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Abstract
Speed of traditional focusing algorithms is often limited by a bottleneck which is a mechan-
ical movement of stepper motor, that moves a lens towards or away from cameras image
sensor. The liquid lens technology promises to solve that issue by eliminating the need
for mechanical movement, speeding up systems using it significantly. The main purpose of
this thesis is to confirm or disprove that claim and to state the exact figures obtained from
testing. To put the liquid lens to a practical test, an image-based auto-focus algorithm will
be implemented and executed on camera systems using liquid and electromechanical lenses.
An image-based auto-focus algorithm captures and processes the images at different focus
values in order to calculate score of their sharpness and find its maximum.

Abstrakt
Rýchlosť zaužívaného prístupu k zaostrovaniu kamerových systémov naráža na úzke hrdlo -
mechanický pohyb motora, ktorý mení vzdialenosť šošovky od obrazového snímača kamery.
Technológia tekutej šošovky sľubuje riešenie tohto problému elimináciou potreby mechan-
ického pohybu. Systémy ktoré ju využívajú sú teda podstatne zrýchlené. Cieľom tejto práce
je potvrdenie, alebo vyvrátenie týchto tvrdení a v prípade ich potvrdenia zistiť do akej miery
je tekutá šošovka schopná zrýchliť systémy, ktoré ju využívajú. Pre testovanie zrýchlenia
implementujeme automatické zaostrenie na základe spracovania obrazu a spustíme ho na
kamerových systémoch, ktoré využívajú tekutú a elektromechanickú šošovku. Automatické
zaostrovanie na základe spracovania obrazu počíta skóre ostrosti zhotovených obrázkov a
hľadá jeho maximum pri rôznych hodnotách zaostrenia.
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Rozšířený abstrakt
Šošovky sa v kamerových systémoch využívajú na sústredenie obrazu na obrazový senzor
kamery. Svetelné lúče prechádzajú šošovkou, ktorá mení ich smer na základe vlastností
šošovky. Typicky sú šošovky vytvorené zakriveným sklom. Takéto šošovky majú fixnú
fokálnu vzdialenosť, čo znamená, že ich miera sústredenia, alebo rozptýlenia svetelných
lúčov je vždy rovnaká (2.1).

Jednou zo základných operácií kamerových systémov je ostrenie. Ostrením rozumieme
nastavenie ostrosti obrazu. Zaužívané kamerové systémy so sklenenými šošovkami na ostre-
nie využívajú mechanický pohyb šošovky smerom od, alebo k obrazovému senzoru kamery.
Mechnický pohyb šošovky zaisťuje typicky krokový motor. Táto operácia je však časovo
náročná a tak kamerové systémy pri ostrení narážajú na úzke hrdlo (2.1).

Riešenie sľubuje technológia tekutej šošovky, ktorá pre ostrenie využíva zmenu jej za-
krivenia. So zmenou zakrivenia sa mení fokálna vzdialenosť šošovky a tak je eliminovaná
potreba mechnického pohybu pre dosiahnutie ostrenia. Tekutú šošovku vytvára rozhranie
dvoch nezmiešateľných tekutín - typicky vody a oleja, ktoré sú uzatvorené v priestore medzi
dvoma sklenenými oknami a dvoma železnými časťami. Aplikovanie striedavého napätia na
na železné časti spôsobí zmenu v ich hydrofóbií. Čím väčšie napätie aplikujeme, tých viac
vody k sebe pripustia a zmenia tak zakrivenie rozhrania vody a oleja viz. 1. Zmena za-
krivenia nastáva takmer okamžite so zmenou napätia 2.2.

Figure 1: Princíp ostrenia tekutou šošovkou. Obrázok bol prevzatý [7].

Úlohou tejto práce je overiť, že tento prítup k ostreniu je rýchlejší, ako prístup, ktorý
využívajú elektromechanické šošovky. Pre overenie budeme merať čas potrebný na zmenu
napätia na železných častiach šošovky a porovnáme ho s časom potrebným na preostrenie
elektromechnickej šošovky cez rovnakú vzdialenosť (3.4).

Kamerové systémy využívajú rôzne prístupy pre automatické zaostrovanie - jedným zo
základných je automatické zaostrenie na základe spracovania obrazu. Výpočetná jednotka
kamerového systému počíta skóre ostrosti obrázkov zhotovených pri rôznych ostrostiach
obrazu a hľadá ostrosť, pri ktorej skóre dosahuje maximum. Existujú rôzne metódy pre
určenie skóre ostrosti obrazu, pričom sú často založené na detekcií hrán - čím viac hrán je
na obrázku, tým je ostrejší. Pre porovnanie tekutej a elektromechanickej šošovky sme im-
plementovali algoritmus automatického zaostrenia a spustili sme zostrojených kamerových
systémoch (5). Dva kamerové systémy, ktoré využívame porovnávame využívajú tekutú
šošovku a jeden využíva elektromechnickú šošovku. Rozdiel v kamerových systémoch s



tekutou śošovkou je v ich výpočetnej jednotke - jeden využíva osobný laptop, druhý je
prisposobený potrebám vstavaného zariadenia a využíva tak Raspberry Pi 4B. Rýchlosť os-
trenia tekutej šošovky závisí na rýchlosti zmeny napätia na železných častiach. Toto napätie
ovláda ovládač tekutej šošovky. Vstavaný kamerový systém využíva ovládač ADM00931
(3.1.1), zatiaľčo nevstavaný kamerový systém využíva Flexiboard (3.2.1). Pre zmeranie
času potrebného na jediné preostrenie sme na osciloskope sledovali ustálenie napätia na
výstupe ovládačov.

Pre testovanie algoritmu automatického zaostrenia bez závislosti na kamerovom sys-
téme sme implementovali testovaciu suitu. Tátu suita vytvorí testovaciu sadu obrázkov
zhotovených pri rôznych ostrostiach obrazu. Algoritmus automatického ostrenia potom
načítava obrazky z pamäti a stáva sa tak nezávislým na spomaleniach daných kamerovým
systémom(načítanie obrázku, preostrenie).

Výsledky:

- 1/25 1/5 2/5 1/2 3/5 4/5 1
ADM00931 20 75 90 100 105 130 150
Flexiboard 15 80 95 105 115 125 140
EM systém 200 740 1440 1780 2115 2820 3485

Average difference 182,5 662.5 1347.5 1677.5 2005 2,692.5 3,340

Table 1: Porovnanie preostrení kamerových systémov cez zlomky maximálnej vzdialenosti,
na ktorú dokážu zaostriť. EM - kamerový systém, ktorý využíva elektromechanickú šošovku.

Automatické zaostrenie:

- Celkový čas
KSTŠ1 3,48
KSTŠ2 2,06
KSEM 17,48

Table 2: KSTŠ1 - vstavaný kamerový systém s tekutou šošovkou, KSTŠ2 - nevstavaný
kamerový systém s tekutou šošovkou, KSEM - kamerový systém s elektromechnickou
šošovkou. Časy sú udávané v sekundách.

Testovacia suita, nám pomohla určiť úzke hrdlá algortmu automatického zaostrenia.
Sú nimi načítanie obrázkov z kamery a výpočet skóre ostrosti obrázku. Výpočet skóre
ostrosti môže byť optimalizovaný výpočtom na grafickej karte, alebo použitím výkonnejšej
výpočetnej jednotky.
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Chapter 1

Introduction

Camera systems in various devices achieve focusing by moving the lens towards or away
from the camera’s image sensor. This movement is controlled by a precise stepper motor
[6]. This approach brings a disadvantage of being considerably slow, as the movement of
mechanical parts takes a significant amount of time.

A liquid lens eliminates the need for mechanical movement by a unique solution - making
a flexible lens using liquids. Such a lens can change its curvature depending on the voltage
applied to it. Many sources claim the supremacy of liquid lens technology over its electro-
mechanical alternative in terms of performance. These claims are often not supported by
any exact figures comparing the two. A part of this thesis is about finding these figures
and deciding whether the liquid lenses really are faster and by how much. We will also
discuss the technology, advantages and disadvantages of the liquid lens and its real-world
applications.

One of the most common actions imaging systems undertake is auto-focus. By auto-
focus, we understand the action of bringing a manually or automatically selected object
to focus. While there are several approaches to achieving auto-focus, this thesis is mainly
concerned with the one that does not require any additional sensors besides the camera’s
image sensor - an image-based auto-focus. It requires the lens to refocus several times,
making it a suitable comparison operation. In order to test and compare the performance
of liquid lenses, we will assemble three camera systems and make them perform the same
auto-focus algorithm.

A fundamental part of image-based auto-focus methods is sharpness score assessment.
The score is usually calculated from the number of visible edges on the image. More edges
in an image usually mean it is sharper. The edges are separated from the image using
edge detectors like the Sobel operator or Canny edge detector. Each edge detector yields
different results, so we will compare four of the most well-known ones and pick one for our
auto-focus implementation.
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Chapter 2

Lenses in technology

The first chapter is dedicated to explaining the principles of how lenses work and the
technology behind liquid lenses. Liquid lens is a fascinating technology that deserves plenty
of attention to make sure it is understood well. The knowledge we gather will be used to
make the most of its application later. We will explain the differences between the standard
lenses used in most modern-day camera systems and the liquid lenses. These differences
make liquid lenses stand out in more than one way and make up the basis of their increasing
popularity. Then we will explain the principles of making liquids into lenses and controlling
their curvatures using electrical energy.

