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Abstrakt
Tato diplomová práce se zabývá vývojem a implementací algoritmu pro detekci QR
kódů s integrací do platformy ROS a výpočty běžícími na grafické kartě. Z rešerše
současně dostupných nástrojů a technik je vybrán vhodný postup a algoritmus je nap-
sán jako modul v programovacím jazyce Python, který je snadno integrovatelný do
ROS. Ke zprostředkování výpočtů na vícejádrovém hardware, jako jsou grafické karty
či vícejádrové procesory, je využita knihovna OpenCL.

Klíčová slova
QR kód, ROS, GPU, digitální zpracování obrazu, paralelní výpočty

Abstract
This master’s thesis deals with the design and implementation of a QR code detection
algorithm under the ROS platform with computations running on a graphical processing
unit. Through a comparative survey of available tools and techniques, a suitable ap-
proach is chosen and the algorithm is written as a module in the Python programming
language, ready to be implemented under the ROS platform. The OpenCL parallel
computing platform is used to facilitate parallel computation on multi-core hardware,
such as graphical processing units or multi-core CPUs.
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1 Introduction

In mobile robotics, resource management is essential. One of the limiting factors for the
usefulness of a mobile robot is often battery life, and optimizing power usage is thus a
good way of extending the robot’s range and capabilities. Another issue is the scarcity of
computational resources. The controlling software of a mobile robot has many tasks to
perform - data acquisition and processing (e.g. localization and mapping), trajectory
planning, decision making, the actual control of the robot’s movement, etc. What
makes the matter worse is that, in typical cases, the robot is required to perform these
tasks in real-time, making any unnecessary tasks running on the CPU a burden for the
entire system and any bottlenecks may become potentially hazardous to the robot’s
operation. It is thus advantageous to look at the nature of certain tasks and assess the
feasibility of using other available hardware for their execution. This master’s thesis
takes on precisely this latter need for resource management - that is, freeing up precious
CPU resources by utilizing for example an integrated GPU as a general-purpose parallel
computing platform.

As a model example for this thesis, the detection of QR codes in images acquired
by the camera of a mobile robot is considered. Quick response, or QR, codes are
machine-readable binary matrices. In recent years, their use has spread from its orig-
inal automotive part identification application to many other fields, including general
tracking and data storage. Crucially, they have transcended the industrial sphere to
become included in our daily lives, whether it be shopping, cinema tickets or public
transportation. Their compactness and, thus far, also novelty, have also meant that
QR codes have caught on in marketing. Often, such codes will contain an address for a
webpage or a simple tagline promoting a new product, movie, etc. This has also meant
that the ability to read these codes has become expected of modern smartphones and
other consumer electronics. If a mobile robot’s expected field of operation includes
interaction with humans or simply reading encoded data for its own use, it is thus
advantageous to equip it with this ability.

The other reason this was used as a model example is that the detection of QR
codes, and image processing in general, is a task that is ripe for parallelization. Often,
we perform computations on individual pixels, or sometimes rows and columns of a
digital image. If these computations are running reasonably independent of each other
- that is, they do not require other computations to be completed to provide their
own result - a graphical processing unit, or GPU, with its nowadays many hundreds of
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computing units, can be utilized to perform the desired operations. This often allows us
to avoid using costly loops as we would have to with serial execution. Not only will this
usually be many times faster, but crucially, it will allow the CPU to focus on performing
other tasks, which may perhaps not be subject to advantageous parallelization.

As one of the tasks of this thesis, the integration into the Robotic Operating System
(ROS) platform is considered. This platform is commonly used in mobile robotics and
using this already available framework will help preserve the homogeneity of the entire
system.
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2 Survey

In this chapter, the structure of QR codes is briefly explained. A survey is then con-
ducted to summarize the currently used approaches for QR code detection and decod-
ing, as well as the possibilities in parallel computing on a PC. The Robotic Operating
System (ROS) is also introduced.

2.1 QR code structure
The QR Code’s name comes from ”quick response”, which implies the circumstances
of its creation. While one-dimensional barcodes were used for decades, in the 1990s
the need arose for an easily readable code that could store more information. This led
to the development of various two-dimensional codes. One of these is the QR code,
developed in Japan. Its main advantage over its contemporary competitors was the
fact that its creators put a lot of emphasis on the speed and accuracy of detection and
reading. In order to achieve this goal, they set out to develop a special marker pattern
that would be easily detectable and wouldn’t lend itself to false positives in detection.

Figure 2.1: Structure of a QR code [22]

”After mulling over this problem thoroughly, they decided to do an exhaustive survey
of the ratio of white to black areas in pictures and symbols printed on fliers, magazines,
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cardboard boxes and so on after reducing them to patterns with black and white areas.
They continued the task of surveying innumerable examples of printed matter all day
long for days on end. Eventually, they came up with the least used ratio of black and
white areas on printed matter. This ratio was 1:1:3:1:1. This was how the widths of
the black and white areas in the position detection patterns were decided upon. In
this way, a contrivance was created through which the orientation of their code could
be determined regardless of the angle of scanning, which could be any angle out of
360 deg, by searching for this unique ratio.” [21] The resulting markers (as seen in 2.1)
are placed in three corners of the QR code, which means that detecting them will give
us information about both the position and the orientation of the code.

Besides the position detection patterns, each QR code contains several other features
to facilitate easier detection and decoding. In the original QR code, one additional
alignment pattern is present. In larger versions of the code, multiple of these are
included and their detection can help rectify distortions of nonlinear nature, such as
the cylindrical distortion. Areas of the code are reserved for version information, format
information and a data and error-correction area. A timing pattern of alternating black
and white modules is present to help with the detection of module sizing. The area
around a QR code has a so-called ”quiet zone” that allows for easier detection.

In addition, QR codes come in several variants that differ by their robustness in
terms of being able to be read even with scanning errors. In its most robust version, 30%
of the code can be corrupted and the information stored within will still be recovered.
This is achieved by the use of the Reed–Solomon error correction algorithm. Of course,
the redundancy introduced into the code means that less data can be stored overall.
Increasingly, this ability to be read even with errors leads to QR code creators infusing
artistic elements into their codes for novelty, as in 2.2.

Figure 2.2: QR code with artistic elements, but still readable [25]
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2.2 QR code detection
Although the QR code standard includes its own suggested algorithm for detection,
there are areas in which it is found to be lacking. Other approaches are thus also
suggested in several works, and they will be shortly reviewed in this chapter.

2.2.1 QR code specification algorithm
In the QR Code barcode symbology specification [20], an algorithm for detection is
proposed:

• Determine a Global Threshold by taking a reflectance value midway between the
maximum reflectance and minimum reflectance in the image. Convert the image
to a set of dark and light pixels using the Global Threshold.

