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Abstract 
This thesis studies the Move programming language, focusing on its usability for developing 
applications (smart contracts or programs) on blockchain platforms. Two key aspects are 
considered: first, a comparison of programming models using Move to widely used models of 
EVM-compatible platforms like Ethereum and the popular Solana blockchain; and second, 
the implementation of the same program in Solidity on Ethereum, Rust on Solana, and 
Move on Aptos. Criteria for comparison include deployment and execution costs, processing 
speed, code readability, and overall development experience. A detailed analysis of Move's 
unique features, such as resource management, the use of generics, and other security 
enhancements in programming, is conducted. The results demonstrate Move's potential for 
extensive use in the blockchain field, with its strong emphasis on secure coding and resource 
management contributing to the growing interest within the blockchain community. 

Abstrakt 
Tato práce se zabývá zkoumáním programovacího jazyka Move z hlediska jeho použitelnosti 
pro vývoj aplikací (smart kontraktů či programů) na blockchainových platformách. Práce 
zahrnuje analýzu dvou klíčových aspektů. Prvním z nich je porovnání programovacích mo­
delů platforem používajících jazyk Move s běžně používanými modely EVM-kompatibilních 
platforem (jako je Ethereum) a stále populárnějšího blockchainu Solana. Druhou částí práce 
je implementace stejného programu v Solidity na Ethereu, Růstu na Solaně a Move na 
Aptosu. Mezi kritéria pro porovnání těchto tří řešení patří transakční náklady, rychlost 
zpracování, čitelnost kódu a zkušenosti z vývoje. V rámci této práce byla provedena po­
drobná analýza unikátních vlastností jazyka Move, jako je správa zdrojů, používání generik 
a další zlepšení bezpečnosti při programování. Výsledky práce ukazují potenciál jazyka 
Move pro rozsáhlé použití v oblasti blockchainu, přičemž jeho silnou stránkou je bezpečnost 
(angl. secure coding), což přispívá k rostoucímu zájmu blockchainové komunity. 

Keywords 
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tracts, smart contract development, decentralized applications, blockchain platforms, 
Ethereum, Solana, Aptos, Sui, blockchain security 
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Rozšířený abstrakt 
Tato práce se zabývá podrobným studiem programovacího jazyka Move s ohledem na jeho 
použitelnost pro vývoj aplikací na blockchainových platformách. Pro korektní zhodnocení 
je nutné se zaměřit na dvě hlediska. Prvním je porovnání programovacího modelu při 
použití jazyka Move s běžně používanými modely EVM-kompatibilních platforem, jako je 
Ethereum, a také stále populárnějšího blockchainu Solana. Druhým hlediskem je otestování 
jazyka v praxi pomocí implementace stejného smart kontraktu, programu nebo modulu 
v každém z těchto jazyků - Solidity na Ethereum, Růstu na Solaně a jazyku Move na 
Aptosu. 

Kritéria pro zhodnocení jsou založena na několika faktorech, jako jsou náklady na 
nasazení, transakční poplatky, rychlost zpracování, čitelnost kódu, celková zkušenost s vývo­
jem a dostupné nástroje. Tato analýza se snaží poskytnout podrobné porozumění odlišu­
jících charakteristik jazyka, jako je správa zdrojů, generika nebo datový model, a jak tyto 
charakteristiky přispívají k jeho silným a slabým stránkám a jejich implikaci na vývojáře 
pracující s blockchainovými technologiemi. 

Práce také zkoumá vliv zralosti platformy na vývojový proces. To zahrnuje vývojářské 
výzvy spojené s omezenými nástroji, nedostatkem vzdělávacích zdrojů a častými změnami, 
které narušují kompatibilitu. Všechny tyto faktory mají vliv na rychlost a úroveň adopce 
nových technologií. 

Výsledky studie demonstrují potenciál jazyka Move pro rozšiřující se adopci skrze různé 
blockchainové platformy. Silné stránky jazyka, jako je bezpečnost, správa zdrojů a typová 
kontrola, přispívají k rostoucímu zájmu blockchainových vývojářů. Práce také zmiňuje 
aktuální vývoj v ekosystému, například nadcházející spuštění mainnetu Sui nebo snahu 
solanových vývojářů integrovat podporu pro programy v jazyce Move. To naznačuje rozsáhlé 
příležitosti pro expanzi v oblasti blockchainu. 

Závěrem lze říci, že tato práce poskytuje komplexní zdroj informací pro porozumění 
programovacího jazyka Move, jeho výhod a výzev a příležitostí v kontextu moderních 
blockchainových platforem. Závěry přispívají do rozšiřující se kolekce znalostí o vývoji 
blockchainu a poskytují pevný základ pro další výzkum a praktické implementace s využitím 
jazyka Move. 
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Chapter 1 

Introduction 

For quite some time, and even today, blockchain technology developers are still using classic 
programming languages. However, these languages may pose risks due to their potential 
to overlook critical aspects, leading to an increased count of vulnerabilities. Security is the 
most crucial aspect of this industry, so it must be robust. That might lead developers to 
build a superstructure on top of the programming language core with specific restrictions 
to lower the chance of introducing errors in the written code. 

As with other fields, specialized solutions tend to be the most effective. Therefore, 
a programming language custom-made for blockchain development not only makes the work 
more accessible but also addresses specific security criteria with restrictions directly 
at the language level, lowering the chance of developers introducing errors while creating 
complex solutions, such as smart contracts. 

Over a year ago, several new platforms built around Move emerged in the blockchain 
space. At the time, Move was a relatively unknown programming language. However, 
the Move whitepaper outlined promising advancements and techniques that, upon further 
examination, inspired the creation of this thesis, which showcases Move's potential and its 
appeal to developers. 

This thesis focuses on demonstrating the practical use case of Move on a simple 
application rather than delving deep into the details of related technologies. Please refer to 
the official documentation or other sources referenced in this work for detailed information. 
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Chapter 2 

Blockchain Basics and Principles 

This chapter delves into the basics and principles of blockchain technology. It explores 
its origins, core concepts, and structure, including the roles of smart contracts, fees, and 
incentives. Also, it examines different types of blockchain systems and their increasing 
adoption across industries, concluding with a discussion on blockchain in the Web 3.0 era. 

The content presented is based on the experience and knowledge I have gathered over 
several years while working with blockchain technology. Nevertheless, some small parts 
have been adjusted and supplemented using the information and interpretation I have 
found in this source [25]. 

2.1 Origin of Blockchain Technology 

In 2008, a person under the pseudonym of Satoshi Nakamoto published a paper called 
"Bitcoin: A Peer-to-Peer Electronic Cash System" [32]. In this paper, Satoshi proposed 
a system that would become a digital payment system when trusted by enough third parties. 
The underlying idea to achieve this goal is for this system to be fully transparent, with 
transaction records publicly available for review by anyone, with a guarantee of finality for 
the processed transactions. To achieve this, Satoshi introduced an underlying solution -
a brand-new technology called a blockchain. 

2.2 Bi tcoin 

Bitcoin is the system that represents the first decentralized cryptocurrency. The main 
reason for its creation was the idea of digital currency not being governed by any authority. 
Therefore, its value and usage are based on trust and cannot be easily manipulated (at least 
to some extent). Bitcoin was the first system to utilize blockchain technology. 

Within 14 years of its existence, Bitcoin has become a globally recognized currency. 
As a digital currency not governed by any state and available to anyone worldwide, Bitcoin 
has already become a standard part of daily life for people in some countries, serving as 
an alternative to their national currency due to high inflation levels. For instance, Turkey 
is facing a year-to-year inflation rate of around 80% on its national currency. Reports 
suggest that Bitcoin has become widely used among Turkish residents precisely because 
of the ongoing inflation [29]. 

3 



However, although highly secure, Bitcoin has a slow throughput, which results in its 
use case being more like a store of value than for active usage. This limitation has led to 
the creation of other blockchain platforms. 

2.3 Blockchain Concepts 

This section discusses the core principles characteristic of blockchain systems, followed by 
the technical details describing the blockchain structure comprised of blocks. Wi th that 
in mind, it continues through transaction processing and network operation, explaining 
the importance of consensus and incentives needed to reach a correct consensus between 
nodes participating in the network. 

Core Principles: Availability, Immutability, Scarcity, and Ownership 

The principles of availability, immutability, scarcity, and ownership are central to blockchain 
operation. In a blockchain network, the data is distributed across multiple nodes rather 
than stored in a single central database. This data distribution is a prominent feature 
in blockchain technology as it drastically improves the system's availability. If some nodes 
go offline or are compromised, others still maintain a full copy of the blockchain. Therefore 
the network can continue to operate normally. It is characteristic for blockchain networks 
to be immutable. Therefore, once the data is recorded in a block, it cannot be altered or 
deleted. 

Data gains value through its scarcity and the concept of ownership. Scarcity ensures 
that data is neither created nor destroyed arbitrarily; creating an asset is a privileged 
operation, and its successful destruction adheres to pre-set conditions. Ownership assigns 
each data unit an owner who retains the exclusive right to modify its contents unless 
they grant explicit permission to another party. Unlike traditional finance, where a central 
authority manages the property, data modification agreed upon by two parties in blockchain 
equates to a transaction. Under certain conditions, this renders blockchain a distinctive 
form of digital currency. 

Blockchain Structure 

Blockchain is a data structure containing many smaller data structures, often called blocks. 
When creating a new block, the node takes the entire content of the previous block and 
hashes it as a hash pointer. For the new block to be valid, it must comply with the de­
fined structure, and every block, except the genesis block, must contain a hash pointer to 
the previous block. The entire blockchain forms a distributed ledger, a consensus of repli­
cated digital data distributed across many nodes worldwide. This ledger is distributed to 
newly joining nodes in a peer-to-peer manner. 