2.1 Lenses
A lens is an optical device that changes the direction of light beams. Cameras use it to
concentrate captured light onto a small image sensor. Image sensors in cameras measure
the attenuation of waves hitting the sensor - the gradual loss of flux intensity 1 through
a medium. An example of attenuation is dark glasses that attenuate sunlight [20]. It
converts the variable attenuation of light waves (as they pass through or reflect off objects)
into signals, small bursts of current that convey the information [21]. This data is then
plotted onto a virtual frame resulting in a photo.

The light beams reflected from objects within the lens’s sight enter the lens in parallel.
The lens changes the light beam’s direction so that they all converge in a single point called
the focal point. Negative focal length means that the focal point is located on the same
side of the lens as the objects that are being captured. It means that the lens is concave,
and when the parallel beams hit it, they are dispersed on its opposite side. The dispersion
angle is inversely proportional to the focal length - the smaller the focal length, the stronger
the dispersion. Image 2.1 demonstrates these principles.

The focal length measures how strongly a lens concentrates or disperses the captured
light. In cameras, it stands for the distance from the image sensor to the optical centre of
the lens[3]. Positive focal length means that the focal point is located on the lens’s opposite
side as the objects that are being captured. Such lens is convexly shaped.

1Radiant flux (also known as radiant power) is the radiant energy emitted, reflected, transmitted or
received per unit time. The SI unit of radiant flux is the watt (W), which is the joule per second (J/s) in
SI base units. Luminous flux, in contrast, takes into account the varying sensitivity of the human eye to
different wavelengths of light - is photometrically weighted radiant flux (power). The SI unit of luminous
flux is the lumen (lm). One lumen is defined as the luminous flux of light produced by a light source that
emits 1 Candela of luminous intensity over a solid angle of 𝜔 = 1𝑠𝑟 [4].
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Different lens shapes are used for capturing different types of images. A concave lens is
typically used in macro photography in combination with a convex lens to achieve optimal
image properties.

Figure 2.1: Principle of light reflection of convex and concave lens

2.1.1 The principle of focusing with a lens

The traditional lenses have a fixed focal length. Such lenses always concentrate the light
with the same strength. Focusing is then achieved by moving the lens towards or away from
the image sensor [?]. Cameras usually use a stepper motor to execute such movements. Any
physical movement of a device’s component is costly, especially when the movement must
be precise.

On the other hand, liquid lenses take advantage of their variable focal length, which
changes with respect to their curvature. It is possible to bend a liquid lens into convex and
concave shapes, allowing for a broad focus range.

2.2 Liquid lenses
A liquid lens is a technology that allows for rapid focusing - quickly adjusting focus to
accommodate objects located at various working distances (WDs). The changes in focus
occur within milliseconds, allowing auto-focusing or scanning of various WDs in minimal
time. The lens is also much more durable, as there are no mechanical parts that would
wear over time. These properties make liquid lenses superior to traditional lenses in almost
any application.

Nowadays, many businesses fund research on possible applications of liquid lenses in
their products. From microscopes, telescopes and biometric devices to depth scanners and
smartphones, they prove effective in almost any camera device. Although liquid lenses are
slowly building a reputation and gaining popularity among technology producers, many are
still reluctant to use them. One of the main reasons for it is the price, which is higher than
traditional lenses. Its price, however, has experienced a steady decline since its discovery.

We have examined this technology thoroughly to find the extent of its advantages, and
we have looked for its negatives. This chapter gives insight into these advantages and
disadvantages, history, principles and applications of liquid lenses.
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2.2.1 Technology

A liquid lens is formed by two immiscible liquids placed inside the same container. The
container has two glass windows to let the light pass through. One of the liquids is typically
water or an aqueous solution, and the other is a transparent oil. They stay separated,
forming an interface in between. Two metal nodes entrap the liquids from the top and
bottom of the container. They are cut under an angle, and they touch both liquids.

This interface forms a curvature resembling a typical lens when electrical energy is
applied to the nodes - increasing the electrical energy results in the metal nodes becoming
less hydrophobic. Consequently, more water flows towards their surface, and the oil forms
a greater curvature. This process is called electrowetting2 The change of curvature of a
liquid lens changes its focal length. This behaviour is used to change the focus.

The image 2.2 illustrates the working principle of the Corning® Varioptic® Liquid Lens.
The metal nodes become electrically charged, making them less water repellent, allowing
more water to touch their surface [11].

Using liquids to form a lens was first introduced by Prof Dr Werner B. Schneider in
1988. He has successfully built his idea into a working prototype, demonstrating it to his
students. Despite its potential, the idea remained unstudied and was only used in 2002.

That year, American scientist Tom Krupenkin and his colleagues built a liquid lens as
we know it today. Nowadays, most fundamental patents (e.g. on the chamber shape and
centring of the drop) are held by the company Corning® Varioptic®, and they continue the
main line of research [19].

Figure 2.2: Liquid lens principle, image taken from [7]. Electrical field applied to the metal
nodes touching both liquids changes the shape of their interface.

The first smartphone to use a liquid lens is Xiaomi Mi Mix Fold, released in 2021. It
uses multiple cameras, one of which has a liquid lens mounted. The possibility of bending
a liquid lens into a concave shape is beneficial for capturing macro images.

2.2.2 Applications

As liquid lenses gained popularity, various companies started to find them helpful in their
produced devices. Today, we can find liquid lenses in digital photography, biometric devices,

2Electrowetting describes the change of the wetting properties of the materials when an electric field is
applied to them.
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telescopes, industrial data capture, barcode reading devices, and many more devices across
various industry sectors.

These lenses are often used in applications where fast focusing is needed. That includes
various product quality checks, where the products are being photographed on a production
line, and they need to be focused on individually.

Biometric companies utilize their capabilities in devices based on imaging, such as touch-
less fingerprint scanners. It is often required of such sensors to perform an accurate auto-
focus within a short period. No matter the auto-focus method, in a vast amount of cases,
liquid lenses outperform conventional solutions.

Most modern-day smartphones use several cameras with different lenses integrated into
a single camera system to compensate for the inability to capture macro and wide-angle
images by a single lens. A single camera with a liquid lens could one day replace these
systems. The liquid lens’s ability to bend into a concave shape is mainly utilized in macro
photography.

2.2.3 Strengths, weaknesses and accuracy

The main strength of liquid lenses is the short time it takes to change its focal length and,
therefore, refocus. There is no need for mechanical changes within the lens, as its curvature
changes almost instantly by changing the voltage applied to the metal nodes inside it.

Most liquid lenses can perform the change of voltage on the nodes within tens of mil-
liseconds. The shape of the interface of the liquids changes almost instantly as the voltage
changes.

The rate of change of the focal length depends on the change of voltage applied to
it. Refocusing speed is thus limited by the rate of change of the voltage outputted by a
controller - the so-called driver. If this device is slow, the whole refocusing cycle will be
slow.

The size of a liquid lens is limited, as increasing its diameter lowers its resolution. It is
likely due to the optical properties of the liquids - the possibility of forming optical errors
in the resulting images increases with a larger diameter.

The accuracy of a liquid lens depends on external factors. These factors include the
environment’s temperature or the pressure under which the lens operates. A liquid lens is
not affected by a movement such as that of a CCTV camera.

Another critical factor to the accuracy of the lens is the number of cycles of refocusing
it has undergone. Most liquid lenses can withstand around 50 000 000 cycles of refocusing.
That is around 500 times more than what the typical lens can withstand. It is mainly
thanks to the absence of mechanical parts that would wear over time. This property makes
the liquid lens a perfect gadget for industrial purposes.

2.3 Liquid lens controls
It is a common misunderstanding that liquid lenses are controlled by pulse-width modula-
tion of the alternating voltage. Instead, liquid lenses are generally controlled by increasing
or decreasing the alternating voltage amplitude applied to its metallic nodes. The liquid
lens driver applies the alternating voltage. It is typically measured in VRMS. The drivers
typically output an alternating voltage in a range from 10VRMS to 60VRMS. The exact num-
bers depend on the lens used. The controlling signal is analyzed using an oscilloscope in
the section 3.4.
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Figure 2.3: An ideal alternating voltage graph showcasing meaning of RMS voltage. Image
taken from https://www.allaboutcircuits.com/tools/rms-voltage-calculator/. A
real graph often looks significantly more distorted.

The driver’s alternating output voltage is set by writing a value into its focus value
register.

2.4 Focus value and focus distance of a camera
A driver device usually controls a liquid lens’s focus. The driver accepts a value sent by the
MCU and accordingly sets the voltage on its output, ultimately changing the lens’s focus.
Suppose sending the value 0 makes the camera focus on the furthest point the lens can
focus on, and sending the maximal value sets the lens to focus on the closest point it can
focus on. The drivers are usually 8, 10 or 16-bit, meaning their maximal values are 255,
1023, and 65535, respectively. As this value sets the focus of the lens, we will call it the
focus value further on.

