
Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Information Engineering

mi
M a s t e r ' s T h e s i s

Building an NLP model for classifying short-tail conversational
student query data

Kural Arasu Venkatesh

© 2023 C Z U Prague

l

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE
Faculty of Economics and Management

DIPLOMA THESIS ASSIGNMENT
Kural Arasu Venkatesh, B.E.

Informatics

Thesis title

Building NLP model for classifying short-tail conversational student's query data

Objectives of thesis
The main objective is to build and train Natural Language Processing (NLP) model to classify short-tail
conversational dataset into intents (classes). Model is to be used as a part of virtual assistant (chatbot)
solution.

The partial goals of this thesis are:
- to characterize the fundamentals of Deep learning and NLP,
- to create a dataset out of student's query.
- to evaluate and optimize the efficiency of the model.
- to compare the NLP model with existing models on the same dataset and provide with objective
comparison.

Methodology

To achieve the objectives, there is the need to review literature for similar efforts to define a theoretical
framework in which theory of Artificial Intelligence, Natural Language Processing (NLP) and latest advance
ment in Deep learning with the scope of NLP. Special focus is put on Long-Short-Term-Memory (LSTM)
architecture that seems to be the best performing for similar tasks.

For creating a dataset, inputs and archives of queries should be collected from study department and one
another approach to conduct the survey with students regarding the queries they have on university and
faculty. Linguistic experts and psychologist will be consulted to validate the dataset and to understand the
true intent of the individual. Dataset will be classified, labelled and split into training, test and validation sets
in order to train the NLP model. The dataset is further pre-processed and featured engineered to convert
all non-numerical to numerical. The architecture of neural network is designed based on the theoretical
research.

Results are used to compare with existing NLP model. Research will be performed to improve the efficiency
of the model using several optimization techniques to implement the model into real time system.

Official document * Czech University of Life Sciences Prague * Kamýcká 129,165 00 Praha - Suchdol

The proposed extent of the thesis
60 - 80 pages

Keywords
Artificial Intelligence, Natural Language Processing, Chatbot, Python, Long-Short-Term-Memory Architec-
ture

Recommended information sources
Bird, S. (2016). Natural language processing with python. O'reilly Media
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional

transformers for language understanding.
Chollet Francois. (2021) Deep learning with python. Manning
Shaw, Z. (2017). Learn python the hard way: A very simple introduction to the terrifyingly beautiful world

of computers and code. Addison-Wesley.
Van Houdt, Greg & Mosquera, Carlos & Napoles, Gonzalo. (2020). A Review on the Long Short-Term

Memory Model. Artificial Intelligence Review.

Expected date of thesis defence
2022/23 S S - F E M

The Diploma Thesis Supervisor
doc. Ing. Jan Tyrychtr, Ph.D.

Supervising department
Department of Information Engineering

Advisor of thesis
Ing. Martin Čejka

Electronic approval: 4.11. 2022 Electronic approval: 28.11. 2022

Ing. Martin Pelikán, Ph.D. doc. Ing. Tomáš Šubrt, Ph.D.

Head of department Dean

Prague on 18. 03. 2023

Official document * Czech University of Life Sciences Prague * Kamýcká 129,165 00 Praha - Suchdcl

Declaration

I declare that I have worked on my master's thesis titled "Building an N L P model for

classifying short-tail conversational student query data" by myself and I have used only the

sources mentioned at the end of the thesis. As the author of the master's thesis, I declare that

the thesis does not break any copyrights.

In Prague on 31/03/2023

Acknowledgments

I would like to thank doc. Ing. Jan Tyrychtr for his guidance and supervision, Ing. Martin

Cejka for his extended support, friends and family for their support, and a big shoutout to

myself for staying perseverant throughout the process of this thesis.

Building an NLP model for classifying short-tail conversational

student query data

Abstract

The objective of this thesis is to construct a Natural Language Processing (NLP) model capable

of effectively categorizing students' queries based on their respective intents, thereby enabling

their efficient and accurate routing to the appropriate department. To accomplish this, an L S T M

model was selected owing to its well-established capacity for handling textual data. Prior to

feeding the data into the neural network, pre-processing was carried out to convert the inputs

into numerical values that could be processed by the neurons. The training and evaluation of

the model were performed using two distinct datasets, with Accuracy being the primary

performance metric. Additionally, a comparative analysis was conducted by comparing the

outcomes of the L S T M model with those of a pre-existing model in the market, I B M Watson.

The results demonstrated that the L S T M model outperformed I B M Watson in accurately

classifying students' queries into their respective intents. The proposed classification model has

considerable potential for use in university chatbots, as it could substantially aid prospective

students and academic institutions in streamlining query organization and improving overall

operational efficiency.

Keywords: Artificial Intelligence, Natural Language Processing, Chatbot, Python, Long-Short-

Term-Memory Architecture

Vytvoření modelu NLP pro klasifikaci dat konverzačních

dotazů studentů s krátkým koncem

Abstrakt

Cílem této diplomové práce je vytvořit model zpracování přirozeného jazyka (Natural

Language Processing - N L P) , který bude schopen efektivně kategorizovat dotazy studentů na

základě jejich konkrétních záměrů a umožní tak jejich rychlé a přesné směrování na příslušné

oddělení. K dosažení tohoto cíle byla vybrána architektura L S T M , jejíž vhodnost pro

zpracování textových dat je dlouhodobě ověřena. Před vstupem dat do neuronové sítě bylo

provedeno předzpracování zajišťující možný a vhodný převod vstupních dat do vektorů

vstupujících do navržené neuronové sítě. Trénink a evaluace modelu byly provedeny na dvou

odlišných datasetech, přičemž primární výkonnostní metrikou byla přesnost. Kromě toho byla

provedena komparativní analýza s komerčním modelem I B M Watson. Výsledky ukázaly, že

model L S T M je přesnější v klasifikaci dotazů studentů do konkrétních záměrů v případě

trénování přímo pro tento případ použití. Navržený klasifikační model má velký potenciál pro

využití v dialozích virtuálních asistentů univerzit, protože může výrazně pomoci budoucím

studentům a akademickým institucím při organizaci dotazů a zlepšit celkovou efektivitu

provozu.

Klíčová slova: Umělá inteligence, Zpracování přirozeného jazyka, Chatbot, Python,

Architektura Long-Short-Term-Memory

Table of Contents

1. I N T R O D U C T I O N 1

2. O B J E C T I V E S A N D M E T H O D O L O G Y 2

2.1 OBJECTIVE 2

2.2 METHODOLOGY 2

3. L I T E R A T U R E R E V I E W 4

3.1 INTRODUCTION 4

3.2 ARTIFICIAL INTELLIGENCE, MACHINE LEARNING, AND DEEP LEARNING 6

3.2.1 A rtificial intelligence 6

3.2.2 Acting humanly: The Turing test approach 7

3.2.4 Machine learning methods 8

3.2.5 Deep learning 9

3.3 T E X T CLASSIFICATION METHODS 10

3.3.1 Text representation 11

3.3.2 N-Gram H

3.3.3 Bag of Words (BoW) 12

3.4 WORD EMBEDDING 13

3.4.1 Word2Vec 13

3.4.2 Continuous Bag-of-Words Model 14

3.4.3 Continuous Skip-Gram Model 15

3.4.4 Traditional method 15

3.4.5 Probabilistic model 15

3.4.6 KNN-based Methods 16

3.5 DEEP LEARNING METHOD IV

3.5.1 ReNN-based Methods 17

3.5.2 MLP-based Methods 18

3.5.3 RNN-based Methods 18

3.5.4 CNN-based Methods 19

3.5.5 Attention-based Methods 20

3.5.6 Transformer-based Methods 21

3.6 RECURRENT NEURAL NETWORKS AND THEIR TYPES 23

3.6.1 Fully Recurrent Neural Network 23

3.6.2 Recursive Neural network 23

3.6.3 Long short-term memory (LSTM) 24

3.6.4 Long short-term memory (LSTM) architecture 24

3.7 EVALUATION METRICS 26

3.7.1 Confusion Matrix 27

3.7.2 Precision & Recall 27

3.7.3 Fl-Score 29

4. P R A C T I C A L P A R T 30

4.1 INTRODUCTION 30

4.2 DATASET 30

4.3 ENVIRONMENT 31

4.4 CODING 32

4.4.1 Data Preprocessing 36

4.5 M O D E L BUILDING 44

4.5.1 Building LSTM Network 44

4.5.2 Compiling the LSTM model 47

4.5.3 Fitting the LSTM model 48

4.5.4 Evaluation of the LSTM model 50

4.5.5 Plotting the LSTM model 57

4.6 COMPARATIVE EVALUATION OF THE ACCURACY BETWEEN I B M WATSON AND L S T M ... 52

4.6.1 Evaluation of intent classification with IBM Watson 58

5. R E S U L T 59

6. C O N C L U S I O N 60

6.1 FUTURE SCOPE 60

7. R E F E R E N C E S 62

8. L I S T O F F I G U R E S 69

8.1 LIST OF FIGURES 69

8.2 APPENDIX 70

1. Introduction

Each year, a copious number of individuals enroll in universities to follow their interests

and find their strengths. In the present competitive environment, the admissions process,

clearing entrance tests, and preparing for interviews might be nerve-racking. Students anticipate

easier registration, study administrative procedures, and a smooth transition into the first few

experiences required to begin their study program. International students find it challenging to

deal with the early hurdles of acclimating to a new place and fitting into the structure of

academic programs.

Throughout these procedures, several questions emerge. Some of the most perplexing

components would be dealing with errors and questions, answering these questions, and

contacting assistance for specific questions. Providing simple navigation to discover answers

to these questions and correcting errors would be a wonderful experience that a student would

value. If these fundamental issues are addressed, students wi l l have a better experience.

This thesis focuses on developing a method for categorizing questions into their various

kinds and departments. Further efforts and improvements in the future w i l l guarantee that

inquiries are sent to the appropriate department and that students have the relevant contact

information. This model w i l l aid in the effective resolution of such procedures.

To categorize short-tail conversational query datasets into intents, this approach is to

experiment and evaluate the performance of Long Short-Term Memory (L S T M) and further

compare it with an existing commercial pre-built model (I B M Watson). L S T M is a form of

recurrent neural network (RNN) that excels at processing sequential input. It can accept input

sequences of varying lengths. This is significant because text inputs can be of varying lengths,

whereas standard machine learning models frequently demand fixed-length inputs. L S T M may

also learn to extract useful characteristics from the input sequence rather than depending on

hand-crafted features. It has been chosen since it suits the requirement of the proposed thesis.

1

2. Objectives and Methodology

2.1 Objective

The primary aim of this study is to develop and train a Natural Language Processing (NLP)

model capable of categorizing short-tail conversational datasets into distinct intents (classes),

to be incorporated into a virtual assistant (chatbot) solution.

In addition to this overarching objective, several subsidiary goals have been identified,

including the exploration of fundamental principles underlying both Deep Learning and N L P ,

the creation of a specialized dataset derived from student queries, and the construction of an

L S T M model for the purpose of evaluating its efficiency relative to existing models, with the

aim of producing an objective comparison.

2.2 Methodology

In order to accomplish the objectives, a comprehensive review of relevant literature is

required, focusing on prior studies concerning the intersection of Artificial Intelligence, Natural

Language Processing (NLP) , and the latest advances in Deep Learning, with a particular

emphasis on the Long Short-Term Memory (L S T M) architecture. This review wi l l facilitate the

establishment of a theoretical framework for the study, which w i l l provide a comprehensive

understanding of the subject matter and its practical implications.

The input queries wi l l be created through surveys, the queries w i l l be categorized to their

intents. The queries are pre-processed into tokens, and the associated categories are then one-

hot encoded, rendering them amenable to utilization within the context of a neural network

model. These data are then shuffled and partitioned into separate training and testing sets, with

accuracy serving as the performance metric. The model is constructed employing the Keras

library, which incorporates requisite functionality for the development of neural network layers.

A long short-term memory (L S T M) neural network is incorporated into the model architecture,

with dropout layers added to mitigate the issue of overfitting. Following sequential layering of

the neural network, the model is trained with the training dataset, utilizing hyperparameters and

callbacks. The model is subsequently evaluated using the test dataset, and the results are then

2

compared with those obtained from existing commercial pre-built models. The research wi l l

also seek to improve model efficiency via the implementation of a range of optimization

techniques, with the ultimate goal of integrating the model into a real-time system.

3

3. Literature Review

3.1 Introduction

Text classification is one of the most important tasks of machine learning and has been

widely used in several areas of Natural Language Processing (NLP) , Especially with recent

breakthroughs in Natural Language Processing (NLP) and text mining, many researchers are

now interested in developing applications that leverage text classification methods, Its objective

is to design appropriately algorithms to allow computers to extract features and classify texts,

classify large amounts of text data manually is time-consuming and challenging to process,

Besides, the accuracy of manual text classification can be easily influenced by human

factors, such as fatigue and expertise. Using machine learning methods to automate the text

classification procedure is desirable to yield more reliable and less subjective results.

Moreover, this can also help enhance information retrieval efficiency and alleviate the

problem of information overload by locating the required information [1].

Preprocess r
BoW.TF-IDF

Traditional Method

KB KNN S\ V. :>l R:

Deep Learning Method

«3 Evaluation
Accuracy/Fl/Micro-Fl 0 Label

SentimentTop lc

Models
ReNN/MLP/RNN/CNN/Attention/Transfomicr/GCN

Figure 1. Text classification flowchart

Fig. 1 demonstrates a flowchart of the procedures involved in the text classification, in

traditional and deep analysis. Text data is different from numerical, image, or signal data. It

requires N L P techniques to be processed carefully.

The first important step is to preprocess text data for the model. Traditional models

usually need to obtain good sample features by artificial methods and then classify them with

classic machine learning algorithms.

4

Therefore, the effectiveness of the method is largely restricted by feature extraction.

However, different from traditional models, deep learning integrates feature engineering into

the model fitting process by learning a set of nonlinear transformations that serve to map

features directly to outputs.

From the 1960s until the 2010s, traditional text classification models dominated.

Traditional methods mean statistics-based models, like Naive Bayes (NB) [2], K-Nearest

Neighbor (K N N) [3], and Support Vector Machine (S V M) [4].

