
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
DEPARTMENT OF TELECOMMUNICATIONS

FAKULTA E L E K T R O T E C H N I K Y A KOMUNIKAČNÍCH TECHNOLOGIÍ
ÚSTAV TELEKOMUNIKACÍ

HIGH-LEVEL OBJECT ORIENTED GENETIC PROGRAMMING IN
LOGISTIC W A R E H O U S E OPTIMIZATION

DOCTORAL THESIS
DIZERTAČNÍ PRÁCE

AUTHOR JAN KARÁSEK
A U T O R PRÁCE

BRNO 2014

BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

F A C U L T Y O F E L E C T R I C A L E N G I N E E R I N G A N D
C O M M U N I C A T I O N
D E P A R T M E N T O F T E L E C O M M U N I C A T I O N S

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ
ÚSTAV TELEKOMUNIKACÍ

HIGH-LEVEL OBJECT ORIENTED GENETIC PROGRAMMING IN
LOGISTIC W A R E H O U S E OPTIMIZATION
V Y S O K O Ú R O V Ň O V É OBJEKTOVĚ ORIENTOVANÉ GENETICKÉ
PROGRAMOVÁNÍ P R O O P T I M A L I Z A C I LOGISTICKÝCH SKLADŮ

DOCTORAL THESIS
DIZERTAČNÍ PRÁCE

AUTHOR Ing. JAN KARÁSEK
A U T O R PRÁCE

SUPERVISOR Ing. RADIM BÜRGET, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2014

ABSTRACT
This work is focused on the work-flow optimization in logistic warehouses and distribution
centers. The main aim is to optimize process planning, scheduling, and dispatching. The
problem is quite accented in recent years. The problem is of NP hard class of problems
and where is very computationally demanding to find an optimal solution. The main
motivation for solving this problem is to fill the gap between the new optimization
methods developed by researchers in academic world and the methods used in business
world. The core of the optimization algorithm is built on the genetic programming driven
by the context-free grammar. The main contribution of the thesis is a) to propose a new
optimization algorithm which respects the makespan, the utilization, and the congestions
of aisles which may occur, b) to analyze historical operational data from warehouse and
to develop the set of benchmarks which could serve as the reference baseline results
for further research, and c) to try outperform the baseline results set by the skilled and
trained operational manager of the one of the biggest warehouses in the middle Europe.

KEYWORDS
Artificial Intelligence, Evolutionary Algorithms, Genetic Programming, Logistics, Opti
mization Techniques, Warehouse Management Systems

ABSTRAKT
Disertační práce je zaměřena na optimalizaci průběhu pracovních operací v logistických
skladech a distribučních centrech. Hlavním cílem je optimalizovat procesy plánování,
rozvrhování a odbavování. Jelikož jde o problém patřící do třídy složitosti NP-težký,
je výpočetně velmi náročné nalézt optimální řešení. Motivací pro řešení této práce je
vyplnění pomyslné mezery mezi metodami zkoumanými na vědecké a akademické půdě
a metodami používanými v produkčních komerčních prostředích. Jádro optimalizačního
algoritmu je založeno na základě genetického programování řízeného bez kontextovo u
gramatikou. Hlavním přínosem této práce je a) navrhnout nový optimalizační algorit
mus, který respektuje následující optimalizační podmínky: celkový čas zpracování, využití
zdrojů, a zahlcení skladových uliček, které může nastat během zpracování úkolů, b) an
alyzovat historická data z provozu skladu a vyvinout sadu testovacích příkladů, které
mohou sloužit jako referenční výsledky pro další výzkum, a dále c) pokusit se předčit
stanovené referenční výsledky dosažené kvalifikovaným a trénovaným operačním man
ažerem jednoho z největších skladů ve střední Evropě.

KLÍČOVÁ SLOVA
Evoluční algoritmy, Genetické programování, Logistika, Optimalizační techniky, Systémy
řízeného skladu, Umělá inteligence

KARÁSEK, Jan High-Level Object Oriented Genetic Programming in Logistic Warehouse
Optimization: doctoral thesis. Brno: Brno University of Technology, Faculty of Electrical
Engineering and Communication, Department of Telecommunications, 2014. 182 p.
Supervised by Ing. Radim Burget, Ph.D

DECLARATION

I declare that I have written my doctoral thesis on the theme of "High-Level Object

Oriented Genetic Programming in Logistic Warehouse Optimization" independently, un

der the guidance of the doctoral thesis supervisor and using the technical literature and

other sources of information which are all quoted in the thesis and detailed in the list of

literature at the end of the thesis.

As the author of the doctoral thesis I furthermore declare that, as regards the creation

of this doctoral thesis, I have not infringed any copyright. In particular, I have not

unlawfully encroached on anyone's personal and/or ownership rights and I am fully aware

of the consequences in the case of breaking Regulation §11 and the following of the

Copyright Act No 121/2000 Sb., and of the rights related to intellectual property right

and changes in some Acts (Intellectual Property Act) and formulated in later regulations,

inclusive of the possible consequences resulting from the provisions of Criminal Act No

40/2009 Sb., Section 2, Head VI, Part 4.

Brno

(author's signature)

ACKNOWLEDGEMENT

I am deeply grateful to my supervisor Ing. Radim Bürget, Ph.D. for the guidance and

professional support during the work on this thesis.

I would like to express gratitude to my parents, grand parents, to my dearest girlfriend

and to others for their patience, understanding and their infinite support.