Focus distance refers to the distance from the lens to the objects that are in focus at a
given focus value. The maximal distance a camera can focus on depends on the distance of
the lens from the camera’s image sensor.

Suppose a lens is focused on a point in the maximal focus distance of a camera(focus
value 0). By writing the focus value 1 to the driver, the lens refocuses on a point at a
different focus distance. The following formula gives the distance between these two points:

(𝐹𝐷_𝑚𝑎𝑥− 𝐹𝐷_𝑚𝑖𝑛)/𝐹𝑅_𝑚𝑎𝑥 (2.1)

where

• FD_max is the maximal focus distance

• FD_min is the minimal focus distance

• FR_max is the maximal value writable to the driver’s focus value register
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Chapter 3

Tested camera systems

This chapter will discuss the hardware of the imaging devices that we will build. We will
build 3 cameras - two of them will use a liquid lens, and one, used for comparison, will use
a mechanical lens. One of the liquid lens cameras will be implemented as an embedded
system, while the others MCU will be a personal laptop. A proper assembly of the device
is essential to its functionality. We will use images and schemes to help explain it in
detail. We will also link the datasheets of individual components used in this project in the
attachments.

The last part of this chapter summarizes the testing of the liquid lenses they underwent.
We will measure the exact time needed for the liquid lens to refocus and compare it to the
time taken by the mechanical lens.

3.1 Embedded liquid lens camera
The first camera we will assemble is a camera that might be used in embedded devices, as
it uses Raspberry Pi as an MCU.

3.1.1 Hardware

We will discuss the specifications of each part to be used.

• Edmund Optics M12 16mm Liquid Imaging Lens

• ADM00931 Inductorless Liquid Lens Driver Board

• DMM37UX252ML monochrome USB 3.1 camera 3.2MP

• Raspberry Pi 4 Model B

Edmund Optics M12 16mm Liquid Imaging Lens

The producer of this lens states that it is designed for fast electronic focus, superior image
performance and quick auto-focus and is applicable in high-speed machine vision. The
lens’s 16mm focal length version supports cameras with a 1/1.8” maximal chip format. It
is controlled via a four-channel flexible cable.[7]

Liquid lens parameters:

• Focal length: 16mm
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• Maximal camera sensor format: 1,8”

• Working distance: 220mm - infinity

• Wavelength range: 400nm - 700nm

• IR Cut filter: No

• Field of view at maximal sensor format: horizontal - 109mm - 25.4°, vertical - 81.7mm
- 19.2°, diagonal - 136.2mm - 31.5°

Figure 3.1: The lens is sold either as an individual component or along with a mount
system. The first picuture shows the lens with a mount system and the second image shows
the lens mounted onto a camera.

ADM00931 Inductorless Liquid Lens Driver Board

ADM00931 is used to drive several liquid lens models; Edmund Optics 16mm Liquid Imag-
ing Lens is one of them. It contains A HV892DB1 chip, controlled via an I2C interface.
The driver board processes a piece of single-byte information (focus value) sent by an MCU
via I2C and generates the respective voltage on the output. It is a straightforward driver
board to operate, as there are no additional registers.

The board uses these pins:

• VIN - input voltage(2,65 - 5,5V)

• SCL - I2C clock(max 400kHz)

• SDA - I2C data

• VDD - reference voltage(1,7 - 2,95V)

• GND - ground

• OUT1/OUT2 - output pins
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Figure 3.2: Driver board schematic

Since the focus register is 8 bits, the driver board can set 256 different focus values.
The MCU sets the focus value using an I2C communication at a 400kHz rate. There is no
need to send the address of a register as the driver board only has one. It is not possible
to read any data from the driver board.

Focus value legend[9]:

• 0: stand-by mode, the chip is inactive, output voltage is close to 0 𝑉𝑅𝑀𝑆

• 1: initiates the chip(exits stand-by mode), the output voltage is ramped up to 9.3
𝑉𝑅𝑀𝑆

• 2 - 255: setting these focus values sets the output RMS voltage to 9, 511− 63𝑉𝑅𝑀𝑆 ,
incrementing the focus value by one adds 0.211 𝑉𝑅𝑀𝑆 to the current output RMS
voltage

To set an output voltage, the driver accepts an 8-bit focus value and sets the RMS
voltage calculated by:

𝑉𝑅𝑀𝑆 = 𝑁 * 0.208 + 9.6𝑉 𝑜𝑙𝑡𝑠 (3.1)

where N is a focus value from 0x00( 9.6𝑉𝑅𝑀𝑆) to 0xFF( 62.64𝑉𝑅𝑀𝑆).

Figure 3.3: ADM00931 Inductorless Liquid Lend Driver Board
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DMM37UX252ML monochrome USB 3.1 camera 3.2MP

DMM37UX252ML is a camera system using the Sony CMOS Pregius sensor(IMX252). It
uses an M12x0.5 lens mount, compatible with Edmund Optics 16mm Liquid Imaging Lens.
It uses USB 3.1 technology since a high data throughput is required to support its high
framerate and resolution. High framerate is especially important for image-based auto-
focusing applications, as many images need to be captured and analyzed. The camera can
be operated using three different APIs - UVC/V4L2(Linux), IC Imaging Control(Windows)
and USB3 Vision.

Camera parameters:

• Resolution: 2,048×1,536 (3.1 MP)

• Framerate using maximal resolution: 119 fps

• Video output formats: 8-Bit Monochrome, 16-Bit Monochrome

• Sensor format: 1/1.8”

• Manual trigger: yes

A manual trigger is used to capture frames at specific points in time. The camera’s
exposure needs to be synchronized with the lighting to implement a camera flash. For that
purpose, the strobe pin is used. The camera uses dedicated wires for the trigger and strobe
signals, as shown in picture 3.4.

Figure 3.4: Trigger and strobe signals connection

Image 3.4 legend:

1. TRIGGER_IN(+) - Optocoupler signal (3, 32 − 24.02𝑉 )

2. TRIGGER_IN(-) - Optocoupler ground

3. STROBE_OUT - Open drain

4. GND_I/O - External ground
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Figure 3.5: Camera - front and back

Raspberry Pi 4 Model B

The Raspberry Pi 4 computer is used as an MCU. It will communicate with all the other
parts to execute an auto-focus algorithm. It will obtain frames from the camera via USB
3.1 interface, control the lens’s focus using I2C communication with the driver board and
send trigger signals using the GPIO interface.

Raspberry Pi 4 Model B specifications:

• Processor: Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @
1.5GHz

• RAM: 4GB LPDDR4-3200 SDRAM

• USB: 2x USB 3.0 port; 2x USB 2.0 port

• I/O: Raspberry Pi standard 40 pin GPIO header(I2C included)

• Memory: Micro SD card slot

• Operating system: Raspberry Pi OS (version raspios_armhf-2022-01-28)

Raspberry Pi will provide the computational power for image sharpness detection of
the camera, which could be challenging to its ARM processor. It was chosen because it is
one of the most popular, accessible embedded platforms available. Installing the Raspberry
Pi OS provides easy access to variable camera APIs, image processing libraries and I2C
interface control. The operating system will be installed on and booted from a micro-SD
card.

3.1.2 Assembly

The assembly of a camera
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Parts compatibility

Different parts of the camera system must be compatible with one another. Specifications
of parts that need to be compatible:

• Camera sensor format with lens’s maximal sensor format

• Cameras data-transfer interface (USB 3.1) has to be supported by an MCU

• Driver board’s communication interface(I2C) has to be supported by an MCU

• Trigger signal interface needs to be supported by an MCU

Camera connection

The camera is connected using USB3.1 - USB C cable. The maximal amount of data
outputted by the camera is calculated using its maximal resolution, maximal framerate
and biggest image format:

maximal_resolution * maximal_framerate * image_format (3.2)

In the case of DMM37UX252ML:

(2048 * 1536)px * 119frames * 2bytes/pixel = 748, 683, 264B/s = 748.68Mb/s (3.3)

It is essential to use a USB cable that supports the USB3 technology as the camera
requires a connection with minimal data throughput of 748,68Mb/s. USB2 technology
supports data throughput up to 480Mb/s, which is not sufficient.

Trigger is connected using two wires - one connects the TRIGGER_IN(+) pin of the
camera(3.4) to Raspberry’s GPIO17 pin and the other connects TRIGGER_IN(-) pin to one
of Raspberry’s ground pins.

Driver board connection

The driver board is connected using an I2C interface. I2C uses separate wires for data(SDA)
and clock(SCL) channels. The input voltage pin(VIN) is connected to one of Raspberry Pi’s
5V output pins. The reference voltage needs to be within the 1,7V - 2,95V range; however,
Raspberry Pi’s lowest voltage output supplies 3,3V. Instead, we will use a 5V output pin
and lower the voltage using a voltage divider composed of two 110 Ohm resistors. Finally,
the ground pin(GND) is connected to one of the ground pins. The connection scheme is
described in picture 3.6.
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Figure 3.6: Driver board connection scheme

Trigger connection

The trigger is sent using a simple GPIO signal. The cameras TRIGGER_IN(+) pin is con-
nected to Raspberry Pi’s GPIO 17 pin and the TRIGGER_IN(-) pin is connected to one of
the ground pins. The complete assembly of the camera system, depicted in image 3.7 shows
all of the connections.

