
CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE

FACULTY OF ENVIRONMENTAL SCIENCES

MASTER THESIS

Development of a tool for digital terrain

analysis

Supervisor: Ing. VojtěchBarták, Ph.D.

Diplomant: Daria Rapoport

Prague 2016

3

Declaration

I hereby declare that work presented in this diploma thesis is entirely done by myself.

The used literature and sources are stated in the attached list of references.

Prague, 19
th
 of April 2016____________________

Daria Rapoport

4

Acknowledgements

I would like to thank my superviserIng. Vojtěch Barták, Ph.D. for being

patient with such a “nightmare” student, providing me with valuablesuggestions,

comments and criticisms and supplying me with diploma thesis of previous

diplomantPetr Novák, which helped me a lot in developing new tools.

Special thanks to my dear husband Andrey and daughter Iliana and all my

family and friends for moral support, understanding and love.

Prague, 19
th
 of April 2016____________________

Daria Rapoport

5

Abstract

Component of many hydrological applications using digital terrain models is

thecalculation of flow accumulation and specific catchment area, which are broadly

used conceptions in hydrological modelling.

The goal of this diploma thesiswas a proposal of tools for calculation of flow

accumulation and specific catchment area by Multiple Flow Direction (MFD)

algorithm as more appropriate for many hydrological applications then Single Flow

Direction algorithm built-in in ArcGIS. The toolset should serve as an educational

and research tool at the Faculty of Environmental Sciences, CULS, but not only

there.

The theoretical part of the thesis gives examples ofdigital terrain models

applications in general and in hydrology, summarizes basic methods that define flow

direction and flowaccumulation of surface runoff in grid-based terrain models and

their significance for hydrological modelling. Selected methods and their

implementations are described indetails in methodological part of the thesis. The

tools were created in Python language and maybe used in ArcGIS interface.

The functionality of the toolset was tested on a coarse-resolution

hydrologically correctdigital terrain model of basin Moravian Dyjeand simulation

results has been extensively compared to those produced by Single Flow direction

algorithm.

It is suggested that created toolset would bedeveloped further in direction of

calculation of additional related terrain attributes(e.g.Topographic Wetness Index),

river network extraction with MFD, dealing with flat and sink areas in input DEM,

and other flow direction algorithms implementation.

Keywords: ArcGIS, Digital terrain analysis, Multiple Flow Direction, GIS,

Python

6

Content

Content .. 6

1 Introduction ... 8

2 Aims of Diploma Thesis .. 9

3 Literature Review ... 10

3.1 Introduction to DTM .. 10

3.1.1 DEM types .. 11

3.1.2 Errors in DEM ... 12

3.1.3 DTM Applications ... 14

3.1.4 Attributes derived from DEM... 15

3.2 Basic terms or understanding drainage systems ... 19

3.3 Hydrologicall modelling with DEM ... 20

3.4 Flow routing algorithms ... 22

3.4.1 D8 ... 24

3.4.2 Rho8 ... 27

3.4.3 MFD .. 27

3.4.4 KRA ... 29

3.4.5 DEMON... 32

3.4.6 ϯ.ϰ.6. D∞ .. 35

3.4.7 MD∞ .. 36

4 Methodology .. 37

4.1 General course of action .. 37

4.2 Used Software .. 37

4.2.1 ArcGIS 10.3 ... 37

4.2.2 Python .. 37

4.3 Choosing of tasks and used algorithms.. 38

4.3.2 Determination of flow directions – MFD ... 39

4.3.3 Flow simulation .. 41

4.3.4 SCA calculation ... 43

4.3.5 Data analysis .. 44

5 Results .. 45

5.1 Toolbox description ... 45

7

5.2 Scripts documentation ... 50

5.2.1 MFD.py ... 50

5.2.2 Fdisp.py .. 51

5.2.3 FSmfd.py .. 51

5.2.4 PaD.py .. 51

5.2.5 Influence_map.py .. 52

5.2.6 nColRow.py .. 52

5.2.7 ContourLength.py .. 52

5.2.8 rta.py .. 53

5.2.9 Heap.py .. 53

5.2.10 MFD_code_calculator.py ... 53

5.3 Demonstration of developed tools .. 54

5.3.1 Used data ... 54

5.3.2 Determination of flow direction .. 55

5.3.3 Flow simulation .. 59

5.3.4 Influence map .. 67

5.3.5 SCA calculation ... 68

6 Discussion ... 72

7 Conclusion .. 73

8 References ... 74

Appendix .. 77

A.1. MFD.py .. 77

A.2. Fdisp.py ... 80

A.3. FSmfd.py ... 82

A.4. Influence_map.py ... 86

A.5. nColRow.py ... 91

A.6. PaD.py ... 93

A.7. ContourLength.py ... 96

A.8. rta.py (taken unchanged from Novak, 2015) ... 99

A.9. Heap.py (taken unchanged from Novak, 2015) .. 99

A.10. MFD_code_calculator.py .. 101

Attachments: content of attached CD ... 103

8

1 Introduction

Determination of flow direction plays a key role in all steps of hydrological analysis

based on Digital Elevation Models: detection and filling of sinks, calculation of flow

accumulation and contributing area, delinating of watershed and detection of likely

paths of toxic material (Gruber&Peckham, 2009; Mitchell, 2012,

Resources.arcgis.com, 2015).

ArcGIS is one of the most popular user-friendly software, which permits to perform

hydrological analysis, but among different flow routing algorithms only Single Flow

Direction or D8 (O‟Callaghan&Mark, 1984) is built-in in ArcGIS. TauDEM (Terain

Analysis Using Digital Elevation Models) is ArcGIS Toolbox developed by

Tarboton, which allows to calculate flow direction and contributing area by other

single flow direction algorithm D‐infinity (Tarboton, 1997) (Utah State Unversity,

2016).

Single Flow Direction algorithms have their limitations, especially in calculating of

flow accumulation and specific catchment area (SCA), which are extremely

important concepts for a calculation of range of hydrological indices. SCA is used

extensively as a discharge indicator, thus broadly used in hydrology and

geomorphology in studies of hillslope hydrological response, channel location, soil

water content, landslide risk, long-term basin evolution and vulnerability to pollution

(Costa-Cabral&Burges, 1994). Multiple Flow Direction algorithm (Freeman, 1991;

Quinn et al., 1991) gives better SCA patterns then D8, especially on hillslopes, where

natural divergence of flow occurs.

As no publicly-available ArcGIS Toolboxes with implemented Multiple Flow

Directions algorithms so far exist, creation of such toolbox could greatly extend

ability to use ArcGIS in hydrological analysis.

9

2 Aims of Diploma Thesis

Main goal of the diploma thesis is to create ArcGIS toolset for calculation of flow

accumulation by Multiple Flow Direction algorithm (Freeman, 1991).

To achieve the goal several tasks have to be performed:

1) Write a literature review on basic flow routing algorithms, their applications

in hydrology, advantages and disadvantages and methods for their

comparison

2) Learn basics of programming language Python in general and its usage for

ArcGIS, learn how to work with raster datasets

3) Write scripts and create tools for determination of flow direction, flow

accumulation and specific catchment area by Multiple Flow Direction

algorithm

4) Compare results of flow simulation obtained by SFD and MFD algorithms on

chosen dataset

10

3 Literature Review
3.1 Introduction to DTM

Digital Terrain Model (DTM) is a representation of terrain surface in digital

form. There are several similar terms for digital terrain models.According to Mach

and Petschek (2007), Digital Terrain Model (DTM) is pure geometric information of

the terrain surface and is also called Digital Elevation Model (DEM). Digital

Landscape Model (DLM) or Digital Surface Model (DSM)in addition include

description of buildings and vegetation.

DEM is digital or numeric representation of topography (elevations as a

function of geographic location) (O‟Callaghan&Mark, 1984; Garbrecht&Martz,
2000) or a computerized representation of the Earth„s relief, when the elevation

information is represented as elevation data in a digital format (Sulebak, 2000).

Mach and Petschek (2007) give a history of terrain representation models

starting with the use of perspective for realistic 3-D depicting of terrain in Leonardo

da Vinci‟s maps of Tuscany in 150β-1503, through the 1st using of contour lines by

Pieter Bruinss in 1584 for his sea charts in Netherlands, then the use of shading and

coloring of height layers without side view in 19th century and, finally, the 1st DEM

creation by Miller and Laflamme in the Photogrammetry Laboratory of the Civil

Engineering Department of M.I.T. in the late 50s of 20th century with the intention

of its employment in road construction.

The basis of DTM creation are aerial images and stellite photos(Mach and

Petschek, 2007) It is so-called remote-sensing in contrast to on site observation or

obtaining of information without physical contact by using special sensors placed on

helicopters, planes, and satellites, which measure an object's transmission of

electromagnetic energy from reflecting and radiating surfaces (Pidwirny, 2006). For

many parts of the earth„s surface analogue contour maps are alredy exist, and are

stored in digitized form (O‟Callagan&Mark, 1984).

There is number of commercial and state providers of DEM data of different

quality, obtained using different methods including new technologies such as Laser

Altimetry (LA) and Radar Interferometry (RI). For example, in the United States the

most widely available DEMs are distributed by US Geological Survey (USGS).

USGS DEMs have different quality levels: 1) data obtained from National

Photography programs with the maximum vertical Root Mean Square Error (RMSE)

of 15 m (7m as the targeted accuracy standart); 2) processed data sets smoothed for

consistency with removed systematic errors, with the maximum RMSE of one-half

of the original map contour interval; 3) data derived from hypsography (contours,

spot elevations), hydrography (lakes, shorelines, drainage) and others features (ridge

lines, main transporation featuers) with the maximum RMSE of one-third of the

contour interval. Level 2 data are now the most available now (Garbrecht&Martz,

2000).

Level 1 data sets associated with manual profiling of photogrammetric stereo-

models often display east-west striping patterns that make them unsuitable for

drainage features parameterization as first, outlines of drainage features (depressions,

drainage paths) are not well defined, second, drainage paths are biased towards east-

west, third, north-south flow path can be blocked by this striping creating artificial

11

depressions. An elevation difference even of 1-2 meters can greatly affect flow path

and runoff characteristics (Garbrecht&Martz, 2000), thus level 1 data sets are not

good for drainage investigations.

Another important feature of DEM data is vertical resolution and horizontal

to vertical resolution ratio, which is important for the calculation of a slope. Since

DEM elevations are generally in integer meters, the computed slope takes only a

limited number of discreet values. This becomes problematic for low relief landscape

leading to artificial pits and flat areas calculation with lack of downslope flow paths,

which leads to incomplete drainage pattern definition (see3.1.2.Errors in DEM)

(Garbrecht&Martz, 2000). Level 1 and level 2 data both have coarse resolution

(precision of data) and broad accuracy standards for the elevation, which makes

surface drainage modelling difficult in low relief landscapes, as is derivation of such

parameters as slope and curvature.

3.1.1 DEM types

Different DEM formats exist, among the most usual are triangulated

irregular networks (TIN), regular grids, contour lines and scattered data

points(O‟Callaghan&Mark, 1984; Quinn et al., 1991; Tarboton, 1997; Sulebak,

2000). TIN and contour lines are continuous models, while grid DEM is a discrete

model (Freeman, 1991).

Usually initially we have scattered points of known elevation values, which

should be interpolated to one of the three model structure: contours, TIN or grid.TIN

is original scattered point, which is connected by irregular triangles constructed

usually using Delauney triangulation(Figure 3.1.) (Wilson&Gallant, 2000; Wise,

2013). Contours are isolines of the same heights(Figure 3.2.). The main advantage of

contour based models is that they unambiguously define where the runoff goes –

perpendicular to contours (Holmgren, 1991).

Figure 3-1(Wise, 2013). TIN model for surface data. Triangles have been created by joining the spot heights.

Figure 3-2.(Wise, 2013). Contour-based model for surface data.

12

Grid-based DEM, other terms are cell-based DEM, raster DEM, is a matrix of

square grid cells with the mean cell elevation stored in 2-D array(Figure 3.3.). The

cell column and the row define its geographic location, provided that georeferences

(the boundary coordinates of the array) are known (Garbrecht&Martz, 2000).

Cell-based DEMs are the most common digital data of the shape of the earth's

surface (Resources.arcgis.com, 2015; Wise, 2013). Besides, square DEMs are more

preferable in comparison with the triangular pixels in distributed models, as TINs

greatly increase necessary processing giving in return little accuracy (Lea, 1992).

Raster digital elevation models (DEM) are widely used source of data in hydrology,

soil science, ecology and have great potencial because of its rapidly increasing

quality and availability (Bartak, 2009). Grid DEM data structure is commonly used

for its simplicity, processing ease, computational efficiency (Garbrecht&Martz,

β000) and wide availability (O‟Callaghan&Mark, 1984).Grid based DEMs are

uncomplicated for model programming and readily compatible with other data types,

such as satellite images (Holmgren, 1991). As grid DEM is stored as a simple matrix,

values are accessed easily without having to resort to special data structure or

interpolation procedures (Freeman, 1991).

There are some disatvantages of raster DEM models. First, raster resolution

affects the storage requirments, computational efficiency, and the quality of results.

Second, square grids cannot handle abrupt changes in elevation and skip important

details of the land surface, especially if elevation data are stored in whole meters

instead of floating point numbers. Third, computed flow paths tend to zigzag across

the landscape causing difficulties to calculate specific catchment area accurately (see

3.4.Flow routing algorithms) (Wilson&Gallant, 2000).

Figure 3-3;„Digital TopographǇ...“, 2016). Grid-based DEM. Equally spaced points in the center of each square

grid cell represent elevation of topography.

Currently, different interpolation methods exist to convert one DEM type into

other, so initial choice of data structure is not so important (Wise, 2013).

3.1.2 Errors in DEM

For a fully exploitation the DEMs should be available at sufficient accuracy,

detail, projection and format (Sulebak, 2000).The accuracy of the DEM is

determined by: 1) the resolution (the distance between sample points); 2) data type

(integer or floating point) and 3)the actual sampling of the surface when creating the

original DEM (Resources.arcgis.com, 2015).

In some situations, the automated correlation of stereophotos for elevation

matrices production, may rise errors, because they reflect the elevations of the tops of

13

vegetation or some surface features rather than the ground (Freeman, 1991).

Interpolation from scattered points will rise errors as well (Freeman, 1991).

Due to inaccuracy in the DEM, errors may occur. Errors in DEMs are usually

sinks or peaks. A sink (depression, pit) is a cell or group of cells surrounded by cells

of higher elevation, thus is an area of internal drainage. The flow will travel into the

sink but will not travel out creating a break in the stream. Thus, stream segments are

disconnected and do not form a complete network (Mitchell, 2012).Some of these

pits, howwever, may be natural, particularly in glacial or karst areas, or calderas, but

many sinks are imperfections in the DEM (O‟Callagan&Mark, 1984). Generally,

sinks with a drop of more than 30 meters from adjacent cells do not occur naturally,

except for karst and glacial areas, so it is possible to remove only sinks with a drop

greater than a certain value (such as 30 meters) (Mitchell, 2012). Sinks sometimes

occur in flat or low elevation areas, such as along wide stream channels, in marshes,

floodplains or along a coastline, so it is highly recommended to use rasters with

floating point values rather than integer to minimise sink errors (Mitchell, 2012).

O‟Callaghan&Mark (1984) confirm that most pits in fluvial landscapes are due to
data errors, especially where the overall slope is gentle (the „signal“ is weak). Sinks

in grid DEM may occur after interpolation from irregular point elevations (Quinn et

al., 1991).

The number of sinks is higher for DEM with coarser resolution and if

elevation data are stored as integers (not as numbers with a floating point),

particularly in areas of low vertical relief. For example, 1 percent of the cells in a 30-

meter-resolution DEM is to be sinks. This can increase as much as 5 percent for a 3-

arc-second DEM, the actual distance in ground units of which varies with latitude,

but, for example, in the vicinity of Southern California, measure 76.86 meters in x

and 92.36 meters in y (Resources.arcgis.com, 2015).

Likewise, peak (spike) is an area surrounded by cells of lower value, more

commonly natural and less detrimental to the calculation of flow direction

(Resources.arcgis.com, 2015).Such‚dam„ features are created eighther during
interpolation being artificially raised above ‚true„ surface, or if the grid scale is too

coarse to resolve local incised channel features (Quinn et al., 1991).

The finest resolusion DEMs will ensure accuracy of the hydrological analyses

results. For study area at the county or regional level, a DEM with 10 or 30 meters

cell size will suffice. Most publicly available DEMs need to be processed before

using them – errors such as sinks should be identified and fixed (Mitchell, 2012).

Such errors, especially sinks, should be removed before using DEM for

deriving any surface information, like slope and aspect calculation and flow direction

determination (Resources.arcgis.com, 2015). Peaks as well as sinks to some extent

can be mitigated by smoothening the surface using special filtering tools, but some

details may be lost in the process. Usually sinks are „filled“: the cell value is changed
to the lowest value of surrounded cells, so water no longer accumulates in the cell

(Mitchell, 2012). It is done in an iterative process, as the boundaries of the filled area

may create new sinks, which then need to be filled (Resources.arcgis.com, 2015).

Natural sinks should be flagged to avoid removing in DEM preprocessing as

well(O‟Callaghan&Mark, 1984), so user should be accostomed to the real
geomorphology of the area he is working with.

14

Flat spots are groups of points with equal heights resulted from storing

elevation data in integers instead of floats, interpolation from close cotours or from

some mehods of eliminating sinks (Freeman, 1991). Different approaches for

handling flat areas, when determining flow accumulation, exist (e.g. approach

adopted by Jenson and Dominigue (1988))

Dealing with the natural flat areas in DEM, such as lakes or ocean, GIS will

attempt to calculate drainage channels across these flat areas. To avoid this, such

areas are assigned NoData, so no calculation will occur (Mitchell, 2012).

DEMs may also contain striping artifacts, a result of systematic sampling

errors when creating the DEM, the most noticeable on integer data in flat

areas(Resources.arcgis.com, 2015).". Artifacts in general are spatially structured

errors of a systematic nature (Albani and Klinkenberg, 2003).Striping can be

described as successive ridges and valleys, usually oriented approximately East-

West, that run through the elevation model. Such striping is an artifact of a data

collection technique known as Manual Profiling, prone to systematic errors (Russell,

Kumler & Ochis, 1995).Before using these data forapplications such as slope

analysis, watershed delineation, water flow patterns, or landscape rendering, DEMs

must be filtered. For now, different destriping methods exists, e.g. Fast Fourier

Transform (Russell, Kumler & Ochis, 1995) or spatial filtering algorithmfor treating

vertical striping (Albani and Klinkenberg, 2003).

3.1.3 DTM Applications

The knowledge of the surface topography is essential in process modeling in

hydrology, climatology, geomorphology and ecology, and is a prerequisite for many

applications in civil and military agencies, in industrial areas like

telecommunications (specifically, radio wave propagation), navigation, disaster

management (prevention,relief, assessment), transportation andinfrastructure

planning (Sulebak, 2000). For example, distributed watershed models, used for

investigation of hydrological processes and water related problems, require such

parametrs as channel network configuration, channel lengths and slopes and others,

which can be obtained from DEM (Garbrecht&Martz, 2000). Hydrological

parameters extracted from DEMs such as flow path and slope are used as inputs into

rainfall-runoff model for flood forecast (Sulebak, 2000).Generally, an accurate

distributed model must reflect proper flow pathway and spatial and temporal

variations in flow velocity, which are the function of the gravitational potentials

defined by the topography in catchmets dominated by surface flow processes, which

makes DEM a powerful mean for hydrological modelling in such areas. Surface flow

dominates at valley bottoms, while elsewhere in the catchment, a deeply weathered

soil and deep water table mean that the surface topography may not be a good

indicator for flow pathways (Quinn et al., 1991).