Brno

(author's signature)

ysix
^ • ^ • ^ B research centre
sensor, information and communication systems

Faculty of Electrical Engineering

and Communication

Brno University of Technology

Purkynova 118, CZ-61200 Brno

Czech Republic

http: //www.six.feec.vutbr.cz

ACKNOWLEDGEMENT

Výzkum popsaný v této doktorské práci byl realizován v laboratořích podpořených z pro

jektu SIX; registrační číslo CZ.1.05/2.1.00/03.0072, operační program Výzkum a vývoj

pro inovace.

Brno

(author's signature)

M I N I S T E R S T V O Š K O L S T V Í ,
M L Á D E Ž E A T Ě L O V Ý C H O V Y

EVROPSKÁ UNIE

EVROPSKÝ F O N D PRO REGIONÁLNÍ ROZVOJ

INVESTICE DO VAŠI BUDOUCNOSTI

OP Výzkum a vývoj

pro inovace

http://www.six.feec.vutbr.cz

CONTENTS

1 Introduction 13
1.1 Research Context 14
1.2 Research Question 15
1.3 Research Motivation 15
1.4 Research Challenges 16
1.5 Contribution 17
1.6 Outline 18

2 Theoretical Background 19
2.1 A n Overview of Warehouse Optimization 20

2.1.1 Optimization of Technical Structure 20
2.1.2 Optimization of Operational Structure 22
2.1.3 Optimization of Warehouse Management 24
2.1.4 Typical Warehousing Operations 24
2.1.5 Discussion 28

2.2 A n Overview of Scheduling Problems 30
2.2.1 Historical Perspective of Scheduling 31
2.2.2 Deterministic and Stochastic Models 32
2.2.3 Single and Parallel Machine Models 37
2.2.4 Shop Scheduling Problems 38
2.2.5 Discussion 46

2.3 A n Overview of Routing Problems 48
2.3.1 Historical Perspective of Routing 48
2.3.2 Fully Automated Routing 48
2.3.3 Vehicle Routing Problem 52
2.3.4 Discussion 54

2.4 The State of the Art in Genetic Programming 56
2.4.1 Basic Concepts and Ideas 56
2.4.2 The Process of Initialization 60
2.4.3 The Process of Selection 62
2.4.4 The Process of Breeding 63
2.4.5 The Process of Evaluation 66
2.4.6 Advanced Techniques 66
2.4.7 Known Problems 68
2.4.8 Discussion 68

3 The Objectives of Dissertation 70
3.1 Hypothesis 70
3.2 Goal & Partial Goals 70

4 The Mathematical Model 73
4.1 The Job-Shop Scheduling Model 73
4.2 The Extended Job-Shop Scheduling Model 76

5 The Collision Prediction Algorithm 78
5.1 Elastic and Inelastic Collisions 79
5.2 Collision of 2 Objects in 2 Dimensions 82
5.3 Types of Fork-lift Truck Collisions 83
5.4 A Numerical Example of Truck Collision 85
5.5 The Design of Collision Prediction Algorithm 86

6 The Evolutionary Framework 90
6.1 The Design of Framework Architecture 91
6.2 Grammar Driven Genetic Programming 94

6.2.1 Grammar Driven Initialization Method 95
6.2.2 Grammar Driven Crossover Operator 96
6.2.3 Grammar Driven Mutation Operator 98

6.3 Use Case - Non-Cryptographic Hash Design 99
6.4 Use Case - Artery Localization Method 103

7 The Warehouse Optimization Algorithm 107
7.1 The Design of Optimization Algorithm 107

7.1.1 The Set of Terminal Symbols 107
7.1.2 The Set of Non-terminal Symbols 108
7.1.3 The Design of Objective Function 109
7.1.4 The Parameters for Controlling the Run 109
7.1.5 The Termination Criterion and The Result Design 109

7.2 The Design of Context-Free Grammar 110
7.3 The Design of Optimization Operators 112

7.3.1 Path Mutation 112
7.3.2 Job Order Mutation 113
7.3.3 Swap Jobs Mutation 114
7.3.4 Swap Work-Plan Mutation 114
7.3.5 Split Job Mutation 115

7.4 Maintaining Mechanisms of Algorithm 116
7.5 The Work-flow of Optimization Algorithm 117

8 Benchmarking and Test Sets 118
8.1 Layout of Tested Warehouse 118
8.2 Definition of Benchmarking 119
8.3 Standardization, Normalization 120
8.4 The Test Set - Real Data 122

8.4.1 Scenarios no. 01-10 122
8.4.2 Scenarios no. 11-20 123
8.4.3 Scenarios no. 21-30 125
8.4.4 Scenarios no. 31-40 127
8.4.5 Scenarios no. 41-60 128

8.5 The Test Set - Synthetic Data 129

9 Measurement and Validation 132
9.1 The Results of Real Data Set 132

9.1.1 Scenarios no. 01-10 134
9.1.2 Scenarios no. 11-20 135
9.1.3 Scenarios no. 21-30 136
9.1.4 Scenarios no. 31-40 137
9.1.5 Scenarios no. 41-60 138