Compared with the earlier rule-based methods, this method has obvious advantages in

accuracy and stability. However, these approaches still need to do feature engineering, which

is time-consuming and costly. Besides, they usually disregard the natural sequential structure

or contextual information in textual data, making it challenging to learn the semantic

information of the words. Since the 2010s, text classification has gradually changed from

traditional models to deep learning models. [3]

Compared with the methods based on traditional, deep learning methods avoid designing

rules and features by humans and automatically provide semantically meaningful

representations for text mining. Therefore, most of the text classification research works are

based on Deep Neural Networks (DNNs) , which are data-driven approaches with high

computational complexity. Few works focus on traditional models to settle the limitations of

computation and data. [5]

5

3.2 Artificial intelligence, machine learning, and deep learning

Figure 2. Artificial intelligence, machine learning, and deep learning. [6]

First, we need to define clearly what we're talking about when we mention A I . What are

artificial intelligence, machine learning, and deep learning?

3.2.1 Artificial intelligence

Artificial intelligence was born in the 1950s when a handful of pioneers from the

nascent field of computer science started asking whether computers could be made to "think"—

a question whose ramifications we're still exploring today.

A concise definition of the field would be as follows: the effort to automate intellectual

tasks normally performed by humans. As such, A I is a general field that encompasses machine

learning and deep learning, but that also includes many more approaches that don't involve any

learning. [6]

Early chess programs, for instance, only involved hardcoded rules crafted by

programmers and didn't qualify as machine learning. For a long time, many experts believed

that human-level artificial intelligence could be achieved by having programmers handcraft a

large set of explicit rules for manipulating knowledge.

6

This approach is known as symbolic A I , and it was the dominant paradigm in A I from

the 1950s to the late 1980s. It reached its peak popularity during the expert systems boom of

the 1980s.

Although symbolic A I proved suitable to solve well-defined, logical problems, such as

playing chess, it turned out to be intractable to figure out explicit rules for solving more

complex, fuzzy problems, such as image classification, speech recognition, and language

translation. [8]

3.2.2 Acting humanly: The Turing test approach.

"A computer would deserve to be called intelligent if it could deceive a human into

believing that it was human. " Alan Turing

The Turing test measures a machine's capacity to behave intelligently in a way that

cannot be distinguished from human behavior. To determine i f robots are capable of thinking,

British mathematician and computer scientist Alan Turing created the test in 1950. [48]

A human assessor converses in normal language with both a person and a machine as

part of the Turing Test. It is unknown to the assessor which side is a machine and which is a

person. The Turing Test is claimed to have been passed by a machine i f the assessor can

consistently tell the difference between the computer's replies and those of a person. [48]

The Turing Test is frequently used as a yardstick to assess the sophistication of A I

systems, especially those intended for natural language processing. Nevertheless, some

detractors contend that passing the Turing test does not always imply genuine intelligence

because a machine may imitate human behavior without truly comprehending the underlying

ideas. The Turing Test is still a well-known and significant idea in the field of A I .

7

3.2.3 Machine learning

Machine learning is a branch of artificial intelligence (AI) and computer science that

focuses on the use of data and algorithms to imitate the way that humans learn, gradually

improving its accuracy. [7]

Over the last couple of decades, technological advances in storage and processing power

have enabled some innovative products based on machine learning, such as Netflix's

recommendation engine and self-driving cars.

Machine learning is an important component of the growing field of data science. Using

statistical methods, algorithms are trained to make classifications or predictions and to uncover

key insights in data mining projects. These insights subsequently drive decision-making within

applications and businesses, ideally impacting key growth metrics. [8]

A s big data continues to expand and grow, the market demand for data scientists w i l l

increase. They w i l l be required to help identify the most relevant business questions and the

data to answer them.

3.2.4 Machine learning methods

a. Supervised

Supervised learning [8] typically begins with an established set of data and a certain

understanding of how that data is classified.

Supervised learning is intended to find patterns in data that can be applied to an analytics

process. This data has labeled features that define the meaning of data.

For example, there could be millions of images of animals and include an explanation of

what each animal is and then you can create a machine-learning application that distinguishes

one animal from another. B y labeling this data about types of animals, you may have hundreds

of categories of different species. Because the attributes and the meaning of the data have been

identified

8

b. Unsupervised

Unsupervised learning is best suited when the problem requires a massive amount of data

that is labeled. For example, social media applications, such as Twitter, Instagram, Snapchat,

and so on all have large amounts of unlabeled data. [8]

Understanding the meaning behind this data requires algorithms that can begin to

understand the meaning based on being able to classify the data based on the patterns or clusters

it finds. Therefore, supervised learning conducts an iterative process of analyzing data without

human intervention.

Unsupervised learning is used with email spam-detecting technology. There are far too

many variables in legitimate and spam emails for an analyst to flag unsolicited bulk emails.

Instead, machine learning classifiers based on clustering and association are applied to identify

unwanted emails.

c. Semi-Supervised

Semi-supervised combines a small amount of labeled data with a large amount of unlabeled

data during training. Semi-supervised learning falls between unsupervised learning (with no

labeled training data) and supervised learning (with only labeled training data).

Semi-supervised learning aims to alleviate the issue of having limited amounts of labeled

data available for training and is motivated by problem settings where unlabeled data is

abundant and obtaining labeled data is expensive. [9]

3.2.5 Deep learning

Deep learning is a specific method of machine learning that incorporates neural networks

in successive layers to learn from data in an iterative manner. Deep learning is especially useful

when you're trying to learn patterns from unstructured data. [10]

Deep learning has lately been shown to be a very powerful tool for a wide range of

problems, Deep learning refers to complex neural networks designed to emulate how the human

9

brain works so computers can be trained to deal with abstractions and problems that are poorly

defined. The average five-year-old child can easily recognize the difference between his

teacher's face and the face of the crossing guard. In contrast, the computer must do a lot of

work to figure out who is who. [6]

A neural network consists of three or more layers: an input layer, one or many hidden layers,

and an output layer. Data is ingested through the input layer. Then the data is modified in the

hidden layer and the output layers based on the weights applied to these nodes. The typical

neural network may consist of thousands or even millions of simple processing nodes that are

densely interconnected. The term deep learning is used when there are multiple hidden layers

within a neural network. [10]

Using an iterative approach, a neural network continuously adjusts and makes inferences

until a specific stopping point is reached, networks and deep learning are often used in image

recognition, speech, and computer vision applications.[46]

3.3 Text Classification Methods

Text classification is referred to as extracting features from raw text data and predicting the

categories of text data based on such features. Numerous models have been proposed in the

past few decades for text classification.

For traditional models, N B [2] is the first model used for the text classification task.

Whereafter, generic classification models are proposed, such as K N N [3], S V M [4], and

Random Forest (RF) [11], which are called classifiers, and widely used for text classification.

Recently, the extreme Gradient Boosting (XGBoost) [12] and the Light Gradient Boosting

Machine (L igh tGBM) [13] have arguably the potential to provide excellent performance. For

deep learning models, T e x t C N N [14] has the highest number of references in these models,

wherein a Convolutional Neural Network (CNN) [15] model has been introduced to solve the

text classification problem for the first time.

While not specifically designed for handling text classification tasks, the Bidirectional

Encoder Representation from Transformers (BERT) [16] has been widely employed when

10

designing text classification models, considering its effectiveness on numerous text

classification datasets.

3.3.1 Text representation

Many researchers have worked on this text feature extraction technique to solve the losing

syntactic and semantic relationships between words. Many researchers addressed novel

techniques for solving this problem, but many of these techniques still have limitations.

A model was introduced in which the usefulness of including syntactic and semantic knowledge

in the text representation for the selection of sentences comes from technical genomic texts.

The other solution for the syntactic problem is using the n-gram technique for feature extraction.

3.3.2 N-Gram

The n-gram technique is a set of n-words that occurs " in that order" in a text set. This is not

a representation of a text, but it could be used as a feature to represent a text. B O W is a

representation of a text using its words (1-gram) which loses their order (syntactic). [18]

This model is very easy to obtain, and the text can be represented through a vector, generally

of the manageable size of the text. On the other hand, an n-gram is a feature of B O W for a

representation of a text using 1-gram. It is very common to use 2-gram and 3-gram. In this way,

the text feature extracted could detect more information in comparison to 1 -gram. [27]

A n Example of 2-Gram:

After sleeping for four hours, he decided to sleep for another four.

In this case, the tokens are as follows:

{"After sleeping", "sleeping for", "for four", "four hours", "four he" "he decided", "decided

to", "to sleep", "sleep for", "for another", "another four"}.

A n Example of 3-Gram:

11

After sleeping for four hours, he decided to sleep for another four.

In this case, the tokens are as follows:

{"After sleeping for", "sleeping for four", "four hours he", "hours he decided", "he

decided to", "to sleep for", "sleep for another", "for another four"}.

3.3.3 Bag of Words (BoW)

The bag-of-words model (BoW model) is a reduced and simplified representation of a text

document from selected parts of the text, based on specific criteria, such as word frequency.

The B o W technique is used in several domains such as computer vision, N L P , Bayesian

spam filters, as well as document classification and information retrieval by Machine Learning.

In a B o W , a body of text, such as a document or a sentence, is thought of as a bag of words.

Lists of words are created in the B o W process. [17]

These words in a matrix are not sentences that structure sentences and grammar, and the

semantic relationship between these words is ignored in their collection and construction. The

words are often representative of the content of a sentence. [46]

While grammar and order of appearance are ignored, multiplicity is counted and may be

used later to determine the focus points of the documents.

Here is an example of B o W :

Document:

"As the home to UVA's recognized undergraduate and graduate degree programs in systems

engineering. In the UVA Department of Systems and Information Engineering, our students are

exposed to a wide range of range. "

Bag-of-Words (BoW):

12

{"As", "the", "home", "to", " U V A ' s " , "recognized", "undergraduate", "and", "graduate",

"degree", "program", " in" , "systems", "engineering", " in" , "Department", "Information",

"students", "our", "exposed", "wide", "range"}

Bag-of-Feature (BoF):

Feature = {1,1,1,3,2,1,2,1,2,3,1,1,1,2,1,1,1,1,1,1}

3.4 Word Embedding

Word embedding is a feature learning technique in which each word or phrase from the

vocabulary is mapped to an N-dimension vector of real numbers. Various word embedding

methods have been proposed to translate unigrams into understandable input for machine

learning algorithms. This work focuses on Word2Vec, GloVe , and FastText, three of the most

common methods that have been successfully used for deep learning techniques.

Recently, a Novel technique of word representation was introduced where word vectors

depend on the context of the word called "Contextualized Word Representations" or "Deep

Contextualized Word Representations".

3.4.1 Word2Vec

The Word2Vec approach uses shallow neural networks with two hidden layers, continuous

bag-of-words (C B O W) , and the Skip-gram model to create a high-dimension vector for each

word. The Skip-gram model dives into a corpus of words w and context c, the goal is to

maximize the probability:

arg max
w eT c ec(w)

where T refers to Text, and 9 is the parameter of p(c | w; 0).

13

Figure 3 shows a simple C B O W model which tries to find the word based on previous

words, while Skip-gram tries to find words that might come in the vicinity of each word. The

weights between the input layer and output layer represent v x N as a matrix of w.

This method provides a very powerful tool for discovering relationships in the text

corpus as well as similarities between words. For example, this embedding would consider the

two words such as "big" and "bigger" close to each other in the vector space it assigns them.

Input Projection Output Input Projection Output

W(t-2)

W(t-l)

W(t- 1)

W (f 2)

W(t) W(t)

W(t-2)

W(t-l)

W(t- 1)

W(t-2)

CBOW Skip-gram

Figure 3. The structure of word2vec, including CBOW and Skip-gram. [17]

3.4.2 Continuous Bag-of-Words Model

The continuous bag-of-words model is represented by multiple words for a given target of

words. For example, the word "airplane" and "military" as context words for "air force" as the

target word. This consists of replicating the input to hidden layer connections P times which is

the number of context words [20]. Thus, the bag-of-words model is mostly used to represent an

unordered collection of words as a vector. The first thing to do is create a vocabulary, which

means all the unique words in the corpus. The output of the shallow neural network wi l l be that

the task is "predicting the word given its context". The number of words used depends on the

setting for the window size (the common size is 4-5 words).

14

3.4.3 Continuous Skip-Gram Model

Another model architecture that is very similar to C B O W [61] is the continuous Skip-gram

model, however, this model, instead of predicting the current word based on the context, tries

to maximize the classification of a word based on another word in the same sentence. The

continuous bag-of-words model and continuous Skip-gram model are used to keep syntactic

and semantic information of sentences for machine learning algorithms.

A s mentioned previously there are two methods to build a text classification system let's

discuss them.

3.4.4 Traditional method

Traditional models accelerate text classification with improved accuracy and make the

application scope of traditional expand, first is to preprocess the raw input text for training

traditional models, which generally consist of word segmentation, data cleaning, and statistics.

The first step towards training a Traditional N L P classifier is feature extraction using

methods such as Bag-Of-Words (BOW) [17], N-gram [18], Term Frequency-Inverse Document

Frequency (TF-IDF) [19], word2vec [20], and Global Vectors for word representation (GloVe)

[21].

3.4.5 Probabilistic model

Naive Bayes classifiers are linear classifiers that are known for being simple yet very

efficient, one of the members of that family is Multinomial Naive Bayes (M N B) with a huge

advantage, that you can get really good results even when your dataset isn't very large (~ a

couple of thousand tagged samples) and computational resources are scarce.

The probabilistic model of naive Bayes classifiers is based on Bayes' theorem, and the

adjective naive comes from the assumption that the features in a dataset are mutually

independent. In practice, the independence assumption is often violated, but naive Bayes

15

classifiers still tend to perform very well under this unrealistic assumption [1]. Especially for

small sample sizes, naive Bayes classifiers can outperform the more powerful alternatives.

To understand how naive Bayes classifiers work, we must briefly recapitulate the concept

of Bayes' rule. The probability model that was formulated by Thomas Bayes (1701-1761) is

quite simple yet powerful; it can be written down in simple words as follows:

conditional probabili ty • pr ior probabili ty
posterior probability = : (1)

evidence

Bayes' theorem forms the core of the whole concept of naive Bayes classification. The

posterior probability, in the context of a classification problem, can be interpreted as:" What is

the probability that a particular object belongs to class " i " given its observed feature values?"

A more concrete example would be:" What is the probability that a person has diabetes given

a certain

3.4.6 KNN-based Methods

K N N algorithm calculates that most of the k nearest neighbors in a feature space belong to a

certain category, and the sample also belongs to this category. The algorithm involves several

main factors: distance measurement, k-value selection, and so on [6].