Transaction Processing 

A transaction in a blockchain network represents a set of instructions that, when executed, 
modify the state of the blockchain. For a transaction to be successful, all its instructions 
must be executed successfully. However, suppose the execution of even a single instruction 
fails. In that case, the transaction is considered unsuccessful, and all previous changes 
are reverted, leaving the blockchain in its original state before the transaction attempt. 
In other words, transactions are atomic - they are either completed as a whole or not at all. 
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Due to the limited computing resources available, the execution process involves a fee to 
reduce the likelihood of transaction starvation. The transaction fee size depends on the num­
ber of computing resources used for the transaction's execution. The usage of the compu­
tation resources is metered in a unit called "gas." Typically, each instruction has associated 
execution costs in gas units. 

When a transaction is processed, it is stored in a block, a data structure that groups 
transactions executed within the same time window. Each block contains a pointer to 
a previous block, resulting in a visual representation of the chain of blocks - hence the term 
"blockchain." 

When a transaction is submitted to the network, it is distributed among the nodes, 
which add it to their current block. Then, depending on the consensus protocol, the network 
chooses a node (called a leader) to broadcast its block onto the network. The other nodes 
then verify the block's consistency and the validity of the consensus protocol. If the block 
is valid, it is added to the local copy of the blockchain stored by each node. 

Network Operation: Consensus and Incentives 

The effective operation of the network relies on consensus and trust. Nodes participat­
ing in the network evaluate the validity of the current network state through consensus. 
The consensus algorithm used by the particular network determines the specific method. 
Nevertheless, the network's correct state is typically a result of the consensus by the ma­
jority of the nodes. 

In the case of an incorrect state proposal, perhaps in an attempt to exploit the network, 
the proposal is rejected since it deviates from the consensus of the majority. If a single 
entity gains control over the majority of nodes, it could manipulate the network. Conse­
quently, the network provides incentives to deter malicious activities and promote the proper 
behavior of participating nodes. These incentives typically take the form of a collection 
of transaction fees or newly minted coins as rewards, or they may involve both. 

2.4 Smart Contracts 

Smart contracts are transactions that function as programs. Once deployed, nodes store 
these transactions in the blockchain, ensuring their persistent availability for execution. 
Furthermore, nodes execute these transactions within a virtual environment (such as the 
Ethereum Virtual Machine (EVM) in the case of Ethereum) to guarantee consistent results 
across all nodes. The primary purpose of smart contracts and decentralized apps is to 
facilitate complex data modifications or transfer of assets and tokens across the network 
(blockchain). 

2.5 Fees and Incentives 

Since computational resources are limited, validators must be incentivized to process trans­
actions. These incentives typically take the form of transaction fees. However, due to limited 
resources, validators can only process a certain number of transactions within a specified 
period. Therefore, validators determine the order in which transactions are processed by 
prioritizing those with higher fees. Consequently, users submitting transactions compete 
by bidding on the gas price to gain the attention of validators. 
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On some chains, such as Ethereum, network congestion or high usage can lead to fierce 
bidding wars, resulting in transaction fees that amount to hundreds or even thousands 
of U.S. dollars when denominated in that currency. 

2.6 Types of Blockchain Systems 

Blockchain systems can be categorized based on their properties as either public or private: 

1. Public - Blockchain records are publicly available to anyone. 

2. Private - Blockchain records are accessible only within the company or entity. 
In addition, the data is encrypted to prevent unauthorized review by any third party 
in case of a leak. 

Furthermore, blockchain networks can be classified based on permissions, either as permis-
sioned or permissionless: 

1. Permissioned - A centralized entity decides who can participate as a node in the net­
work. 

2. Permissionless - Anyone can become a node and participate in network operation. 

2.7 Adoption 

More than ten years later, blockchain technology is revolutionizing the world, and its 
presence is becoming increasingly prevalent in our daily lives. In the face of global compe­
tition among companies in various industries, these organizations seek new opportunities 
to seize. As the scale and wealth of the industry continue to grow, the world's largest 
corporations are starting to take notice - evidenced, for instance, by Facebook's rebranding 
to Meta [26]. 

2.8 Blockchain in the E ra of Web 3.0 

It is essential to understand that Web 3.0 represents an era of transactional freedom. 
The idea of Web 3.0 is to follow up on the commerce and people-to-people connection 
(Web 2.0) by allowing people to transact with whoever other people they want to transact 
with, instantly, whenever they want, without any governing entity overseeing the transac­
tion. This teardown of the financial borders with blockchain and Web 3.0 solves a couple 
of problems: 

1. the issue of tracking ownership (of property) 

2. the need to transact in a specific denominated currency 

3. cross-border transactions 

Besides financial data, blockchain technology enables the storage of various other forms 
of digital data, including digital ledgers and digital logging, offering a versatile platform for 
a wide range of applications. 
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Chapter 3 

Overview of Existing Solutions 

Chapter 3 presents an overview of existing solutions for blockchain platforms and decen­
tralized application development, focusing on Ethereum and Solana. A brief comparison 
of Ethereum and Solana is showcased in Table 3.1, with this chapter later delving into 
the core components of each platform, including their execution environments, storage 
models, transaction fees, and runtime. 

To provide accurate and comprehensive descriptions of each platform, I have relied on 
official documentation, research papers, and expert articles found online [7, 17, 24, 12]. 

property Ethereum Solana 
consensus Proof-of-Stake Proof-of-Stake 
language Solidity Rust, C + + and Python 

scalability sharding and layer 2s codebase and hardware 
TPS 30-50 TPS up to 100k TPS 
T T F ~15 minutes «2 .5 seconds 
fees tens of dollars fraction of a cent 

Table 3.1: Comparison of main properties between both Ethereum and Solana. 

3.1 Ethereum 

While Bitcoin is often referred to as a distributed ledger with replicated data on many nodes, 
Ethereum represents a single instance of an object resembling a replicated (distributed) 
state machine, often called "one big distributed computer." 

Ethereum has a large data structure encompassing all account data and the machine 
state. This massive data structure, representing the machine (network) state, is imple­
mented using a modified Merkle Patricia Trie [21]. The typical E V M blockchain state is 
depicted in Figure 3.1. 

This machine state changes from block to block due to the predefined behavior that 
emerges from executing transactions. The E V M (Ethereum Virtual Machine) defines this 
behavior by specifying rules. Every validator (node) in the network is aware of these 
rules, as every possible state transition is defined by a set of state transition functions 
with a single output. During transaction execution, nodes independently follow the rules. 
Upon successful execution, they all reach the same new state defined by the state transition 
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Contracts: 

module owner 

owners of tokens 

non-owners of 
tokens 

other contracts 

Figure 3.1: Solidity (EVM) blockchain state1. 

function. This is why the network state is referred to as a replicated state machine, as state 
machine transitions are consistently replicated across every node. 

On Ethereum, there £1X6 cl few transactions types: 

• Those resulting in message calls - such as regular transactions or smart contract 
execution. 

• Those resulting in contract creation (deployment). 

The contract creation process leads to the creation of a new contract account containing 
executable compiled smart contract bytecode. This bytecode is available for execution 
whenever it is called by a message call. 

Ethereum Execution Pipeline 

The Ethereum virtual machine (EVM) is an isolated runtime environment where execution 
clients (nodes) execute EVM-compatible bytecode. It behaves as a stack-based machine 
with a maximum stack size of 1024 items. Each item is a 256-bit word. For execution 
purposes, the E V M maintains volatile (transient) memory in the form of a word-addressed 
byte array. However, as part of the smart contract account, non-volatile (persistent) storage 
is available for storing data if the smart contract needs to retain any information between 
transactions. 

A smart contract is essentially compiled EVM-compatible bytecode stored in a "smart 
contract account" after being deployed onto the network by a developer. This bytecode 
consists of numerous E V M opcodes, and the execution of such code is triggered by trans­
actions targeting a specific smart contract account. The full execution pipeline is depicted 
in Figure 3.2. 

1

Image adapted from https: //github.com/move-language/move/tree/main/language/documentation/ 

tutorial. 
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Gas 

To incentivize the E V M to execute transactions, the user must pay an execution fee. Each 
executed code has a specified compute resource budget to prevent unnecessary over-usage 
of computing resources. The E V M measures the computing resource consumption in a unit 
called gas. Each E V M instruction (opcode) has a set gas cost reflecting its computational 
complexity. As a result, the E V M consumes gas from the provided gas limit during code 
execution. The consumption of gas is illustrated in Figure 3.2. If the E V M runs out of gas 
during execution, it raises an "Out-of-gas" exception, resulting in transaction processing 
failure and the restoration of the original state. Upon transaction submission, the user 
(sending account) specifies this computing budget by prepaying a specific amount of gas 
in ether (ETH). The total transaction fee cost is the gas price * gas units, where the user 
sets the gas price, effectively stating how much they are willing to pay for the gas. 

Transaction 

instruction data 

gas limit 

Ethereum Virtual Machine (EVM) 

program 
counter (PC) 

gas available 

memory 

execution 
engine 

A 

V 

stack 

Figure 3.2: E V M transaction execution pipeline. 

3.2 Solana 

" A Solana cluster is a set of validators working together to serve client transactions and 
maintain the integrity of the ledger." [16] In the case of Solana, the network selects one node 
to be a leader for a fixed time interval called a "slot." Within the duration of a slot, only 
the appointed leader is expected to produce a block. Currently, the network rotates a leader 
every four slots following an order set in advance for the entire epoch. A n epoch on Solana 
consists of 432,000 slots, with a leader schedule determined at the epoch's start. 