Figure 3.7: Assembly of the optical device - scheme
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Figure 3.8: Assembly of the optical device - photo

3.1.3 Camera system controls

After assembling the hardware parts, it is essential to establish communication with the
external devices. We have implemented several libraries to access these peripherals easily.

VideoCapture library

This library is used to communicate with the camera and to set its properties such as
resolution, image format and maximal framerate. The library also implements a function
to retrieve newly captured frames from the camera. It is based on the V4l2 API.

Important library functions:

• VideoCapture() - constructor, initializes the communication with the camera and
sets its properties

• VideoCapture() - destructor, closes the communication with the camera

• cv::Mat getImage() - returns OpenCV’s Mat type containing the captured image

AMD00931 library

The ADM00931 driver board is controlled via the I2C interface, which detects the connected
device on address 0x23. We have implemented a library called ADM00931 to support the
communication with the driver board. It is a simple library since the driver only contains
a single register for setting the focus value.

The ADM00931 library initially established the I2C communication using the library
i2c-dev. It has, however, caused a problem when a value would not be written under
certain conditions. The library was then removed, and the communication was established
the kernel way - via ioctl calls and writing values to system files. The i2c-dev was therefor
replaced by these libraries: sys/ioctl and fstream.

Library functions:

• ADM00931() - constructor, opens the I2C interface and establishes connection with a
device on address 0x23
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• ~ADM00931() - destructor, closes the I2C communication

• setValue(unsigned int data) - writes the focus value data into the drivers focus
value register

Trigger library

The camera recognizes the trigger signal as a short impulse of 3,3V up to 24V. The Rasp-
berry Pi’s GPIO pins output 3,3V, so they can be used to create the signal. We have
implemented the Trigger library to access the camera’s trigger easily.

Library functions:

• Trigger() - constructor, opens the GPIO communication on Raspberry Pi’s GPIO
pin 17

• ~Trigger() - destructor, closes the communication

• sendTrigger(unsigned int delay) - sends a trigger impulse, delay argument con-
trols length of the impulse

3.2 Non-embedded liquid lens camera
We will build one more liquid lens camera system to see the difference in performance
using a non-ARM processor. As the evaluation of image sharpness should take less time
using a more powerful MCU, we expect the execution of image-based auto-focus or similar
applications to be faster.

3.2.1 Hardware

The non-embedded camera system consists of the following parts:

• Edmund Optics 16mm Cx Series Fixed Focal Length Liquid Lens

• Corning® Varioptic® Flexiboard with MAX14574 driver

• IDS UI-3860CP-M-GL Rev. 2

Edmund Optics 16mm Cx Series Fixed Focal Length Liquid Lens

This lens is applicable in the same ways as the previous one. The difference is in their focal
length ranges, mounting mechanism and controls. It is a bit more robust, and thanks to its
greater maximal focal length, it can focus on greater distances. It is connected to an MCU
by a 4-wire flexible cable.

Edmund Optics Cx Series Fixed Focal Length Lens parameters:

• Focal length: 16mm

• Maximal camera sensor format: 2/3”

• Working distance: 100mm - infinity

• IR Cut filter: No

• Field of view at maximal sensor format: horizontal: 59.9mm - 31°, vertical: 44.7mm
- 23.4°, diagonal: 75.2mm - 38.3°
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Corning® Varioptic® Flexiboard with MAX14574 driver

The Corning® Varioptic® Flexiboard driver controls the Cx Series liquid lens. It is an
advanced driver that can be used to drive up to 4 liquid lenses simultaneously. It uses 11
registers, 6 of which are accessible. They control the output and inform MCU about the
current status. To set an output voltage, Flexiboard accepts a 16-bit focus value and sets
the RMS voltage calculated by:

𝑉𝑅𝑀𝑆 = 𝑁 * 0.001 + 24𝑉 𝑜𝑙𝑡𝑠 (3.4)

where N is a focus value from 0x0000( 24𝑉𝑅𝑀𝑆) to 0xB3B0( 70𝑉𝑅𝑀𝑆).

List of Flexiboard’s 8-bit registers:

• FOCUS_LSB[0x00] - 8 LSB bits of focus value

• FOCUS_MSB[0x01] - 8 MSB bits of focus value, the output is updated after writing to
this register

• CONTROL[0x02] - setting this register saves the Focus and Mode registers to EEPROM
memory to be loaded after reset

• MODE[0x03] - setting the zeroth bit(LSB) sets the flexiboard into stand-by mode,
setting the first bit sets the driver to be controlled by analog input

• SW_VERSION[0x05] - USB-M firmware version

• FAULT[0x0A] - if the zeroth bit(LSB) is set, it indicates the driver is overloaded(could
not reach desired output voltage), the second bit indicates that the driver is not re-
sponding to I2C requests and the third bit indicates the driver is in thermal shutdown

Figure 3.9: Flexiboard description
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Flexiboard is connected to the MCU via USB. The kernel recognizes the USB to UART
serial CP210x adapter and loads its driver. The serial communication is then translated
into an I2C message by the microcontroller, and that message is sent to the MAX14574
chip. To properly establish the connection, the following Serial Bus settings are used:

• Baud-rate: 57 600 bauds

• Parity: no parity

• Data length: 8 bits

• Amount of stop-bits: 1

The Serial Bus communication follows a UART protocol described below:
Writing frame

STX Command Add Nb_data Data_1 Data_2 ... Data_n CRC

• STX = 0x02

• Command = 0x27 (write)

• Add = Address of first register to be written

• Nb_data = number of registers to be written

• Data_1,... Data_n = data to be written to registers

• CRC = 1-byte sum of all bytes(STX, Command, Add, Nb_data, Data)

If the transaction was successful, flexiboard replies with an ACK(0x06). If it did not
succeed, flexiboard sends NACK(0x15). The format of flexiboards reply message:

STX 0x37 ACK/NACK CRC

Reading frame

STX Command Add Nb_data CRC

• STX = 0x02

• Command = 0x38(read)

• Add = address of the first register to be read

• Nb_data = number of registers to be read

• CRC = 1-byte sum of all bytes(STX, Command, Add, Nb_data)

Response of the board if transmission is successful:

0x02 0x38 Data_1 Data_2 ... Data_n CRC
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Response of the board if transmission is not successful:

0x02 0x38 NACK CRC

The microcontroller translates the UART messages to appropriate I2C messages fol-
lowing the MAX14574 driver protocol found in its datasheet. The driver then acts on the
message by setting the output voltage or writing to/reading from its registers.

IDS UI-3860CP-M-GL Rev. 2

This is a camera specialized for industrial use. It provides a framerate of up to 135 maximal
resolution frames per second. It is often used in fast imaging lines in various factories for
quality control or barcode reading.

Camera parameters:

• Resolution: 1936x1096px (2.1 MP)

• Framerate using maximal resolution: 135 fps

• Video output formats: 12-bit RGB

• Sensor: Sony IMX290LLR-C

• Sensor format: 1/3” CMOS

• Manual trigger: yes

A manual trigger can be activated; however, the producer claims that the camera reaches
half of the original maximal framerate in this mode. The V4L2 API does not support
the camera; instead, the producer supplies its API. Registration on the producer’s site is
required in order to download it.

MCU

The non-embedded camera system is easily accessible by and compatible with a broad range
of MCUs, as the liquid lens driver it uses communicates using USB instead of I2C. Since
Raspberry Pi 4 includes several USB 3 ports(needed for camera connection), it is possible
to use it as an MCU, making the system an embedded device. However, such an approach
negates the benefits of a more powerful MCU of a proper non-embedded system.

3.2.2 Assembly

The assembly of the non-embedded camera system is much more user friendly. Using
the provided flex cable, the liquid lens is easily attached to the driver. The driver and
the camera are connected via the Universal Serial Bus(USB). The camera manufacturer
provides a custom API to access it. After registration on the site, it can be downloaded on
the link https://en.ids-imaging.com/downloads.html. The module taken from the API
is called CamControl.cpp.

3.2.3 Camera system controls

This section describes the libraries implemented in order to establish the communication
of an MCU with the camera and liquid lens driver.

20

https://en.ids-imaging.com/downloads.html


Flexiboard library

The communication with the driver(Flexiboard) of the non-embedded liquid lens camera
system is established via a serial bus. Flexiboard is connected to the USB port of the MCU,
where it is recognized as a CP210x USB to serial adapter. To make the communication with
the driver easier, we have implemented a custom library called Flexiboard, supported by a
custom SerialPort library. The Flexiboard library provides a high-level abstraction of the
Flexiboard UART communication protocol 3.2.1. We have also attempted to re-make this
library into a kernel driver. This attempt has failed since a Flexiboard driver is recognized
as a CP210x adapter, as the USB variables VENDOR_ID and PRODUCT_ID are set to those of
one [5]. The kernel, therefore, mistakes the Flexiboard device for a CP210x adapter.

