
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

ANALYSISOFTHEMOVEPROGRAMMINGLANGUAGE
FOR BLOCKCHAIN PLATFORMS
ANALÝZA PROGRAMOVACÍHO JAZYKA MOVE PRO BLOCKCHAINOVÉ PLATFORMY

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR ADAM ŠMEHÝL
AUTOR PRÁCE

SUPERVISOR Ing. MARTIN PEREŠÍNI
VEDOUCÍ PRÁCE

BRNO 2023



 

Institut: Department of Intelligent Systems (UITS)
 

Student: Šmehýl Adam
 

Programme: Information Technology
 

Specialization: Information Technology
 

 

Category: Security
 

Academic year: 2022/23
  

Assignment:
 

1. Get familiar with the principles of blockchains and smart contracts.
2. Study the programming model of Move language and blockchain platforms such as Aptos, and Sui

and compare it with the programming model of Ethereum.
3. Study and compare Move language related to other smart contract languages such as Solidity

(EVM, Ethereum) and Rust (Solana).
4. Propose at least 3 use cases on how to compare Move language with others.
5. Implement various smart contract scenarios in different smart contract languages.
6. Evaluate and analyze the security, and performance of Move in these scenarios.
7. Discuss results and usability of Move language.

 

Literature: 
I. Homoliak, S. Venugopalan, D. Reijsbergen, Q. Hum, R. Schumi and P. Szalachowski, "The
Security Reference Architecture for Blockchains: Toward a Standardized Model for Studying
Vulnerabilities, Threats, and Defenses," in IEEE Communications Surveys & Tutorials, vol. 23, no.
1, pp. 341-390, Firstquarter 2021, doi: 10.1109/COMST.2020.3033665. 
https://doi.org/10.1109/COMST.2020.3033665
The Move Book, The Move Programming Language: https://move-book.com/index.html
Move: A Language With Programmable Resources, 
https://github.com/diem/diem/blob/main/developers.diem.com/static/papers/diem-move-a-
language-with-programmable-resources/2020-05-26.pdf
Ethereum Virtual Machine (EVM): https://ethereum.org/en/developers/docs/evm/
Move Language Introduction: https://move-language.github.io/move/introduction.html

Requirements for the semestral defence: 
1-4

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
 

Supervisor: Perešíni Martin, Ing.
 

Head of Department: Hanáček Petr, doc. Dr. Ing.
 

Beginning of work: 1.11.2022
 

Submission deadline: 17.5.2023
 

Approval date: 3.11.2022

Bachelor's Thesis Assignment
148522

Analysis of the Move Programming Language for Blockchain PlatformsTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno



Abstract
This thesis studies the Move programming language, focusing on its usability for developing
applications (smart contracts or programs) on blockchain platforms. Two key aspects are
considered: first, a comparison of programming models using Move to widely used models of
EVM-compatible platforms like Ethereum and the popular Solana blockchain; and second,
the implementation of the same program in Solidity on Ethereum, Rust on Solana, and
Move on Aptos. Criteria for comparison include deployment and execution costs, processing
speed, code readability, and overall development experience. A detailed analysis of Move’s
unique features, such as resource management, the use of generics, and other security
enhancements in programming, is conducted. The results demonstrate Move’s potential for
extensive use in the blockchain field, with its strong emphasis on secure coding and resource
management contributing to the growing interest within the blockchain community.

Abstrakt
Tato práce se zabývá zkoumáním programovacího jazyka Move z hlediska jeho použitelnosti
pro vývoj aplikací (smart kontraktů či programů) na blockchainových platformách. Práce
zahrnuje analýzu dvou klíčových aspektů. Prvním z nich je porovnání programovacích mo-
delů platforem používajících jazyk Move s běžně používanými modely EVM-kompatibilních
platforem (jako je Ethereum) a stále populárnějšího blockchainu Solana. Druhou částí práce
je implementace stejného programu v Solidity na Ethereu, Rustu na Solaně a Move na
Aptosu. Mezi kritéria pro porovnání těchto tří řešení patří transakční náklady, rychlost
zpracování, čitelnost kódu a zkušenosti z vývoje. V rámci této práce byla provedena po-
drobná analýza unikátních vlastností jazyka Move, jako je správa zdrojů, používání generik
a další zlepšení bezpečnosti při programování. Výsledky práce ukazují potenciál jazyka
Move pro rozsáhlé použití v oblasti blockchainu, přičemž jeho silnou stránkou je bezpečnost
(angl. secure coding), což přispívá k rostoucímu zájmu blockchainové komunity.

Keywords
Move programming language, Move practical applications, Move evaluation, smart con-
tracts, smart contract development, decentralized applications, blockchain platforms,
Ethereum, Solana, Aptos, Sui, blockchain security

Klíčová slova
programovací jazyk Move, jazyk Move v praxi, zhodnocení jazyka Move, smart kontrakty,
programování smart kontraktů, vývoj smart kontraktů, decentralizované aplikace,
blockchainové platformy, Ethereum, Solana, Aptos, Sui, bezpečnost blockchainu

Reference
ŠMEHÝL, Adam. Analysis of the Move Programming Language for Blockchain Platforms.
Brno, 2023. Bachelor’s thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor Ing. Martin Perešíni



Rozšířený abstrakt
Tato práce se zabývá podrobným studiem programovacího jazyka Move s ohledem na jeho
použitelnost pro vývoj aplikací na blockchainových platformách. Pro korektní zhodnocení
je nutné se zaměřit na dvě hlediska. Prvním je porovnání programovacího modelu při
použití jazyka Move s běžně používanými modely EVM-kompatibilních platforem, jako je
Ethereum, a také stále populárnějšího blockchainu Solana. Druhým hlediskem je otestování
jazyka v praxi pomocí implementace stejného smart kontraktu, programu nebo modulu
v každém z těchto jazyků – Solidity na Ethereum, Rustu na Solaně a jazyku Move na
Aptosu.

Kritéria pro zhodnocení jsou založena na několika faktorech, jako jsou náklady na
nasazení, transakční poplatky, rychlost zpracování, čitelnost kódu, celková zkušenost s vývo-
jem a dostupné nástroje. Tato analýza se snaží poskytnout podrobné porozumění odlišu-
jících charakteristik jazyka, jako je správa zdrojů, generika nebo datový model, a jak tyto
charakteristiky přispívají k jeho silným a slabým stránkám a jejich implikaci na vývojáře
pracující s blockchainovými technologiemi.

Práce také zkoumá vliv zralosti platformy na vývojový proces. To zahrnuje vývojářské
výzvy spojené s omezenými nástroji, nedostatkem vzdělávacích zdrojů a častými změnami,
které narušují kompatibilitu. Všechny tyto faktory mají vliv na rychlost a úroveň adopce
nových technologií.

Výsledky studie demonstrují potenciál jazyka Move pro rozšířující se adopci skrze různé
blockchainové platformy. Silné stránky jazyka, jako je bezpečnost, správa zdrojů a typová
kontrola, přispívají k rostoucímu zájmu blockchainových vývojářů. Práce také zmiňuje
aktuální vývoj v ekosystému, například nadcházející spuštění mainnetu Sui nebo snahu
solanových vývojářů integrovat podporu pro programy v jazyce Move. To naznačuje rozsáhlé
příležitosti pro expanzi v oblasti blockchainu.

Závěrem lze říci, že tato práce poskytuje komplexní zdroj informací pro porozumění
programovacího jazyka Move, jeho výhod a výzev a příležitostí v kontextu moderních
blockchainových platforem. Závěry přispívají do rozšiřující se kolekce znalostí o vývoji
blockchainu a poskytují pevný základ pro další výzkum a praktické implementace s využitím
jazyka Move.



Analysis of the Move Programming Language for
Blockchain Platforms

Declaration
I hereby declare that this term project was prepared as an original work by the author
under the supervision of Mr. Perešíni. I have listed all the literary sources, publications,
and other sources, which were used during the preparation of this thesis.

. . . . . . . . . . . . . . . . . . . . . . .
Adam Šmehýl
May 17, 2023



Contents

1 Introduction 2

2 Blockchain Basics and Principles 3
2.1 Origin of Blockchain Technology . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Bitcoin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Blockchain Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Smart Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Fees and Incentives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.6 Types of Blockchain Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.7 Adoption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.8 Blockchain in the Era of Web 3.0 . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Overview of Existing Solutions 7
3.1 Ethereum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Solana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Use Cases and Adoption: Ethereum and Solana . . . . . . . . . . . . . . . . 11

4 Emerging New Solutions 13
4.1 Move: A Programming Language for Blockchain Development . . . . . . . . 13
4.2 Move-based Platforms: Aptos and Sui . . . . . . . . . . . . . . . . . . . . . 15

5 Experiments with Current and New Platforms 18
5.1 Implementation – The Deposit Box. . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 The Development Experience – Ethereum, Solana, and Aptos . . . . . . . . 20

6 Comparison and Evaluation of Move, Solidity, and Rust Implementations 30
6.1 Comparing Code Complexity and Readability . . . . . . . . . . . . . . . . . 30
6.2 Transaction Fees (Gas and Rent) . . . . . . . . . . . . . . . . . . . . . . . . 32
6.3 Development Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.4 Developer Experience and Available Tooling . . . . . . . . . . . . . . . . . . 34
6.5 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Conclusion 36

Bibliography 38

A Storage medium 41

1



Chapter 1

Introduction

For quite some time, and even today, blockchain technology developers are still using classic
programming languages. However, these languages may pose risks due to their potential
to overlook critical aspects, leading to an increased count of vulnerabilities. Security is the
most crucial aspect of this industry, so it must be robust. That might lead developers to
build a superstructure on top of the programming language core with specific restrictions
to lower the chance of introducing errors in the written code.

As with other fields, specialized solutions tend to be the most effective. Therefore,
a programming language custom-made for blockchain development not only makes the work
more accessible but also addresses specific security criteria with restrictions directly
at the language level, lowering the chance of developers introducing errors while creating
complex solutions, such as smart contracts.

Over a year ago, several new platforms built around Move emerged in the blockchain
space. At the time, Move was a relatively unknown programming language. However,
the Move whitepaper outlined promising advancements and techniques that, upon further
examination, inspired the creation of this thesis, which showcases Move’s potential and its
appeal to developers.

This thesis focuses on demonstrating the practical use case of Move on a simple
application rather than delving deep into the details of related technologies. Please refer to
the official documentation or other sources referenced in this work for detailed information.

2



Chapter 2

Blockchain Basics and Principles

This chapter delves into the basics and principles of blockchain technology. It explores
its origins, core concepts, and structure, including the roles of smart contracts, fees, and
incentives. Also, it examines different types of blockchain systems and their increasing
adoption across industries, concluding with a discussion on blockchain in the Web 3.0 era.

The content presented is based on the experience and knowledge I have gathered over
several years while working with blockchain technology. Nevertheless, some small parts
have been adjusted and supplemented using the information and interpretation I have
found in this source [25].

2.1 Origin of Blockchain Technology
In 2008, a person under the pseudonym of Satoshi Nakamoto published a paper called
“Bitcoin: A Peer-to-Peer Electronic Cash System” [32]. In this paper, Satoshi proposed
a system that would become a digital payment system when trusted by enough third parties.
The underlying idea to achieve this goal is for this system to be fully transparent, with
transaction records publicly available for review by anyone, with a guarantee of finality for
the processed transactions. To achieve this, Satoshi introduced an underlying solution –
a brand-new technology called a blockchain.