"Clients send transactions to any validator's Transaction Processing Unit (TPU) port. 
If the node is in the validator role, it forwards the transaction to the designated leader. 
If in the leader role, the node bundles incoming transactions, timestamps them creating 
an entry, and pushes them onto the cluster's data plane. Once on the data plane, the trans­
actions are validated by validator nodes, effectively appending them to the ledger." [16] 
The validator rejects blocks bearing the signature of anyone other than the current slot 
leader. 
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The On-chain Storage Model of Solana 

Data storage on the Solana network takes the form of an "account." A n account is 
an arbitrary location on the network designed to store persistent data, provided that it pays 
a "rent" for the storage resources used. More details on the rent are discussed in the next 
section. 

Alongside the data itself, the account includes metadata for access control. There are 
three types of accounts on Solana: 

• Program accounts — store executable code, which is equivalent to a program (often 
referred to smart contract) 

• Storage accounts — store data connected to a program 

• Token accounts — store the account balance of a specific token (e.g., SPL token 
account) 

In contrast to Ethereum, where smart contract code and data are stored in the same 
account, Solana's program (executable code) is stored in a different account than its data. 

Program Account 
lamports: 10 
owner: System Program 
executable: true 
rent_epoch: 12345 
data: executable byte code 

Data Account 
lamports: 10 
owner: Program Account 
executable: false 
rent_epoch: 12345 
data: counter = 1 

Figure 3.3: Solana on-chain storage model - a program account and associated storage 
account2. 

Overall, all accounts are either executable or non-executable. A n executable account storing 
executable bytecode is a program. Every non-executable account has an associated owner 
program address, and only the specified owner can modify the stored data. Otherwise, 
the storage account is transparent, meaning any program on the Solana network can read 
the account data. The content of accounts and the mutual connection of data accounts and 
program accounts is visualized in Figure 3.3. 

Transaction Fees and Rent 

Solana has two types of fees: transaction fees and storage rent. Users must pay a small 
transaction fee in the form of the network's native token ($SOL) to incentivize validators to 
process their transactions. The standard transaction fee is currently static at 0.000005 $SOL 
per signature. 

2

Image source: https: //solanacookbook.com/core-concepts/accounts.html#account-model. 
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With the introduction of fee markets on Solana in the autumn of 2022, users can now add 
a prioritization fee. "The prioritization fee is calculated by multiplying the requested maxi­
mum compute units by the compute-unit price (specified in increments of 0.000001 lamports 
per compute unit), rounded up to the nearest lamport."[18] One lamport is one billionth 
of $SOL. Paying a prioritization fee ensures faster execution, as the nodes prioritize trans­
actions with higher fees. 

When developers or users want the clusters to keep accounts and their data persistently 
in memory and not be lost, they must fund a time and space-based fee called rent. 
"The Solana rent rate is set on a network-wide basis, primarily based on the set lamports 
per byte per year." [13] However, it is not a feasible model to theoretically pay an infinite 
amount of $SOL for renting space for an infinite amount of time. The developers solved this 
with mechanics called rent exemption. A n account qualifies to be rent-exempt by having 
a balance equal to at least two years of rent. If an account fails to meet this condition, 
a garbage collector will clean up its data. The current rent rate is available in the rent sysvar. 
As of December 2022, the current rent rate is static at 0.00000348 $SOL per byte per year. 
As an example, a classic token account takes up 165 bytes. That means when opening 
a new token account, the user has to fund this account with at least 0.00203928 $SOL to 
be rent-exempt. 

The Solana's "Sealevel" Runtime 

Each instruction identifies a specific program and provides a selection of the transac­
tion's accounts that need to be transferred to the program, along with a data byte array. 
The program deciphers the data array and interacts with the accounts outlined by the in­
structions. The program can either produce a successful result or generate an error code. 
In case of an error, the entire transaction is immediately deemed unsuccessful [19]. 

Solana's on-chain programs utilize the L L V M compiler infrastructure, which compiles 
them into an Executable and Linkable Format (ELF) containing a version of the 
Berkeley Packet Filter (BPF) bytecode. This approach allows developers to write pro­
grams in any language that can target L L V M ' s B P F backend. Solana currently supports 
Rust and C / C + + , and ongoing research aims to add support for the Move programming 
language. Python can also be used for program development through the Seahorse frame­
work. B P F provides efficient instructions that can be run in an interpreted virtual machine 
or as high-performance just-in-time compiled native instructions. 

3.3 Use Cases and Adoption: Ethereum and Solana 

Although Solana boasts high throughput and low latency, making it an attractive platform 
as of Q l 2023, it has struggled to draw a more extensive user base to its DeFi platforms. 
The network's impressive performance has facilitated the development of decentralized 
exchanges (DEXs) and advanced liquidity and lending pools with rapid rebalancing in just 
a matter of seconds. Nevertheless, users continue to prefer the stability and provenance 
of the Ethereum network, despite the high fees and extended transaction confirmation 
times. 

Due to the high fees and slow transactions on Ethereum, developing highly interactive 
games on the platform becomes nearly infeasible. Consequently, Solana gains a competitive 
advantage in the realm of game development, offering seamless on-chain interaction capa-
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bilities. As a result, Solana has firmly established itself as the premier choice for gaming 
applications and is poised to maintain this position for the foreseeable future. 

One sector has successfully gained traction on both Ethereum and Solana - trading 
with non-fungible tokens (NFTs). Ethereum boasts a higher trading volume, which could 
be attributed to its wealthier user base that can afford the higher fees. On the other hand, 
Solana has more active wallets involved in N F T trading, as its lower fees create a more 
accessible entry point for users. Consequently, the adoption of NFTs can be considered 
relatively balanced between the two platforms. 
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Chapter 4 

Emerging New Solutions 

The Move programming language offers a fresh take on a different approach to smart 
contract programming. It focuses on addressing pitfalls developers may have encountered 
in the past. Alongside its rise in popularity, a few blockchain platforms with native support 
for Move have become prominent. The information in this chapter was sourced online 
from [22, 3, 9, 1, 4, 11, 20, 8, 5, 14, 27]. 

4.1 Move: A Programming Language for Blockchain 
Development 

Move is an executable bytecode language explicitly designed for blockchain developers to 
implement custom transactions and smart contracts. While Rust inspired its basic concepts, 
Move's standout feature is its ability to define custom resource types. These resources have 
unique properties that will be discussed later. Typically, marking data as a resource is 
used for data representing something of value, such as the number of tokens a user has. 
Additionally, Move comes with a built-in formal verification checker called Move Prover. 

First-Class Resources 

In contrast to other programming languages, Move introduces a feature that allows devel­
opers to define their custom resource types. Developers can define any common program 
values as a resource. Nevertheless, doing so applies a whole suite of protection approaches 
to the variable. To highlight a few, as mentioned in the Move whitepaper [22]. 

A resource can never be copied or implicitly discarded, only moved between 
program storage locations. 

However, a resource cannot simply appear out of nowhere or disappear at any time, 
so we need to maintain a certain level of control over its creation and destruction. Move 
uses modules to ensure just that. In normal development in Move, a programmer declares 
a resource type (variable) and resource managing procedures (create, modify, and destroy) 
inside a module. A Move module looks and behaves similarly to smart contracts created 
in other blockchain languages. Likewise, a module can invoke procedures defined by other 
modules. The resource within a module can only be modified by the procedures specified 
in the module that defines that particular resource. 
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Figure 4.1: Move blockchain state . 

Each address on the Move-native blockchain represents an account. In contrast to 
Ethereum, all accounts can store data under their addresses, either resources or deployed 
modules containing the executable bytecode, as depicted in Figure 4.1. 

This approach separates the architectures mentioned earlier, with the Move solution 
offering better security. As the module does not control any data structures (resources), 
it cannot modify them, as they are stored under a user account. Modifying or withdrawing 
resources from the account is only possible with the user's (owner's) signer capability. 

Code Security and Move Intermediate Representation 

When developing in Move, programmers typically write code in Move Intermediate Repre­
sentation (IR), which should possess the following qualities [22]. 

Move IR is high-level enough to write human-readable code yet low-level enough 
to have a direct translation to Move bytecode. 

However, the final executable Move source code format is a typed bytecode. 
Checks by the bytecode verifier are performed at the bytecode level, examining the byte­

code for resource, type, and memory safety directly on-chain. This memory safety includes 
preventing dangling references and memory leaks. Only after passing these checks does 
the bytecode interpreter execute the bytecode. The complete execution pipeline is depicted 
in Figure 4.2. Since it is computationally feasible to perform only some checks during 
every transaction execution, Move developers designed the language to support advanced 
off-chain static verification tools. 

Formal Verification using Move Prover 

Since data on blockchain systems often represent real-world value, platforms must be as 
secure as possible to prevent the potential theft of assets from their owners. Formal verifi­
cation is an excellent tool for developers to verify that their program behaves as intended. 

1

Image adapted from https: //github.com/move-language/move/tree/main/language/documentation/ 

tutorial. 
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bytecode interpreter 
(executor) 

Figure 4.2: Move execution pipeline. 

First, the developer specifies the desired behavior using a mathematical expression for 
formal verification. Then, the formal verification tool checks that the code behaves as 
specified. Unlike simple code testing, formal verification examines the code behavior under 
every possible scenario, providing greater security assurance than testing alone. 