According to Weibel and Heller (1991, exMach and Petschek, 2007, p.6), five

fields of terrain models applications can be defined, and Mach and Petschek (2007)

added the 6th field:

1) Surveying and photogrammetry

2) Civil engineering and landscape architect

3) Resource Management

4) Geology and earth sciences

15

5) The military

6) Game industry

Sulebak (2000) gives another classification of DTM applications with vast

examples in different areas:

 Scientific applications (e.g. in the fields of ecology and

wildlife management, hydrological modelling, geomorphology and landscape

analysis, climatology, mapping)

 Commercial applications(e.g. in telecommunication, air traffic

routing and navigation, planning and construction of roads, railway tracks,

gas pipelines etc., geological exploration, hydrological and meteorological

services including risk assessment for insurance companies, geocoding of

remote sensing and market of multimedia applications and computer games)

 Industrial applications (in telecom for positioning of radio

towers, intelematics for car navigation systems and transportation network

planning, in avionics for collision avoidance and flight management systems

and training flight simulators, inmining andmineral exploration for promising

regions determination, in tourism for virtual cruise over the terrain of region

of interest)

 Operational applications (e.g. in regional planning for location

of infrastructure developement and investment, for finding of ground

drinkingwater sources in arid regions, in forest planning and management for

calculation of slope and respective erosion process due to clear cutting of hill

slopes, for aspect computation and solar insolation effect on forest growth,

for breakwater location along the coastlines, for detection of risk areas of

rock fall and avlanches to prevent building constructions or start protection

actions, in disaster management for damages and changes analysis or location

of spots for dropping of aid supplies).

 Military applications

Topographic analysis of DEM in hydrology is typically used as

surrogate for the spatial variation of hydrological conditions (topographic

indices) and flow routing (Seibert&McGlynn, 2007). Topographic attributes

are used for quantitative spatial predictions of specific soil properties,

landslides, vegetation and land cover types, for landform classifications

(Wilson&Gallant, 2000), hazard mapping (ice/avalanches, debris flow) in

steep terrain (Gruber & Peckham, 2009).

3.1.4 Attributes derived from DEM

Topography plays an important role in distribution of energy and water on the

land surface. As quality and resolution of DEM data as well as GIS capabilities is

increasing, DEM serves as the main source for automated topographic parameters

extraction. For example, distributed watershed models, used for investigation of

hydrological processes and water related problems, require such parametrs as

channel network configuration, channel lengths and slopes and others, which can be

obtained from DEM (Garbrecht&Martz, 2000). The accuracy of these topographic

properties is a function of, firstly, DEM quality and resolution, and secondly, DEM

processing algorithms used for these properties extraction (Garbrecht&Martz, 2000).

16

These parameters or attributes can be divided into primary terrain attributes

(e.g.slope, aspect, horizontal and vertical curvature)(Table 3.1.), which are derived

directly from the elevation data,and secondary or compound terrain attributes (e.g.

topographic index or wetness index of soil saturation) (Table 3.2.), which are derived

from the primary ones (Moore et al., 1991).

Seibert and McGlynn (β007) use term “topographic indices” rather than
“terrain attributes”, dividing them into locally determined (elevation, slope, aspect,

curvature, upslope contributing area etc.) and combinations of indices (topographic

wetness index), which are basically equivalent terms for the primary and secondary

terrain attributes respectively.

Primary attributes describe the morphometry and catchment position, while

secondary attributes describe patterns as a function of process – they quantify role of

topography in water redistribution or in recieved solar radiation modification, which

in itc turn, affect characteristics of soil, flora and fauna (Wilson&Gallant, 2000).

For example, topographic wetness index (TWI) ln(a/tanȕ) reflects the
tendency of water to accumulate at any point of the catchment (in terms of a –

cumulutive upslope area draining through the point per unit contour length(see

3.2.Basic terms or understanding drainage systems) and the tendency for

gravitational forces to move water downslope (in terms of tanȕ as an approximate
hydraulic gradient (Quinn et al., 1991) or, in other words, measure of the potential

drainage from a place (Seibert&McGlynn, β007)). Values a and tanȕ in its turn

depend on the analysis of flow pathways (see 3.4.Flow routing algorithms) and grid

resolution. The higher the grid resolution, the larger the area of each cell, wich leads

to the higher percentage of higher topographic index, as low values of ln(a/tanȕ) no
longer exist (Quinn et al., 1991).

It is important to note that such primary terrain characteristic as a slope,

which is used in calculations of some other terrain attributes like TWI and in

determination of flow direction by some flow routing algorithms (see 3.4.Flow

routing algorithms), can be actually calculated in different ways. Let us consider we

want to calculate slope in central cell of grid based DEM (Figure 3.4.).

Figure 3-4(Wise, 2013). Location of cells in 3 × 3 window used for estimating surface properties at a point.

Letters stand for different elevations in the centers of pixels.

To define slope in y direction, we can use three approaches. The simplest

method is to take into calculations only the elevations from the points below and

above the central point:

, where d is grid spacing. The result will be very

dependent on the accuracy of the heights in each of the grid points.

17

Table 3-1.(Wilson&Gallant, 2000). Primary attributes derived from DEM

18

Table 3-2.(Wilson&Gallant, 2000).Some of the secondary attributes derived from DEM

19

Second method deals with the difference between the average height of the

points from the rows above and below the central point:

Third method is to fit a surface through the points in the neighborhood, which

will actually allow us to calculate slope not only of a central point but at any other

points on the fitted surface. However, interpolation method should be chosen

carefully. If we try to fit surface to every point, resulting surface may bend rather

sharp, giving additional errors in-between points. Better way may be to capture

overall trend, rather than trying to fit surface to every point. Figure 3.5. explains the

differences using example of fitting line for series of points.

Figure 3-5(Wise, 2013). Lines through a series of points. Solid line – fifth-order polynomial. Dotted line – third-

order polynomial.

3.2 Basic terms or understanding drainage systems
A drainage system is the area upon which water falls plus the network

through which it travels to an outlet. Drainage basin(known as catchment,

contributing area, drainage area,upslope area, flow accumulation, basin or watershed)

is an area of land, from which all water and other substances come to a common

outlet, or a pour point, the lowest point along the drainage basin boundary, at which

water flows out of an area.A drainage divide or watershed boundary is the boundary

between two basins (Figure 3.6.) (Resources.arcgis.com, 2015).

Figure 3-6(Resources.arcgis.com, 2015) Components of drainage basin

20

Basins differ by some hydrological and morphological characteristics: length

of water streams, waterdivide location, area of elementary subcatchments and sub-

waterdivides, slopes etc. Traditionally computation of these characteristics is based

on maps and ground-based measurements, but alternative way is use of DEM, which

can greatly speed up the process through automatization.

The total contributing area (TCA) of a contour segment is an uphill area of

terrain that contributes flow to the contour segment. Specific contributing area

(SCA) is TCA divided by contour segment length, may be interpreted as an

equivalent upslope flow path length (Costa-Cabral&Burges, 1994). SCA indicates

the amount of area flowing to a specific location, may serve as a proxy for water

flow (Seibert and McGlynn, 2007). SCA is used extensively as a discharge indicator,

thus broadly used in hydrology and geomorphology in studies of hillslope

hydrological response, channel location, soil water content, landslide risk, long-term

basin evolution and vulnerability to pollution (Costa-Cabral&Burges, 1994). Most

often in literature SCA is used for the calulation of topographic wetness and stream-

power indices or similar indices (see 3.1.4 Attributes derived from DEM).Thus,

SCA is important parameter for the determination of saturation zones, erosion and

deposition potentials, locations of headwaters of first-order streams (i.e. channel

initiations) (Wilson&Gallant, 2000).

3.3 Hydrologicall modelling with DEM
Most hydrologically-oriented digital terrain analisis (DTA) techniques are

based on models of catchment rainfall-runoff response and river basin management

needs with the main tasks of river network and catchment boundaries identification.

Some methods are based on local topology evaluation (ridges and valley lines

determination), while others are modelling of overland flow, hypotetical flow over

completely uncovered impermeable terrain after initial unit rainfall regularly spaced

over entire DEM (Bartak, 2009).

Overland flow modelling process in general consists of: 1)assignment of

water flow directions from a particular cell to one or several neighboring cells;

2)computation of flow accumulation (upslope area draining through a particular cell,

so-called contributing area) and respectively size and the position of the catchment

(Bartak, 2009).

Flow accumulation models determine where water flows and accumulates

on a terrain surface, which allows then to define stream channels and

hydrological basins and to measure the amount of rainfall runoff and respectevely

substances carried by the flow that will accumulate at a given downstream point

(e.g. watershed outlet) and how long it will take to travel there (Mitchell, 2012).

General steps for modelling flow accumulation (Mitchell, 2012):

1) Obtain the elevation surface (choose DEM of appropriate

resolution, remove errors from DEM)

2) Create the flow direction surface

3) Create the required output (drainage network, drainage area

boundaries, flow volume, travel time through a drainage area)

4) Evaluate the results

21

With ArcGIS software hydrological modelling and calculation of catchment

propertiescan be performed by using instruments Hydrology ofSpatial Analyst

toolbox and additionally created modules. The hydrologic tools allow to identify

sinks, determine flow direction, calculate flow accumulation, delineate watersheds,

and create stream networks. Using DEM as input, it is possible to automatically

delineate a drainage system and quantify its characteristics. What is more, the first

step of extracting hydrologic information, such as watershed boundaries and stream

networks, from a digital elevation model (DEM) is assigning flow direction (Figure

2) (Resources.arcgis.com, 2015). (O‟Callaghan&Mark, 1984)

Figure 3-7(Resources.arcgis.com, 2015) Hydrological modeling flowchart

Thus, flow direction plays a key role in all subsequent steps of hydrological

analysis: detection and filling of sinks, calculation of flow accumulation and

contributing area, delinating of watershed.

The ArcGIS hydrologic analysis tools are designed to model the convergence

of flow across a natural terrain surface with an assumption that the surface contains

sufficient vertical relief that a flow path can be determined (Resources.arcgis.com,

2015). Here appears the problem of flat areas. Another assumption is that for any

single cell, water can flow in from many adjacent cells but out through only one cell

(Resources.arcgis.com, 2015) as D8 flow direction algorithm is used follows an

approach presented in Jensen and Domingue (1988).

Delineating drainage channel is based on specifying a threshold or cutoff

value for flow accumulation. All cells greater than a threshold will be part of

channels. For example, if you know that in your study area a stream will form when

the drainage upstream is at least 100 hectares in size, you need to calculate how

many cells are in 100 hectares from a cell size value of flow accumulation raster, this

will be a threshold (Mitchell, 2012). This approach is based on a hydrophysical

assumption that a drainage channel appears at points at which runoff is sufficiently

concentrated that fluvial processes dominate over slope processes

(O‟Callaghan&Marka, 1984). Changing the threshold, we change the resolution of

the drainage system: the higher threshold value, the more major streams will be

identified, smaller threshold will reveal water flowing only during a rainstorm

(Mitchell, 2012). Speight (1968, from O‟Callaghan&Mark, 1984) applied the same

22

principle manually: he draw a grid on a contour map and traced a slope lines

perpendicular to the contour lines from each grid cell – cells with more than 100

slope lines were assigned to lie on a “watercourse”.

3.4 Flow routing algorithms
The first step of extracting hydrologic information, such as watershed

boundaries and stream networks, from a digital elevation model (DEM) is assigning

flow direction (Figure 3.7.) (Resources.arcgis.com, β015). (O‟Callaghan&Mark,
1984)

Moreover, most distributed catchment models require some topographic

input, many of which require flow pathways defined a priori on the basis of

catchment topography (Quinn et al, 1991). Thus, the accuracy of predictions of

distributed hydrological models partly depends on proper flow pathways

identification. For example, TOPMODEL predicts distributed moisture status on the

basis of spatial indices which depend on flow direction (Quinn et al., 1991).

Determination of flow directions in hydrology is important for defining

water, sediment and contaminants movement. Upslope area A (total catchment area

above a point or short length of contour, TCA) and specific catchment area a = A/L

(upslope area per unit width of contour L contributing to flow, SCA) are dependent

on flow direction. Specific catchment area is useful for calculating relative saturation

and runoff from the saturation excess in models such as TOPMODEL, in erosion and

landslides analysis (Tarboton, 1997). There are lots of hydrological indices that

combines SCA as a discharge indicator with other variables (e.g. ln(SCA/Slope) is

used to predict the soil moisture deficit, Slope
2
*SCA is used to predict channel

initiation by overland flow (Costa-Cabral&Burges, 1994)).

When there is not enough data, flow routing algorithms may serve as a simple

substitute for a distributed hydrological model to predict stream and catchment

locations and can form the basis of a simple sediment redeposition model to be used

in conjunction with empirically developed soil loss estimators such as the Universal

Soil Loss Equation in sediment yield modelling (Lea, 1992). A simple sediment

redeposition model for each pixel requires estimation of the delivery ratio (i.e.

proportion of sediment redeposited before reaching the outlet), which is calculated in

two components: overland redeposition and river and floodplain redeposition. The

delivery ratio during the overland flow phase (i.e. until flow reaches a principal

stream) is dependent on the length and slope of the flow path, and the overland

discharge at each pixel in the flow path, which can be estimated after implementation

of flow routing algorithms (Lea, 1992).

Designing and evaluating DEM flow direction procedures several issues

should be taken into account (Tarboton, 1997):

1) the need to avoid or minimize the dispersion (which is

important for the calculation of TCA);

2) the need to avoid grid bias due to the grid orientation;

3) the precision with which flow directions are resolved;

4) a simple and efficient grid based matrix storage structure;

5) robustness to „difficult‟ data (e.g. saddle, pits and flat areas)

23

Evaluation of flow direction algorithmcan be done by checking:

1) Consistency of channels derived by algorithm with the

channels which could be inferred from contours by experienced

geomorphologist – realistic or unrealistic patterns (O‟Callaghan&Mark,
1984)

2) Performing the analysis on different landform type, finding

“best” and “worst” case for the method (O‟Callaghan&Mark, 1984), on
artificial ideal surfaces like cone, saddle, comparing elevation contours of

analytically „real‟ case, resulting catchment area map and resulting drainage
contours (Freeman, 1991), so that square error can be evaluated quantitatively

(Tarboton, 1997).

3) Overlap proportion between analytically simulated flow

distributions and flow distributions of tested model parameters (Holmgren,

1994)

4) Performing the analysis on low and high resolution DEMs (e.g.

specific catchment area computation depends not only on calculation

procedures, but also a grid scale, which can be used for new approach

evaluation (Tarboton, 1997))

5) Accuracy of prediction of some terrain properties (e.g.

ephemeral gully locations (Desmet and Govers, 1996) or different soil

characteristics like pH, soil organic matter etc (Chirico et al., 2005)), which

are correlated to the secondary attributes dependent on accumulated area

calculation

There are different approaches for assigning of flow directions. Several

reviews on contemporary flow routing algorithms exist (Bartak, 2009;Wilson et al.,

2008), some algorithms sometimes have different names, which will be mentioned

below.

Generally, all algorithms can be divided into two main groups: single and

multiple flow direction in terms of flow routed to one or several cells. Single flow

direction algorithms are algorithms permitting only convergence of flow and they are

working well at valleys, where flow paths merge to form streams. But multiple flow

direction algorithms, in its turn, permit flow divergence, which is naturally occurring

on a cone-like divergent slopes, which are common in real world DEMs

(Seibert&McGlynn, 2007). The more exact simulation of this divergence is needed

for more precise calculation of flow accumulation (or contributing area), which is an

important parameter for calculation of many secondary topographic attributes (like

TWI, total wetness index, which is used in modelling of soil erosion).

O‟Callaghan&Mark (1984) report that multiple flows do occur naturally in flat areas,
but have no effect on drainage channel pattern within data sets studied in their

preliminary work.Too high flow dispersion though should be avoided. Upslope area

A is a total catchment area draining to a point, that is why dispersion is nondesirable

and should be minimized (Tarboton, 1997).

Algorithms can be also classified in a way, how they treat flow - as a point

source (1D) or areal source (2D).

Other, in my opinion, very important differences between existing algorithms

are how they define contour length, which is extremely important for calculation of

SCA. Even different implementations of the same algorithm can use different

24

conceptions of contour length (e.g. author of MFD algorithm Quinn (1991) writes in

his article that contour length were defined arbitrary). If the purpose is channels

demarcation based on threshold or critical support area, the different methods give

similar result, as in channels flow concentration occurs. However, if the intent is to

use SCA for distributed hydrological modelling, like runoff generation or erosion,

different algorithms will give different results, especially on hillslopes with small

values of flow accumulation. Finer DEM resolution will increase these differences.

Thus, choice of flow routing algorithm is critical in that case (Tarboton, 1997).

3.4.1 D8

First and the simplest flow directing method isSFD8 (Single Flow Direction

from 8 possibilities)orD8 (Deterministic 8)algorithm (O'Callaghan and Mark, 1984),

which routes flow from a given cell towards only one cell, the steepest of its

neighbours (Figure 3.8.). Other names are„nearest neighbour“ or „lowest neighbour“
algorithm (Lea, 1992), „the steepest descent algorithm“ (Freeman, 1991). The

steepest descent for each cell is marked by the aspect (measured in degrees clockwise

from the north) or using primary flow direction determined by the steepest slope

(Wilson et al., 2008). The slope from the cell to its neighbour is calculated as the

difference in elevations divided by the horizontal distance between the cell and its

neighbour (cell size for cardinal neighbours and cell size multiplied by √β for
diagonal neighbours), and is considered as positive downhill (Bartak, 2009). For

example (Figure 3.8), slope from the central cell to the right cell Srigth = (5-2)/1=3,

where 5 is elevation of the central cell, 2 is the elevation of the right cell and 1 is the

grid width or the horizontal distance between these two cardinal cells. Analogically,

slope from the central cell to the right lower corner cell Slowright = (5-1)/1*√β=β,8γ,
where 5 and 1 are elevations of the central and lower right cornor cells respectively

and horizontal distance between them is grid width multiplied by √β as the cells lay
in diagonal.Thus, in D8 algorithm all water from one cell enters another single cell

downslope.

Figure 3-8(Bartak, 2009) The SFD8 algorithm. The large numbers denote the elevations, the small numbers

denote the slope from the central cell, and the arrow represents the determined flow direction.

To prevent drainage channel forming at the matrix edge, edge points are

assigned as ridges or pits so no input/output paths can be generated

(O‟Callaghan&Mark, 1984).