First, an experiment of K value selection is performed, and the optimal k value is

selected from the seven news text data by a simple cross-validation method. The test set is

validated by using the model obtained from the training set to interfere with the sample selection

of the training set and the test set.

The results show that the effect is the best when K=4. Secondly, distance measurements

are used to measure the distance between individuals in a space. Euclidean distance is the most

common distance metric used to measure the absolute distance between points in a multi

dimensional space.

16

Dist(x,y) = > (x(i) - y(i))2

Minkowski distance is a common measure of the distance between numerical points,

but it is not a distance, but a set of definitions of distance: the Minkowski distance between two

n-dimensional variables A = (x l l , x l2 , . . . , x ln) and B= (x21, x22,..., x2n) is defined as

3.5 Deep Learning method

The D N N s consist of artificial neural networks that simulate the human brain to

automatically learn high-level features from data, getting better results than traditional models

in speech recognition, image processing, and text understanding. Input datasets should be

analyzed to classify the data, such as a single-label, multi-label, unsupervised, or unbalanced

dataset. According to the trait of the dataset, the input word vectors are sent into the D N N for

training until the termination condition is reached.

The performance of the training model is verified by the downstream task, such as sentiment

classification, question answering, and event prediction.

3.5.1 ReNN-based Methods

The emergence of the semi-supervised recursive autoencoder (Semi-Supervised R A E) [23]

model has raised the recursive neural network (ReNN) to a level, and they combined the

recurrent neural network with Autoencoder to form an unsupervised sentence conversion

model. Sentences of indeterminate length can be converted into sentence vectors. Socher et al.

applied it to the prediction of sentiment label distribution and outperformed the state-of-the-art

methods at the time on commonly used datasets.

D 1 2 = \X1-X2\

17

However, the R A E results are relatively general in terms of accuracy, and the single-word

vector model is still insufficient for semantic modelling, especially since the true semantics of

deeper phrases cannot be learned well . To improve the inability to capture long phrases and

enable the model to understand language more deeply, Socher et al. proposed a novel recursive

neural network model M V - R N N [24] for semantic compositionality.

The main changes are assigning a vector and a matrix to each word, and learning an input-

specific, non-linear function for computing vector and matrix representations for sentences of

arbitrary syntactic type.

This method can well reflect the influence between adjacent nodes, but its disadvantage is

that the parameter size depends on the size of the vocabulary and the computational efficiency

is low.

3.5.2 MLP-based Methods

The researcher points out that the current processing of natural language processing tasks,

such as sentiment analysis, intelligent question answering, and other tasks, are all based on the

vectorized representation of text, that is, how to construct an appropriate composition function.

The methods can be mainly divided into two categories: unordered and syntactic, unordered

training is fast, but because it is not sensitive to word order, the accuracy is not high; the

syntactic method, although the model performance w i l l be better, but the improved performance

of the model does not match its cost. Therefore, the author tried to find a combination point,

and D A N [25] was born.

The first part of the model was summed and averaged, and a word dropout was also

proposed, which is to randomly drop some tokens in the input to increase the robustness of the

model. The second part adds the semantic information of the multi-layer nonlinear layers to

extract the summed and averaged vectors. Each deep layer of the model is more abstract.

3.5.3 RNN-based Methods

The most fundamental problem with R N N is the short-term memory problem, such as using

past chapters in a novel to infer the occurrence of the current chapter, which R N N cannot do.

18

To solve this problem, L S T M [5] and G R U were born successively. Specifically, R N N cannot

capture long-range dependence due to the simple repetition of single neurons, In the

backpropagation process of R N N , the weights are adjusted by gradients, calculated by

continuous multiplications of derivatives. If the derivatives are extremely small, it may cause a

gradient vanishing problem by continuous multiplications.

Long Short-Term Memory (L S T M) [26], the improvement of R N N , effectively alleviates

the gradient vanishing problem. It is composed of a cell to remember values on arbitrary time

intervals and three gate structures to control information flow. The gate structures include input

gates, forget gates and output gates. The L S T M classification method can better capture the

connection among context feature words and use the forgotten gate structure to filter useless

information, which is conducive to improving the total capturing ability of the classifier.

T ree -LSTM extends the sequence of L S T M models to the tree structure. The whole subtree

with little influence on the result can be forgotten through the L S T M forgetting gate mechanism

for the T r e e - L S T M model. Natural Language Inference (NLI) [27] predicts whether one text's

meaning can be deduced from another by measuring the semantic similarity between each pair

of sentences.

To consider other granular matchings and matchings in the reverse direction, Wang et al.

[28] propose a model for the N L I task named Bilateral Multi-Perspective Matching (B i M P M) .

It encodes input sentences by the B i L S T M encoder. Then, the encoded sentences are matched

in two directions.

The results are aggregated in a fixed-length matching vector by another B i L S T M layer.

Finally, the result is evaluated by a fully connected layer.

3.5.4 CNN-based Methods

Convolutional Neural Networks (CNNs) [29] are proposed for image classification with

convolving filters that can extract features of pictures. Unlike R N N , C N N can simultaneously

apply convolutions defined by different kernels to multiple chunks of a sequence.

19

Therefore, C N N s are used for many N L P tasks, including text classification. For text

classification, the text requires being represented as a vector like an image representation, and

text features can be filtered from multiple angles, Firstly, the word vectors of the input text are

spliced into a matrix.

The matrix is then fed into the convolutional layer, which contains several filters with

different dimensions. Finally, the result of the convolutional layer goes through the pooling

layer and concatenates the pooling result to obtain the final vector representation of the text.

The category is predicted by the final vector. To try using C N N for the text classification task,

an unbiased model of convolutional neural networks was introduced by K i m , called T e x t C N N

[30]. It can better determine discriminative phrases in the max-pooling layer with one layer of

convolution and learn hyperparameters except for word vectors by keeping word vectors static.

Training only on labeled data is not enough for data-driven deep models. Therefore, some

researchers consider utilizing unlabeled data. Johnson et al. [31] propose a C N N model based

on two-view semi-supervised learning for text classification, which first uses unlabeled data to

train the embedding of text regions and then labeled data.

D N N s usually have better performance, but it increases the computational complexity.

Motivated by this, a Deep Pyramid Convolutional Neural Network (D P C N N) [32] is proposed,

with a little more computational accuracy, increasing by raising the network depth. The

D P C N N is more specific than Residual Network (ResNet) [33], as all the shortcuts are exactly

simple identity mapping without any complication for dimension matching

3.5.5 Attention-based Methods

The text classification algorithm mentioned above is basically sentence-level classification,

using long text and chapter-level, although it is also possible to achieve its classification, but

the speed and accuracy w i l l decrease. So, some researchers proposed a hierarchical attention

[34] classification framework, that is, the model of Hierarchical Attention.

The researchers said that when classifying documents/longer texts, it is not enough to only

pay attention to the word granularity, it is necessary to learn attention to each sentence (short

20

sentence). Different sentences also need to be assigned different weights, and the words in each

sentence are also assigned different weights.

The specific process is to first encode each sentence with B iGRU+At t to obtain the sentence

vector, and then use B i G R U + A t t to obtain the doc-level representation of the sentence vector,

and then classify.

The researchers used six datasets, the smallest dataset also contains 33w articles, and the

largest dataset has ten times as many as the smallest dataset. The researchers used three

combinations, H N A V E and H N - M A X change the method of generating feature vectors of each

layer from the weighted summation of Attention to directly doing Average Pooling and M a x

Pooling, but the effect of Attention is still better than the former two.

Word embedding is the most classical model of word representation in N L P . However,

word2vec is essentially a static model. The expression of each word in this model is fixed and

does not capture contextual information dynamically.

To solve this problem, E L M O dynamically acquires textual contextual information using

bidirectional L S T M . Essentially, E L M o [35] is a model based on a pre-trained language model

that dynamically characterizes Word embedding according to the current context. Researchers

call this a domain transfer. In this way, the word embedding of words in the current context can

be obtained by using the context information of our training data.

The researchers tested S Q u A D with a baseline model that is an improved version of the

bidirectional attention flow model. After adding E L M o to the baseline model, we get very good

data. But E L M o is essentially an R N N , which is weak in feature extraction and training time.

3.5.6 Transformer-based Methods

B E R T is a pre-training model proposed by Google A I Research in October 2018. B E R T is

two-way fine-tuning. Compared to feature-based pre-trained models, fine-tuning makes fewer

architectural changes to pre-trained models. [36]

21

The input of B E R T consists of token_embedding, segment_embedding, and

position_embedding. B E R T obtains generic text representations in the pretraining phase by

simultaneously training two pre-training tasks of masked language model and next sentence

prediction. Although B E R T has its own bidirectional function, B E R T consumes a lot of

hardware resources.

Reasoning about relationships between multiple text words is involved in many N L P tasks.

For example, in extractive question answering, the results are not satisfactory. So Mander et al.

made a series of improvements to B E R T and proposed SpanBERT [37].

They modified BERT ' s approach: Google B E R T extracted 10 different masks for each

sequence during data processing, and the reproduced B E R T used a different mask for each

epoch. A n d the setting of generating short sentences according to 10% is removed, and each

sample is guaranteed to be 512 in length unless it reaches the end of the file.

After that, three major improvements were made based on B E R T : instead of using a random

mask method, a certain continuous token was used to mask; a task of predicting the mask by

the boundary (Span Boundary Objective) was added; Through experiments, it is found that it is

better to abandon the next sentence prediction task and train directly with long text.

In N L P tasks, a good pre-trained model can improve the performance of the model. The

current S O T A model has millions or billions of parameters. If you want to expand the model

size, you wi l l encounter the limitations of this computer's memory, and the training speed wi l l

be limited. There are currently two solutions: model parallelization, and a good memory

management mechanism. But both methods have communication overhead.

Therefore, the paper designs an A lite B E R T (A L B E R T) , which uses fewer parameters than

B E R T . A L B E R T [38] overcomes the main obstacle to scaling pre-trained models by

introducing two parameter reduction techniques, factorized embedding parameterization and

Cross-layer parameter sharing.

A n d the researchers also introduced an Intersentence coherence loss for sentence coherence

modeling to solve the problem of inefficient next-sentence prediction loss in the original B E R T .

22

3.6 Recurrent Neural Networks and their types

The Recurrent Neural Network (RNN) is a network with loops, which allows information

to persist in the network. R N N has a feedback connection to the network itself, which allows

activations to flow back in a loop, learn sequences, and information to persist.

R N N s are extremely powerful in modeling sequential data, speech, or text and are applied

to nonsequential data to train in a non-sequential manner. R N N can be used for image, video

captioning, word prediction, word translation, image processing, speech recognition, speech

processing [39], natural language processing, music processing applications, etc.

There are many types of R N N let's check some of them.

3.6.1 Fully Recurrent Neural Network

Fully recurrent neural network (FRNN) developed in the 1980s, which can learn temporal

sequences, either in batch mode or online. F R N N consists of two layers, the input and output

layers of linear and non-linear units, resp. The units in the input layer are fully connected to

every unit of the output layer by adjustable weights. Each unit has a real-valued time-varying

activation function.

The output units have some knowledge of their prior activations, which feedback on the

activations to the input layer units. Learning in F R N N s is by mapping input sequences and

activations, to another set of output sequences. This continues to feedback to input sequences

and finding output sequences over multiple time steps, and over time discover abstract

representations.

3.6.2 Recursive Neural network

The network is created in a differentiable graph-like structure by recursively applying the

same set of weights to the network in topological order. Such networks are also trained by

automatic differentiation [40] in reverse mode. It corresponds to linear chain structure and is

used in natural language processing, processing distributed representation of the structure.

23

Variation of the recursive neural network is Recursive Neural Tensor Network which uses a

tensor-based composition function on every network node.

3.6.3 Long short-term memory (LSTM)

L S T M is a system that can learn a task by using deep learning and avoids the vanishing

gradient problem [41]. L S T M is normally improved by recurrent gates called "forget" gates and

to learn tasks it requires memory of events that happened in history. L S T M can be learned by

Connectionist Temporal Classification (CTC) which achieves both alignment and recognition

for weights.

a. Gated Recurrent Units

The gating mechanism in R N N was introduced by Kyunghyun Cho [42] (2014). This

mechanism lacks an output gate and has fewer parameters than L S T M . Its performance is like

that of L S T M on polyphonic music and speech signal modeling.

b. Bi-directional RNN

Bi-directional Recurrent Neural Network predicts each element of a finite sequence based

on its past/previous and future/next situation. It works in both directions for processing

sequences from left to right and right to left and concatenating their output. This technique is

useful when combined with L S T M [43].

3.6.4 Long short-term memory (LSTM) architecture

The L S T M contains special units called memory blocks in the recurrent hidden layer. The

memory blocks contain memory cells with self-connections storing the temporal state of the

network in addition to special multiplicative units called gates to control the flow of

information. Each memory block in the original architecture contained an input gate and an

output gate.

24

The input gate controls the flow of input activations into the memory cell. The output

gate controls the output flow of cell activations into the rest of the network. Later, the forget

gate was added to the memory block [44]. This addressed a weakness of L S T M models

preventing them from processing continuous input streams that are not segmented into

subsequences.

The forget gate scales the internal state of the cell before adding it as input to the cell

through the self-recurrent connection of the cell, therefore adaptively forgetting or resetting the

cell's memory. In addition, the modern L S T M architecture contains peephole connections from

its internal cells to the gates in the same cell to learn the precise timing of the outputs.

Cell slate

Hidden state

o
t
+

a
t
+

Xt Input

+
t

• X
t

tanh

t
+

h t Output

tanh

a
t
+

Figure 4. LSTM architecture. [26]

A simple L S T M network consists of the following components:

a. Forget Gate

Next cell slate

Next hidden stale

One of the main properties of the L S T M is to memorize and recognize the information

coming inside the network and to discard the information which is not required by the network

to learn the data and predictions. This gate is responsible for this feature of the L S T M .

It helps in deciding whether information can pass through the layers of the network.

There are two types of input it expects from the network one of them is the information from

the previous layers and another one is the information from the presentation layer.

25

b. Input Gate

The input gate helps in deciding the importance of the information by updating the cell

state, where the forget gate helps in the elimination of the information from the network input

gate decides the measure of the importance of the information and helps the forget function in

elimination of the not important information and other layers to learn the information which is

important for making predictions.

c. Cell state

The weight gained information goes through the cell state where this layer calculates

the cell state. In the cell state, the output of the forget gate and input gate gets multiplied by

each other. The information which has the possibility of dropping out gets multiplied by near-

zero values.

d. Output Gate

It is the last gate of the circuit that helps in deciding the next hidden state of the network in

which information goes through the sigmoid function. The updated cell from the cell state goes

to the tanh function then it gets multiplied by the sigmoid function of the output state. Which

helps the hidden state to carry the information.