• Locate the finder pattern. The finder pattern in QR Code 2015 consists of three
identical finder patterns located at three of the four corners of the symbol. The
finder pattern in Micro QR Code is a single finder pattern. As described in 5.3.2,
module widths in each finder pattern form a dark-light-dark-light-dark sequence
the relative widths of each element of which are in the ratios 1 : 1 : 3 : 1 : 1. For
the purposes of this algorithm the tolerance for each of these widths is 0,5 (i.e. a
range of 0,5 to 1,5 for the single module box and 2,5 to 3,5 for the three module
square box).

Figure 2.3: The ratio in a QR code corner marker [2]

1. When a candidate area is detected note the position of the first and last points
A and B respectively at which a line of pixels in the image encounters the outer
edges of the finder pattern (see Figure 31). Repeat this for adjacent pixel lines
in the image until all lines crossing the central box of the finder pattern in the x
axis of the image have been identified.
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2. Repeat step 1) for pixel columns crossing the central box of the finder pattern in
the y axis of the image.

3. Locate the center of the pattern. Construct a line through the midpoints between
the points A and B on the outermost pixel lines crossing the central box of the
finder pattern in the x axis. Construct a similar line through points A and B on
the outermost pixel columns crossing the central box in the y axis. The center of
the pattern is located at the intersection of these two lines.

4. Repeat steps 1) to 3) to locate the centers of the two other finder patterns.

5. If no candidate areas are detected, reverse the colouring of the light and dark pixels
and recommence at the beginning of step b to attempt to decode the symbol as
a symbol with reflectance reversal.

6. If a single pattern is identified but two further finder patterns cannot be located,
attempt to decode the symbol as a Micro QR Code symbol by jumping to the
Micro QR Code symbols reference decode (from step m).

While this algorithm serves as the basis for most detection algorithms in the encoun-
tered projects (e.g. [5], [1]), on its own, it is unsuitable for real world application for
the detection of QR codes in arbitrarily acquired images, for example from the camera
of a mobile robot. The first problem shows up at the very start, where a global thresh-
olding method is advocated for. As we will see in later chapters, this is not sufficient
for images acquired under varying light conditions. Furthermore, the basic algorithm
doesn’t account for any distortions at all, and as such will fail in detecting and decod-
ing codes viewed at an angle or on uneven surfaces. This is presumably because of the
assumption that QR codes will always be read by a dedicated reader under controlled
circumstances, which is a luxury we cannot guarantee in mobile robotics. It is thus
assumed that modifications will have to be made if this algorithm is used.

2.2.2 Viola-Jones framework
In [2], the authors took on the task of detecting QR codes in arbitrarily acquired images
by making use of the Viola-Jones rapid object detection framework. In this framework,
Haar-like features are used by classifiers and trained on a set of training data to select
for reliable detection of desired features in a digital image. The prototypes of these are
shown in 2.4. From a set of feature prototypes, the ones most useful for detecting QR
code corner markers are selected by means of cascading and boosting, meaning that
well-performing ones are reinforced, while features that are not useful for detection of
the desired structure are suppressed.

Since the QR code corner finder patterns are a rigid structure present in every QR
code, they are a good target for this approach. The fast calculations of the feature
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Figure 2.4: Feature prototypes [2]

values are obtained by using the integral image, that is, an image in which each (x,y)
coordinate has a pixel value corresponding to the sum of all pixels values in the rectangle
(0,0) to (x,y) in the original image. This allows the feature values to be calculated in
constant time. The set of feature prototypes is trained on 285 images containing the QR
code corner markers and achieved an accuracy of detection of about 90%. The authors
advocated for and also implemented the use of post-processing to further improve QR
code detection rates by using constraints based on the presumed location and size
comparison of the corner markers in a single QR code. When tested on video frames of
the resolution of 640x480 pixels, the best results were obtained for training samples of
size 20x20. The detection then took about 50 ms, while the post-processing is largely
sample size independent and takes around 120 ms.

2.2.3 Harris corner detector and Convex hull algorithm
Another approach for the detection and rectification of QR codes is proposed in [3].
Here, the authors use the Harris corner detector scheme to detect points within the QR
code. They argue that since images in the real world are often distorted by perspective,
the proposed standard algorithm of QR code corner marker detection cannot be used.
Instead, once points within the QR code are detected, a convex hull algorithm is used
to find a four-sided polygon that contains them, i.e. the boundary lines of the QR
code. Once found, the four corner points are used for the correction of the image by
perspective collineation. Authors report good results, but acknowledge the limitations
of using this approach for heavily distorted images, such as ones with QR codes printed
on cylindrical surfaces.

2.2.4 SURF
In work done at the Air Force Institute of Technology in Ohio, USA [14], the SURF
feature detection algorithm is used on QR codes. The use case here is, however, different
from what we are interested in. The purpose of using SURF is not to detect a QR code
in the image in order to read the information stored within, but to reliably detect an
already known QR code and estimate its pose. This would then be used for example
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Figure 2.5: Suggested approach from [3]

for the fast and accurate estimation of the location of an aerial landing platform that
an autonomous unmanned aerial vehicle (UAV) could land on, mid-air, as shown in 2.6.

Figure 2.6: Airborne landing platform, the use case in [14]

While it is not the application we are looking for, we can still gain valuable insight
from it. The reason for using QR codes in this work is that, as was already shown in
the case of the Viola-Jones framework, their binary black-and-white design lends itself
well to feature detection. Indeed, ”the descriptor stage of the SURF algorithm also
uses the Haar wavelet response to describe feature orientation which consists of finding
transitions from white to black or vice-versa. The result is a feature set that allows
for large changes in rotation and translation between the QR code model image and
a QR code in a scene. Furthermore, because of the pyramidal calculation of features
by SURF, there are larger features detected in the QR code that allow the overall
orientation of the code to be characterized. Overall, the traits of the QR code make it
an excellent medium for determining the pose of an object it is mounted on.” [14]

The work was focused on implementing the SURF algorithm on field-programmable
gate arrays (FPGA), which is also hardware capable of parallel computing. This shows
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Figure 2.7: Detected SURF features in a QR code [14]

promise in the possibilities of optimization that would be beneficial in our case. If we
are then able to quickly and reliably find SURF features, and many of them (as seen
in 2.7) in each QR code at that, some clever postprocessing on our part would allow us
to detect and decode the QR codes. For example, a suitable clustering algorithm could
provide us with a good estimate of the position of QR codes in the image. By extracting
these smaller areas, we wouldn’t have to process the entire image and could speed up
the whole process considerably. Quite worryingly for us, the FPGA-implemented SURF
algorithm performed with framerate on the limits of real-time video use, even though
only with a resolution of 640x480.

