced a novel util ization and reformulation of the traditional 

Generalized Benders Decomposition. To support the uti l i ty of our reformulation (as 

well as the uti l i ty of the G B D itself), we presented our computational experience. 

From the result of the numerical examples, it is apparent that the G B D and our 

modifications definitely have a place as solid techniques for solving medium­sized 

convex two­stage stochastic problems and that especially the bunching ideas and 

modifications produce fruitful results. 

It must be acknowledged that further investigation (i.e. a wider variety of nu­

merical tests, preferably from applications) is needed to make the arguments more 

conclusive. Also, further research in terms of usable lower bound as the "warm­start" 

cuts is anticipated. 
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C H A P T E R 

Waste Transfer Station Planning 
by Stochastic Programming 
This is a transcript of another original article [60]. The only changes were, again, 

only notation/formatting/misprint-correcting ones. It describes a waste-management 

application of the two-stage stochastic programming problem and utilizes the warm-

start cut described in Chapter 2. 

3.1 | Introduction 

Since the situation in waste management is unknown due to the undecided support 

to the particular technology system and treatment from the government or the 

E U , the planning of future infrastructure is not secured from the investment point 

of view. The state-of-the-art in the field of location and network flow problem is 

extensive. The paper by [55] is worth mentioning, because they summarized the 

progress in the sustainability applications from the recent years. Another important 

result was published by [110], where the network was utilized for the organic and 

dry fractions of municipal waste through the p-graph approach. The authors of 

[104] analyzed the current state of the waste handling, which is an important input 

for the simulations of future development. However, the a l l the previous planning 

is performed globally and for all subsystems at the same time. Some papers deal 

wi th sequential development and construction as in [31]. The individual decisions 

are not robust enough to comprise the unknown future development (the problems 

were not handled as multi-stage as in [48]). 

This paper proposes a novel approach in the planning of transport infrastructure 

for efficient treatment of residual waste which is in line wi th all the possible cases 

of future development of waste management system. The future uncertainty (leg­

islative development and support for different systems) in the treatment grid design 

is projected through the processing cost for different facilities at various locations. 

The computational approach was designed to handle real-life tasks in reasonable 
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Fig. 3.1: A map showing the producers of waste (blue dots), the places processing waste 
(red dots). The road network (black lines) and the possible transfer stations 
(black rings) are shown on two separate parts. 

time. In section 3, the case study is presented with the use of data from the Czech 

Republic. 

3.2 | Problem Description 

The problem consists of deciding where to construct the transfer stations, what 

should be their respective capacities and from which producer of waste to which 

waste-processing plant should the cargo be send, provided that some of the data 

are uncertain. This problem can be categorized as a two-stage stochastic facility 

location problem [14], where the so-called first-stage decision must be made prior 

to the realization of the uncertainty (this corresponds to the construction of the 

transfer stations and their capacities). The second-stage decision then depends on 

the realization of the uncertainty (in this case, all the other decisions about transport 

and processing are second-stage). The uncertainty is modeled using a large number 

of possible realizations called scenarios. The more scenarios are considered, then 
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generally speaking the better the model is, but the more difficult it is to solve. 

Type Symbol Description 

seS Set of scenarios 

Sets 3£J Set of nodes (cities) 
Sets 

i e I c J Set of possible transfer stations 

t e T Set of possible options for transfer station capacities 

A1 First incidence matrix (Fig. 3.1) 

Second incidence matrix (from pre-processing) 

Cl Transfer costs, without the transfer stations (on A\) 

c 2 
Transfer costs, using transfer stations (on A2) 

Ps Probabil i ty of a scenario s 

Parameters Cost of a construction of a transfer station 

b 

at location i, wi th capacity option t 

Capacity of a transfer station at location i 

with capacity option t 

fj,s Cost of processing waste at node j, scenario s 

Production of waste at node j 

Qj Waste processing capacity of node j 

A Decision on building the transfer station at location i , 

wi th capacity option t; binary, first-stage 

Variables 
Xl,s 

%2,s 

Flows on A\ in scenario s; continuous, second-stage 

Flows on A2 in scenario s; continuous, second-stage 

Vj,8 
Amount of processed waste in node j , scenario s; 

Vj,8 continuous, second-stage 

Table 3.1: The notation. 

Possibly the most important data regarding this problem is the road network 

partly depicted in F i g 3.1 (and described by an incidence matrix A\ in the mathe­

matical model). This network had 24,770 arcs (roads) connecting the 6,258 nodes 

(waste producers and waste-processing plants). The second important piece of data 

are the locations of the waste producers, the waste-processing plants and the possible 

locations for transfer stations - some of these are depicted in F i g 3.1. In the prob­

lem there were 6,258 places producing waste, 44 waste-processing plants (where 15 

correspond to foreign facilities - potential export of waste abroad) and 116 possible 

places for the transfer stations (these sets were not mutually exclusive). 

To be able to differentiate between the transportation of waste that does or 

does not use the transfer stations, a separate road network was computed - for 

each possible transfer station was found the shortest path to each waste-processing 
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plant. In this pre-processing step, 5,075 shortest path optimization problems were 

solved, resulting in the additional network with 5,075 arcs (omitting the ones that 

started and ended at the same place). The transfer of waste when using the transfer 

stations is assumed 3 times cheaper than the regular one. Each of the possible 

transfer stations can be constructed wi th 6 different capacities (higher capacities 

have higher construction costs, but the unit cost decreases). Combining this with the 

116 locations results in 696 binary first-stage decisions. The second-stage decisions 

are the flows on the arcs of the two networks and the amounts of waste processes at 

the plants, in total 29,889. 

The uncertain parameters that are considered in the model are the costs for 

processing the waste at the 44 different plants, which correspond wi th the legislation 

development and local conditions (such as the demand for heat, etc.). The number of 

scenarios for this model was set to 1,000 and so the model has almost 30M variables. 

The notation that is used to develop the mathematical model is described in Table 

3.1. 

To simplify the notation, some subscripts were hidden, meaning that the appro­

priate parameters/variables were stacked to form a vector of a fitting size (and the 

associated equalities/inequalities are meant for each element in the vector). The 

mathematical model has the following form: 

minimize J2 ei,tdi,t + J2 Ps{c\xhs + c2x2,s + fjys) (3.2.1) 

subject to A^i^ + A2X2,S + Us — r , Vs G S, (3.2.2) 

ys <q, Vs e S, (3.2.3) 

E * 2 i a < £ M t f > VseS,Viei, (3.2.4) 
flows from idl taT 

J2di,t<l, V i e J , (3.2.5) 

xi,s,x2,s,ys > 0, Vs e S, (3.2.6) 

d M e { 0 , l } , V i e J , V t e T . (3.2.7) 

The objective function given by (3.2.1) is the expected waste transportation and 

processing costs and the building cost for building the transfer plants. The constraint 

(3.2.2) is the conservation of waste - at each node and for each scenario, the amount 

produced must be equal to the amount transported (by one of the two possibilities) 

plus the amount processed. The constraint (3.2.3) is an upper bound on the amount 

of waste that can be processed at a given node. The constraint (3.2.4) guarantees 

that the amount transferred using the transfer station % is less than the installed 

capacity of that transfer station. The constraint (3.2.5) ensures that at most one 

of the possible capacities is installed at location %. The last two constraints (3.2.6) 

and (3.2.7) are the nonnegativity and integrality constraint, respectively. The only 
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constraints that do not depend on the scenarios are (3.2.5) and (3.2.7). The total 

number of constraints that depend on scenarios is 36,307, meaning that the model 

has over 36M constraints. 

3.3 | Implementation and Results 

3.3.1 | Algorithms and Software 

The model was solved using the Benders decomposition scheme described in [59] 

enhanced by the warm-start cuts developed in [57]. It was programmed in the 

high-performance dynamic language JULIA [12] with the JuMP package for mathe­

matical optimization [28]. In this scheme, the first stage problem was solved using 

the branch-and-cut method for mixed-integer problems, calling the CPLEX 12 .6 .3 

solver. The M I P gap parameter was set at 1.5%. The individual subproblems in 

the second stage were solved by the primal-dual simplex method, calling the GUROBI 

7.5 solver. This combination of solvers and algorithms achieved the best overall 

performance - this scheme reached the 1.5% optimality gap for the problem for­

mulation with 1,000 scenarios within 24 h. These computations were carried out 

on an ordinary computer (3.2 G H z i5-4460 C P U , 16 G B R A M ) . Another suitable 

solution strategy could be a heuristic based on genetic algorithms as in [56] or dif­

ferential evolution as in [109]. A l l of these strategies can utilize parallel computing 

to accelerate the execution. 

3.3.2 | Summary of the Results 

The results of the computation are best summarized in F i g 3.2 and F i g 3.3. Of the 

116 possible locations, 71 were chosen as optimal places for the transfer stations. 

One scenario of optimal flows and the optimal places for the transfer stations is 

depicted in F i g 3.2 (the optimal places are the same for all scenarios, the flows are 

different). 

The optimal expected cost was 260.14M E U R and the expected total distance 

traveled by all vehicles was 8.23M km, assuming that the regular flows are serviced 

by vehicles wi th capacity 101 and the flows from transfer stations are serviced by 

vehicles wi th capacity 241 (all fully loaded). 

The histograms in F i g 3.3 represent the results for the 1,000 generated scenarios 

and show in detail the impact of building the transfer stations. The expected costs 

are 8% lower on average when building the transfer stations, the costs for trans­

portation alone are 21% lower. The expected total distance traveled by all vehicles 

is reduced by 9% on average when building the transfer stations. However, this 
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Fig. 3.2: A map showing the results for one of the scenarios - thick black rings correspond 
to the selected places for transfer stations, red lines are flows from these transfer 
stations, black lines are regular flows. 

quantity has a much higher variance and, in some scenarios, is worse than the situa­

tion wi th no transfer stations. This inconvenience stems from the objective focusing 

only on costs - if some form of trade-off between costs and total distance was added 

to the objective function, the results would be more favourable towards lower total 

distance (at the price of increased costs). This might represent the situation when 

taking into account the environmental aspects is more important than the overall 

cost. 

3.4 | Conclusion 

In this paper, the mathematical model for grid design of transfer stations is proposed. 

The planning was modelled by a two-stage mixed-integer stochastic programming 

problem. The uncertainty is included in the cost of treatment, which corresponds to 

the possible future development of legislation and government support. A n approach 

was tested through study on the current situation and possible legislation 

changes regarding waste management in the Czech Republic. It was scaled on the 
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Fig. 3.3: Histograms of optimal cost and total distance travelled - the red one is using 
the transfer stations, the blue one is not. 

micro-regional level where the network had 24,770 roads connecting the 6,258 waste 

producers and treatment plants. W i t h these features, the robust transfer station 

grid design was proposed. The realization of these projects takes into consideration 

possible investments and decides also about the capacity of the facility. 

The output is in the form of recommendation for possible investors, municipali­

ties and/or stakeholders from the field of waste management. The optimal solution 

wi th the 1.5% gap was to design 71 sustainable projects, while the total expected 

cost was 260.14M E U R and the expected total distance travelled by all vehicles was 

8.23M km. The possible extension for the proposed model would lead to consider the 

environmental aspect as the additional criterion or to calculate with the uncertain 

future waste production of the municipalities. 
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Chance Constrained Problems 
In this chapter, we describe a new algorithm aimed at handling the chance constrained 
problems described in Section 1.3. It uses much of the theory of probabilistic robust design 
developed by Calafiore, Campi and Garatti in [18], [19], [20],[21], and [22] - this theory is 
summarized in the first, introductory, part of the chapter (Section 4.1 and Section 4.2). 
In the remaining sections, the algorithm is described, examined and compared to other 
techniques for handling chance constrained problems (the ones presented in [1], [82], and 

The introduction into the topic is derived (more or less directly) from [21] - with most of 
the used notation adapted from [21] as well. Let X C ffl1* be a convex and closed domain 
of optimization and consider a family of constraints x E X^ parameterized in £ G S. The 
uncertain parameter £ describes different instances of an uncertain optimization scenario. 
We adopt a probabilistic description of uncertainty and suppose that the support H for 
£ is endowed with a cr-algebra V and that a probability measure V is defined over V. 
The probability measure V describes the probability with which the uncertain parameter 
£ takes value in S. Then, a chance constrained optimization program is written as: 

Here, we assume that the cr-algebra V is large enough, so that : x G X^} G V, i.e. 
: x G X^} is a measurable set. Also, linearity of the objective function can be assumed 

without loss of generality, since any objective of the form 

[100]). 

4.1 I Introduction 

C C P e : minimize cTx 
x&X 

subject to V{Í : x G X^} > 1 — e. 
(4.1.1) 

minimize c(x 
x&X 

where c{x) : X —>• is a convex function, can be re-written as 

where y is a scalar variable. 

minimize y, 
xdX ,y>c(x) 
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In the C C P e (4.1.1), constraint violation is tolerated, but the violated constraint set 
must be no larger than e. The parameter e allows us to trade robustness (in terms of 
the probability of constraint violation) for performance (in terms of the optimal objective 
value): the optimal objective value J* of C C P e is a decreasing function of e and provides 
a quantification of such a trade-off. Depending on the particular application (the range 
of applications is quite wide), e can take different values and has not necessarily to be 
thought of "small" parameter. 