3.7 Evaluation Metrics

There are many metrics that come in handy to test the ability of any multi-class classifier

and they turn out to be useful for:

o comparing the performance of two different models.

o analyzing the behavior of the same model by tuning different parameters.

Many metrics are based on the Confusion Matrix since it encloses all the relevant information

about the algorithm and classification rule performance [45].

26

3.7.1 Confusion Matrix

The confusion matrix is a cross table that records the number of occurrences between two

raters, the true/actual classification, and the predicted classification, as shown in Figure 5. For

consistency reasons throughout the paper, the columns stand for model prediction whereas the

rows display the true classification.

The classes are listed in the same order in the rows as in the columns, therefore the correctly

classified elements are located on the main diagonal from top left to bottom right and they

correspond to the number of times the two raters agree.

PREDICTED classification

Classes a b C d Total

6 0 1 2 9

3 9 1 1 14

c 1 0 10 2 13

1 2 1 12 16

Total 11 11 13 17 52

Figure 5. Example of a confusion matrix. [45]

In the following paragraphs, we review two-class classification concepts, which wi l l come

in handy later to understand multi-class concepts.

3.7.2 Precision & Recall

These metrics w i l l act as building blocks for Balanced Accuracy and F l -Score formulas.

Starting from a two-class confusion matrix:

27

PREDICTED

Classes Positive £1) Negative (0) Total

AC
TU

AL

Positive (1) TP = 20 FN = 5 25
AC

TU
AL

Negative (0) FP= 10 TN = 15 -
Total 50

Figure 6. Two-class Confusion Matrix. [45]

The Precision is the fraction of True Positive elements divided by the total number of

positively predicted units (column sum of the predicted positives). True positives are the

elements that have been labeled as positive by the model and are actually positive, while False

Positives are the elements that have been labeled as positive by the model but are actually

negative.

TP
precision

TP+FP

Precision expresses the proportion of units our model says are Positive and, they are

Positive. In other words, Precision tells us how much we can trust the model when it predicts

an individual as Positive. The Recall is the fraction of True Positive elements divided by the

total number of positively classified units (row sum of the actual positives). False negatives are

the elements that have been labeled as negative by the model, but are positive.

Recall =
TP

TP + FN

The Recall measures the model's predictive accuracy for the positive class: intuitively, it

measures the ability of the model to find all the Positive units in the dataset. Hereafter, we

present different metrics for the multi-class setting, outlining the pros and cons, with the aim to

provide guidance to make the best choice.

28

3.7.3 Fl-Score

Also , Fl-Score assesses the classification model's performance starting from the

confusion matrix, it aggregates Precision and Recall measures under the concept of harmonic

mean.

/ 2 \ precision. recall
Fl-Score = — — r = 2 . (- — 77)

\preciswn 1 + recall V precision + recall

The formula of the Fl-score can be interpreted as a weighted average between Precision

and Recall, where Fl-score reaches its best value at 1 and worst score at 0. The relative

contribution of precision and recall are equal to the Fl-score and the harmonic mean is useful

to find the best trade-off between the two quantities [45].

29

file:///preciswn

4. Practical Part

4.1 Introduction

Based on the research, there are many latest approaches for N L P applications with an

efficient output, but the architecture which changed the game of word embedding was L S T M .

Therefore, the proposed approach consists of using a Long Short Term Memory Neural

Network for word embedding and categorization of queries.

4.2 Dataset

The data used in this approach was created manually by surveying students from various

faculties and partially created by using ChatGPT. The dataset contains two attributes, Query

and Category.

1 Query Category
2 What type of visa do international students need to study in the Czech republic? VISA
3 How can 1 apply for a student visa? VISA
4
5

How long does it take to process a student visa application? VISA 4
5 What documents do 1 need to provide when applying for a student visa? VISA
6 Is there a fee for a student visa? VISA
7 How long is a student visa valid for? VISA
8 Can 1 work while on a student visa? VISA
9
10

Can 1 bring my family with me on a student visa? VISA 9
10 Can 1 change my school or program while on a student visa? VISA
11 Can 1 apply for a student visa if 1 have a criminal record? VISA
12 Where is the test centre located? Test center
13 Where can 1 find the test centre? Test center
14 In which building isthe test centre located? Test center
IS How do 1 get to the test centre? Test center
16 When is the test centre open? Test center

Figure 7. Student query dataset. [own work]

The dataset consists of 210 rows of queries and their respective categories. The queries

have been categorized into 14 different categories with a minimum of 10 queries per category.

30

Q df.Category.value_counts()

•» Test center 51
admission 21
study management 17
technical support 16
lockers 13
accomodation 11
menza 11
VISA 10
li b r a r y 10
sports 10
lost and found 10
emergency 10
a c t i v i t i e s and events 10
laundry 10
Name: Category, dtype: int64

Figure 8. Categories of Data, [own work]

4.3 Environment

Google Colab has been chosen as the coding environment as it is very similar to Jupyter

Notebook.

It is a cloud-based platform that provides a free, convenient, and easy-to-use environment

for working with data science and machine learning projects. With Google Colab, users can

access powerful hardware resources, such as GPUs and TPUs, without having to worry about

the cost and maintenance of the hardware.

Google Colab also comes with many pre-installed data science libraries and frameworks,

such as TensorFlow, PyTorch, and scikit-learn, and can be imported at any point in time during

coding., making it easy for users to get started with their projects quickly.

Moreover, Google Colab is synced with a google account which allows users to

collaborate with others in real-time and provides features like version control, code sharing,

and commenting.

31

Begins with Q Q. S rch (T T) (Done)

P Comment IX Share $

Connect to a hosted runtime

Connect to a custom GCE VM

Connect to a local runtime

Disconnect and delete runtime

View resources

Manage sessions

Show executed code history

Focus the last run cell

RAM
Disk

Figure 9. Google Colab environment, [own work]

4.4 Coding

Firstly, all the necessary libraries need to be imported to Colab's ipynb workspace. If

necessary, any libraries can be imported into any part of the code.

L. Multi-Class Text Classification using LSTM.ipynb

File Edit View Insert Rumime Tools Help All changes saved

+ Code + Text

Q import pandas as pd
import m a t p l o t l i b . p y p l o t as p i t
f r o n k e r a s . p r e p r o c e s s i n g . t e x t import Tokenizer
from k e r a s . u t i l s import pad_sequences
from keras.models import S e q u e n t i a l
from k e r a s . l a y e r s import Dense, Embedding, LSTM, Sp a t i a l D r o p o u t l D
from s k l e a r n . m o d e l _ s e l e c t i o n import t r a i n _ t e s t _ s p l i t
from k e r a s . u t i l s . n p _ u t i l s import t o _ c a t e g o r i c a l
from k e r a s . c a l l b a c k s import E a r l y S t o p p i n g
from k e r a s . l a y e r s import Dropout
from n l t k . c o r p u s import stopwords
from n l t k import word_tokenize

Figure 10. Library imports in Google Colab. [own work]

To import the data into the workspace, google colab's inbuilt function "files" could be

used. Executing the below code opens a dialogue box to select the file from the local drive.

32

from g o o g l e . c o l a b import f i l e s
u p loaded = f i l e s . u p l o a d ()

Favourites

0 Recents

A Applications

S Desktop

D Documents

© Downloads

til kuraldvenkat

Q Pictures

Music

Ö Movies

iCIoud

Ci iCIoud Drive

E? Shared

Locations

O Kural's MacB\r

< LTD v as

Choose Files tc Upload

I Kural's MacBook Air Q Q.

Previous 30 Days

Macintosh HD

Earlier

Network

Cancel

Figure 11. Files upload function in Google Colab. [own work]

queiy.xlsx(application/vnd.openxmlformats-officedocument.spreadsheetm

15877 bytes, last modified: n/a - 100% done.

Saving q u e r y . x l s x to q u e r y . x l s x

This w i l l add "query.xlsx" to Google Colab's environment base directory.

df = p d . r e a d _ e x c e l (' q u e r y . x l s x ')

To load the selected xlsx file as Data Frame, Pandas has a function called read_excel().

Pandas support various file formats such as C S V , Excel , S Q L , J S O N , etc. making the

library versatile.

33

N o w the variable "df ' is a data frame of Queries and Categories. Hereafter, this variable

wi l l be used to view data or to perform various descriptive statistics.

0 df.head()|

Query category ft.
0 What type of visa do international students re... VISA

1 How car I apply for a student visa? VISA

2 How long does it take to process a student vis... VISA

3 What documents do I need to provide when apply... VISA

4 Is there a fee for a student visa? VISA

5 How long is a student visa valid for? VISA

E Can I work while on a student visa? VISA

7 Can I bring my family with me on a student visa? VISA

8 Can I change my school or program while on a s... VISA

9 Can I apply for a student visa if I have a cri... VISA

Figure 12. Top 10 rows of the dataset. [own work]

The df.head() method w i l l accept integer parameters and display the data up to the given

index. In this case, it displays the first ten rows of the dataframe.

It is important to check missing values in any dataset and i f there are any missing values

"Imputation" can be performed on the null values, since this dataset is manually created using

surveys and chatGPT, it does not contain null values.

d f . i n f o () is used to view basic information of the dataset.

s A df.infot)

fjt <class ' pandas . core, frame. DataFrame '>
Rangelndex: 210 entries, 0 to 209
Data columns (total 2 columns):
Column Non-Null Count Dtype

0 Query 210 non-null object
1 Category 210 non-null object

dtypes: object(2)
memory usage: 3.4+ KB

Figure 13. Basic information about the data, [own work]

34

To check the descriptive statistics "describe" function can be called, since the dataset has

no numerical column, there are not many statistics descriptions to be analyzed.

Q d f . d e s c r i b e ()

Query C a t e g o r y ^+

count 210 210

unique 210 14

top What type of visa do international students ne... Test center

freq 1 51

Figure 14. Statistical information about the data, [own work]

The above image explains the number of unique entities in both Query and Category

Columns.There are no duplicate entries in Query. A n d there are a total of 14 unique categories.

To view all the unique categories, the "valuecount" function should be called in the

Category column.

d f . C a t e g o r y . v a l u e _ c o u n t s ()

35

Q df.Category.value_counts()

•* Test center 51
admission 21
study management 17
t e c h n i c a l support 16
loc k e r s 13
accomodation 11
menza 11
VISA 10
l i b r a r y 10
sports 10
l o s t and found 10
emergency 10
a c t i v i t i e s and events 10
laundry 10
Name: Category, dtype: i n t 6 4

Figure 15. Categories and their count, [own work]

From the above image, it can be inferred that the dataset is imbalanced with the "Test

center" category with a count of 51 and some other categories count as meager as 10.

4.4.1 Data Preprocessing

After the initial inference and analysis, it is concluded that the data frame does not require

any more imputation or alteration. Data standardization and normalization do not apply to this

approach as there is no numerical column.

Since the model only understands numerical values, the subsequent step to be done is pre

processing the data and converting the query sentences and their categories into numerical data

by using standard procedures.

36

Q df["Query']|

0 [what, type, of, v i s a , do, i n t e r n a t i o n a l , stud...
1 [how, can, apply, f o r , student, v i s a]
2 [how, long, does, i t , take, to, process, stude...
3 [what, documents, do, need, to, provide, when,...
4 [i s , there, fee, f o r , student, v i s a]

205 [where, can, rent, presenter]
206 [i s , i t , p o s s i b l e , to, borrow, laptop, f o r , t e . . .
207 [how, to, turn, on, the, a i r , c o n d i t i o n i n g , i n . . .
208 [how, to, turn, o f f , the, a i r , c o n d i t i o n i n g , i . . .
209 [who, takes, care, of, the, temperature, i n , t . . .
Name: Query, Length: 210, dtype: object

Figure 16. Queries as an array of tokens, [own work]

Since the computer system is sensitive to the case of the alphabet, this creates ambiguity in

identifying the same words with different cases as the same word with the same meaning. To

avoid this issue all the letters must be written in lowercase.

A l l the punctuations and special characters w i l l be removed from the corpus as it does not

affect the intent of the query.

Stopwords are common words that appear frequently in natural language text, such as

"the", "and", "o f , "to", "in", etc. These words do not carry much meaning and can often be

removed without significantly affecting the overall understanding of the text.

One of the main reasons for removing stopwords in data modelling is to reduce the

dimensionality of the data. B y removing these common words, the overall vocabulary size is

reduced, which can make the analysis more efficient and effective. This is particularly

important for models that rely on counting or frequency-based methods, such as bag-of-words

models, where the presence or absence of certain words can affect the outcome.

Removing stopwords can also help improve the quality of the analysis by reducing noise

and increasing the signal-to-noise ratio. B y eliminating words that are unlikely to be relevant

to the analysis, we can focus on the words that are more likely to carry important information.

37

Overall, removing stopwords is a common preprocessing step in natural language

processing and can help improve the efficiency and effectiveness of data modelling.

For all the above-mentioned preprocessing procedures Gensim would be the best choice as

it is an open-source library for unsupervised topic modeling, document indexing, retrieval by

similarity, and other natural language processing functionalities.

The gensim.parsing.preprocessing module provides a set of functions for preprocessing

text data in natural language processing applications. Here are some of the most used functions

in this module:

1. strip_tags(text): Removes H T M L tags from the given text.

2. strip_punctuation(text): Removes punctuation marks from the given text.

3. strip_multiple_whitespaces(text): Replaces multiple whitespace characters with

a single whitespace in the given text.

4. strip_numeric(text): Removes digits from the given text.

5. remove_stopwords(text): Removes stop words (commonly occurring words such

as "the", "and", "in", etc.) from the given text.

6. stem_text(text): Stems the words in the given text using Porter stemming

algorithm.

7. preprocess_string(text): This applies a series of preprocessing steps, including

converting the text to lowercase, removing tags, punctuation, and digits, and

removing stop words.

from g e n s i m . p a r s i n g . p r e p r o c e s s i n g import p r e p r o c e s s _ s t r i n g ,
s t r i p _ p u n c t u a t i o n , s t r i p _ s h o r t , remove_stopwords

38

CUSTOM_FILTERS = [lambda x: x . l o w e r () , s t r i p _ p u n c t u a t i o n ,
s t r i p _ s h o r t , remove_stopwords]

d f [' Q u e r y '] = d f [' Q u e r y '] . a p p l y (l a m b d a x:
p r e p r o c e s s _ s t r i n g (x , CUSTOM_FILTERS))

The above lines w i l l preprocess the corpus so that there won't be any punctuation, stop

words, and white spaces.