2.2.5 Contour detection
QR codes have recently been tested for use in surgical navigation systems [6], with
the authors using a detection scheme based on finding the contours of QR code corner
markers. A high resolution camera integrated in the surgical light acquires images
of QR codes attached to a pointer instrument and the patient. The transformation
between the QR codes and the camera is computed by detecting the marker position
and orientation in the images and reading the QR size that is encoded in the QR codes.

When detecting a QR code corner finder pattern, three square contours can be
identified, as can be seen in 2.9. To insure that three detected contours belong to a
single marker, three geometrical features are considered. The first is hierarchy, meaning
that contour i encloses contour j and k. The second feature is concentricity, that is,
all three contours are located in the same position, or, in other words, have the same
center of mass. Lastly, the proportionality of the contour perimeters is considered, so
that they correspond to the expected ratios.

Once markers have been reliably found, groups of threes are taken and tested for
being part of the same QR code. The authors approach this as a classification prob-
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Figure 2.8: The detection setup used by [6]

Figure 2.9: Found contours [6]

lem and again use three distinct features to classify the markers: perimeter, area and
distance to the origin. The product of these features is a very robust measure.

Figure 2.10: QR code segmented by fitted lines [6]

With the QR codes found, the size information stored within is read, which allows
the authors to segment the code by fitted lines and read the rest of the data stored
in the QR code, as seen in 2.10. The authors claim robust results even for distorted,
rotated, and tilted QR codes, but admit that the detection precision is not yet up to
the quality required for surgical navigation.
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2.3 Parallel computing platforms
Parallelism in computing is increasingly used as a way to boost performance. Since
there are technical challenges present with higher clock speeds, Central Processing Units
(CPUs) now improve performance by adding multiple cores. The role of the Graphical
Processing Unit has gradually evolved from being used purely to calculate graphical
computations for rendering to general programmable parallel processors. With the
desire to use the parallel computing capabilities of these platforms on the rise, various
software is being developed to facilitate this access. [15] Of all the available frameworks,
two have been chosen for closer investigation due to their popularity; Nvidia CUDA
and OpenCL. [11]

2.3.1 Nvidia CUDA
CUDA® is a parallel computing platform and programming model invented by NVIDIA.
It is used in many different fields like software development, scientific research or the
video game industry. A testament to its popularity is the fact that several educational
institutions offer whole courses on its use, such as Harvard University, University of
Illinois at Urbana-Champaign or the Chinese Academy of Sciences.

The improvement in performance through parallel processing is an attractive con-
cept, but until the last decade, general computation on graphical processing units wasn’t
easy to achieve, for example, assembly language was often needed to access these capa-
bilities. The Nvidia company, with the CUDA parallel computing platform, provides a
way to send C, C++ and Fortran code straight to GPU, no assembly language required.

”The CUDA programming model is a heterogeneous model in which both the CPU
and GPU are used. In CUDA, the host refers to the CPU and its memory, while the
device refers to the GPU and its memory. Code run on the host can manage memory
on both the host and device, and also launches kernels which are functions executed on
the device. These kernels are executed by many GPU threads in parallel.

Given the heterogeneous nature of the CUDA programming model, a typical se-
quence of operations for a CUDA C program is:

• Declare and allocate host and device memory.

• Initialize host data.

• Transfer data from the host to the device.

• Execute one or more kernels.

• Transfer results from the device to the host.
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One advantage of the heterogeneous CUDA programming model is that porting an
existing code from C to CUDA C can be done incrementally, one kernel at a time.” [29]

An example kernel written for CUDA that adds together two arrays would look like
this:

__global__
void add(int n, float *x, float *y)
{

int index = threadIdx .x;
int stride = blockDim .x;
for (int i = index; i < n; i += stride )

y[i] = x[i] + y[i];
}

Unfortunately, the usefulness of CUDA is somewhat limited by it only being sup-
ported by hardware made by Nvidia.

2.3.2 OpenCL
”OpenCL (Open Computing Language) is an open royalty-free standard for general pur-
pose parallel programming across CPUs, GPUs and other processors, giving software
developers portable and efficient access to the power of these heterogeneous process-
ing platforms. OpenCL supports a wide range of applications, ranging from embed-
ded and consumer software to HPC solutions, through a low-level, high-performance,
portable abstraction. By creating an efficient, close-to-the-metal programming in-
terface, OpenCL will form the foundation layer of a parallel computing ecosystem
of platform-independent tools, middleware and applications. OpenCL is particularly
suited to play an increasingly significant role in emerging interactive graphics ap-
plications that combine general parallel compute algorithms with graphics rendering
pipelines.

OpenCL consists of an API for coordinating parallel computation across hetero-
geneous processors; and a cross-platform programming language with a well specified
computation environment.” [15]

The main idea behind OpenCL is to provide a single framework that could use
the capabilities of heterogeneous hardware, such a CPUs, GPUs and FPGAs. While
nowadays all of these have multiple cores, they don’t work exactly the same way and
often differ in the way they handle memory. While the standards for CPUs usually
assume a shared address space and do not inherently support vector operations, general
purpose GPU programming models address complex memory hierarchies and vector
operations. They are, however, traditionally platform-, vendor- or hardware-specific.
These limitations make it difficult for a developer to access the compute power of
heterogeneous CPUs, GPUs and other types of processors from a single, multi-platform
source code base. Not only can OpenCL kernels run on different types of devices, but
a single application can dispatch kernels to multiple devices at once. For example, if a
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computer contains both a processor and graphics card, kernels can be synchronized to
run on both devices and share data between them.

OpenCL works with five distinct data structures: device, kernel, program, command
queue and context. A device is exactly that - a single piece of hardware on which kernels
are run. The kernels are the computations themselves, blocks of code that are executed
on target hardware. A program contains multiple kernels that are then distributed
to devices. The command queue in OpenCL is the medium through which devices
receive their kernels. The queue consists of commands sent to a device and one of these
commands is used to make a device execute a kernel. And last, a context is a platform
with a set of available devices for that platform.

Besides kernels, other important terms are the work-group and the work-item. Ker-
nels are executed by one or more work-items. Work-items are collected into work-groups
and each work-group executes on a compute unit. The kernels of OpenCL are written
in C, as is shown in the following example of a simple sum of two arrays:

__kernel void vectorAdd ( __global const float * a,
__global const float * b,

__global float * c)
{

int nIndex = get_global_id (0);
c[ nIndex ] = a[ nIndex ] + b[ nIndex ];

}

Figure 2.11: The hierarchy of memory used in OpenCL [28]

OpenCL works with multiple different kinds of memory: global, constant, local and
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private. The global memory stores data for the entire device. Constant memory is very
similar to that, but is read-only. Local memory stores data for the work-items in a
work group and private memory stores data for an individual work-item.