Chance constrained programming has been around for more than half a century, at 
least since the work of Charnes, Cooper and Symonds in the fifties, see [23]. In [23], how­
ever, only individual chance constraints were considered. Joint probabilistic constraints, 
as in (4.1.1), were first considered by Miller and Wagner, [77], in an independent con­
text, while a general theory is due to Prékopa, see [90], [91]. Prékopa was also the one 
to introduce the convexity theory based on logconcavity, which was a fundamental step 
toward solvability of a large class of chance constrained problems (see the appropriate 
section in Chapter 1). The books [92] and [98] provide an excellent and broad overview 
on logconcavity theory in stochastic programming, and related results. Yet another study 
about the convexity of chance constrained problems is [45], while convex approximations 
of chance constrained problems are considered in [9], [81], and [82] (some of the ideas of 
convex approximation of chance constriants are presented in Section 4.5). Stability of the 
solution under perturbation of the chance constrained problem is studied in [43] and [44]. 
Although chance constrained problems can be efficiently solved in some special cases (that 
were outlined above), it remains true that the feasible set of C C P e is in general non-convex 
in spite of the convexity of the sets X^. Therefore, an exact numerical solution of C C P e 

is, at least in general, extremely hard to find. 

4.2 I Sample Counterpart 

We can view the variable x G X C W1* as the "design variable". The family of possible 
instances is parameterized by an "uncertainty vector" £ G E C W1^. Then, the proto­
type optimization problem consists in minimizing a linear objective cTx, subject to that 
x satisfies the constraints g(x,£) < 0,V£ G S, where g(x,£) : X x E —>• [—00,00] is a 
scalar-valued function that specifies the constraints. Note that considering scalar-valued 
constraint functions can be assumed without loss of generality, since multiple constraints 
gi(x,£) < 0 , . . . , gm(x, £) < 0 can be expressed by a single scalar-valued constraint by the 
position g(x,£) = m a x j = i i i i i i m g i ( x , £ ) . Although convexity is preserved by this operation, 
other valuable properties, such as linearity or differentiability, are lost. In typical situa­
tions, S has infinite cardinality, i.e., it contains an infinite number of possible instances 
for £. 

Assumption 4.2.1 (Convexity) 
For each £ G S the sets X^ are convex and closed. 
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Assumption 4.2.1 requires convexity only with respect to the design variable x, while 
generic nonlinear dependence with respect to £ is allowed. Now we come to the point of 
distinguishing between two possible approaches (whose usage is, more than anything else, 
complementary): 

a) Worst-Case (or Robust) Design: In worst-case design, one aims at enforcing the 
constraint g(x,£) < 0 for all possible values of the uncertainty ( £ S. However, 
a fundamental problem is encountered along this approach: Obtaining worst-case 
solutions has been proven to be computationally hard; explicit results on the NP-
hardness of several worst-case design problems are for instance found in [16], and 
[80]. In addition, a second issue applies to a worst-case design: Seeking guaran­
tees against the (possibly highly improbable) worst-case can introduce undesirable 
conservatism in the design, since all the design focus is on a special " i l l " situation, 
which could be highly unrepresentative of the majority of admissible situations. 

b) Probabilistic Robust (or Chance constrained) Design: In the probabilistic design 
framework, we assume that a probability measure V over the uncertainty set H is 
given. Then, for a given probability level e G (0,1), we look for a design variable 
x that minimizes cTx while satisfying all constraints but a small fraction of them 
whose probability is no larger than the prescribed level e. It is possible to view this 
approach as a relaxation of the worst-case approach where one allows a risk level e 
and looks for a design variable such that the performance specification is violated 
by at most a fraction of the plants in the uncertainty family. 

Depending on the situation at hand, the measure V can have different interpretations. On 
one hand, it can be the actual probability with which the uncertainty parameter £ takes 
on value in S. On the other hand, V can simply describe the relative importance we assign 
to different uncertainty instances. We have the following definition: 

Definition 4.2.2 (Probability of Violation) 
Let x G X be given. The probability of violation of x is defined as 

V(x) = P{£€E:g(x,£)>0}. 

For example, if we assume a uniform probability density, then V(x) measures the "vol­
ume of bad" parameters £ such that the constraint g(x,£) < 0 is violated. A solution x 
with small associated V{x) is feasible for most of the problem instances, i.e., it is approx­
imately feasible for the worst-case problem. This concept of approximate feasibility has 
been introduced in the context of robust control in [5]. Any such solution is here named 
an "e-level" solution: 

Definition 4.2.3 (e-Level Solution) 
Let e G (0,1). We say that x G X is an e-level robustly feasible (or, more simply, an 
e-level) solution, if V(x) < e. 

Our ultimate goal is to devise an algorithm that returns a e-level solution, where e 
is any fixed small reliability level, and that is worst-case optimal over the set of satisfied 
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constraints. To this purpose, we now introduce the "scenario" version of the worst-case 

design problem. By scenario it is here meant any possible realization or instance of the 

uncertainty parameter. In the "scenario design" we optimize the objective subject to a 

finite number of these randomly selected scenarios. 

Definition 4.2.4 (Scenario Design Problem) 
Assume that S independent identically distributed samples ..., £ are drawn according 

to probability V. A scenario design problem is given by the convex program 

SDP5 : minimize cTx 
(4.2.1) 

subject to g(x, £ l) < 0, i = 1,. . . , S. 

The acronym SDP5 refers to the fact that (4.2.1) is a robust convex program with 
S constraints. To avoid mathematical clutter, we here assume the following technical 
condition on the scenario problem: 

Assumption 4.2.5 (Feasibility) 

For all possible extractions ..., £s, the optimization problem (4-2.1) is either infeasible, 

or, if feasible, it attains a unique optimal solution. 

In contrast to the worst-case design problem, the scenario problem SDP5 is a standard 
convex optimization problem with a finite number of constraints S and, hence, its optimal 
solution £5 is (usually) efficiently computable by means of numerical algorithms [17]. 
Moreover, since only S constraints are imposed in SDP5, it is clear that the optimal 
solution of SDP5 is super-optimal for the robust convex problem with all constraints in 
place, meaning that the objective corresponding to xs outperforms the one achieved with 
the solution of the worst-case design program. In this way, the scenario approach reduces 
the conservatism of the worst-case approach. 

The fundamental question that now needs to be addressed is: what guarantee can we 
give on the level of feasibility of the solution x$ of SDP5? The following key Theorem 
4.2.6 answers this question. 

Before stating the theorem, we need to mention one important fact. Since the con­
straints g(x, £l) < 0 are randomly selected, the resulting optimal solution xs is a random 
variable that depends on the multi-sample extraction . . . , £ s ) . Therefore, xs can be 
a e-level solution for a given random extraction and not for another. In the theorem, the 
parameter (5 bounds the probability that is not a e-level solution. Thus, (3 is the risk of 
failure, or confidence, associated to the randomized solution algorithm. In other words, 
we are looking for S big enough, such that the following inequality holds: 

where nx is the dimension of the design variable x £ X C W1*. The precise reasoning 

behind this expression can be found in [19]. Although the best (smallest) value of S can 

(4.2.2) 
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be found by trial and error, the computation of the left-hand-side of (4.2.2) can be a bit 

difficult because of the evaluation of the binomial coefficient. The best (smallest) explicit 

bound for this quantity to date can be found in [3]: 

Theorem 4.2.6 (Feasibility I) 

Let Assumption 4-2.5 be satisfied. Fix two real numbers e G (0,1) (level parameter) and 

j3 G (0,1) (confidence parameter). If 

(\-~\ denotes the smallest integer greater than or equal to the argument) then, with probabil­
ity no smaller than 1 — j3, either the scenario problem SDP5 is infeasible and, hence, also 
the initial robust convex program is infeasible; or, SDP5 is feasible, and then its optimal 
solution xs is e-level robustly feasible. 

In this theorem, probability 1 — f3 refers to the 5-fold probability Vs (= V x • • • x V, S 
times) in = E x • • • x S, which is the set to which the extracted multisample . . . , 

belongs. Here and elsewhere, the measurability of {V(xs) < e}> as well as that of other 

sets in E , is taken as an assumption. The proof of Theorem 4.2.6 can be found in [3]. 

Theorem 4.2.6 states that if S (specified by (4.2.3)) random scenarios are drawn, 

the optimal solution of SDP5 is e-level feasible according to Definition 4.2.3, with high 

probability (1 — f$). Parameter j3 is important in theory since, if j3 is pushed down to 

zero, S goes to infinity. However, for a practical use, we can observe that j3 plays a very 

marginal role. The reason is that (5 shows up in (4.2.3) under the sign of logarithm so 

that it can be made very small ( 1 0 - 1 0 or even 1 0 - 2 0 ) without significantly increasing S. 
The scenario approach thus provides us with a viable and implementable way to make a 

nominal design more robust up to a desired level e. 

Remark 4.2.7 (P-Independent Bound) In many applications, probability V is not explic­
itly known, and the scenarios are directly made available as "observations". This could for 
example be the case when the instances of £ are actually related to various measurements 
or identification experiments made at different times and/or different operating conditions. 
In this connection, it is important to emphasize that the bound (4-2.3)) is probability in­
dependent, i.e., it holds irrespective of the underlying probability V, and can therefore be 
applied even when V is unknown. 

Next we introduce a concept that is crucial for the success of the upcoming algorithm. 

Of the S generated scenarios, only some of these S will be "bounding" in the sense that 

they prevent the solution from "falling" to a lower objective value. 

Definition 4.2.8 (Support Scenario) 

Scenario G {1,... ,S}, is a support scenario for the scenario problem S D P 5 if its 

removal changes the optimal solution 0/SDP5. 

(4.2.3) 
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The following theorem, whose proof can be found in [20] or in a different form in [66], 
gives us the bound on the number of support scenarios: 

Theorem 4.2.9 (Number of Support Scenarios) 
The number of support scenarios for SDPs is at most nx, the size of x. 

What is most important about this result is the fact that the number of support 
scenarios does not depend on the number of generated scenarios S. If all the S constraints 
are enforced, however, one cannot expect that good approximations of chance constrained 
solutions are obtained (cf. the numerical examinations in the following sections). Thus, 
we want to allow the solution to violate part of the sampled constraints to improve its 
objective value. A general removal procedure is formalized in the following definition: 

Definition 4.2.10 (Constraint Removal Algorithm) 
Let k < S. An algorithm A for constraints removal is any rule by which k constraints out of 
a set of S constraints are selected and removed. The output of A is the set A{^,..., £ } = 
{ i i , . . . , ifc} of the indexes of the k removed constraints. 

The sample-based optimization program where k constraints are removed as indicated 
by A is expressed as 

S D P ^ i . : minimize cTx 
xex (4.2.4) 

subject to g(x,C)<0, i € {1,. . . ,S} \ A{$\ ...,£S}, 

and its solution will be hereafter indicated as x*s k . We introduce the following assumptions: 
Assumption 4.2.11 (Constraint Violation) 
Almost surely with respect to the multi-sample (£1,..., £ ); the solution x*s k of the sample-
based optimization program SDP^ k violates all the k constraints that A has removed. 

This assumption requires that the algorithm A chooses constraints whose removal 
improves the solution by violating the removed constraints, and it rules out for example 
algorithms that remove inactive constraints only, or algorithms that remove constraints 
at random. Thus, this assumption is very natural and reflects the fact that we want to 
remove the constraints that improve the optimal objective value. 

The next Theorem (proved in [21]) provides theoretical guarantees that V(x*Sk) < e, 
i.e. that the optimal solution x*s k of the optimization program S D P g f c is feasible for the 
C C P e . 

Theorem 4.2.12 (Feasibility) 
Let j3 G (0,1) be any small confidence parameter value. If S and k are such that 

( * + r T l f ( 0 £ , ( i - E ) S ~ , £ A < 4 - 2 - 5 ) 

then Vs{V{x*Sk) < e} > 1- /3 . 
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The final result establishes that the objective value of C C P e (whose optimal objective 

value will be denoted as J*) can be approached at will, provided that sampled constraints 

are optimally removed. Let Aopt be the optimal constraints removal algorithm which 

leads - among all possible eliminations of k constraints out of S - to the best possible 

improvement in the cost objective; further, let x*s k o p < and Jg k o p < be the corresponding 

optimal solution and objective value. We have the following theorem (again, proved in 

[21])-

Theorem 4.2.13 (Optimality) 
Let j3 £ (0,1) be any small confidence parameter value, and let v G (0, e) be a •performance 
degradation parameter value. If S and k are such that 

(k+ni"1) fc+2f ( ? ) e * ( 1 " e ) 5 ~ * + ( * ) ^-^i-^s~i ^ a ( 4- 2- 6) 

then 

(i) V(x*Sik) < e 

(™) ^S,k,opt — J*-u 
simultaneously hold with probability at least 1 — j3. 

One optimal way of removing constraints consists in discarding those constraints that lead 
to the largest possible improvement of the cost function. This approach is implemented 
by the following integer program, which has been described and investigated in [69], [70] 
and [87]: 

minimize cTx 

subject to g(x,?) - Mzt < 0, i = l,...,S, (4-2.7) 

£ f = i * i < * . ze{o,i}s. 

where M is a constant large enough so that, if z\ = 1, then the constraint is satisfied for 
any candidate solution x. For k = 0, the formulations (4.2.1) and (4.2.7) are equivalent. 
By construction, problem (4.2.7) provides a framework for optimally selecting the con­
straints to be removed based on the inequality (4.2.6). However, solving (4.2.7) may be 
computationally challenging due to the increase in complexity from (4.2.1) to (4.2.7) that 
arises from the introduction of one binary variable per each of the S scenarios. In recent 
years, there have been developed strengthening procedures (see [105] and [2]) for some 
special structured problems, that significantly improve upon the formulation (4.2.7). 