2.2 Bitcoin
Bitcoin is the system that represents the first decentralized cryptocurrency. The main
reason for its creation was the idea of digital currency not being governed by any authority.
Therefore, its value and usage are based on trust and cannot be easily manipulated (at least
to some extent). Bitcoin was the first system to utilize blockchain technology.

Within 14 years of its existence, Bitcoin has become a globally recognized currency.
As a digital currency not governed by any state and available to anyone worldwide, Bitcoin
has already become a standard part of daily life for people in some countries, serving as
an alternative to their national currency due to high inflation levels. For instance, Turkey
is facing a year-to-year inflation rate of around 80% on its national currency. Reports
suggest that Bitcoin has become widely used among Turkish residents precisely because
of the ongoing inflation [29].

3



However, although highly secure, Bitcoin has a slow throughput, which results in its
use case being more like a store of value than for active usage. This limitation has led to
the creation of other blockchain platforms.

2.3 Blockchain Concepts
This section discusses the core principles characteristic of blockchain systems, followed by
the technical details describing the blockchain structure comprised of blocks. With that
in mind, it continues through transaction processing and network operation, explaining
the importance of consensus and incentives needed to reach a correct consensus between
nodes participating in the network.

Core Principles: Availability, Immutability, Scarcity, and Ownership

The principles of availability, immutability, scarcity, and ownership are central to blockchain
operation. In a blockchain network, the data is distributed across multiple nodes rather
than stored in a single central database. This data distribution is a prominent feature
in blockchain technology as it drastically improves the system’s availability. If some nodes
go offline or are compromised, others still maintain a full copy of the blockchain. Therefore
the network can continue to operate normally. It is characteristic for blockchain networks
to be immutable. Therefore, once the data is recorded in a block, it cannot be altered or
deleted.

Data gains value through its scarcity and the concept of ownership. Scarcity ensures
that data is neither created nor destroyed arbitrarily; creating an asset is a privileged
operation, and its successful destruction adheres to pre-set conditions. Ownership assigns
each data unit an owner who retains the exclusive right to modify its contents unless
they grant explicit permission to another party. Unlike traditional finance, where a central
authority manages the property, data modification agreed upon by two parties in blockchain
equates to a transaction. Under certain conditions, this renders blockchain a distinctive
form of digital currency.

Blockchain Structure

Blockchain is a data structure containing many smaller data structures, often called blocks.
When creating a new block, the node takes the entire content of the previous block and
hashes it as a hash pointer. For the new block to be valid, it must comply with the de-
fined structure, and every block, except the genesis block, must contain a hash pointer to
the previous block. The entire blockchain forms a distributed ledger, a consensus of repli-
cated digital data distributed across many nodes worldwide. This ledger is distributed to
newly joining nodes in a peer-to-peer manner.

Transaction Processing

A transaction in a blockchain network represents a set of instructions that, when executed,
modify the state of the blockchain. For a transaction to be successful, all its instructions
must be executed successfully. However, suppose the execution of even a single instruction
fails. In that case, the transaction is considered unsuccessful, and all previous changes
are reverted, leaving the blockchain in its original state before the transaction attempt.
In other words, transactions are atomic – they are either completed as a whole or not at all.

4



Due to the limited computing resources available, the execution process involves a fee to
reduce the likelihood of transaction starvation. The transaction fee size depends on the num-
ber of computing resources used for the transaction’s execution. The usage of the compu-
tation resources is metered in a unit called “gas.” Typically, each instruction has associated
execution costs in gas units.

When a transaction is processed, it is stored in a block, a data structure that groups
transactions executed within the same time window. Each block contains a pointer to
a previous block, resulting in a visual representation of the chain of blocks – hence the term
“blockchain.”

When a transaction is submitted to the network, it is distributed among the nodes,
which add it to their current block. Then, depending on the consensus protocol, the network
chooses a node (called a leader) to broadcast its block onto the network. The other nodes
then verify the block’s consistency and the validity of the consensus protocol. If the block
is valid, it is added to the local copy of the blockchain stored by each node.

Network Operation: Consensus and Incentives

The effective operation of the network relies on consensus and trust. Nodes participat-
ing in the network evaluate the validity of the current network state through consensus.
The consensus algorithm used by the particular network determines the specific method.
Nevertheless, the network’s correct state is typically a result of the consensus by the ma-
jority of the nodes.

In the case of an incorrect state proposal, perhaps in an attempt to exploit the network,
the proposal is rejected since it deviates from the consensus of the majority. If a single
entity gains control over the majority of nodes, it could manipulate the network. Conse-
quently, the network provides incentives to deter malicious activities and promote the proper
behavior of participating nodes. These incentives typically take the form of a collection
of transaction fees or newly minted coins as rewards, or they may involve both.

2.4 Smart Contracts
Smart contracts are transactions that function as programs. Once deployed, nodes store
these transactions in the blockchain, ensuring their persistent availability for execution.
Furthermore, nodes execute these transactions within a virtual environment (such as the
Ethereum Virtual Machine (EVM) in the case of Ethereum) to guarantee consistent results
across all nodes. The primary purpose of smart contracts and decentralized apps is to
facilitate complex data modifications or transfer of assets and tokens across the network
(blockchain).

2.5 Fees and Incentives
Since computational resources are limited, validators must be incentivized to process trans-
actions. These incentives typically take the form of transaction fees. However, due to limited
resources, validators can only process a certain number of transactions within a specified
period. Therefore, validators determine the order in which transactions are processed by
prioritizing those with higher fees. Consequently, users submitting transactions compete
by bidding on the gas price to gain the attention of validators.

5



On some chains, such as Ethereum, network congestion or high usage can lead to fierce
bidding wars, resulting in transaction fees that amount to hundreds or even thousands
of U.S. dollars when denominated in that currency.

2.6 Types of Blockchain Systems
Blockchain systems can be categorized based on their properties as either public or private:

1. Public – Blockchain records are publicly available to anyone.

2. Private – Blockchain records are accessible only within the company or entity.
In addition, the data is encrypted to prevent unauthorized review by any third party
in case of a leak.

Furthermore, blockchain networks can be classified based on permissions, either as permis-
sioned or permissionless:

1. Permissioned – A centralized entity decides who can participate as a node in the net-
work.

2. Permissionless – Anyone can become a node and participate in network operation.

2.7 Adoption
More than ten years later, blockchain technology is revolutionizing the world, and its
presence is becoming increasingly prevalent in our daily lives. In the face of global compe-
tition among companies in various industries, these organizations seek new opportunities
to seize. As the scale and wealth of the industry continue to grow, the world’s largest
corporations are starting to take notice – evidenced, for instance, by Facebook’s rebranding
to Meta [26].

2.8 Blockchain in the Era of Web 3.0
It is essential to understand that Web 3.0 represents an era of transactional freedom.
The idea of Web 3.0 is to follow up on the commerce and people-to-people connection
(Web 2.0) by allowing people to transact with whoever other people they want to transact
with, instantly, whenever they want, without any governing entity overseeing the transac-
tion. This teardown of the financial borders with blockchain and Web 3.0 solves a couple
of problems:

1. the issue of tracking ownership (of property)

2. the need to transact in a specific denominated currency

3. cross-border transactions

Besides financial data, blockchain technology enables the storage of various other forms
of digital data, including digital ledgers and digital logging, offering a versatile platform for
a wide range of applications.

6



Chapter 3

Overview of Existing Solutions

Chapter 3 presents an overview of existing solutions for blockchain platforms and decen-
tralized application development, focusing on Ethereum and Solana. A brief comparison
of Ethereum and Solana is showcased in Table 3.1, with this chapter later delving into
the core components of each platform, including their execution environments, storage
models, transaction fees, and runtime.

To provide accurate and comprehensive descriptions of each platform, I have relied on
official documentation, research papers, and expert articles found online [7, 17, 24, 12].

property Ethereum Solana
consensus Proof-of-Stake Proof-of-Stake
language Solidity Rust, C++ and Python

scalability sharding and layer 2s codebase and hardware
TPS 30 – 50 TPS up to 100k TPS
TTF ≈15 minutes ≈2.5 seconds
fees tens of dollars fraction of a cent

Table 3.1: Comparison of main properties between both Ethereum and Solana.

3.1 Ethereum
While Bitcoin is often referred to as a distributed ledger with replicated data on many nodes,
Ethereum represents a single instance of an object resembling a replicated (distributed)
state machine, often called “one big distributed computer.”

Ethereum has a large data structure encompassing all account data and the machine
state. This massive data structure, representing the machine (network) state, is imple-
mented using a modified Merkle Patricia Trie [21]. The typical EVM blockchain state is
depicted in Figure 3.1.

This machine state changes from block to block due to the predefined behavior that
emerges from executing transactions. The EVM (Ethereum Virtual Machine) defines this
behavior by specifying rules. Every validator (node) in the network is aware of these
rules, as every possible state transition is defined by a set of state transition functions
with a single output. During transaction execution, nodes independently follow the rules.
Upon successful execution, they all reach the same new state defined by the state transition

7



global storage

contract addressContracts:

State variables:

Balances:

module owner

owners of tokens

non-owners of
tokens

... other contracts ...

balances

0x1: 0 0x2: 0 0x42: 2 0xABC: 3 0xABD: 5

Figure 3.1: Solidity (EVM) blockchain state1.

function. This is why the network state is referred to as a replicated state machine, as state
machine transitions are consistently replicated across every node.

On Ethereum, there are a few transactions types:

• Those resulting in message calls – such as regular transactions or smart contract
execution.

• Those resulting in contract creation (deployment).

The contract creation process leads to the creation of a new contract account containing
executable compiled smart contract bytecode. This bytecode is available for execution
whenever it is called by a message call.

Ethereum Execution Pipeline

The Ethereum virtual machine (EVM) is an isolated runtime environment where execution
clients (nodes) execute EVM-compatible bytecode. It behaves as a stack-based machine
with a maximum stack size of 1024 items. Each item is a 256-bit word. For execution
purposes, the EVM maintains volatile (transient) memory in the form of a word-addressed
byte array. However, as part of the smart contract account, non-volatile (persistent) storage
is available for storing data if the smart contract needs to retain any information between
transactions.

A smart contract is essentially compiled EVM-compatible bytecode stored in a “smart
contract account” after being deployed onto the network by a developer. This bytecode
consists of numerous EVM opcodes, and the execution of such code is triggered by trans-
actions targeting a specific smart contract account. The full execution pipeline is depicted
in Figure 3.2.

1Image adapted from https://github.com/move-language/move/tree/main/language/documentation/
tutorial.

8

https://github.com/move-language/move/tree/main/language/documentation/tutorial
https://github.com/move-language/move/tree/main/language/documentation/tutorial


Gas

To incentivize the EVM to execute transactions, the user must pay an execution fee. Each
executed code has a specified compute resource budget to prevent unnecessary over-usage
of computing resources. The EVM measures the computing resource consumption in a unit
called gas. Each EVM instruction (opcode) has a set gas cost reflecting its computational
complexity. As a result, the EVM consumes gas from the provided gas limit during code
execution. The consumption of gas is illustrated in Figure 3.2. If the EVM runs out of gas
during execution, it raises an “Out-of-gas” exception, resulting in transaction processing
failure and the restoration of the original state. Upon transaction submission, the user
(sending account) specifies this computing budget by prepaying a specific amount of gas
in ether (ETH). The total transaction fee cost is the gas price * gas units, where the user
sets the gas price, effectively stating how much they are willing to pay for the gas.