Global memory can be read from and written to by both the host and the device.
This memory is usually the largest on an OpenCL device, but it’s also the slowest for
work-items to access. A block of local memory is only accessible by work-items in one
work-group, but they can do so much faster than with global memory. It is useful for
storing intermediate results of the computations from individual work-items. Private
memory is accessible and used purely by a single work-item for its own computations.
This address space is the fastest to access, but it is also much smaller and cannot thus
be used for storing vast amounts of data.

2.4 ROS
”The Robot Operating System (ROS) is a framework for writing robot software. It is
a collection of tools, libraries, and conventions that aim to simplify the task of creat-
ing complex and robust robot behavior across a wide variety of robotic platforms.” [9]
Envisioned as a common platform for code- and idea-sharing, it allows for significantly
decreased development time in new robotics projects. Among its chief aims is modular-
ity, that is, the resulting software is structured as a large number of small programs that
rapidly pass messages to one another. As such, it encourages reuse of already written
programs, eliminating the need to reinvent the wheel with every new robot. [10]

”ROS consists of a number of parts:

1. A set of drivers that let users read data from sensors and send commands to
motors and other actuators, in an abstracted, well-defined format. A wide variety
of popular hardware is supported, including a growing number of commercially
available robot systems.

2. A large and growing collection of fundamental robotics algorithms that allow
users to build maps of the world, navigate around it, represent and interpret
sensor data, plan motions, manipulate objects, and do a lot of other stuff. ROS
has become very popular in the robotics research community, and a lot of cutting
edge algorithms are now available in ROS.

3. All of the computational infrastructure that allows users to move data around, to
connect the various components of a complex robot system, and to incorporate
other algorithms. ROS is inherently distributed and allows users to split the
workload across multiple computers seamlessly.

4. A large set of tools that make it easy to visualize the state of the robot and the
algorithms, debug faulty behaviors, and record sensor data. Debugging robot
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software is notoriously difficult, and this rich set of tools is one of the things that
make ROS as powerful as it is.

5. Finally, the larger ROS ecosystem includes an extensive set of resources, such
as a wiki that documents many of the aspects of the framework, a question-and
answer site where users can ask for help and share what they’ve learned, and a
thriving community of users and developers.

ROS provides all the parts of a robot software system that would otherwise have to
be written. It allows the user to focus on the parts of the system that he cares about,
without worrying about the other parts.” [9]

From the beginning, ROS has been developed at multiple institutions and for mul-
tiple robotics projects. Nowadays, it is increasingly popular in education, scientific
research, and the commercial sphere. It shares most of its philosophy with the Unix
project, emphasizing peer-to-peer communication between the individual parts of the
system, of which there are many, usually small in size and scope. It supports multiple
programming languages, the most used of these being C++ and Python. The creation
of standalone libraries is encouraged and their connection to the other ROS modules is
relatively straightforward. The core of ROS is released under the BSD license, which
allows commercial and noncommercial use.
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3 Method

In this chapter, the chosen methods for the task of QR code detection implemented on
the GPU will be introduced, along with an explanation for why they were chosen.

3.1 Suitable detection algorithm

When looking at the detection algorithms, the choice was made to adapt the basic
algorithm outlined in the QR code bar cide symbology specification [20]. This is because
it was specifically designed to take advantage of the structure of a QR code. By scanning
each line and each row of an image, we can detect all QR codes contained in it in
one go. These can then be extracted and dealt with one-by-one. The fact that the
detection algorithm scans each line and column independently of the others means that
parallelization of this task could be highly advantageous in terms of performance.

As noted in the survey part of this thesis, some modifications will have to be made.
In the binarization step, a global threshold will give unsatisfactory results under uneven
lighting conditions. Based on the works processed in the survey, a local thresholding
method seems like a suitable choice in terms of both accuracy and speed. To this
end, a uniform filter will be used. In order to improve performance, the optimized
OpenCV library will be used to this end, since it is also able to take advantage of
parallel computing on the GPU.

Another issue which is not covered by the basic algorithm is that codes are assumed
to be undistorted. This means that QR codes viewed under a perspective transforma-
tion will have to be further processed to find at least four points with known initial
positions in a square, undistorted QR code. These four points are needed to compute
the homography transformation matrix, and the further apart they are, the more ac-
curate the rectification will be. As such, the best candidates for these four points are
the four corners of a QR code. Three of them are relatively easy to find, thanks to
the presence of position detection patterns. The fourth one will have to be found by
different means, further elaborated upon in later chapters.
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3.2 Parallel computing platform
Of the available parallel computing frameworks, two of them (Nvidia CUDA and
OpenCL) were shortly introduced in the previous chapter as the two main technologies
used nowadays. Of these two, the OpenCL framework was chosen as a good fit for our
requirements. While the CUDA technology is certainly powerful and has substantial
support from the developers, its limitation to the hardware to that from one vendor is
a disadvantage. On the other hand, OpenCL can perform computations on various het-
erogeneous computational platforms, from CPUs to GPUs and FPGAs. Its open-source
license is certainly an advantage as well.

Another reason for this choice is the availability of direct personal experience with
this platform in the vicinity of the author of this thesis. Valuable input was gained
from work done by Petr Schreiber in his diploma thesis [13] on parallel computation,
in which the OpenCL framework was also used. This helped avoid tricky bug-fixing
stemming from unfamiliarity with the platform. The thesis outlines all the intricacies
of OpenCL use, explains the structure of the various kinds of memory used by the
framework and shows on basic examples how to write an OpenCL kernel and prepare
it for its execution.

The use of OpenCL is also advantageous for the fact that several libraries are avail-
able in various programming languages that allow the user access to the OpenCL API
directly from these languages, without the need for complicated interfacing.

3.3 Programming language
Because of the author’s familiarity with the language and the ease of development it
provides, the Matlab programming language was used to write a working-as-intended
first version of the program. The readily available tools for plotting and visualization
of intermediate results, as well as profiling features to assess the performance of indi-
vidual blocks of code, were used during development to great advantage. Since Matlab
supports vector and matrix operations extensively, it is even here apparent how unnec-
essary loops in the code can lead to slow execution. However, it is clear that the Matlab
version won’t be used in the final iteration of the algorithm, because integration into
ROS would be far too cumbersome.