The upslope contributing area or total catchment area (TCA) is calculated as

the number of cells whose flow reaches the cell of interest multiplied by the cell

area.Specific catchment area (SCA) is the TCA divided by contour width. In some

implementations of D8 contour width is assumed to be equal to the width of the cell

grid or raster resolution for both cardinal and diagonal directions (Quinn et al., 1991;

Gallant and Wilson, 1996), while in others, for example, in TAPES-G

software(Gallant and Wilson, 1996), flow width for diagonal directions is equal to

25

grid width multiplied by √β. Local slope of a current cell is simply assigned as the

steepest downhill slope (Quinn et al., 1991).

Thus, flow is always convergent and biased towards one of the eight possible

directions (extremly dependent on grid orientation), which is main disadvantage of

D8 (Costa-Cabral&Burges, 1994; Bartak, 2009). It can be clearly seen on artificial

surface such a cone and saddle (Freeman, 1991). On Figure 3.9. TCA and SCA on a

cone produced by D8 is compared to the true pattern: for some pixels, TCA is

overestimated by a factor of 2, while for others TCA is underestimated to the pixel

size as these pixels drain only themselves. D8 does not represent well the surface

flow over many natural terrains, especially on divergent surfaces (Freeman, 1991).

Since flow cannot be distributed to two cells, flow tends to become concentrated to

distinct, artificially straight lines. Additional problem is that the steepest gradient can

in fact fall between two of the eight possible directions (Seibert&McGlynn, 2007).

Figure 3-9.(Costa-Cabral&Burges, 1994). Flow patterns of a right circular: (a) TCA of pixels A, B, C predicted by

D8; (b) true TCA of pixels A, B, C; (c) SCA contours for D8; (d) true SCA contours

Another disadvantage of D8 algorithm is that it produces unnatural parallel

flow paths on planar surfaces (O‟Callaghan&Mark, 1984; Wilson et al., β008),
because when there are several options (neighboring cells with the same „lowest“
slope), the 1st one encountered clockwise from North is chosen arbitrary

(O‟Callaghan&Mark).

Lea (1992) also argues that D8 cannot be used for the construction of

subcatchments boandaries neighther for the prediction of the location of principal

streams. For example (Figure 3.9.), if we have a hillslope facing south-southeast,

actual flow will proceed this direction as the steepest one, but D8 algorithm will

route the water to southeast pixels. The larger the area of such hillslope, the greater

the declination of D8 flow path from the actual one, leading to mismatches between

modeled and actual watershed boundaries and stream locations (Lea, 1992). On a

planar slopes, if aspect angle differs from strictly cardinal or diagonal, D8 gives

underestimation of TCA (on Figure 3.11. TCA produced by D8 2 timeslower of the

true TCA) (Costa-Cabral&Burges, 1994).

26

Figure 3-10(Lea, 1992). Error in the bearing of the SFD8 algorithm.

Figure 3-11.(Costa-Cabral&Burges, 1994). TCA of a pixel A on a planar surface with aspect angle 315º: (a)

predicted by D8 and (b) true TCA

Quinn et al. (1991) add that with grid scale of 50 m and coarser, the single

flow direction approach may give local inaccuracies, particulary on divergent

hillslopes. Features tend to be sharper and give a ‚banding„ effect (Quinn et al.,

1991).Most of the drainage is concentrated in the channels, while large areas on the

hills are with low flow accumulation values (Freeman, 1991).

Costa-Cabral and Burges (1994) showed that D8 produces large errors in any

terrain topography (divergent, planar and even convergent), one of the reason of

which is the nondimensional flow origin as a point source over a two-dimensional

pixel and one-dimensional flow pathway as a line. D8 gives particularly large errors

on hillslopes (e.g. SCAs computed by D8 on hillslopes on the Mettman Ridge DEM

differ by 5 order magnitude from those predicted by DEMON) and, thus, is

inappropriate for hillslope applications, including studies of hillslope hydrological

response, channel head location, lndslide risk, soil water content and long-term basin

evolution (Costa-Cabral&Burges, 1994).

D8 is not robust: even a tiny elevation difference between two neighboring

cells have a large effect as oe of the cells recieves all the area (Seibert&McGlynn,

2007).

Positive features are the simplicity of the algorithm for calculation, which

makes it one of the most widespread flow routing algoritnms for calculation of flow

accumulation and upslope area, and its suitability for reflecting of realistic patterns of

accumulating area in the valley bottoms, where it gives well-defined stream lines

(Quinn et al., 1991; Freeman, 1991; Costa-Cabral&Burges, 1994). D8 is useful for

extraction of river networks, longitudal profiles and basin boundaries

(Gruber&Peckham, 2009).

27

3.4.2 Rho8

Fairfield and Leymarie (1991) (exCosta-Cabral&Burges, 1994; Bartak, 2009)

developed the Rho8 (random eight-node) approach to overcome parallel paths on

planar surfaces by D8. Rho4 is a variation which considers flow only to 4 cardinal

neighbors. As in D8 water flows from one cell to one cell but with additional slope-

weighted random factor: the steepest the slope is, the greatest probability of being

selected.TCA, flow accumulation and SCA are calculated in the same way as in D8

metod Thus, Rho8 flow patterns more or less match those of D8, but appear to be

more realistic. The greatest disadvantage of Rho8 approach lays in its stochastic

nature, so each time Rho8 produces different flow patterns (Wilson et al., 2008).

Another disatvantage is that on the plane slopesdue to wiggling of adjacent flow

paths they tend to converge but can not diverge back, which leads to overestimation

of TCA in some pixels and underestimation in others with the errors

increasingdownslope (Costa-Caral&Burges, 1994).

3.4.3 MFD

Another algorithm for flow assignment is MFD8 (Multiple Flow Direction

from 8 possibilities) or MS (Multiple Slope) (Freeman, 1989; Freeman, 1991; Quinn

et al., 1991), also referred as the FD8 or simply MFD (Wilson et al., 2008), MD8

(Seibert&McGlynn, 2007). Actually, there are two forms of this algorithm,

developed by Freeman (1989, 1991) and by Quinn with co-authors (1991), but both

are governed by the same principle. It directs flow from a given cell to all its

neighboring cells with the downhill slopes with the proportion of the flow according

to the gradient of each downhill flow path, so that steeper gradients attract more of

the accumulated area (Quinn et al., 1991) (Figure 3.12.).

Figure 3-12(Bartak, 2009) The MFD8 algorithm. The thickness of the arrows symbolizes the proportion of flow

falling on the particular neighbour.

Quinn (1991) version of flow partition:

Ai = A ∗ (����݅ ∗ �݅)/ (����݆ ∗ �݆)�
�=1

where n is the total number of downhill slopes, Ai is amount of flow passing

to the ith downhill neighbor, tanȕi is slope to the ith downhill neighbor (difference in

elevation/distance between the elevation values), Li is the contour length (orthogonal

to the flow direction) of the ith direction (eighther cardinal L1=0,5*grid resolution or

diagonal L2=0,354*grid resolution, chosen subjectively), A is he total upslope area

accumulated in the current „central“ cell, j is index for each downhill neighbor.

TCA of the cell of interest consists of partial contributions from many

different cells (in formula above A is the TCA of „central“ cell), as each cell recieves

28

a fraction of the flow from each upslope cell. SCA is TCA acting through the contour

length, which in that case equal to the sum of the downhill contour lengths:

SCA=A/ (�݆)��=1

Local slope angle for a given cell is a weighted averege of all downhill slopes

(not the maximum slope as in D8 approach):

���� = (����݆ ∗ �݆)�
�=1

/ (�݆)�
�=1

Thus, natural logarithmus of common term (C) in the formula (1) actually

equal to the topographic index:

lnC = ln(�/ (����݆ ∗ �݆))��=1 = ln (SCA/tanȕ)

It is obvious that MFD algorithm will produce different distributions of the

topographic index than those produced by D8 (Quinn et al., 1991).

Freeman (1991) reports that from different methods for partitioning outflow

the most satisfactory one is the method with the proportion of the flow according to

the downhill slope values and special parametr p controlling the degree of slope

convergence:

where Si is the slope from the cell to its i‟th downhill neighbour, divided by

the summation over the neighbours to which a positive slope exists.

The higher the values of parameter p, the more similar MFD8 algorithm to

the SFD8 (theoretically if p →∞ then MFD8 turns into D8) (Holmgren, 1994;

Bartak, 2009). On an artificial cone surface, the best p=1,1 (Freeman, 1991).

Holmgren (1994) suggests p to be a compromise between 1 and ∞ or, in other word,

between too smoothed and too quickly converging flow patterns. In his study he

found optimal p = 4-6 and suggested that value of p should be increased with a

higher resolution, approaching to SFD.As closer to channels, flow tend to be more

concentrated and rather convergent, then divergent, Quinn et al. (1995) suggest to

use p, which depends on the value of accumulated area:

wherep is optional parameter,A is TCA and CIT is channel

initiation threshold or theshold of accumulated area: cells having TCA values above

CTI are indicated as water streams. Thus, the higher accumulation area, the more

concentrated flow in a pixel, the higher value of p, the more restricted is flow

dispersion introdused by MFD, which is situation in valley bottoms, channels. The

29

lower a TCA, the closer p to 1, the more divergent flow is, which is ideal case on the

upper part of relief (ridges and slopes). Kim a Lee (2004) developed this method for

estimation of p, introducing additional parameters. More information can be found in

the Diploma thesis of Vojtech Bartak (2008) and in the original articles.

TCA of the cell of interest consists of partial contributions from many

different cells, as each cell recieves a fraction of the flow from each upslope

cell.SCA is computed as the sum of the CAs from upslope cells divided by the cell

width for the cardinal directions and by the cell width multiplied by √β for the
diagonal ones (Wilson et al., 2008).

In terms of elevation difference between neighboring cells, MFD8 is robust,

because both cells recieve about the same portion of the accumulated area, not like in

D8, where one cell recieve all the flow (Seibert&McGlynn, 2007).

Though the MFD algorithm produces realistic flow accumulation pattern on a

divergent hillslopes, on convergent topography (valley bottoms, river channels) it

tends to spread the flow wider than it is nessesary, particulary in case of coarse

resolution (Freeman, 1991; Seibert&McGlynn, 2007). Flow pathways cross each

other to a large degree, which becomes a problem for computation of the flw of the

substances (solutes, sediments) (Seibert&McGlynn, 2007). So the basic

recommendation is to use mixed algorithm, switching from MFD on divergent

topography to SFD on convergent part of relief. However, on fine resolutionsuch

mixed approach may give artifacts whenever SFD is working on smoothly differing

but convergent part(Freeman, 1991). Costa-Cabral and Burges (1994) write that the

most important limitations of MFD are discontiguity of computed contributing areas

and dependency of the approximation quality on the geommetric symmetry and

boundary proximity. The dispersion is incostistent with the physical definition of the

upslope area (TCA) and SCA, so it should be minimized in TCA calculation for any

multiple flow directing procedure.Another disatvantage of the algorithm is inefficient

data storage, as eight possible direction will have to be recalculated each time they

are needed for each pixel(Tarboton, 1997).

3.4.4 KRA

Lea‟s (199β) aspect-drivenkinematic routing approach (KRA) treats the cells

of DEM as planar surfaces constructed on each cell using estimated elevations of its

4 corners. Flow moves across these surfaces as a point source (like a rolling ball) in

the direction of the steepest slope or aspect angle, which is calculated as aspect

vector in 1º increments (note that D8 increments in 45º as only 8 possible directions

is allowed). The algorithm models the entry and exit points of flow on the perimeter

of each pixel along the flow path. The TCA for a given cell is calculated as the

number of flow paths passing through that cell multiplied by the grid cell area

(Wilson et al., 2008).

Below in small letters there is an explanation why we can use aspect direction

as the flow direction.

The equation of planar surface intersecting the origin in 3-D cartesian

coordinate system is: z = Ax + By.The projection of the end of the unit path,

beginning at the origin in the XY plane and described by the angle Θ, onto the plane
is:z = Acos Θ + Bsin Θ.

30

Water flows downhill at the steepest gradient, so the water path direction will

have the same angle Θ, if the upper equation will be at minimum.We can rewrite this
equation as:z = Acos Θ + Bsin Θ = Rcos(Θ+α).

Knowing from trigonometry that:cos(α±ȕ)=cosαcosȕ±sinαsinȕ, we suppose A

= R cos α (1) and B= - Rsin α (β).Solving the system of equations (1) and (β), we
derive R=√(A2

+B
2) and α=arctg(-A/B).As R>0, z is minimum (zero in our case, as it

is a cosinus) when Θ+α = π.Thus, Θ = π – α = π + arctan(B/A).

From the triangle abc (Figure 3.13.): tgα=b/a; c=√(a2
+b

2) (Pithagor‟s
theorem) and cosα=a/c=a/√(a2

+b
2
). From its defenition: tg(arctan(x))=x, so if

tgα=b/a, then arctan(b/a)=α. Thus, cos (arctg(b/a))=cosα= a/√(a2
+b

2
). Analogically,

sin (arctg(b/a))=sinα= b/√(a2
+b

2
).

Figure 3-13. Triangle abc

Remembering that cos(π+α)=-cosα and sin(π+α)=-sinα, the cartesian unit
vector in the direction Θ on the plane XY (cos Θ, sinΘ) equals to (-A/√(A2

+B
2
), -

B/√(A2
+B

2
)). So for the plane defined by the equation z = Ax + By, the flow

direction is defined by the vector (-A,-B).

From the other hand, we know that the aspect vector is a projection of the

normal to the surface onto the plane XY, so it is 2-D vector of partial derivatives (-

δz/δx, -δz/δy). From the equation of the plane surface z = Ax + By, we derive
A=δz/δx and B=δz/δy. So aspect vector is (-A, -B), so it is the same as the flow

direction vector, which we derived in the previous paragraph.

Thus, to determine flow direction we need to determine only the aspect

vector, which can be derived solely from the elevation data. For each cell the entry

and the exit points of the flow on the perimeter is modeled, assuming water to move

as a point in the direction of the aspect vector of the constructed one-cell plane.

The first task is to fit planes representing the surface of each pixel. Let the

southwest corner of the pixel be at (0,0) in the XY plane, and the northeast corner

has coordinates (1,1)(Figure 3.14.). Then the plane will be in the form: z=αx + ȕy +
Ȗ. We neglect the height defined at the center point of the grid-based DEM and fit a

plane to the co-ordinates of the four corners (instead of three points sufficient for the

determination of a plane) by least squares method: α = ((zne - znw) + (zse - zsw))/2 and

β = ((znw – zsw) + (zne - zse))/2, where zne, znw, zse and zsware the estimated heights of

the North-East, North-West, South-East and South-West corners of the pixel

respectively. The estimated elevation of each corner is calculated as the mean of the

four surrounding spot heights (except for special case, when aspect vector cannot be

defined, see below).

31

Figure 3-14. Grid cell with assigned coordinates for defining local plane (see text)

The aspect vector is simply (-α,-ß) or the angle θ = π+arctan(ß/α). If α and ß
for some reason would be equal to zero, the aspect vector would not be defined, what

is improbable in real terrain. Such situation can happen only if both pairs of opposite

corners have equal elevations (zne=zsw and znw=zse). To fix the problem recalculation

of the estimated corner heights may be done by the expansion of the estimation. The

mean of a three by three square of spot heights with its corner on the center pixel

instead of four surrounding heights is used for the new estimate. If these estimates

cause the same problem, a four by four square is used and so on (see Figure 3.15.).

Thus, the aspect vector is derived for each pixel.

Figure 3-15(Lea, 1992). Iterative estimation of corner elevations

Second task is flow routing using information about aspect vector derived

from the previous task. Firstly, flow originates at the center of the source pixel at the

point (0.5, 0.5) and travels kinematically in a direction of the aspect θ as a point
source and reaches the perimeter of the pixel in the outlet point with coordinate (x0,

y0), which depend on aspect angle θ(Figure 3.16.).

Figure 3-16(Lea, 1992) Initial flow path from the center point of a pixel.

Secondly, the outlet point (x0,y0) becomes an inlet point (xi,yi) on the

perimeter of theneighboring pixel and is defined with respect to the coordinates of

the new pixel. Again flow proceeds in the direction of the aspect vector of the current

pixel till it meets next outlet point which will again become an inlet point for the next

pixel and so on.

32

If the slopes of the two pixels face each other forming a valley, inlet edge

forms the valley floor and flow is routed along the inlet edge to neighboring

pixels.This happens when the aspect has a positive component in the direction of the

inlet edgeand a full crossing is not possible. Flow is routed to the edge adjacent to the

inlet inthe direction with positive aspect component(Figure 3.17.).

Figure 3-17(Lea, 1992). The position of the outlet point, in case when full crossing is not possible

Flow paths are built until the catchment outlet or a hollow (groups of pixels

whose aspects prevent flow from escaping) is reached (Figure 3.18.).

Figure 3-18 (Lea, 1992). Aspect vectors that represent typical hollows.

The main advantage of KRA, according to Tarboton (1997), is that there is no

dispersion of flow and flow goes continuously as an angle between 0 and 180º. From

the other hand, Costa-Cabral and Burges (1994) states that Lea‟s approach has the
same limitation as D8 – the one-dimensional representation of a flow. Another

limitation is poor robustness due to inconsistent and conterintuitive flow directions in

‚special cases„ appearing from local fitting of planes over each pixel (e.g. the

influence of much higher neighbors on downslope flow) (Tarboton, 1997).

3.4.5 DEMON

Digital elevation model networks (DEMON) (Costa-Cabral&Burges, 1994)

represents flow in two dimensions (2-D) flow strip (which authors call flow tubes)

and directs it by local aspect angle (in a similar manner as used by Lea (1992)),

offering the main advantage of contour-based models – the representation of varying

flow width over nonplanar topography. Width of „flow tube“ is a function of local

topography: it increases over divergent, decreases over convergent topography and

remains constant over plane surfaces.

TCA of a pixel is defined as the plan-view area of the collection of all points

located topographically upstream from te pixel. From its definition SCA = TCA/w,

where w in case of DEMON is the total flow width orthogonal to the flow direction

along the portion of the pixel boundary through which flow exits pixel. w is

dependent on the flow direction angle α by the relation: w = |sinα|*x +

33

|cosα|*y,where x and y are pixel width along the respective axes. Thus, SCA is

determined by the flow field (flow direction angle field), which can be obtained from

the elevation field. As grid-based DEM is a matrix of discrete points, some surface-

fitting method is needed to construct elevation surfaces on each pixel (elevation

field). DEMON approximates the surface of each pixel by a best fit plane using local

interpolation, creating discontinuous planar mosaic. For each pixel plane aspect

angle and accordingly flow width can be calculated.

Next step is calculation of TCA and SCA, which can be calculated using 2

algorithms implemented in DEMON– downslope and upslope, based on the matrix

of flow angles. Downslope algorithm gives opportunity to simultaneously calculate

the specific dispersal area (SDA), area of the terrain that drains flow from the

contour segment per unit contour, while DEMON-upslope computes SCA matrix

faster. DEMON-downslope tracks flow downslope, while DEMON-upslope traces

the boundary of a pixel‟s contributing area and calculates the area enclosed by that

line. Both algorithms produce the same SCA values.