4.2 Move-based Platforms: Aptos and Sui 

The inception of Move dates to 2018 when developers at Meta (formerly Facebook) sought 
a programming language to power Meta's project Diem (previously known as Libra). Unfor­
tunately, Meta later canceled this project due to regulatory issues. However, the developers 
behind Move wanted to preserve their years of work. As a result, they left Facebook and 
formed two independent groups of former Meta employees to create their own Move-based 
blockchain platforms. This led to the creation of the Aptos and Sui blockchain platforms. 
The main differences between Aptos and Sui are stated in Table 4.1, with detailed expla­
nation in the following sections. 

Criterion Aptos Sui 
Consensus Mechanism 
Move Language Variant 
Storage Model 
Transaction Capacity 
Time to Finality 
Module Deployment 
Resource Distribution 

Proof-of-Stake 
Diem's Move 
Account-centric 
Up to 160k TPS 
< 1 second 
Under account 
Two-step (offer and claim) 

Proof-of-Stake 
Sui Move 
Object-centric 
10k to 300k TPS 
< 1 second 
As object 
Unilateral transfer 

Table 4.1: Comparison of key properties between Aptos and Sui. 

Aptos 

Aptos is a standalone layer-one blockchain with a Proof-of-Stake (PoS) consensus mech­
anism. Wi th a mainnet launch on October 12th, Aptos became the first Move-native 
blockchain to launch a mainnet and the only one to do so in 2022. Aptos describes 
itself as a reliable, secure, scalable, and upgradeable blockchain. The developers designed 
Aptos with native support for Move, alongside the development of Move itself. In addition 
to smart contracts, the blockchain even uses Move internally for fast and secure transaction 
execution. 

The blockchain achieves high throughput and low latency by parallelizing transaction 
execution as much as possible. The network accomplishes this through batch processing 
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and parallel transaction execution. During the transaction dissemination phase, each val­
idator groups transactions into batches and combines them into blocks during consensus. 
Transactions without data resource conflicts can execute in parallel. 

Aptos stores data on-chain using accounts, which consist of a set of values and key-value 
data structures. These data structures take the form of Binary Canonical Serialization 
format (BCS). Move modules are stored similarly but under a separate namespace. 

A notable feature of Aptos is its ability to support private key rotation and native 
multi-signature capabilities. Aptos achieves this by providing on-chain mapping through 
an account lookup address. In Aptos, the account address shared with other users differs 
from the public key in a signature pair (public_key, private_key). 

During the account creation process, the concatenation of all public keys (a single one 
or multiple in the case of multi-signature) is hashed using a cryptographic hash to form 
an authentication key. The public account address is then set to match the authentica­
tion key. However, the Aptos blockchain includes a function that allows users to update 
the authentication key associated with their account address at a later time. 

These technological advancements significantly differentiate the Aptos blockchain from 
existing platforms, capturing the interest of venture capital investment firms and leading to 
a staggering $350 million funding raise [35]. These figures are considered an overwhelming 
success for a raise conducted in 2022. 

Sui 

Sui is a Move-native, permissionless, proof-of-stake, layer-one blockchain designed from 
the ground up to achieve a near-instant, high-throughput network. Unlike Aptos, which 
uses the Diem version of Move, Sui's developers took Move and made a few modifications, 
resulting in a version they call "Sui Move." 

Resource Distribution 

In the original Move (used by Aptos), transferring a resource to a user account is impos­
sible without the user's consent. While this can be beneficial in preventing spam or scam 
NFTs from being sent to users' wallets across various blockchains, it poses a problem when 
distributing resources (e.g., NFTs) to a predetermined list of addresses. To address this, 
Sui implemented a unilateral resource transfer (similar to other blockchains) with the func­
tion transfer (resource, recipient_addr). As a bonus, the execution of a function 
implementing multi-item distribution does not collide with others; therefore, the Sui run­
time forwards this transaction via the "fast path" broadcast that does not need consensus, 
resulting in parallel execution. 

However, this issue is not unsolvable. Aptos addresses this (in their framework) by 
splitting the resource transfer into two steps: 

1. The distributing module makes a "transfer" offer to the user account: 
token_transfers::offer(&module_sig, receiver_addr, token_id, 1); 

2. The offers will be displayed to the user in their wallet, allowing them to send a "claim" 
transaction to claim the resource into their account. 
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Sui Storage and Native Asset Ownership 

Sui employs a distinct approach to native asset ownership and transfers compared to Aptos, 
which uses account-centric global storage. Sui does not utilize the built-in global storage 
in the core Move language. Instead, the platform has developed its own storage system 
called Sui Storage. This system is object-centric, with each address representing a globally 
unique object ID. Generally, this should be fine during development in Sui, as it is easy to 
detect if a generated address (ID) already exists on the blockchain. 

This storage model simplifies object ownership and transfers. In Sui Move with Sui 
Storage, module functions (entry points) already take object references as input arguments. 
Therefore, this design eliminates the need for developers to use borrow_global_mut (Aptos) 
and incorporates checks to ensure that the transaction sender is the object owner into the Sui 
runtime. 

One fascinating aspect I will explore later in this thesis is that with this change, modules 
are published into Sui Storage and not under an existing account (as in Aptos). Conse­
quently, developers inadvertently avoid the module deployment challenges I experienced 
while working with Aptos. As mentioned, more on this topic will be discussed later. 

Simplified Gas Consumption in Sui 

Like Ethereum, Sui measured computation resource consumption in computation units for 
each instruction execution. However, in late October, Sui modified the gas fees for each 
instruction to a flat value. The creators behind Sui attributed this change to developer 
behavior, stating that overly fine-grained per-instruction metering encouraged unnecessary 
optimization (gas-golfing). The hope is that this decision will improve code readability and 
prevent unnecessary computation resource wastage in the future. 
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Chapter 5 

Experiments with Current and 
New Platforms 

The idea behind Move is promising, but a proper evaluation must be based on more than 
just theory. So instead, the focus is on using Move, Solidity, and Rust in practice to build 
a fully functional application called The Deposit Box. The development process will be 
done on Ethereum using Solidity, Solana using Rust, and Aptos using Move. This chapter 
will discuss the development experience and challenges faced and evaluate each platform 
based on execution cost, processing speed, and code readability. By the end of this chapter, 
readers will have a deeper understanding of the strengths and weaknesses of these platforms, 
as well as insights into their practical use. The information presented in this chapter, and 
used during development was sourced from [2, 11, 4, 34, 25, 23, 6, 9, 10, 30, 15, 33]. 

5.1 Implementation — The Deposit Box. 

I needed to develop an application - an application that would put to the test several 
features commonly used by various smart contracts. Eventually, I have devised an idea 
for an application I call "The Deposit Box." I implemented this application in Solidity on 
Ethereum, Rust on Solana, and Move on Aptos. To simplify things, I will try to refer to 
the application backend, implemented as a smart contract, program or module, uniformly 
as a "program." 

How the Application Works 

Users will visit the application and deposit selected assets. In exchange, they will receive 
a new non-fungible token representing the ownership of the deposited assets, sometimes 
referred to as a token backed by those assets. Whoever holds the token can then exchange 
it back for the underlying assets. The token holder is free to transfer the token to any wallet 
they want. The described application use case is illustrated in Figure 5.1. This approach 
tests several aspects: 

1. Handling of multiple assets 

2. New token minting (emission) 

3. Privileged recovery of assets from the program 
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If the application behaves as intended, the functionality can be expanded by adding the pos­
sibility of setting up a time-lock on the deposit. When depositing, the user is free to choose 
an optional lock time. If the user has done so, the token holder can withdraw the assets 
only after the specified time expires. 

Deposit Appl icat ion ..__ VVithdrawal 
Assets i 1 N F T 

G 

Wallet 2 

Figure 5.1: Visualization of the application behavior. 

5.2 Evaluation Criteria 

After considering various ideas, I have decided to settle on three criteria for testing the dif­
ferent implementations in each programming language and corresponding platform. I have 
kept it simple as these criteria will cover the fundamental questions: 

• How much - objective comparison based on fees associated with transaction execution 

• How fast - objective comparison based on network throughput and time-to-finality (TTF) 

• How - subjective evaluation of code readability, available tooling and supporting re­
sources 

Execution Cost 

In contrast to user experience, in a majority of cases, the primary concern of the developer 
is not the transaction execution fee but the program deployment cost. For a program 
to become usable, the developer must first upload it to the chain. A completed smart 
contract usually consists of many instructions processing somewhat complex logic. As 
the smart contract is submitted onto the network for it to be available for execution, 
the execution client must keep a copy of it in its memory. In blockchain systems, the most 
scarce resource is memory (storage) capacity. Wi th many instructions, the executable 
bytecode becomes of non-negligible size. Therefore, the developer must pay a significant 
transaction fee (on contract deployment) on Ethereum or charge up an account with enough 
$SOL for the account to become rent-exempt on Solana. 
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Processing Speed 

Currently, the choice of programming language is platform-dependent, as neither platform 
supports other programming languages. However, this might change as Solana announced 
that their developers are working on native support for Move on Solana. Therefore, the eval­
uation of this criterion will mainly reflect the platform's efficiency However, the very nature 
of the programming language might impact the resulting processing speed, as particular 
actions may consist of different amounts of instructions, resulting in varying execution times. 
Nevertheless, this criterion is a vital part of the technology research process. Evaluation 
of processing speed will depend on time-to-finality and network throughput. 