ROS easily integrates code written in two languages; C++ and Python. Because
of the similarity of syntax to Matlab, Python was decided upon as the language of
choice. The fact that modules such as NumPy provide support for vector and matrix
operations much in the same way as Matlab, and the MatPlotLib module has similar
plotting capabilities, meant that the rewriting of the algorithm into Python was mostly a
matter of changing function names. Of course, Python has its own optimized structures
and procedures, many to do with memory allocation, list comprehension and so on.
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These have also been taken advantage of.
The open-source nature and popularity of Python also mean that many user-made

modules are available to provide the capabilities of certain libraries directly from Python.
One of these is OpenCV [17], and optimized image processing library. Another mod-
ule used in this thesis is PyOpenCL[12], which provides access to the OpenCL API
and the possibility to insert OpenCL kernels written in native C code directly into the
Python script. For the decoding of the QR codes, as well as performance comparison
to commonly used methods, the PyZbar [19] library is used. This open-source library
can detect and decode many different versions of QR codes and barcodes. Seeing as
the Zbar library is serially run, but written in optimized C code, it will provide an
interesting comparison with the results of the work done in this thesis.
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4 QR code detection and
decoding

4.1 Detection algorithm
As discussed in the previous chapter, the detection algorithm outlined in the QR code
specifications will be used. An example image has been constructed from a real camera-
acquired image. The reason for this is to fully illustrate the features of the selected
detection algorithm, mainly the ability to detect multiple QR codes in an image, but
also the ability to accurately extract even those codes distorted by perspective. It is
assumed that the acquired image is an 8-bit grayscale image, that is, each pixel value
is an 8-bit unsigned integer, meaning a maximum value of 255. The conversion of an
image acquired by an RGB camera of a mobile robot to this format is a trivial matter
and will not be further expanded upon in this thesis.

Figure 4.1: An example input image
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4.1.1 Binarization
The first step is binarization, that is, the conversion of an acquired image into an array
of boolean values. Each pixel thus contains a value of either 1 or 0, which is sufficient for
the rest of the algorithm, but also allows us to save memory and computational time.
The chosen method for binarization is local thresholding. In this method, we compare
the value of a pixel to the average value of pixels in its surroundings. In practice, this
is usually done by blurring the entire image by using a convolution with a uniform
averaging kernel, because by blurring, individual pixels in the blurred image will also
contain information about the surrounding pixels in the original image. The size of the
averaged area corresponds to the size of the uniform kernel. Thus, all that is necessary
to obtain a binarized version of our image is to compare the pixel value in the original
to the pixel value in the blurred one, and if it is greater, it will be set to 1, otherwise
to 0. A numerical constant is often subtracted from the blurred image to influence the
distribution and amount of white/black pixels in the resulting image, often drastically
reducing resulting noise. In our case, a kernel size of 33x33 and a constant value of 10
were used.

Figure 4.2: Binarized image

It should be noted that the QR code symbology specification [20] argues for the use of
a global threshold. This approach is wholly unsuitable in non-even lighting conditions,
for example when there is a shadow gradient over the QR code. In works referenced
in this thesis, one of the global thresholding approaches tested was Otsu’s method,
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which assumes a bi-modal histogram of pixel values in a grayscale image, and then
calculates an optimum threshold that minimized the variance within the two classes.
It is, however, quite clear from the results of work on QR code detection, that local
thresholding will always yield more satisfactory results. Even here, multiple approaches
are possible. Besides the basic use of a uniform averaging filter, like in this thesis, other,
more sophisticated methods can be used. Sometimes, a Gaussian filter is used instead of
the uniform one. An interesting way to deal with image binarization is adaptive multi-
level thresholding [26], which can also automatically choose an appropriate number
of levels based on the histogram of pixel values, and can thus sometimes perform as
global thresholding, while in more complicated cases it can give results similar to local
thresholding [1].
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4.1.2 Scanning lines
With a binarized image, we can start scanning the lines and columns of the image for
the detection markers of QR codes. As explained in previous chapters, what we are
looking for is a 1:1:3:1:1 ratio of black:white:black:white:black pixels. This operation is
by far the most costly in terms of computational time. Thankfully, it is also completely
independent within each row/column of the others. This makes it a prime candidate
for parallelization. The general idea here is that we feed the image flattened into a
1-D array into a function (an OpenCL kernel) running on the GPU. This function will
look up its global ID, and according to this number will start scanning a certain line
or column of the image. Once the function has found a suitable marker center that
satisfies the ratio condition, it saves its position and width and continues scanning.
Multiple centers can thus be found in a single line/column. The kernel itself accepts
three arguments as input:

__kernel void scan( __global const bool *im , __global const int *s,
__global ushort *c)

The first argument is the binarized image flattened into a 1-D array, the second is
an integer array containing two values needed to properly navigate the flattened arrays,
and the last corresponds to a 1-D array of the 16-bit unsigned integer data type into
which the found marker width and position are written.

Figure 4.3: Detected markers in scanned lines and columns, differentiated by color
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4.1.3 Finding clusters
After finding the marker center candidates in the rows and columns of the binarized
image, we wish to cluster these together, separately at first. As we can see from the
resulting image in the previous step, at the points where there truly are QR code
markers, larger amounts of candidates are clumped together. By going through all
the found row and later column marker candidates and computing their distances to
each other, we can eliminate those that are far apart from any other. To this end,
we use the information about the suspected marker width from the previous step. On
the other hand, once there are several candidates found close to each other and of
similar predicted size, we combine these into one a preserve them as an average of their
individual sizes and positions. As we can see in the resulting image, this eliminates the
vast majority of false positives and leaves us with reasonable assumptions about the
QR code marker locations.

Figure 4.4: Clustered potential marker center points
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4.1.4 Finding markers
Once we have clustered the candidates in both rows and columns, we perform the final
step in finding the QR code markers. The assumption here is, that if a marker is truly
present at a location in the image, there will be a candidate in both the rows and
columns at that location. Any false positives still remaining after the previous steps
should thus be eliminated. It should be noted that total elimination of false positives
isn’t a necessary condition for the rest of the algorithm to work, it does however reduce
the computational complexity considerably. In the resulting image, we see that all 15
markers in the image were successfully found, in the case of this example (as in most
tested cases) with no false positives.

Figure 4.5: Found markers
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4.1.5 Finding QR codes
Having found the QR code markers, it is time to identify the locations of the actual
codes. To this end, we go through the list of all found markers and try to match as
closely as possible their size. We then try to find a triplet of markers that together
form a right-angled triangle, with some leeway in the geometry to allow for distorted
codes. Once three markers have been found to reasonably form the expected QR code
shape, we decide which one corresponds to which corner, trying to correct for rotated
codes. In the resulting image, the markers are labeled by color, with the bottom-left,
top-left and top-right markers being indicated by red, green and blue, respectively.

Figure 4.6: Found QR codes
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4.1.6 Finding QR code corners
Now that we have found the QR codes and identified their orientation, we must find
the locations of all four corners. This is because at least four points are needed if we
want to estimate the homography transformation that would allow us to extract and
rectify the found QR codes into their original square form.

Finding the three corners next to the markers is easy enough - we can simply scan
the image in the expected direction of the corner, starting from a marker center, and
once we hit the last black-to-white transition in both directions, we declare it to be the
location of a corner. This has been found to work fast and reliably across all tested
examples.