T

; Q from gensim.parsing.preprocessing import prepracess_string, strip_tags, strip_punctuation, strip_short, stem_text, remove_stopwords

CUSTOM_FILTERS = [lambda x\ x.lowerf), strip_taos, strip_punctuation, strip_short, remcve_stopwords]

dft'Query'] =df['Query'].apply!lambda x: preproce5s_string(x, CU5TgM_FILTcR5)l

df['Query']
[y 0 [type, visa, international, students, need, s t . . .

1 [apply, student, visa]
2 [long, process, student, visa, application)
3 [documents, need, provide, applying, student, . . .
A [fee, student, visa]

205 [rent, presenter]
206 [possible, borrow, laptop, teaching]
207 [turn, a i r , conditioning, classrooms]
208 [turn, a i r , conditioning, classrooms]
209 [takes, care, temperature, classrooms]
Name: Query, Length: 210, dtype: object

Figure 17. Implementation of Gensim's Preprocessing function, [own work]

The next step is to encode the Categories, As mentioned, most machine learning or deep

learning algorithms require numerical input, so categorical data must be encoded to be used in

these models. Encoding ensures that the categorical data is represented in a consistent and

standardized format.

These variables can have many categories, which can result in many variables in the model.

Encoding these variables can reduce the dimensionality of the data and make the model more

efficient.

Categories can have an arbitrary order, meaning that assigning numerical values to

categories based on arbitrary criteria can introduce unintended biases into the model.

Categorical variables can be classified into two types: ordinal and nominal.

39

Ordinal variables are categorical variables where the categories have a natural ordering or

hierarchy. On the other hand, nominal variables are categorical variables where the categories

do not have a natural ordering.

The distinction between ordinal and nominal variables is important because different

encoding methods are used for each type of variable. For ordinal variables, we can use label

encoding or ordinal encoding to encode the categories numerically, whereas, for nominal

variables, we typically use one hot encoding or binary encoding.

Since our categories are multiclass and do not have any natural ordering or hierarchy the

most suitable would be one hot encoding.

Q Y = pd.get_dummies(df[1 C a t e g o r y 1]) . v a l u e s
°s p r i n t (Y)

[[0 1 0 . . 0 0 0]
[0 1 0 . . 0 0 0]
[0 1 0 . . 0 0 0]

[0 0 0 . . 0 0 1]
[0 0 0 . . 0 0 1]
[0 0 0 . . 0 0 1]]

Figure 18. Transforming categories to one hot encoding, [own work]

Subsequently, it is crucial to create the word index or vocabulary that is used to convert

the text data into a sequence of integers.

The Keras.preprocessing.text.Tokenizer class is a tool in the Keras library that is used

to vectorize a corpus of text into a matrix of token counts. It essentially transforms a list of

strings into a matrix of integers, where each integer represents the count of a particular word in

the text corpus.

The Tokenizer class provides several useful methods for preparing text data for models,

including:

40

1. fit_on_texts(texts): Updates the internal vocabulary based on a list of texts. This

method creates a dictionary of words and their respective counts in the text corpus.

This method is necessary because it creates the word index or vocabulary that is

used to convert the text data into a sequence of integers. Without this step, it would

not be possible to use text data as input to a model. Additionally, the fit_on_texts()

method ensures that each word is represented by a unique integer index, which is

essential for accurate text analysis and classification

2. texts_to_sequences(texts): Transforms a list of texts into a list of sequences of

integers. Each integer corresponds to a word in the dictionary created by the

f i t o n t e x t s method.

3. texts_to_matrix(texts, mode): Transforms a list of texts into a matrix, where each

row represents a text and each column represents a word in the dictionary created

by f i t o n t e x t s method. The value in each cell represents the count of the

corresponding word in the text, and the mode parameter specifies the type of matrix

to be returned (e.g., binary, count, tfidf, etc.).

[33] MAX_NB_W0RD5 = 1000

HAX_SEQUENCE_LENGTH = 32

EMBEDDING_DIM - 100

t o k e n i z e r = Tckenizer(num_words=MAX_NB_WDRDS, filters='J"#$%&(}*+,-./:;<=>?@[\] A

t o k e n i z e r . f i t _ o n _ t e x t s (d f [' Q u e r y '] . v a l u e s)
word_index = tokenizer.word_index
print('Found %s unique tokens.' % len(word_index))

|K' i lower=True)

Found 335 unique tokens.

Figure 19. Tokenizing the queries, [own work]

With the above code, arrays of word tokens are transformed into arrays of the integer

sequence.

The number of Words (M A X _ N B _ W O R D S) for this model is set to 1000 as the

corpus has only 335 unique tokens. This parameter specifies the maximum number of words

to keep in the vocabulary.

41

M A X _ S E Q U E N C E _ L E N G T H is set to 32 as the corpus does not contain long

sentences, this would be the input dimension in the embedding layer while building the

model.

Words that are not included in the vocabulary w i l l be treated as out-of-vocabulary (OOV)

words. This parameter is set to None by default, which means that all words w i l l be included

in the vocabulary.

Q X - tokenizer.texts_to_sequences(df['Query'].values)
printC'Before Padding: ", X)

X = pad_sequences(X, maxlen=MAX_SEQUENCE_LENGTH)
p r i n t (" \ n A f t e r Padding: ", X)

print('\nShape of data tensor:', X.shape)

Before Padding: [[121, 8, 47, 6, 14, 27, 122, 123], [15, 5, 8] , [28, 21, 5, 8, 16], [124, 14, 125, 48, 5, 8] , [49, 5, 8],

A f t e r Padding: [[a 0 a ... 27 122 123]
[0 0 0 ... 15 5 8]
[0 0 0 ... 5 8 16]

[0 0 0 ... 69 70 36]
[0 0 0 ... 69 70 36]
[0 0 0 ... 74 335 36]]

Shape of data tensor: (210, 32)

Figure 20. Padding the tokens to uniform the length, [own work]

The pad_sequences function is used to transform a list of sequences into a 2D Numpy

array of a specified length by adding padding or truncating the sequences.

It is important to split the data into train and test sets because it helps us to evaluate the

performance of our model on unseen data.

The primary purpose of a model is to make accurate predictions on new, unseen data. If

we train our model on the entire dataset and then test it on the same data, it w i l l likely overfit

the data, which means it w i l l memorize the patterns in the training data instead of generalizing

to new data. This w i l l result in poor performance when it encounters new data, even i f it

performs well on the training data.

B y splitting the data into a training set and a test set, we can train the model on the

training set and evaluate its performance on the test set. This allows us to estimate how well the

model w i l l perform on new, unseen data. If the model performs well on the test set, we can

42

file:///nAfter
file://'/nShape

have more confidence that it w i l l generalize well to new data. If the model performs poorly on

the test set, we can adjust our model or choose a different model altogether before deploying it

to make predictions on new data.

Overall, splitting a dataset into a training set and a test set is a critical step in machine

learning that allows us to evaluate the performance of our model on unseen data and ensure that

it can generalize well to new data.

To do that, the train_test_split function is used, it splits the dataset into a training set

and a test set. The parameters of the train_test_split function is:

train_test_split(*arrays, **options)

1. *arrays: The first parameter is one or more arrays that we want to split into a training

set and a test set. Typically, this wi l l be an array of features and an array of

corresponding labels.

2. test_size: This parameter determines the size of the test set. It can be a float (between

0.0 and 1.0) which represents the proportion of the dataset to include in the test set, or

an integer which represents the absolute number of samples to include in the test set.

B y default, it is set to 0.25, meaning that 25% of the dataset w i l l be used for testing.

3. train_size: This parameter determines the size of the training set. It can be a float

(between 0.0 and 1.0) which represents the proportion of the dataset to include in the

training set, or an integer which represents the absolute number of samples to include

in the training set. B y default, it is set to None, which means that the complement of the

test set w i l l be used for training.

4. random_state: This parameter sets the random seed for the data shuffling, which

ensures that the data is split in the same way every time the function is called. This can

be an integer or a random state object. B y default, it is set to None.

43

The test size is set to 0.2% which means 20 percent of the total dataset w i l l be used for testing,

which is 42 rows out of 210 rows.

0 x_train, x_test, Y_train, Y_test = train_test_split{X,Y, test_size = 0.20, random_state = 42, shuffle^True)
print!X_train.shape,Y_train.shape)
print(X_test.shape,Y_test.shape)

(168, 32) (168, 14)
(42, 32) (42, 14)

Figure 21. Splitting the dataset into train and test data, [own work]

4.5 Model Building

4.5.1 Building L S T M Network

To implement the L S T M network Keras is a popular choice, It has a user-friendly deep

learning library that provides a high-level interface for building and training neural networks.

It allows the building of a wide range of neural network architectures, including L S T M s , with

customizable layers and activation functions. So, it's easy to combine different types of layers

to create more complex models.

Keras is built on top of TensorFlow, a high-performance deep-learning library. It has the

advantage of TensorFlow's efficient computation and parallelization capabilities to train

L S T M s faster.

44

[168] model = SequentiaK)
model.add(Embedding(MAX_NB_WORDS, EMBEDDING_DIM, input_length=X.shape[1]})
model.add(SpatialDropoutlD(8.2))
model.add(LSTM(100, dropout=9.2, recurrent_dropout=9.2l)
model.add(Dense(14, a c t i v a t i o n - 1 s o f t n a x ') >
model.compile{loss='categorical_crossentropy 1, optimizer='adam 1, metrics=['accuracy 1])
print(model.summary())

Model: "sequential_31"

Layer (type) Output Shape Param t

embedding_31 (Embedding) (None, 32, 16a) 1B8000

spatial_dropoutld_32 (S p a t i (None, 32, 100) B
alDropoutlD)

lstm_33 (L5TM) (None, 199) 8B400

dense_28 (Dense) (None, 14) 1414

T o t a l params: 181,814
Trainable params: 181,814
Non-trainable params: 0

None

Figure 22. Building LSTM model, [own work]

The Sequential model is a linear stack of layers that allows you to easily build and train

neural networks. It is created by instantiating the Sequential class and can add layers to the

model using the .add() method.

In this approach, there w i l l be 4 layers:

a. Embedding

This layer is used to convert integer-encoded input sequences into dense vectors, which can

be used as input to a neural network model.

A sequential model is created and an Embedding layer is added to it. The input_dim

parameter specifies the size of the vocabulary, i.e., the maximum integer index that can be used

as a word index, In this case, input_dim = 1000.

The output_dim parameter specifies the dimensionality of the dense embedding vector,

which wi l l be 100.

The input_length parameter specifies the length of the input sequences(X.shape[l]), which

is set to 32 while converting texts to sequence.

45

When the model is trained, the Embedding layer learns an embedding for each word in the

vocabulary, mapping each word to a dense vector of output_dim dimensions. During training,

the weights of the embedding layer are updated based on the error between the predicted outputs

and the true outputs.

The output of the embedding layer is a 3D tensor with shape (batch_size, input_length,

output_dim), which can be fed into other layers in the model for further processing.

b. Spatial Dropout

The SpatialDropoutlD layer is a type of dropout regularization to prevent overfitting in

the model by randomly dropping out (setting to zero) some of the feature maps during training.

This layer randomly sets the input feature maps to zero with a certain probability (dropout

rate) for each channel, which helps to prevent the model from relying too heavily on any

particular set of features. This helps the model to generalize better to new, unseen data.

In this case, the dropout percentage is set to 20% because the size of the input to very less

compared to traditional modelling. So, it's important to use as much information from the input

data.

c. L S T M

The L S T M layer is designed to address the issue of vanishing gradients that can occur in

traditional R N N s . The L S T M layer includes a memory cell that can retain information over a

long period of time and selectively forget or remember specific pieces of information as needed.

In this model, L S T M layer has been added with 100 units, which takes as input a 3D tensor

with shape (batch_size, timesteps, input_dim). It can also have a dropout and recurrent

dropout function, here it has been set to 0.2 which is 20%.

46

d. Dense

After the L S T M layer, the Dense layer should be with num_classes units and a softmax

activation function, which is commonly used for classification tasks.

The purpose of a dense layer is to transform the input data into a format that is suitable for

the final output layer of the network. Each neuron in the dense layer transforms the input data

linearly, followed by a non-linear activation function, such as R e L U or sigmoid.

The softmax activation function is commonly used for classification tasks, where the output

of the network represents the probability distribution over the possible classes.

The parameter num_classes should be 14 units as the data has 14 different categories, this

means the output layer w i l l have 14 neurons each neuron representing each category of the

query.

4.5.2 Compiling the L S T M model

The compile method is used to configure the learning process of a deep learning model

before training. This method specifies the loss function, the optimizer, and the metrics to use

during training and evaluation.

The loss function is specified as 'categorical_crossentropy' for the model, which is

commonly used for multiclass classification tasks.

The optimizer is specified as 'adam', which is a popular optimization algorithm that adapts

the learning rate during training.

Finally, 'accuracy' has been specified as the metric to use during training and evaluation.

47

4.5.3 Fitting the L S T M model

The model needs to be fitted with the training data using the 'fit' function. This method

takes as input the training data, as well as various hyperparameters that control the learning

process, such as the number of epochs, the batch size, and the optimizer.

To train the model using the fit method, training data (X_train and Y_train), as well as the

batch size, the number of epochs, and the validation data (X_test and Y_test) should be passed.

During training, the model w i l l update its weights based on the gradient of the loss function

with respect to the weights, using the optimizer specified in the compile method.

The metrics specified in the compile method w i l l be computed and reported after each

epoch of training.

import d a t e t i m e
import t e n s o r f l o w as t f

epochs = 2 0
b a t c h _ s i z e = 15

l o g _ d i r = " l o g s / f i t / " +
datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
t e n s o r b o a r d _ c a l l b a c k =
t f . k e r a s . c a l l b a c k s . T e n s o r B o a r d (l o g _ d i r = l o g _ d i r ,
h i s t o g r a m _ f r e q = l)

h i s t o r y = m o d e l . f i t (X _ t r a i n , Y _ t r a i n , epochs=epochs,
b a t c h _ s i z e = b a t c h _ s i z e , v a l i d a t i o n _ s p l i t = 0 . 2 ,

c a l l b a c k s = [t e n s o r b o a r d _ c a l l b a c k ,
E a r l y S t o p p i n g (m o n i t o r = ' v a l _ l o s s ' , p a t i e n c e = 3 ,
min delta=0.0001)])

48

Epochs were set to 20 and batch size is set to 15. These optimal values for batch size and

epochs were determined through a process of experimentation involving various alternative

values.