Code Readability 

Code readability is the primary differentiation a programming language choice will make. 
It influences the security and adaptability of the code. If the code is easily readable and 
understandable, the probability that other developers and security researchers will spot 
any potential bugs and security holes within the source code before any attacker increases. 
Easy-to-read code is necessary for sophisticated static analysis. Similarly, new developers 
can use existing source code as a reference or learn from it. 

5.3 The Development Experience — Ethereum, Solana, and 
Aptos 

In this section, I will cover the development process, its nuances, the platform differences, 
and the design aspects I encountered while developing the application on each blockchain 
platform. 

The Ethereum E V M and Solidity 

Smart contract development was carried out in the Remix I D E 1 . The online in-browser 
Remix IDE is a comprehensive suite of tools available to developers working in Solidity. 
It contains a decent source code editor and a Solidity code compiler readily accessible via 
a keyboard shortcut with various compiler versions. Wi th an injected wallet extension, 
developers can easily deploy the smart contract on-chain directly inside the IDE. As on-
chain deployment can become quite inconvenient (due to online on-chain transactions taking 
time), developers can use the built-in virtual sandbox Remix V M , which mimics the real-
world blockchain. 

The Challenges Faced by Ethereum Developers with Testnets 

Currently, two public Ethereum testnets are available for developers to test their code: 
the Sepolia network, explicitly recommended for smart contract testing, and the Goerli 
network. In order to test anything on either network, testnet tokens are required. However, 
obtaining testnet tokens from faucets can be challenging due to a shortage of tokens and 
mandatory anti-robot checkups. 

For example, on Goerli, after being forced to create an Alchemy account, I received 
0.2goerliETH (the daily faucet allowance), which I depleted within an hour by sending 

1Remix - Ethereum IDE available at https://remix.ethereum.org/ 
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contract deployment and interaction transactions. I then switched to the Sepolia network, 
which had cheaper transaction fees and higher faucet allowances (up to 5 ETH/day) . 

Nevertheless, the struggle is significant enough that Ethereum core developers plan to 
launch a new testnet called Holli specifically designed to address testnet token distribution 
and struggling faucets [31]. 

ERC -20 Token Allowances and Approvals 

To understand how token allowances work under the ERC-20 standard, we must first 
examine the ERC-20 token implementation itself. Each ERC-20 token is technically a smart 
contract that uses the ERC-20 standard library to inherit functionality. The two mapping 
functions are the most important in that inherited code: 

mapping(address => uint256) private _balances; 

mapping(address => mapping(address => uint256)) private _allowances; 

The initial function maps balances to their corresponding addresses, whereas the second 
function maintains allowances a user (address) has granted to other addresses to make 
transactions on their behalf. Whenever a transfer transaction occurs, these two mappings 
are updated accordingly. 

The shared interface provides two functions to initiate token transfers from one address 
to another: 

1. transfer(recipient, amount) 

2. transferFrom(sender, recipient, amount) 

In the first case of transfer (recipient, amount), the function implementation expects 
to be called directly by the sender (user's wallet). Therefore, a simple transfer deducts 
the balance from the sender's address and adds the same amount to the recipient's address. 

When a smart contract is required to respond to the token transfer, it is necessary to call 
the transferFrom (sender, recipient, amount) function inside the smart contract code 
to transfer the token and follow it with more code. However, in doing so, the smart contract 
effectively carries out the transfer on behalf of the user. For this to succeed, the contract 
must be explicitly authorized with the specific spending allowance. 

It is unclear why it was designed like this in the first place, but essentially the user 
is forced to make two separate transactions. The first transaction grants the spending 
allowance to the specific smart contract, and only then can the second transaction interact 
with the custom smart contract. This transaction flow can be seen in Figure 5.2. Both 
transactions make data changes on the blockchain, meaning both must pay a transaction fee. 
This can become unnecessary and quite expensive, especially considering that transaction 
fees on the Ethereum blockchain are usually high. 

Nevertheless, for the smart contract to use the transferFrom () function, it must 
first be an approved spender. There is a catch: the approve (spender, amount) func­
tion takes only two arguments - the spender and the amount. However, we must specify 
the owner who grants the approval, right? The implementation of this specific function 
solves that by appointing msg.sender as the owner. Nevertheless, if the function call is 
sent from the smart contract application, the msg. sender becomes the smart contract itself. 
As a result, the only consequence of this call is that the smart contract provides transfer 
approvals to itself. The smart contract is unable to handle the approval. Consequently, 
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foo( token, amount ) { 
token->transferFrom(cal ler , 
th is, amount ) 
// rest of the code 

) 

t rans ferFrom( f rom, to, 
amount )  

approve(spender , amount ) y 

2. t ransferFromO 

Custom smart contract 

foo( token, amount ) { 
token->approve( th is , amount ) 
token->transferFrom(cal ler , 
th is, amount ) 
// rest of the code 

) 

Figure 5.2: The correct and wrong transaction flow of ERC-20 approvals. 

without extensions, the user is compelled to execute two separate transactions. However, 
a possible solution I encountered during my search was a project named Permit2. 

Permit2 2 takes advantage of the EIP-2516 extension to the ERC-20 standard to solve 
the issue of recurring approval transactions for each smart contract. The user only needs 
to approve the Permit2 contract once, and the Permit2 contract will then serve as an inter­
mediary for token transfers for other smart contracts using this system. When interacting 
with a smart contract application, the user first signs an off-chain (gasless) message con­
firming their intention to transfer tokens and then passes this signed Permit2 message as 
a parameter to the smart contract function containing the token transfer. Nevertheless, 
incorporating Permit2 seems rather complicated and is likely beyond this project's scope. 

Addressing Reentrancy Vulnerabilities 

On Ethereum, it is typical to provide a lot of the functionality via cross-program calls, 
and it is not abnormal that many of the functions are handling some ether at some point. 
However, calling an external contract requires performing an external call. The potential 
attacker can exploit this as they can force a contract to execute additional code, for example, 
via callback functions. Furthermore, like that, they can do recursive calls to the function 
itself. Nevertheless, we do not need to worry about this vulnerability as long we use 
the ReentracyGuard by OpenZeppelin. 

Development on Solana 

The development experience on the Solana network was quite distinct from E V M and had 
unique nuances. While some aspects might be better on Solana, it can be challenging 
for beginners. Additionally, it is worth noting that many articles, tutorials, and courses 
covering development on the Solana network contained deprecated code, which needed to be 
adjusted to work with up-to-date versions of libraries (e.g. ©solatia/web3. j s) or the Anchor 
framework. 

The Anchor Framework 

I developed the Solana program using the Anchor framework [2]. Initially introduced 
by Armani Ferrante in 2021, Anchor is a development framework for Solana's Sealevel 

2

Learn more about Permit2 here: https://github.com/dragonfly-xyz/useful-solidity-patterns/ 

tree/main/patterns/permit2 
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runtime. The development of the Anchor framework is an open-source project housed 
under the Coral company, with more than 80 community contributors at the time of writing 
this thesis. This framework aims to accelerate the development process of Solana programs 
by providing various boilerplate codes and macros for easy (de) serialization of accounts 
and instruction data. It also includes features like generating the program IDL specifica­
tion (IDL = Interface Description Language), which enables developers to effortlessly use 
the IDL to run a TypeScript test suite for program testing. Furthermore, creating a nested 
React front-end application is also possible within the environment. 

The Accounts and Addresses 

In section 3.2, I outlined the primary distinctions of Solana's on-chain storage model. Now, 
I will add more detail: Data accounts on Solana have a fixed size (storage capacity) allocated 
during account creation, which cannot be increased later. However, due to Solana's network 
design, wherein the program must be provided with interacted accounts from the front end 
(i.e., transaction sender), the program does not keep any memory of all owned accounts. 
Therefore, an address must be supplied during program interaction to initialize a data 
storage account. When additional data needs to be added to an account created earlier, 
a new account must be established instead, leading to a cumulative number of accounts 
linked to the program. As I mentioned earlier, the front end must provide the addresses 
of the accounts to the program, meaning these addresses must be easily obtainable. This 
is achieved through a technique known as program-derived addresses (PDAs). 

P D A (Program Derived Addresses) 

A program-derived address is obtained through a derivation process using a set of seeds. 
These seeds are arrays of strings, keys, and other elements, converted into byte form, which 
are then passed together with the program ID through the SHA256 hashing algorithm. 
Unlike traditional keypairs, P D A s do not have a private key. However, there is approxi­
mately a 50% chance that the hashing output may end up on the ED25519 elliptic curve, 
which is undesirable. Therefore, an additional value known as a bump is added to the hash­
ing process to ensure an output outside this curve. This value starts at number 255 and is 
decremented each time the output lands on the curve until an address lying off the curve is 
obtained. In specific scenarios, there may be a need to enable users to create an unlimited 
number of accounts. 

Transaction Complexity and Limitations 

Transactions on the Solana network are collections of instructions, each consisting of: 

• Invoked program identifier 

• A n array of accounts to read from or write to 

• Data (as a byte array) specific to the R P C (remote procedure call) 

Wi th a program providing somewhat complex functionality, the array of accounts can be­
come quite long. In the case of the first use-case of the program, where the user de­
posits an SPL token (the asset) into the escrow program and receive an honorary N F T 
back, there is a considerable number of accounts that our program will interact with. 
A l l actions in a simplified summary include: 
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1. Escrow (data) account creation (account storing the data about the escrow) 

2. Token account of the escrowed token (owned by the escrow data program above) 

3. N F T Mint account creation 

4. N F T user token account creation 

In addition to the list of required accounts for transaction execution, I had to add these 
accounts (read-only): 

1. User account (our main wallet account) 

2. Mint account (of the escrowed token) 

3. User token account (holding token balance before escrow) 

4. User escrow counter (escrow account P D A seed) 

5. Token program 

6. Associated token program 

7. Rent program 

8. System program 

Unfortunately, transactions have a specified maximum size. Wi th that many accounts 
specified, I simply ran out of available space within a single transaction. Therefore, there 
were only two solutions for this: 

1. Split the interaction into two transactions 

2. Implement versioned transactions 

I chose the former due to the additional complexity of the implementation and the lack 
of available resources illustrating the usage of the new solution. Also, support for versioned 
transactions in the Anchor framework was added just recently on the 8th of March^. 