4.3 | Pool & Discard Algori thm 

In this section we describe a novel approach for solving the SDP5 formulation (4.2.1) and 
an constraint removal algorithm that improves upon the obtained solution. We call this 
procedure the Pool & Discard algorithm (P&D). 
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4.3.1 | Pooling Part 

The idea behind the Pooling part of the algorithm is the following: if one were to verbally 
describe the problem (4.2.1), the one word that came to our mind was "long", as there 
are much more constraints than decision variables. Moreover, the number of support 
constraints (or support scenarios), that the optimal solution of (4.2.1) depends upon is 
very small, when compared to the overall number of constraints (or scenarios). 

The method consists of solving (4.2.1) by the following procedure. First, we start by 
completely neglecting the constraints in (4.2.1) that correspond to the different scenarios 
and solve this relaxed optimization problem. Then we find the most violated constraints 
(by computing the slacks), add them to the relaxed problem and find a new optimal 
solution - this step heavily exploits warm-starting, cf. Section 4.3.4. The Pooling part 
can be summarized as follows: 
Step 0. Set 5 > 0, X = 0. 
Step 1. Solve the following problem: 

minimize cTx 
ze* (4.3.1) 

subject to g(x, £ l) < 0, i € X, 

and obtain a solution x. 
Step 2. Check feasibility of the solution by computing the slacks sl: 

sl = g(x,e), ie{l,...,S}. (4.3.2) 

Step 3. If max sl > 5, find the associated index of the maximum value i = argmax sl, 
«e{i,...,S} ie{i,...,s} 

add it to the set X and return to Step 1. Otherwise, set x* = x, I* = X and terminate. 
The parameter S, can (theoretically) be set to zero, but there are implementation issues 
that would lead to unfavourable results, cf. Section 4.3.4. It is important to remark that 
by the end of this procedure, we not only get the optimal solution of (4.2.1), but also 
an index set X that contains the support scenarios - this wil l be very significant for the 
success of second part of the algorithm. 

4.3.2 | Discarding Part 

The Discarding part of the algorithm consists of utilizing the index set X, finding the 
support scenarios among this set and finding the one scenario, whose removal decreases 
the optimal objective value the most - this is repeated k times, where k is either set a 
priori (by Theorem 4.2.12), or is terminated once an estimate of the probability of vio­
lation of obtained solution V(x) reaches certain threshold. This approach is very similar 
to the one discussed in [88], with the distinction that our algorithm utilizes the Pool­
ing step throughout the iterations and as such can be rather effective (cf. the sections 
with numerical examinations and examples). The Discarding part can be summarized as 
follows: 
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Step 0. Solve the pooling part described above to obtain X* and x*. Set 7 > 0,k > 
0,lp = 0. 

Repeat k times, or terminate once 
an estimate of V(x*) reaches a threshold: 

Step 1. Find the set of support scenarios Ir C X* - either by examining the slacks 

(V > —7) or the associated dual variables (// > 7 ) . 

Step 2. For each of the support scenarios ir G Ir, solve the following problem: 

minimize cTx 
ze* (4.3.3) 

subject to g(x,£l) < 0, i £ {1 , . . . ,S} \ {ir U I p } , 

using the Pooling part, warm-started by using I = I* \ {ir} and x = x*. Denote 
the solution to (4.3.3) as x*r, its optimal objective function value v* and its final set 
of scenarios I*. 

Step 3. Find the index with the best optimal objective value: i* = argminw*. Set 

x* = x*„, I* = T*« and add the corresponding scenario to the set of permanently 
discarded ones Xp. 

In a similar fashion to the parameter 5 in the Pooling part, the parameter 7 can be, 
in theory, set to 0. What discourages us from doing so are the implementation issues 
discussed in Section 4.3.4. It should be added, that Step 2. of the Discarding part can be 
fully parallelized to work more efficiently on multi-core machines. 

4.3.3 I Linearized Modification 

There are situations, where one does not know the constraint functions g(x, £ l) explicitly, 
but can get the function value and a subgradient at any point - the resulting optimization 
models are called oracle, black-box or subroutine models [17]. Other times one may not 
have access to powerful enough solvers/software to solve the optimization problems in the 
P & D algorithm efficiently. For these two situations, we propose a linearized variant of the 
P & D algorithm - this extension involves a standard cutting-plane method [51]. 

As before, g(x, £l) is assumed convex in x for any i G { 1 , . . . , S}. Suppose that for any 
i G { 1 , . . . , S} and for any arbitrarily chosen x, we can evaluate the function g(x,^) and 
can obtain a subgradient d G dg(x,^), where dg{x,^r) is the subdifferential (see [47]) of 
g(x,^1) at x. Since g(x,^1) is convex in x, the following inequality holds for any x: 

g(x,C)>g(x,e) + dT(x-x). 

Instead of modeling the feasible set explicitly by enforcing g(x,^1) < 0, i G {1,...,S} 
(to which we either do not have access or cannot model using the available solver), we 
iteratively construct an outer polyhedral approximation of this feasible set. The Pooling 
step of the algorithm is changed a following way: 

Step 0. Set 5 > 0, X = 0, J = 0 (i.e., E is an empty matrix and e, / are empty vectors). 
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Step 1. Solve the following problem: 

minimize cTx 
ze* (4.3.4) 

subject to EJX + ej < 0, j = 1,. . . , J, 

where Ej is the j - t h row of the matrix E, and obtain a solution x. 
Step 2. Check feasibility of the solution by computing the slacks sl: 

sl = g(x,e), ie{l,...,S}. (4.3.5) 

Step 3. If max sl > 5, find the associated index of the maximum value i = argmax sl, 
«e{i,...,S} i£{i,...,S} 

increase J by 1, compute d G dg(x,£l), add a new row to the matrix Ej = dT, a new 
value to the vectors ej = g(x, £l) — dTx, fj=i and return to Step 1. Otherwise, set 
x* = x and terminate. 

The main difference between the normal and the linearized variant (apart from the poly­
hedral approximation) is that we need to store for each row of E and e the index of the 
scenario that generated it (as a single scenario can generate multiple cuts), this informa­
tion is stored in / - although the Pooling part would work just fine without this storage, 
the Discarding part would not. 

To accommodate the different structure, the Discarding part is changed a following 
way: 
Step 0. Solve (4.2.1) using the linearized Pooling part described above to obtain E, e, / , J 

and x*. Set 7 > 0, k > 0,lp = 0. 
Repeat k times, or terminate once 

an estimate of V(x*) reaches a threshold: 
Step 1. Find the set of support scenarios Xr within the indexes stored in / - either by 

examining the slacks (sl > —7) or the associated dual variables (// > 7 ) . 

Step 2. For each of the support scenarios ir G Ir, find the set Jr of indexes of / , which 
have the value ir and solve (4.2.1) using the linearized Pooling, neglecting the sce­
narios ir Dip in the computation of slacks, starting from: 

minimize cTx 
(4.3.6) 

subject to EJX + ej < 0, j G { 1 , . . . , J} \ Jr, 

and get x*,Er,er, fr and the optimal objective function value v*. 
Step 3. Find the index with the best optimal objective value: i* = argminw*. Set 

x* = x*», E = Ei*,e = ei*,f = fi* and add the corresponding scenario to the set of 
permanently discarded ones Ip. 

4.3.4 I Implementation 

In this section we describe the little nuances in implementation, that make rather signifi­
cant contribution to the applicability of the P & D algorithm. The Pooling part of the P & D 
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algorithm consists of, essentially, solving a very similar problem many times - just adding 
one constraint at a time. So, when one implements such a procedure, the natural thing 
is to exploit the "closeness" of the problems to solve. There are solvers that allow and 
encourage a kind of problem modification, that is much faster than building and solving 
a new (although similar) model from scratch every time. One of these solvers is the one 
we used in the implement the P & D algorithm, CPLEX 12.7 [49]. 

Even though the solver itself supports the feature of modifying the problem, it does not 
mean that the modeling system we write the problem in (and use it as the "intermediary" 
between our model and the solver) supports the feature as well. For example, at the time 
of writing neither AIMMS [15], MATLAB nor GAMS [35] support problem modification - this 
means that the performance of the P & D algorithm, when written either entirely in or using 
these systems, would be much worse than the performance presented in the upcoming nu­
merical sections. For our implementation we chose a relatively new programming language 
Julia [12], that is designed for high-performance numerical computing, and a modeling 
system JuMP, which is domain-specific modeling language for mathematical optimization 
embedded in Julia. JuMP supports a wide variety of solvers, model modifications, warm-
stars, and even different solver callbacks (lazy constraints, etc.) that, even they are not 
useful for the P & D algorithm, make it a very powerful modeling tool. 

Now we get to the two parameters in P & D that need explanation, namely 5 in the 
Pooling part and 7 in the Discarding part. The first of these two parameters, 5, is the 
required feasibility of the solution. In theory, this could (and should) be set to zero, 
to guarantee that the solution of the Pooling part "really" solves the SDP5 formulation 
(4.2.1). The problem is that some solvers, when given an optimization problem to solve, 
the "optimal" solution they provide is not always strictly feasible. Among these solvers 
are, for example, CPLEX and GUROBI [41]. In CPLEX, the parameter that sets the tolerance 
for the feasibility of the optimal solution (which is an extremely uncomfortable term) is 
CPX_PARAM_EPRHS, has a default value of 1 0 - 6 and can be set anywhere between 1 0 - 9 and 
1 0 _ 1 , but not to 0. In GUROBI, this parameter is called FeasibilityTol, has a similar 
range and a description that says: " A l l constraints must be satisfied to a tolerance of 
FeasibilityTol." This is the reason we need a nonzero 5, because when set to zero, the 
Pooling part can (and, when we tried to set it to 0, sometimes did) end up in an infinite 
loop, because it cannot produce (at least when using these solvers) a feasible point. Unless 
stated otherwise, the parameter 8 was set to 10~ 7. 

The second parameter, 7 in the Discarding part, controls which scenarios will be 
treated as possible support scenarios. From complementary slackness [17] we know that 
for any primal optimal x* and dual optimal \x the following holds: 

^g(x*,e) = 0,ie{l,...,S}. 

We can express this, equivalently as 

g(x*,C) = 0, 
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or 
g(x*,e)<0 

Depending on whether or not we have access to the dual optimal \x (in most solvers we 
do), we inspect either the slacks (if they are 0) or the dual variables \i (if they are greater 
then 0), to find a set of possible support scenarios. The issue of setting 7 to 0 is one of 
numerical computing (and the feasibility tolerance mentioned earlier) - when reporting 
the optimal dual variables \x the solvers rarely return exactly 0, more often, we get values 
ranging from 1 0 - 8 to 1 0 - 1 6 . If we did set 7 to 0 we would (likely) have to consider all 
the scenarios as possible support scenarios and the execution of the algorithm would be 
significantly prolonged. Unless stated otherwise, the parameter 7 was set to 10~ 5. 

The last thing to mention concerns the machine, on which we conducted the numerical 
examples. It was a P C with 3.2 GHz Í5-4460 C P U , 16 G B R A M , N V I D I A GeForce G T X 
770, running on 64-bit Windows 10. 

4.4 I Linear Example — Optimal Asset Allocation 
The first numerical example we chose to demonstrate the utility of the P & D algorithm 
is the (by now, almost canonical) asset allocation problem. Suppose we have n assets 
xi,..., xn that we want to invest in. The returns 7 7 , . . . , rn of these assets are random 
variables. Our goal is to allocate our resources to these different assets, in order to maxi­
mize the e quantile (often called the Value at Risk, or VaR) of the returns. This formulation 
neglects several of the important real-world issues - we do not allow short position, do 
not consider more than one trading period, etc. - the example is, above all else, intended 
to show the capabilities of the P & D algorithm. Our asset allocation problem can be 
summarized as follows: 

Our ability to solve (with no quotation marks) this problem depends heavily on the distri­
bution of the returns 7 7 , . . . ,rn and the chosen quantile e. Thanks to [61], we know that 
the feasible set of a scalar chance constraint 

is convex, provided that the vector (aT,b)T of the coefficients has symmetric logarithmi­
cally concave density and e < 1/2. We will use this result and model the returns r as 
random variables that are independent and normally distributed (and, hence, have a sym­
metric logarithmically concave density). More precisely, the return 77 has the following 
distribution 

maximize t 
x>o,íe5R 

subject to V{t < J2]=i rjxj} < e> 

2 i=j xj — 1 • 

(4.4.1) 

V{aTx < 6} < e, 

ßj = l + 0.1 a3 = 0.1 
n — 1 n — 1 
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i.e., the first return is "deterministic", with return r\ = 1, and the nth return has mean 
fin = 1.1 and standard deviation an = 0.1. Because of the chosen distribution of returns, 
the problem (4.4.1) can be transformed into the following second order cone problem 
(SOCP, see [17]): 

maximize 
x>0,te5R 

subject to E"=i(l + H>XJ >t + ^-\l- e ) - | | ( < 7 i - s i , . . . , an-xn)\\2, (4-4-2) "3 
Ej=i xi ^ i) 

where $ _ 1 ( 1 — e) is the 1 — e quantile of the standard normal distribution. As an SOCP, this 
problem falls into the category of "easy" to solve (we can compute the optimal solution 
with little effort for large values of n - well into thousands) and as such provides the 
perfect ground for illustrating the capacities of the P & D algorithm. 