DEMON-downslope algorithm suggests that the total flow volume drained by

any given pixel equals to the pixel‟s TCA. Each pixel at a time is treated as a source
pixel of a unit flow depth and its influence matrix on all the rest DEM pixels is

constructed, i.e. matrix of the flow volume parts from the source pixel which are

drained by each pixel in DEM. The TCA matrix is calculated by succesive addition

of the all influence matrices of every DEM pixel. The SCA matrix is obtained by

division of TCA matrix by flow fidth matrix, derived in its turn from aspect angle

matrix.

Algorithm used for the construction of the influence matrix for one pixel can

follow only one flow path from one single pixel to the next single pixel at a time,

thus the total dispersal area of a pixel is divided into several flow tubes, which

represent these flowpaths from one cell to one cell and so on (Figure 3.19.). Flow

tubes may converge becoming more narrow and finally converting from 2-D strip

into 1-D line.

Figure 3-19(Costa-Cabral&Burges, 1994). (a) Flow tubes from pixel (1,1); (b) Schematic representation of the

same flow tubes. Branching corresponds to flow being split between two pixels

Flow partioning between neighboring pixels are always in cardinal directions

and can be calculated using aspect angle and grid spacing values. For example, on

Figure 3.20. flow is splitted between eastern and southern neighbors. Eastern

neighbor part is simply shaded triangle area divided by the total pixel area, northern

neighbor flow part is 1 minus part of eastern neighbor.

34

Figure 3-20.(Costa-Cabral&Burges, 1994). Flow partitioning from a source central pixel to its eastern and

southern neighbors

The example of the resulting influence matrix for one pixel (1,1) is shown on

Figure 3.21. along with the aspect direction matrix and the TDA of the same pixel

(1,1).

Figure 3-21.(Costa-Cabral&Burges, 1994). (a) Aspect angles matrix (arrows) and TDA of the pixel (1,1) as a

shaded area; (b) Influence matrix of pixel (1,1). Each value represents a fraction of the area from the source-pixel

(1,1) that is drained by a DEM pixel; (c)Physical meaning of the value o,58 from of pixel (4,3) in (b)

DEMON-upslope traces the boundary lines starting at two of its ends at the

pixel corners upslope till they meet and form enclosed boundary, allowing

calculation of TCA (Figure 3.22.).

Figure 3-22.(Costa-Cabral&Burges, 1994). DEMON-upslope algorithm for TCA calculation (shaded area) by

tracing of the right-hand (RH) and left-hand (LH) sides of flow lines representing TCA boundaries.

TCA pedicted by DEMON on cone surface are close to the true ones, though

some pixels are overestimated(pixel B in Figure 3.23 (a)). It can be seen particularly

on SCA contours, which being mostly circular, however have indentations to the

north, south, east and west(Figure 3.23.).

35

Figure 3-23 (Costa-Cabral&Burges, 1994). Flow patterns predicted by DEMON on a right circular cone: (a) TCA of

pixels A, B and C; (b) SCA contours.

These errors are explained by the fact that DEMON approximates conical

surface by mosaic of plane surfaces, which generates bias towards N-S and E-W

directions. The identations can be avoided only if a curved rather than a planar

surfaces would be fitted to each pixel, but the computational expense would be much

higher (Costa-Cabral&Burges, 1994). As in Lea‟s KRA approach, the approximation
by fitting a plane in DEMON introduces too greate influence of higher neighbors on

downslope flow (Tarboton, 1997), decreasing the robustness of the algorithm.

Thus, producing errors on some terrain forms, DEMON though has a great

advantage over other flow routing algorithms: being grid-based it is able to present

different terrain topography by flow path width, which had been possible till present

only by contour-based models. Another advantage is that algorithm may calculate

simultaneously SCA and SDA. The particle-tracking approach of the DEMON-

downslope algorithm allows to use it for surface sediment and pollutant tracking. It

also allows to distinguish between dispersed (2-D flow tubes) and concentrated (1-D

flow line from converged flow tubes) flow (Costa-Cabral&Burges, 1994).

3.4.6 γ.4.6. D∞

Tarboton (1997) introduced another flow routing method D∞ (D-infinity),

which directs flow in an infinite number of possible single flow directions between 0

and βπ according to the steepest downward slope on the eight triangular facets

constructed in a 3x3 pixel window centered on the pixel of interest.The flow is

apportioned from a pixel to maximum two downslope pixels according to how close

flow angle is to the direct angle to that pixel corner. (Figure 3.24.).

Figure 3-24(Tarboton, 1997). Flow direction defined as the steepest downward slope on planar triangular facets

on a block-centered grid.

36

Downslope vector in each of the eight facets is defined. The flow direction is

the steepest downslope vector from all eight facets. In case of facets with equal

steepest slope D-inf picks the first one in order of facets from 1 to 8 shown in the

Figure 3.24. This bias on natural terrain seems to be negligible, as such equal-slope

situation is rare (Tarboton, 1997).

Comparison of TCAs produced by D-inf with the theoretical ones revealed D-

inf to produce relatively small mean square errors on outward and inward cones and

a plane. Analysis of influence map of several chosen pixels (flow paths of these

pixels) on a circular cone though revealed D-inf to result for pixels with flow

direction aligned with grid diagonal to non-spreading flow path, same as produced by

D8, thus introducing bias (Tarboton, 1997).

3.4.7 MD∞

Seibert and McGlynn (2007) developed triangular multiple flow direction

algorithm (MD∞), based on Tarboton‟s D infinity approach (1997), but allowing

multiple flow direction.As in Tarboton‟s D-inf, firstly, 8 triangular facets is

constructed around center of a pixel, the steepest gradient is computed on each of

the 8 planes – so called locally steepest directions. The flow is weighted and

proportioned to all downslope directions on the basis of the gradients, as in

Freeman‟s MFD approach (1991) with parameter p, allowing partially to control

dispersion (Figure 3.25.). Thus, proposed algorithm overcomes the problem of

overdispersion of MFD method and restriction of 1 direction flow of D-inf approach

(Seibert&McGlynn, 2007).

Figure 3-25.;Seiďert&MĐGlǇŶŶ, 2007Ϳ. Eǆaŵple illustratiŶg deterŵiŶatioŶ of flow direĐtioŶs ďǇ MD∞.

Other flow routing approaches exist (e.g. ANSWERS (Beasley&Huggins,

1978);vector-grid approach (Mitasova and Hofierka, 1993; Mitasova et al., 1995,

1996); form based algorithm (Pilesjo et al., 1998), path-based method (Orlandini et

al., 2003); Mass-Flux Method (MFM) (Gruber&Peckham, 2009)), but we will not

discuss them in present work.

37

4 Methodology
4.1 General course of action

First step was to learn basics of programming in language Python in general

and for ArcGIS, which was done by performing tasks within a scope of one-semester

course held in Czech University of Life Science in Prague “Geoinformaticke
aplikace”.

Next step was to learn how to work with raster data types in Python: how to

convert rasters to an array data structure, how to access values in the array and so on.

It was necessary to get accustomed to binary heap data structure and its application

in work with raster data sets.

After that, a chosen flow routing algorithm had to be implemented in ArcGIS

by writing Python scripts and integrating it into newly created Toolbox.

Last step was to use newly implemented flow direction algorithm on

hydrologically correct DEM of real terrain and compare the results of its

implementation with the results derived by using built-in ArcGIS tools.

4.2 Used Software

4.2.1 ArcGIS 10.3

ArcGIS is a geographic information system (GIS) for working with maps and

geographic information developed by the company ESRI. ArcGIS is used for

creating, editing and analyzing maps and geodatabases.

ArcGIS provides the opportunity to access geoprocessing tools through the

integrated Python language. Python is incorporated into the automatic installation of

ArcMap and ArcGIS for Server in each version of ArcGIS since 9.0. Python version

2.7.x is used in ArcGIS starting from version 10.1 up to the latest 10.4 ("What

version of Python is used in ArcGIS?", 2016). Using Python scripts one can create

user-friendly geoprocessing tools in ArcGIS.

ArcGIS is widespread for its simplicity, functionality and the breadth of

options, solid documentation, and support. Integrated Python and ModelBuilder give

ability to create user‟s own toolboxes. ArcGIS has extensive labelling features,
symbol creation, and many features of a vector graphics software to generate basic

layouts of the maps, that can be exported to different formats, such as PDF and SVG,

to be edited outside the boundaries of GIS scope. Another important aspect of the

ArcGIS popularity is that huge numbers of companies, government departments and

educational institutions that use ESRI software. For example, students at qualifying

institutions may be eligible for a 12-month license of ArcGIS for Desktop at no cost

as part of the Esri Education Site License Program ("Esri Software for GIS

Students", 2016).

4.2.2 Python

Python is a widely used high-level, general-purpose, interpreted, dynamic

programming language with a highly readable simple syntax, which is a great

advantage for a person new to programming. Its syntax allows programmers to

express concepts in fewer lines of code than would be possible in languages such as

C++ or Java.

38

Python interpreters are available for installation on many operating systems,

allowing Python code execution on a wide variety of systems. Being free and open

source, Python provides large number of libraries.

For the current diploma thesis Python 2.7 was used, as this version is

integrated within ArcGIS 10.3. Besides, Python 2.7.x has such advantage in

comparison with Python 3.x as wide number of supported non-standard libraries.

More information and all documentation can be found at official Python

Programming Language homepage https://www.python.org .

4.3 Choosing of tasks and used algorithms
ArcGIS Hydrology toolset is based on SFD8 algorithm of flow routing

(O‟Callaghan&Mark, 1984). Terain Analysis Using Digital Elevation Models

(TauDEM) (Utah State Unversity, 2016) is ArcGIS Toolbox which extends basic

ArcGIS toolset with tools for determination of flow direction and contributing area

using D‐infinity approach (Tarboton, 1997). So far, there is no more publically

available ArcGIS toolset that uses other flow routing algorithms.

For determination of flow directions and for flow simulation (TCA

calculation) MFD (Freeman, 1991) was chosen as basic algorithm permitting

multiple flow direction. Additional script was written for evaluation of flow

dispersion extent. It is possible to use the script after for evaluation of dispersion

extent of flow direction algorithms, which may be added in the future.

Tool for the creation of Influence maps by SFD8 and MFD8 with different p

parameter was created to follow the flow paths and extent of dispersion from

individual source pixels. Supplementary tool was created to find out coordinates of

the chosen source pixels in terms of number of row and column for the individual

pixel.

Tool for the calculation of contour lengths by three different methods and

user-specified parameters for MFD algorithm was created. Resulting contour length

rasters were used for the calculation of SCAs. All obtained data (TCAs, SCAs for

different algorithms and parameters) were analyzed in Excel, preliminary extracted

using ArcGIS built-in functions.

Basis of tools creation are scripts written by Novak (2015) for the

determination of SFD8 flow direction and flow simulation using binary heap and 3x3

moving window.

Created tools may be added to Toolbox „DiTerAnT“ (Novak, β015)
extending its functionality.

4.3.1.1 ArcPy

ArcPy is a package of Python language, which contains all ArcGIS functions

and gives opportunity to use them directly in Python scripts.

ArcPy was used to convert input raster data into NumPy array data structure,

from which elevation values could be accessed and all calculations could be

performed, and back from array to raster.

4.3.1.2 NumPy

NumPy (Numerical Python) is the fundamental package for scientific

computing with Python. NumPy‟s main object is a powerful homogeneous
multidimensional array (NumPy array, ndarray, N-dimensional array). One of the

most important properties is that the elements in an ndarray can be accessed using

indexing facilities.

https://www.python.org/

39

The most important attributes of an ndarray object are:

ndarray.ndim

the number of axes (dimensions) of the array. In the Python world, the

number of dimensions is referred to as rank: 0 for a scalar (dimensionless), 1 for a

vector and 2 for matrices.

ndarray.shape

the dimensions of the array. This is a tuple of integers indicating the size of

the array in each dimension. For a matrix with nrows and m columns, shape will

be (n,m). The length of the shape tuple is therefore the rank, or number of

dimensions, ndim.

ndarray.size

the total number of elements of the array. This is equal to the product of the

elements of shape.

ndarray.dtype

an object describing the type of the elements in the array. One can create or

specify dtype‟s using standard Python types. Additionally NumPy provides types of

its own. numpy.int32, numpy.int16, and numpy.float64 are some examples.

More information can be found on: https://www.scipy.org ,

http://www.numpy.org .

4.3.2 Determination of flow directions – MFD

Iput DEM is converted to ndarray or matrix of elevations of terrain. Every

“cell” of the array is analyzed row by row and for each “cell” 8 of its neighbors are
defined (so-called 3x3 moving window). From differences in elevations and

distances between cell centers slopes from “center” cell to each of its neighbors are
calculated. As tool is working with regular grid DEM, distances for cardinal

neighbors are taken as DEM resolution (or cell width) and for diagonal neighbors as

cell width multiplied by √β.
The directions of flow from each cell is stored as a code number in that cell.

Flow direction coding is based on standard codes implemented in

ArcGIS(Figure 4.1.) and represents values 2
i
, where i is the index of the neighbor.

Indexation starts from 0 for the Eastern neighbor clockwise to 7 for N-E neighbor

(Figure 4.2.).

Figure 4-1(Resources.arcgis.com, 2015). Flow direction coding used for single flow direction in ArcGIS.

Thus, each number has a single 1 bit, with the rest of the bits being set to zero

(Table 4.1.). It makes it possible to store more than one flow direction from each cell.

Because each of the eight codes only uses one bit, however many of them are added

together, the new number will be unique (Wise, 2008). For example, 16 + 2 = 18 = 2
4

+ 2
1
 is the same as 00010000 + 00000010 = 00010010. Therefore, from the resulting

sum we can always extract the positions of ones (counting from the end from 0 to 7),

which is the exponent i in direction code (2
i
).

https://www.scipy.org/
http://www.numpy.org/

40

Figure 4-2. Neighbors indexing

Table 4-1 (Wise, 2008). Flow directions codes in decimal and binary

Flow Direction

Code Decimal

Flow Direction

Code

8 Bit Binary

1 00000001

2 00000010

4 00000100

8 00001000

16 00010000

32 00100000

64 01000000

128 10000000

Flow direction, thus, is stored in a cell as a sum of direction codes for all

neighbors with positive slopes. If no positive slope is found, error message appears

that there is a drainless area in DEM.

4.3.2.1 Evaluation of flow dispersion introduced by MFD approach

Flow dispersion can be evaluated by distribution of number of downslope

cells receiving flow. Input flow direction raster of unique codes as defined above is

converted into ndarray, for each cell of which number of non-zero bits is calculated

and converted to output „flow dispersion‟ raster. This raster can be subsequently

analyzed visually and by construction of histograms of the number of cells that

receive accumulated area from one cell.

4.3.2.2 MFD code calculator

As totally for MFD we have 255 codes, representing sum of codes for 8 basic

direction, additional script was written to return all possible flow directions from the

input MFD code numbers. Input codes should be pasted into array MFDcodes in the

script. For each element of the array, its binary representation is obtained as a string

and the index of encountered value „1“ from the end of the string is used to define
directions (see 4.3.2. Determination of flow directionsfor explanation of principal of

MFD codes).

41

4.3.3 Flow simulation

Flow simulation (or contributing area calculation) in case of MFD does not

require flow direction raster as input. Firstly, input DEM is converted to ndarray

(DEM array). Ndarray of ones is created as an initial array of values for accumulated

area (CA array). If user gives as an input his own weights for flow accumulation, CA

arrays will be sum of ones and user-specified weights (which are converted from

weight raster to ndarray as well).Then, using Binary Heap, DEM array values are

sorted.

Starting with the value of the highest elevation, for each cell of DEM ndarray

its 8 neighbors are found and slopes to them are calculated as in 4.3.2. Positive

slopes are summated. Then to values of flow accumulation in CA array for each

neighbor with a positive slope apportioned flow from a current “center” cell is added.
Thus, flow accumulation of a positive slope neighbor = its current value + value of

flow accumulation of “central” currently processed cell *multiple by proportion:

where Si is the slope from the “central” cell to its i‟th downhill (positive

slope) neighbor, divided by the summation over the neighbors to which a positive

slope exists. Parameter p may be specified by user or p=1 is used as a default value.

Output flow accumulation array in units of cell numbers is then converted to

raster and can be used for calculating TCA in units of DEM resolution through

multiplying by area of one pixel (for square-grid DEM equals to square of cell width)

using ArcGIS Math tools. Next step is to use ArcGIS Math tools get ouput log-

transformed for better visualization of flow accumulation.

4.3.3.1 Peucker and Douglas weights

Additional script was written to derive raster of weights, representing local

curvature, according to Peucker & Douglas (1975)from input DEM raster, which can

be used as user-specified weights raster for the calculation of flow accumulation.

The basic principal is comparison of cell elevations in moving 2x2 window.

First, input DEM is converted to ndarray and initial weight ndarray of ones of the

same shape and size is created. Then each cell ([x, y]) is compared to its 3 neighbors

([x, y+1], [x+1, y+1] and [x+1, y]). The value of the cell with maximum elevation

will be changed from 1 to 0 in weight ndarray of ones. After checking all DEM cells,

values 1 will remain only for cells, which did not have maximum elevations in the

moving windows, that are cells of potential water streams. Resulting ndarray of

weights is converted and saved in raster form, and can be used as an input of user-

specified weights in Flow accumulation tool.

4.3.3.2 Binary Heap

Calculation of flow accumulation must start with the highest cells to ensure

that all visited cells, which will increase Contributing Area to the direction of their

outlet, have already received accumulation from all its “tributaries”. Instead of using
sort command, Binary Heap sorting (Töpfer, 2007 from Novak, 2015) was

implemented. We used the script for Binary Heap that had already been written by

Novak, 2015.

42

The great advantage of using this type of sorting is low computational

complexity, because data are represented as compleate binary tree compactly stored

in an array(Figure 4.3.), each element of which can be easily accessed in terms of

parent and children elements by using indices. If the tree root is at index 0, with valid

indices 0 through n − 1, where n is the number of elements in the heap, then each

element a at index i has children at indices 2i + 1 and 2i + 2 and its parent floor at

((i − 1) ∕ β). Sorting is performed by comparison element with elements of only one

branch, not the entire data set.

.

Figure 4-3("Binary heap", 2016). Scheme of how binary tree is stored in array

After sorting of DEM elevation values in the heap, the item from the top of

the heap (with maximum elevation value in our case) is always removed, and its flow

accumulation value is apportioned to all downslope neighbors according to their

slopes. After top item was removed from the heap, the heap structure is supported

back by resorting the elements of the heap: removed top element (“the root” of the
max-heap) is replaced with the last element on the last level (with minimum

elevation), which is repeatedly compared to its children and is swapped with them,

till correct heap order not returned (Figure 4.4.). Then procedure is repeated: new top

heap item is removed and used for calculation of the contributing area, heap is

restructured back with new top item with the next maximum elevation values and so

on. It is so-called priority queueing, in which each item is assigned a priority, and the

item with the highest priority goes “out” first. By this mean, contributing area of all
DEM cells are calculated.

Figure 4-4. Tree representation of the maximum element extraction from a max-heap

4.3.3.3 Influence Map

Tool Influence Map maps the flow rout from individual pixels and the extent

of flow dispersion. Two flow direction algorithms are implemented: SFD8

(O‟Callaghan&Marks, 1984) and MFD (Freeman, 1991) with user-specified

43

parameter p. The principal of algorithm calculation is described above (4.3.3. Flow

Simulation, 4.3.3.1. Binary Heap), the only difference is that initial flow

accumulation ndarray contains zeroes in each pixel, except user-specified pixels, to

which 1 values of flow accumulation are assigned. In case of SFD8 algorithm, flow

is routed to only one neighbor with the maximum positive slope.