Transaction

instruction data

gas limit

Ethereum Virtual Machine (EVM)

instruction 
pool

program
counter (PC)

EVM
OP 

code

execution 
engine stack

gas available

memory

gas
message 

 call

more gas

(account) 
storage

more gas

Figure 3.2: EVM transaction execution pipeline.

3.2 Solana
“A Solana cluster is a set of validators working together to serve client transactions and
maintain the integrity of the ledger.”[16] In the case of Solana, the network selects one node
to be a leader for a fixed time interval called a “slot.” Within the duration of a slot, only
the appointed leader is expected to produce a block. Currently, the network rotates a leader
every four slots following an order set in advance for the entire epoch. An epoch on Solana
consists of 432,000 slots, with a leader schedule determined at the epoch’s start.

“Clients send transactions to any validator’s Transaction Processing Unit (TPU) port.
If the node is in the validator role, it forwards the transaction to the designated leader.
If in the leader role, the node bundles incoming transactions, timestamps them creating
an entry, and pushes them onto the cluster’s data plane. Once on the data plane, the trans-
actions are validated by validator nodes, effectively appending them to the ledger.”[16]
The validator rejects blocks bearing the signature of anyone other than the current slot
leader.

9



The On-chain Storage Model of Solana

Data storage on the Solana network takes the form of an “account.” An account is
an arbitrary location on the network designed to store persistent data, provided that it pays
a “rent” for the storage resources used. More details on the rent are discussed in the next
section.

Alongside the data itself, the account includes metadata for access control. There are
three types of accounts on Solana:

• Program accounts — store executable code, which is equivalent to a program (often
referred to as a smart contract)

• Storage accounts — store data connected to a program

• Token accounts — store the account balance of a specific token (e.g., SPL token
account)

In contrast to Ethereum, where smart contract code and data are stored in the same
account, Solana’s program (executable code) is stored in a different account than its data.

Program Account
lamports: 10
owner: System Program
executable: true
rent_epoch: 12345
data: executable byte code

Data Account
lamports: 10
owner: Program Account
executable: false
rent_epoch: 12345
data: counter = 1

Figure 3.3: Solana on-chain storage model – a program account and associated storage
account2.

Overall, all accounts are either executable or non-executable. An executable account storing
executable bytecode is a program. Every non-executable account has an associated owner
program address, and only the specified owner can modify the stored data. Otherwise,
the storage account is transparent, meaning any program on the Solana network can read
the account data. The content of accounts and the mutual connection of data accounts and
program accounts is visualized in Figure 3.3.

Transaction Fees and Rent

Solana has two types of fees: transaction fees and storage rent. Users must pay a small
transaction fee in the form of the network’s native token ($SOL) to incentivize validators to
process their transactions. The standard transaction fee is currently static at 0.000005 $SOL
per signature.

2Image source: https://solanacookbook.com/core-concepts/accounts.html#account-model.

10

https://solanacookbook.com/core-concepts/accounts.html##account-model


With the introduction of fee markets on Solana in the autumn of 2022, users can now add
a prioritization fee. “The prioritization fee is calculated by multiplying the requested maxi-
mum compute units by the compute-unit price (specified in increments of 0.000001 lamports
per compute unit), rounded up to the nearest lamport.”[18] One lamport is one billionth
of $SOL. Paying a prioritization fee ensures faster execution, as the nodes prioritize trans-
actions with higher fees.

When developers or users want the clusters to keep accounts and their data persistently
in memory and not be lost, they must fund a time and space-based fee called rent.
“The Solana rent rate is set on a network-wide basis, primarily based on the set lamports
per byte per year.”[13] However, it is not a feasible model to theoretically pay an infinite
amount of $SOL for renting space for an infinite amount of time. The developers solved this
with mechanics called rent exemption. An account qualifies to be rent-exempt by having
a balance equal to at least two years of rent. If an account fails to meet this condition,
a garbage collector will clean up its data. The current rent rate is available in the rent sysvar.
As of December 2022, the current rent rate is static at 0.00000348 $SOL per byte per year.
As an example, a classic token account takes up 165 bytes. That means when opening
a new token account, the user has to fund this account with at least 0.00203928 $SOL to
be rent-exempt.

The Solana’s “Sealevel” Runtime

Each instruction identifies a specific program and provides a selection of the transac-
tion’s accounts that need to be transferred to the program, along with a data byte array.
The program deciphers the data array and interacts with the accounts outlined by the in-
structions. The program can either produce a successful result or generate an error code.
In case of an error, the entire transaction is immediately deemed unsuccessful [19].

Solana’s on-chain programs utilize the LLVM compiler infrastructure, which compiles
them into an Executable and Linkable Format (ELF) containing a version of the
Berkeley Packet Filter (BPF) bytecode. This approach allows developers to write pro-
grams in any language that can target LLVM’s BPF backend. Solana currently supports
Rust and C/C++, and ongoing research aims to add support for the Move programming
language. Python can also be used for program development through the Seahorse frame-
work. BPF provides efficient instructions that can be run in an interpreted virtual machine
or as high-performance just-in-time compiled native instructions.

3.3 Use Cases and Adoption: Ethereum and Solana
Although Solana boasts high throughput and low latency, making it an attractive platform
as of Q1 2023, it has struggled to draw a more extensive user base to its DeFi platforms.
The network’s impressive performance has facilitated the development of decentralized
exchanges (DEXs) and advanced liquidity and lending pools with rapid rebalancing in just
a matter of seconds. Nevertheless, users continue to prefer the stability and provenance
of the Ethereum network, despite the high fees and extended transaction confirmation
times.

Due to the high fees and slow transactions on Ethereum, developing highly interactive
games on the platform becomes nearly infeasible. Consequently, Solana gains a competitive
advantage in the realm of game development, offering seamless on-chain interaction capa-

11



bilities. As a result, Solana has firmly established itself as the premier choice for gaming
applications and is poised to maintain this position for the foreseeable future.

One sector has successfully gained traction on both Ethereum and Solana – trading
with non-fungible tokens (NFTs). Ethereum boasts a higher trading volume, which could
be attributed to its wealthier user base that can afford the higher fees. On the other hand,
Solana has more active wallets involved in NFT trading, as its lower fees create a more
accessible entry point for users. Consequently, the adoption of NFTs can be considered
relatively balanced between the two platforms.

12



Chapter 4

Emerging New Solutions

The Move programming language offers a fresh take on a different approach to smart
contract programming. It focuses on addressing pitfalls developers may have encountered
in the past. Alongside its rise in popularity, a few blockchain platforms with native support
for Move have become prominent. The information in this chapter was sourced online
from [22, 3, 9, 1, 4, 11, 20, 8, 5, 14, 27].

4.1 Move: A Programming Language for Blockchain
Development

Move is an executable bytecode language explicitly designed for blockchain developers to
implement custom transactions and smart contracts. While Rust inspired its basic concepts,
Move’s standout feature is its ability to define custom resource types. These resources have
unique properties that will be discussed later. Typically, marking data as a resource is
used for data representing something of value, such as the number of tokens a user has.
Additionally, Move comes with a built-in formal verification checker called Move Prover.

First-Class Resources

In contrast to other programming languages, Move introduces a feature that allows devel-
opers to define their custom resource types. Developers can define any common program
values as a resource. Nevertheless, doing so applies a whole suite of protection approaches
to the variable. To highlight a few, as mentioned in the Move whitepaper [22].

A resource can never be copied or implicitly discarded, only moved between
program storage locations.

However, a resource cannot simply appear out of nowhere or disappear at any time,
so we need to maintain a certain level of control over its creation and destruction. Move
uses modules to ensure just that. In normal development in Move, a programmer declares
a resource type (variable) and resource managing procedures (create, modify, and destroy)
inside a module. A Move module looks and behaves similarly to smart contracts created
in other blockchain languages. Likewise, a module can invoke procedures defined by other
modules. The resource within a module can only be modified by the procedures specified
in the module that defines that particular resource.

13



global storage

0x1 0x2 0x42 0xABC 0xABDAddresses:

Resources:

Modules:

0x42::BasicCoin::
Balance {
 value: 2
}

0x42::BasicCoin::
Balance {
 value: 3
}

0x42::BasicCoin::
Balance {
 value: 5
}

module 0x42::BasicCoin
{
 // bytecode here
 ...
}

module owner

owners of tokens

non-owners of
tokens

Figure 4.1: Move blockchain state1.

Each address on the Move-native blockchain represents an account. In contrast to
Ethereum, all accounts can store data under their addresses, either resources or deployed
modules containing the executable bytecode, as depicted in Figure 4.1.

This approach separates the architectures mentioned earlier, with the Move solution
offering better security. As the module does not control any data structures (resources),
it cannot modify them, as they are stored under a user account. Modifying or withdrawing
resources from the account is only possible with the user’s (owner’s) signer capability.

Code Security and Move Intermediate Representation

When developing in Move, programmers typically write code in Move Intermediate Repre-
sentation (IR), which should possess the following qualities [22].

Move IR is high-level enough to write human-readable code yet low-level enough
to have a direct translation to Move bytecode.

However, the final executable Move source code format is a typed bytecode.
Checks by the bytecode verifier are performed at the bytecode level, examining the byte-

code for resource, type, and memory safety directly on-chain. This memory safety includes
preventing dangling references and memory leaks. Only after passing these checks does
the bytecode interpreter execute the bytecode. The complete execution pipeline is depicted
in Figure 4.2. Since it is computationally feasible to perform only some checks during
every transaction execution, Move developers designed the language to support advanced
off-chain static verification tools.

Formal Verification using Move Prover

Since data on blockchain systems often represent real-world value, platforms must be as
secure as possible to prevent the potential theft of assets from their owners. Formal verifi-
cation is an excellent tool for developers to verify that their program behaves as intended.

1Image adapted from https://github.com/move-language/move/tree/main/language/documentation/
tutorial.

14

https://github.com/move-language/move/tree/main/language/documentation/tutorial
https://github.com/move-language/move/tree/main/language/documentation/tutorial


deserializer bytecode verifier code cacheMove
bytecode

bytecode interpreter
(executor)

Figure 4.2: Move execution pipeline.

First, the developer specifies the desired behavior using a mathematical expression for
formal verification. Then, the formal verification tool checks that the code behaves as
specified. Unlike simple code testing, formal verification examines the code behavior under
every possible scenario, providing greater security assurance than testing alone.

4.2 Move-based Platforms: Aptos and Sui
The inception of Move dates to 2018 when developers at Meta (formerly Facebook) sought
a programming language to power Meta’s project Diem (previously known as Libra). Unfor-
tunately, Meta later canceled this project due to regulatory issues. However, the developers
behind Move wanted to preserve their years of work. As a result, they left Facebook and
formed two independent groups of former Meta employees to create their own Move-based
blockchain platforms. This led to the creation of the Aptos and Sui blockchain platforms.
The main differences between Aptos and Sui are stated in Table 4.1, with detailed expla-
nation in the following sections.

Criterion Aptos Sui
Consensus Mechanism Proof-of-Stake Proof-of-Stake
Move Language Variant Diem’s Move Sui Move
Storage Model Account-centric Object-centric
Transaction Capacity Up to 160k TPS 10k to 300k TPS
Time to Finality < 1 second < 1 second
Module Deployment Under account As object
Resource Distribution Two-step (offer and claim) Unilateral transfer

Table 4.1: Comparison of key properties between Aptos and Sui.