Versioned Transaction 

Each Solana transaction, regardless of its content, is limited to a maximum of 1232 bytes. 
Solana transactions consist of an array of signatures (each signature takes 64 bytes) and 
the message. The message itself comprises a header (3bytes), an array of account 
addresses (32bytes per address), a recent block hash (32bytes), and an array of instruc­
tions. In the best-case scenario, addressing up to 35 accounts in a single transaction is 
possible. However, this theory does not consider various instructions and the correspond­
ing instruction data. Therefore, developers might encounter the transaction size limit when 
addressing 10 to 20 accounts. 

Before late 2022, there was only one version of the transaction format, the legacy ver­
sion, which had no solution to the size limitation issue. Recognizing the need for an im­
proved system, Solana developers introduced a new transaction format that supports both 

3Anchor vO.27.0 changelog: 
https : //github. com/coral-xyz/anchor/blob/master/CHANGEL0G.md#0270 2023-03-08 
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the legacy version for backward compatibility and new versions. When writing this thesis, 
the latest transaction version is 0 ("zero"), which includes utilizing address lookup tables 
for more efficient account addressing. The exact differences are illustrated in Figure 5.3. 
The lookup tables are separate data accounts that allow storing up to 255 addresses. 

legacy 

0 

Message 

Compact array of Signatures 
(64 bytes * # of signatures) 

Header 
(3 bytes) 

Compact array of account addressess 
(32 bytes * # of accounts) 

Recent Blockhash 
(32 bytes) 

Compact array 
of Instructions 

\ 7 Message 

Compact array of Signatures 
(64 bytes * # of signatures) 

Header 
(3 bytes) 

LUT Address 
(32 bytes) 

LUT Indexes 
(1 byte * # of accounts) 

Recent Blockhash 
(32 bytes) 

Compact array 
of Instructions 

1232 bytes 

Figure 5.3: Depiction of differences between transaction versions of legacy and 0. 

Developers must first initialize the lookup table, but then a single account address can 
be addressed with just a 1-byte unsigned integer index. For example, in a transaction 
with ten account addresses, the legacy transaction version would require 320 bytes, while 
in comparison, version0 would require only 42bytes (32bytes L U T address + 10indexes). 
A similar comparison with an example of 5 account addresses can be seen in Figure 5.4. 

Legacy Accoun t Address ing 

Accoun t address (32 bytes) 

Accoun t address (32 bytes) 

Accoun t address (32 bytes) 

Accoun t address (32 bytes) 

Accoun t address (32 bytes) 

160 bytes 

Accoun t Address ing using LUTs 

LUT address (32 bytes) 

u8 index Accoun t address 

u8 index Accoun t address 

u8 index Accoun t address 

u8 index Accoun t address 

u8 index Accoun t address 

32 + 1*5 = 37 bytes 

Figure 5.4: Comparison of space taken by addressing five accounts in versions legacy a 0 

4

Image adapted from https://solanacookbook.com/guides/versioned-transactions.html#address-

lookup-tables-lut. 
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Challenges and Insights from Aptos Blockchain Development 

In the following subsections, I will delve into some aspects of developing on the Aptos 
blockchain, providing more detail on Move than in section 4.1 where I gave a high-level 
overview of Move. Most of these insights come from my hands-on experience with Aptos 
development. 

The Hurdles of New and Seemingly Unfinished Platforms 

Aptos was the last of the three blockchains I developed on, and as I progressed, I brought 
with me some programming practices common in blockchain development from my pre­
vious experiences. So, what challenges did I face? I wanted to retrieve some data from 
the blockchain, so it seemed natural to me to use and implement a view function. However, 
I could not find anything when I searched for references on how to do this. I found it 
strange at the time. 

Nonetheless, after discovering a few view functions implemented in the Aptos Core 
module, I pieced it all together. Only a few weeks later, I learned that view functions were 
not initially available on Aptos until recently. The Aptos development team introduced 
view functions with the Aptos Move 1.2.4 update0 in February 2023. 

Strict Resource Management Policies in Move 

Move enforces strict rules regarding permitted actions when manipulating values of a specific 
type. These permissions can be controlled using a typing feature called abilities. Without 
explicit assignment, for example, a value (struct) cannot be copied or dereferenced, dropped 
by going out of scope or stored inside other structs in the global storage. This limitation 
is essential for ensuring the safety and correctness of Move programs. However, in some 
cases, developers may need to manipulate specific values in ways that are not allowed by 
default. This is where abilities come in. 

Abilities allow developers to assign specific permissions to values using keywords such 
as "copy," "drop," "store," and "key." 

• Keyword copy - the value can be copied. 

• Keyword drop - the value can be dropped. 

• Keyword store - the value can be stored inside other structs in global storage. 

• Keyword key - the type can be used as a key in global storage. 

By assigning these abilities, developers can expand the range of actions allowed for specific 
values while maintaining the overall safety and correctness of the Move program. 

For example, in the following code snippet, the "Box" struct has been assigned the "key," 
"store," "copy," and "drop" abilities using the "has" keyword. 

struct Box has key, store, copy, drop { 

value: u64 

} 

This allows values of type "Box" to be used as keys in the global storage, stored inside 
other structures, copied, and dropped as needed. 

5Move 1.2.4 release notes -https://github.com/aptos-labs/aptos-core/releases/tag/aptos-node-
vl.2.4 
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References and Ownership 
In common programming languages like C, C++, or Python, variables exist within their 
defined scope and all nested scopes. These variables can be passed as arguments to other 
scopes (such as functions) as copies or references. However, these variables and references 
remain available for the rest of the scope, which may sometimes lead to a phenomenon called 
a dangling reference. In this situation, the variable may be deallocated inside the external 
scope, causing the reference to point to a value (data) that is no longer in memory. 

Move V M handles references and ownership similarly to Rust. Each variable has an asso­
ciated owner scope. A variable can be defined within or passed into a scope as an argument. 
Creating a reference to the variable does not pass the ownership of the variable; instead, 
it only grants the right to read or write data to it. References must not outlive the vari­
able's owner scope. When a variable is passed to a function, that function takes ownership 
of the variable. Like Rust, explicitly stating if a mutable reference is wanted promotes more 
robust code security. A l l of these rules are enforced through reference checking by the com­
piler. To obtain a reference to a resource, Move includes functions with keywords "borrow" 
and "mut", such as borrow_global_mut or borrow_mut. Additionally, Move contains mech­
anisms that aim to prevent developers from making mistakes while using references. One 
of these mechanisms is known as borrow checking. When a function attempts to obtain 
a mutable reference to a resource, it must be explicitly specified in the function declaration, 
as shown in the example below: 

struct ModuleDatah has key {value: u64} 

public entry fun foo(sender: fesigner) acquires ModuleData { 

let _module_data = borrow_global_mut<ModuleData>(@module_addr); 

} 

In this example, I specified that the function acquires the resource ModuleData, which 
implies that a mutable reference to this resource is created within the code, making it 
highly likely that the resource data will be modified. 

Generics 

In order to enhance the security of the source code, it is preferable to reuse the same code 
rather than writing similar and redundant code for different types. In Move, both functions 
and structs can utilize generics. Generics can be employed by placing a placeholder "<T>" 
next to the name, where " T " represents any type. The type of "T" can be used like any 
other type within the body of the function or struct. Here is a simple example to illustrate 
this concept: 

struct Data<T> { 
value: T 

} 

public fun save_data(value: u64): Data<u64> { 

Data<u64> {value} 

} 

In this example, the save_data function returns a new Data struct containing a value 
of type u64. 
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The automation with Resource Accounts 

On Aptos, two categories of functions handle a significant amount of functionality. The first 
group comprises essential functions and types in the built-in standard library. The second 
category includes extended functionality and entire modules deployed at the 0x1 address 
directly on the blockchain. On Aptos, any module can use any function implemented 
in other modules deployed on the blockchain if marked public. The only requirement is 
that the developer knows the module's deployment address during their own module's 
development. 

Many of these functions (from either category) take a signer as a parameter, which is 
necessary for their operation. In most cases, these functions modify or withdraw resources 
from the user account, the most privileged operation in the Move programming language. 

If a module is deployed under an existing account, it cannot access the account signer 
capability. Consequently, if it is desired to withdraw coins of any type from the module 
and send them to the caller, limitations would arise. 

coin::withdraw<CoinType>(&module_account, amount) 

coin::deposit(sender_addr, coins); 

The withdraw function requires &module_account (signer); however, the Aptos virtual 
machine only passes the sender (caller) as a signer to the function during execution. 
Consequently, the function does not have the module_account signer capability and cannot 
process a withdrawal. 

Resource accounts can be utilized to achieve module self-sufficiency and autonomy. 
Like Solana, a resource account is published under an address derived from the deployer's 
address using seeds. Consequently, the resource account does not have an associated private 
key, ensuring that the published module remains immutable since no one has the right to 
update it. Despite the absence of a private key, the resource account still possesses a signer 
capability that the published module can utilize. 