The location of the fourth corner is much trickier to find, because in an image
distorted by perspective, angles and distances are not preserved, only lines. We cannot
thus use any of the so far obtained information to directly compute the location of the
fourth corner. What we can do, is take the three corners found so far and estimate
the location of the fourth based on the assumption that the QR code corners form a
parallelogram. In the case of an undistorted QR code, this will of course be a square
and we will, in fact, find the fourth corner perfectly. In all other cases, we use this
estimate as our starting position.

Figure 4.7: Found QR code corners
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Multiple ways of finding the last corner were devised during the writing of this
thesis, but most of them worked only under specific conditions and were too unreliable
for general application. In the end, however, a reasonably robust implementation was
found. The basic idea is to take the estimated location, try to move it in the expected
direction of the last corner and all the while scan the border lines for changes in their
variance. As this is done independently for both of these border lines, this will be
explained for one of them and the reader will surely be able extend this to the other by
analogy.

Let’s say we have a distorted QR code, and the estimate of its fourth corner lies
somewhere inside the code, not too far from the actual location of the real fourth
corner. Following the convention of the previous step of the algorithm, the already
found corners are labeled red, green and blue. If we now take the line from the blue
corner to the estimate and read the pixel values underneath, it will be a mixture of
black and white pixels, because the line crosses the data encoded in the code. If our
estimate for the fourth corner was, however, located outside the code, the line would
only contain white values. The assumption now is, if we compute the sum of the values
of the line, normalized by the number of pixels underneath, and move the estimated
corner along a direction towards the QR code edge, the greatest change in the sum will
occur precisely at the boundary.

What we thus do, is move the estimated location of the fourth corner, compute the
sum of the pixel values under the line from an already found corner to this estimate, save
these values for different positions and then calculate a differential (which corresponds
to a discrete derivative) of these values. The location with the greatest differential is
the location at which our estimate hit the QR code edge, and if we thus do this for
both of the edges, we should find the fourth corner.

It should be noted that after the part of our algorithm which does the scanning of
lines and columns for QR code markers, the finding of the fourth corner is the most
computationally demanding task. This is because during the search for the fourth
corner, many lines between two points have to be rasterized and the pixels counted to
obtain an array which we then differentiate. The rasterization is done by Bresenham’s
algorithm, one of the most well-known basic algorithms in image processing.
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4.1.7 Extracted code
Once the four corners have been found, we isolate the QR code into its own smaller
image and compute a homography transformation matrix that we then use to rectify
the QR code into its original square shape. As this is a common operation in image
processing, the optimized OpenCV library module in Python was used to perform these
tasks. In our example, five codes were successfully extracted and on of them is in 4.8. It
should be noted that the chosen algorithm for finding the last corner is robust enough
that it found the true location, even though the corner pixel of the QR code is white,
which has been a problem with all previously tested algorithms.

Figure 4.8: One of the extracted codes
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4.2 Decoding
Once the QR codes are found and properly rectified, their decoding follows a set proce-
dure outlined in the QR Code bar symbology specification [20]. The general sequence
of actions taken during decoding is illustrated in 4.9. Since this procedure has been
programmed an innumerable amount of times already, it was decided to not reinvent
the wheel and instead use an open-source QR code-reading library, namely the Zbar
library [18]. The library is highly optimized and able to decode many different variants
of the code. It can also detect codes in an image, but this feature will not be used,
since it is the topic of this thesis.

Figure 4.9: QR code decoding [20]
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4.3 Implementation details
As should already be clear from previous chapters, the Python general purpose pro-
gramming language was used for the bulk of the work. We use several non-core modules:

import numpy as np
import cv2
import pyopencl as cl
from pyzbar . pyzbar import decode , Decoded , ZBarSymbol
from timeit import default_timer as time
import matplotlib . pyplot as plt

Numpy is a module that contains many functions useful in scientific computing,
like extensive support for matrices and matrix operations and other elements of linear
algebra. OpenCV is an open-source image processing library, widely used in academic
and scientific work due to its optimized performance. The library is also capable of
using OpenCL for parallel computing on multi-core hardware. In this thesis, it was
only used for the loading and saving of images, uniform filtering for local thresholding
and the computation of the homography matrix used to rectify an extracted code into
its original square shape. PyOpenCL is a module that allows its users access to the
OpenCL parallel computation API directly from Python. Similarly, PyZbar is a Python
module that allows the use of the optimized QR code reading library Zbar. The last two
included modules were only used during testing - timeit contains functions for tracking
the execution time of arbitrary blocks of code, the matplotlib module was used to show
the results after every step.

After loading an image and converting it first to grayscale and then into a binary
2D-array by means of local thresholding, we perform the necessary tasks to initiate
parallel processing. These include preparing the input data into the format needed by
the kernel and preparing an array for storing the results. We set the global size equal
to the number of rows (or columns in the next step), meaning there will be exactly that
many tasks to be done. Next, we set the number of workers to be assigned to this task,
which corresponds to the number of computing units we can use at a given time. After
executing the code, we read back the buffer containing the results into our array and
reshape it into a form that fits better with our postprocessing.
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im_row = im_big . flatten ()
result_num = np.int32 (10)
c_result = np.zeros (( row_num * result_num )). astype (np. uint16 )
s = np.array ([ column_num , result_num ]). astype (np.int32)

mf = cl. mem_flags
im_buf = cl. Buffer (ctx , mf. READ_ONLY | mf. COPY_HOST_PTR , hostbuf =

im_row )
s_buf = cl. Buffer (ctx , mf. READ_ONLY | mf. COPY_HOST_PTR , hostbuf =s)
c_buf = cl. Buffer (ctx , mf.WRITE_ONLY , c_result . nbytes )

global_size =( row_num ,)
local_size =( workers ,)

exec_evt = prg.scan(queue , global_size , local_size , im_buf , s_buf ,
c_buf)

exec_evt .wait ()

c = np.zeros (( row_num * result_num )). astype (np. uint16 )

cl. enqueue_read_buffer (queue , c_buf , c).wait ()

c = np. reshape (c, (row_num , result_num ))

If we take a closer look at the parallel-running part of our algorithm itself, we see
that it is a relatively simple series of conditions, attempting to detect a roughly 1:1:3:1:1
ratio of black:white:black:white:black in a single line or column of the image. In the
beginning, we must retrieve the global ID of the worker. In the case of scanning the
lines of an image, this will be the number corresponding to the line, and there will be
as many IDs as there are horizontal lines of pixels in the image.

int gid = get_global_id (0);

With this ID retrieved, we can construct a for loop running through the pixels
corresponding to the identified line.

for(int i=0; i < columnnum ; i++)
{

if (im[gid* columnnum + i] == current )
{

cnt += 1;
}

...
}

What follows is a tree of conditions that checks whether a sequence of the last few
detected pixels adheres to the color ratio we seek. As we will always have pictures of
finite resolution and containing various distortions, we don’t look for a precise ratio
with units of 1 or 3. Instead, we look for values within a reasonable tolerance of these
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idealized ones. As further and further conditions on the ratio are satisfied, the variable
named level increases until it hits the final value of 6, at which point the position and
the width of the currently found marker are returned from the function and the search
begins anew in the remaining segment of the scanned line. The following code extract
has been redacted for size to only show the parts deemed important. The full source
code can be found in the file attachments of this thesis.

else if (level == 1)
{

if (cnt > 0)
{

...
}
cnt = 0;

}
else if (level == 3)
{

if ((2.2*( float )base <= ( float )cnt) && (( float )cnt) <=
3.8*( float )base)

{
level = 4;

}
else
{

...
}
...