Aptos
Aptos is a standalone layer-one blockchain with a Proof-of-Stake (PoS) consensus mech-
anism. With a mainnet launch on October 12th, Aptos became the first Move-native
blockchain to launch a mainnet and the only one to do so in 2022. Aptos describes
itself as a reliable, secure, scalable, and upgradeable blockchain. The developers designed
Aptos with native support for Move, alongside the development of Move itself. In addition
to smart contracts, the blockchain even uses Move internally for fast and secure transaction
execution.

The blockchain achieves high throughput and low latency by parallelizing transaction
execution as much as possible. The network accomplishes this through batch processing

15



and parallel transaction execution. During the transaction dissemination phase, each val-
idator groups transactions into batches and combines them into blocks during consensus.
Transactions without data resource conflicts can execute in parallel.

Aptos stores data on-chain using accounts, which consist of a set of values and key-value
data structures. These data structures take the form of Binary Canonical Serialization
format (BCS). Move modules are stored similarly but under a separate namespace.

A notable feature of Aptos is its ability to support private key rotation and native
multi-signature capabilities. Aptos achieves this by providing on-chain mapping through
an account lookup address. In Aptos, the account address shared with other users differs
from the public key in a signature pair (public_key, private_key).

During the account creation process, the concatenation of all public keys (a single one
or multiple in the case of multi-signature) is hashed using a cryptographic hash to form
an authentication key. The public account address is then set to match the authentica-
tion key. However, the Aptos blockchain includes a function that allows users to update
the authentication key associated with their account address at a later time.

These technological advancements significantly differentiate the Aptos blockchain from
existing platforms, capturing the interest of venture capital investment firms and leading to
a staggering $350 million funding raise [35]. These figures are considered an overwhelming
success for a raise conducted in 2022.

Sui
Sui is a Move-native, permissionless, proof-of-stake, layer-one blockchain designed from
the ground up to achieve a near-instant, high-throughput network. Unlike Aptos, which
uses the Diem version of Move, Sui’s developers took Move and made a few modifications,
resulting in a version they call “Sui Move.”

Resource Distribution

In the original Move (used by Aptos), transferring a resource to a user account is impos-
sible without the user’s consent. While this can be beneficial in preventing spam or scam
NFTs from being sent to users’ wallets across various blockchains, it poses a problem when
distributing resources (e.g., NFTs) to a predetermined list of addresses. To address this,
Sui implemented a unilateral resource transfer (similar to other blockchains) with the func-
tion transfer(resource, recipient_addr). As a bonus, the execution of a function
implementing multi-item distribution does not collide with others; therefore, the Sui run-
time forwards this transaction via the “fast path” broadcast that does not need consensus,
resulting in parallel execution.

However, this issue is not unsolvable. Aptos addresses this (in their framework) by
splitting the resource transfer into two steps:

1. The distributing module makes a “transfer” offer to the user account:
token_transfers::offer(&module_sig, receiver_addr, token_id, 1);

2. The offers will be displayed to the user in their wallet, allowing them to send a “claim”
transaction to claim the resource into their account.

16



Sui Storage and Native Asset Ownership

Sui employs a distinct approach to native asset ownership and transfers compared to Aptos,
which uses account-centric global storage. Sui does not utilize the built-in global storage
in the core Move language. Instead, the platform has developed its own storage system
called Sui Storage. This system is object-centric, with each address representing a globally
unique object ID. Generally, this should be fine during development in Sui, as it is easy to
detect if a generated address (ID) already exists on the blockchain.

This storage model simplifies object ownership and transfers. In Sui Move with Sui
Storage, module functions (entry points) already take object references as input arguments.
Therefore, this design eliminates the need for developers to use borrow_global_mut (Aptos)
and incorporates checks to ensure that the transaction sender is the object owner into the Sui
runtime.

One fascinating aspect I will explore later in this thesis is that with this change, modules
are published into Sui Storage and not under an existing account (as in Aptos). Conse-
quently, developers inadvertently avoid the module deployment challenges I experienced
while working with Aptos. As mentioned, more on this topic will be discussed later.

Simplified Gas Consumption in Sui

Like Ethereum, Sui measured computation resource consumption in computation units for
each instruction execution. However, in late October, Sui modified the gas fees for each
instruction to a flat value. The creators behind Sui attributed this change to developer
behavior, stating that overly fine-grained per-instruction metering encouraged unnecessary
optimization (gas-golfing). The hope is that this decision will improve code readability and
prevent unnecessary computation resource wastage in the future.

17



Chapter 5

Experiments with Current and
New Platforms

The idea behind Move is promising, but a proper evaluation must be based on more than
just theory. So instead, the focus is on using Move, Solidity, and Rust in practice to build
a fully functional application called The Deposit Box. The development process will be
done on Ethereum using Solidity, Solana using Rust, and Aptos using Move. This chapter
will discuss the development experience and challenges faced and evaluate each platform
based on execution cost, processing speed, and code readability. By the end of this chapter,
readers will have a deeper understanding of the strengths and weaknesses of these platforms,
as well as insights into their practical use. The information presented in this chapter, and
used during development was sourced from [2, 11, 4, 34, 25, 23, 6, 9, 10, 30, 15, 33].

5.1 Implementation – The Deposit Box.
I needed to develop an application – an application that would put to the test several
features commonly used by various smart contracts. Eventually, I have devised an idea
for an application I call “The Deposit Box.” I implemented this application in Solidity on
Ethereum, Rust on Solana, and Move on Aptos. To simplify things, I will try to refer to
the application backend, implemented as a smart contract, program or module, uniformly
as a “program.”

How the Application Works

Users will visit the application and deposit selected assets. In exchange, they will receive
a new non-fungible token representing the ownership of the deposited assets, sometimes
referred to as a token backed by those assets. Whoever holds the token can then exchange
it back for the underlying assets. The token holder is free to transfer the token to any wallet
they want. The described application use case is illustrated in Figure 5.1. This approach
tests several aspects:

1. Handling of multiple assets

2. New token minting (emission)

3. Privileged recovery of assets from the program

18



If the application behaves as intended, the functionality can be expanded by adding the pos-
sibility of setting up a time-lock on the deposit. When depositing, the user is free to choose
an optional lock time. If the user has done so, the token holder can withdraw the assets
only after the specified time expires.

Owner

Application

NFT

Wallet 1

Wallet 2

Key
Transfer

Key Holder

NFT
Deposit Withdrawal

Assets

Assets

Figure 5.1: Visualization of the application behavior.

5.2 Evaluation Criteria
After considering various ideas, I have decided to settle on three criteria for testing the dif-
ferent implementations in each programming language and corresponding platform. I have
kept it simple as these criteria will cover the fundamental questions:

• How much – objective comparison based on fees associated with transaction execution

• How fast – objective comparison based on network throughput and time-to-finality (TTF)

• How – subjective evaluation of code readability, available tooling and supporting re-
sources

Execution Cost

In contrast to user experience, in a majority of cases, the primary concern of the developer
is not the transaction execution fee but the program deployment cost. For a program
to become usable, the developer must first upload it to the chain. A completed smart
contract usually consists of many instructions processing somewhat complex logic. As
the smart contract is submitted onto the network for it to be available for execution,
the execution client must keep a copy of it in its memory. In blockchain systems, the most
scarce resource is memory (storage) capacity. With many instructions, the executable
bytecode becomes of non-negligible size. Therefore, the developer must pay a significant
transaction fee (on contract deployment) on Ethereum or charge up an account with enough
$SOL for the account to become rent-exempt on Solana.

19



Processing Speed

Currently, the choice of programming language is platform-dependent, as neither platform
supports other programming languages. However, this might change as Solana announced
that their developers are working on native support for Move on Solana. Therefore, the eval-
uation of this criterion will mainly reflect the platform’s efficiency. However, the very nature
of the programming language might impact the resulting processing speed, as particular
actions may consist of different amounts of instructions, resulting in varying execution times.
Nevertheless, this criterion is a vital part of the technology research process. Evaluation
of processing speed will depend on time-to-finality and network throughput.

Code Readability

Code readability is the primary differentiation a programming language choice will make.
It influences the security and adaptability of the code. If the code is easily readable and
understandable, the probability that other developers and security researchers will spot
any potential bugs and security holes within the source code before any attacker increases.
Easy-to-read code is necessary for sophisticated static analysis. Similarly, new developers
can use existing source code as a reference or learn from it.

5.3 The Development Experience – Ethereum, Solana, and
Aptos

In this section, I will cover the development process, its nuances, the platform differences,
and the design aspects I encountered while developing the application on each blockchain
platform.

The Ethereum EVM and Solidity
Smart contract development was carried out in the Remix IDE1. The online in-browser
Remix IDE is a comprehensive suite of tools available to developers working in Solidity.
It contains a decent source code editor and a Solidity code compiler readily accessible via
a keyboard shortcut with various compiler versions. With an injected wallet extension,
developers can easily deploy the smart contract on-chain directly inside the IDE. As on-
chain deployment can become quite inconvenient (due to online on-chain transactions taking
time), developers can use the built-in virtual sandbox Remix VM, which mimics the real-
world blockchain.

The Challenges Faced by Ethereum Developers with Testnets

Currently, two public Ethereum testnets are available for developers to test their code:
the Sepolia network, explicitly recommended for smart contract testing, and the Goerli
network. In order to test anything on either network, testnet tokens are required. However,
obtaining testnet tokens from faucets can be challenging due to a shortage of tokens and
mandatory anti-robot checkups.

For example, on Goerli, after being forced to create an Alchemy account, I received
0.2 goerliETH (the daily faucet allowance), which I depleted within an hour by sending

1Remix – Ethereum IDE available at https://remix.ethereum.org/

20

https://remix.ethereum.org/


contract deployment and interaction transactions. I then switched to the Sepolia network,
which had cheaper transaction fees and higher faucet allowances (up to 5 ETH/day).

Nevertheless, the struggle is significant enough that Ethereum core developers plan to
launch a new testnet called Holli specifically designed to address testnet token distribution
and struggling faucets [31].

ERC-20 Token Allowances and Approvals

To understand how token allowances work under the ERC-20 standard, we must first
examine the ERC-20 token implementation itself. Each ERC-20 token is technically a smart
contract that uses the ERC-20 standard library to inherit functionality. The two mapping
functions are the most important in that inherited code:

mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;

The initial function maps balances to their corresponding addresses, whereas the second
function maintains allowances a user (address) has granted to other addresses to make
transactions on their behalf. Whenever a transfer transaction occurs, these two mappings
are updated accordingly.

The shared interface provides two functions to initiate token transfers from one address
to another:

1. transfer(recipient, amount)

2. transferFrom(sender, recipient, amount)

In the first case of transfer(recipient, amount), the function implementation expects
to be called directly by the sender (user’s wallet). Therefore, a simple transfer deducts
the balance from the sender’s address and adds the same amount to the recipient’s address.

When a smart contract is required to respond to the token transfer, it is necessary to call
the transferFrom(sender, recipient, amount) function inside the smart contract code
to transfer the token and follow it with more code. However, in doing so, the smart contract
effectively carries out the transfer on behalf of the user. For this to succeed, the contract
must be explicitly authorized with the specific spending allowance.

It is unclear why it was designed like this in the first place, but essentially the user
is forced to make two separate transactions. The first transaction grants the spending
allowance to the specific smart contract, and only then can the second transaction interact
with the custom smart contract. This transaction flow can be seen in Figure 5.2. Both
transactions make data changes on the blockchain, meaning both must pay a transaction fee.
This can become unnecessary and quite expensive, especially considering that transaction
fees on the Ethereum blockchain are usually high.