The sample (or scenario) approach, as discussed in Section 4.2, works with a sample of 
S scenarios of the returns r j , j = 1,... ,n,i = 1,... , S. Using these scenarios, the sample 
counterpart to (4.4.1) has the following form: 

maximize 
x>0,te5R 

subject to t < E"=i r)xj, i £ {1, . . . , £ } ( 4- 4- 3) 

E " = i ^ < l -

First of all, we will investigate on (4.4.3) the dependence of computation time of the 
Pooling part of the P & D algorithm for varying number of assets n and scenarios S. We 
compare this with solving the formulation (4.4.3) as is (i.e., passing the full problem to 
CPLEX). The results are summarized in the Table 4.1, and, in more detail, in Figure 4.1 
and Figure 4.2. The "setting up" time accounts for the problem construction only, i.e. 
passing the structure and data of the problem to CPLEX. 

These results show that the Pooling part, although it is slower for smaller number of 
scenarios, scales much better and becomes much more practical when one has to deal with 
large number of scenarios. Our cap on number of considered scenarios were the memory 
requirements for solving the full model, which were extremely higher than the memory 
requirements of the Pooling part of the P & D algorithm. For example, for the n = 30, 
S = 10 6 case, the full problem required 8GB of R A M , while the Pooling part required only 
300MB of R A M , of which 210MB were the problem data (30 x 106 matrix, double-precision 
format). 
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n s setting up [s] full [s] Pooling [s] iter. obj. cliff. 

100 >0.001 >0.01 0.01 23 1.9-10"16 

2,154 0.006 0.04 0.03 45 1.3-10"16 

30 
2,154 

2.6-10" 1 6 
30 

46,416 0.140 2.56 0.14 64 2.6-10" 1 6 

1,000,000 3.091 83.03 2.76 86 2.2-10- 1 6 

100 0.002 0.01 0.05 54 2.6-10" 1 6 

1,000 0.018 0.18 0.25 139 5.3-10" 1 6 

300 
1,000 

4.6-10" 1 6 10,000 0.248 5.29 1.03 220 4.6-10" 1 6 

100,000 2.399 105.60 6.20 304 6.6-10" 1 6 

100 0.004 0.04 0.16 70 3.3-10" 1 6 

618 0.036 0.59 1.71 213 5.5-10" 1 6 

1,000 1,000 
8,799 0.502 12.14 6.73 374 8.4-10" 1 6 

31,623 2.741 88.65 21.29 527 8.6-10" 1 6 

Table 4.1: Computation time for setting up the full problem, solving the full problem, 
using the Pooling part, and number of Pooling part iterations, and difference in optimal 

objective function value between the two. Varying number of variables and scenarios. 
Average over 10 runs. 
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Fig. 4.1: Dependence of the computation time on number of scenarios for the pooling 
step (red). Comparison with setting up (blue) and solving (black) the problem 
without pooling. 
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Fig. 4.2: Dependence of the computation time on number of variables for the pooling 

step. Different number of scenarios. 

In the log-log plots in Figure 4.1, the dependence of computation time on the number 
of scenarios S for a fixed number of variables n appears to have a linear trend, which 
suggests a polynomial dependence. The same cannot be said about the dependence of 
computation time on the number of variables n for a fixed number of scenarios in Figure 
4.2. 

n S t[s] n S t[s] n s t[s] 

100 0.04 100 0.06 100 0.14 
1,000 0.61 1,000 1.11 501 1.64 

30 
1,000 

50 
1,000 

100 
10,000 14.17 10,000 30.32 2,512 15.99 

100,000 723.32 100,000 1,494.59 12,589 176.62 

300 

100 
464 

2,154 
10,000 

0.50 
9.34 

133.46 
1,749.09 

500 

100 
464 

2,154 
10,000 

0.95 
26.70 

492.98 
5,585.00 

1,000 

100 
271 
736 

1,995 

2.82 
40.04 

377.35 
2,394.35 

Table 4.2: Computation time for the P & D algorithm. Different number of variables and 
scenarios, e = 0.01. Average over 10 runs. 

Next, we examine the computational time for the whole P & D algorithm for varying number 
of variables and scenarios. In the Discarding part of the algorithm, we decided to discard 
[0.01 S\ scenarios - note that this choice does not guarantee, that the resulting solution 
obtained by the P & D algorithm will be a 0.01-level robustly feasible (see Definition 4.2.3), 
not to mention having the objective value close to the optimal value objective J Q . O I - The 
results, summarized in Table 4.2 and Figure 4.3, are very encouraging - the linear trends 
of the log-log plot suggest a polynomial dependence on the number of scenarios. Compare 
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this to the computational requirements of the mixed-integer formulation (4.2.7) - this 
formulation achieves the optimal constraint removal, but computational requirements grow 
incomparably faster. 

10.00(1 
• 

• 

i 
i 

8 
I 

I I . n 30 
. II 50 
. M 100 
. n = 300 
o n = 500 
. n = 1,000 

1,000 10,000 ioo!ooo 
Number of scenarios 

Dependence of the computation time of the P & D algorithm on the number of 
variables and scenarios. The number of scenarios to discard was [0.01 S\. 

The real crux of the matter, however, is the following: "How good a solution (in terms 
of e-level feasibility robust feasibility and objective value) do we get by using the P & D 
algorithm?" The remarkable thing about our optimal asset allocation problem is that for a 
chosen value of e, we can get the optimal solution by solving the SOCP (4.4.2). Moreover, 
for every asset allocation x, we can find the corresponding e quantile of the returns exactly. 
Or, alternatively, we can for a given value of the returns t and a given asset allocation x 
compute (again, exactly) the probability V{t < Y^j=irjxj} 0-e-> the smallest value of e, 
for which our choice of x and t is feasible). 

For the examination, we chose a problem with n = 30 assets and e = 0.01. The optimal 
objective value (obtained by solving (4.4.2)) was 1.0309. The results are summarized in 
Table 4.3, Figure 4.4 and Figure 4.5. Using Theorem 4.2.6, with j3 = 1 0 - 1 0 , we get that to 
obtain a feasible solution to this problem with high probability (1 — /3), we need to solve 
(4.4.3) with at least S = 8,547 scenarios (without any discarding). The solution to this 
problem had the objective value 1.0179 (second column of Table 4.3), with the reliability 
0.0029 (i.e. V{t < E L irjxj} ~ 0.0029) - i.e. we obtained a feasible solution, but with 
a rather poor objective value. Afterwards, we ran the Discarding part of the algorithm, 
discarding [eS\ scenarios. The objective value improved to 1.0318 (fourth column of the 
table), but the corresponding reliability dropped to 0.0138 - meaning that the combina­
tion of x and t (obtained after discarding) was no longer feasible. However, during the 
Discarding part of the algorithm we stored the particular solutions in each iteration. This 
allows us to find the last admissible (feasible) solution and find its corresponding objective 

1,000 

100 

10 

1 . 
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and a number of scenarios that we discarded to get it - in this case the objective value was 
1.0291 (sixth column of the table) with 31 discarded scenarios. A n interesting thing to 
note is that even for 5,000 scenarios we still get a feasible solution (with reliability 0.0041) 
and can remove some scenarios, but for the lower numbers of scenarios even the "robust" 
solution is not feasible. 

When we vary the number of scenarios several interesting phenomena appears. Firstly, 
when increasing the number of scenarios S we get a smaller value of the "robust" solution 
objective (the solution after the Pooling part) and the higher the corresponding reliability 
(both of these are rather intuitive). Secondly, when we increase the number of scenarios, 
the reliability of the solution after discarding [eS\ scenarios approaches e and the number 
of removed scenarios for an admissible solution gets closer to [eS\. Thirdly, and most 
impressively, the admissible solution objective gets surprisingly close to the optimal value 
of (4.4.2). 

Another feature of the P & D algorithm is that since we remove one scenario at a time, 
we can use the successive results to construct an approximation of the trade-off between 
reliability and optimal objective function value. This is best shown on Figure 4.4, where 
we can see the progression of the P & D algorithm for different number of scenarios - each 
point corresponds to a solution with different number of removed scenarios (typically, 
more removed scenarios correspond to points more up and to the right). We included 
the optimal trade-off curve obtained by solving the SOCP (4.4.2) for different values of e 
(called "exact solution" in the legend of Figure 4.5). 

It must be emphasized that the P & D algorithm does not in any way incorporate any 
knowledge about the underlying distribution of the random variables. A l l it "sees" are the 
realizations in the form of individual scenarios. 
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number of 

scenarios S 

"robust" 

solution 

objective 

"robust" 

solution 

reliability 

objective after 

discarding 

|_e5J scenarios 

reliability after 

discarding 

[eS\ scenarios 

admissible 

solution 

objective 

number of removed 

scenarios for 

admissible solution 

500 1.0324 0.0291 1.0400 0.0466 - -

1,000 1.0292 0.0183 1.0377 0.0368 - -

2,000 1.0289 0.0120 1.0336 0.0220 - -

5,000 1.0231 0.0041 1.0326 0.0160 1.0303 31 
8,547 1.0179 0.0029 1.0318 0.0138 1.0291 53 

20,000 1.0167 0.0014 1.0319 0.0128 1.0304 147 
50,000 1.0140 0.0004 1.0310 0.0111 1.0305 463 

100,000 1.0129 0.0003 1.0309 0.0102 1.0308 980 
250,000 1.0101 0.0001 1.0308 0.0101 1.0308 2,487 

Table 4.3: The "quality" of the solutions produced by the P & D algorithm, n = 30, e = 0.01. Varying number of scenarios. The true optimal 
objective function value of (4.4.2)) was 1.0309. 
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e 

Fig. 4.5: The "quality" of the solutions produced by the P & D algorithm, n = 30. Varying 

4.5 I Comparison with Bernstein Approximation 

The Bernstein approximation, developed in [82] and [81], is a convex approximation of the 
chance constrained program, that is computationally tractable - it transforms the problem 
into an efficiently solvable deterministic optimization program with the feasible set con­
tained in the chance constrained problem (and, hence, it is a conservative approximation). 
The (considerably shortened) description of the Bernstein approximation that follows (is 
Sections 4.5.1 and 4.5.2) is taken directly from [82]. 

This approximation is suited for chance constrained problems in the following form: 

Here, £ is a random vector with probability distribution V supported on a set E C 3ftn«, 

the components £j of £ have probability distribution Vj and are supported on Ej C 5ft, j = 
1,..., n c , X C W1* is a convex set, F = ( / i , . . . , fm) : x S -)• W1. 

4.5.1 | Convex Approximations of Chance Constrained Prob-

number of scenarios. Close up on e = 0.01. 

minimize c x 
(4.5.1) 

subject to V{F(x, f) < 0} > 1 - e. 

lems 

Before defining the Bernstein approximation, we first look at a generic convex approx­

imation of the chance constraint in (4.5.1). A l l of the following material is taken from 



C H A P T E R 4. C H A N C E CONSTRAINED PROBLEMS 55 

[82]. First, let us investigate the scalar case of m = 1 - the chance constraint in (4.5.1) is 

equivalent to the constraint 

p(x) = V{F(x, 0 > 0} < e. (4.5.2) 

Let 1A be the indicator function of a set A, i.e., 1A(Z) = 1 if z £ A and 1A(Z) = 0 if 

z 0 A. 

Let V : ^ —> 5ft be a nonnegative valued, nondecreasing, convex function satisfying: 

ip(z) > tp(0) = 1 for any z > 0. This function ip(z) is called a (one-dimensional) generating 

function. It follows from its definition that for t > 0 and random variable Z, 

E[^(tZ)} > E[l[Qt+oo)(tZ)] = V{tZ > 0} = V{Z > 0}. 

By taking Z = F(x, £) and changing t to we get that 

p(s) < E [ ^ ( t _ 1 F ( a ; , 0 ) ] (4.5.3) 

holds for all x and t > 0. Let us denote 

= f l E [ ^ ( t _ 1 F ( s , 0 ) ] - (4-5.4) 

If there exists i > 0 such that ^(x , t ) < te, then p(x) < e. This statement can be 

strengthened to 

inf[*(a;,t) - te] < 0 implies p(x) < e. (4.5.5) 

Moreover, if we assume that for every ^ £ 5 the function F(-,£) is convex, then G(x, t) = 

&(x, t) — te is convex. 

Under the assumption that X and F(-,£) are convex, the following problem 

minimize cTx 
xex,t>o (4.5.6) 

subject to in.ft>o[^>(x,t) — te] < 0, 

gives a convex conservative approximation of the chance constraint problem (4.5.1). 

The construction of the approximation depends on a choice of the generating function 

ip(z). This raises a natural question: "What would be a best choice of ip(z)?" If we 

consider this question from the point of view of a better (tighter) approximation of the 

chance constraint in (4.5.1), then the smaller is ip{-), the better is bound (4.5.3). In this 

sense, the best one (up to scaling z 4— z/a) is the function 

1>*(z) = [l + z]+, (4.5.7) 

where [a]+ = max{a, 0}. For this choice of a generating function, the approximate con­

straint (4.5.5) takes the form 

inf[E[[F(x,O+t}+}-te}<0. (4.5.8) 
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If we replace in the left-hand side inft>o with inf t, we do not affect the validity of the 

relation. This means that we can rewrite (4.5.8) equivalently as 

mm[[F(x,O+t]+]-te}<0. (4.5.9) 

In that form the constraint is related to the concept of conditional value at risk (CVaR) 

C V a R i _ e ( Z ) = inf [r + -E[Z - T]+]. (4.5.10) 

C V a R i _ e ( Z ) is a convex and monotone functional on the space of random variables with 

finite first moment, and the (1 — e) quantile (the value at risk) 

V a R i _ e ( Z ) = inf \V{Z < t} > 1 - el. 

of the distribution of Z is a minimizer of the right-hand side in (4.5.10), so that it always 

holds that C V a R i _ e ( Z ) > V a R i _ e ( Z ) . Since the chance constraint in (4.5.1) is nothing 

but V a R i _ e [ F ( x , £)] < 0, the constraint 

C V a R i _ e [ F ( x , 0 ] < 0 (4.5.11) 

defines a convex conservative approximation of the chance constraint. The idea of using 

CVaR as a convex approximation of VaR comes from Rockafellar and Uryasev [94]. 