Output Influence maps derived by different flow routing algorithms (or with

using different values of parameter p) will serve to show the differences in flow

routing models, or for the modeling of potential flow paths of contaminants.

As Influence map tool requires coordinates of source pixels of DEM in terms

of number of column (x) and row (y), additional tool was written to give rasters of

column and row numbers of the input raster. Column/Row Grid tool accept input

raster and converts it into ndarray. Then ndarray of column and row numbers of the

same size and shape as input raster is created using NumPy built-in method

.indices(shape).

Source pixels are chosen at topographically different locations (with high and

low DEM values, presumably on divergent slopes and close to the stream channels

according to DEM raster) with several flow directions (4-8) determined by MFD by

comparison of raster of Flow dispersion (see 4.3.2.1.Evaluation of flow dispersion).

Multi point shapefile of 7 chosen points were created, basic characteristics from

analyzed rasters (number of column, number of row of pixels where points are

located, number of flow directions, TCA calculated by MFD and by SFD algorithms)

were added to the attribute table of point shapefile by Extract Multi Values to Points

tool of ArcGIS Spatial Analyst toolset. Attribute table was exported to Excel table by

Table to Excel tool of ArcGIS Conversion tools.

4.3.4 SCA calculation

SCA is TCA divided by contour length. What is contour length in case of 1D

(treating flow as a point source and flow path as a line) SFD and MFD algorithms is

an open question. Chirico (2005) reports that according to the suggested in literature

flow width (effective contour length) values SCA even for the same flow routing

algorithm may differ 4 times.

Quinn (1991) had chosen contour length somehow arbitrary, being a sum of

contour length orthogonal to the flow directions towards all neighbors with positive

slopes (0,5*grid resolution for cardinal and 0,354*grid resolution for diagonal

neighbor). SCA in Freeman‟s MFD is computed as the sum of the CAs from upslope
cells divided by the cell width for the cardinal directions and by the cell width

multiplied by √β for the diagonal ones (Wilson et al., 2008), but it is not clearly

stated, if sum of flow widths to all downslope neighbors is used. Freeman‟s
definition with my understanding of it: SCA=TCA/ (�݆)��=1 , where Lj is contour

length towards a neighbor with a positive slope (Lj=grid size for cardinal neighbors

and Lj=grid size*√β for diagonal neighbors). Wolock and McCabe (1995) use
different factors for cardinal neighbors (0,6*grid size) and for diagonal neighbors

(0,4*grid size), explaining their choice by the fact that the maximum value of total

contour length (the case of eight neighboring downslope cells) would equal the total

boundary length between the cell of interest and all of its neighboring downslope

cells. Anyway, each cell of DEM have different flow width and additional script for

its calculation was written with the option to choose Freeman‟s, Quinn‟s,
Wolock&McCabe‟s approach or specify the multiplication factors by user.

44

Firstly, input flow direction raster is converted to ndarray. For each cell of

flow directions ndarray sum of contour length are calculated and converted to output

raster.

Then TCA raster is divided by derived contour length raster using ArcGIS

Math tools.

The same script can be applied for the calculation of flow widths in case of

D8 (assuming contour length simply to be grid size in cardinal directions and grid

size multiplied by √β for the diagonals – which is marked as Freeman‟s approach in
created tool), though we did not use it in present work. Calculation of SCA for D8 is

performed by division of TCA derived using D8 algorithm simply by grid size using

ArcGIS Math Tools, as invariant flow width is supposed to be the best approach for

SCA calculation by D8 algorithm (Chirico et al., 2005).

4.3.5 Data analysis

Basic descriptive raster statistics (Histograms of distributions, Mean,

Maximum, Minimum, Sum, Standard deviation) was obtained using ArcGIS built-in

option to display properties of a layer through the section Symbology, subsection

Classification of values.

Scatter plots of SCAs and TCAs derived by different methods were

constructed in Excel by comparison of respective values extracted from TCA and

SCA rasters. Firstly, 50 000 random points were created (by built-in ArcGIS Create

Random Points tool of Data Management toolset). Points are not located in the

center of the grid cell, but no interpolation techniques were used for subsequent data

extraction, so each point is associated with the value in the center of the pixel where

point is located. Some of these points belong to the same pixels.

Secondly, rasters values were extracted to attribute table of the randomly

created points (by Extract Multi Values to Point Tool of Spatial Analyst toolset).

Thirdly, multipoint attribute table was converted to Excel table (by Table to Excel

tool of Conversion tools toolset).

For better visualization of resulting rasters logarithmic scaling (obtained by

Ln tool of ArcGIS Math tools), hillshade background (derived by Hillshade tool of

ArcGIS Spatial Analyst toolset) and 25 m contour lines derived from DEM (by

Contour tool of ArcGIS Spatial Analyst toolset) were used. All visual pairwise

comparisons were performed using the same color scaling.

45

5 Results
5.1 Toolbox description
The result of the diploma thesis is a ArcGIS toolbox „MFD“ (stands for Multiple
Flow Direction) of 7 tools for hydrological terrain analysis with Multiple Flow

Direction algorithm (Freeman, 1991) (Figure 5.1.).

Figure 5-1 MFD toolbox

The structure of the MFD toolbox is presented on Figure 5.2.

Figure 5-2. Structure of MFD toolbox

There are several tasks, which can be performed with MFD Toolbox. Main tools uses

input DEM raster to calculate Multiple Flow Direction (MFD tool), flow

accumulation (Flow accumulation tool) and Influence Map of required pixels.

Another main tool is Flow Dispersion tool, which calculates the number of flow

directions in each pixel using as input raster of flow directions, derived by MFD tool.

46

There are number of supplementary tools, results of implementation of which are

used as a predictor or a parameter of another tool. For example, Column/Row Grid

tool is used to find out coordinates of wanted pixels in terms of row and column

number of a given raster, to use these coorinates after as an input of Influence map

tool. Another supplementary tool is Peucker&Douglas weights tool, which calculates

weight raster according to elevation from input DEM. The resulted weights raster can

be optionally used as a user-specified raster of weights in Flow Accumulationtool.

Contour Lengths tool, which uses as an input raster of flow directions, may be

considered as supplementary tool as well, because resulting raster of contour widths

is used together with flow accumulation raster to derive specific catchment area.

All tools are supplied with metadata with description of each parameter, so user can

easily understand, how to use the tool. Each tool also is provided with informative

messages, which appear in a window during calculation process (Figure 5.3.).

Figure 5-3. ArcMessage window

 MFD (Multiple Flow Direction) tool (Figure 5.4.) has input Elevation raster or

DEM and output will be raster of codes for multiple flow direction. No other

parameters are required.

Figure 5-4. Dialog window of MFD tool

47

Flow dispersion tool uses direction raster, derived from a previous step, as an input

and gives output raster of numbers of flow directions in each pixel (Figure 5.5.).

Figure 5-5. Dialog window of Flow Dispersion tool

Flow accumulation tool (Figure 5.6.) calculates contributing area in pixels from the

input DEM by MFD algorithm. User can partly control flow divergency changing

parameter p, default value of which is set to 1. Additional option is to add own raster

of weights, otherwise default raster of ones-weights will be used.

Figure 5-6. Dialog window of Flow accumulation tool

Influence Map tool(Figure 5.7.) provides possibility to map flow paths and

accumulation values by SFD or MFD algorithms from individual pixels. Required

parameters are input DEM, output influence map, x and y coordinates in terms of

raster column and row number of pixels of interests. In case of checking MFD, user

can optionally set value of parameter p, which is otherwise by default is set to 1.

48

Tool can be easily further extended by providing option to use weights raster, as in

Flow accumulation tool.

Figure 5-7. Dialog window of Influence Map tool

To define column and row number for chosen pixels, one can use supplementary tool

Column/Row Grid, which from any input raster creates 2 output rasters – with

column and row numbers (Figure 5.8.).

Figure 5-8. Dialog window of Column/Row Grid tool

Peucker&Douglas weights tool from input DEM creates raster of weights 0

or 1 according to elevations: 1 for lower parts which tend to accumulate flow (Figure

5.9.). This raster can be used in Flow accumulation tool. It can be especially useful

for water stream delination.

49

Figure 5-9. Dialog window of Peucker and Douglas weights tool

Contour Lengths tool uses flow direction raster as input and gives output

raster of contour width for each pixel (Figure 5.10.). User specify, which definition

of contour length to use or specify his own multiplication factors for different flow

directions. Resulted raster is used in combination with flow accumulation raster to

calculate SCA by built-in ArcGIS Math tools.

Figure 5-10. Dialog window of Contour Lengths tool

Extra script was written to obtain flow directions from any given MFD code

from flow direction raster. Providing MFD code calculator with a list of MFD codes

of interest, one can get resulting directions in Python Shellwindow (Figure 5.11.).

50

Figure 5-11 MFD code calculator output in Python Shell

5.2 Scripts documentation

5.2.1 MFD.py

The script contains 2 functions: neighbors_z and slope.

Neighbors_z is looking for the elevations of the neighboring cells.

Input: ndarray, x, y – coordinates of the central cell.

Returned value: array of elevations of 8 neighboring cells

Slope calculates slope to each of the neighboring cells.

Input: elevation of the central cell, array of neighbors‟ elevations, grid size

Returned value: array of slopes to 8 neighboring cells

Input DEM is transfered to ndarray. Flow directions to all neighborswith positive

slopes for each element of DEM array(i.e. each cell of DEM)

are then determined and summated into output array of flow directions.

Simultaneously, control of sink areas is performed (if maximum slope will be less or

equal zero, it is flat or sink in the central cell).

Input: sys.argv[1] = DEMraster

sys.argv[2] = name and directory of output raster

Output: rasterof flow directions

51

5.2.2 Fdisp.py

The script calculates flow dispersion - number of cells to which flow is routed from

the current cell. Input Flow Direction raster is transfered to an array, for each cell of

which number of non-zero bits (equivalent to the number of directions towards

neighboring cells) is calculated and converted to output „flow dispersion‟ raster.
Input: sys.argv[1] = raster of flow directions

sys.argv[2] = name and directory of output raster

Output: raster of dispersion

5.2.3 FSmfd.py

The script contains 3 functions: neighbors_z, neighbors_xy and slope.

Neighbors_z is looking for the elevations of the neighboring cells (see 5.2.1).

Neighbors_xy searches for the coordinates [x,y] of the neighoring cells.

Input: x, y – coordinates of the central cell

Returned value: array of coordinates of 8 neighboring cells

Slope calculates slope to each of the neighboring cells (see 5.2.1).

Input DEM is transfered to an array. Initial array of flow accumulation is created

(array of ones + weights if provided).Heap of vectors(x,y,z) sorted by the value of

elevation "z" is created.Starting with a cell with maximum elevation flow directions

to all neighbors with positive slopes are determined.Accumulation value of a cell in

the direction of a flow is increasedby an accumulation value of the

currentlyprocessed cell according to the weight of its slope value in all positive

neighboring slopes.

Input: sys.argv[1] = DEM raster

sys.argv[2] = output raster of flow accumulation

sys.argv[3] = parameter p

sys.argv[4] = True/False (User-specified weights)

sys.argv[5] = raster of user-specified weights

Output: flow accumulation raster

5.2.4 PaD.py

The script has two functions: nPaD a PaD.

nPaD is looking for elevations and coordinates of 3 neighboring cells.

Input: array, x, y – coordinates of the central cell

Returned value: array of 6 values – first 3 are elevations and second 3 are coordinates

of 3 neighboring cells

PaD reads input DEM and converts it to ndarray, then using 2x2 pixels window,

compares elevation of central cell with its 3 neighbors for each cell of DEM. Cells,

which has never had the highest elevation, will take value 1 for output raster.

Input: DEMraster

Returned value: array – local terrain curvature or raster of Peucker&Douglas weights

52

5.2.5 Influence_map.py

The script maps where flow goes from the input pixels (coordinates in column, row

terms) and how it is dispersed. User can choose MFD8 (Freemn, 1991) or SFD8

(O'Callaghan&Mark, 1984) algorithm for flow routing.

The script contains 3 functions: neighbors_z, neighbors_xy and slope (see

5.2.3.).Neighbors_z is looking for the elevations of the neighboring

cells.Neighbors_xy searches for the coordinates [x,y] of the neighoring cells.Slope

calculates slope to each of the neighboring cells.

Input DEM is transfered to an array. Initial array of flow accumulation is created

(array of zeroes). Input coordinates of source pixels are used to assign flow

accumulation values to ones for the input source pixels.

Heap of vectors(x,y,z) sorted by the value of elevation "z" is created. Slope is

calculted.If SFD8 was chosen, flow is routed towards direction of maximum slope,

starting with a cell with maximum elevation. In case of MFD8, also starting with a

cell with maximum elevation, flow directions to all neighbors with positive slopes

are determined.Accumulation value of a cell in the direction of a flow is increased by

an accumulation value of the currently processed cell according to the weight of its

slope value in all positive neighboring slopes.

Input: sys.argv[1] = DEM raster

sys.argv[2] = output raster of influence

sys.argv[3] = True/False (SFD)

sys.argv[4] = True/False (MFD)

sys.argv[5]=input x coordinates (DEM column numbers) of pixels of interest

sys.argv[6]= input y coordinates (DEM row numbers) of pixels of interest

Output: map of influence raster

5.2.6 nColRow.py

The script calculates the number of column and row of pixels of the input raster,

producing 2 rasters of column and row numbers of each pixel. Input raster is

coverted to ndarray.Ndarray of columns and rows numbers of the input raster is

created using numpy.indices method. Arrays of columns and rows are extracted from

ndarray by indexing and converted to rasters.

Input: sys.argv[1] = raster of interest

sys.argv[2] = output raster of columns numbers

sys.argv[3] = output raster of rows numbers

Output: 2 rasters – column and row grids

5.2.7 ContourLength.py

The script calculates contour lengths (width) - sum of orthogonals to flow directions

(towards downslope neighbors), which equals to: 1) grid size for cardinal neighbors

and grid size*√β for diagonal neighbors (Freeman, 1991); β)grid size*0,5 for
cardinal neighbors and grid size*0,354 for diagonal neighbors (Quinn et al., 1991);

3)grid size*0,6 for cardinal neighbors and grid size*0,4 for diagonal neighbors

(Wlock&McCabe, 1995) or 4) grid size multiplied by user-specified factors different

for cardinal and diagonal directions.

53

Input Flow Direction raster is transfered to an array, for each cell of which number of

flow directions towards diagonal and cardinal neighboring cells is determined.

Accordingly, sum of contour length is calculated and converted to output raster.

Input: sys.argv[1] = flow direction raster

sys.argv[2] = output raster of contour widths

sys.argv[3] = True/False (Freeman)

sys.argv[4] = True/False (Quinn)

sys.argv[5]= True/False (Wolock&McCabe)

sys.argv[6]= True/False (User-Specified multiplication factors)

sys.argv[7]= number representing multiplication factor for cardinal direction

sys.argv[8]= number representing multiplication factor for diagonal direction

Output: raster of contour widths

5.2.8 rta.py

The script contains one function rta (Raster To Array), which converts input raster to

ndarray

Input: raster

Returned value: new_array, XMax, YMax, vCell, lowerLeftX, lowerLeftY

(ndarray, number of columns, number of rows, grid size, X,Y coordinates of the left

lower corner of raster)

5.2.9 Heap.py

Scripthas 4 functions: cr_heap, inz_el, ret_max a cr_list.

inz_el inserts new item to the end of the heap, compares it with the previous one and

may swap them, till correct heap order not returned

Input: array, index ofvalue, on which heap should be created (x,y,z)

Returned value: heap–array sorted to heap structure

cr_heapwith the help ofinz_el creates from the array binary heap.

Input: heap, inserted item , index of value after sort is performed

Output: resorted heap

ret_maxinserts the last item from heap‟s leaf to its root after root value (maximum)
was removed and by iterative comparisons put it back to the last position, so heap is

restructured back.

Input: heap, index of value for sorting

Output: resorted heap

cr_list makes sorted array from binary heap

Input: heap

Returned value: sorted array

5.2.10 MFD_code_calculator.py

The script returns directions for any given codes of multiple directions. For every

element of the input code array, the position of non-zero bits in its binary

representation is interpreted as the same index in array of directions, which is printed

out.

Input: array of flow direction codes

Output: lists of flow directions for every element of the input

54

5.3 Demonstration of developed tools

5.3.1 Used data

For the demonstration of the functionality of the developed tools coarse-

resolution SRTM DEM (Shuttle Radar Topography Mission:

http://www2.jpl.nasa.gov/srtm/) of basin Moravska Dyje was used (Figure 5.12.).

Grid size is 90x90m. Total raster is 468 columns x 330 rows = 154440 pixels or 1251

km
2
. Flat areas and depressions were removed inprogram DEMETERR (Bartak,

2008)by method Combined Gradient and Carving respectively.

Figure 5-12 DEM of Moravska Dyje basin. Black color represents the lowest

elevation

Basic statistic parameters and elevation distribution of the area are shown in

Table 5.1. and Figure 5.13. respectively.

Table 5-1 Basic statististic characteristics of DEM, m

Figure 5-13. Histogram of DEM: Y - number of cells, X - elevations, m

55

Ruggedness of terrain is presented in profile from North-West to South-East

corner of DEM raster (Figure 5.14.)

Figure 5-14 Profile graf from North-West to South-East corner of DEM, m

Thus, the terrain is quite rugged with elevations range around 400 m with

high percentage of hillslope area.

5.3.2 Determination of flow direction

Resulting flow direction rasters derived by SFD8 and by MFD are shown on

Figure 5.16 and5.17. respectively. Color scheme for SFD direction are shown on

Figure 5.15. Color scheme for MFD raster is not shown because of high number of

unique flow direction values.

Figure 5-15 Color scheme for SFD direction codes

Figure 5-16 Raster of SFD flow directions

56

Figure 5-17 Raster of MFD flow directions

Visual comparison of resulting rasters indicates that for MFD color patches

with the same colors are much smaller, than those for SFD.

Single flow directions were determined only for 5% of total DEM area (7629

pixels of 1 direction from 152848 pixels of total area with determined flow

directions.Single directions simulated by MFD algorithm occur in the lowest parts of

terrain, obviously along the stream channels and has the same direction as a stream

as can be seen from the bands of the same colour(Figure 5.18.)

Figure 5-18 Single flow directions within MFD direction raster

The maximum number of single-directional cells is with Southern direction,

which is in accordance with the orientation of the main stream or main valley bottom

features (Northern-Southern) (Table 5.2.).

57

Table 5-2 Single flow directions within MFD irection raster

5.3.2.1 Evaluation of flow dispersion introduced by MFD approach

Flow dispersion tool produced raster of numbers of directions in each pixel

from MFD direction raster. The highest number of DEM is represented by cells with

4 flow directions (62766 pixels) (Figure 5.19)

Figure 5-19 Distribution of numbers of directions in each pixel of DEM

If the number of directions is more than 3, it is possible that the flow is

overdispersed (Tarboton, 1997). In our case, only about 40% of DEM area is area

with “realistic” number of flow directions (1-3), while the majority of DEM pixels

route flow towards 4 and 5 neighboring pixels (41% and 21% accordingly) (Figure

5.20 and 5.21). So choosing of paprameter p is supposed to play important role in

subsequent calculation of TCA and SCA for controlling extent of flow dispersion.