Q import datetime
import tensorflow as t f

epochs = 20
batch_size = 28

lo g _ d i r = " l o g s / f i t / " + datetime.datetime. now(). strftimet"¥f%m%d-%HW»;S")
tensorboard_callback = tf.keras.callbacks,TensorBoard(log_dir=log_dir, histogram_freq=l)

h i s t o r y = mo d e l . f i t (X _ t r a i n , Y _ t r a i n , epochs=epochs, batch_size=batch_size,validaticn_split=0.2,
callbacks=[tensorboard_callback, EarlyStopping(monitor='val_loss', patience=3, min_delta=0

rj, Epoch 1/20
7/7 = =
Epoch 2/20
7/7
Epoch 3/20
7/7 [= ^ = = ^ = ^ = = = i

Epoch 4/20
7/7 [==================
Epoch 5/29
7/7 [= =
Epoch 6/20
7/7 [= = =
Epoch 7/20
7/7
Epoch 8/20
7/7 [=====
Epoch 9/20
7/7 [= = =
Epoch 10/20
7/7 [=====

Figure 23. Experimenting wi

] - 7s 325ms/step - loss: 2. 6217 - accuracy: 3.1716 - val_ l o s s : 2 5980 - val .accuracy: 0.2059

] - 3s 419ms/step - loss: 2. 535« - accuracy: 9. 2463 - val_ l o s s : 2. 5568 - val .accuracy: 0.2059

] - 2s 234ms/step - loss: 2. 4351 - accuracy: 9.2463 - val_ l o s s : 2 5387 - val. .accuracy: 0.2059

] - 2s 237ms/step - loss: 2. 4094 - accuracy: 0. 2463 - v a l . l o s s : 2 5163 - val. .accuracy: 3.2059

] - 2s 245ms/step - loss: 2. 3765 - accuracy: 0. 2463 - val_ l o s s : 2 4986 - va l .accuracy: 0.2059

] - 2s 236ms/step - lass : 2. 3397 - accuracy: 0.2463 - va L_ lo s s : 2 4467 - va I accuracy: 0.2059

1 - 2s 239ms/step - loss: 2. 2676 - accuracy: 0.2463 - val_ l o s s : 2 4003 - val accuracy: 0.2059

] - 2s 238ms/step - loss: 2. 19« - accuracy: 0. 2463 - val_ l o s s : 2 3621 - val. .accuracy: 0.2059

] - 3s 433ms/step - loss: 2. 1005 - accuracy: 0.2910 - val_ l o s s : 2 2657 - val. .accuracy: 0.2353

] - 2s 240ms/step - loss: 2. 0033 - accuracy: 0.3209 - val_ l o s s : 2 1520 - val. .accuracy: 0.2647

th epochs and batch_value for finding optimal value, [own work]

a. Callbacks

i. TensorBoard

TensorBoard is a powerful visualization tool that can be used to monitor and debug deep

learning models in real-time.

TensorBoard callback has been initialized, specifying the directory where the logs should

be written. During training, the callback w i l l automatically write logs to this directory,

including information about the training loss, validation loss, and other metrics.

ii. EarlyStopping

The EarlyStopping callback is a Keras callback that can be used to automatically stop

training when a monitored metric has stopped improving. This can be useful to prevent

overfitting and to save time during training.

49

On creating an EarlyStopping callback, specify the monitored metric as 'val_loss', which

means the validation loss w i l l be monitored during training.

The min_delta is set to 0.001, which wi l l only consider a change in the metric as an

improvement i f it is greater than 0.001.

A n d patience is set to 3, which means that the model w i l l wait for 5 epochs before stopping

training i f the monitored metric has not improved. Training wi l l be stopped early i f the

monitored metric (val_loss) does not improve for 3 consecutive epochs.

O
history = model.fit(X_train, Y_train, epochs=epochs, batch_3ize=batcb_size,validation_split=0.2,

callbacks^[tensorboard_callback, EarlyStopping(monitor^'vallosa', patience=3, min_delta=0.0 0 01}])

Q. Epoch 1/20
9/9 [-- 164ms/step - loss 2.6227 - accuracy 0. 1866 - va] _loss 2.6062 - val_accuraey 0.2059
Epoch 2/2 0
9/9 [• | - Is 94ms/step - loss: 2.4976 - accuracy: 0 .2463 - m_ 1 OSS 1 2 .5757 - val_accuracy s 0 . 2059
Epoch •i/2'..\

9/9 [• 94ma/step - loss : 2.4503 - accuracy: a .2463 - val Lass: 2 .5154 - val accuracy: 0 .2059
Epoch 4/2 0
9/9 [= 5Bins /step - loss : 2.3984 - accuracy: : .2463 - , A 1 LOSS : 2 .4920 - val_aecuracy: 0 .2059
Epoch 5/2 0
9/9 [= 90ms/step - loss : 2.3318 - accuracy: 0 .2463 - val loss: 2 .4943 - vaL accuracy: 0 .2059
Epoch £. / 2 0
9/9 [• 148ms/step - loss 2.2690 - accuracy 0.2463 - va] _loss 2.3739 - val_accuracy 0.2059
Epoch 7/20
9/9 [• 163ms/step - '.OSS 2.1642 - accuracyi 0.29B5 - val _loss 2.2393 - val_accuracy 0.2353
Epoch S/2Q
9/9 [= ===========] - is 110ms/step - loss 2.0131 - accuracy 0.3234 - val loss 2.1912 - v a l accuracy 0.2353
Epoch 5/2 0
9/9 [•) - is B7ms/step - loss i 1.3914 - accuracy i a .3881 - Tal loss j I .1261 - val_accuracy; 0 .2941
Epoch 10/20
9/9 [• .__-_-__-__] - la 91ms/step - loss: 1.7402 - accuracy: 0 .4323 - val less; 2 .D67B - val accuracy: 0 . 3235
Epoch 11/20
9/9 j _ lg 90ms/step - loss : 1.6062 - accuracy: D .4925 - val loss: L •9775 - val accuracy: 0.3529
Epoch 12/20
9/9 [= 90ms/step - loss: 1.4861 - accuracy: IJ .6716 - val loss: L .9140 - val accuracy: 0 .4412
Epoch 13/20
9/9 [• " — — " - J - 19 90ms/step - loss: 1.3005 - accuracy: I) .7015 - val_ loss; 1 .8029 - valacc u r a c y : 0.4412
Epoch 14/20
9/9 |- B7ms/step - loss : 1.1620 - accuracy: .7463 - val loss: 1 .6569 - val_accuracy: 0.5294
Epoch 15/20
9/9 [• j - is 8 9ms/step - loss: Q.95B2 - accuracy: a .7985 - val_ lessr L .5606 - val_accuracy: 0.6176
Epoch 16/20
9/9 [• 91ms/step - loss: 0.73B2 - accuracy: 0 .6433 - val_ loss l L .4354 - val_accuracy: 0.6176
Epoch 17/20
9/9 [= 9 6ma/step - loss : D.6553 - accuracy: z .9030 - val loss: 1 .3307 - val_accuracy: 0.7059
Epoch 18/20
9/9 [• | - is 92ms/step - loss! 3 . 5 3 5 9 - accuracy: 0 .9473 - val_ loss t 1 .1B21 - val_accuracy! 0 .6765
Epoch 19/20
9/9 [- 1 _ l s

9Urr.:i/:^n:p - loss I D.4726 - accuracy: o .9403 - val loss: L .1922 - val accuracy: 0.6765
Epoch 20/20
9/9 [• 105ms/step - loss 0.3601 - accuracy 0.9627 - val _loss 1.0592 - val_accuraey 0.7353

Figure 24. Training of the model, [own work]

4.5.4 Evaluation of the L S T M model

After training a model, it is important to evaluate its performance on a separate test set to

get an estimate of how well it can generalize to new data.

In Keras, the evaluate method can be used to evaluate the performance of a trained model

on a test set. The evaluate method returns the values of the specified metrics on the test set.

50

' [31] accr = model.evaluate(X_test,Y_test)
print('Test set\n Loss: {:0.3f}\n Accuracy: {:0.3f}'.format{accr[8],accr[1]))

2/2 [============================] - 0s 15ms/step - loss: 0.6667 - accuracy: 0.8810
Test set

Loss: 0.667
Accuracy: 0.881

Figure 25. Evaluation of the trained model with test set. [own work]

After evaluating the model on a separate test set using the evaluate method, passing in the

test data (X_test and Y_test). The evaluate method returns the values of the specified metrics

(in this case, the loss and accuracy) on the test set.

2/2 [==============================] - Os 15ms/step - l o s s :
0.6667 - a c c u r a c y : 0.8810
Test s e t

Loss: 0.667
Ac c u r a c y : 0.881

The L S T M model built using the input data and the above-mentioned approach and

parameter resulted in a loss of 0.8810 and 88% of accuracy on unseen data.

4.5.5 Plotting the L S T M model

The below is graphs, plotted using TensorBoard for epoch vs accuracy and epoch vs loss,

it can be inferred that accuracy is linearly improving in each epoch. While the loss is decreasing

on each epoch.

This linearity is because of EarlyStopping callback, usually, once the model reaches the

optimum epoch, it w i l l start to overfit and results in a parabolic curve on accuracy and loss.

51

% tensor - board l o g d i r l o g s / f i t

Reusing TensorBoard on port 6 O O 6 (p i d 4 O4 7) , s t a r t e d O:O1 = O7 ago• (Use ' I k i l l 4Q47' to k i l l

T I M E S E R I E S

I I S h o w d a t a d o w n l o a d l i n k s

^ 9 I g n o r e o u t l i e r s i n c h a r t s c a l i n g

T o o l t i p s o r t i n g m e t h o d : d e f a u l t

S m o o t h i n g

H o r i z o n t a l A x i s

R E L A T I V E W A L L

R u n s

W r i t e a regex to filter runs
53 O 2 0 2 3 0 3 0 3 - 1 3 2 4 3 1 / t r a i n

gg O 2 0 2 3 0 3 0 3 - 1 3 2 4 3 1 / v a l i d a t i o n

K3 O 2 0 2 3 0 3 0 3 - 1 3 2 4 4 7 / t r a i n

gg O 2 0 2 3 0 3 0 3 - 1 3 2 4 4 7 / v a l i d a t i o n

gg O 2 0 2 3 0 3 0 3 - 1 3 2 5 2 1 / t r a i n

gg O 2 0 2 3 0 3 0 3 - 1 3 2 5 2 1 / v a l i d a t i o n

I 2 0 2 3 0 3 0 3 - 1 3 2 5 5 8 / t r a i n

gg O 2 O 2 3 0 3 O 3 - 1 3 2 5 5 8 / v a l i d a t i o n

gg O 2 0 2 3 0 3 0 3 - 1 3 2 7 0 4 / t r a i n

e p o c h _ a c c u r a c y
t a g : e p o c h _ a c c u r a c y

0 , 6

O.S

D.6

0 . 4

0 . 2

TO 1 2 1 4 1 6 1 8

e p o c h l o s s

e p o c h _ l o s s
t a g : e p o c h j o s s

2.6

2 .2

1.8

1 4

8 1 0 1 2 1 4 1 e

zz m a

Figure 26. Tensorboard plotting ofLSTM model training, [own work]

4.6 Comparative evaluation of the accuracy between IBM Watson and L S T M

To compare the efficiency of the L S T M model with a commercial pre-trained model, I B M

Watson has been chosen.

I B M Watson is an exceptional platform that employs cutting-edge natural language

processing (NLP) techniques to effectively classify massive amounts of textual data. Its

sophisticated machine learning algorithms enable it to accurately identify and categorize

diverse text data, including social media posts, news articles, and customer feedback, among

others.

Watson's text classification abilities are fueled by its advanced deep learning models, which

are expertly trained on extensive data sets to recognize intricate patterns and correlations in

text. This empowers Watson to offer businesses valuable insights into customer behavior,

sentiment analysis, and other critical metrics that can be utilized to enhance their products and

services.

52

I B M Watson is an invaluable resource for any organization that desires to glean deeper

insights into its text data and make informed decisions based on its findings.

Account in the I B M cloud is set up, Watson Assistant Service resource is created, and the

virtual assistant instance is created including a dialog skil l that is linked with the virtual assistant

instance.

IBM Watson Assistant Plus

*- Assistants

s TestBot

Dialog

CZU_student_query

LANGUAGE TRAINED DATA
English (US) 42 Intents | 0 Entities I 1 Dialog nodes

VERSION
Development

DESCRIPTION:
in-progress version

VERSION CREATED:
Mar 14, 2023 7:04 PM

LINKED ASSISTANTS TestBot

Figure 27. IBM Watson setup, [own work]

The dataset is shuffled and splits as train and test datasets. Similar to the L S T M model,

80% of the data is taken for training and 20% for testing.

[4] c ross 1 = s h u f f l e (d f)
0s

cross_2 = s h u f f l e (d f)
cross_3 = s h u f f l e (d f)
cross_4 = s h u f f l e (d f)
cross_5 = s h u f f l e (d f)

^) c f = d f [' C a t e g o r y '] . v a l u e c o u n t s () . r e s e t _ i n d e x ()
Os

cf = cf . rename(columns={ 'Category ' : ' C o u n t ' , ' i n d e x ' : 'Category ' })
p r i n t (c f . s h a p e)
c f .head(2)

L> (14, 2)

Category Count tf+

0 Test center 51

1 admission 21

Figure 28. Shuffling and data pre-processing for IBM Watson, [own work]

53

o t r a i n = p d . D a t a F r a m e ()
t e s t = p d . D a t a F r a m e ()

f o r i i n r a n g e (c f . s h a p e [0]) :

s p l i t n u m b e r = i n t (r o u n d (c f [' C o u n t '] [i] * 0 . 8))
c a t e g o r y e x a m p l e s = c r o s s 1 [c r o s s 1 [' C a t e g o r y '] . s t r . m a t c h (c f [' C a t e g o r y '] [i])] . r e s e t i n d e x ()

c o u n t e r = 0

f o r i n d e x , r o w i n c a t e g o r y e x a m p l e s . i t e r r o w s () :
i f c o u n t e r <• s p l i t number:

t r a i n • t r a i n , a p p e n d (r o w)

e l s e :

t e s t = t e s t . a p p e n d (r o w)

c o u n t e r = c o u n t e r + 1

Figure 29. Splitting the data into train and test datasets. [own work]

Since the chosen environment is Google's colab, it does not come with a pre-installed

ibm_watson library. So, it is necessary to install it in colab's runtime environment.