One of the possible disadvantages of using the "optimal" generating function tp* (as 

compared with the exponential tp(z) = ez, which will be used in the Bernstein approxima­

tion) in the above approximation scheme is that it is unclear how to compute efficiently 

the corresponding function fy(x, t) even in the simple case F(x, £) = fo(x) + J2jLi Cjfj(x) 
of affine in £ function F(x,£) and independent-of-each-other random variables £j with 

known and simple distributions. 

There are several ways how the presented construction can be extended for m > 1 

(joined chance constraints). One simple way is to replace the constraints fi(x,£) < 0,i = 
1,.. . , m, with one constraint f(x, £) < 0, say by taking f(x,£) = max{/i(x, £ ) , . . . , fm(x, £)} 
Note, however, that this may destroy a simple, e.g., affine in £, structure of the constraint 

mapping F(x,£), rendering the Bernstein approximation unusable. 

There is another possible extension of the above approximation scheme for m > 1. 

Let e i , . . . , em be positive numbers such that ei + • • • + em < e. The chance constraint of 

(4.5.1) is equivalent to V{J™=1{i : fi(x,£) > 0}} < e. Since 

m 
n u r = i K = Mx,s) > o n < o > 0}, 

i=l 

it follows that the system of constraints 

P{fi(x,£) > 0 } < e i ; i = l,...,m, (4.5.12) 

is more conservative then the original chance constraint. We can now apply the one-

dimensional construction to each individual constraint of (4.5.12) to obtain the following 
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convex conservative approximation of the chance constrained problem (4.5.1): 

minimize cTx 
x&x,t>o (4.5.13) 

subject to inf i >o[^'i(a;, t) — tei] < 0, i = 1,... , m, 

where ^i(x,t) = £E[i/>j(£_ 1/j(a;,£))], and each tpi(-),i = l,...,m is a one-dimensional 

generating function. 

Remark 4.5.1 An important open question related to the approximation (4-5.13) is how 
to choose ej. It would be very attractive to treat these quantities in (4-5.13) as design 
variables (subject to the constraints e% > 0 and J2iei < e) rather than as parameters. 
Unfortunately, such an attempt destroys the convexity of (4-5.13) and thus makes the 
approximation seemingly intractable. The simplest way to resolve the issue in question is 
to set £i = e/m, i = 1,. . . , m. 

4.5.2 | Bernstein Approximation 

One of the downsides of using the piecewise linear generating functions of the form (4.5.7) is 

that the corresponding constraint function may be difficult to compute even for relatively 

simple functions F{x,^). For this reason we consider the (one-dimensional) generating 

function ip(z) = ez. The assumptions are the following: 

A l . The components fi(x,£) in the constraint mapping F(x,£) are affine in £: 

™« 

fi(x,€) = fio(x) + '52€jfij(x), i = l,...,m, (4.5.14) 
i=i 

and the functions fij(x),j = 0,1, ...,ri£ are well defined and convex on X. Besides 

this, for every j > 1 such that Ej (£_ all functions fij(x),i = 1,... , m are affine. 

A2. The components £j, j = 1,... , n^, of the random vector £ are independent of other 

random variables (so that the support of the distribution ' P o f £ i s E = S i X - - - x ). 

Furthermore, let 

Mj{t) = E[e*fc] = J exp(tz)dPj(z), 

be the moment generating function, and Aj(t) = log Mj(t) be the logarithmic mo­

ment generating function of £j. 
A3. The moment generating functions Mj(t),j = 1,... ,rt£, are finite valued for all t £ 3ft 

and are efficiently computable. 

The problem (4.5.1) that satisfies the assumptions A1-A3 is called an afHnely perturbed 

convex chance constrained problem. Let z = {ZQ, Z\, ..., zni) G 3ft n £ + 1 . The function 

$(z) = log(E[exp{>o + €jZj}]) = z0 + J^ Aj(zj) 
3=1 3=1 

is well defined, continuous in z and convex. Moreover, Q(z) is monotone in ZQ and in 

every Zj with j G J = {j > 1 : Ej C 3ft+}. Finally, one has for t > 0 and p(z) = 
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V{z0 + £™ii ijZj > 0} that 

> logp(z). 

Therefore, for every e £ (0,1), 

inf [ t$( t _ 1 z) - iloge] < 0 implies p{z) < e. (4.5.15) 

Now consider an affine chance constrained problem with real-valued constraint mapping 

3=1 

By (4.5.15), the problem 

minimize cTx 
x & x

 n (4.5.16) 
subject to inf t > 0[/o(a;) + tAjit'1fj(x)) - tlogej] < 0 

is a conservative approximation of the chance constrained problem (4.5.1). Furthermore, 

this approximation is convex. 

4.5.3 | Numerical Examination 

Just as in [82], the Bernstein approximation will be compared with the (now enhanced) 

scenario approach, on the same example as in the aforementioned paper. 

The test problem is (once again) optimizing value at risk. There are n + 1 assets 

0 ,1 , . . . , n with random returns. The problem is to distribute $1 between the assets in 

order to maximize the upper eth quantile of the profit. The corresponding model is the 

chance constrained linear programming problem 

minimize —t 
x>o,te!R 

subject to V{t < E " = 0 nxi} < e, (4.5.17) 

where Xi is the capital invested in asset i, and rj is the return of this asset. The data in 

this problem £1X6 ctS follows: 

• There are n + 1 = 65 assets; asset #0 ("money") has deterministic return VQ = 1, 

while the returns ri of the remaining 64 "true" assets are random variables with 

expectations E[rj] = 1 + pi, with nominal profits pi varying in [0,0.1] and growing 

with i. The spacing between the individual values pi is not explicitly stated in the 

paper [82]; we used even spacing. 

• The random variables rj, 1 < i < 64, are of the form 

8 
ri = rn + ^ZliiCu 

l=i 

where m ~ £J\f(ni,of)(that is, logr/j ~ A/"(/ij,of)) is the individual noise in i th 

return, Q ~ £j\f(vi,0f) are the "common factors" affecting all returns, and > 0 
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are deterministic "influence coefficients". A l l "primitive" random variables (64 of 

r/j's and 8 of Q's) are independent of each other. 

We used v\ = 0,9i = 0 .1 , /ij = a% (that is, the more promising an asset at average, the 

more risky it is). The influence coefficients ju and the parameters m were chosen in 

a such a way that E E f = i luCi] = and E[T/J] = 1 + pi/2 for all i. Since there are 

multiple ways to choose 7^ (and the paper [82] does not give an explicit formula), 

we chose 7^ = 7«, for all I (with 7, appropriately chosen for each i). 

The random returns rj are linear combinations of independent random variables 771 , . . . , 7/64, 

Ci5 • • • > Css s o that the structure of (4 .5 .17) allows for applying Bernstein approximation. 

The difficulty, however, is that the random variables in question are log-normal and thus 

the corresponding moment generating functions are + 0 0 outside of the origin. This diffi­

culty can be circumvented, by using a discretization (thoroughly described in [82]). The 

resulting problem has the following structure: 

minimize —t 
x>0,te5R 

subject to mfT>0[t + J2i=oTl°s(aiexp{-biXi/T} + ^ 5 

TJjli Cij expi-dijXi/r}) - r loge] < 0, 

S i = 0 xi — 1' 

where constants ai,bi, c^, dij come from the discretization, which has rrii points for each r, 

(around 400 in our implementation). The implementation of the Bernstein approximation 

was programmed in Julia [68] using the modelling enviroment JuMP [28] and the M0SEK 
solver [79]. As described in [82], for best results the Bernstein approximation should be 

tuned - the conservatism of the approximation can be relaxed by changing (increasing) e 
and using simulation to estimate the reliability of the chance constraint. The simulation 

evaluating the solutions for different approaches (values of e in Bernstein approximation 

and different number of considered and deleted scenarios for the other approach) had 1 0 6 

scenarios. 

The first target quantile for the maximization was chosen as e = 0.01. The results are 

best described by the following Tables 4.4 and 4.5 , Figure 4.6 and Figure 4.7. 

£ t* F(t*) F - ^ O . O l ) 

0.01 1.0530 2 . 1 9 - 1 0 " 4 1.0621 

0.02 1.0557 7 . 0 8 - 1 0 " 4 1.0626 

0.03 1.0575 0 .0014 1.0629 

0.05 1.0598 0 .0032 1.0632 

0 .10 1.0634 0 .0098 1.0636 

Table 4.4: Results for the Bernstein approximation, target quantile e = 0.01. 
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Fig. 4.6: Cumulative distribution functions of returns for different approaches, target 
quantile e = 0.01. 
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Fig. 4.7: Closer look at the target value. 

number of scenarios discarded t* F(t*) F - ^ O . O l ) 

10,000 62 1.0629 0.0094 1.0632 

50,000 467 1.0635 0.01 1.0636 

100,000 988 1.0636 0.01 1.0636 

250,000 2,424 1.0636 0.01 1.0636 

Table 4.5: Results for P & D , target quantile e = 0.01. 
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The second target quantile for the maximization was chosen as e = 0.05. The results are 
best described by the following Tables 4.6 and 4.7, Figure 4.8 and Figure 4.9. 

£ t* F(t*) F _ 1 (0 .05) 

0.05 1.0598 0.0032 1.0691 

0.10 1.0634 0.0096 1.0699 

0.15 1.0658 0.0177 1.0703 

0.20 1.0677 0.0274 1.0706 

0.25 1.0693 0.0380 1.0707 

0.29 1.0705 0.0476 1.0708 

Table 4.6: Results for the Bernstein approximation, target quantile e = 0.05. 

number of scenarios discarded t* F(t*) F-^O.Oö) 

10,000 468 1.0703 0.05 1.0703 

50,000 2,487 1.0707 0.05 1.0707 

100,000 4,939 1.0707 0.05 1.0707 

Table 4.7: Results for P & D , target quantile e = 0.05. 
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Fig. 4.8: Cumulative distribution functions of returns for different approaches, target 
quantile e = 0.05. 

For all practical purposes, the best objective values for both the Bernstein approximation 
and the P & D algorithm are the same. Although one would prefer the decision obtained 
by P & D with 250,000 in the first case (Figure 4.6) and the decision obtained by the 
Bernstein approximation with e = 0.29 in the second case (Figure 4.9) (because of the 
"dominating" nature of the returns obtained by these decisions), since this was not a part 
of the objective, we will not examine it any further. 
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The computational times are, however, rather incomparable. While the Bernstein 
approximation takes about 0.5 s to compute (for each value of e), the time it takes to 
terminate the P & D algorithm grows in the manner described in the previous sections (it 
takes over an hour for the maximum number of scenarios). The important thing to bear in 
mind is that the example above has a single chance constraint. In the case of several joint 
chance constraints, the Bernstein approximation reformulates the problem as one with 
separate chance constraints (4.5.12) each having different reliability ej. The task of tuning 
this approximation (choosing the values ej) turns to problem into a global optimization one 
(convexity is lost), and gets (much) harder to solve, when one has to deal with increasing 
number of (joint) chance constraints. On the other hand, the P & D algorithm does not 
change at all and retains its properties (convexity), even when moving from the single to 
the joint chance constraint setting. 

4.6 | Nonlinear Example 

In this section we investigate the performance of the algorithm on nonlinear example 
that appeared in the numerical sections of the state-of-the-art methods in [100] and [1]. 
Both of these methods are scenarios (or sample) based and use the indicator function 
approximation (although they approach it in different ways). In the method described 
in [100], the constraints need to be convex in x and the problem can be a joint chance 
constrained one. In the method described in [1], the constraints do not have to be convex, 
but must be continuously differentiable in x and the authors deal with a single chance 
constraint only. The problem both papers have chosen for the numerical examination is 
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the following one: 

minimize 
x>0 

E n 

subject to P { £ ™=1 &x] - b < 0, 1,... ,m} > 1 - e, 
(4.6.1) 

where £, 1,... , m and j = 1,. . . , n are independent and identically distributed stan­
dard normal random variables, 6 £ 5ft. In the case of [1], m = 1. 

Optimal solution x* of the problem (4.6.1), derived in [100], is: 

Xi b/F-2

l((l 
A N 

(4.6.2) 

where F 2 is the inverse chi-squared distribution function with n degrees of freedom. 
Since the problem (4.6.2) is quadratic, we can use the CPLEX solver [49] in JuMP in the 

implementation of P & D . The non-default parameter values were CPX_PARAM_BAREPCOMP = 
1 0 - 8 (the tolerance on complementarity for convergence), CPX_PARAM_EPOPT = 1 0 - 8 (the 
reduced-cost tolerance for optimality), CPX_PARAM_EPRHS = 10~ 8 (the feasibility tolerance) 
and 8 = 1 0 - 7 (the P & D tolerance, the same was used for the linearized version). 