Figure 5-20 Shares of pixels with different numbers of flow directions simulated by MFD

Flow direction Code Number of pixels

E 1 19726

SE 2 19612

S 4 34458

SW 8 15720

W 16 14039

NW 32 11583

N 64 20928

NE 128 16782

5%

6%

[ʿˀОЦ
ЕНТ]

41%

21%

6%
2% 1%

1 2 3 4 5 6 7 8

58

Figure 5-21 Flow dispersion raster (in legend: numbers of flow directions simulated by MFD)

Flow dispersion raster can be potentially used in river network extraction. If

we set the threshold of number of directions to 2, we will have raster, similar to

stream network (Figure 5.22.).

Figure 5-22 Network of pixels with 1-2 directions simulated by MFD

59

5.3.3 Flow simulation

Rasters of accumulated area derived with MFD algorithm with different

values of parameter p and with SFD8 algorithm visually look very similar (we use

the same color scale with the same maximum value of accumulation to be white and

minimum black) (Figure 5.23).

Figure 5-23 Flow accumulation (maximum values are white)

Enlarging part of the area (which is depicted by rectangle in Figure 5.23), we

can notice at some pixels higher dispersion of accumulation values with lower

parameter p (Figure 5.24). Flow accumulation raster derived using SFD8 algorithm

look similar to that of MFD with p=10. Raster from p=5 is visually something

middle between rasters from p=1 and p=10: more dispersion (pixels with higher flow

accumulation values than for p=10, but less then for p=1).

Figure 5-24 Flow accumulation by MFD with p=1 and p=10 (arrows indicate dispersed flow for p=1)

Rasters of flow accumulation derived for p=1.0 and p=1.1 (recommended by

Freeman (1991) as the best choice for flow simulation on right cone surface) are

absolutely identical (quick check is performed using Minus tool from Math toolset of

ArcMap Spatial Analyst Toolbox, resulting raster being raster of zeroes). Probably,

60

there is no differences, because we use DEM with coarse resolution (90 m). For

subsequent comparative analysis of influence of parameter p on resulting TCAs and

SCAs we choose to use p=1.0.

Flow accumulation rasters statistics shows that with increasing p up to 20

mean, maximum, sum and standard deviation of flow accumulation values are

increasing being close to that of SFD8 algorithm (Table 5.3).

Table 5-3 Basic statistical characteristics of Flow Accumulation, in pixels

Histograms will not show us significant differences, as majority of cells will

display low flow accumulation values, thus for better observation of differences

logarithmic transformation of values is needed. However, with higher deviation, sum

and mean of flow accumulation for SFD8, one can conclude that MFD has a

smoother distribution of flow accumulation values, while SFD8 rapidly

“concentrate” the flow. Theoretically with p = ∞, MFD will be equal to SFD. Trying
to simulate flow with p = 100, unrealistic result was derived: flow accumulation was

not calculated for all cells of the current DEM (only for 134 614 pixels instead of

154 440 pixels of whole input DEM), the highest value of flow accumulation was too

low (more than 40 times lower than this value for SFD8 and MFD with p = 1, 5, 10,

20) (Table 5.3.). It is possible that problem lies in dealing with too small numbers

with large numbers of digits after floating point which will be created by powering

slope values (which are always <1) by 100 (in calculation of flow portion weighted

by positive slopes). On a typical machine running Python, there are 53 bits of

precision available for a Python float. Thus, if we have slope value with only 1 digit

after point, the maximum p=53 in sense of not losing a precision.

If we change classification scheme to show flow accumulation less then 1

pixel (which means that such cells accumulate only themselves) and more then

10000 pixels (cells with high accumulation values, probably water streams), we

notice that MFD tends to produce disconnected network of cells with high TCA in

comparison with SFD, but it produces less one values cells, which is more realistic

(Figure 5.25).

61

Figure 5-25 TCA (pixels) by MFD, SFD and MFD with Peucker and Douglas weights (w)

If we use raster of Peucker and Douglas weights, derived by developed tool

on same DEM (Figure 5.26), there are more cells with high accumulation values and

they seem to be more connected (Figure 5.25, upper right corner). Therefore,

Peucker and Douglas weights could serve as a valuebale tool for water stream

delination.

Figure 5-26 Raster of Peucker and Douglas weights for the studied DEM: white - 0; black - 1

If we simply substract resulted flow accumulation raster of MFD with p=1

from raster derived by SFD by ArcGIS Minus tool, we notice that differences are

ambiguos: some pixels have higher TCA for SFD, some for MFD, p=1 algorithms

(Figure 5.27, left), - but all of them are situated close to water streams. If we

62

compare TCAs of MFD with p=1 and p=10, flow accumulation is always higher for

MFD, p=10 and pixels with differences are always located near the water streams

(Figure 5.27, right). Thus, for water streams delination, algorithm matters and

parameter p in case of MFD matters as well, while for the calculation of hillslope

TCAs by MFD different values of parameter p seem to produce similar results.

Figure 5-27 Absolute differences between TCA values (pixels): left - SFD minus MFD, p=1 ; right - MFD, p=1

minus MFD, p=10

Logarithmic scale reveals more pronounced differences between flow

accumulation patterns of MFD and SFD. For SFD TCA patterns tend to be

unrealistic parallel, while for MFD, p=1 features are more realistic, smoothly

dispersed (Figure 5.28.). With increasing p, more distinct parallel features as in D8

appear.

Figure 5-28 Ln (TCA) by SFD (upper) and MFD (lower) algorithms: high values are white

63

Histograms of ln(TCA) distributions confirm that MFD produces smoother

distribution of flow accumulation, than SFD, which produce only discrete values of

TCA (Figure 5.29), which again is unrealistic for natural body, where different

properties usually change continuously in space.

Figure 5-29 Distributions of ln(TCA) values (x) by MFD with different p values and SFD, y – number of cells

Scatter plot comparing SFD and MFD TCA values reveals that there is a line

of dots representing value 1 for flow accumulation calculated by SFD8, but range of

much higher values by MFD8 (Figure 5.32). We analyzed the location of such pixels

with calculated TCA by SFD8 = 1, but by MFD8 more than 20 up to 1280(Figure

5.30) .

TCA with value 1 means that no other cell contributed to that particular point

in SFD8 simulation, but such a great difference indicates that however slope towards

such a cell was not the steepest one, it was close to the steepest, as according to that,

relatively great amount of flow could enter the pixel by MFD8 algorithm. As we see

in the Figure 5.30, 5.31, many of the points of such differences is located close to the

valley bottom (stream channel), where flow accumulation values is very high. From

one hand, in valley bottoms overdispersion should be avoid, so forming channels

would not be too broad. From the other hand, flow accumulation values equal 1 does

64

not seem to be realistic, as such values are supposed to be mostly on the highest part

of DEM (ridges and peaks).

Figure 5-30 Location of pixels with calculated TCA by SFD8 = 1, but by MFD8 more than 20 up to 1280

Figure 5-31 Example of great differences in TCA by MFD and SFD near water streams (white)

Comparison of scatter plots of TCA values between SFD and MFD wit p=1

and p=20 reveals that values between SFD and MFD with p=20 are less scattered,

than between TCAs of SFD and MFD with p=1 (Figure 5.32, 5.33), which was

predictable, because the higher value of parameter p, the more convergent flow is,

the closer it to that produced by SFD.

65

Figure 5-32 TCA produced by SFD (y) and MFD with p=1 (x)

Figure 5-33 TCA produced by SFD (y) and MFD with p=20 (x)

Instead of showing all scatterplots between TCA patterns derived with

different values of p, we created matrix of similarity based on R2 (coefficient of

determination) of line constructed between logarithms of TCA of different

algorithms (Table 5.4.). Basically, it is a matrix of how best linear regression

66

performed or, in our case, it indicates how scattered data are, how dispersed from

linear model.

Table 5-4 Coefficient of determination (R
2
) between TCAs of SFD and MFD with different p values

Method
MFD8

SFD8
p=1 p=5 p=10 p=20

MFD8

p=1 1

p=5 0,9952 1

p=10 0,9901 0,9981 1

p=20 0,9858 0,9964 0,9992 1

SFD8 0,9833 0,9947 0,9988 0,9996 1

The most sensitive part in the range of p seems to be with p values between 1

and 5, as R
2
 differs greatly from 1 (which is hypothetically ideal case if both datasets

are the same) up to 0,9833 (the worst correlation between TCAs produced by SFD

and MFD with p=1(Figure 5.34).

Figure 5-34 Sensitivity of determination coefficient (R
2
)(y) to increasing of p value (x)

We compared tangents of linear regression, where Y-axe is always MFD with

higher p, than on X-axis, or Y-axe is SFD8 (theoretical approximation with the

infinitely high p) and X-axe is MFD with any p value (Table 5.5.). Mostly tangents

are more than 1. It means that generally (according to the trend line) TCA for the

higher p is also higher for the same pixel, but as we may see in Figures 5.32, 5.33,

and Table 5.4.of R
2
 coefficients, this rule can be applied only for the part of the line

with high TCAs (which naturally occur in stream channels). In the beginning of the

line the picture is absolutely different: TCAs derived by the method with the higher p

(or SFD8) tend to be much lower for the same pixel than TCAs derived by the

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

p=1 vs p=5 p=5 vs p=10 p=10 vs p=20 p=20 vs SFD8

R
2

R2 of paired TCA comparison

67

method with lower p. So for smaller TCAs (slopes, upper part of the valleys) the

differences are great not only between MFD8 and SFD8 in general, but also between

MFD8 with different values of p.

Table 5-5 Table of slopes of regression line between TCAs derived by SFD and MFD with different parameters

(see explanation in text above)

5.3.4 Influence map

For another demonstration of differences of developed MFD algorithm from

ArcGIS built-in SFD, we selected 6 points, situated in on different parts of studied

DEM (Figure 5.35) and created maps of influences of these points, showing flow

distributed from these points across the terrain by SFD and MFD wit p=1.

Figure 5-35Selected points for which Influence maps were drawn

All the points are situated at convergent parts of relief (Table 5.6) with

numbers of permitted directions from each varying from 4 to 8.

p=1 p=5 p=10 p=20

p=1 1

p=5 0,9998 1

p=10 1,0004 1,0026 1

p=20 1,0002 1,0054 1,0036 1

1,0029 1,0064 1,005 1,0017 1

Method
MFD8

SFD8

MFD8

SFD8

68

Table 5-6Properties of selected source points

As one could have expected, flow paths from points simulted by SFD and

MFD differ greatly (Figure 5.36). This could be extremely important for tracing, for

example, point source contaminants. The differences would become even greater,

because influence maps are created assuming intial TCA of source points to be 1, but

their „real“ values may be higher (Table 5.6.), so the influence would be higher as

well.

Figure 5-36 Influece maps for 7 points (green dots) produced by SFD (left) and MFD with p=1 (right) algorithms

5.3.5 SCA calculation

For the SCA calculation it is important to define contour width in each pixel.

From flow dispersion raster we know that the most majority of pixels for MFD

algorithm route flow to 4 direction. Logically, such directions should be adjacent,

which could be in case of 2 cardinal and 2 diagonal adjacent directions. This

assumption is actually confirmed by MFD directions raster, median code of which is

30 (13319 cells) and next to median code 15 (13218 cells). Using MFD code

calculator we found out that these codes indeed represents 4 directions, 2 of which

diagonal and 2 cardinal.

For current DEM with grid size 90 m, we calculated theoretical range of

contour width by different methods, proposed in literature (Table 5.7.).While

Quinn‟s and Wolock&McCabe‟s contour lengths seem to be more or less similar,
Freeman‟s definition will give contour length 2,8 times higher for the same pixels,

thus giving 2,8 times lower SCAs values. Two methods for SFD8 contour length

definitions do not differ that drastically. However, the comparison of minimum

contour length, which is for MFD algorithm is always part of raster with single flow

to one cardinal neighbor, shows that SFD8 will produce almost 3 times higher values

of contour length, than Quinn‟s and Wolock&McCabe‟s contour lengths of MFD8
algorithm.

N of point
MFD direction

code

SFD direction

code
TCA, MFD, p=1 TCA, SFD

Flow dispersion

by MFD

1 195 128 6,4 5 4

2 252 8 1,3 1 6

3 207 128 1,4 1 6

4 60 16 2,8 3 4

5 195 128 2,5 2 4

6 255 32 1 1 8

7 255 64 1 1 8

69

Table 5-7Possible range of contour widths calculated by different methods for the DEM with grid size 90 m

We found out previously, that single flow paths in flow direction patterns

produced by MFD8 algorithm probably occur in the stream channels parts of terrain

where there is high values of flow accumulation. From the other hand, we saw that

TCAs with high values are predicted similarly by SFD8 and MFD8. Thus, we can

assume that SCAs in such parts of terrain predicted by SFD8 would be almost 3

times lower than those predicted by MFD8.

Logically, the coarser raster resolution, the greater absolute differences in

contour length width calculated by different methods. Accordingly, the different

SCAs patterns will be derived in inverse dependency to contour length.

For determination of SCAs by MFD we used the same TCA raster derived by

MFD (Freeman‟s) with parameter p=1, but different contour lengths (Freeman‟s,
Quinn‟s and Wolock&McCabe‟s). Thus, SCAs calculated by these γ methods
differed proportionally to differences in contour lengths: SCA range derived by

Quinn‟s and Wolock&McCabe‟s contour length definitions look more or less similar,

while Freeman‟s SCA values seem to be almost γ times lower (Table 5.8).

For the calculation of SCAs by SFD8 algorithm we used TCA raster derived

by SFD8 algorithm and divided it by pixel size, thus choosing approach of equal

contour length for both cardinal and diagonal directions.

Basic descriptive statistics of resulted SCAs, however, differ from those

predicted by MFD algorithm, in different manner than contour length (Table 5.8).

Minimum Most frequent Maximum

Freeman's 90 435 869

Quinn's 32 154 307

Wolock&McCabe's 36 180 360

Equal for all directions 90 90 90

Different for diagonal

and cardinal directions
90 90 or 127 127

MFD8

SFD8

Calculation Method

Contour length in one pixel, m

70

Table 5-8 SCA ranges derived by MFD with 3 different contour length methods and SFD

Basic SFD8 SCA statistics, except of Minimum, are similar to those derived

by MFD with Freeman‟s contour length definition, being almost γ times lower, than
those derived by MFD of Quinn and Wolock&McCabe (Table 5.9).

Table 5-9 Basic statistical characteristics of SCA values, m, derived by SFD and MFD with different contour length

Comparison of spatial SCA patterns, however, reveals, that SFD8 and

Freeman‟s MFD behave much differently, while Quinn‟s and Wolock&McCabe‟s
MFD remain pretty similar. SCAs produced by MFD (Freeman) seem to be

unrealistic, because there are large area occupied by SCAs with values less then 90

m, these are cells draining only area of 1 pixel (Figure 5.37).

Minimum Mean Maximum

Freeman's 9 10454 7774614

Quinn's 26 29310 21960994

Wolock&McCabe's 23 25238 19435480

SFD8 Equal for all directions 90 13626 7781670

Calculation Method

SCA, m

MFD8

71

Figure 5-37 SCA (m) patterns calculated by SFD and MFD with different countour width methods

As in case of TCAs values, SFD algorithm produce great amount of cells with

SCA equals to 90 m, that is value for a pixel, which drain only itself, which seem to

be unrealistic for such type of terrain with diverse topography (differences in

elevations are about 400 m).

Comparison of SCA distribution in logarithmic scale reveals the same

tendency as in case of TCA: all MFD algorithms produce smooth distribution of

SCAs, while SFD8 SCA values varies discretely, which seem to be unrealistic in real

terrain, as all properties of any natural body should be distributed continuously. The

discrete nature of SD8 SCA patterns and smooth features of MFD patterns can be

seen on logarithmically transformed raster images as well, but we didn‟t iclude them
as redundant (everything can be found in supplementary .mxd file). Differences

between MFD variations are not so clear though.

72

6 Discussion
Created toolbox with implemented MFD algorithm proved to be functional for the

terrain analysis of hydrologically correct DEM. Even for thecoarse-resolution DEM

we found out significant differences in TCA and SCA patterns produced by ArcGIS

built-in SFD algorithm and MFD algorithm implemented by author of the current

diploma thesis.

We suppose that SFD algorithm is better for river network extraction then MFD

approach, because it tends to produce connected network of pixels with high values

of TCA, while MFD does not. However, MFD algorithm may be better for the

calculation of SCA, especially on divergent hillslopes. Another promising

application field of MFD approach could be in modelling of contaminants transport.

Choosing of flow partitioning parameter p allows user to control extent of flow

divergence in calculation of TCA by developed Flow Accumulation by MFD tool.

However, more studies are needed on optimum p values for different relief types and

different DEM resolution. Created tool could be further developed by

implementation of spatially varyingp value methods.

Further studies could be also concentrated on development of other tools for

hydrological analysis for calculating of different hydrological indices dependent on

flow accumulation values (e.g. TWI). Implementation of other flow routing

approaches in ArcGIS environment will greatly extend abilities of basic Hydrology

toolset. Another interesting field of research is application of SCA concept in

pysically-based modelling of natural distribution of vegettion or soil properties.

Thus, developed tools could serve as valuable means for different research purporses

and can be publically available at FES CULS for students and researchers.

73

7 Conclusion

All assigned tasks were accomplished, the main goal of the present diploma thesis

was achieved:

1) Literature review on basic flow routing algorithms and their application was

written

2) Chosen Multiple Flow Direction algorithm was implemented in ArcGIS as a

user-friendly toolbox with 7 tools for hydrological analysis

3) Results of MFD implementation were compared with those derived by SFD

Main conclusions from comparison of SFD and MFD algorithms behavior:

1) There are significant differences between TCA and SCA patterns calculated

by SFD and MFD algorithm

2) MFD is recommended to use for the calculation of flow accumulation and

SCA for subsequent use for the calculation of different hydrological indices

3) SFD is recommended to use for channel delineation

4) For the calculation ofSCA by MFD, it is not recommended to use Contour

width calculated by Freeman method

74

8 References

1. Albani, M. and Klinkenberg, B. (2003). A Spatial Filter for the Removal of

Striping Artifacts in Digital Elevation Models. Photogrammetric Engineering

& Remote Sensing, 69(7), pp.755-765.

2. Barták, V. (2008). Algoritmy pro zpracování digitálních modelů terénu s

aplikacemi v hydrologickém modelování. Diploma thesis. pp. 202

3. Barták, V. (2009). How to extract river networks and catchment boundaries

from DEM: a review of digital terrain analysis techniques. Journal of

Landscape Studies, 2, 57-68.

4. Beasley, D. B., & Huggins, L. F. (1978, December). ANSWERS: A

hydrologic/water quality simulator for watershed research. In Proceedings of

the 10th conference on Winter simulation-Volume 2 (pp. 507-515). IEEE

Computer Society Press.