The base of the Flexiboard driver is the Flexiboard class. It implements the following
functions:

• Flexiboard(char* path) - constructor, initializes Serial Port communication with
a device associated with path

• void setValue(unsigned short value) - the function that sets the Flexiboard’s
focus value to value

• bool isAnalogMode() - returns true if Flexiboard is set to analog mode

• bool isStandbyMode() - returns true if Flexiboard is in standby mode

• void setAnalogMode() - sets Flexiboard to analog mode

• void setStandbyMode() - sets Flexiboard to standby mode

• void clearModes() - clears any mode set

• void saveState() - saves the focus value and mode to EEPROM memory to be
loaded on next power on

• int softwareVersion() - returns the software version of Flexiboard

• bool isNotResponding() - returns true if Flexiboard is not responding

• bool isThermalShutdown() - returns true if Flexiboard is in thermal shutdown

• bool isOverloaded() - returns true if Flexiboard is overloaded

These functions are based reading and writing of the Flexiboards registers, so internally
they call the following functions:

• void writeFrame(unsigned char addr, unsigned short data, unsigned int
dataLength) - assembles a message accoding to the UART protocol 3.2.1

• std::vector <unsigned char> readFrame() - similar to writeFrame, except it as-
sembles a message with read command

• void writeRegister8(unsigned char addr, unsigned char data) - writes 8 bits
of data to register on address addr (calls writeFrame, to assemble a proper message)
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• void writeRegister16(unsigned char addr, unsigned short data) - same as
writeRegister8, except it writes to two registers at the same time (useful for setting
the focus value, as it is stored in two registers)

• unsigned char readRegister(unsigned char addr) - reads a single register on
address addr

• void checkChecksum(std::vector<unsigned char> buffer) - calculates the sum
of all bytes of the assembled message, used as a checksum

SerialPort library

The SerialPort library is used to initiate the communication via serial bus. The SerialPort
class contains the following functions:

• SerialPort(char* path) - constructor, opens the serial port associated with path

• void closeSerialPort() - closes the serial port, terminates communication

• void configureSerialPort - configures the serial port according to the requirements
from Flexiboards datasheet

• void SerialPort::writeMessage(std::vector <unsigned char>
message) - sends the message in readBuf onto the serial bus

• unsigned int SerialPort::readMessage(std::vector <unsigned char>
readBuf) - reads a message from serial bus to the readBuf

3.3 Mechanical lens camera system
To provide a comparison of the liquid lenses, we will also assemble a mechanical lens camera
system.

3.3.1 Hardware

This system uses a camera controlled by I2C, and the frames from the camera are transferred
to the MCU using a MIPI cable. Therefore, the obvious choice for an MCU is a Raspberry
Pi 4B, also used by the embedded liquid lens camera system.

Arducam Pan Tilt Zoom Camera

The Arducam Pan Tilt Zoom Camera uses a stepper motor to move the lens to achieve
focusing. The motor is controlled using an I2C interface. It was designed for CCTV
cameras, so another motor rotates the camera vertically and horizontally. This functionality
will not be used, as we only need to measure its focusing speed.

Camera parameters:

• Maximal resolution: 2592x1944

• Framerate using maximal resolution: 15 fps

• Video-output formats: 8-bit RBG RAW, 10-bit RGB RAW

22



• Sensor: 1,4“ CMOS QSXGA (5MPx)

• Manual trigger: No

3.3.2 Assembly

The assembly of this camera system consists of connecting the camera and the focusing
motor to the MCU. The camera is connected using a MIPI interface, while the motor is
controlled using an I2C interface.

Figure 3.10: Connection of Arducam PTZ to Raspberry Pi. Image taken from Arducam
website [1].

3.4 Lens testing
The main focus of this section is to figure out how fast focusing with a liquid lens is. We
have already established that the shape of the liquid lens changes almost instantly after
changing the electrical field applied to the nodes. The rate of change of the liquid lens focus
is therefore limited by the rate of change of the voltage on its nodes. We have connected
both camera systems to an oscilloscope to measure the exact time needed to change the
voltage at the driver’s output. The measurement starts with the driver boards receiving
the focus value to be set and ends when the voltage on its output stabilizes.

Before the first measurement, we have set the ADM00931 to an initialized state by
writing 0x01 to its focus register. Then we started the oscilloscope and wrote the maximal
focus value(0xFF) to the focus register. The oscilloscope outputted the following graph:
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Figure 3.11: The oscilloscope output graph indicates that the voltage settles at the desired
value after around 150ms.

After executing several tests, we have observed that the time needed to stabilize the
output voltage varies depending on the difference between the current and the new focus
value. The greater the difference, the longer the driver board takes to set the proper
output voltage. The driver boards in the two mentioned camera systems use focus registers
of different sizes, so to compare the two, we have performed the tests over several ranges of
focus values. Fractions of the maximal focus value describe these ranges - e.g. 1/5 means
that the difference between the new focus value and the current one is 1/5 of the maximal
focus value(51 for 8-bit ADM00931 and 13107 for 16-bit Flexiboard).

Since the mechanical lens Arducam(todo) is controlled similarly, we have also performed
the tests using a mechanical lens. The time taken was measured by an application, as the
Arducam’s API uses a blocking function to set the focus.

- 1/25 1/5 2/5 1/2 3/5 4/5 1
ADM00931 20 75 90 100 105 130 150
Flexiboard 15 80 95 105 115 125 140

Arducam PTZ 200 740 1440 1780 2115 2820 3485
Average difference 182,5 662.5 1347.5 1677.5 2005 2,692.5 3,340

Table 3.1: The table states the periods (in ms) needed to set the output voltage of a
driver board over a fraction of the number of possible focus values. The times are stated
in milliseconds. The average distance row calculates the difference between the mechanical
camera system and the average time taken by both liquid lens camera systems.
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We observe that the liquid lens camera systems are, on average, 17 times faster than
the Arducam PTZ using a mechanical lens. The worst-case scenario is that the system
refocuses from the closest to the furthest point. We have established that this operation
takes 140ms-150ms to complete for the embedded and non-embedded systems using liquid
lenses, respectively.

3.4.1 Possible optimizations

Measuring the settling time of the voltage gives insight into possible bottlenecks of the
camera. Refocusing over a range in several steps is always slower than refocusing in a
single step. An image-based auto-focusing algorithm needs to do just that, however. It
needs to refocus and capture an image more than 20 times to complete in many cases.
Thanks to the testing, we propose two ways to optimize the camera systems:

Dynamic waiting times

Testing proved that the more significant the difference between the current(initial) value
in the demo board register and the new value written to the driver board, the longer the
output amplitude takes to settle. The camera does not have to wait 150ms after refocusing
over a smaller range of focus values. It only has to do so in the worst-case scenario. The
period the camera needs to wait for a proper focus is usually lower than 150ms, and it
depends on the difference in current and new focus value. Dynamic waiting times are
therefore calculated using the initial and new values difference. The exact figures are found
by observation via an oscilloscope.

Limiting the focus values range

As a result of limiting the focus values range, the differences between the initial value and
the new value become smaller; therefore, it is not necessary to wait so long for the amplitude
to settle. Combining this optimization with dynamic waiting times is possible to achieve
even faster refocusing times.
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Chapter 4

Image sharpness detection

This chapter summarizes the findings concerning image sharpness evaluation and discusses
the methods used to find the score of image sharpness. Image sharpness refers to how
clear or blurry an image is. Often edge detection algorithms are used to evaluate image
sharpness. Usually, the more edges on an image, the sharper(more in focus) it is.

Image-based auto-focus methods analyze the image sharpness of several images. They
usually capture the images using different focus values and save the sharpness scores of
these images. After analyzing all images, the auto-focus algorithm sets the focus value at
which the highest score was achieved.

Image sharpness detection is also used to sort blurry photos. Professional photographers
often take large amounts of photos, some of which may be not in focus. They choose a
minimally required sharpness score - a threshold and discard all photos the score of which
is lower than the threshold. A threshold can also be used for an image-based auto-focus
algorithm. When the algorithm finishes, it compares the maximal sharpness score found
with a threshold, and if lower, it starts the algorithm over again.

Nowadays, there are various options to determine whether an image is clear. These
methods differ in their accuracy under different conditions. One method may be more
precise in determining whether an image is clear if the image is bright, while others may
struggle to determine the sharpness score under such conditions. Another method may
calculate the score precisely if there are many edges on the image, while others may take
too long under such circumstances. The choice of the image sharpness evaluation method
depends on the objects that the camera will most likely capture and the environment they
are placed within.

The model situation for this project is that the camera will be focusing on a hand
with proper lighting. We assume that the lighting conditions will be proper as we will use
external lighting.