We start the numerical examination with the same setting as [1]: n = 10, m = 1,6 = 
10, e = 0.05. Using the formula (4.6.2), the optimal objective value of this problem is 
-7.390. We generate a number of scenarios S (the values were log-spaced between 102 

and 104) and set the P & D algorithm to discard [eS\ of them. After that we estimate the 
reliability of the obtained solution using 105 new scenarios. The results of the computations 
are summarized in Table 4.8 and in Figure 4.10. 

scenarios objective reliability time [s] 

100 -8.042 0.8535 0.44 

167 -7.968 0.8700 1.08 

278 -7.736 0.9039 1.87 
464 -7.564 0.9255 4.17 

774 -7.528 0.9322 7.94 

1,292 -7.539 0.9356 14.80 
2,154 -7.467 0.9422 27.53 

3,594 -7.440 0.9454 51.09 

5,995 -7.400 0.9491 92.14 

10,000 -7.397 0.9497 174.75 

Table 4.8: Number of scenarios, optimal objective value, reliability of the solution and 
computation time. Average values over 10 runs. 

Unsurprisingly, the more scenarios are taken into account, the better (closer to the theo­
retical optimum) the result. The computational time is quite good, considering [1] report 
around 500 s as the computational time for their algorithm (that uses 500 scenarios) and 
the big-M mixed-integer formulation does not converge in an hour [1] (again, using "just" 
500 scenarios). 
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Fig. 4.10: Dependence of reliability of the solution and computation time of the P & D 
on the number of scenarios. 

n scenarios P & D [s] P & D Lin . [s] obj. dif. reliab. dif. 

100 0.17 0.30 1.2-10 - 6 2.0-10 - 6 

316 0.57 0.63 1.3-10 - 6 1.0-10 - 6 

5 1,000 1.85 1.64 8 .L10" 7 2.0-10 - 6 

3,162 6.07 4.57 1.1-10 - 6 0 
10,000 22.71 16.10 1.2-10 - 6 0 

100 0.55 2.16 3.4-10 - 6 2.0-10 - 6 

316 2.45 5.36 3.1-10 - 6 0 
10 1,000 11.91 12.82 3.2-10 - 6 2.0-10 - 6 

3,162 46.93 28.46 8.9-10 - 4 6.8-10 - 5 

10,000 180.67 93.23 1.8-10 - 3 1.840" 4 

100 4.14 43.30 1.3-10 - 5 6.0-10 - 6 

158 8.22 70.24 5.1-10 - 6 9.040" 6 

316 22.36 144.31 8.1-10 - 6 3.040" 6 

20 501 49.93 222.23 7.0-10 - 6 6.0-10 - 6 

1,000 143.27 400.81 7.7-HT 6 3.0-10 - 6 

2,000 398.01 619.38 1.2-10 - 5 6.0-10 - 6 

5,000 739.82 1,045.96 4.5-10 - 4 1.1-10 - 4 

Table 4.9: Computational times for the P & D and linearized P & D , absolute differences in 
the optimal objective function values and absolute differences in reliability. Average 

values over 10 runs. 

Next, we investigate the dependence of the computational time on n and compare the 
P & D algorithm with its linearized version. In the Table 4.9, we report the computation 
times for both of these methods and the absolute differences in the optimal objective 
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value and reliability of the solution. A graphical comparison is provided by Figure 4.11. 
The differences in the objective and reliability are rather negligible - on the order of 
1 0 - 4 — 1 0 - 6 . The computational time was better for the normal version of P & D most 
of the time. Only when the number of variables n was low and the number of scenarios 
S was high, performed the linearized version better. Another way to say this is that the 
linearized version scales better with the number of scenarios (the resulting linear problem 
is easier to solve than the quadratic one), but scales much worse in the number of variables 
n - possibly because linear approximations in higher dimension grow costly very rapidly. 

1000 

-r loo 
a; 
B 

& 

S 
c 

Ü 

10 

o P&D, n=5 
» P&D L, n=5 
o P&D, n=10 
» P&D L, n=10 
o P&D, n=20 
. P&D L, n=20 

0.1-
100 1000 

Number of scenarios 
10000 

Fig. 4.11: Dependence of computational time on number of scenarios and number of 
variables for P & D and linearized P & D . 

The second setting we investigate is from [100]: n = 10, m = 10, b = 100, e = 0.1. The 
optimal objective value, using (4.6.2), is —20.82. Note that in this setting we are dealing 
with a "proper" joint chance constraint problem, with nonlinear (but convex) constraint 
functions. The number of scenarios used in the examination ranged between 102 and 104 

and the number of scenarios to discard was set to [e5J. The results of the computations 
are listed in the following Table 4.10: 

scenarios objective reliability time [s] 

100 -21.46 0.8042 1.63 

251 -21.42 0.8305 5.60 

631 -21.03 0.8720 18.02 

1,585 -20.96 0.8853 55.40 

3,981 -20.84 0.8962 166.14 

10,000 -20.83 0.8975 559.82 

Table 4.10: Number of scenarios, optimal objective value, reliability of the solution and 
computational time. Average values over 10 runs. 
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To compare the results with the ones achieved in [100], where they used 10,000 scenarios 
for the computations - the numbers the authors report are a bit vague: 
"Our algorithm typically requires less than 10 iterations to converge to the optimal value, 
and each iteration approximately takes 6 s on average." 

The main objections being that their algorithm was presented on two problems with 
different dimensions (the one presented here and a smaller one), and that, at least judging 
from the figures (as there is no other way to find the value), their "optimal solution" was 
around —20.4, which is rather far from the real one. 

A n important remark is that the P & D algorithm does not produce just one solution 
- as a sort of a by-product it generates a sequence of decisions, that are "optimal" with 
respect to an increasing number of discarded scenarios. When we estimate the reliability 
of these solutions, we get an approximation of the trade-off between the reliability level e 
and optimal objective value. Naturally, this approximation gets better as we increase the 
number of scenarios. The approximation of the trade-off for the setting described above is 
depicted in Figure 4.12 - it shows just one run of the P & D algorithm for different number 
of scenarios and the optimal values computed using the formula (4.6.2). The reliability 
of the solution is estimated using 105 different scenarios. If we stopped the algorithm 
with 200 scenarios once the estimate of the reliability of the solution gets over the desired 
level e and use the previous value, we would discard only 12 scenarios with the objective 
value —20.47 and estimated reliability 0.9143 - this takes around 3 s. Note that the robust 
solution for this problem, i.e. the solution for e = 0, is clearly 0, since each can attain 
any nonnegative value. 

0 0.05 0.1 0.15 
e 

Fig. 4.12: Approximation of trade-off between reliability and optimal objective value. 



C H A P T E R 

Chance Constrained Optimal 
Beam Design: Convex 
Reformulation and Probabilistic 
Robust Design 
This is the paper that will appear in [58]. It describes a novel (convex) reformulation of 
otherwise rather involved engineering problem. It can be also seen as the first application 
of the P & D algorithm with a trivial Pooling part (see the transformation from (5.4.6)-
(5.4.7) to (5.4.10)-(5.4.11)). The subsection 5.5.1 was originally not included in the final 
paper (mainly because of a space restriction) - we decided to add it for its additional 
insight. 

5.1 | Introduction 

Optimal design problems in engineering frequently lead to optimization problems involv­
ing differential equations. One of the classes of these problems is shape optimization [42]. 
The particular shape optimization problem considered in this paper is the optimal design 
of a beam (be it a fixed beam, a cantilever beam, etc.) subjected to some kind of load­
ing. Since shape optimization problems are inherently non-convex, most approaches use 
metaheuristics such as genetic algorithms [65] or cuckoo search [36]. A closely related field 
of topology optimization (where the size and shape of the structure can be manipulated) 
has developed a multitude of successful methods (level set, homogenization, topological 
derivative, etc.), see [96]. 

This problem was previously also examined in [99] and [115], where the authors used 
the finite element method (FEM) and the finite difference method to approximate the 
ordinary differential equations (ODE) and solve the problem. Our paper shows that this 
beam design problem can be formulated as a geometric programming problem, which can 
be further transformed into a convex one, and thus can be efficiently solved. Geometric 
programming problems with random coefficients (although without chance constraints) 
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were investigated in [30]. 

A n important issue regarding the design is its reliability (see [62]). In the context 

of this paper the reliability of the design will mean that the constraints in the resulting 

optimization program should hold with high probability. Depending on how reliable design 

is required, we can destinguish between the so-called chance constrained (or probabilistic 

constrained) optimization problems (see [98]) and the robust optimization problems (see 

[9]). Current approaches dealing with reliability constrained beam design, such as [8] 

and [116] use simple (point) loads and Gaussian distribution of the unknown parameters. 

In this paper we investigate the chance constrained beam design problem under more 

complicated random loads. We utilize the sampling approach (called Probabilistic Robust 

Design) developed in [19], [21] and [22] to obtain a manageable approximation of the 

chance constrained problem and use a scenario-deletion method to compute a trade-off 

between the reliability of the design and the objective value. 

5.2 | Problem Formulation 
The problem is best described by Fig. 5.1. We consider a fixed beam of length I with 

rectangular cross-section that is subjected to a load h(x) (with the opposite direction than 

the axis y), which is depicted in Fig. 5.1a. The task is to find the optimal design, in terms 

of the cross-section dimensions a and b (Fig. 5.1b), that minimizes the weight of the beam. 

Naturally, given a load h{x) the beam will deflect and will be subjected to a bending 

stress. The requirement for the design is that the maximum stress in the beam is less 

then a material-specific constant, that ensures that the design is safe (we use the value at 

which the material begins to deform plastically). The problem can be formulated as the 

following ODE-constrained optimization program: 

minimize pabl (5.2.1) 
a,b,v(x) 

subject to Ea^-d-^i(x) = h(x), x G [0,1], (5.2.2) 
12 dxA 

\E2dx^W\-'™> xe[0,l], (5.2.3) 
fill fill 

v(0) = 0, ^ ( 0 ) = 0, v(l) = 0, ^(0 = 0, (5.2.4) 

ay < a < ay, by < b < by, (5.2.5) 

where p is the density of the material, v(x) is the deflection of the beam (with the opposite 

direction than the axis y) in a point x G [0,1], E is the Young modulus, OM is the 

maximum stress allowed, and ay, ay, by, by are the bounds on the cross-section dimensions. 

The constraint (5.2.2) is the O D E that governs the deflection of the beam v(x) given a 

specific load h{x). The constraint (5.2.3) is the maximum allowed stress in the beam. The 

constraint (5.2.4) defines the boundary conditions for the O D E (i.e. that we have a fixed 

beam). 
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(a) The scheme of loaded beam. (b) Beam cross-section. 

Fig. 5.1: The problem geometry. 

5.2.1 | F E M Problem Approximation and Solution 

To tackle the problem (5.2.1)-(5.2.5) we use the F E M to approximate the O D E in (5.2.2) 
and (5.2.3). Following [103] (p. 25 - 27), we divide the one-dimensional beam with the 
space dimension x into N finite elements. We will denote the nodal value of the deflection 
v(x) in the node xe as Ve = v(xe) and the nodal value of its derivative in the same node 

as 
dv 
dx 

as follows: 
(xe). The continuous variable v is approximated by v in terms of nodal values 

[^NiNaN^Ve-iOe-iVeOe 

where Ni,... ,N± are the following cubic shape functions: 

3dx2 + 2xs N2 = ^(d2x - 2dx2 + x3 

dz 

1 
{3dx2 - 2x3 

1 
(x 3 -dx2), 

and d N is the length of one element. Substitution in (5.2.2) and application of 

Galerkin's method lead to four element equations: 

V i 
N2 

N3 

V i 

ab3 d4 

E——i[N1N2NzNA] dx 

' Ve-X ' ' V i " 

Oe-1 N2 

VE 'Jo N3 

0e i V 4 

h(x) dx. 

d4Ni To avoid differentiating four times, the following approximation is used: / Ni—r-^-dx 

J ^ k ^ d x 
J dx dxA 

J ^rD

D^2 dx. The resulting system of linear equations has the form: 

h, where V = (Vb, 0Q, • • •, VN, 0N)T• The dimensions of the stiffness matrix K 

are (2N + 2) x (2N + 2) and its precise description can be found in [99] or [103]. The order 

of accuracy of the finite element approximation is 0(d2). 
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Using this approximation of the deflection, the stress limit (5.2.3) on each element is 
given by 

// // // / / n 

\E-[N1 N2 N3 NA][Ve-l9e-l VeOe}1 \ < <TM. 

This equation describing the stress in one specific node holds only for the end nodes 
belonging to one element (the first one at XQ and the last one at XN)- Since the rest of the 
nodes belongs to two adjacent elements, the stresses are not equal. Therefore, we consider 
the average stress from this discontinuity: 

E bl 
22 

[N, (0) N2 (0) N3 (0) iV 4 (0)] 

Ve-X 

Oe-1 

V, 
+ [N, (d) N2 (d) N3 (d) iV 4 (d)] 

Ve 

Be 

ve+1 

Oe+1 

The system of inequalities that approximates (5.2.4) can be written as | - E | C V | < <JM, 
where the matrix C has dimensions (N + l)x(2A^ + 2) and its complete description can 
be found in [99]. 