Nevertheless, for the smart contract to use the transferFrom() function, it must
first be an approved spender. There is a catch: the approve(spender, amount) func-
tion takes only two arguments – the spender and the amount. However, we must specify
the owner who grants the approval, right? The implementation of this specific function
solves that by appointing msg.sender as the owner. Nevertheless, if the function call is
sent from the smart contract application, the msg.sender becomes the smart contract itself.
As a result, the only consequence of this call is that the smart contract provides transfer
approvals to itself. The smart contract is unable to handle the approval. Consequently,

21



ERC-20

approve(spender, amount)

transferFrom(from, to,
amount)

Custom smart contract

foo(token, amount) {
token->approve(this, amount)
token->transferFrom(caller,
this, amount)
// rest of the code

}

2. transferFrom()

1. approve()

foo()

User

ERC-20

approve(spender, amount)

transferFrom(from, to,
amount)

Custom smart contract

foo(token, amount) {
token->transferFrom(caller,
this, amount)
// rest of the code

}

transferFrom()

1. approve()

2. foo()

User

Figure 5.2: The correct and wrong transaction flow of ERC-20 approvals.

without extensions, the user is compelled to execute two separate transactions. However,
a possible solution I encountered during my search was a project named Permit2.

Permit22 takes advantage of the EIP-2516 extension to the ERC-20 standard to solve
the issue of recurring approval transactions for each smart contract. The user only needs
to approve the Permit2 contract once, and the Permit2 contract will then serve as an inter-
mediary for token transfers for other smart contracts using this system. When interacting
with a smart contract application, the user first signs an off-chain (gasless) message con-
firming their intention to transfer tokens and then passes this signed Permit2 message as
a parameter to the smart contract function containing the token transfer. Nevertheless,
incorporating Permit2 seems rather complicated and is likely beyond this project’s scope.

Addressing Reentrancy Vulnerabilities

On Ethereum, it is typical to provide a lot of the functionality via cross-program calls,
and it is not abnormal that many of the functions are handling some ether at some point.
However, calling an external contract requires performing an external call. The potential
attacker can exploit this as they can force a contract to execute additional code, for example,
via callback functions. Furthermore, like that, they can do recursive calls to the function
itself. Nevertheless, we do not need to worry about this vulnerability as long we use
the ReentracyGuard by OpenZeppelin.

Development on Solana
The development experience on the Solana network was quite distinct from EVM and had
unique nuances. While some aspects might be better on Solana, it can be challenging
for beginners. Additionally, it is worth noting that many articles, tutorials, and courses
covering development on the Solana network contained deprecated code, which needed to be
adjusted to work with up-to-date versions of libraries (e.g. @solana/web3.js) or the Anchor
framework.

The Anchor Framework

I developed the Solana program using the Anchor framework [2]. Initially introduced
by Armani Ferrante in 2021, Anchor is a development framework for Solana’s Sealevel

2Learn more about Permit2 here: https://github.com/dragonfly-xyz/useful-solidity-patterns/
tree/main/patterns/permit2

22

https://github.com/dragonfly-xyz/useful-solidity-patterns/tree/main/patterns/permit2
https://github.com/dragonfly-xyz/useful-solidity-patterns/tree/main/patterns/permit2


runtime. The development of the Anchor framework is an open-source project housed
under the Coral company, with more than 80 community contributors at the time of writing
this thesis. This framework aims to accelerate the development process of Solana programs
by providing various boilerplate codes and macros for easy (de)serialization of accounts
and instruction data. It also includes features like generating the program IDL specifica-
tion (IDL = Interface Description Language), which enables developers to effortlessly use
the IDL to run a TypeScript test suite for program testing. Furthermore, creating a nested
React front-end application is also possible within the environment.

The Accounts and Addresses

In section 3.2, I outlined the primary distinctions of Solana’s on-chain storage model. Now,
I will add more detail: Data accounts on Solana have a fixed size (storage capacity) allocated
during account creation, which cannot be increased later. However, due to Solana’s network
design, wherein the program must be provided with interacted accounts from the front end
(i.e., transaction sender), the program does not keep any memory of all owned accounts.
Therefore, an address must be supplied during program interaction to initialize a data
storage account. When additional data needs to be added to an account created earlier,
a new account must be established instead, leading to a cumulative number of accounts
linked to the program. As I mentioned earlier, the front end must provide the addresses
of the accounts to the program, meaning these addresses must be easily obtainable. This
is achieved through a technique known as program-derived addresses (PDAs).

PDA (Program Derived Addresses)

A program-derived address is obtained through a derivation process using a set of seeds.
These seeds are arrays of strings, keys, and other elements, converted into byte form, which
are then passed together with the program ID through the SHA256 hashing algorithm.
Unlike traditional keypairs, PDAs do not have a private key. However, there is approxi-
mately a 50 % chance that the hashing output may end up on the ED25519 elliptic curve,
which is undesirable. Therefore, an additional value known as a bump is added to the hash-
ing process to ensure an output outside this curve. This value starts at number 255 and is
decremented each time the output lands on the curve until an address lying off the curve is
obtained. In specific scenarios, there may be a need to enable users to create an unlimited
number of accounts.

Transaction Complexity and Limitations

Transactions on the Solana network are collections of instructions, each consisting of:

• Invoked program identifier

• An array of accounts to read from or write to

• Data (as a byte array) specific to the RPC (remote procedure call)

With a program providing somewhat complex functionality, the array of accounts can be-
come quite long. In the case of the first use-case of the program, where the user de-
posits an SPL token (the asset) into the escrow program and receive an honorary NFT
back, there is a considerable number of accounts that our program will interact with.
All actions in a simplified summary include:

23



1. Escrow (data) account creation (account storing the data about the escrow)

2. Token account of the escrowed token (owned by the escrow data program above)

3. NFT Mint account creation

4. NFT user token account creation

In addition to the list of required accounts for transaction execution, I had to add these
accounts (read-only):

1. User account (our main wallet account)

2. Mint account (of the escrowed token)

3. User token account (holding token balance before escrow)

4. User escrow counter (escrow account PDA seed)

5. Token program

6. Associated token program

7. Rent program

8. System program

Unfortunately, transactions have a specified maximum size. With that many accounts
specified, I simply ran out of available space within a single transaction. Therefore, there
were only two solutions for this:

1. Split the interaction into two transactions

2. Implement versioned transactions

I chose the former due to the additional complexity of the implementation and the lack
of available resources illustrating the usage of the new solution. Also, support for versioned
transactions in the Anchor framework was added just recently on the 8th of March3.

Versioned Transaction

Each Solana transaction, regardless of its content, is limited to a maximum of 1232 bytes.
Solana transactions consist of an array of signatures (each signature takes 64 bytes) and
the message. The message itself comprises a header (3 bytes), an array of account
addresses (32 bytes per address), a recent block hash (32 bytes), and an array of instruc-
tions. In the best-case scenario, addressing up to 35 accounts in a single transaction is
possible. However, this theory does not consider various instructions and the correspond-
ing instruction data. Therefore, developers might encounter the transaction size limit when
addressing 10 to 20 accounts.

Before late 2022, there was only one version of the transaction format, the legacy ver-
sion, which had no solution to the size limitation issue. Recognizing the need for an im-
proved system, Solana developers introduced a new transaction format that supports both

3Anchor v0.27.0 changelog:
https://github.com/coral-xyz/anchor/blob/master/CHANGELOG.md#0270---2023-03-08

24

https://github.com/coral-xyz/anchor/blob/master/CHANGELOG.md#0270---2023-03-08


the legacy version for backward compatibility and new versions. When writing this thesis,
the latest transaction version is 0 (“zero”), which includes utilizing address lookup tables
for more efficient account addressing. The exact differences are illustrated in Figure 5.3.
The lookup tables are separate data accounts that allow storing up to 255 addresses.

legacy

0

1232 bytes

Compact array of Signatures
(64 bytes * # of signatures)

Message

Header
(3 bytes)

Compact array of account addressess
(32 bytes * # of accounts)

Recent Blockhash
(32 bytes)

Compact array
of Instructions

Compact array of Signatures
(64 bytes * # of signatures)

Message

Header
(3 bytes)

LUT Address
(32 bytes)

LUT Indexes
(1 byte * # of accounts)

Compact array
of Instructions

Recent Blockhash
(32 bytes)

Figure 5.3: Depiction of differences between transaction versions of legacy and 0.

Developers must first initialize the lookup table, but then a single account address can
be addressed with just a 1-byte unsigned integer index. For example, in a transaction
with ten account addresses, the legacy transaction version would require 320 bytes, while
in comparison, version 0 would require only 42 bytes (32 bytes LUT address + 10 indexes).
A similar comparison with an example of 5 account addresses can be seen in Figure 5.4.

Account address (32 bytes)
Account address (32 bytes)

Account address (32 bytes)
Account address (32 bytes)

Account address (32 bytes)

160 bytes

Account address

32 + 1*5 = 37 bytes

u8 index
Account addressu8 index
Account addressu8 index
Account addressu8 index
Account addressu8 index

LUT address (32 bytes)

Legacy Account Addressing Account Addressing using LUTs

Figure 5.4: Comparison of space taken by addressing five accounts in versions legacy a 04.

4Image adapted from https://solanacookbook.com/guides/versioned-transactions.html#address-
lookup-tables-lut.

25

https://solanacookbook.com/guides/versioned-transactions.html#address-lookup-tables-lut
https://solanacookbook.com/guides/versioned-transactions.html#address-lookup-tables-lut


Challenges and Insights from Aptos Blockchain Development
In the following subsections, I will delve into some aspects of developing on the Aptos
blockchain, providing more detail on Move than in section 4.1 where I gave a high-level
overview of Move. Most of these insights come from my hands-on experience with Aptos
development.

The Hurdles of New and Seemingly Unfinished Platforms

Aptos was the last of the three blockchains I developed on, and as I progressed, I brought
with me some programming practices common in blockchain development from my pre-
vious experiences. So, what challenges did I face? I wanted to retrieve some data from
the blockchain, so it seemed natural to me to use and implement a view function. However,
I could not find anything when I searched for references on how to do this. I found it
strange at the time.

Nonetheless, after discovering a few view functions implemented in the Aptos Core
module, I pieced it all together. Only a few weeks later, I learned that view functions were
not initially available on Aptos until recently. The Aptos development team introduced
view functions with the Aptos Move 1.2.4 update5 in February 2023.

Strict Resource Management Policies in Move

Move enforces strict rules regarding permitted actions when manipulating values of a specific
type. These permissions can be controlled using a typing feature called abilities. Without
explicit assignment, for example, a value (struct) cannot be copied or dereferenced, dropped
by going out of scope or stored inside other structs in the global storage. This limitation
is essential for ensuring the safety and correctness of Move programs. However, in some
cases, developers may need to manipulate specific values in ways that are not allowed by
default. This is where abilities come in.

Abilities allow developers to assign specific permissions to values using keywords such
as “copy,” “drop,” “store,” and “key.”

• Keyword copy – the value can be copied.

• Keyword drop – the value can be dropped.

• Keyword store – the value can be stored inside other structs in global storage.

• Keyword key – the type can be used as a key in global storage.
By assigning these abilities, developers can expand the range of actions allowed for specific
values while maintaining the overall safety and correctness of the Move program.

For example, in the following code snippet, the “Box” struct has been assigned the “key,”
“store,” “copy,” and “drop” abilities using the “has” keyword.

struct Box has key, store, copy, drop {
value: u64

}

This allows values of type “Box” to be used as keys in the global storage, stored inside
other structures, copied, and dropped as needed.