Creating a resource account and publishing a module (package) under it from within 
another module should be possible. However, due to the lack of available references on how 
to accomplish this, I opted to deploy my module using the Aptos C L I with the following 
command (memory mapping details omitted): 

aptos move create-resource-account-and-publish-package —seed <seed> 

This command creates a resource account and publishes a package using the specified seed. 
The complete instructions can be found in the application's source code. By following this 
approach, the module has been successfully made self-sufficient and autonomous, leveraging 
the capabilities of resource accounts on the Aptos blockchain. 

Upon successful deployment of each module, the Move V M carries an automatic execu­
tion of a function named init_module if it is present in the bytecode. This function is not 
an entry function; therefore, it will be executed only once in the module's lifetime. Wi th 
that, the Move V M automatically passes the resource account as a signer to this function. 
Furthermore, that behavior allows us to store the resource account signer capability that 
will be later used in each action that needs it, allowing us to automatize the module's code 
execution independent of the module storing account. The complete code needed to store 
the signer capability would look like this. 
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struct ModuleData has key {res_sig_cap: account::SignerCapability} 

fun init_module(resource_account: &signer){ 

let res_signer_cap = resource_account::retrieve_resource_account_cap( 

resource_account, @dev_address); 

move_to(resource_account, ModuleData {res_sig_cap: res_signer_cap]-); 

} 

The @dev_address is the original account that this resource account was eventually 
derived from using the seeds chosen earlier. The @res_address is the resource account 
address. This allows the resource account to be available in any entry function as needed. 

public entry fun foo(sender: fesigner) acquires ModuleData { 

let module_data = borrow_global_mut<ModuleData>(@res_address); 

let resource_signer = 

account::create_signer_with_capability(&module_data.res_sig_cap); 

// resource_signer is now available 

// ... 

} 

By following this approach, it is possible to efficiently store and retrieve the resource 
account signer capability, making the module self-sufficient and autonomous, leveraging 
the capabilities of resource accounts on the Aptos blockchain. 

Developer Adoption and Scaling Challenges for New Blockchain Platforms 

The process of adopting new blockchain platforms, and indeed any new technology, can often 
seem like a vicious circle. As more developers use a particular technology or platform, many 
resources such as examples, guides, and courses become available. However, the challenge 
is to convince developers to choose a specific platform over others. To achieve this, it is 
necessary to provide them with the necessary resources to get started. 

It can be informative to compare the developer counts of different blockchain platforms. 
For example, Ethereum boasts an estimated developer count in the tens of thousands. Wi th 
such a significant number of developers, there is a high likelihood that someone has already 
tackled a similar challenge to what others are trying to achieve. Additionally, there is 
a greater probability of finding experienced developers who can offer guidance and support. 

On the other hand, Solana, with its recent growth, has a substantially lower developer 
count than Ethereum 6. While the resource availability is reasonably good at this point, it 
is far from Ethereum's level. Additionally, the pace of core upgrades for the Solana network 
is significantly higher, leading to code-breaking changes and deprecated old methods over 
time. 

In the case of Aptos, the developer count is more likely to be in the hundreds rather than 
thousands. Consequently, if resource availability is linked to the total developer count, fewer 
resources are undoubtedly available. This emphasizes the challenge of attracting developers 
to new platforms and highlights the importance of providing comprehensive resources to 
kickstart developer adoption and, ultimately, the platform's success. 

Reference - https: //twitter.com/solana/status/1615398642717687842 
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Chapter 6 

Comparison and Evaluation 
of Move, Solidity, and Rust 
Implementations 

In this chapter, I will analyze and compare the implementation of the application in three 
different languages: Move, Solidity, and Rust. Therefore, I will summarize and assess 
the role of languages in blockchain development by evaluating code complexity, readability, 
transaction fees, development time, and developer experience. This comparison aims to 
provide insights into the strengths and weaknesses of each language. To present correct 
information in this Chapter, I used the following sources [28, 4, 34, 5, 27]. 

6.1 Comparing Code Complexity and Readability 

In this subsection, I compare the code complexity and readability of the Move, Solidity, and 
Rust implementations by looking at code length, naming conventions, and error handling to 
show how these stack against each other. Code complexity and readability play a crucial role 
in software development, as they directly impact the ease of understanding, maintainability, 
and collaboration among developers. 

Code Length 

Code length is not a perfect indicator, but shorter code is often easier to understand 
and maintain. However, it is crucial to maintain readability even if it comes at the ex­
pense of more extended code. The results from the Succinct Code Counter 1 can be found 
in Table 6.1. 

Language Lines Code 
Solidity 321 196 

Rust 437 299 
Move 247 154 

Table 6.1: Comparison of lines of code of implementation in each language. 
1Learn more about SCC - https://github.com/boyter/scc 
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These results show the differences in code length among Rust, Move, and Solidity im­
plementations. 

Naming Conventions 

Solidity uses CamelCase, while both Rust and Move employ snake_case. Solidity also 
follows specific guidelines regarding underscores. For example, private variables begin with 
an underscore (e.g., uint256 private _myPrivateVariable), and private or internal func­
tions start with an underscore. Move function names are in lower snake case, and constant 
names are in upper snake case. Unused variables must start with an underscore, or the com­
piler will not compile the source code. Rust generally uses the snake case convention, but 
Anchor's context and structs adopt CamelCase. 

Error Handling 

Error handling is a crucial aspect of any programming language, as it allows developers to 
manage unexpected situations and provide meaningful feedback to users. In this section, 
I will compare the error-handling mechanisms in Move, Solidity, and Rust. 

Solidity 

Solidity handles errors using a combination of require, assert, and revert functions. These 
functions allow developers to validate conditions and revert transactions if they fail. The 
require function is used for input validation and throws an error message when a condition 
is not met, while the assert function is used to check internal errors and consumes all 
the remaining gas when a condition fails. Revert functions can be used to revert state 
changes in case of errors. 

Move 

In addition to the built-in "assert!" macro, Move also provides an "abort" operation that 
can halt the execution of a script or function when an error occurs. The abort operation 
takes an error code as an argument, which can be later used for debugging purposes. 
Example of using "assert!" macro: 

/// Item does not exist 

const Item_N0T_F0UND: u64 = 1; 

assert!(search_result, error::permission_denied(ITEM_NOT_FOUND)); 

Additionally, the wallet displays the comment above the constant definition as an error 
message to the user. 

Rust 

In Rust, the default behavior on Solana is to print "panic!" or "assert!" outcomes to the pro­
gram logs. Additionally, developers commonly utilize the Anchor framework's custom error 
handling macro "err!". It can be used in the following manner: 
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err!(MyError::TransferFailed); 

# [error_code] 

pub enum MyError { 

# [msgC'Transf erFailer")] 

TransferFailed 

} 

6.2 Transaction Fees (Gas and Rent) 

I deployed the created application on Goerli, Sepolia, Arbitrum, Solana, and Aptos to 
highlight the differences in transaction fees across the compared blockchains. I recorded 
the deployment fees, alongside the application deposit and withdrawal fees, in the follow­
ing Table 6.2. 

Blockchain Deployment Deposit Withdraw T T F Network TPS 
Goerli 
Sepolia 

Arbitrum 
Solana 
Aptos 

41.29 ($76626) 
0.0112 ($21,36) 
0.0134 ($25,69) 
6.4297 ($136,8) 
0.00869 ($0,07) 

2.116 ($3934) 
0.0001 ($1.00) 
0.0003 ($0.51) 
0.0108 ($0,23) 
0.0022 ($0,02) 

0.385 ($716) 
0.0001 ($0,20) 
0.0002 ($0.37) 
-0.008 ($0,17) 
0.000019 ($0) 

12 sees 
12 sees 
1 sec 

0.4 sec 
0.4 sec 

» 30 TPS 
w 15 TPS 

Up to 4.5k TPS 
Up to 100k TPS 
Up to 160k TPS 

Table 6.2: Comparison of transaction costs, time-to-finality (TTF) , and network through­
put. The values are stated in the blockchain native currency with conversion to dollars 
at rates on May 10th. 

The application was deployed on the following testnets and mainnets, with the respective 
application addresses. 

. Goerli (Ethereum testnet) - 0x8Cc21861f 2a5238F4A4FEc636621C53a8C01Cac0 

. Sepolia (Ethereum testnet) - 0x244416d09blAeaFdf6fD7ceB6bc000b84DdAAF70 

• Arbitrum One mainnet - 0x244416d09blAeaFdf6fD7ceB6bc000b84DdAAF70 

. Solana mainnet - SAFEEinTUXlEqkx4nCMit5qvKzAPkKQW8XM53QNHsZZ 

• Aptos mainnet -
0x2530b03fb0ce8e58b824f47f63124c9f87ec861bad0f7611a8699b7de0b721f9 

Hence, verifying the exact values presented in Table 6.2 using blockchain-specific explorers 
is possible. For Goerli, Sepolia, and Arbitrum One, I verified the contract code on Etherscan 
and Arbiscan, respectively. Consequently, these explorers provide public interfaces for these 
contracts. 

Fee Differences between Solana and Other Blockchains 

As discussed in chapter 3, a considerable difference exists between fees on Solana and those 
on EVM-compatible blockchains. On Solana, rent represents the most significant portion 
of any noticeable transaction fee. However, closing the accounts and reclaiming the $SOL 
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required for rent exemption is typically possible. As depicted in Table 6.2, the deployment 
cost on Solana might seem substantial, but unlike on Ethereum, developers can recover 
most of the $SOL by closing the account if they delete the program. This principle applies 
to deposit and withdrawal fees as well. 