The F E M approximation of the problem (5.2.1)-(5.2.5) is then the following (using the 
notation described above): 

minimize pabl 
a,b,V 

ab3 

subject to E^^-KV = h, 

\E-CV\ < OM, 
a-L < a < QUi bi <b < by. 

(5.2.6) 

(5.2.7) 

(5.2.8) 

(5.2.9) 

This problem has IN variables (2iV + 2 in V of which 4 are fixed by boundary conditions, 
and 2 design variables), IN + 2 constraints and a box constraints on a and 6, and is 
non-convex, meaning that the certification of global optimality is computationally very 
demanding. 

The crucial realization (the one that is absent in [99] and [115]) is that the stiffness 
matrix 1C is, by design, always invertible. In other words - given a, b and h, the equation 
describing the deflection of the beam has a unique solution. Using this fact, we can rewrite 
(5.2.7) as: 

V 
Eab3 

and (5.2.8) becomes: 
6;CK~1h\ ' 

(5.2.10) 

(5.2.11) 
ab2 ab2 

Let us denote as VM the maximum of | 6 C l C _ 1 / i | over all the nodes of the F E M discretiza­
tion. Since OM is the same for all iV + 1 nodes, the iV + 1 inequalities (5.2.8) are equivalent 
to a single inequality: 

VM 
ab2 < C M - (5.2.12) 
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Utilizing these results and neglecting the constants p and I in the objective (5.2.6), we can 
reformulate the problem (5.2.6)-(5.2.9) as the following equivalent problem: 

minimize ab (5.2.13) 
a,b 

subject to —^ < <TM, CIL < a < au, &L < b < bu, (5.2.14) 
abz 

which is a geometric program, that can be transformed into a convex program (this trans­
formation is utilized in the following sections), with 2 variables, 1 constraint and box 
constraints on variables. This problem has the following analytic solution (that is derived 
in the Appendix A) : 

• if VAf2 > the problem is infeasible, 
• if - ^ 2 - < &M, the solution is a* = O L , b* = & L , 

• if b = J VM is within the bounds, b* = b,a* = CLL, 
• else a = JM and a* = a.b* = bu-

This can be readily seen from the problem structure - a percentage increase in both a and 
b has the same result on the objective function value. However, percentage increase in b 
causes the left hand side of the inequality (5.2.12) to decrease faster than an equal per­
centage increase in a, making it preferable to increase b as much as needed (i.e. satisfying 
the inequality or the box constraint) before increasing a. 

This result covers some of the numerical examinations done in [99] and [115] (which 
were more focused on the illustration of the combination of F E M and stochastic program­
ming), without the need for using any optimization software (the only value one has to 
compute numerically is VM)- Another advantage is that for the same geometry (i.e. the 
same boundary conditions and number of elements) we can precompute the F E M matrices 
C and K (or its appropriate factorization, see [103], Chapter 3) and use them to quickly 
get optimal solution for different values of the load h. 

5.2.2 | Addit ional Variable, Constraints and Convex Refor­
mulation 

The structure of the problem allows us to consider the material constant B a s a variable, 
without destroying the convexity of the upcoming reformulation. This means we can 
choose the quality of the material - higher E corresponding to better and more expensive 
one. To be able to perform the convex reformulation, the dependence of the cost on the 
material (per volume units) must be in the form cEp, with c > 0,p £ R. The objective 
function then becomes cEpabl, where the constants c and I can be dropped during the 
optimization. 

A n additional restriction on the solution involves the maximum absolute deflection of 
the beam, which we denote as 5M- In our F E M formulation, the vector V includes both the 
deflection of the beam and its first derivative in each node of the division. The condition 
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on maximum deflection involves only the odd components in V: 

|Vi | < SM, i = 1,3,5, . . . , 2N + 1, (5.2.15) 

which is equivalent to a single inequality 

max |Vi | < 6M, (5.2.16) 
i=l,3,5,...,2JV+l 1 1 - ' > 

using (5.2.10) and denoting the maximum of the odd components of | 1 2 K _ 1 / i | as WM we 

get 
W M <5M. (5.2.17) 

Eab3 

The final constraint restricts the ratio between b and a to be less then the maximum 
allowed TM-

Adding these constraints to (5.2.13)-(5.2.14), treating £ a s a design variable and chang­
ing the objective yields the following geometric program (presented here in its standard 
form): 

minimize Epab (5.2.18) 
a,b,E 

subject to — a - 1 & - 2 < 1, (5.2.19) 
0~M 

^-E-'a-'b-3 < 1, (5.2.20) 
OM 

—ba'1 < 1, (5.2.21) 

aLa~l < 1,— a < 1, 6 L & _ 1 < b < b ^ L ^ " 1 < 1, < 1, (5.2.22) 

where all the coefficients of the monomials in (5.2.18)-(5.2.22) are clearly positive, meaning 
we can use the following transformation to derive an equivalent convex program. First, 
we transform the variables: ya = log a, yb = logb,yE = logE. Then, we can write every 
monomial f(a, b, E) = caaiba2Ea3, where c > 0, a i , a2,03 G R in the form 

f(a,b,E) = f(eya,eyb,eyE) = C e a i V a e a 2 y b e a 3 y E = e

a i y a + a 2 y b + a s y E + l ° s c , 

turning a monomial function into the exponential of an affine function. Next we transform 
the objective and the constraints, by taking the logarithm. Since every function both in 
the objective and the constraints is a monomial, the transformation results in a linear 
program: 

minimize ya + yb + V • UE (5.2.23) 
ya,yb,VE 

subject to - ya~ 2yb + logvM - logOM < 0, (5.2.24) 

-ya~ 3yb ~VE + log wM - log5M < 0, (5.2.25) 

-ya + yb-logrM < 0, (5.2.26) 

l oga L < ya < logau, logbL < yb < logbu, logEL < yE <logEv. (5.2.27) 
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Remark 5.2.1 If the dependence of the material cost was J2ieici^Pi, c% > 0, instead of 
the simple cEp, there would still be a convex reformulation, but it would no longer result 
in a linear program - there would be a term involving a logarithm of a sum of exponentials 
in the objective (see [17], p. 160-162). 

5.3 | Random Loads and Robust Solution 
Next we investigate how the problem changes, when we introduce uncertainty. The previ­
ous papers [99] and [115] dealt with the situation, when the Young modulus E was random. 
In this paper, we assume that the randomness is in the load h. Instead of specifying the 
distribution of h by its cumulative distribution function or moment generating function 
(that would allow us to use the Bernstein approximation [81]), we devised a mechanism 
that produces random samples/scenarios. The use of scenarios is typical for engineering 
applications because of the difficulty of identifying the probability distribution. In this 
way, we imitate the situation when one does not know the distribution of a certain random 
variable, but only has access to its realizations - in our experience a much more common 
case. The sampling procedure is the following (U(a,b) denotes a uniform distribution): 
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Fig. 5.2: A sample of 5 scenarios of the load h{x). 

0. Pick a random integer i between 1 and 4. Set h(x) = 0. 
1. Repeat i times: Generate a Bernoulli trial. 

a) If 0, randomly pick 4 points 0 < xa < Xb < xc < Xd < I and add to h(x) a 
trapezoidal load ha(x) between xa and x^,- Height of the trapezoid is KM ~ 

14(0,1) (Fig. 5.2, scenarios 1 and 3). 
b) If 1, sample h^ ~ 14(0, l),ha ~ 14(0,1) and add to h(x) the bell curve load: 
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2. Normalize the load h(x): Pick H ~ ^(8000N, 15000N). Compute hi = fQh{x)dx, 
and set h(x) = j^h(x). 

This sampling procedure generates very real-life like loads as can be seen in Fig. 5.2 
(see [75]). Because we transformed the original problem (5.2.1)-(5.2.5) into the problem 
(5.2.23)-(5.2.27), we are much more interested in the values VM and WM resulting from 
the the different load scenarios, and the actual loads h{x) are of little importance. In Fig. 
5.3 we see the scatter plots and histograms of \ogVM and logU>M using 2,000 scenarios of 
the load. 

13 13.5 14 14.5 9 10 11 12 13 
log wM log vM 

Fig. 5.3: Scatter plots and histograms of logVM and logU>M> 2,000 scenarios. 

The important question is how to approach the optimization model (5.2.23)-(5.2.27) 
when some of its parameters, namely VM and WM, are random. One possibility is to use a 
so called robust formulation (see [9]), i.e. to enforce that the constraints will hold for any 
possible value of the random parameter. This results in the following formulation: 

minimize Va + Vb+P-yE (5.3.1) 
Va,yb,VE 

subject to - ya - 2yb + logvM(0 ~ logo"M < 0, V£ £ S, (5.3.2) 

-ya- 3y 0 - yE + log wM(€) - log 5M < 0, V£ e S, (5.3.3) 

-ya + yb- l ogr M < 0, (5.3.4) 

l oga L < ya < loga^, \ogbL <yh<\ogbu, logE L < yE < l ogE v , (5.3.5) 

where ^ is a random outcome from a sample space S. This formulation is best suited for 
situation, when the violation of the constraints would have disastrous consequences. 

Given our scenario generation procedure, the robust formulation requires us to find the 
scenarios that result in the highest values of VM and WM, and then optimize the design 
with respect to these extreme values. The generation procedure allows for point loads 
(setting all 4 point of the trapezoid into a single point) and the magnitude of the point 

file:///ogVM
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load is restricted to 15, 000 N by the normalization step. This allows us to find the worst-

case scenarios simply by using the formulas for the deflection and stress of a fixed beam 

under point load (these can be found in [86] and [113]). The analysis of the worst case 

situations is carried out in the Appendix B. 

5.4 | Chance Constraints and Probabilistic Robust 
Design 

The issue with the robust formulation is that it produces solutions that may be overly 

conservative. A different approach is to allow the possibility, that some of the constraints 

are violated, provided that the probability of violation is small. This corresponds to the 

following chance constrained (or probabilistic constrained, see [98]) formulation of the 

problem: 

minimize Va + Vb+P • VE (5.4.1) 
Va,yb,VE 

subject to P ( - ^ - 2 ^ + l o g ^ ( 0 - l o g c x M < 0 , \ _ £ > ( 5 A 2 ) 

\-ya - 3y b -VE + k>gwM(0 ~ log 5M < 0/ 

- y a + yb-logrM < 0, (5.4.3) 

logOL < ya < log a^, log&L < yb < log 6^, log EL < yE < log Ev, (5.4.4) 

where 1 — e is the reliability level (or, alternatively, e is the allowed violation probability). 

Except for some special cases, the formulation (5.4.1)-(5.4.4) is hard to solve exactly (see 

[98]). 

One of the standard approaches (see [69]) to get an approximate solution is to fix 

the reliability level e, draw a large number S of scenarios and construct a mixed-integer 

program, where for each scenario we have a binary decision variable, that corresponds to 

that scenario being neglected or not. One of the constraints then requires that we neglect 

less then eS scenarios. This method is clearly constrained by our ability to solve large 

mixed-integer programs. One of the most recent of the multiple approaches for solving 

the mixed-integer formulation was developed in [1]. 

In this paper we use a different approach based upon a method called Probabilistic 

Robust Design (see [19], [21] and [22]). This approach requires only that the objective 

is a convex function and that the constraint functions are convex for any realization of 

£ - there are no other restrictions on the position of the random variable (such as only 

right-hand side, linearly perturbed, etc.). The first part of the method is, again, to draw 
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a large number S of scenarios (denoted by s) and solve the following problem: 

minimize ya + Vb+ P • UE (5.4.5) 
ya,yb,VE 

subject to -ya - 2yb + logvM(s) - log O M < 0, s = l,...,S, (5.4.6) 

- Va ~ - yE + log wM(s) - log (5M < 0, s = l,...,S, (5.4.7) 

-ya + yb-logrM < 0, (5.4.8) 

l oga L < ya < log a^, logb L < yb < log bv, log EL < yE < log Eu, (5.4.9) 

where the 2S constraints (5.4.6) and (5.4.7) can be reduced to the following 2 constraints: 

-ya- 2yb + max(logvM(s)) - log O M < 0, (5.4.10) 

-ya~ - yE + max(log wM(s)) - logOM < 0. (5.4.11) 

For a high enough choice of S, the optimal solution to (5.4.5)-(5.4.11) yields a feasible 
solution for the chance constrained problem (5.3.1)-(5.3.5) with high probability (see [19]). 
As investigated in [87], the approach tends to be overly conservative (i.e., the feasibility 
result holds, but we get a solution that is far from optimal for the chance constrained 
problem). 

The result regarding optimality for this approach was added in [21], where the idea of 
discarding scenarios was developed. The main idea is, in addition to drawing S scenarios, 
to determine a number k < S, such that if we remove any k scenarios, the optimal solution 
of this modified problem is, again, feasible for the chance constrained problem with high 
probability. Furthermore, if the k scenarios are removed in an optimal fashion (i.e., we 
select those whose removal decreases the optimal objective value the most), there is a 
direct link between the optimal solution of the modified problem and the optimal solution 
of the chance constrained problem (in the sense that we get closer the more scenarios S 
we draw). Although this basically recovers the standard mixed-integer approach discussed 
above, there is a crucial difference in how the scenario-removal is achieved. 