9.2 The Results of Synthetic Data Set 140

10 Conclusion 143
10.1 Discussion of Results 143
10.2 Summary of Thesis 144

10.3 Future of the Work 145

Bibliography 147

Bibliography of Author 174

List of abbreviations 176

LIST OF FIGURES
2.1 A n example of the warehouse environment and the aisles designs . . . 21
2.2 The typical routing methods used in warehouse environments 23
2.3 A n example of the logistic flow from the manufacturer to the warehouse. 25
2.4 A n example of the robotic cell scheduling system 49
2.5 A n example of the hoist scheduling system 50
2.6 A n example of the Automated Guided Vehicle system 51
2.7 The conventional flowchart of the Genetic Programming algorithm. . 59
2.8 The tree-based chromosome with prefix and infix notation 60
2.9 The context-free grammar and generated syntactical tree 61
5.1 A collision in a 1-dimensional environment 79
5.2 A collision in a 2-dimensional environment 80
5.3 Another collision in a 2-dimensional environment 82
5.4 Types of collisions in the warehouse environment 84
5.5 A numerical example of the collision detection 85
5.6 The simplified class diagram of the collision detection algorithm. . . . 87
5.7 A block scheme of the collision detection algorithm 88
6.1 The class diagram of Evolution Framework part I, the first layer. . . . 92
6.2 The class diagram of Evolution Framework part II, the second layer. . 93
6.3 The class diagram of Evolution Framework part III, the third layer. . 93
6.4 Definition of the Context-free Grammar and an example of the pro

cess generating syntactical tree for the sentence (2 + 5 = 7) 94
6.5 A n example of the Grammar Driven Crossover 98
6.6 Speed test of non-cryptographic hash algorithms 101
6.7 Quantitative test of non-cryptographic hash algorithms 102
6.8 The steps of processing of the designed image filter - a) Original

image, b) Output of Gaussian smooth, c) Output of Hessian, d)
Output of Histogram equalization, e) Output of Threshold, and f)
Output of Hough transform with the final localized artery in the
input image 104

6.9 The steps of processing of the designed video sequence filter - a)
Original image, b) After optical flow, c) After further processing, d)
The set of circles found by the Hough transform, e) Selected circle,
and f) Image with the localized artery. 106

7.1 A n example of the tree generated by the context-free grammar. . . . I l l
7.2 A n example of the gene structure used in the optimization algorithm. 112
7.3 A n example of the Path Mutation operator 113
7.4 A n example of the Job Order Mutation operator 113

7.5 A n example of the Swap Job Mutation operator 114
7.6 A n example of the Swap Work-Plan Mutation operator 115
7.7 A n example of the Split Job Mutation operator 116
7.8 A n example of the block scheme of designed optimization algorithm

and all genetic operators used including the elitism and the fitness
measurement 117

8.1 A n example of the reference warehouse environment 119
8.2 A n example of the scenario no. 09 from the first set 123
8.3 A n example of the scenario no. 17 from the second set 124
8.4 A n example of the scenario no. 25 from the third set 125
8.5 A n example of the scenario no. 33 from the fourth set 127
8.6 A n example of the scenario no. 54 from the fifth set 128
8.7 The class diagram of the synthetic test set generator 130

LIST OF TABLES
2.1 The common scheduling notation 32
2.2 Deterministic scheduling problem notation 33
2.3 Stochastic scheduling problem notation 33
2.4 The basic objective functions for the time measuring - 7 34
2.5 The regular performance measures of scheduling problems - 7 34
2.6 Typical dispatching priority rules 35
2.7 The processing characteristics and constraints I - 36
2.8 The processing characteristics and constraints II - 37
2.9 Possible machine environments I - a 37
2.10 Possible machine environments II - a 39
4.1 The general notation of the Flexible JSS problem 73
4.2 The parameters of the Flexible JSS problem 74
4.3 The extended notation of the Flexible JSS problem 76
4.4 The extended parameters of the Flexible JSS problem 76
5.1 The coordinates & paths of truck o\ and truck o 2 86
5.2 A numerical computation of the collision prediction 86
6.1 Speed test of non-cryptographic hash algorithms, results in [ms]. . . . 101
6.2 The collision test of hash functions 1 102
6.3 The collision test of hash functions II 102
7.1 The terminal symbols identified for the GP algorithm 108
7.2 The non-terminal symbols identified for the GP algorithm 108
7.3 The parameters of controlling the run of the GP algorithm 110
8.1 Standardized operations in the warehouse environment 121
8.2 Standardized roles of employees in the warehouse environment 121
8.3 The suitability table for the roles of employees and operations 121
8.4 A n example of the simplest set of scenarios no. 01-10 123
8.5 A n example of the set of scenarios no. 11-20 124
8.6 A n example of the set of scenarios no. 21-30 126
8.7 A n example of the set of scenarios no. 31-40 126
8.8 A n example of the set of scenarios no. 41-60 129
8.9 The configuration parameters of the synthetic test set generator. . . . 131
9.1 The settings for controlling the run of the GP algorithm 132
9.2 The results of the measurement of scenarios no. 01-10 134
9.3 The results of the measurement of scenarios no. 11-20 135
9.4 The results of the measurement of scenarios no. 21-30 136
9.5 The results of the measurement of scenarios no. 31-40 137
9.6 The results of the measurement of scenarios no. 41-50 138

9.7 The results of the measurement of scenarios no. 51-60 139
9.8 The settings for controlling the run of the GP algorithm 140
9.9 The results of measurement of the synthetic scenario generated with

20 employees and 50 jobs. A l l combinations of genetic operators were
tested with 20 % and 60 % of the mutation rate 141

9.10 The results of measurement of the synthetic scenario generated with
20 employees and 100 jobs. A l l combinations of genetic operators
were tested with 20 % and 60 % of the mutation rate 142

1 INTRODUCTION
Optimization, in general, is a process of finding the best feasible solution to a prob
lem. A n optimization problem can be viewed as a task, the goal of which is to
configure a set of given parameters to reach an optimal solution of the given prob
lem and, simultaneously, meet the predefined criteria. The global optimization [1],
[2] is a process where such solution is required with the condition that no better so
lution exists. Solutions are termed bad and good in terms of an objective to which
they are optimized. The field of optimization has grown rapidly in recent decades.