4.1 Ways of image sharpness score assessment
Selecting the proper method of image-sharpness detection is a crucial part of the task. The
main objective is to find a precise method that takes as little time as possible to meet
the near real-time requirements. We will use a camera triggered manually, achieving 30
to 40 frames per second in this mode. Various auto-focusing methods require different
amounts of images to be taken to focus correctly. We will assume the algorithm requires
taking and calculating the sharpness score of at least ten separate images for the early
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stages. Ideally, a single auto-focusing cycle should finish under one-third of a second. Such
a requirement is almost impossible to meet as no image-sharpness detection method can
calculate the sharpness of 10 high-quality images in such a short time. That means the
sharpness calculation will most likely limit the camera’s framerate. Later on, we will discuss
the methods to counteract this limitation.

4.2 Edge detection
An edge in an image is a boundary between two homogeneous areas. If only one image
channel is considered, the areas are characterized by similar pixel intensities. Edge detection
is an image-processing method of identifying sharp discontinuities in an image. It usually
does so by calculating the differences in neighbouring pixel intensities.

Figure 4.1: The image on the left is a graph representation of a one-dimensional image,
also known as the intensity function. The image contains a single edge, as there is only one
shift from low intensity to high intensity. The red circle is the point on a graph where the
edge is detected. On the right, there is the first derivative of the intensity function of the
image. Notice that the edge now appears as a local maximum of the function.[15]

Edge detection is a fundamental tool used in most image processing applications to
obtain information from the frames as a precursor to feature extraction and object segmen-
tation. Edge detection filters are also widely used to increase the appearance of blurred
images. It is frequently used in camera vision applications [2].

Image gradient

An image gradient represents the directional change in the intensity of colour in an image.
It is one of the fundamental parts of image processing. In mathematics, the gradient of a
two-variable function(the image intensity function) at each image pixel is a 2D vector. The
derivatives give the components of the vectors in both horizontal and vertical directions.
The direction of the vector is equal to the direction of the most significant intensity increase,
and the length represents the rate of intensity change. The mathematical denotation of an
image gradient is

∇𝑓 =

[︂
𝑔𝑥
𝑓𝑥

]︂
=

[︃
𝜕𝑔
𝜕𝑥
𝜕𝑔
𝜕𝑦

]︃
(4.1)

where
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• 𝜕𝑓
𝜕𝑥 is the derivative with respect to the x-axis(gradient in x direction)

• 𝜕𝑓
𝜕𝑦 is the derivative with respect to the y-axis(gradient in y direction)

Finite differences in the pixel intensities can approximate the partial derivatives. They
are calculated by the convolution of an image with a matrix. Different edge-detection
methods use different convolution matrices. The fundamental one is:⎡⎣−1

0
1

⎤⎦
The convolution is then denoted as:

𝜕𝑓

𝜕𝑦
=

⎡⎣−1
0
1

⎤⎦ * 𝐼 (4.2)

where

• I is the image matrix

• symbol * stands for 1-dimensional convolution operation

The output of such convolution is a gradient image, denoted as G. The pixels of the
original image corresponding to pixels with a high gradient in the gradient image become
possible edges. The edge direction is perpendicular to the direction of the gradient vector,
which is calculated by the formula:

𝛼 = arctan
𝑔𝑦
𝑔𝑥

(4.3)

The magnitude of the vector is given by

|∇𝑓 | =
√︁
𝑔2𝑥 + 𝑔2𝑦 (4.4)

In terms of image gradient, an edge is defined as a discontinuity in an image gradient
graph. Figure 4.2 shows 5 classifications of the these discontinuities.

Figure 4.2: Types of discontinuities in image gradient graph. Image taken from Professor
A. D. Marshall’s website [?].

28



There are many edge detectors based on the convolution of the image with a mask, often
using 3x3 maks sizes or even larger. A larger size mask reduces the errors caused by noise
and by local averaging within the neighbouring pixels. The masks are usually of an odd
size so that they can be centred and therefore provide an estimate that is biased towards a
centre pixel.

4.2.1 Original image

In the following section, we will compare the outputs of different edge-detection methods.
The photo that will be used is a high-resolution photo of a hand.

Figure 4.3: Original of the image that will be used to demonstrate edge-detection methods
outputs.

4.2.2 Sobel Operator

A Sobel operator is a simple approximation of the image gradient concept. It uses different
masks(convolution matrices) to detect edges in horizontal and vertical directions. One is
obtained by rotating the other by 90 degrees. The input is convoluted with the mask to
result in a Sobel approximation of the gradient image[15]. We only take one channel of an
image into account - it represents image intensity. Convolution with integer values is not
an expensive operation in terms of time, making it a relatively fast method. [17]

𝑆𝑥 =

⎡⎣21 0 −1
2 −0 −2
1 0 −1

⎤⎦𝑆𝑦 =

⎡⎣ 1 2 1
0 0 0
−1 −2 −1

⎤⎦ (4.5)

Figure 4.4: Sobel 3x3 kernels
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The following steps are taken to obtain a Sobel approximation of gradient image in both
directions:

1. The original image is convoluted with the 𝑆𝑥 mask to obtain an image of horizontal
edges

𝐺𝑥 =

⎡⎣1 0 −1
2 −0 −2
1 0 −1

⎤⎦ * 𝐼 (4.6)

2. The original image is convoluted with the 𝑆𝑦 mask to obtain an image of vertical
edges

𝐺𝑦 =

⎡⎣ 1 2 1
0 0 0
−1 −2 −1

⎤⎦ * 𝐼 (4.7)

3. The final gradient image is obtained by combining the two partial gradient images:

𝐺 =
√︁

𝐺2
𝑥 +𝐺2

𝑦 (4.8)

or sometimes in a more straightforward manner:

𝐺 = |𝐺𝑥|+ |𝐺𝑦| (4.9)

The mask matrices can be larger; the only condition is that it has to be an odd number.
Since the Sobel operator produces only an approximation of the gradient image, noticeable
inaccuracies may occur using small masks such as the mentioned 3x3 metrices4.4. The
problem is usually solved using a Scharr operator instead [10].

The outputs of the Sobel operator using a 3x3 matrix.

Figure 4.5: Original image, taken from [15]
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Figure 4.6: Sobel derivative, image taken from [15]

4.2.3 Scharr operator

This operator, just like Sobel, calculates the approximate gradient image using matrix
convolution. It uses the following matrices:

𝑆𝑐ℎ𝑥 =

⎡⎣ −3 0 3
−10 0 10
−3 0 3

⎤⎦𝑆𝑐ℎ𝑦 =

⎡⎣−3 −10 −3
0 0 0
3 10 3

⎤⎦ (4.10)

Scharr operator is as fast as the original Sobel operator, achieving more accurate results.

4.2.4 LaPlacian Operator

The previous operators approximated the first derivatives of the image intensity function.
The Laplacian operator instead approximates the second derivatives of the image intensity
function to detect the edges.

𝐿𝑎𝑃 𝑙𝑎𝑐𝑖𝑎𝑛(𝑓) =
𝜕2𝑓

𝜕𝑥2
+

𝜕2𝑓

𝜕𝑦2
(4.11)

The second partial derivatives of the image intensity function are noted as [8]:

𝜕2𝑓

𝜕𝑥2
= 𝑓(𝑥+ 1, 𝑦) + 𝑓(𝑥− 1, 𝑦)− 2𝑓(𝑥, 𝑦) (4.12)

𝜕2𝑓

𝜕𝑦2
= 𝑓(𝑥, 𝑦 + 1) + 𝑓(𝑥, 𝑦 − 1)− 2𝑓(𝑥, 𝑦) (4.13)
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An edge in the second derivative function is represented by the value 0. The operator
follows the same steps as the Sobel operator, calculating the second derivatives in both
directions and combining them into a single gradient approximation image.

Figure 4.7: The graph of the second derivatives of a one-dimensional image containing a
single edge[13]. Notice that the edge is now located at 0. This property is used to detect
the edges.

The Laplacian operator approximates the values of the second derivative of the image
intensity by convolution. Again, the matrices must be of an odd size; the smallest is a 3x3
kernel.

𝐿𝑃𝑥 =

⎡⎣0 1 0
1 −4 1
0 1 0

⎤⎦𝐿𝑃𝑦 =

⎡⎣0 1 0
1 −4 1
0 1 0

⎤⎦ (4.14)

Figure 4.8: The Sobel 3x3 mask matrices used by LaPlacian operator

Taking images derivatives accentuates its high frequencies, which leads to noise am-
plification since the proportion of noise to signal is more prominent at higher frequencies.
Therefore, it is a common practice to use a low-pass filter prior to computing the image
gradient to smooth the image. The only circularly symmetric filter - the Gaussian smooth-
ing filter is used to make the response of the edge detector independent of the orientation
of the edges [18].
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Figure 4.9: The output of a LaPlacian edge detector, the result shows the original image
convoluted with a LaPlacian 3x3 kernel.

4.2.5 Canny edge detector

Canny edge detector uses multiple steps to detect various edges in an image. It was devel-
oped by John F. Canny in 1986, who set three main criteria for the detection:

• Accurate detection with a low error rate, meaning as many edges as possible need to
be detected.

• If an edge is wider than one pixel, the detected edge pixel will be placed in the middle
of the edge.

• An edge in the image should only be marked once, and where possible, image noise
should not create false edges.