Upon depositing to the program, the user effectively opens an escrow data account and 
a token account for the escrow program, depositing enough $SOL to attain rent-exempt 
status. When withdrawing from the program, these accounts are closed, and the user 
receives a refund of the deposited rent. The only non-refundable part is the rent-fee deposit 
needed to initialize the escrow counter, amounting to just a few cents in value at current 
prices. Therefore, I deemed it unnecessary to include this in my application. 

6.3 Development Time 

To objectively assess or compare development time is almost impossible. However, in this 
section, I will discuss some factors that influence development time and share my experiences 
working with Solidity, Rust, and Move. 

Before this thesis, I had no experience with Solidity, Rust, or Move, but I was proficient 
in C / C + + and Python and familiar with JavaScript. As a result, I found Solidity, which 
resembles C++, easier to adapt to than Rust or Move. Thankfully, Rust and Move share 
similarities, as Move is based on Rust. 

Tooling and Resources 

Navigating Solidity was relatively straightforward due to the great quantity of documenta­
tion from various sources. The Remix IDE is an exceptional tool for starting with Solidity 
development, as it eliminates the need to install utilities, tools, or compilers. Additionally, 
the IDE allows for quick contract deployment to real or virtual blockchains and provides 
a simple interface for interacting with deployed contracts. 

The Anchor framework is a game-changer for Solana, as it simplifies development by 
automating tedious tasks and enhancing security. It handles (de) serialization processes and 
implements measures to prevent security issues. However, finding resources for building 
cross-program invocation transactions took much work. 

While the Aptos blockchain provides some useful on-chain modules under the address 
0x1, the developer resources explaining its use could be improved as they should be extended 
and revised. 

In terms of familiarizing myself with the languages and platforms, I found Solidity 
the easiest and quickest to learn. For example, the development of the Solana program 
took roughly twice, almost triple the time it took to develop the Ethereum contract, with 
the Aptos module falling somewhere in between. However, it is challenging to predict 
the difficulty and time required for future development now that I am familiar with each 
language. 

Debugging and Testing 

Debugging the Solidity code was quick and easy using the Remix IDE's interface. However, 
the Solidity compiler offered little guidance regarding code functionality. 

In contrast, debugging the Rust program on Solana was more challenging. I had to 
build my front end, implement error handling, and troubleshoot issues independently. 
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Furthermore, the feedback from the explorer was limited to messages like "Transaction 
failed" or, from the Anchor framework, "constraint violation". I often had to return to code 
instrumentation and go through the code repeatedly. 

Similar to Solana, I had to build my front end for Aptos. However, the Petra Aptos 
wallet offered a more informative error message directly in the wallet extension, which 
allowed me to identify and fix issues in the Move code more quickly than with Rust on 
Solana. 

By analyzing the development time, tooling, and resources for Solidity, Rust, and Move, 
insights can be obtained into each language's learning curve and ease of use. This facilitates 
informed decision-making when selecting a language for blockchain projects. 

Becoming a Full-Stack Blockchain Developer 

Developing smart contracts, programs, or modules (the back end) for blockchain applica­
tions is challenging. While writing a back-end that compiles might seem straightforward, 
deploying the back end to the network and sending actual transactions is essential to ensure 
everything functions as intended. Consequently, a blockchain developer often takes on the 
full-stack developer role. 

The primary domain for user interaction is a wallet, typically in the form of a web 
browser extension. To interact with the program using your wallet, you need a front end that 
can connect to your wallet extension and the blockchain, enabling effective communication 
with the back end. 

Fortunately for Ethereum developers, tools that simplify their work are available, thanks 
to Ethereum's long-standing presence in the industry. Two such examples are the Remix IDE 
and Etherscan. However, similar tools still need to be created for developers working on 
Solana or Aptos. As a result, they must build their front end to test and complete their 
back-end development successfully. 

This process includes integrating front-end and back-end communication, as the front 
end requires data to accurately construct a proper transaction. As a full-stack blockchain 
developer, one must be adept at handling both aspects of the development process. 

6.4 Developer Experience and Available Tooling 

This subsection will provide an overview of the developer experience and the tooling avail­
able for Ethereum, Solana, and Aptos, which can significantly impact the ease and efficiency 
of working with these blockchains. 

1. Ethereum: Ethereum has a rich ecosystem of developer tools, including IDEs like 
Remix, testing frameworks like Truffle, and numerous libraries and SDKs. Various 
resources are available for learning and troubleshooting, such as documentation, tuto­
rials, and community support via forums and chat channels. This comprehensive set 
of tools and resources has contributed significantly to Ethereum's popularity among 
developers. 

2. Solana: While Solana's developer ecosystem is not as mature as Ethereum's, it has 
been growing tremendously lately. Tools such as the Anchor framework simplify pro­
gram development. Additionally, Solana has been improving its documentation and 
supporting developers that create tutorials and sample projects to help new developers 
get started. 
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3. Aptos: As a newer platform, Aptos has fewer tools and resources for developers. 
To attract more developers, Aptos must focus on creating comprehensive documen­
tation, expanding its developer toolset, and building a supportive community where 
developers can exchange knowledge and experiences. 

By comparing the developer experience and available tooling across these three blockchains, 
we can better understand the challenges that newer platforms face in attracting and re­
taining developers and the importance of a robust ecosystem for driving the growth and 
success of a blockchain platform. 

6.5 Chapter Conclusion 

In conclusion, by examining factors such as code complexity, readability, transaction fees, 
development time, and developer experience, we gain valuable insights into the strengths 
and weaknesses of each language. 

Being the most mature language with the most extensive ecosystem, Solidity offers 
the advantages of easy adoption, extensive tooling, and a large community. Before intro­
ducing the Anchor framework, developing in pure Rust on Solana was quite challenging. 
Thankfully, the Anchor framework has emerged, simplifying program development and en­
hancing security. However, working with Rust and the Anchor framework has a steeper 
learning curve than other languages. As a newer language, Move needs more resources 
and tooling but benefits from its close relationship with Rust and the increasing interest 
in the Aptos blockchain. 

Ultimately, the choice of language and platform for blockchain development may not 
always be optional. For example, developers might lean towards Solana or Aptos for their 
superior transaction throughput and low latency. However, understanding the pros and cons 
of each language is still crucial for making informed decisions when developing projects 
on these platforms. In addition, the project's specific requirements and the developer's 
familiarity and comfort with the language should also be considered in this decision-making 
process. 
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Chapter 7 

Conclusion 

The primary objective of this thesis is to explore various blockchain platforms and the Move 
programming language, focusing on gaining a deeper understanding of the advantages 
and challenges developers encounter when working with these technologies. In this study, 
I have clarified the fundamentals of blockchain technology and examined the unique features 
of Ethereum, Solana, and Move-native platforms such as Aptos and Sui. 

Additionally, I have conducted an in-depth analysis of the Move programming language, 
concentrating on its distinctive characteristics. Finally, I have created and executed a test­
ing scenario using each language, evaluating code complexity, transaction fees, development 
experience, and available tooling. 

My work has revealed that the Move programming language has several key strengths 
that distinguish it from other languages in the blockchain domain: 

1. Move enables any value to be designated as a resource, providing a comprehensive set 
of protections for the variable. 

2. It enforces strict resource management policies, ensuring the secure handling of these 
assets and minimizing the risk of accidental loss or duplication. 

3. Move supports generics, facilitating the development of reusable and adaptable code 
while preserving type safety. 

4. Move organizes the blockchain state by storing resources under individual accounts, 
enhancing security, and providing a solid foundation for developing safe and reliable 
modules. 

These features have contributed to Move's growing adoption and interest within the 
blockchain community. 

My investigation has shown that the future of Move is promising, with a growing number 
of platforms adopting it and existing platforms integrating support for it. For instance, Sui 
is launching its mainnet, and Solana is working on supporting Move programs. These 
developments reflect the increasing interest in Move and its potential for widespread use. 

My work has also demonstrated that developing smart contracts, programs, or modules 
on any blockchain platform is a complex process that requires source code writing, de­
ployment, and comprehensive testing. In addition, working with new technologies is often 
challenging due to limited resources for learning and adaptation of the technology. 

In the future, I would like to continue exploring the practical applications of Move. 
It would also be worthwhile to investigate how other blockchain platforms can benefit from 
integrating Move or similar languages, expanding the scope of blockchain development or 
cross-platform implementation. 
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In summary, this thesis provides an overview of blockchain platforms and the Move 
programming language, offering valuable insights for developers and promoting a better 
understanding of the technologies involved. As blockchain continues to evolve, it is critical 
to remain informed and adaptable. 
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Appendix A 

Storage medium 

source/ 

application/ platform specific source codes 
Move-Aptos/ 

escrow/ 

app/ front end source code 
sources/ module source code 

.README.md implementation specific instructions 

Rust-Solana(Anchor)/ 

escrow/ 

Lapp/ front end source code 
programs/ program source code 

README. md implementation specific instructions 

. Solidity-Ethereum/ 

contracts/ smart contract source codes 
1 README.md implementation specific instructions 

latex/ 

bp-xsmehyOO.pdf 

README.md 

Directory application/ contains three subfolders for the three implementations - in Move 
on Aptos, in Rust on Solana, and in Solidity on Ethereum. Each subfolder for a specific 
platform contains platform-specific source codes and README. md containing all instructions 
regarding usage and a brief explanation of the implementation. 

Directory latex/ contains LMgX source files and images used in the thesis. 

File bp-xsmehyOO.pdf is a P D F file containing the final version of the thesis text. 
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