[] I p i p i n s t a l l i b m - w a t s o n

L o o k i n g i n i n d e x e s : h t t p s : / / p y p i . o r g / s i m p l e . h t t p s : / / u s - p y t h o n . p k q . d e v / c o l a b - w h e e l s / p u b l i c / s i m p l e /
R e q u i r e m e n t a l r e a d y s a t i s f i e d : i b m - w a t s o n i n / u s r / l o c a l / l i b / p y t h o n 3 . 9 / d i s t - p a c k a g e s (7 . 0 . 0)
R e q u i r e m e n t a l r e a d y s a t i s f i e d : p y t h o n - d a t e u t i l > = 2 . 5 . 3 i n / u s r / l o c a l / l i b / p y t h o n 3 . 9 / d i s t - p a c k a g e s (f r o m i)
R e q u i r e m e n t a l r e a d y s a t i s f i e d : i b m -cloud-sdk-core==3.*,>=3.3.6 i n / u s r / l o c a l / l i b / p y t h o n 3 . 9 / d i s t - p a c k a g e i
R e q u i r e m e n t a l r e a d y s a t i s f i e d : r e q u e s t s < 3 . 0 , > = 2 . 0 i n / u s r / l o c a l / l i b / p y t h o n 3 . 9 / d i s t - p a c k a g e s (f r o m ibm-w<
R e q u i r e m e n t a l r e a d y s a t i s f i e d : w e b s o c k e t - c l i e n t = = 1 . 1 . 0 i n / u s r / l o c a l / l i b / p y t h o n 3 . 9 / d i s t - p a c k a g e s (f r o m :
R e q u i r e m e n t a l r e a d y s a t i s f i e d : PyJWT<3.0.0,>=2.4.0 i n / u s r / l o c a l / l i b / p y t h o n 3 . 9 / d i s t - p a c k a g e s (f r o m ibm-t
R e q u i r e m e n t a l r e a d y s a t i s f i e d : u r l l i b 3 < 2 . 0 . 0 , > = 1 . 2 6 . 0 i n / u s r / l o c a l / l i b / p y t h o n 3 . 9 / d i s t - p a c k a g e s (f r o m i l
R e q u i r e m e n t a l r e a d y s a t i s f i e d : s i x > = 1 . 5 i n / u s r / l o c a l / l i b / p y t h o n 3 . 9 / d i s t - p a c k a g e s (f r o m p y t h o n - d a t e u t i l -
R e q u i r e m e n t a l r e a d y s a t i s f i e d : c e r t i f i > = 2 0 1 7 . 4 . 1 7 i n / u s r / l o c a l / l i b / p y t h o n 3 . 9 / d i s t - p a c k a g e s (f r o m r e q u e !
R e q u i r e m e n t a l r e a d y s a t i s f i e d : c h a r s e t - n o r m a l i z e r < 4 , > = 2 i n / u s r / l o c a l / l i b / p y t h o n 3 . 9 / d i s t - p a c r k a g e s (f r o m
R e q u i r e m e n t a l r e a d y s a t i s f i e d : idna<4,>=2.5 i n / u s r / l o c a l / l i b / p y t h o n 3 . 9 / d i s t - p a c k a g e s (f r o m r e q u e s t s < 3 . 1

Figure 30. Installing ibm_watson library to Google Colab environment, [own work]

A n d it is crucial to import all the necessary libraries to make an A P I call to I B M

Watson's service and consume the result.

H T T P Basic Authentication is a straightforward method to secure web pages, APIs, and

other resources. In I B M Watson, an A P I key is used for authentication.

The client resends the request with the username and password encoded in the

"Authorization" header. However, there are security limitations to H T T P Basic Authentication.

The credentials are sent in plain text, making them vulnerable to interception. Additionally,

there is no way to log out of a session once authenticated, other than closing the browser or

terminating the A P I client.

54

https://pypi.org/simple
https://us-python.pkq.dev/colab-wheels/public/simple/

[1 1] import pandas as pd
import requests
import j son
from requests.auth import HTTPBasicAuth
from ibm_watson import AssistantV2
from ibm_cloud_sdk_core.authenticators import IAMAuthenticator
from ibm_watson import ApiException

Figure 31. Importing necessary libraries for IBM Watson API. [own work]

[10] A P I _ K E Y = ""

SERVICE_URL = "httpg://api.eu-de.assistant.watson.cloud,ibm.com"
A P I A P P U R L = "https://api.eu-de. assistant .watson.cloud.ibiri.com/instances/6 83 3047d-68 0e-4bdl-ace3-2a9eB738 7el4''
API_ASSISTANT_ID = "bfe2fel8-c6Be-4f54-989l-7bbcc978c76a"
flPI_VEESIOH • "2021-11-27"

Figure 32. Parameters for IBM Watson API call, [own work]

The next step is to set up I B M Watson's AssistantV2, I B M Watson Assistant is an I B M

cloud-based chatbot and virtual assistant platform. It enables developers to create and deploy

conversational interfaces for a variety of platforms, including websites, messaging applications,

mobile devices, and smart speakers.

The most recent version of I B M Watson Assistant is v2, which represents a major

improvement over the previous version (formerly known as Watson Conversation).

The below code wi l l create a session with I B M Watson's assistant service with the supplied

parameters.

55

https://api.eu-de
http://watson.cloud.ibiri.com/instances/6
http://83
http://3047d-68
http://0e-4bdl-ace3-2a9eB738
http://7el4''

[13] authenticator = IAMAuthenticator(API KEY)
Is —

assistant = AssistantV2(
version=API_VERSION,
authenticator = authenticator

)

assistant.set_service_url(SERVICE_URL)
t r y :

response = assistant.create_session(
assistant_id=API_ASSISTANT_ID

).get_result()
except ApiException as ex:

print("Method f a i l e d with status code " + str(ex.code) + ": " + ex.message)

session_id = json.dumps(response['session_id'])
print(session_id)

"79258e67-babf-438c-8266-8ec48f7f204d"

Figure 33. Creating session with IBM Watson Assistant, [own work]

Once the session is set up, the assistant is now ready to receive the Queries via A P I and

wi l l respond with the predicted Category. The below code is written to get the original query,

predicted intent, and confidence as the response from the Assistant service.

56

examplecount = test.shape[0]
correctly_detected = 0
incorrects = []

for i i n range(example_count):
query = test['Query'][i]
ground_true = test['Category'][i].replace(' ', '_')
print(query, ground_true)
t r y :

response = assistant.message(
assistant_id=API_ASSISTANT_ID,
session_id=session_id.strip(" ')#
input={

'message_type': 'text',
'text': query

}
).get_result()

answer = json.dumps(response!'output']['generic'][0]['text'])
i f len(response["output"]["intents"]) > 0:

intent • j son.dumps(response['output']['intents'][0]['intent'])
confidence = j son.dumps(response['output']['intents'][0]['confidence'])
p r i n t (i n t e n t , confidence)
i f (s t r (i n t e n t) . s t r i p (' " ') == ground_true):

correctly_detected = correctly_detected + 1
e l s e :

i n c o r r e c t s . append) s t r (query + ',' + intent + ',' + ground_true))
el s e :

incorrects.append)str(query + ' , [] ' + ',' + ground_true))
except ApiException as ex:

print("Method f a i l e d with status code " + str(ex.code) + ": " + ex.message)

Figure 34. Predicting categories for queries with IBM Watson via API. [own work]

Q» I missed my deadline at the t e s t center, am I missing my shot? Test_center
" T e s t c e n t e r " 1
How can I c a n c e l my r e s e r v a t i o n i n advance? Test_center
"Test_center" 1
Can I b r i n g some s u p p l i e s with me? Test_center
" T e s t c e n t e r " 1
Can the c a l c u l a t o r be used i n the t e s t centre? T e s t c e n t e r
"Test_center" 1
W i l l I get paper and p e n c i l f o r the t e s t at the t e s t centre? Test_center
"Test_center" 1
Where can I go to take the t e s t ? T e s t c e n t e r
"Test_center" 0.9349506497383118
Can I get some samples to t e s t at the t e s t centre? Test_center
"Test_center" 1
I missed a t e s t date, I f a i l e d my t e s t ? Test_center
"Test center" 1

Figure 35. Response received from IBM Watson Assistant service with input query, its predicted intent, and confidence score.

[own work]

57

4.6.1 Evaluation of intent classification with IBM Watson

From the I B M Watson service, the predicted intents and their confidence score are returned as
shown in Figure. 34

^} print('Number of t e s t examples: ', example_count)
p r i n t (' C o r r e c t l y detected: ', cor r e c t l y _ d e t e c t e d)
p r i n t (' I n c o r r e c t l y detected: ', example_count - co r r e c t l y _ d e t e c t e d)
print('Accuracy: ', c o r r e c t l y _ d e t e c t e d / exaraple_count)

Number of t e s t examples: 27
C o r r e c t l y detected: 22
I n c o r r e c t l y detected: 5
Accuracy: 0.814 814814814 8148

Figure 36. Printing the metrics for evaluation, [own words]

Based on the results of predicting the intent for the queries in the test dataset, it was found that

22 out of 27 queries were correctly classified with their respective intent, resulting in 5

incorrectly classified intents. The Accuracy metric was calculated using the formula

"correctly_detected / example_count," yielding a value of 0.8148 (i.e., 81.48%).

58

5. Result

The performance of two deep learning models for intent classification, L S T M , and I B M

Watson, was evaluated on a dataset of student queries. Both models were trained and tested

using the same queries and categories, and their performance was compared based on accuracy.

The evaluation results showed that the L S T M outperformed I B M Watson with an accuracy

of 88.1% compared to I B M Watson's accuracy of 81.4%. This indicates that the L S T M is better

at predicting in our case of specific training sets for students' queries than I B M Watson.

59

6. Conclusion

In conclusion, the comparison of the L S T M and I B M Watson demonstrated that the L S T M

trained using a dataset of 210 rows is better in terms of accuracy for predicting the intent of

students' queries. This suggests that the L S T M w i l l be the better choice to implement in the

university chatbot.

L S T M model was trained with custom architecture and proper use of Dropouts. The model

is further optimized and hyperparameters were tuned to increase the accuracy. A n d the

overfitting problem was prevented by early stopping. These factors could be the contributing

reasons for better accuracy.

It's worth noting that while accuracy is an important metric, there may be other factors to

consider when selecting a deep learning model for a specific application. For example, I B M

Watson may have lower accuracy but could be faster or require fewer computational resources,

making it more suitable for certain business cases. The result might vary with a different and

large set of data.

Future research could investigate the performance of other deep learning models or explore

the use of B E R T models to further improve intent classification accuracy. Overall, the findings

of this study contribute to the growing body of research on deep learning models for natural

language processing applications.

6.1 Future Scope

a. L S T M is an excellent model that can handle complex data, but having the capacity of

handling numerous rows has not been sufficiently utilized by the 210 rows in this model.

In the future, additional surveys could gather additional data, train the model as per this

new extensive data, and be made more effective.

60

There are recent technologies in N L P , with profound architecture and vast libraries, for

example, B E R T and Transformers Perhaps this data model can be trained and tested to

be accurate and better suited for analyzing similar data types.

Employing it in a real-time chatbot can produce more variety of data and categories to

tune the model, which w i l l be appropriate and accurate for solving real-time issues.

61

7. References

[1] D H A R M A J E E R A O , D . T . V . and R A M A N A , K . V . A novel approach for efficient

training of Deep Neural Networks. Indonesian Journal of Electrical Engineering and Computer

Science. 2018. V o l . 11, no. 3p. 954. D O I 10.11591/ijeecs.vl I.i3.pp954-961.

[2] M A R O N , M . E . Automatic indexing: A n experimental inquiry. Journal of the ACM.

1961. V o l . 8, no. 3p. 404-417. D O I 10.1145/321075.321084.

[3] W U , Yingquan, I A N A K I E V , Krassimir and G O V I N D A R A J U , Venu. Improved K -

nearest neighbor classification. Pattern Recognition. 2002. V o l . 3 5 , no. lOp. 2311-2318.

D O I 10.1016/s0031 -3203(01)00132-7.

[4] J O A C H I M S , Thorsten. Text categorization with support vector machines: Learning

with many relevant features. Machine Learning: ECML-98. 1998. P. 137-142.

D O I 10.1007/bfb0026683.

[5] A L Y , Rami, R E M U S , Steffen and B I E M A N N , Chris. Hierarchical multi-label

classification of text with Capsule Networks. Proceedings of the 57th Annual Meeting of the

Association for Computational Linguistics: Student Research Workshop. 2019.

D O I 10.18653/vl/pl9-2045.

[6] C H O L L E T , F R A N C O I S . Deep learning with python. S.l. : O ' R E I L L Y M E D I A , 2021.

[7] What is machine learning? IBM [online]. [Accessed 19 March 2023]. Available from:

https://www.ibm.com/topics/machine-learning

[8] M U E L L E R , John and M A S S A R O N , Luca. Machine learning. Hoboken, N J : John

Wiley & Sons, 2021.

62

https://www.ibm.com/topics/machine-learning

[9] Z H U , Xiaojin (Jerry). Semi-supervised Learning Literature Survey. MINDS@UW

Home [online]. 1 January 1970. [Accessed 19 March 2023]. Available from:

https://minds.wisconsin.edu/handle/1793/60444

[10] B E N G I O , Yoshua. Learning deep architectures for AI. Hanover, M A : Now Publishers,

2009.

[11] G E N U E R , Robin and P O G G I , Jean-Michel. Random forests. Use R! 2020. P. 33-55.

D O I 10.1007/978-3-030-56485-8_3.

[12] C H E N , Tianqi and G U E S T R I N , Carlos. XGBoos t . Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.

D O I 10.1145/2939672.2939785.

[13] M A C H A D O , Marcos Roberto, K A R R A Y , Salma and D E S O U S A , Ivaldo Tributino.