The Canny operator consists of 5 separate steps:

1. Applying the Gaussian smoothing in order to reduce noise

2. Convolution of the smoothed image with Sobel filters - finding edges in horizontal
and vertical directions.

𝐶𝑥 =

⎡⎣−1 0 1
−2 0 2
−1 0 1

⎤⎦𝐶𝑦 =

⎡⎣ 1 2 1
0 0 0
−1 −2 −1

⎤⎦ (4.15)

Figure 4.10: The Sobel 3x3 mask matrices used by Canny edge detector.
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Two additional matrices are used to find the edges in diagonal directions. All of the
gradient images are then combined into one.

3. Thresholding or lower bound cut-off suppression is applied to the output of the pre-
vious step to get rid of spurious response to edge detection

4. Apply double threshold to determine potential edges.

5. Track edge by hysteresis: Finalize the detection of edges by suppressing all the other
edges that are weak and not connected to strong edges.

Figure 4.11: Canny derivative, image taken from [12]

4.2.6 Fourier Transform

An alternative to edge detectors that calculate derivatives of intensity image is the Fast
Fourier Transform method. It is based on calculating the image data’s Fast Fourier Trans-
form(FFT). It first computes the FFT to find the frequency transform and then shifts the
zero-frequency component (i.e., the DC component located at the top-left corner) to the
centre, which will be easier to analyze. Then it zeros out the centre of the FFT shift (i.e.,
remove low frequencies), applies the inverse shift such that the DC component once again
becomes the top-left, and applies the inverse FFT. After that, the magnitude spectrum of
the reconstructed image and its mean value are calculated. This value is the score of image
sharpness, meaning the sharper the image, the greater the value and vice versa.[16]

Minor manual tuning is required compared to LaPlacian methods. It is usually precise
if the inputted images contain many objects with sharp edges - text is a good example.
The individual letters are usually distinctly differentiated from the background, and every
letter has very sharp edges. This method might thus struggle if the input images visualize
a hand(model situation).
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4.3 Comparing the methods
We have analyzed the performance of the individual image sharpness detection methods.
A program was used to analyze the sharpness of 255 images, each taken at a different focus
value. The images were taken by the embedded camera system 3.1, which we will describe
later. The resolution of all the images is 2048x1536 px. We have used the same program to
measure the times needed and only switched the image-sharpness detection methods. The
scene of the image was a hand such as the one used as an example for image sharpness
detection methods outputs 4.11.

- Lenovo IdeaPad 5 15ARE05 Raspberry Pi 4B
Sobel operator 2,48 34,14

Laplace operator 2,70 38,16
Canny edge detector 2,36 21,66

FFT method 35,54 342,51

Table 4.1: Table of average times needed to analyze 255 high-resolution images by two
different processing units. The averages were calculated from 10 runs. The times are stated
in seconds. The differences in times between Sobel, Laplace and Canny are not really
significant in case of using Lenovo IdeaPad as MCU. When Raspberry Pi 4B was used as
MCU, the Canny ended up being the fastest. The FFT method proved to be quite slow for
large images.

Graph of sharpness scores of images over the focus range

Image sharpness detection methods are often the basis of image-based auto-focus algo-
rithms. These algorithms must find the maximum in the graph of image sharpness scores.
A graph of sharpness scores over a range of all possible focus values 2.4 of the liquid lens
helps us determine how hard it will be to find its maximum. The focus values are plotted
on the x-axis, and the sharpness scores are plotted on the y-axis.

The following graphs were constructed by the embedded camera system 3.1 :
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Figure 4.12: Top-left: Graph of image sharpness scores for Sobel operator.
Top-right: Graph of image sharpness scores for Laplace operator.
Bottom-left: Graph of image sharpness scores for Canny edge detector.
Bottom-right: Graph of image sharpness scores for FFT edge detection method.

To find the maximum in graphs like these by sweeping the range of focus values to
focus the camera system, it is essential for the peak at which the maximum is located to
be as wide as possible. We observe that the maximum in the Laplace operator graph is
insignificant compared to the rest of the graph. The graphs for the Sobel operator and the
FFT method look similar; however, the FFT method was significantly slower. Thus we will
primarily be concerned with the Sobel operator and Canny edge detector.
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Chapter 5

Implementation of an image-based
auto-focus

An image-based auto-focus algorithm sets the focus values, captures and analyzes images
and finds the focus value at which the image is the clearest. The image-sharpness detection
method needs to be independent of the auto-focusing algorithm, meaning it can be switched,
and the algorithm will still work.

This chapter will explain implementing an auto-focus program for both mentioned cam-
era systems - the embedded and non-embedded liquid lens cameras. The main difference in
implementation between these two systems is the different controls of the liquid lens. Dif-
ferent drivers control the two liquid lenses used. The embedded liquid lens camera driver
is controlled via I2C, while the non-embedded camera driver is controlled via USB.

Another difference is that the embedded camera will utilize the manual trigger. In
contrast to the non-embedded system, it will not be used to display the process of auto-
focus. It means that the MCU does not have to obtain the frames taken by the camera
while refocusing; therefore, it will only obtain the frames that the image-sharpness detection
methods will analyze. A manual trigger (3.1.1) is used to make sure that the camera does
not capture the frames while the lens is refocusing.

5.1 Language choice and libraries
The application will be implemented in the C++ programming language. It is low level
enough to meet the real-time requirements. There is also the possibility of using a well-
known OpenCV image-processing library. The first tests done in Python proved to be
slower than those in C++. The unpredictability of memory management operations is also
in contrast to the real-time needs.

In our implementation, we have used several open-source libraries. The libraries provide
easy access to the I2C and GPIO busses and image processing. The library common for
both embedded and non-embedded camera systems is OpenCV. OpenCV is a library for image
processing. It was designed to be applicable in real-time applications [14].

5.2 Algorithm
A prototype is a slow, not optimized, very general usage application. It will undergo many
optimizations and structural changes before becoming the final product. It is supposed
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to be used for various testing cases, so keeping it as general as possible is good. In this
case, it means not downsizing the focus values range and not using the other mentioned
optimizations. The answer to these requirements is a sweep auto-focus algorithm. Its
name is derived from sweeping the range of focus values and finding the value at which
the sharpness score is the greatest. A must-do add-on for the final version is another
similar loop, which finds the greatest sharpness score from images obtained from around
the greatest found value from the first loop.

The algorithm for the embedded camera system assumes the mentioned components 3.1
(8-bit driver), making the highest writable value 255. It increments the value written to
the driver board by 25; thus, it takes ten images to sweep through the entire focal length
range.

The non-embedded camera system uses a 16-bit driver; thus, the increment is also
greater. Considering the Sobel and Canny image sharpness scores graphs 4.12, an increment
of 2621 was decided.

Algorithm 1 Sweep auto-focus algorithm pseudo-code for embedded camera system
increment = 25
score, maxScore, focusValue, maxFocusValue = 0
for 𝑖 = 0; 𝑖 <= 10; 𝑖++ do

sendTrigger()
image = loadImage()
score = scoreCalculationMethod(image)
if score > maxScore then

maxScore = score
maxFocusValue = focusValue

end if
focusValue += increment
i2c_write(i2c_data)

end for

Algorithm 2 Sweep auto-focus algorithm pseudo-code for non-embedded camera system
increment = 2621
score, maxScore, focusValue, maxFocusValue = 0
for 𝑖 = 0; 𝑖 <= 10; 𝑖++ do

image = loadImage()
score = scoreCalculationMethod(image)
if score > maxScore then

maxScore = score
maxFocusValue = focusValue

end if
focusValue += increment
Flexiboard.setValue(focusValue)
showImage(image)

end for

The code for image-based auto-focus implemented for the camera system using elec-
tromechnical lens was taken from https://github.com/ArduCAM/PTZ-Camera-Controller.
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It was edited so that it matched the operations undertaken by the liquid lens camera sys-
tems.

5.2.1 What do the measurements of liquid lens speed mean for the algo-
rithm

To implement the auto-focusing applications, we will use the knowledge acquired from the
measurements in section 3.4. These measurements helped us to come up with the following
actualities:

• The application must process the frames that are correctly focused according to the
focus value; therefore, it needs to wait for the focusing to finish. Only then it should
capture the next frame for processing. To achieve such behaviour, we will discard
the frames that are not focused according to the focus value or display them as
live capture using a separate thread. The latter approach only applies to the non-
embedded system.

• Assume using the maximal possible framerate of the camera with the maximal res-
olution(119 fps for 2154x1536px). Then in the worst-case scenario(waiting 150ms),
the embedded-camera application will acquire 18 images that are not focused as de-
sired. The figure is similar for the non-embedded system, as its maximal framerate is
similar.

• The settling times are not distributed proportionately to the fractions of focus range
over which is being refocused. It means that refocusing over a range of focus values
in any amount of steps will take longer than refocusing in one step. Refocusing from
the closest point to the furthest point in 5 steps would take the embedded system
375ms of delay, while it would only take 150 if done in a single step.

5.2.2 Testing of embedded system

Prototype testing revealed the following actualities:

• The prototype only works properly if the application sleeps for a few milliseconds
after every i2c_write(). Otherwise, images obtained will not be adequately focused
according to focus values.