5. Binary heap. (2016). Wikipedia. Retrieved 3 April 2016, from

https://en.wikipedia.org/wiki/Binary_heap

6. Chirico, G., Western, A., Grayson, R., & Blöschl, G. (2005). On the

definition of the flow width for calculating specific catchment area patterns

from gridded elevation data. Hydrol. Process., 19(13), 2539-2556.

http://dx.doi.org/10.1002/hyp.5730

7. Costa‐Cabral, M. C., & Burges, S. J. (1994). Digital elevation model

networks (DEMON): A model of flow over hillslopes for computation of

contributing and dispersal areas. Water resources research, 30(6), 1681-

1692.

8. Desmet, P. J. J., and Gerard Govers (1996). Comparison of routing

algorithms for digital elevation models and their implications for predicting

ephemeral gullies. International Journal of Geographical Information

Science 10(3): 311-331.

9. Digital Topography: Should you choose a TIN or raster interpolation of the

landscape?. (2016). Vignette Collection. Retrieved 9 April 2016, from

http://serc.carleton.edu/vignettes/collection/42681.html

10. Esri Software for GIS Students. (2016). Esri.com. Retrieved 2 April 2016,

from http://www.esri.com/industries/apps/education/offers/promo/

11. Freeman, T. G. (1989). Drainage with divergent flow over a regular grid:

Proc. 8th Biennial Conf. Simulation Society of Australia, Canberra, p. 160-

165.

12. Freeman, T. G. (1991). Calculating catchment area with divergent flow based

on a regular grid. Computers & Geosciences, 17(3), 413-422.

13. Gallant, J. C., & Wilson, J. P. (1996). TAPES-G: a grid-based terrain analysis

program for the environmental sciences. Computers & Geosciences, 22(7),

713-722.

14. Garbrecht, J., & Martz, L. W. (2000). Digital elevation model issues in water

resources modeling. Hydrologic and hydraulic modeling support with

geographic information systems, 1-28.

15. Gruber, S., & Peckham, S. (2009). Land-surface parameters and objects in

hydrology. Developments in Soil Science, 33, 171-194.

https://en.wikipedia.org/wiki/Binary_heap
http://dx.doi.org/10.1002/hyp.5730
http://serc.carleton.edu/vignettes/collection/42681.html
http://www.esri.com/industries/apps/education/offers/promo/

75

16. Holmgren, P. (1994). Multiple flow direction algorithms for runoff modelling

in grid based elevation models: an empirical evaluation. Hydrological

processes, 8(4), 327-334.

17. Jenson, S. K., & Domingue, J. O. (1988). Extracting topographic structure

from digital elevation data for geographic information system analysis.

Photogrammetric engineering and remote sensing, 54(11), 1593-1600.

18. KIM S., LEE H. (2004) A digital elevation analysis: a spatially distributed

flow apportioning algorithm. Hydrological Processes 18(10): 1777-1794.

19. Lea, N. L. (1992). An aspect driven kinematic routing algorithm. Overland

flow: hydraulics and erosion mechanics, 147, 175.

20. Mach, R., & Petschek, P. (2007). Visualization of digital terrain and

landscape data: a manual. Springer Science & Business Media. 364

21. Mitasova, H., Hofierka, J., Zlocha, M., & Iverson, L. R. (1996). Modelling

topographic potential for erosion and deposition using GIS. International

Journal of Geographical Information Systems, 10(5), 629-641.

22. Mitasova, H., Mitas, L., Brown, W. M., Gerdes, D. P., Kosinovsky, I., &

Baker, T. (1995). Modelling spatially and temporally distributed phenomena:

new methods and tools for GRASS GIS. International Journal of

Geographical Information Systems, 9(4), 433-446.

23. Mitášová, H., & Hofierka, J. (199γ). Interpolation by regularized spline with
tension: II. Application to terrain modeling and surface geometry

analysis.Mathematical Geology, 25(6), 657-669.

24. Mitchell, A. (2012). The Esri Guide to GIS Analysis, Volume 3: Modeling

Suitability, Movement, and Interaction. ESRI Press. 419 pp

25. Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain

modelling: a review of hydrological, geomorphological, and biological

applications. Hydrological processes, 5(1), 3-30.

26. Novak, P. (2015).Tvorba nástroje pro digitální analýzu terénu. Diploma

thesis. pp. 54

27. O'Callaghan, J. F., & Mark, D. M. (1984). The extraction of drainage

networks from digital elevation data. Computer vision, graphics, and image

processing,28(3), 323-344.

28. Orlandini, S., Moretti, G., Franchini, M., Aldighieri, B., & Testa, B. (2003).

Path‐based methods for the determination of nondispersive drainage

directions in grid‐based digital elevation models. Water resources

research, 39(6).

29. Peucker, T. K. & Douglas, D. H., 1975. Detection of Surface-Specific Points

by Local Parallel Processing of Discrete Terrain Elevation Data. Computer

Graphicsand Image Processing, 4(4), p. 375–387.

30. Pidwirny, M. (2006). "Introduction to Geographic Information Systems".

Fundamentals of Physical Geography, 2nd Edition. Date Viewed.

31. Pilesjö, P., Zhou, Q., & Harrie, L. (1998). Estimating flow distribution over

digital elevation models using a form-based algorithm. Geographic

Information Sciences,4(1-2), 44-51.

32. Quinn, P. F. B. J., Beven, K., Chevallier, P., & Planchon, O. (1991). The

prediction of hillslope flow paths for distributed hydrological modelling using

digital terrain models. Hydrological processes, 5(1), 59-79.

33. Quinn, P. F., Beven, K. J., & Lamb, R. (1995). The In (a/tan/ȕ) index: How to
calculate it and how to use it within the Topmodel framework. Hydrological

processes, 9(2), 161-182.

76

34. Resources.arcgis.com, (2015). ArcGIS Help (10.2, 10.2.1, and 10.2.2).

[online] Available at:

http://resources.arcgis.com/en/help/main/10.2/index.html#/An_overview_of_t

he_Hydrology_tools/009z0000004w000000/ [Accessed 16 Dec. 2015].

35. Russell, E., Kumler, M., & Ochis, H. (1995). Identifying and removing

systematic errors in USGS DEMs. In Proceeding of GIS in the Rockies

conference, Denver, CO.

36. Seibert, J., and B. L. McGlynn (2007), A new triangular multiple flow

direction algorithm for computing upslope areas from gridded digital

elevation models, Water Resour. Res., 43, W04501,

doi:10.1029/2006WR005128.

37. Sulebak, J. R. (2000). Applications of digital elevation models. DYNAMAP

Project, 11. [online] Available at:

http://gisknowledge.net/topic/terrain_modelling_and_analysis/sulebak_dem_

applications_00.pdf

38. Tarboton, D. G. (1997). A new method for the determination of flow

directions and upslope areas in grid digital elevation models. Water resources

research, 33(2), 309-319.

39. Utah State Unversity, D. (2016). David Tarboton: Hydrology Research

Group-Terain Analysis Using Digital Elevation Models (TauDEM).

Hydrology.usu.edu. Retrieved 30 March 2016, from

http://hydrology.usu.edu/taudem/taudem5/license.html

40. What version of Python is used in ArcGIS?. (2016). Support.esri.com.

Retrieved 10 April 2016, from

http://support.esri.com/fr/knowledgebase/techarticles/detail/43889

41. Wilson, J. P., & Gallant, J. C. (2000). Digital terrain analysis. Terrain

analysis: Principles and applications, 1-27.

42. Wilson, J. P., AGGETT, G., & Yongxin, D. E. N. G. (2008). Water in the

landscape: a review of contemporary flow routing algorithms. In Advances in

digital terrain analysis. Springer Berlin Heidelberg, 213-236

43. Wise, S. (2013). GIS Fundamentals, Second Edition. Abingdon: CRC Press.

290 pp

44. Wolock, D., & McCabe, G. (1995). Comparison of Single and Multiple Flow

Direction Algorithms for Computing Topographic Parameters in

TOPMODEL. Water Resources Research, 31(5), 1315-1324.

http://dx.doi.org/10.1029/95wr00471

45. Zhou, Q., Lees, B., & Tang, G. A. (Eds.). (2008). Advances in digital terrain

analysis. Berlin/Heidelberg, Germany: Springer, 3-10

http://dx.doi.org/10.1029/2006WR005128
http://hydrology.usu.edu/taudem/taudem5/license.html
http://dx.doi.org/10.1029/95wr00471

77

Appendix

A.1. MFD.py
-*- coding: cp1250 -*-

Multiple Flow Direction

Created by Daria Rapoport, 2016/04,

based on script created by Bc. Petr Novák, 2015/04:

module "rta" and functions "slope" and "neighbors_z" are taken unchanged.

Faculty of Environmental Sciences

Czech University of Life Sciences Prague

"""

The script contains 2 functions: neighbors_z and slope.

Neighbors_z is looking for the elevations of the neighboring cells.

Slope calculates slope to each of the neighboring cells.

Input DEM is transfered to an array. Flow directions to all neighbors

with positive slopes for each element of DEM array(i.e. each cell of DEM)

are then determined. Simultaneously, control of sink areas is performed.

"""

import os, math, arcpy

import numpy as np

import rta as rt

arcpy.env.overwriteOutput = True

Function searches for the elevations of 8 neighbors of a cell

def neighbors_z(array,x,y):

 n1=array[x,y+1]

 n2=array[x+1,y+1]

 n4=array[x+1,y]

 n8=array[x+1,y-1]

78

 n16=array[x,y-1]

 n32=array[x-1,y-1]

 n64=array[x-1,y]

 n128=array[x-1,y+1]

 return n1, n2, n4, n8, n16, n32, n64, n128

Function calculates slopes to each of 8 neighbors of a selected cell

def slope (cell, nb, vCell):

 slp=[]

 for k in range(8):

 if k%2==0:

 s=(cell-nb[k])/vCell

 else:

 s=(cell-nb[k])/vCellSqrt

 slp.append(s)

 return slp

arcpy.AddMessage("Reading data from DEM ... ")

Input:

Raster DEM

in_dem = sys.argv[1]

Raster DEM is transfered to np.array

ar_dem = rt.rta(in_dem)

XMax = ar_dem[1]

YMax = ar_dem[2]

vCell = ar_dem[3]

LeftX = ar_dem[4]

LextY = ar_dem[5]

vCellSqrt = vCell*math.sqrt(2)

79

Output:

Raster of flow directions

out_ras = sys.argv[2]

arcpy.AddMessage("Calculations begin...")

Creation of array of zeros

dir_aray = np.zeros([XMax,YMax])

Basic 8-neighbor values for determination of flow direction

rastr_dir=[1,2,4,8,16,32,64,128]

Going through all the raster

for x in range (1,XMax-1):

 for y in range (1,YMax-1):

 # Calculates slopes to 8 neighbors of a cell

 slp=slope(ar_dem[0][x][y],neighbors_z(ar_dem[0],x,y),vCell)

 #Pits and flat areas error

 if (max(slp)) <= 0:

 arcpy.AddError(str("Raster error(flat area or sink),maximum slope value =

")+str(max(slp)))

 break

 #Flow direction of a given cell is a sum of 8 possible direction values

 #of all positive slopes (maximum 253 unique combinations,

 #e.g. if we have 2 positive slopes from a cell to the North(direction vlue=1)

 #and North-West (direction value=128), direction value of a cell = 1+128=129)

 posslp=0

 for i in range(8):

 if slp[i]>0:

 posslp=posslp+rastr_dir[i]

 dir_aray[x,y]=posslp

80

 # Pits and flat areas error

 if (max(slp)) <= 0:

 arcpy.AddError(str("Raster error(flat area or sink),maximum slope value =

")+str(max(slp)))

 break

arcpy.AddMessage("Creating of flow direction raster...")

#Creating of flow direction raster

new_raster =

arcpy.NumPyArrayToRaster(dir_aray,arcpy.Point(LeftX,LextY),vCell,value_to_nodata=-9999)

new_raster.save(out_ras)

A.2. Fdisp.py
-*- coding: cp1250 -*-

Flow Dispersion

Created by Daria Rapoport, 2016/04,

Faculty of Environmental Sciences

Czech University of Life Sciences Prague

"""

The script calculates flow dispersion - number of cells to which flow is routed

from the current cell.

Input Flow Direction raster is transfered to an array, for each cell of which

number of non-zero bits (equivalent to the number of directions towards

neighboring cells)

is calculated and converted to output „flow dispersion‟ raster.

"""

import os, arcpy

import numpy as np

import rta as rt

arcpy.env.overwriteOutput = True

81

arcpy.AddMessage("Reading data from DEM ... ")

Input:

Raster of flow directions with single flow direction codes used in ArcGIS

#and their summation for multiple flow directions

in_dem = sys.argv[1]

Raster of flow directions is transfered to np.array

ar_dem = rt.rta(in_dem)

XMax = ar_dem[1]

YMax = ar_dem[2]

vCell = ar_dem[3]

LeftX = ar_dem[4]

LextY = ar_dem[5]

Output:

Raster of flow dispersion (raster of numbers of directions form one cell)

out_ras = sys.argv[2]

arcpy.AddMessage("Calculations begin...")

Creation of array of zeros - basis for the output creation

dir_num = np.zeros([XMax,YMax])

 # Going through all the input raster

for x in range (1,XMax-1):

 for y in range (1,YMax-1):

 dirn=0

 for i in range(8):

 try:

 if bin(int(ar_dem[0][x][y]))[-i-1]=='1':

 dirn+=1

 except:

 pass

82

 dir_num[x,y]=dirn

arcpy.AddMessage("Creating of flow dispersion raster...")

#Creating of flow dispersion raster

new_raster =

arcpy.NumPyArrayToRaster(dir_num,arcpy.Point(LeftX,LextY),vCell,value_to_nod

ata=-9999)

new_raster.save(out_ras)

A.3. FSmfd.py
-*- coding: cp1250 -*-

Multiple Flow Simulation surface drainage

Created by Daria Rapoport, 2016/04,

based on script created by Bc. Petr Novák, 2015/04:

modules "rta" and "Heap"; functions "slope","neighbors_xy" and

"neighbors_z" are taken unchanged.

Faculty of Environmental Sciences

Czech University of Life Sciences Prague

"""

The script contains 3 functions: neighbors_z, neighbors_xy and slope.

Neighbors_z is looking for the elevations of the neighboring cells.

Neighbors_xy searches for the coordinates [x,y] of the neighoring cells.

Slope calculates slope to each of the neighboring cells.

Input DEM is transfered to an array. Initial array of flow accumulation is

created (array of ones + weights if provided).

Heap of vectors(x,y,z) sorted by the value of elevation "z" is created.

Starting with a cell with maximum elevation flow directions to all neighbors

with positive slopes are determined.

Accumulation value of a cell in the direction of a flow is increased

by an accumulation value of the currently processed cell according to the

weight of its slope value in all positive neighboring slopes.

"""

import os, math, arcpy

import numpy as np

83

import rta as rt

import Heap as h

arcpy.env.overwriteOutput = True

Function searches for the elevations of 8 neighbors of a cell

def neighbors_z(array,x,y):

 n1=array[x,y+1]

 n2=array[x+1,y+1]

 n4=array[x+1,y]

 n8=array[x+1,y-1]

 n16=array[x,y-1]

 n32=array[x-1,y-1]

 n64=array[x-1,y]

 n128=array[x-1,y+1]

 return n1, n2, n4, n8, n16, n32, n64, n128

Function calculates slopes to each of 8 neighbors of a selected cell

def slope (cell, nb, vCell):

 slp=[]

 for k in range(8):

 if k%2==0:

 s=(cell-nb[k])/vCell

 else:

 s=(cell-nb[k])/vCellSqrt

 slp.append(s)

 return slp

Function searches for the coordinates [x,y] of the neighoring cells

def neighbors_xy(x,y):

 n1=[x,y+1]

 n2=[x+1,y+1]

 n4=[x+1,y]

84

 n8=[x+1,y-1]

 n16=[x,y-1]

 n32=[x-1,y-1]

 n64=[x-1,y]

 n128=[x-1,y+1]

 return n1,n2,n4,n8,n16,n32,n64,n128

arcpy.AddMessage("Reading data from DEM ... ")

Input:

Raster DEM

in_dem = sys.argv[1]

Raster DEM is transfered to np.array

aar_dem = rt.rta(in_dem)

ar_dem = aar_dem[0]

XMax = aar_dem[1]

YMax = aar_dem[2]

vCell = aar_dem[3]

LeftX = aar_dem[4]

LextY = aar_dem[5]

vCellSqrt=vCell*math.sqrt(2)

del aar_dem

Output:

Raster of flow accumulation

out_aku = sys.argv[2]

#user-specified parameter p controlling flow divergency (Default p=1,1)

(Freeman, 1991)

p = float(sys.argv[3])

Raster of weights

if sys.argv[4] == "true":

 self_scale = sys.argv[5]

 # Transfer of weights raster to np.array

85

 ar_scale=rt.rta(self_scale)

arcpy.AddMessage("Data is loaded, the calculation begins ...")

ha=[]

Creating of heap of vectors(x,y,z) sorted by the value of elevation "z"

for xi in range (1,XMax-1):

 for yi in range (1,YMax-1):

 h.inz_el (ha, (xi, yi, ar_dem[xi,yi]), index=2)

Initial np.array for accumulation values

if sys.argv[4]== "false":

 ar_aku=np.ones([XMax,YMax])

else:

 ar_aku=np.ones([XMax,YMax])+ar_scale[0]

arcpy.AddMessage("Calculation of flow accumulation begins...")

Accumulation value of a cell in the direction of a flow (neighbor cell with

positive slope)

#will be increased by an accumulation value of an inflow cell (current

"central" cell)

#Calculation starts from the cells with the highest elevations (using binary

heap)

while len(ha)>0:

 x= ha[0][0]

 y= ha[0][1]

 if x in range (1,XMax-1):

 if y in range (1,YMax-1):

 slp=slope(ha[0][2],neighbors_z(ar_dem,x,y),vCell)

 slsum=0

 posslop=[]

 posnb=[]

 #Determination of the neighbors with positive slopes

 for i in range(8):

 if slp[i]>0:

86

 slsum=slsum+slp[i]**p

 posslop.append(slp[i])

 posnb.append(i)

 for el in posnb:

 # Neighboring cell in the direction of flow

 nxy=neighbors_xy(x,y)[el]

 #Its flow accumulation value=its current flow accumulation + flow

accum.from "central" cell

ar_aku[nxy[0],nxy[1]]=ar_aku[nxy[0],nxy[1]]+ar_aku[x,y]*(posslop[posnb.index(el)

]**p/slsum)

 # Deleting of maximum from the heap and putting there next maximum

 h.ret_max(ha,2)

arcpy.AddMessage("Creating of flow accumulation raster...")

Creating of flow accumulation raster

new_raster =

arcpy.NumPyArrayToRaster(ar_aku,arcpy.Point(LeftX,LextY),vCell,value_to_nodat

a=-9999)

new_raster.save(out_aku)

A.4. Influence_map.py
-*- coding: cp1250 -*-

Influence Map

Created by Daria Rapoport, 2016/04,

based on script created by Bc. Petr Novák, 2015/04:

modules "rta" and "Heap"; functions "slope","neighbors_xy" and

"neighbors_z" are taken unchanged.