Optimization problems can be classified into two classes according to the time of
optimization. The first class represents the Online Optimization Problems. These
problems have to be solved quickly and in a time interval between milliseconds
and a few minutes. The second class represents the Offline Optimization Problems.
These problems are not time dependent. The user is willing to wait up to hours,
days or weeks for a result. Such problems are not carried out so often. Optimization
problems are solved by two types of algorithms: dedicated algorithms and optimiza
tion algorithms. Dedicated algorithms are specialized to solve, and exactly solve,
a given class of problems in the shortest possible time. These types of algorithms
are mostly deterministic and solve a well-known and structured problem. When the
problem is too specific or too complex, optimization algorithms are used. The opti
mization algorithm often needs only a structure of desired solution and a function for
a candidate solution quality measure. The optimization algorithms with this infor
mation on the input are able to find, or approximately find, a solution. The solution
does not usually reach the quality of the solution given by a dedicated algorithm
and the process of finding solution is usually slower. The optimization algorithms
can be further divided into deterministic approaches and stochastic approaches.

Deterministic approaches, so called methods of mathematical programming, are
for example linear and nonlinear programming, integer programming, dynamic pro
gramming and many other mathematical optimization techniques. Deterministic
approaches in each execution step have only one way to proceed. If there is no
way, the algorithm is terminated. The algorithm for the same input data produces
always the same results. These techniques ensure optimality, but they become very
complex and unmanageable when the number of parameters exceeds ten.

Stochastic approaches, so called probabilistic, approximation or randomized al
gorithms, come in useful when the relation between candidate solutions and a fitness
function is too complicated and not much obvious. A stochastic algorithm applies
at least one instruction based on a randomized action. Generally, stochastic algo
rithms are not so efficient as deterministic, but when a deterministic algorithm is
not applicable, a randomized solution might be advantageous.

13

1.1 Research Context
The proposed research is focused on the problem of process optimization that can
be applied in various fields of industry and anywhere else where it is possible to
define activities as standardized processes (hereinafter referred to as jobs) consisting
of further indivisible operations (hereinafter referred to as tasks). The validation of
the proposed optimization algorithm will be done in the area of logistics. It is clearly
the Online Combinatorial Optimization problem with many parameters. This area
was chosen because there is a possibility to consult the work with a qualified expert
in this area and the real operational data from the logistic warehouse are available.
These facts should ensure the validity and reliability of the proposed work.

The jobs are spread among employees in a common warehouse in a very simple
way. The manager has a list of all jobs which is continuously growing according to the
new jobs that arrived, e.g. to unload the cargo from an arriving lorry and store it in
the warehouse. The operational manager prepares the list of jobs for each employee.
The list of jobs assigned to an employee consists of jobs representing picking of one
homogeneous pallet or many heterogeneous products. When an employee finishes
the list of jobs, a new list of jobs is given to him by operational manager. It is
also possible to give to an employee a few lists of jobs in one time, but what will
be fulfilled first and in which order is mostly on the employee. These practices are
termed as generation one in process planning and scheduling.

A more sophisticated scheduling of jobs among the employees is done as follows.
Each employee in the logistic warehouse is equipped with a bar-code reader or any
other kind of smart embedded equipment able to do the work of the bar-code reader
and more. This equipment is used not only for automatic identification of com
modities, but the operational manager also sends the jobs which have to be fulfilled
to this equipment. The manager can prioritize the jobs, add new jobs, completely
remove the jobs from employee's list, or move the jobs to another employee. A l l of
these functions are done dynamically, which is a very flexible approach to opera
tional management. The operational manager is able to manage the planning and
scheduling more precisely also thanks to Warehouse Management System (WMS).
The W M S is able to monitor the performance of employees, their workload and
many other parameters regarding employees and their jobs. The W M S is also able
to monitor jobs, their origin, places for storing and track the commodity which is
the objective of the job. The W M S also monitors the equipment and the most im
portant thing is that it is able to communicate with a company Enterprise Resource
Planning (ERP) system and change the data bidirectionally. These practices are
termed as generation two in process planning and scheduling, and have become the
most widespread solutions in warehouses and distribution centers in recent years.

14

Of course, there are also fully automated logistic warehouses supported by robots,
automated hoists, automated guided vehicles, automated storage and retrieval sys
tems and many other equipment, and the benefits of such solution of warehouse are
indisputable, e.g. reductions in manpower and labor costs, fork-lift equipment and
its maintenance, which implies that the work efficiency is improved. But, on the
other hand, such a warehouse requires high capital investment, there is a problem
with low tolerance to discrepancies due to mechanization, steep cost of downtime -
the warehouse operation comes to a complete halt, reduced flexibility of the ware
house, and much higher maintenance costs. So, logistic companies are not willing
in most cases to implement such a solution.

The proposed doctoral thesis is trying to fill the gap between the planning and
scheduling processes of the generation two warehouses and the fully automated ware
houses, since the key representatives of the logistics and warehousing industry still
do not use fully automated scheduling of processes. This task will be done by au
tomation of the system/software part of the scheduling process. The thesis is, of
course, also focused on the connection of the latest scientific results in scheduling
optimization with the demands of the companies in logistics and warehousing in
dustry. The implementation of such optimization method could rapidly increase
the productivity and competitiveness of the companies. Besides, thesis is a part
of the project reg. no. FR-TI1/444 "Research and Development of the System for
Manufacturing Optimization" which was led by Prof. Ing. Zdenek Smekal, CSc.