• Incrementing the value to be written to the driver by 25 often results in an inability
to find a sharp image (the peak in the graph of sharpness scores is steep); therefore,
we will use a smaller increment.

• Second loop for minor adjusting of the focus is needed. After finding the focus value at
which the maximal sharpness score was obtained, it will also calculate the sharpness
scores of images obtained at focus values around the one that is set. The increment
of the focus value for the second loop will be much smaller, such as 1 or 2. It will
ensure that the final image is the most in-focus one.

• The sharpness score calculation takes a significant amount of time - area of interest
optimization is needed. It will select only a part of the image to be analyzed by the
image sharpness detection method.
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• Loading the image from the camera takes a significant amount of time. It can be solved
by using lower-resolution images or a different image format; the optimal solution
would be loading only the area of interest from the previous point and using separate
threads to load the image and calculate the sharpness score.

5.2.3 Testing of non-embedded system

Testing of the prototype for the non-embedded system revealed these findings:

• The increment used is suitable; the algorithm performs auto-focus successfully if the
scene is a hand at any distance it can focus on.

• It is needed to optimize the live projection of images using a separate thread. Oth-
erwise, only 12 frames per second can be obtained. It is because the sharpness score
calculation takes a significant amount of time. If a separate thread was used, the
system could project all the images obtained while only analyzing the sharpness score
of the correctly focused images according to the focus value.

5.2.4 Test suite for testing without camera

We have implemented a test suite for testing the auto-focus application without the need to
use a camera. First, the TestSetsGenerator application makes the camera system capture
an image at every possible focus value and saves those images. The scene must remain
constant during the capture. These images, named after the focus value at which they
were captured, make up a test set. The application AutoFocusNoCam does not capture any
images using a camera. Suppose the auto-focus application wants to refocus according to
a specific focus value. Then, instead of setting the focus value to the driver of the lens
and capturing a new image, the application loads an image from the data set, the name
of which contains the mentioned focus value. Thus we can test the auto-focus algorithm
itself, minimizing the time needed to load images(from the camera in case of the original
auto-focus application) and eliminating the time that the original application has to wait
for a proper refocus.

The AutoFocusNoCam application takes mere 200 milliseconds to finish using Lenovo
IdeaPad 5 15ARE05 as an MCU and around 1120 milliseconds running on Raspberry Pi
4B. It proves that the most significant bottleneck of the auto-focus application is the image-
loading process.

5.2.5 First optimizations and add-ons

Adding a second loop

Adding a second loop to the prototype code ensures an image with the greatest possible
sharpness score is found by sweeping the values around the value found by the sweep
algorithm. There are various approaches to implementing this loop. It comes with a cost
of more frames needed for the auto-focus loop; however, it is essential for wide ranges of
focus values.

Adding the second loop proved to be essential for both systems. Otherwise, the algo-
rithm would only approximate the focus value at which the most in-focus image is obtained.
For the embedded system, an increment of 2 was used. For the non-embedded system, we
have used the increment of 256.
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Area of interest optimization

Limiting the area used to calculate the image sharpness may not be optimal for all applica-
tions. It means that the algorithm only processes a part of the obtained image, meaning it
will try to find the focus value at which the selected area is most in-focus. This approach
may not be ideal for systems that need the whole image in focus. This optimization proved
to speed up the algorithms significantly.

Working distance optimization

Camera systems, especially those used industrially, rarely use the lens’s entire range of
focus distances. An example is an imaging line, which photographs boxes of different sizes
as they pass beneath the camera system. Such a system will only have a working distance
equal to the height of the highest box that will pass through the line. We can thus optimize
the range of focus values sent to the lens. The smaller the focus values range, the faster
the refocusing will be, speeding up the system even more.

5.2.6 Comparing the image-based auto-focus performance across systems

We have optimized all systems using the second loop and area of interest optimizations. All
the systems were made to capture and analyze the same amount of images. We observed the
times taken by all three camera systems to finish the optimized auto-focusing algorithms.

The embedded camera system uses an 8-bit driver and Raspberry Pi as an MCU. The
non-embedded system uses a 16-bit driver, and its MCU is a personal notebook Lenovo
IdeaPad 5 15ARE05. The assumption is that it will be able to process images much faster
than the embedded system as it does not use an ARM processor. The operating system is
booted from an SSD drive instead of an SD card, which should make memory operations
faster.

Lenovo IdeaPad 5 15ARE05 specifications:

• Processor: AMD Ryzen 7 4700U, 2.00 GHz, 8 cores

• RAM: 16GB

• Memory: 512GB SSD drive

• USB: 2x USB 3.0 port, USB-C port

• Operating system: Ubuntu 18.04

The fastest one was the non-embedded camera system, achieving an average of 2,06
seconds. The embedded system performed as expected for an ARM architecture processor
system - it was a little slower, taking 3,48 seconds. The camera system with a mechanical
lens finished the auto-focus algorithm after 16.73 seconds from its start.

The non-embedded system was 6.08 times faster than the system using a mechanical
lens. The embedded system was 4,80 times faster than the system using a mechanical
lens. These results prove that the speed of a liquid lens is unmatched by their mechanical
alternatives.
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5.2.7 Alternative approach

The performance of image-based auto-focus methods is often correlated with the quality
of the input image, the image’s scene, lighting and the number of edges on the picture.
Consequently, it may perform poorly in an environment different from the one it was tested
on. This phenomenon can be counteracted to a certain degree. It, however, often requires
a significant amount of manual tuning or adding camera lighting.

Adding a distance sensor to the device would limit the number of refocusing cycles
the lens must undergo dramatically. The MCU would keep a table of ranges of distances
associated with focus values that make the lens focus on these distances. Following this
approach, ideally, a single refocusing would be required to achieve the auto-focus. Then
the performance comparison of the liquid lenses and the mechanical lens is summarized by
3.1. The liquid lenses were on average faster by 1,7 seconds than the mechanical lens in a
test of 7 refocusing cycles across different focus distance ranges.
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Chapter 6

Summary

The liquid lens technology promises focusing capabilities unmatched by their electrome-
chanical alternative. This thesis has established that liquid lenses are, in fact, faster in
both individual and repeated focusing over any distance. In the case of a single refocusing,
the liquid lenses performed on average 17 times faster. Repeated focusing performance was
tested by image-based auto-focus. The embedded system using a liquid lens performed the
auto-focus loop in 3,48 seconds, and the non-embedded system using a liquid lens achieved
an average of 2,06 seconds. That is, on average, 6,03 times faster than the camera system
using a liquid lens.

In the case of the non-embedded system, the image-based auto-focus took approximately
57ms to load and process each frame, while the embedded system took 96ms to do so. Most
of the time was spent loading images from the camera and calculating the sharpness score
by the Sobel operator. It is unlikely that the bandwidth of USB3 interface limits the image-
loading process, as it can handle up to 5Mb/ms and the images captured are usually of size
lower than 5Mb. The limitation possibly lies in allocation of memory for the image and
the conversion of raw image data into an OpenCV Mat datatype. These actions are not
easy to optimize, so instead, we will focus on optimizing the time needed to calculate the
sharpness score of an image.

It is possible to optimize the image-processing calculations in 2 ways - using a more
powerful MCU, running the calculations on a GPU. The first option assumes that a more
powerful MCU can perform the calculations faster. Running the calculations on a GPU
offers the advantage of parallelization. It can be utilized by segmenting the image being
processed into several parts. The GPU would then calculate the score of all the segments
simultaneously. Finally, the segment scores would be simply summed up to obtain the final
sharpness score of the image.

The extent to which these optimizations would improve the speed of the auto-focus loop
is not clear. It is due to the need to wait for the driver to refocus the lens properly. The
algorithm knows in advance, what focus value will be sent to the driver for the subsequent
image capture, so it sends it to the driver before calculating the image sharpness score.
This way, the driver’s output voltage settles while the score is being calculated. If the order
was reversed, the auto-focus loop would have to wait tens of milliseconds for the voltage to
settle before capturing the following image. It means that if the sharpness score calculations
were faster than the time needed to settle the voltage at the driver’s output, the algorithm
would have to wait in order to take a picture adequately focused according to the focus
value.
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A possibly more valuable optimization would be the one that adds a distance sensor.
This way, the auto-focusing could theoretically bring an object to focus by a single refocus.
However, the algorithm would be limited by the speed and accuracy of the distance sensor.
A possibly low accuracy could be compensated by using a greater depth of field.
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Appendix A

Contents of the Included Storage
Media

• AutoFocusEmbedded/src - source files for embedded camera system image-based aut-
ofocus application

• AutoFocusEmbedded/include - header files for embedded camera system image-based
autofocus application

• AutoFocusEmbedded/README.md - readme for embedded camera system image-based
autofocus application

• AutoFocusNonEmbedded/src - source files for non-embedded camera system image-
based autofocus application

• AutoFocusNonEmbedded/include - header files for non-embedded camera system
image-based autofocus application

• AutoFocusNonEmbedded/README.md - readme file for non-embedded camera system
image-based autofocus application

• TestSuite/src - source files for test suite

• TestSuite/include - header files for test suite

• TestSuite/README.md - readme file for test suite
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