}
else
{

if ((0.5*( float )base <= ( float )cnt) && (( float )cnt) <=
1.5*( float )base)

{
current = ! current ;
level += 1;

if (level == 6)
{

c[gid* resultnum + valpos ] = 2* startpos + i
- startpos ;

c[gid* resultnum + ( resultnum /2) + valpos ] =
i - startpos ;

...
level = 1;

}
}

...
}
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The preceding algorithm was the only part written as a C kernel for OpenCL, to
be performed in parallel by available multi-core hardware. The advantages of this will
be assessed in the following chapter, but it should be noted that other parts of our
algorithm were considered for parallelization as well. One of these was the known
Bresenham’s algorithm for the rasterization of a line segment between two points. It
takes four integers as inputs (the x and y coordinates of the start and end points) and
returns an array containing the x and y values of the pixels between these.

def bresenham (x0 , y0 , x1 , y1) :

dx = x1 - x0
dy = y1 - y0

xsign = 1 if dx > 0 else -1
ysign = 1 if dy > 0 else -1

dx = abs(dx)
dy = abs(dy)

if dx > dy :
xx , xy , yx , yy = xsign , 0, 0, ysign

else :
dx , dy = dy , dx
xx , xy , yx , yy = 0, ysign , xsign , 0

D = 2*dy - dx
y = 0

for x in range(dx + 1):
yield x0 + x*xx + y*yx , y0 + x*xy + y*yy
if D > 0:

y += 1
D -= dx

D += dy

There are many ways to cluster the points of detected markers. The one that was
used in our implementation is simply takes points in sequence, computes their distances
to the ones not yet processed, and if they are found to be close enough with respect to
the presumed width of the marker, they are clustered together. The relevant part goes
as follows:

dist = np.abs(linex [(i+1) :] - linex[i]) + np.abs(liney [(i+1) :] -
liney[i])

if np.min(dist) < (width[i]/4.) :

dset = [np.where(dist <( width[i]/2.)), np.where(width [(i+1)
:] > 0.8* width[i]), np.where(width [(i+1) :] < 1.2* width[i
]), np. where( clust_num [(i+1) :]== range ((i+1) ,maxcnt ))]
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Similarly, the clustered points in x and y are then taken and their distances com-
pared. If a marker was detected in both a line and a row close to each other, we combine
them into a marker.

for i in range( maxcnt ) :
dist = np.abs( clustxx [i]- clustyx ) + np.abs( clustxy [i]-

clustyy )

dset = [np.where(dist <( clustxwidth [i]/4.)), np.where(
clustxwidth [i] > 0.5* clustywidth ), np.where( clustxwidth [
i] < 1.5* clustywidth )]

The remaining parts are either too long or too trivial to be included here, so we’ll
only note that after finding all four corners of the QR code, two OpenCV functions are
used to find the homography transformation and for the rectification of the code into
a square shape by the use of this homography. The first function takes the four corner
points as inputs, and we set the output points as corners of a square with a side length
equal to the shorter of the two dimensions of the QR code isolated from the original
image.

h, status = cv2. findHomography (pts_src , pts_dst )

im_new = cv2. warpPerspective ( im_separated , h, (squaresize ,
squaresize ))
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4.4 Integration into ROS
The integration of the written algorithm into ROS is fairly straightforward, as it is
already written in Python and the only remaining thing to take care of is to write
functions to facilitate the communication between ROS and our module. To receive data
from our module, we create a so-called publisher [30], which takes care of periodically
sending an image source from the camera. Then we create a listener, which will detect
if an image was sent by the publisher and will execute a callback function, in which
the image is sent to our module and decoded. We use the message type Image, which
stores the image data in an array of the data type uint8. If we assume that our QR
code decoding module is named qrreader and it contains a function decode(), we simply
log the output string in the following code:

#!/ usr/bin/env python
import rospy
from sensor_msgs .msg import Image
import qrreader

def callback (data):
rospy. loginfo ("The decoded string is %s", qrreader . decode (data.

data))

def listener ():
rospy. init_node (’listener ’, anonymous =True)

rospy. Subscriber ("img", Image , callback )
rospy.spin ()

if __name__ == ’__main__ ’:
listener ()
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5 Results

With the implementation specified in the preceding chapter, we now take a look at the
results. Of course, the main benchmark has to be the successful decoding of a code,
regardless of the time. Given that we merely adopted the algorithm outlined in the
official QR code specifications, it is not surprising that our implementation performs
very similarly to other implementations based on this algorithm, i.e. all cases that are
undetected by our implementation usually remain undetected also when using other
libraries for reading QR codes. It is then time to look at the performance in terms of
decoding speed, and to look whether the parallelization of line and column scanning
truly gives us the performance boost we expected.

5.1 Performance comparison
The following bar chart 5.1 shows a speed comparison of three different approaches
- a purely Pythonic implementation, an implementation with the use of OpenCL for
line/column scanning, and an implementation which only uses the PyZbar wrapper
which executes the Zbar library under Python, whereas in the first two cases it is only
used to decode already extracted QR codes. These have all been tested on the same
images with various numbers of QR codes in them. The parallel computing is done on
a GeForce GTX 960M GPU.

The first two comparisons were made on images with no QR codes in them. This is
perhaps the most important test, since the program for QR code detection is supposed
to be running all the time on the intended platform (a mobile robot which interacts
with humans), meaning that its execution will always need computational resources and
will try to take those from other, usually more crucial real-time tasks. In these first two
test cases, we can clearly see that an implementation of the algorithm running purely
in Python in a serial way is entirely unsuitable for the intended use. On an image
in HD resolution (1920x1080), this implementation spent over three seconds reading
the image, only to find no codes (since there were none to be found). For the purely
Pythonic algorithm, we see that the execution time is mostly dependent on image
resolution, much more so than on the number of QR codes in the image. From this we
can deduce that it is indeed the line/column scanning which will take up most of the
resources in QR code detection and decoding.