5Move 1.2.4 release notes – https://github.com/aptos-labs/aptos-core/releases/tag/aptos-node-
v1.2.4

26

https://github.com/aptos-labs/aptos-core/releases/tag/aptos-node-v1.2.4
https://github.com/aptos-labs/aptos-core/releases/tag/aptos-node-v1.2.4


References and Ownership

In common programming languages like C, C++, or Python, variables exist within their
defined scope and all nested scopes. These variables can be passed as arguments to other
scopes (such as functions) as copies or references. However, these variables and references
remain available for the rest of the scope, which may sometimes lead to a phenomenon called
a dangling reference. In this situation, the variable may be deallocated inside the external
scope, causing the reference to point to a value (data) that is no longer in memory.

Move VM handles references and ownership similarly to Rust. Each variable has an asso-
ciated owner scope. A variable can be defined within or passed into a scope as an argument.
Creating a reference to the variable does not pass the ownership of the variable; instead,
it only grants the right to read or write data to it. References must not outlive the vari-
able’s owner scope. When a variable is passed to a function, that function takes ownership
of the variable. Like Rust, explicitly stating if a mutable reference is wanted promotes more
robust code security. All of these rules are enforced through reference checking by the com-
piler. To obtain a reference to a resource, Move includes functions with keywords “borrow”
and “mut”, such as borrow_global_mut or borrow_mut. Additionally, Move contains mech-
anisms that aim to prevent developers from making mistakes while using references. One
of these mechanisms is known as borrow checking. When a function attempts to obtain
a mutable reference to a resource, it must be explicitly specified in the function declaration,
as shown in the example below:

struct ModuleDatah has key {value: u64}
public entry fun foo(sender: &signer) acquires ModuleData {

let _module_data = borrow_global_mut<ModuleData>(@module_addr);
}

In this example, I specified that the function acquires the resource ModuleData, which
implies that a mutable reference to this resource is created within the code, making it
highly likely that the resource data will be modified.

Generics

In order to enhance the security of the source code, it is preferable to reuse the same code
rather than writing similar and redundant code for different types. In Move, both functions
and structs can utilize generics. Generics can be employed by placing a placeholder “<T>”
next to the name, where “T” represents any type. The type of “T” can be used like any
other type within the body of the function or struct. Here is a simple example to illustrate
this concept:

struct Data<T> {
value: T

}
public fun save_data(value: u64): Data<u64> {

Data<u64> {value}
}

In this example, the save_data function returns a new Data struct containing a value
of type u64.

27



The automation with Resource Accounts

On Aptos, two categories of functions handle a significant amount of functionality. The first
group comprises essential functions and types in the built-in standard library. The second
category includes extended functionality and entire modules deployed at the 0x1 address
directly on the blockchain. On Aptos, any module can use any function implemented
in other modules deployed on the blockchain if marked public. The only requirement is
that the developer knows the module’s deployment address during their own module’s
development.

Many of these functions (from either category) take a signer as a parameter, which is
necessary for their operation. In most cases, these functions modify or withdraw resources
from the user account, the most privileged operation in the Move programming language.

If a module is deployed under an existing account, it cannot access the account signer
capability. Consequently, if it is desired to withdraw coins of any type from the module
and send them to the caller, limitations would arise.

coin::withdraw<CoinType>(&module_account, amount)
coin::deposit(sender_addr, coins);

The withdraw function requires &module_account (signer); however, the Aptos virtual
machine only passes the sender (caller) as a signer to the function during execution.
Consequently, the function does not have the module_account signer capability and cannot
process a withdrawal.

Resource accounts can be utilized to achieve module self-sufficiency and autonomy.
Like Solana, a resource account is published under an address derived from the deployer’s
address using seeds. Consequently, the resource account does not have an associated private
key, ensuring that the published module remains immutable since no one has the right to
update it. Despite the absence of a private key, the resource account still possesses a signer
capability that the published module can utilize.

Creating a resource account and publishing a module (package) under it from within
another module should be possible. However, due to the lack of available references on how
to accomplish this, I opted to deploy my module using the Aptos CLI with the following
command (memory mapping details omitted):

aptos move create-resource-account-and-publish-package --seed <seed>

This command creates a resource account and publishes a package using the specified seed.
The complete instructions can be found in the application’s source code. By following this
approach, the module has been successfully made self-sufficient and autonomous, leveraging
the capabilities of resource accounts on the Aptos blockchain.

Upon successful deployment of each module, the Move VM carries an automatic execu-
tion of a function named init_module if it is present in the bytecode. This function is not
an entry function; therefore, it will be executed only once in the module’s lifetime. With
that, the Move VM automatically passes the resource account as a signer to this function.
Furthermore, that behavior allows us to store the resource account signer capability that
will be later used in each action that needs it, allowing us to automatize the module’s code
execution independent of the module storing account. The complete code needed to store
the signer capability would look like this.

28



struct ModuleData has key {res_sig_cap: account::SignerCapability}
fun init_module(resource_account: &signer){

let res_signer_cap = resource_account::retrieve_resource_account_cap(
resource_account, @dev_address);
move_to(resource_account, ModuleData {res_sig_cap: res_signer_cap});

}

The @dev_address is the original account that this resource account was eventually
derived from using the seeds chosen earlier. The @res_address is the resource account
address. This allows the resource account to be available in any entry function as needed.

public entry fun foo(sender: &signer) acquires ModuleData {
let module_data = borrow_global_mut<ModuleData>(@res_address);
let resource_signer =
account::create_signer_with_capability(&module_data.res_sig_cap);
// resource_signer is now available
// ...

}

By following this approach, it is possible to efficiently store and retrieve the resource
account signer capability, making the module self-sufficient and autonomous, leveraging
the capabilities of resource accounts on the Aptos blockchain.

Developer Adoption and Scaling Challenges for New Blockchain Platforms

The process of adopting new blockchain platforms, and indeed any new technology, can often
seem like a vicious circle. As more developers use a particular technology or platform, many
resources such as examples, guides, and courses become available. However, the challenge
is to convince developers to choose a specific platform over others. To achieve this, it is
necessary to provide them with the necessary resources to get started.

It can be informative to compare the developer counts of different blockchain platforms.
For example, Ethereum boasts an estimated developer count in the tens of thousands. With
such a significant number of developers, there is a high likelihood that someone has already
tackled a similar challenge to what others are trying to achieve. Additionally, there is
a greater probability of finding experienced developers who can offer guidance and support.

On the other hand, Solana, with its recent growth, has a substantially lower developer
count than Ethereum6. While the resource availability is reasonably good at this point, it
is far from Ethereum’s level. Additionally, the pace of core upgrades for the Solana network
is significantly higher, leading to code-breaking changes and deprecated old methods over
time.

In the case of Aptos, the developer count is more likely to be in the hundreds rather than
thousands. Consequently, if resource availability is linked to the total developer count, fewer
resources are undoubtedly available. This emphasizes the challenge of attracting developers
to new platforms and highlights the importance of providing comprehensive resources to
kickstart developer adoption and, ultimately, the platform’s success.

6Reference – https://twitter.com/solana/status/1615398642717687842

29

https://twitter.com/solana/status/1615398642717687842


Chapter 6

Comparison and Evaluation
of Move, Solidity, and Rust
Implementations

In this chapter, I will analyze and compare the implementation of the application in three
different languages: Move, Solidity, and Rust. Therefore, I will summarize and assess
the role of languages in blockchain development by evaluating code complexity, readability,
transaction fees, development time, and developer experience. This comparison aims to
provide insights into the strengths and weaknesses of each language. To present correct
information in this Chapter, I used the following sources [28, 4, 34, 5, 27].

6.1 Comparing Code Complexity and Readability
In this subsection, I compare the code complexity and readability of the Move, Solidity, and
Rust implementations by looking at code length, naming conventions, and error handling to
show how these stack against each other. Code complexity and readability play a crucial role
in software development, as they directly impact the ease of understanding, maintainability,
and collaboration among developers.

Code Length

Code length is not a perfect indicator, but shorter code is often easier to understand
and maintain. However, it is crucial to maintain readability even if it comes at the ex-
pense of more extended code. The results from the Succinct Code Counter1 can be found
in Table 6.1.

Language Lines Code
Solidity 321 196

Rust 437 299
Move 247 154

Table 6.1: Comparison of lines of code of implementation in each language.
1Learn more about SCC – https://github.com/boyter/scc

30

https://github.com/boyter/scc


These results show the differences in code length among Rust, Move, and Solidity im-
plementations.

Naming Conventions

Solidity uses CamelCase, while both Rust and Move employ snake_case. Solidity also
follows specific guidelines regarding underscores. For example, private variables begin with
an underscore (e.g., uint256 private _myPrivateVariable), and private or internal func-
tions start with an underscore. Move function names are in lower snake case, and constant
names are in upper snake case. Unused variables must start with an underscore, or the com-
piler will not compile the source code. Rust generally uses the snake case convention, but
Anchor’s context and structs adopt CamelCase.

Error Handling

Error handling is a crucial aspect of any programming language, as it allows developers to
manage unexpected situations and provide meaningful feedback to users. In this section,
I will compare the error-handling mechanisms in Move, Solidity, and Rust.

Solidity

Solidity handles errors using a combination of require, assert, and revert functions. These
functions allow developers to validate conditions and revert transactions if they fail. The
require function is used for input validation and throws an error message when a condition
is not met, while the assert function is used to check internal errors and consumes all
the remaining gas when a condition fails. Revert functions can be used to revert state
changes in case of errors.

Move

In addition to the built-in “assert!” macro, Move also provides an “abort” operation that
can halt the execution of a script or function when an error occurs. The abort operation
takes an error code as an argument, which can be later used for debugging purposes.
Example of using “assert!” macro:

/// Item does not exist
const Item_NOT_FOUND: u64 = 1;
assert!(search_result, error::permission_denied(ITEM_NOT_FOUND));

Additionally, the wallet displays the comment above the constant definition as an error
message to the user.

Rust

In Rust, the default behavior on Solana is to print “panic!” or “assert!” outcomes to the pro-
gram logs. Additionally, developers commonly utilize the Anchor framework’s custom error
handling macro “err!”. It can be used in the following manner:

31



err!(MyError::TransferFailed);

#[error_code]
pub enum MyError {

#[msg("TransferFailer")]
TransferFailed

}

6.2 Transaction Fees (Gas and Rent)
I deployed the created application on Goerli, Sepolia, Arbitrum, Solana, and Aptos to
highlight the differences in transaction fees across the compared blockchains. I recorded
the deployment fees, alongside the application deposit and withdrawal fees, in the follow-
ing Table 6.2.

Blockchain Deployment Deposit Withdraw TTF Network TPS
Goerli 41.29 ($76626) 2.116 ($3934) 0.385 ($716) 12 secs ≈ 30 TPS
Sepolia 0.0112 ($21,36) 0.0001 ($1.00) 0.0001 ($0,20) 12 secs ≈ 15 TPS

Arbitrum 0.0134 ($25,69) 0.0003 ($0.51) 0.0002 ($0.37) 1 sec Up to 4.5k TPS
Solana 6.4297 ($136,8) 0.0108 ($0,23) -0.008 ($0,17) 0.4 sec Up to 100k TPS
Aptos 0.00869 ($0,07) 0.0022 ($0,02) 0.000019 ($0) 0.4 sec Up to 160k TPS

Table 6.2: Comparison of transaction costs, time-to-finality (TTF), and network through-
put. The values are stated in the blockchain native currency with conversion to dollars
at rates on May 10th.