1.2 Research Question

The problem statement, or research question, addressed in this thesis is following:
Is it possible to combine the well-known combinatorial problems solving techniques
with the Genetic Programming driven by the Context-free Grammar and solve the
logistic warehouse work-flow optimization problem in the way that the current state-
of-the-art of the qualified operational manager will be outperformed?.

1.3 Research Motivation

Although the problem of warehouse optimization is to some degree similar to the
well-known scheduling problems (Job-Shop Scheduling Problem (JSS), Traveling
Salesman Problem (TSP), Vehicle Routing Problem (VRP), and other derived com
binatorial optimization problems), this paper defines the problem from a different
point of view. The optimization task here is focused in particular on the warehouse
processes (work-flow) optimization where the JSS, TSP, and V R P overlap.

15

There are two main motivational factors for this work. The first factor is a sig
nificant demand from the industry to solve the problem of work-flow scheduling by
an automated method and to help the operational manager with decision making,
or even replace the operational manager with an automated optimization algorithm.
The second factor is to bring the latest and most effective concepts of optimization
in scheduling from the scientific world into the world of logistic industry.

The scheduling is still performed by the operational manager with simple graphi
cal aids (Gantt's charts) in many warehouses. More developed warehouses are using
some kind of W M S and the smart embedded equipment. Simple dispatching rules
are often used for prompt problem solving. The scheduling in such warehouses often
turns to chaotic environment where the completion times cannot be predicted.

The warehouses, commonly used for storing or buffering commodities between
the point of origin and the point of consumption, are amongst the most important
parts of the logistic chain. The most basic activities in the logistic environment
are receiving, transfer and putting away, storing, order picking, cross-docking, and
shipping. According to Tompkins et al. [3] the time spent on each of these operations
can be divided into the following time segments: traveling (50 %), searching (20 %),
picking (15 %), setup (10 %), and other unpredictable circumstances (5 %). As it
can be seen, traveling, searching, and picking take the most significant part of time
and provide a potential best place for optimization, which will be investigated.

1.4 Research Challenges

The most obvious part to optimize from the previous section is the time spent
on traveling, searching and picking. This optimization was to this point done by
a skilled operational manager and if he was using some optimization techniques, it
was just weighting of parameters, which made together a fitness function of desired
solution. The main weakness of this approach is the human factor. The operational
manager is in stress, most frequently at the pre-Christmas time, and the planning
and scheduling of warehouse processes is failing and the whole buffer of jobs is allo
cated in a hurry and the performance of employees goes rapidly down. Therefore, the
automated scheduling method, independent on a human consciousness, is needed.

The first challenge is to design an automated optimization algorithm and sup
port the decision making of operational manager. If the results of the optimization
algorithm will surpass the results of the operational manager, the challenge will be
to deploy the algorithm as a stand-alone system without any supervision of human.

The second challenge is to develop an optimization algorithm which will be as
much flexible as possible. The optimization algorithm should be a general problem

16

solving algorithm with a possibility to define new criteria how to influence the con
vergence to the solution. In other words, the optimization algorithm should be easily
extended by new innovative ideas, new genetic operators, restrictive conditions from
the warehousing knowledge domain.

There are already optimization algorithms for optimization of warehouse pro
cesses, mostly focused on picking strategies. They are also focused on searching in
form of categorization of commodity by bar-code labeling. Unfortunately, there is
a lack in optimization of transportation path. The third challenge will be to design
an optimization algorithm for automated collision avoidance.

A l l of these, together, should guarantee a significant increase in performance and
warehouse productivity. Since the fourth challenge is to reach better performance
and productivity of warehouse, it is necessary to define methods for performance
measurement. So, benchmarking methods and metrics have to be stated.

1.5 Contribution

The main contributions of the proposed doctoral thesis are following:

1. A comprehensive literature review of the warehouse optimization connected
to the scheduling problems and the vehicle routing problem was written in
chapter 2. The basics found in the literature helped to define the hypothesis
and goals (chapter 3), and to extend the mathematical model (chapter 4 for
the warehouse work-flow optimization with the help of employees' performance
which positively influences the processing time of the scheduling process.

2. The new, extensible, flexible, and multi-platform Evolutionary Framework
with the computational core based on Genetic Programming (GP) driven by
the Context-Free Grammar (CFG) was developed, implemented, and validated
(chapter 6). The framework is based on the existing Grammar Guided Genetic
Programming (GGGP) approach presented also in this chapter.

3. The new algorithm for the warehouse work-flow optimization problem (chap
ter 7) based on the proposed framework (chapter 6) was developed and sup
ported by several new genetic operators, which give the possibility of co
operative job processing. The fitness function can respect multiple criteria,
such as the time of processing of the whole job buffer (the makespan), balanced
workload of employees, and the number of collisions of trucks (chapter 5).

4. The problem of the warehouse work-flow optimization was described along
with the motivation to solve the problem. The set of benchmark tests was
created as well as the evaluation process. These together give the reference
baseline of the results for the optimization (chapter 8). The results reached
by the optimization algorithm are presented in chapter 9.

17

1.6 Outline
The rest of the thesis is structured as follows. Chapter 2 describes the theoretical
background of the proposed doctoral thesis. The main optimization points of the
warehouse management and the logistic chain are described (see section 2.1) as well
as the most related optimization problems, such as the scheduling problems (see
section 2.2) and routing problems (see section 2.3). The second chapter also deals
with one of the most frequently used meta-heuristic optimization method, GP , which
was used as the core of optimization algorithm in this thesis (see section 2.4).