Once we look at the Python implementation with the use of OpenCL for QR code
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Figure 5.1: Performance comparison

marker detection, we immediately see the advantage of parallelization. The execution
time is drastically reduced, so much so that this implementation is basically on par with
the Zbar optimized C library, even though the majority of tasks are still handled by
the comparatively slow and high-level Python general-purpose programming language.
Times in the tens of milliseconds mean that this implementation is usable in real-time,
with ordinarily used sampling rates in the cameras of mobile robots. We might at first
wonder why the execution time of this variant in the case of five QR codes is roughly
double that of Zbar, but we must realize that in its current form and use, Zbar quits
execution once it scans one QR code, while the algorithm devised in this thesis will
detect and decode any and all of them.

Furthermore, while the runtime of the latter two compared variants is roughly equal,
it should be noted that the main intended advantage is hidden in this comparison - that
is, that the most demanding code is now running on the GPU, leaving the CPU free to
do other vital tasks. The results of the comparison are highly encouraging for future
work on this problem, as it can be expected that with the conversion of more partial
tasks into parallel, GPU-executable code, further gains in performance will be noticed.
As the program so far was mostly written to merely satisfactorily perform its function,
but without a large focus on optimization, we can conclude that the rest of the tasks
that will remain performed serially in Python can also be improved upon.

There might, however, be a limit to the proposed improvement by parallelization.
During work on this thesis, an attempt was made to rewrite the known Bresenham’s
algorithm for the rasterization of a line into OpenCL-executable code. However, no
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significant improvement in performance was measured. This is due to the fact that
the operations performed on the data in order to prepare them for parallel processing,
as well as the initialization of the OpenCL API for computations, simply take too
much time, so much as to almost offset the gains in performance from multi-core code
execution.

5.2 Limits of detection
While the algorithm performs to expectations in most cases, we can still find some
where it fails. In the vast majority of cases, it is caused by the low resolution of the
input image, or simply the small size of the code within the obtained image. This
leads to problems in the first parts of the algorithm, where QR code markers are being
scanned for. When the cell size of a QR code corresponds to only a couple pixels in
the image, it can be very hard to successfully find the desired 1:1:3:1:1 ratio needed for
marker detection. Mostly, this is caused by binarization, and this problem is inherent
to all implementations of the detection algorithm outlined in the QR code specification,
including the one used in the Zbar library. It can be assumed that a different algorithm
that would intelligently use the pixel values in the grayscale image could be more
suitable in these lower-resolution images. Another way to circumvent this limitation
would be to use an entirely different approach of marker detection, such as an approach
based on phase correlation or feature detection.

Figure 5.2: A test case with unsatisfactory results

As an illustration of this limitation, 5.2 shows an image containing four QR codes,
of which only one (in the upper-right corner) is detected and decoded. This is because
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the binarization of the three undetected codes has caused the ratios of black and white
in their markers to be outside the tolerances programmed into the algorithm. It is pre-
sumed that, given a somewhat larger resolution of this image, all should be successfully
decoded even by the algorithm from the QR code specification.

There are also distortions that are somewhat more complex and require a more
developed mathematical framework to rectify. One of the more common ones occurs
when the QR code lies on a curved surface, such as the bottle in 5.3. The algorithm from
the QR code specifications will reasonably well find the localization markers themselves,
however, the problem occurs when looking for the corners of the QR code. This is
because we assume that the only distortion is caused by the perspective, meaning that
lines remain straight, which is no longer true in this case. Sure enough, work has been
done on these kinds of distortions, proposing various solutions [4] [23] [24], it is however
seen as beyond the scope of this thesis to deal with them.

Figure 5.3: A QR code distorted by being printed on a curved surface
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6 Conclusion

In this master’s thesis, the usage of parallel computing applied on the task of detecting
QR codes was considered. In the first part, a survey was conducted to gain familiarity
with the current state-of-the-art solutions. The structure and specifications of QR
codes were briefly discussed, as well as the basics of parallel computing. Also, a short
introduction to the ROS platform was given.

The following section had to do with the choice of proper tools for our task. Out of
the available parallel computing libraries, mainly two were considered - Nvidia CUDA
and OpenCL. Of these two, OpenCL was chosen as a suitable library, mainly because
of its support of many different parallel computing platforms, as well as the author’s
familiarity with this platform.

For the detection algorithm itself, it was decided to base it on the algorithm out-
lined in the QR code specifications. This algorithm scans the lines and columns of an
image to detect the three square corner marks, for which they were specifically devised.
The image is converted to grayscale and binarized by the use of local thresholding
beforehand. The line and column scanning was chosen as a prime candidate for par-
allelization, as the scanning algorithm runs independently for each line and column of
the image. Afterwards, the points are clustered and QR code location and pose are
estimated based on the predicted geometry that the corner markers form. The found
code is cut out of the image and rectified into its original square shape, allowing it
to be read and decoded by standard algorithms. The decoding is done by the Zbar
open-source library, which is able to decode various types and sizes of QR codes and is
highly optimized for this purpose.

Besides the OpenCL kernel used for the parallel task of scanning lines and rows
of an acquired image, the program is written in Python. This was mainly chosen due
to its open-source license, ease and speed of development, and availability of wrappers
for many useful libraries. In our case, the PyOpenCL wrapper was used to access the
OpenCL API functions, and the PyZbar wrapper for the QR code decoding library Zbar
was used as well. Another advantage is the fact that Python code can be integrated
into the ROS platform with ease.

The implementation of the QR code reading a decoding algorithm outlined in this
thesis was tested to assess the usefulness of using parallel computing for this task. It
was found that, with OpenCL code running on a GPU, performance was as much as
50 times better in terms of speed than a purely Pythonic serialized approach, with the
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same accuracy of decoding information from QR codes. In fact, the performance of the
Python implementation with one OpenCL kernel was comparable to the highly opti-
mized C library Zbar. This hints at the possibility of future improvements, with which
our algorithm could perform better than other, currently used methods. Such improve-
ments include the rewriting of other functions into parallel tasks with OpenCL. The
place to start would probably be the clustering algorithm or the algorithm for searching
for the fourth corner of a QR code, which could take advantage of parallelization and
are currently the most computationally intensive parts of the algorithm.

Other room for improvement is in the overcoming of the current limitations on image
distortions. Better thresholding methods or an improved version of the line scanning
algorithm based on multi-level grayscale images could improve the accuracy of detection
even in lower-resolution images. A more sophisticated mathematical processing of found
QR codes would also allow us to rectify codes that have been printed on curved surfaces,
such as cylinders.

All tasks specified in the assignment were completed successfully.
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