L I G H T G B M : A n effective decision tree gradient boosting method to predict customer loyalty

in the finance industry. 2019 14th International Conference on Computer Science & Education

(ICCSE). 2019. D O I 10.1109/iccse.2019.8845529.

[14] K I M , Yoon . Convolutional neural networks for sentence classification. Proceedings of

the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2014.

D O I 10.3115/vl /dl4-l 181.

[15] A L B A W I , Saad, M O H A M M E D , Tareq Abed and A L - Z A W I , Saad. Understanding of

a convolutional neural network. 2017 International Conference on Engineering and

Technology (ICET). 2017. D O I 10.1109/icengtechnol.2017.8308186.

[16] D E V L I N , Jacob, C H A N G , Ming-Wei , L E E , Kenton and T O U T A N O V A , Kristina.

Bert: Pre-training of deep bidirectional Transformers for language understanding. ACL

Anthology [online]. [Accessed 19 March 2023]. Available from: https://aclanthology.org/N19-

1423/

63

https://minds.wisconsin.edu/handle/1793/60444
https://aclanthology.org/N19-

[17] Z H A N G , Y i n , J IN, Rong and Z H O U , Zhi-Hua. Understanding bag-of-words model: A

statistical framework. International Journal of Machine Learning and Cybernetics. 2010.

V o l . 1, no. l-4p. 43-52. D O I 10.1007/s 13042-010-0001-0.

[18] C A V N A R , W . B . and T R E N K L E , J. [PDF] n-gram-based text categorization: Semantic

scholar. [PDF] N-gram-based text categorization \ Semantic Scholar [online]. 1 January 1994.

[Accessed 19 March 2023]. Available from: https://www.semanticscholar.org/paper/N-gram-

based-text-categorization-Cavnar-Trenkle/49af572ef8f7ea89db06d5e7b66e9369c22d7607

[19] A U T H O R : F A T I H K A R A B I B E R P H . D . I N C O M P U T E R E N G I N E E R I N G , F A T I H

K A R A B I B E R P H . D . I N C O M P U T E R E N G I N E E R I N G , PS Y C H O M E T R I C I A N , Editor: Rhys

and L E A R N D A T A S C I , Editor: Brendan Founder of. TF-idf - term frequency-inverse document

frequency. Learn Data Science - Tutorials, Books, Courses, and More [online].

[Accessed 19 March 2023]. Available from: https://www.learndatasci.com/glossary/tf-idf-

term-frequency-inverse-document-frequency/

[20] M I K O L O V , Tomas, C H E N , K a i , C O R R A D O , Greg and D E A N , Jeffrey. Efficient

estimation of word representations in vector space. arXiv.org [online]. 7 September 2013.

[Accessed 19 March 2023]. Available from: https://arxiv.org/abs/1301.3781

[21] P E N N I N G T O N , Jeffrey, S O C H E R , Richard, and M A N N I N G , Christopher. Glove:

Global vectors for word representation. Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP). 2014. D O I 10.3115/vl /dl4-l 162.

[22] R I S H , I. A n empirical study of the naive Bayes classifier. Semantic Scholar [online]. 1

January 1970. [Accessed 19 March 2023]. Available from:

https://www.semanticscholar.org/paper/An-empirical-study-of-the-naive-Bayes-classifier-

Rish/3cdldf035ce7a022eefaf3190627ffcd5e43eca3

[23] U N I V E R S I T Y , Richard Socher Stanford, S O C H E R , Richard, U N I V E R S I T Y , Stanford,

U N I V E R S I T Y , Jeffrey Pennington Stanford, P E N N I N G T O N , Jeffrey, U N I V E R S I T Y , Eric H .

Huang Stanford, H U A N G , Eric H . , U N I V E R S I T Y , Andrew Y . N g Stanford, N G , Andrew Y . ,

U N I V E R S I T Y , Christopher D . Manning Stanford, M A N N I N G , Christopher D. , G E N E V A ,

64

https://www.semanticscholar.org/paper/N-gram-
https://www.learndatasci.com/glossary/tf-idf-
http://arXiv.org
https://arxiv.org/abs/1301.3781
https://www.semanticscholar.org/paper/An-empirical-study-of-the-naive-Bayes-classifier-

University of, T E C H N O L O G Y , Massachusetts Institute of, U N I V E R S I T Y , Macquarie and

M E T R I C S , Other Metrics View Article. Semi-supervised recursive autoencoders for predicting

sentiment distributions: Proceedings of the conference on empirical methods in natural

language processing. DL Hosted proceedings [online]. 1 July 2011. [Accessed 19 March 2023].

Available from: https://dl.acm.org/doi/10.5555/2145432.2145450

[24] S O C H E R , Richard, H U V A L , Brody, M A N N I N G , Christopher D . and N G , Andrew Y .

Semantic compositionality through recursive matrix-vector spaces. ACL Anthology [online].

[Accessed 19 March 2023]. Available from: https://aclanthology.org/D12-1110/

[25] I Y Y E R , Mohit , M A N J U N A T H A , Varun, B O Y D - G R A B E R , Jordan and III, Hal

Daume. Deep unordered composition rivals syntactic methods for text classification. ACL

Anthology [online]. [Accessed 19 March 2023]. Available from: https://aclanthology.org/P15-

1162/

[26] H O C H R E I T E R , Sepp and S C H M I D H U B E R Jürgen. Long short term memory.

München : Inst, für Informatik, 1995.

[27] B O W M A N , Samuel R., A N G E L I , Gabor, P O T T S , Christopher and M A N N I N G ,

Christopher D . A large annotated corpus for Learning Natural Language Inference. Proceedings

of the 2015 Conference on Empirical Methods in Natural Language Processing. 2015.

D O I 10.18653/vl/dl5-1075.

[28] W A N G , Zhiguo, H A M Z A , Wael and F L O R I A N , Radu. Bilateral multi-perspective

matching for natural language sentences. Proceedings of the Twenty-Sixth International Joint

Conference on Artificial Intelligence. 2017. D O I 10.24963/ijcai.2017/579.

[29] A L B A W I , Saad, M O H A M M E D , Tareq Abed and A L - Z A W I , Saad. Understanding of

a convolutional neural network. 2017 International Conference on Engineering and

Technology (ICET). 2017. D O I 10.1109/icengtechnol.2017.8308186.

65

https://dl.acm.org/doi/10.5555/2145432.2145450
https://aclanthology.org/D12-1110/
https://aclanthology.org/P15-

[30] K I M , Yoon . Convolutional neural networks for sentence classification. Proceedings of

the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2014.

D O I 10.3115/vl /dl4-l 181.

[31] J O H N S O N , Rie and Z H A N G , Tong. Semi-supervised Convolutional Neural Networks

for text categorization via region embedding. arXiv.org [online]. 1 November 2015.

[Accessed 19 March 2023]. Available from: https://arxiv.org/abs/1504.01255

[32] J O H N S O N , Rie and Z H A N G , Tong. Deep pyramid convolutional neural networks for

text categorization. Proceedings of the 55th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers). 2017. D O I 10.18653/vl/pl7-1052.

[33] H E , Kaiming, Z H A N G , Xiangyu, R E N , Shaoqing and S U N , Jian. Identity mappings in

deep residual networks. Computer Vision - ECCV2016. 2016. P. 630-645. D O I 10.1007/978-

3-319-46493-0_38.

[34] Y A N G , Zichao, Y A N G , D i y i , D Y E R , Chris, H E , Xiaodong, S M O L A , Alex and

H O V Y , Eduard. Hierarchical Attention Networks for document classification. Proceedings of

the 2016 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies. 2016. D O I 10.18653/vl/nl6-l 174.

[35] P E T E R S , Matthew E . , N E U M A N N , Mark, I Y Y E R , Mohit, G A R D N E R , Matt,

C L A R K , Christopher, L E E , Kenton and Z E T T L E M O Y E R , Luke. Deep contextualized word

representations. arXiv.org [online]. 22 March 2018. [Accessed 19 March 2023]. Available

from: https://arxiv.Org/abs/l802.05365

[36] D E V L I N , Jacob, C H A N G , Ming-Wei , L E E , Kenton and T O U T A N O V A , Kristina.

Bert: Pre-training of deep bidirectional Transformers for language understanding. arXiv.org

[online]. 24 M a y 2019. [Accessed 19 March 2023]. Available from:

https ://arxiv.org/abs/1810.04805

[37] JOSHI , Mandar, C H E N , Danqi, L I U , Yinhan, W E L D , Daniel S., Z E T T L E M O Y E R ,

Luke and L E V Y , Omer. Spanbert: Improving pre-training by representing and predicting spans.

66

http://arXiv.org
https://arxiv.org/abs/1504.01255
http://arXiv.org
https://arxiv.Org/abs/l
http://arXiv.org

Transactions of the Association for Computational Linguistics. 2020. V o l . 8, p. 64-77.

D O I 10.1162/tacl_a_00300.

[38] L A N , Zhenzhong, C H E N , Mingda, G O O D M A N , Sebastian, G I M P E L , Kevin,

S H A R M A , Piyush and S O R I C U T , Radu. Albert: A lite bert for self-supervised learning of

language representations. arXiv.org [online]. 9 February 2020. [Accessed 19 March 2023].

Available from: https://arxiv.org/abs/1909.11942

[39] S A K , Ha§im, SENIOR, Andrew and B E A U F A Y S , Francoise. Long short-term memory

recurrent neural network architectures for large-scale acoustic modeling. Interspeech 2014.

2014. D O I 10.21437/interspeech.2014-80.

[40] G R I E W A N K , Andreas and W A L T H E R , Andrea. Evaluating derivatives: Principles

and techniques of algorithmic differentiation. Philadelphia, P A : Society for Industrial &

Applied Mathematics, 2009.

[41] P I C H O T T A , Kar l and M O O N E Y , Raymond. Learning statistical scripts with L S T M

recurrent neural networks. Proceedings oftheAAAI Conference on Artificial Intelligence. 2016.

V o l . 30, no. 1. D O I 10.1609/aaai.v30il.10347.

[42] C H O , Kyunghyun, V A N M E R R I E N B O E R , Bart, G U L C E H R E , Caglar, B A H D A N A U ,

Dzmitry, B O U G A R E S , Fethi, S C H W E N K , Holger and B E N G I O , Yoshua. Learning phrase

representations using R N N encoder-decoder for statistical machine translation. Proceedings of

the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2014.

D O I 10.3115/vl /dl4- l 179.

[43] G R A V E S , Alex and S C H M I D H U B E R , Jürgen. Framewise phoneme classification with

bidirectional L S T M and other neural network architectures. Neural Networks. 2005. V o l . 18,

no. 5-6p. 602-610. D O I 10.1016/j.neunet.2005.06.042.

[44] G E R S , F . A . Learning to forget: Continual prediction with L S T M . 9th International

Conference on Artificial Neural Networks: ICANN '99. 1999. D O I 10.1049/cp:19991218.

67

http://arXiv.org
https://arxiv.org/abs/1909.11942

[45] S H M U E L I , Boaz. Multi-class metrics made simple, part II: The Fl-score. Medium

[online]. 21 July 2022. [Accessed 19 March 2023]. Available from:

https://towardsdatascience.com/multi-class-metrics-made-simple-part-ii-the-fl-score-

ebe8b2c2cal

[46] B I R D , Steven, K L E I N , Ewan and L O P E R , Edward. Natural language processing with

python: Analyzing text with the natural language toolkit. Beijing: O'Reilly, 2009.

[47] Van Houdt, Greg & Mosquera, Carlos & Näpoles, Gonzalo. (2020). A Review on the

Long Short-Term Memory Model . Artif icial Intelligence Review.

[48] T U R I N G , A . M . (1950, October 1). I . — C O M P U T I N G M A C H I N E R Y A N D

I N T E L L I G E N C E . Mind, LIX(236), 433-460. https://doi.org/10.1093/mind/lix.236.433

68

https://towardsdatascience.com/multi-class-metrics-made-simple-part-ii-the-fl-score-
https://doi.org/10.1093/mind/lix.236.433

8. List of Figures

8.1 List of Figures

Figure 1. Text classification flowchart 4

Figure 2. Artificial intelligence, machine learning, and deep learning. [6] 6

Figure 3. The structure of word2vec, including C B O W and Skip-gram. [17] 14

Figure 4. L S T M architecture. [26] 25

Figure 5. Example of a confusion matrix. [45] 27

Figure 6. Two-class Confusion Matrix. [45] 28

Figure 7. Student query dataset. [own work] 30

Figure 8. Categories of Data, [own work] 31

Figure 9. Google Colab environment, [own work] 32

Figure 10. Library imports in Google Colab. [own work] 32

Figure 11. Files upload function in Google Colab. [own work] 33

Figure 12. Top 10 rows of the dataset. [own work] 34

Figure 13. Basic information about the data, [own work] 34

Figure 14. Statistical information about the data, [own work] 35

Figure 15. Categories and their count, [own work] 36

Figure 16. Queries as an array of tokens, [own work] 37

Figure 17. Implementation of Gensim's Preprocessing function, [own work] 39

Figure 18. Transforming categories to one hot encoding, [own work] 40

Figure 19. Tokenizing the queries, [own work] 41

Figure 20. Padding the tokens to uniform the length, [own work] 42

Figure 21. Splitting the dataset into train and test data, [own work] 44

Figure 22. Building L S T M model, [own work] 45

Figure 23. Experimenting with epochs and batch_value for finding optimal value, [own work]

49

Figure 24. Training of the model, [own work] 50

Figure 25. Evaluation of the trained model with test set. [own work] 51

Figure 26. Tensorboard plotting of L S T M model training, [own work] 52

Figure 27. I B M Watson setup, [own work] 53

Figure 28. Shuffling and data pre-processing for I B M Watson, [own work] 53

69

Figure 29. Splitting the data into train and test datasets. [own work] 54

Figure 30. Installing ibm_watson library to Google Colab environment, [own work] 54

Figure 31. Importing necessary libraries for I B M Watson A P I . [own work] 55

Figure 32. Parameters for I B M Watson A P I call, [own work] 55

Figure 33. Creating session with I B M Watson Assistant, [own work] 56

Figure 34. Predicting categories for queries with I B M Watson via A P I . [own work] 57

Figure 35. Response received from I B M Watson Assistant service with input query, its

predicted intent, and confidence score, [own work] 57

Figure 36. Printing the metrics for evaluation, [own words] 58

8.2 Appendix

1. Query.xlsx

2. Multi_Class_Text_Classification_using_LSTM.ipynb

3. I B M Watson.ipynb

70