Chapter 3 describes the hypothesis, which will be the main subject of investiga
tion in this thesis, and the partial goals, which should directly support and confirm
the determined hypothesis. Chapter 4 describes the basic mathematical model for
scheduling and the mathematical model extended for the purposes of this thesis.

Chapter 5 deals with the design of collision prediction which should represent
an approach of how to avoid congestions, blocking, and possible financial losses by
predicting potential collisions of trucks in the warehouse. Chapter 6 describes the
design of the Evolutionary Framework and the design of the Genetic Programming
algorithm driven by the Context-free Grammar which is used as a basic building
block for the optimization algorithm proposed in this thesis. Chapter 7 describes
how all the expert knowledge and algorithms implemented were put together into
one algorithm for the warehouse process optimization. Chapter 8 describes the
benchmark definitions and the test sets. Chapter 9 describes the results of bench
marking on both the real data set and the synthetic data set. And the last, but
not least, chapter 10 concludes the paper, discusses the results, and proposes some
ideas for future work.

18

2 THEORETICAL BACKGROUND
This chapter is divided into four sections which give a comprehensive survey of the
oretical background of the proposed doctoral thesis. Section 2.1 gives an overview
of general warehouse optimization problems with focus on applications in real-world
environments. Section 2.2 describes the general scheduling problem with focus on
shop scheduling, which is the most related to the solution of the problem proposed in
this work. Furthermore, methods how the scheduling problems are currently being
solved are discussed in this section. Section 2.3 gives an overview of the routing prob
lems which are used to extend the scheduling models in order to solve the problem
of logistic warehouse process planning and scheduling connected to dispatching and
routing of vehicles. Section 2.4 gives the state-of-the-art in GP which is a promis
ing method that could bring the new possibilities how to connect the mentioned
optimization problems together and bring the optimal or near-optimal results.

Optimization problems can also be divided according to the number of opti
mization criteria. The common classes of problems are stated as single-objective,
multi-objective, and constraint optimization problems. The optimization problem
can also be a mix of these classes. The advantage is that there are approaches to
transform multi-objective problems into single-objective ones, and also to reduce
the constraint optimization problems to unconstrained optimization ones. Many
new procedures, algorithms, computational methods and techniques of optimization
were invented to solve various types of problems. Basically, there are two general
types of problems: combinatorial problems and numerical problems.

Combinatorial problems [2], [4] are defined over a finite (or numerable infinite)
discrete problem space X and the candidate solutions structure can be expressed as
(1) elements from finite sets, as (2) a finite sequence or permutation of elements Xi
chosen from finite sets, i.e., x G X —> (3) sets of elements, i.e.,
x G X —> x — xi, X2, • •., as (4) tree or graph structures with node or edge properties
stemming from any of the above types, or (5) any form of nesting, combination,
partitions, or subsets of the above. Combinatorial problems are e.g. JSS, TSP,
V R P , graph coloring, graph partitioning, bin packing, and many others. Algorithms
suitable for this group of problems are Genetic Algorithm (GA), GP, Simulated
Annealing (SA), Tabu Search (TS), and Extremal Optimization.

Numerical problems [4], [5] defined over M™ or C™ (real or complex vectors which
are subspaces of numerical space) are also called continuous optimization prob
lems. The typical representative problems of this set are e.g. classification and data
mining tasks, and engineering design optimization tasks. These problems can be
efficiently solved by Evolution Strategies (ES), Evolutionary Programming (EP),
Particle Swarm Optimization (PSO), Differential Evolution, and many others.

19

2.1 An Overview of Warehouse Optimization
Modern logistic warehouses and distributions centers are designed on the basis of
hundreds optimization studies. In consequence of that, WMSs become important
and more complex and users find it hard to manage. The software market offers
a large variety of solutions with different system requirements and possibilities, and
to choose the suitable system for every company is not quite an easy task, because
it is influenced by many aspects which must be considered, and one of these aspects
are optimization methods based on automated processes.

The WMSs which drive logistic warehouses and distribution centers are core
elements of the material and goods flow in a logistic chain and they will be subjected
to further investigation in the following text related to optimization of warehousing.

According to [6] the activities of the warehousing optimization can be divided
into three groups. First, the basic technical structure of warehouse. Second, the
operational and organizational framework, which is in special attention in this work.
Third, the coordinating and controlling systems for warehouse operations.

2.1.1 Optimization of Technical Structure

The basic technical structure involves e.g. the layout design of the warehouse or
whole distribution center, the choice and dimensioning of conveyors and warehouse
equipment, the design of the physical interfaces to neighboring systems and others.

The layout design of the warehouse [7] is a key component of further optimization
tasks and has a significant impact on order-picking and traveling distances in the
warehouse. In [8] it was found out that the layout design has more than 60 %
effect on the total travel distance, and three basic types of warehouse layout were
presented. In [9] and [10] the application of parallel cross aisles in the warehouse was
presented, and it was considered a significant improvement. The layout is usually
of rectangular shape and based on pallet manipulation [11]. According to [12] and
[13] there are a few factors to be considered in the layout design, such as: number
of blocks; length, width, and number of picking aisles; number and shape of cross
aisles if they are present; number of levels in the rack; and position of input and
output gates in the warehouse. A new Flying-V and Fishbone design of cross aisles,
which offers a 10 % - 20 % reduction of traveling distance were presented in [14].
A n analysis of dual-commands was introduced in [15] and Fishbone design for dual-
commands in [16]. In dual-commands environment the worker loads the goods in
pickup and deposit location and travels to storage location and then travels to the
second location from which he picks goods and returns back. More developed Flying-
V design of cross aisles and Inverted-V design of cross aisles was proposed in [17].