Faculty of Environmental Sciences

Czech University of Life Sciences Prague

"""

The script maps where flow goes from the input pixels (coordinates in

column, row terms) and how it is dispersed.

User can choose MFD8 (Freemn, 1991) or SFD8 (O'Callaghan&Mark, 1984)

algorithm for flow routing.

87

The script contains 3 functions: neighbors_z, neighbors_xy and slope.

Neighbors_z is looking for the elevations of the neighboring cells.

Neighbors_xy searches for the coordinates [x,y] of the neighoring cells.

Slope calculates slope to each of the neighboring cells.

Input DEM is transfered to an array. Initial array of flow accumulation is

created (array of zeroes).

Input coordinates of source pixels are used to assign flow accumulation

values to ones for the input source pixels.

Heap of vectors(x,y,z) sorted by the value of elevation "z" is created. Slope is

calculted.

If SFD8 was chosen, flow is routed towards direction of maximum slope,

starting with a cell with maximum elevation.

In case of MFD8, also starting with a cell with maximum elevation, flow

directions to all neighbors with positive slopes are determined.

Accumulation value of a cell in the direction of a flow is increased

by an accumulation value of the currently processed cell according to the

weight of its slope value in all positive neighboring slopes.

"""

import os, math, arcpy

import numpy as np

import rta as rt

import Heap as h

arcpy.env.overwriteOutput = True

Function searches for the elevations of 8 neighbors of a cell

def neighbors_z(array,x,y):

 n1=array[x,y+1]

 n2=array[x+1,y+1]

 n4=array[x+1,y]

 n8=array[x+1,y-1]

 n16=array[x,y-1]

 n32=array[x-1,y-1]

 n64=array[x-1,y]

88

 n128=array[x-1,y+1]

 return n1, n2, n4, n8, n16, n32, n64, n128

Function calculates slopes to each of 8 neighbors of a selected cell

def slope (cell, nb, vCell):

 slp=[]

 for k in range(8):

 if k%2==0:

 s=(cell-nb[k])/vCell

 else:

 s=(cell-nb[k])/vCellSqrt

 slp.append(s)

 return slp

Function searches for the coordinates [x,y] of the neighoring cells

def neighbors_xy(x,y):

 n1=[x,y+1]

 n2=[x+1,y+1]

 n4=[x+1,y]

 n8=[x+1,y-1]

 n16=[x,y-1]

 n32=[x-1,y-1]

 n64=[x-1,y]

 n128=[x-1,y+1]

 return n1,n2,n4,n8,n16,n32,n64,n128

arcpy.AddMessage("Reading data from DEM ... ")

Input:

Raster DEM

in_dem = sys.argv[1]

Raster DEM is transfered to np.array

aar_dem = rt.rta(in_dem)

89

ar_dem = aar_dem[0]

XMax = aar_dem[1]

YMax = aar_dem[2]

vCell = aar_dem[3]

LeftX = aar_dem[4]

LextY = aar_dem[5]

vCellSqrt=vCell*math.sqrt(2)

del aar_dem

Output:

Raster of flow accumulation

out_aku = sys.argv[2]

#user-specified parameter p controlling flow divergency (Default p=1)

(Freeman, 1991)

p = float(sys.argv[5])

#Input pixel coordinates is retyped to the array of integers

xval=sys.argv[7].split(';')

yval=sys.argv[6].split(';')

xvalues=[]

yvalues=[]

for xv in xval:

 xvalues.append(int(xv))

for yv in yval:

 yvalues.append(int(yv))

arcpy.AddMessage("Data is loaded, the calculation begins ...")

ha=[]

Creating of heap of vectors(x,y,z) sorted by the value of elevation "z"

for xi in range (1,XMax-1):

 for yi in range (1,YMax-1):

 h.inz_el (ha, (xi, yi, ar_dem[xi,yi]), index=2)

#Creating initial flow accumulation raster

90

ar_aku=np.zeros([XMax,YMax])

for i in range(len(xvalues)):

 ar_aku[xvalues[i],yvalues[i]]=1

arcpy.AddMessage("Calculation of flow accumulation begins...")

Accumulation value of a cell in the direction of a flow (neighbor cell with

positive slope)

#will be increased by an accumulation value of an inflow cell (current

"central" cell)

#Calculation starts from the cells with the highest elevations (using binary

heap)

while len(ha)>0:

 x= ha[0][0]

 y= ha[0][1]

 if x in range (1,XMax-1):

 if y in range (1,YMax-1):

 slp=slope(ha[0][2],neighbors_z(ar_dem,x,y),vCell)

 #Checking SFD8 in the tool dialog box

 if sys.argv[3] == "true":

 indx=slp.index(max(slp))

 nxy=neighbors_xy(x,y)[indx]

 ar_aku[nxy[0],nxy[1]]=ar_aku[nxy[0],nxy[1]]+ar_aku[x,y]

 #Checking MFD in the tool dialog box

 if sys.argv[4] == "true":

 slsum=0

 posslop=[]

 posnb=[]

 #Determination of the neighbors with positive slopes

 for i in range(8):

 if slp[i]>0:

 slsum=slsum+slp[i]**p

 posslop.append(slp[i])

91

 posnb.append(i)

 for el in posnb:

 # Neighboring cell in the direction of flow

 nxy=neighbors_xy(x,y)[el]

 #Its flow accumulation value=its current flow accumulation +

flow accum.from "central" cell

ar_aku[nxy[0],nxy[1]]=ar_aku[nxy[0],nxy[1]]+ar_aku[x,y]*(posslop[posnb.index(el)

]**p/slsum)

 # Deleting of maximum from the heap and putting there next maximum

 h.ret_max(ha,2)

arcpy.AddMessage("Creating of flow influence raster...")

Creating of flow accumulation raster

new_raster =

arcpy.NumPyArrayToRaster(ar_aku,arcpy.Point(LeftX,LextY),vCell,value_to_nodat

a=-9999)

new_raster.save(out_aku)

A.5. nColRow.py
-*- coding: cp1250 -*-

Created by Daria Rapoport, 2016/04

Script module "rta" is credited to Bc. Petr Novák, 2015/04:

Faculty of Environmental Sciences

Czech University of Life Sciences Prague

"""

The script calculates the number of column and row of pixels of the input raster,

producing 2 rasters of column and row numbers of each pixel.

Input raster is coverted to ndarray.

Ndarray of columns and rows numbers of the input raster is created using numpy.indices

method.

Arrays of columns and rows are extracted from ndarray by indexing and converted to

rasters.

 """

92

import os, arcpy

import numpy as np

import rta as rt

arcpy.env.overwriteOutput = True

arcpy.AddMessage("Reading data from the input raster ... ")

Input:

Raster for which columns and rows will be defined

in_raster = sys.argv[1]

Raster DEM is transfered to np.array

raster = rt.rta(in_raster)

XMax = raster[1]

YMax = raster[2]

vCell = raster[3]

LeftX = raster[4]

LextY = raster[5]

Outputs:

Raster of row numbers

out_rows = sys.argv[3]

Raster of column numbers

out_cols = sys.argv[2]

arcpy.AddMessage("Calculation begins...")

#Creation of numpy array of indices

grid=np.indices((XMax,YMax))

nrows=grid[0]

ncols=grid[1]

#Writing the outputs

row_raster =

arcpy.NumPyArrayToRaster(nrows,arcpy.Point(LeftX,LextY),vCell,value_to_nodata=-9999)

93

row_raster.save(out_rows)

col_raster =

arcpy.NumPyArrayToRaster(ncols,arcpy.Point(LeftX,LextY),vCell,value_to_nodata=-9999)

col_raster.save(out_cols)

A.6. PaD.py
-*- coding: cp1250 -*-

Only part of the script is created by Daria Rapoport, 2016/04,

based on the script created by Bc. Petr Novák, 2015/04:

Faculty of Environmental Sciences

Czech University of Life Sciences Prague

#Script creates raster of Peucke and Douglass' weights

Unchanged part of Novak

Peucke and Douglass

Created by Bc. Petr Novák, 2015/04

Faculty of Environmental Sciences

Czech University of Life Sciences Prague

'''

Skript obsahuje dvě funkce: nPaD a PaD.

nPaD hledá elevaci a souřadnice tří sousedních buněk.

PaD načte vstupní DEM, převede jej na array a následně

prochází array za pomocí okna o velikosti βxβ buňky.

Porovná tak elevaci každou buňky DEM s jejími třemi sousedy.

Buňky, které nebyly ani jednou označeny za nejvyšší

z dané čtveřice, jsou s hodnotou 1 zapsány do výsledného rastru.

'''

import os, math, arcpy, sys

import numpy as np

import rta as rt

arcpy.env.overwriteOutput = True

x,y souřadnice a elevace tří sousedních buněk

94

def nPaD(array,x,y):

 n0=array[x,y+1] #elevace

 nγ=[x,y+1] #souřadnice

 n1=array[x+1,y+1]

 n4=[x+1,y+1]

 n2=array[x+1,y]

 n5=[x+1,y]

 return n0, n1, n2, n3, n4, n5

def PaD(in_dem):

 arcpy.AddMessage("PaD: Načítám data...")

 # Načte rastr DEM do np.array

 inDEM = rt.rta(in_dem)

 XMax = inDEM[1]

 YMax = inDEM[2]

 vCell = inDEM[3]

 LeftX = inDEM[4]

 LextY = inDEM[5]

 arcpy.AddMessage("PaD: Data načtena, začíná výpočet")

 # Nový np.array hodnot = 1

 PaD_aray = np.ones([XMax,YMax])

 # Prohledá celý rastr

 for x in range (0,XMax-1):

 for y in range (0,YMax-1):

 nb=nPaD(inDEM[0],x,y)

 # Porovná čtveřice hodnot a najde nejvyšší elevaci

 if inDEM[0][x][y] > nb[0]:

 if inDEM[0][x][y] > nb[1]:

 if inDEM[0][x][y] > nb[2]:

 # Všem nejvyšším elevacím přiřadí = 0

95

 PaD_aray[x,y] = 0

 else:

 PaD_aray[nb[5][0],nb[5][1]] = 0

 elif nb[1] > nb[2]:

 PaD_aray[nb[4][0],nb[4][1]] = 0

 else:

 PaD_aray[nb[5][0],nb[5][1]] = 0

 elif nb[0] > nb[1]:

 if nb[0] > nb [2]:

 PaD_aray[nb[3][0],nb[3][1]] = 0

 else:

 PaD_aray[nb[5][0],nb[5][1]] = 0

 elif nb[1] > nb[2]:

 PaD_aray[nb[4][0],nb[4][1]] = 0

 else:

 PaD_aray[nb[5][0],nb[5][1]] = 0

 arcpy.AddMessage("PaD: Rastr vah metodou Peucker and Douglas

vytvořen")

 return PaD_aray

#Small part created by Daria Rapoport, which creates raster of Peucker and

Douglas weights of input DEM raster

Input:

Raster DEM

in_dem = sys.argv[1]

Raster DEM is transfered to np.array

ar_dem = rt.rta(in_dem)

XMax = ar_dem[1]

YMax = ar_dem[2]

vCell = ar_dem[3]

LeftX = ar_dem[4]

96

LextY = ar_dem[5]

out_weights = sys.argv[2]

in_raster=PaD(in_dem)

new_raster =

arcpy.NumPyArrayToRaster(in_raster,arcpy.Point(LeftX,LextY),vCell,value_to_nod

ata=-9999)

new_raster.save(out_weights)

A.7. ContourLength.py
-*- coding: utf-8 -*-

Countour Length

Created by Daria Rapoport, 2016/04,

Faculty of Environmental Sciences

Czech University of Life Sciences Prague

"""

The script calculates contour lengths - sum of orthogonals to flow directions

(towards downslope neighbors), which equals to: 1) grid size for cardinal neighbors

and grid size*√Ϯ for diagonal neighbors (Freeman, 1991); 2)grid size*0,5 for cardinal

neighbors

and grid size*0,354 for diagonal neighbors (Quinn et al., 1991); 3)grid size*0,6 for cardinal

neighbors

and grid size*0,4 for diagonal neighbors (Wlock&McCabe, 1995) or 4) grid size multiplied by

user-specified factors different for cardinal and diagonal directions.

Input Flow Direction raster is transfered to an array, for each cell of which

number of flow directions towards diagonal and cardinal neighboring cells is determined.

Accordingly, sum of contour length is calculated and converted to output raster.

"""

import os, arcpy, math

import numpy as np

import rta as rt

arcpy.env.overwriteOutput = True

97

arcpy.AddMessage("Reading data from DEM ... ")

Input:

Raster of flow directions with single flow direction codes used in ArcGIS

#and their summation for multiple flow directions

in_dem = sys.argv[1]

Raster of flow directions is transfered to np.array

ar_dem = rt.rta(in_dem)

XMax = ar_dem[1]

YMax = ar_dem[2]

vCell = ar_dem[3]

LeftX = ar_dem[4]

LextY = ar_dem[5]

Output:

Raster of Contour Lengths (as defined by Freeman, 1991)

out_ras = sys.argv[2]

#Freeman's (1991) contour length definition

if sys.argv[3] == "true":

 wc=vCell

 wd=math.sqrt(2)*wc

 #Quinn's (1991) contour length definition

elif sys.argv[4] == "true":

 wc=vCell*0.5

 wd=vCell*0.354

#Wolock&McCabe's (1994) contour length definition

elif sys.argv[5] == "true":

 wc=vCell*0.6

 wd=vCell*0.4

98

#User-specified contour length definition

elif sys.argv[5] == "true":

 wc=vCell*(sys.argv[6])

 wd=vCell*(sys.argv[7])

else:

 arcpy.AddMessage("Choose one method for the calculation of contou lengths...")

arcpy.AddMessage("Calculations begin...")

Creation of array of zeros - basis for the output creation

contours = np.zeros([XMax,YMax])

 # Going through all the input raster

for x in range (1,XMax-1):

 for y in range (1,YMax-1):

 contour=0

 for i in range(4):

 #reading of directions and calculation of contour lengths for diagonal and cardinal

neighbors

 try:

 if bin(int(ar_dem[0][x][y]))[-2*i-1]=='1':

 contour+=wc

 except:

 pass

 try:

 if bin(int(ar_dem[0][x][y]))[-2*i-2]=='1':

 contour+=wd

 except:

 pass

 contours[x,y]=contour

arcpy.AddMessage("Creating of contour lengths raster...")

99

#Creating of output raster

new_raster =

arcpy.NumPyArrayToRaster(contours,arcpy.Point(LeftX,LextY),vCell,value_to_nodata=-

9999)

new_raster.save(out_ras)

A.8. rta.py (taken unchanged from Novak, 2015)
-*- coding: cp1250 -*-
Raster to Numpy.Array

import os, arcpy

import numpy as np
Funkce pro převod rastru do numpy.array
def rta (rast):
Načte rastr
inRas = arcpy.Raster(rast)
Zjistí jeho souřadnice
lowerLeftX = inRas.extent.XMin
lowerLeftY = inRas.extent.YMin
Zjistí velikost pixelu
sCell = inRas.meanCellWidth
vCell = inRas.meanCellHeight
Převede rastr na numpy.array
new_ar=arcpy.RasterToNumPyArray(rast,nodata_to_value=-9999)
Počet hodnout v řádku
XMax= new_ar.shape[0]
Počet řádku
YMax= new_ar.shape[1]

return new_ar, XMax, YMax, vCell, lowerLeftX, lowerLeftY

A.9. Heap.py (taken unchanged from Novak, 2015)
-*- coding: cp1250 -*-
Heap
Vytvoří binární haldu ze seznamu
def cr_heap (seznam, index=2):
heap=[]

for i in seznam:
inz_el (heap, i, index)

return heap
Přidá prvek na konec seznamu a nechá ho proskákat haldou
def inz_el (sez, x, index=2):
sez.append (x)
Index vloženého čísla
j = len(sez)

while j > 1:
Index nahrazeného prvku
p = j / 2
#Porovná vložený prvek a jeho nadřazený a případně je vymění
if isinstance(sez[p-1],int):

if sez[j-1] > sez[p-1]:
d = sez[j-1]
sez[j-1] = sez[p-1]

100

sez[p-1] = d
Posun v haldě na předchůdce
j = p
else:
break
else:

if sez[j-1][index] > sez[p-1][index]:
d = sez[j-1]
sez[j-1] = sez[p-1]
sez[p-1] = d
Posun v haldě na předchůdce
j = p

else:
break
Odstraní prvek z vrcholu haldy a nahradí ho dalším nejvyšším
číslem
def ret_max (heap, index=2):
Přesune poslední prvek haldy na vrchol
heap[0] = heap[-1]

del heap [-1]
Index posledního čísla
j = len(heap)-1
Index porovnávaného čísla
i = 0
Platí pro haldu obsahující více, než jedno číslo
while j > 0:
Index následníka
n = 2*(i+1)-1

if n<len(heap):

if isinstance(heap[n] and heap[i],int):
Kontrola zda existují oba následníci

if n < j:

- 53 -
Vybere ten větší
if heap [n+1] > heap [n]:
n = n+1
Je-li číslo menší než následník, tak se vymění
if heap[i] < heap[n]:
d = heap[n]
heap[n] = heap[i]
heap[i] = d
Posun v haldě na následníka
i = n

else:
break
else:
Kontrola zda existují oba následníci

if n < j:
Vybere ten větší
if heap [n+1][index] > heap [n][index]:
n = n+1
Je-li číslo menší než následník, tak se vymění
if heap[i][index] < heap[n][index]:
d = heap[n]

101

heap[n] = heap[i]
heap[i] = d
Posun v haldě na následníka
i = n

else:
break
else:
break
Funkce pro vytvoření seřazeného seznamu z existující
seřazené haldy
def cr_list (heap):
ssez = []
Je-li v haldě alespoň jediná položka
while len (heap)>0:
vloží největší číslo z haldy na konec seznamu
ssez.append (heap[0])
a vrátí maximum na začátek haldy
ret_max (heap)

return ssez

A.10. MFD_code_calculator.py

Flow Directions from the multiple flow direction codes

Created by Daria Rapoport, 2016/04,

Faculty of Environmental Sciences

Czech University of Life Sciences Prague

"""

The script gives the directions from the input array of MFD codes

"""

codes=[]

flowdir=['East','South-East','South','South-West','West','North-West','North', 'North-East']

#Input part - just enter flow direction codes into array

MFDcodes=[195,252,207,60,195,255,255]

for el in MFDcodes:

 codes.append(int(el))

for code in codes:

 count=1

 print 'Flow direction code '+str(code)+' equals to:'

102

 for i in range(8):

 try:

 if bin(code)[-i-1]=='1':

 print str(count)+')'+flowdir[i]+'\n'

 count+=1

 except:

 pass

103

Attachments: content of attached CD

Part of the Diploma work is CD containing text part of diploma thesis, ArcGIS

toolbox, sourcescripts

MFDtoolbox: folder with developed toolbox

MFD.tbx: ArcGIS toolbox

*.py: source scripts

dtm: folder of input sinkless DEM

MFDtest.mxd: ArcMap GIS Project

ResultingRasters: folder with resulting rasters

DiplomaRapoport2016.pdf: text part of diploma thesis