The application was deployed on the following testnets and mainnets, with the respective
application addresses.

• Goerli (Ethereum testnet) – 0x8Cc21861f2a5238F4A4FEc636621C53a8C01Cac0

• Sepolia (Ethereum testnet) – 0x244416d09b1AeaFdf6fD7ceB6bc000b84DdAAF70

• Arbitrum One mainnet – 0x244416d09b1AeaFdf6fD7ceB6bc000b84DdAAF70

• Solana mainnet – SAFEEinTUX1Eqkx4nCMit5qvKzAPkKQW8XM53QNHsZZ

• Aptos mainnet –
0x2530b03fb0ce8e58b824f47f63124c9f87ec861bad0f7611a8699b7de0b721f9

Hence, verifying the exact values presented in Table 6.2 using blockchain-specific explorers
is possible. For Goerli, Sepolia, and Arbitrum One, I verified the contract code on Etherscan
and Arbiscan, respectively. Consequently, these explorers provide public interfaces for these
contracts.

Fee Differences between Solana and Other Blockchains

As discussed in chapter 3, a considerable difference exists between fees on Solana and those
on EVM-compatible blockchains. On Solana, rent represents the most significant portion
of any noticeable transaction fee. However, closing the accounts and reclaiming the $SOL

32



required for rent exemption is typically possible. As depicted in Table 6.2, the deployment
cost on Solana might seem substantial, but unlike on Ethereum, developers can recover
most of the $SOL by closing the account if they delete the program. This principle applies
to deposit and withdrawal fees as well.

Upon depositing to the program, the user effectively opens an escrow data account and
a token account for the escrow program, depositing enough $SOL to attain rent-exempt
status. When withdrawing from the program, these accounts are closed, and the user
receives a refund of the deposited rent. The only non-refundable part is the rent-fee deposit
needed to initialize the escrow counter, amounting to just a few cents in value at current
prices. Therefore, I deemed it unnecessary to include this in my application.

6.3 Development Time
To objectively assess or compare development time is almost impossible. However, in this
section, I will discuss some factors that influence development time and share my experiences
working with Solidity, Rust, and Move.

Before this thesis, I had no experience with Solidity, Rust, or Move, but I was proficient
in C/C++ and Python and familiar with JavaScript. As a result, I found Solidity, which
resembles C++, easier to adapt to than Rust or Move. Thankfully, Rust and Move share
similarities, as Move is based on Rust.

Tooling and Resources

Navigating Solidity was relatively straightforward due to the great quantity of documenta-
tion from various sources. The Remix IDE is an exceptional tool for starting with Solidity
development, as it eliminates the need to install utilities, tools, or compilers. Additionally,
the IDE allows for quick contract deployment to real or virtual blockchains and provides
a simple interface for interacting with deployed contracts.

The Anchor framework is a game-changer for Solana, as it simplifies development by
automating tedious tasks and enhancing security. It handles (de)serialization processes and
implements measures to prevent security issues. However, finding resources for building
cross-program invocation transactions took much work.

While the Aptos blockchain provides some useful on-chain modules under the address
0x1, the developer resources explaining its use could be improved as they should be extended
and revised.

In terms of familiarizing myself with the languages and platforms, I found Solidity
the easiest and quickest to learn. For example, the development of the Solana program
took roughly twice, almost triple the time it took to develop the Ethereum contract, with
the Aptos module falling somewhere in between. However, it is challenging to predict
the difficulty and time required for future development now that I am familiar with each
language.

Debugging and Testing

Debugging the Solidity code was quick and easy using the Remix IDE’s interface. However,
the Solidity compiler offered little guidance regarding code functionality.

In contrast, debugging the Rust program on Solana was more challenging. I had to
build my front end, implement error handling, and troubleshoot issues independently.

33



Furthermore, the feedback from the explorer was limited to messages like “Transaction
failed” or, from the Anchor framework, “constraint violation”. I often had to return to code
instrumentation and go through the code repeatedly.

Similar to Solana, I had to build my front end for Aptos. However, the Petra Aptos
wallet offered a more informative error message directly in the wallet extension, which
allowed me to identify and fix issues in the Move code more quickly than with Rust on
Solana.

By analyzing the development time, tooling, and resources for Solidity, Rust, and Move,
insights can be obtained into each language’s learning curve and ease of use. This facilitates
informed decision-making when selecting a language for blockchain projects.

Becoming a Full-Stack Blockchain Developer

Developing smart contracts, programs, or modules (the back end) for blockchain applica-
tions is challenging. While writing a back-end that compiles might seem straightforward,
deploying the back end to the network and sending actual transactions is essential to ensure
everything functions as intended. Consequently, a blockchain developer often takes on the
full-stack developer role.

The primary domain for user interaction is a wallet, typically in the form of a web
browser extension. To interact with the program using your wallet, you need a front end that
can connect to your wallet extension and the blockchain, enabling effective communication
with the back end.

Fortunately for Ethereum developers, tools that simplify their work are available, thanks
to Ethereum’s long-standing presence in the industry. Two such examples are the Remix IDE
and Etherscan. However, similar tools still need to be created for developers working on
Solana or Aptos. As a result, they must build their front end to test and complete their
back-end development successfully.

This process includes integrating front-end and back-end communication, as the front
end requires data to accurately construct a proper transaction. As a full-stack blockchain
developer, one must be adept at handling both aspects of the development process.

6.4 Developer Experience and Available Tooling
This subsection will provide an overview of the developer experience and the tooling avail-
able for Ethereum, Solana, and Aptos, which can significantly impact the ease and efficiency
of working with these blockchains.

1. Ethereum: Ethereum has a rich ecosystem of developer tools, including IDEs like
Remix, testing frameworks like Truffle, and numerous libraries and SDKs. Various
resources are available for learning and troubleshooting, such as documentation, tuto-
rials, and community support via forums and chat channels. This comprehensive set
of tools and resources has contributed significantly to Ethereum’s popularity among
developers.

2. Solana: While Solana’s developer ecosystem is not as mature as Ethereum’s, it has
been growing tremendously lately. Tools such as the Anchor framework simplify pro-
gram development. Additionally, Solana has been improving its documentation and
supporting developers that create tutorials and sample projects to help new developers
get started.

34



3. Aptos: As a newer platform, Aptos has fewer tools and resources for developers.
To attract more developers, Aptos must focus on creating comprehensive documen-
tation, expanding its developer toolset, and building a supportive community where
developers can exchange knowledge and experiences.

By comparing the developer experience and available tooling across these three blockchains,
we can better understand the challenges that newer platforms face in attracting and re-
taining developers and the importance of a robust ecosystem for driving the growth and
success of a blockchain platform.

6.5 Chapter Conclusion
In conclusion, by examining factors such as code complexity, readability, transaction fees,
development time, and developer experience, we gain valuable insights into the strengths
and weaknesses of each language.

Being the most mature language with the most extensive ecosystem, Solidity offers
the advantages of easy adoption, extensive tooling, and a large community. Before intro-
ducing the Anchor framework, developing in pure Rust on Solana was quite challenging.
Thankfully, the Anchor framework has emerged, simplifying program development and en-
hancing security. However, working with Rust and the Anchor framework has a steeper
learning curve than other languages. As a newer language, Move needs more resources
and tooling but benefits from its close relationship with Rust and the increasing interest
in the Aptos blockchain.

Ultimately, the choice of language and platform for blockchain development may not
always be optional. For example, developers might lean towards Solana or Aptos for their
superior transaction throughput and low latency. However, understanding the pros and cons
of each language is still crucial for making informed decisions when developing projects
on these platforms. In addition, the project’s specific requirements and the developer’s
familiarity and comfort with the language should also be considered in this decision-making
process.

35



Chapter 7

Conclusion

The primary objective of this thesis is to explore various blockchain platforms and the Move
programming language, focusing on gaining a deeper understanding of the advantages
and challenges developers encounter when working with these technologies. In this study,
I have clarified the fundamentals of blockchain technology and examined the unique features
of Ethereum, Solana, and Move-native platforms such as Aptos and Sui.

Additionally, I have conducted an in-depth analysis of the Move programming language,
concentrating on its distinctive characteristics. Finally, I have created and executed a test-
ing scenario using each language, evaluating code complexity, transaction fees, development
experience, and available tooling.

My work has revealed that the Move programming language has several key strengths
that distinguish it from other languages in the blockchain domain:

1. Move enables any value to be designated as a resource, providing a comprehensive set
of protections for the variable.

2. It enforces strict resource management policies, ensuring the secure handling of these
assets and minimizing the risk of accidental loss or duplication.

3. Move supports generics, facilitating the development of reusable and adaptable code
while preserving type safety.

4. Move organizes the blockchain state by storing resources under individual accounts,
enhancing security, and providing a solid foundation for developing safe and reliable
modules.

These features have contributed to Move’s growing adoption and interest within the
blockchain community.

My investigation has shown that the future of Move is promising, with a growing number
of platforms adopting it and existing platforms integrating support for it. For instance, Sui
is launching its mainnet, and Solana is working on supporting Move programs. These
developments reflect the increasing interest in Move and its potential for widespread use.

My work has also demonstrated that developing smart contracts, programs, or modules
on any blockchain platform is a complex process that requires source code writing, de-
ployment, and comprehensive testing. In addition, working with new technologies is often
challenging due to limited resources for learning and adaptation of the technology.

In the future, I would like to continue exploring the practical applications of Move.
It would also be worthwhile to investigate how other blockchain platforms can benefit from
integrating Move or similar languages, expanding the scope of blockchain development or
cross-platform implementation.

36



In summary, this thesis provides an overview of blockchain platforms and the Move
programming language, offering valuable insights for developers and promoting a better
understanding of the technologies involved. As blockchain continues to evolve, it is critical
to remain informed and adaptable.

37



Bibliography

[1] Accounts in Aptos [online]. Martian Wallet, 2022 [cit. 2023-01-07]. Available at:
https://medium.com/@martian-wallet/accounts-in-aptos-1ecc3f0b1213.

[2] Anchor – introduction [online]. Coral, 2022 [cit. 2023-03-14]. Available at:
https://www.anchor-lang.com/.

[3] The Aptos Blockchain: Safe, Scalable, and Upgradeable Web3 Infrastructure.
[online]. Aptos Foundation. August 2022, [cit. 2022-12-27]. Available at: https:
//aptos.dev/assets/files/Aptos-Whitepaper-47099b4b907b432f81fc0effd34f3b6a.pdf.

[4] Aptos Developer Documentation [online]. Aptos Foundation, 2022 [cit. 2023-01-07].
Available at: https://aptos.dev/.

[5] Aptos: Solving the Layer 1 blockchain trilemma. [online]. State io. July 2022, [cit.
2022-12-27]. Available at: https://medium.com/@state_xyz/aptos-a-formidable-
layer-1-addressing-the-blockchain-trilemma-398ff9be62d7.

[6] Cooking with Solana | Solana Cookbook [online]. Solana Developers, 2022 [cit.
2023-02-28]. Available at: https://solanacookbook.com/.

[7] Ethereum Development Documentation [online]. 2022 [cit. 2023-01-07]. Available at:
https://ethereum.org/en/developers/docs/.

[8] How Sui Move differs from Core Move [online]. Sui Foundation, 2022 [cit. 2023-04-23].
Available at: https://docs.sui.io/devnet/learn/sui-move-diffs.

[9] An Introduction to Move [online]. CertiK, November 2022 [cit. 2023-01-07]. Available
at: https:
//www.certik.com/resources/blog/3o4Cg1cjQH4IwA88aT8OwT-an-introduction-to-move.