20

Example of Warehouse with Traditional Layout 2 Traditional Layout 1 Flying-V Layout

zzi

:

nn
ZZL

zz
~ F i r

E H

o
:

en
:

zn

J I I J

:

:

nn
r~f

•i
LI . L m j l

e) c) c)

b)

~1

:

nn
nn
F F

9!

m zz zz
zz zn
ZZL
F »

J_l

a

zz

r~f

:

F f

: zz
ZZL

ZZ
'. F
F F

Traditional Layout 2 Fishbone Layout

Traditional layout 3 Inverted-V Layout

Fig. 2.1: A n example of the warehouse environment and the aisles designs

This brings another 3 % improvement of traveling distances. The warehouse layout
is also connected with the aisle design, which is discussed in [18] and [19]. The layout
is mostly narrow-aisle-like, which increases space utilization with minimal costs, but
it can lead to higher operational costs and more congestions among workers.

There are many types of warehouse equipment, especially equipment which
should reduce labor cost and increase its utilization. Common storage models cover
pallet racks, cartoon flow racks for high-volume picking, and shelving for lower-
volume picking. A l l the equipment is standardized according to the dimensions, but
the standardization is mostly only for a specific continent. While industrial trucks
for pallet manipulation are demanded in all types of warehouses, the conveyors,
cranes, and other positioning equipment is not used everywhere. Conveyors divide
the warehouse into zones and move material over a fixed path. Conveyors also re
strict the movement of workers and save their energy. With deployment of conveyors
also the sortation system is quite often installed for merging, identifying, inducting,
and separating products. Sortation is mostly based on some scanning technology
of bar-codes, RFID chips, magnetic strips or machine vision. The system works on
a few common principles, e.g. a push sorter pushes a passing carton to an alter
native path from main conveyor, a tilt-tray sorter works on the principle of tilting
a tray and the object slides into the collecting bin, and others. Cranes are used to

21

move materials over variable paths in a restricted area, e.g. jib crane, bridge crane,
gantry crane, and stacker crane. Positioning equipment, e.g. hoists, balancers, and
other manipulators, is used to handle material at a single location. The automation
of warehousing and manufacturing is often covered by systems such as carousels,
A-frames, and Automated Storage and Retrieval System (ASRS).

Carousel is a shelve rotating in the circle. Instead of picker traveling, the storage
location is moving. The simple rotation pattern on how to quickly find the shortest
way to pick the order was introduced in [20] and [21]. The large orders in carousel
environment have been studied in [22]. The carousels with multiple order-picking
have been studied in [23]. Optimal storage locations have been investigated in [24].
A-frame is an automated dispensing machine dropping items onto a conveyor. A-
frame is used when a product is picked in very high volumes, the labor is expensive
and is used only to refill A-frames. The in-aisle cranes, so called ASRSs, replace the
humans with trucks by placing simple robotic devices within each aisle moving in
horizontal and vertical direction to a full extent of aisle. The design and performance
of such models as well as travel time models have been investigated extensively, e.g.
in [25], [26], [27], and [28]. Despite of all these inventions, the typical model of
warehouse with pickers and various models of trucks are still quite popular.

2.1.2 Optimization of Operational Structure

The operational and organizational framework combine different aspects from many
areas, e.g. business management, inventory management, organization management,
transportation management and many other areas of management. There are two
basic slotting strategies (or storing assignment policies [29]): random and dedicated.
While random strategy allows to store a pallet to an arbitrary empty location with
the same probability [30] or to the closest empty location [12], the dedicated strategy
allows to store a pallet only to specified locations. The storage locations are often
organized somehow, e.g. class-based storage, where the goods are clustered according
to the frequency how often they appear in orders. This policy assigns the most
frequently requested goods to the best (closest) locations from input/output gates.
Another possibility is to use family grouping, where the goods are clustered according
to the relations or similarities between products or orders [31], [32].

Single order-picking is a strategy where the pickers pick only one order at a time
and it is one of the most used picking policies. Stock Keeping Unit (SKU) is tightly
related to order-picking. S K U represents the smallest physical unit of a product
with which the cooperation manipulates, e.g. a box, some kind of case or carton
consisting of inner packs and individual pieces of product, but it can also be only
a homogeneous pallet in huge distribution centers.

22

S-Shape Return Mid-point

L4=!J Ltöj £ t
Start „ iffiflTSi i-a- > I-

Largest gap Composite Optimal

. J i i\

r "*! f "1 f 1 f

3ri

Fig. 2.2: The typical routing methods used in warehouse environments.

The routing policies should ensure an optimal travel path through the warehouse
for order-picking. One of the first algorithms for optimal order-picking path design
was introduced in [33]. Since the algorithm can be applied only to conventional ware
houses, the problem is mostly solved by heuristic methods. The common routing
methods, described in [10] are: S-shape, Return policy, Mid-point strategy, Largest
gap strategy, Composite heuristic, Optimal routing. A l l the methods were primarily
developed for single-block warehouses. Modified methods for multiple-block ware
houses were proposed in [9].

If the order is small and is far from exceeding the picking capacity, it is possible
to pick more orders in a single order-picking tour. This is known in the literature
as order batching or simply batching. Since this is a job with sub-tasks (picking
tour with several orders) it is considered as an NP-hard problem. It was proven
in [34] that batching has a significant impact on the performance of order-picking.
Therefore, researchers pay attention to the problem of batching and the heuristic
methods are still under investigation [35], [36]. There is also possible to divide an
order-picking process into zones. Goods belonging to the same product group are
stored in the same zone. In comparison with batching, zoning does not have a sig
nificant impact on the performance of the order-picking system [37]. The advantage

23

of zoning lies in reducing the congestion in the aisles and when the goods are re
ally in one small area, the traveling is also reduced. The main disadvantage is the
consolidation of order when it is completed from more pickers from different zones.