As discussed in [21], we can remove the k scenarios at once (the mixed-integer variant) 
or we can use a greedy approach that removes just one scenario at a time. In our case, 
the greedy approach makes perfect sense - there are only two scenarios (called support 
scenarios in [22]) whose removal can decrease the optimal objective value of (5.4.5)-(5.4.11): 

si = argmax(log VM(S)) and s2 = argmax(logtt>M('S))-
s s 

To determine, which one of the two scenarios should be removed, we must solve two 
additional linear problems (with s\ or s2 temporarily removed) and compare their optimal 
objective values - this is repeated k times. The individual optimization problems have 
three variables and differ only in the value of one coefficient in (5.4.6) or (5.4.7) and as 
such can be efficiently solved by warm-starting the optimization algorithm with the last 
solution. 
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There is one different approach we will discuss, and that is the approximation of the 

joint chance constraint (5.4.2) by individual chance constraints: 

P(-Va ~ 2Vb + logujif ( 0 - logciM < 0) > 1 - ei, (5.4.12) 

P(-Va - 3y b -VE + logwM(0 - log<5M < 0) > 1 - e2, (5.4.13) 

which become 

-ya- 2yb + ^ ( l - ei) - l o g a M < 0, (5.4.14) 

- ya - 3yb - yE + - e2) - logSM < 0, (5.4.15) 

where and are the (empirical) quantile functions of logVM(Q and log WM(Q, and 
ei, e2 > 0 are appropriately chosen. The problem then becomes: 

minimize ya + Vb + P • VE (5.4.16) 
Va,yb,VE 

subject to -ya-2yb + $-1(l-e1) - l o g a M < 0, (5.4.17) 

-Va- 3y b - y s + $ - x ( l - e2) - log<5M < 0, (5.4.18) 

-Va + Vb-^ogrM < 0, (5.4.19) 

l oga L < y a < log ay, \ogbL < yh <\ogbv, log EL < yE < log Eu. (5.4.20) 

The choice of ei and e2 is crucial - simply setting e\ = e2 = e does not guarantee that the 

reliability of the optimal solution of (5.4.16)-(5.4.20) is better than 1 — e (see Fig. 5.4). To 

obtain a safe approximation of the joint chance constraint (5.4.2), ei and e2 must satisfy 

(see [81]): ei + e2 < e, the simplest values being ei = e2 = |. 

5.5 | Numerical Results 
Our goal is to obtain a trade-off curve between the optimal objective value (the weight 

of the beam) and the reliability of the design. To achieve this we used our scenarios 

generation technique to draw two large sets of scenarios, where the first one contained Si 
and the second S2 scenarios. The first one was used for the optimization part (i.e. solving 

(5.4.5)-(5.4.11)), the second one was used for the estimate of the reliability level e. The 

method proceeded as follows: 

0. Generate the two sets of scenarios. 

Repeat k times: 

1. Solve (5.4.5)-(5.4.11) using the first set of scenarios. Obtain an optimal design. 

2. Estimate the reliability of the design using the second set of scenarios: given a 

design in the form of a, b and E, the constraints (5.4.6)-(5.4.7) either both hold, 

or at least one of them does not hold. This outcome describes a binomial random 

variable - compute its point estimate (a fraction of scenarios for which at least 

one of the constraints did not hold) and its 99.9% confidence interval (using the 

Clopper-Pearson interval). 
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3. Determine, which one of the two support scenarios to remove, and delete it from 
the first set of scenarios. Return to 1. 

The problem setting under the numerical investigation was as follows: the length of 
the beam I = l m , number of elements for the F E M formulation N = 1,000, objec­
tive coefficient p = \, limits on the variables ay = by = 1 0 _ 2 m , ay = by = 1 0 _ 1 m , 
Ey = 1.9-10 5MPa and Ey = 2.2-10 5MPa, maximum stress aM = 120 M P a , maximum 
deflection 8M = 5-10 _ 4 m, maximum ratio between the variables VM = 5, number of sce­
narios in the first set S i = 50,000, number of scenarios in the second set S2 = 100,000, 
number of scenarios to discard k = 2,500. 

The number of elements was chosen such that the length of one element d = = 
1 0 _ 3 m results in accuracy 0 ( 1 O - 6 ) of the F E M approximation, which is roughly of the 
same order as the accuracy of the optimization algorithm (termination criteria for optimal-
ity), that was set to 10" 7 . The accuracy of the F E M was checked using the analytic results 
in the Appendix B and using A N S Y S (commercial engineering simulation software, see 
[106]). The F E M formulation was programmed and solved in M A T L A B , the optimization 
parts were computed using the C V X modeling system (see [39] and [40]). 
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Fig. 5.4: The trade-off between reliability and optimal objective value. 

In Fig. 5.4 is depicted the trade-off between the reliability level e and the optimal 
objective value using the two approaches (5.4.5)-(5.4.11) and (5.4.16)-(5.4.20). In the first 
approach we gradually remove the scenarios (upto k = 2,500) - the computational time 
for each iteration (two optimization problems, scenario removal) was around 0.4 s. In the 
second approach (5.4.16)-(5.4.20) we vary the values of e\ = e2 between 0 and 0.05 - the 
computational time for each value was around 0.2 s. Furthermore, used a grid of 1,001 
steps for ei and e2 between 0 and 0.05 and computed the results for all of these grid values 
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(they fill the grey area in Fig. 5.4), this took 45 hours. The robust solution was computed 
using the results in the Appendix B (maximum point loads in \l and ^l). 

The comparison between the two methods favours the scenario-removal one (5.4.5)-
(5.4.11) over solving (5.4.16)-(5.4.20) with ei = e2, as it produces designs with better ob­
jective value. For example, given the target (point estimate of) e = 0.01, the closest design 
produced by (5.4.16)-(5.4.20) is for ei = e2 = 0.008, with the objective value 1.776-104, 
whereas the method using (5.4.5)-(5.4.11) with k = 568 deleted scenarios achieved the 
objective value 1.769-104. Moreover, the scenario-removal method (5.4.5)-(5.4.11) pro­
duced as good solutions as the best ones using the grid values for ei and e2 and solving 
(5.4.16)-(5.4.20). 

The shape of the trade-off heavily depends on the distribution of h(x) (and, conse­
quently, on the distribution of VM and WM)- For the computation we used the scenario 
generation described earlier, which was constructed ad hoc to demonstrate the method. 
In a real situation (e.g., the one in [62]), the scenario generation will be swapped for the 
particular problem-specific outcomes. 

5.5.1 | Addit ional Computations 

The results in this subsection were not included in the original paper, but are rather 
interesting. At first, the "grid computations" were at first carried out on a sparser grid 
with only 51 steps - the resulting 2,601 optimization problems took roughly over half the 
time required for computing the scenario removal approach (2,500 removed scenarios, two 
optimization problems in each step). The results of this computation can be seen in Fig. 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 
reliability level e 

Fig. 5.5: The trade-off between reliability and optimal objective value. Sparser grid. 

5.5 - there are quite large "gaps", especially for low values of the estimated reliability 



C H A P T E R 5. C H A N C E CONSTRAINED OPTIMAL B E A M DESIGN: C O N V E X 
80 REFORMULATION AND PROBABILISTIC ROBUST DESIGN 

level. Furthermore, although the minimal points (the ones most to the left and down -
the best ones) were as good as the comparable points obtained by the scenario removal, 
the grid method produced a lot more "bad points" than it produced "good", or "close to 
good" ones. 

This became even more apparent when we increased the number of steps from 51 to 
1,001. The Fig. 5.5 shows this in more detail - the individual points obtained from the grid 
are plotted with a very transparent grey color, revealing a much "denser" concentration 
of grid points quite far away from the ones obtained by the scenario removal. 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 
reliability level e 

Fig. 5.6: The trade-off between reliability and optimal objective value. Denser grid. 

5.6 | Conclusion 

In this paper, we have presented new reformulation for the optimal beam design problem, 
that serves as a test example for a larger set of problems solvable by similar techniques as 
presented. This reformulation leads to a geometric program and as such can be solved to 
global optimality. We then used this reformulation and extended the problem by consid­
ering randomness in the load and presented the robust and chance constrained problems. 
The chance constrained variant was handled by the Probabilistic Robust Design approach. 
For the given scenario generation procedure we computed the trade-off between reliability 
and optimal objective value. Further research will be focused on situations, when the 
cross-section of the beam is not rectangular and the reformulation results in a possibly 
non-convex problem. 
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Appendix 

A . The Analyt ic Solution 

Here we derive the analytic solution for (5.2.13)-(5.2.14). We use the same convex refor­
mulation as in (5.4.1)-(5.4.4) to derive an equivalent linear program: 

minimize ya + Vb (5.6.1) 

subject to — ya — 2yb + log —— < 0, (5.6.2) 

l oga L < ya < logau, log bL < yb < log bu- (5.6.3) 

0. a) If log ^ < log ai + 2 log bu, we are done, a* = au, b* = &£. 
b) If log ^ > log au + 2 log bu, the problem is infeasible. 

1. Otherwise, we need ya,yb : ya + 2yb = log ^ , log a L < ya < logau,logbL < Vb < 

log bv. 
2. The K K T conditions: 

A i ( l oga L - ya) = 0, A 2 ( log6 L - Vb) = 0, A 3 ( y a - log au) = 0, \±(yb - logbu) = 0, 
(5.6.5) 

log aL<ya< log av, log bL<yb< log bv, ya + 2yb = log — , Aj > 0, i = 1,... , 4. 
C M 

(5.6.6) 

3. From complementary slackness condition (5.6.5) we get 16 different possible situa­
tions - corresponding to a or 6 being at the specific bounds. From the outset it is 
clear that the variables cannot be at the lower and upper bound at the same time: 
Ai and A3 cannot be both nonzero, the same holds for A2 and A4. This rules out 7 
possibilities. 

4. If Ai = 0, A 2 = 0, A 3 = 0, A 4 = 0, from (5.6.4) we have 

v = — 1, from the first row, v = , from the second row, 
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which is not possible. This means that there cannot be an optimal solution such 
that ay < a* < ay and by < b* < by at the same. 

5. If A i > 0, A2 = 0, A3 = 0, A4 = 0, i.e. a* = ay, y* = loga^. From (5.6.4) we have 

v = - \ A 1 = i > 0 , 

meaning that y\ = \ log a

v ™ and b* = eyi> = Ja

v™ is a possible solution, provided 
aLaM V aLaM 

bL<b* < by. 

6. If Ai > 0, A2 > 0, A3 = 0, A4 = 0, i.e. a* = ay, b* = by. This is the situation in 0. a). 
7. If A i > 0, A 2 = 0, A3 = 0, A 4 > 0, i.e. a* = ay, b* = by. From (5.6.4) we have 

A i = l + i />0=>i />— 1, A 4 = — 1 — 2b> > 0 ^> 1/ < — -, which is possible. 

This is the (arguably rare) situation when loga^ + 2 log by = log 

8. If A i = 0, A2 > 0, A3 = 0, A4 = 0, i.e. a* = ay. From (5.6.4) we have 

v = —1, A2 = —1 > 0, which is not possible. 

9. If A i = 0, A 2 > 0, A 3 > 0, A 4 = 0, i.e. a* = ay, b* = by from (5.6.4) we have 

\s = —1 — is > 0 is < —1, A2 = l + 2 i />0=>i />— - , which is not possible. 

10. If A i = 0, A 2 = 0, A 3 > 0, A 4 = 0, i.e. b* = by. From (5.6.4) we have 

v = — -, A3 = — - > 0 , which is not possible. 

11. If A i = 0, A 2 = 0, A3 > 0, A 4 > 0, i.e. a* = ay, b* = by. From (5.6.4) we have 

\s = —1 — is > 0 is < —1, X4 = — 1 — 2v > {) => v < — -, which is possible. 

This is the situation when log ay + 2 log by = log ^ . 
12. If A i = 0, A 2 = 0, A 3 = 0, A 4 > 0, i.e. b* = by. From (5.6.4) we have 

v = — 1, A 4 = 1 > 0 , which is possible, y* = log 2

 M , a* = 2

 M . 
VyCFM bjjGM 

B . Worst Case Deflection and Stress for Point Load 

The following results are using the known formulas for deflection and bending moment for 
fixed beam under a point load that can be found in [86] and [113]. The Fig. 5.7 depicts 
the situation and provides a graphical description of the used notation. 

The maximum deflection of a fixed beam under point load is computed by the following 
formula (can be found in [113], p. 190): 

9 r r / 3 / 2 
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H 

Fig. 5.7: Point load. 

where la and lb correspond to the location of the point load (la + = I), I is the moment 
of inertia of the cross-section and E is the Young modulus. In our case / air'' 

12 . If we 
look at (5.6.7) as a function of the location la of the point load, its maximum occurs when 

la — lb — 2^' 

The maximum stress for each point x £ [0,1] in the beam can be expressed in the 
following terms: <JM(X) = ^J^-I/M, where M{x) is the bending moment and yu = ±|-
This allows us to use the formulas for maximum bending moment of fixed beam under 
point load to find the critical points (the signs in the formulas are neglected, since the 
constraint (5.2.3) restricts the absolute value of the stress). The bending moment of a 
beam under point load changes linearly between the points 0, la, and I, so it suffices to 
compute the bending moment in these three points. Given a point load at x = la bending 
moment at the ends of the beam {x = 0 and x = I) is 

left end: M(x = 0) = ^fi, right end: M(x = I) - H*°LH 

I' 

the maximum occurs when la = ^l (or la = ^l) resulting in Mix = 0 or x = I) = -§jlH. 
2f{l2l2 

The moment at the location of the point is M{x = la) = —jw^, for which the maximum 
occurs when la = h = \h resulting in Mix = ^l) = \lH. This means that worst case 
occurs, when the point load is located in la = hi or la = \l. 
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