[10] Introduction to Smart Contracts [online]. 2022 [cit. 2023-04-22]. Available at:
https://docs.soliditylang.org/en/latest/index.html.

[11] Learn about Sui | Sui Docs [online]. Sui Foundation, 2022 [cit. 2023-01-07]. Available
at: https://docs.sui.io/learn.

[12] Overview | Solana Docs [online]. Solana Foundation, 2022 [cit. 2023-01-07]. Available
at: https://docs.solana.com/developing/on-chain-programs/overview#berkeley-
packet-filter-bpf.

[13] Rent | Solana Docs [online]. Solana Foundation, 2022 [cit. 2023-01-07]. Available at:
https://docs.solana.com/implemented-proposals/rent.

38

https://medium.com/@martian-wallet/accounts-in-aptos-1ecc3f0b1213
https://www.anchor-lang.com/
https://aptos.dev/assets/files/Aptos-Whitepaper-47099b4b907b432f81fc0effd34f3b6a.pdf
https://aptos.dev/assets/files/Aptos-Whitepaper-47099b4b907b432f81fc0effd34f3b6a.pdf
https://aptos.dev/
https://medium.com/@state_xyz/aptos-a-formidable-layer-1-addressing-the-blockchain-trilemma-398ff9be62d7
https://medium.com/@state_xyz/aptos-a-formidable-layer-1-addressing-the-blockchain-trilemma-398ff9be62d7
https://solanacookbook.com/
https://ethereum.org/en/developers/docs/
https://docs.sui.io/devnet/learn/sui-move-diffs
https://www.certik.com/resources/blog/3o4Cg1cjQH4IwA88aT8OwT-an-introduction-to-move
https://www.certik.com/resources/blog/3o4Cg1cjQH4IwA88aT8OwT-an-introduction-to-move
https://docs.soliditylang.org/en/latest/index.html
https://docs.sui.io/learn
https://docs.solana.com/developing/on-chain-programs/overview#berkeley-packet-filter-bpf
https://docs.solana.com/developing/on-chain-programs/overview#berkeley-packet-filter-bpf
https://docs.solana.com/implemented-proposals/rent


[14] Securing Move. [online]. Aptos Labs. December 2022, [cit. 2022-04-13]. Available at:
https://medium.com/aptoslabs/securing-move-f81099f5e08c.

[15] Solana | Developers: Resources and Information for Building on Solana [online].
Solana foundation, 2022 [cit. 2023-03-23]. Available at:
https://solana.com/developers.

[16] A Solana Cluster | Solana Docs [online]. Solana Foundation, 2022 [cit. 2023-01-07].
Available at: https://docs.solana.com/cluster/overview.

[17] Solana Documentation [online]. Solana Foundation, 2022 [cit. 2023-01-07]. Available
at: https://docs.solana.com/.

[18] Transaction Fees | Solana Docs [online]. Solana Foundation, 2022 [cit. 2023-01-07].
Available at: https://docs.solana.com/transaction_fees.

[19] Transactions | Solana Docs [online]. Solana Foundation, 2022 [cit. 2023-01-07].
Available at:
https://docs.solana.com/developing/programming-model/transactions#instructions.

[20] Why We Created Sui Move. [online]. Mysten Labs. July 2022, [cit. 2022-12-17].
Available at:
https://medium.com/mysten-labs/why-we-created-sui-move-6a234656c36b.

[21] Merkle Patricia Trie [online]. ethereum.org, 2023 [cit. 2023-02-13]. Available at:
https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-
merkle-trie/.

[22] Blackshear, S., Cheng, E., Dill, D. L., Gao, V., Maurer, B. et al. Move: A
Language With Programmable Resources. [online]. May 2020, [cit. 2022-12-23].
Available at: https://github.com/diem/diem/blob/main/developers.diem.com/static/
papers/diem-move-a-language-with-programmable-resources/2020-05-26.pdf.

[23] Dabit, N. The Complete Guide to Full Stack Solana Development with React,
Anchor, Rust, and Phantom [online]. DEV Community, 2022 [cit. 2023-03-24].
Available at: https://dev.to/edge-and-node/the-complete-guide-to-full-stack-
solana-development-with-react-anchor-rust-and-phantom-3291.

[24] Dan, D. An Introduction to the Solana Account Model [online]. QuikNode, 2022 [cit.
2023-01-07]. Available at: https://www.quicknode.com/guides/solana-development/an-
introduction-to-the-solana-account-model.

[25] Hutchinson, K. and Barrios, J. Forked One | Solana Blockchain Development
[online]. Forked One, 2022 [cit. 2023-04-04]. Available at:
https://adept.at/forked/solana-blockchain-development.

[26] Kolakowski, M. Facebook (FB) Rebrands Itself as Meta. [online]. Investopedia.
October 2021, [cit. 2022-12-17]. Available at:
https://www.investopedia.com/facebook-fb-rebrands-itself-as-meta-5207628.

[27] Lobo, G. Diving into the Aptos Network. [online]. The Tie Research. August 2022,
[cit. 2022-03-29]. Available at:
https://research.thetie.io/aptos-network-deep-dive/.

39

https://medium.com/aptoslabs/securing-move-f81099f5e08c
https://solana.com/developers
https://docs.solana.com/cluster/overview
https://docs.solana.com/
https://docs.solana.com/transaction_fees
https://docs.solana.com/developing/programming-model/transactions#instructions
https://medium.com/mysten-labs/why-we-created-sui-move-6a234656c36b
https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/
https://ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/
https://github.com/diem/diem/blob/main/developers.diem.com/static/papers/diem-move-a-language-with-programmable-resources/2020-05-26.pdf
https://github.com/diem/diem/blob/main/developers.diem.com/static/papers/diem-move-a-language-with-programmable-resources/2020-05-26.pdf
https://dev.to/edge-and-node/the-complete-guide-to-full-stack-solana-development-with-react-anchor-rust-and-phantom-3291
https://dev.to/edge-and-node/the-complete-guide-to-full-stack-solana-development-with-react-anchor-rust-and-phantom-3291
https://www.quicknode.com/guides/solana-development/an-introduction-to-the-solana-account-model
https://www.quicknode.com/guides/solana-development/an-introduction-to-the-solana-account-model
https://adept.at/forked/solana-blockchain-development
https://www.investopedia.com/facebook-fb-rebrands-itself-as-meta-5207628
https://research.thetie.io/aptos-network-deep-dive/


[28] McKie, S. Solidity Learning: Revert(), Assert(), and Require() in Solidity, and the
New REVERT Opcode in the EVM. [online]. Medium. September 2017, [cit.
2022-05-02]. Available at:
https://medium.com/blockchannel/the-use-of-revert-assert-and-require-in-
solidity-and-the-new-revert-opcode-in-the-evm-1a3a7990e06e.

[29] Michaelson, R. Tales from the crypto: lira crisis fuels Bitcoin boom in Turkey.
[online]. Guardian News & Media. January 2022, [cit. 2022-12-17]. Available at:
https://www.theguardian.com/business/2022/jan/21/tales-from-the-crypto-lira-
crisis-fuels-bitcoin-boom-in-turkey.

[30] Milano, A. How to Use Account Constraints in Your Solana Anchor Program
[online]. QuikNode, 2023 [cit. 2023-03-08]. Available at: https://www.quicknode.com/
guides/solana-development/anchor/how-to-use-constraints-in-anchor/.

[31] Muriuki, L. Ethereum plans to launch Holli Testnet. [online]. Cryptopolitan.
February 2023, [cit. 2022-03-05]. Available at:
https://www.cryptopolitan.com/ethereum-plans-to-launch-holli-testnet/.

[32] Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System [online]. Dec 2008
[cit. 2022-12-15]. Available at: https://bitcoin.org/bitcoin.pdf.

[33] Pacheco, J. SolDev – Solana Development Course [online]. Ironforge, 2022 [cit.
2023-03-27]. Available at: https://www.soldev.app/course.

[34] Shamanaev, D. Getting Started – The Move Book [online]. 2022 [cit. 2023-03-28].
Available at: https://move-book.com/introduction/getting-started.html.

[35] Stankovic, S. Layer 1 Blockchain Aptos Raises $150M From FTX, Jump Crypto.
[online]. Crypto Briefing. July 2022, [cit. 2022-12-17]. Available at: https://
cryptobriefing.com/layer-1-blockchain-aptos-raises-150m-from-ftx-jump-crypto/.

40

https://medium.com/blockchannel/the-use-of-revert-assert-and-require-in-solidity-and-the-new-revert-opcode-in-the-evm-1a3a7990e06e
https://medium.com/blockchannel/the-use-of-revert-assert-and-require-in-solidity-and-the-new-revert-opcode-in-the-evm-1a3a7990e06e
https://www.theguardian.com/business/2022/jan/21/tales-from-the-crypto-lira-crisis-fuels-bitcoin-boom-in-turkey
https://www.theguardian.com/business/2022/jan/21/tales-from-the-crypto-lira-crisis-fuels-bitcoin-boom-in-turkey
https://www.quicknode.com/guides/solana-development/anchor/how-to-use-constraints-in-anchor/
https://www.quicknode.com/guides/solana-development/anchor/how-to-use-constraints-in-anchor/
https://www.cryptopolitan.com/ethereum-plans-to-launch-holli-testnet/
https://bitcoin.org/bitcoin.pdf
https://www.soldev.app/course
https://move-book.com/introduction/getting-started.html
https://cryptobriefing.com/layer-1-blockchain-aptos-raises-150m-from-ftx-jump-crypto/
https://cryptobriefing.com/layer-1-blockchain-aptos-raises-150m-from-ftx-jump-crypto/


Appendix A

Storage medium

/
source/

application/..................................platform specific source codes
Move-Aptos/

escrow/
app/.......................................... front end source code
sources/ ....................................... module source code

README.md..........................implementation specific instructions

Rust-Solana(Anchor)/
escrow/

app/.......................................... front end source code
programs/.....................................program source code

README.md..........................implementation specific instructions

Solidity-Ethereum/
contracts/................................ smart contract source codes
README.md..........................implementation specific instructions

latex/
bp-xsmehy00.pdf
README.md

Directory application/ contains three subfolders for the three implementations – in Move
on Aptos, in Rust on Solana, and in Solidity on Ethereum. Each subfolder for a specific
platform contains platform-specific source codes and README.md containing all instructions
regarding usage and a brief explanation of the implementation.

Directory latex/ contains LATEX source files and images used in the thesis.

File bp-xsmehy00.pdf is a PDF file containing the final version of the thesis text.

41


	Introduction
	Blockchain Basics and Principles
	Origin of Blockchain Technology
	Bitcoin
	Blockchain Concepts
	Smart Contracts
	Fees and Incentives
	Types of Blockchain Systems
	Adoption
	Blockchain in the Era of Web3.0

	Overview of Existing Solutions
	Ethereum
	Solana
	Use Cases and Adoption: Ethereum and Solana

	Emerging New Solutions
	Move: A Programming Language for Blockchain Development
	Move-based Platforms: Aptos and Sui

	Experiments with Current and New Platforms
	Implementation – The Deposit Box.
	Evaluation Criteria
	The Development Experience – Ethereum, Solana, and Aptos

	Comparison and Evaluation of Move, Solidity, and Rust Implementations
	Comparing Code Complexity and Readability
	Transaction Fees (Gas and Rent)
	Development Time
	Developer Experience and Available Tooling
	Chapter Conclusion

	Conclusion
	Bibliography
	Storage medium