2.1.3 Optimization of Warehouse Management

The coordinating and controlling systems are of special importance. The WMSs
are used to control the warehouse and optimize all typical warehousing operations
(see section 2.1.4), to know every detail about goods and the actual storage location
all the time, the utilization of workforce, orders, and they also orchestrate the flow
of labor, machines, and goods. Such systems have many interfaces to adjacent
systems in the company, e.g. information and merchandizing systems, production
and enterprise resource planning systems, material flow and warehouse controlling
systems related to business-to-business or business-to-consumer applications.

Why is all the optimization being applied? Everything is basically given by
customer demands. The main reasons to optimize are to increase the performance
of the company regarding the demand-driven production (pull system), to ensure
the productivity (based on just-in-time delivery) and minimize the stocks along the
supply chain, provide additional services, and reduce the transportation cost.

2.1.4 Typical Warehousing Operations

The basic processes in the warehouse are receiving, storing, putting-away, pick
ing/ retrieving and shipping goods. The shipping operation can also consist of many
sub-tasks such as consolidation of goods if the batching, grouping or zoning is ap
plied, checking the order according to its completeness, packing and, of course,
shipping itself. The literature also mentions cross-docking as a special warehouse
operation. The cross-docking is described at the end of this sub-section.

Receiving is the first operation in the warehouse. This process starts by notifi
cation of the arrival of goods. Then the process of unloading, counting, identifying,
quality control, and goods acceptance begins (which is together known as incoming
inspection), according to the company rules. If the goods are accepted the receipt
is issued. The acceptance depends on the delivery status - the delivery date, the
quality of delivery, the planned schedule which should also minimize a truck waiting
time. The product is then accepted, marked e.g. by bar-code and registered in the
information system, and staged for put-away. The receiving process takes about
10 % of operating costs [11]. The paper [38] discusses the role of goods receiving
and shipping in warehouse environments. A formal notation of schedules is proposed
and the specific analytical examples are shown in this paper.

24

Fig. 2.3: A n example of the logistic flow from the manufacturer to the warehouse.

Storing operations consist of distribution of goods to storage areas (transporta
tion to a storage place or cross-docking, which is transportation directly to the
shipping department), identification (if it was not done during acceptance), assign
ment of the storage bin and putting-away which is a simple determination of storage
bin concerning the physical dimensions and weight of goods, storage monitoring is
also a part of management systems - to know which goods are available and where
[6]. Putting-away is a process which requires strictly determined storage location.
This is very important, because the information system has to be aware all the time
what storage locations are available, what is the location of a specific type of goods
and where a particular pallet is stored. This information is also used for an efficient
design of pick-list. This process requires about 15 % [11] of operating costs, because
this covers lot of transfers from the gate to a storage place.

Picking (also called Retrieval) is a process which covers a lot of issues. Firstly,
the pick lists are given to the employee. The picking takes about 55 % of warehouse
operating costs [11] (according to [12] it is 50 % - 70 %) and consist of: traveling
(55 %), searching (15 %), extracting (10 %), and paperwork (20 %). Picking can be
of two types, homogeneous and heterogeneous. Homogeneous picking is quite simple,
the picker operates simply with a whole pallet. In heterogeneous picking the picker
is told where and what to pick, in what quantity and units. Due to customer's
needs, the heterogeneous picking is logically more frequent. The disadvantage of
heterogeneous picking is that the smaller unit means the higher cost. The pick-list

25

is still quite often a sheet of paper, but in some warehouses the pickers use smart
embedded devices such as bar-code readers, personal digital assistants etc. The
advantage of using such equipment is reviewed in [39], [40].

The planning of picking process is based on orders and supported by picker
routing methods. Basic routing methods are described in [10]. Picking of goods can
be done by many ways. The special case of picking is an order-picking which is a
consolidation of a customized quantity of one or more articles related to a specific
order. Sharing of order-picking is also quite often way how to pick. Sharing of
an order is very related to batching, grouping, and zoning. The order-picking was
also designed by an algorithm based on TSP heuristic introduced in [41] which
performs better for multiple picking than routing methods. It was discovered in [42]
that appropriate sequencing of picking is one of the crucial factors to achieve high
efficiency of picking. Since traveling is the most time-consuming part of the process,
the scientists paid attention mostly to this part of the problem.

The travel time is an increasing function of the travel distance, which was investi
gated in many papers and considered as one of the primary optimization conditions.
Three analytical models of expected travel distance for return policy, traversal pol
icy, and midpoint policy were developed in [43]. To allay blocking and/or congestion,
the order-picking strategies can be used, or the layout of the warehouse can be ad
justed in the meaning of wide-aisles, or zoning can be applied [44]. The congestion
has been also investigated in [12] by waiting time of a picker queuing to enter the
warehouse. Analytical and simulation models of order-picking systems to discover
the system behavior with different activity levels were developed in [18]. The result
was that the congestion among workers can be a significant issue if the space is
highly utilized. A n analytical approach for the expected system throughput time
approximation was provided in [36]. The relationship between pick density and
throughput, which has demonstrated the significance of blocking, was determined
in [45] and [46]. Inasmuch as the models of picking are mostly investigated only
as single-picker operations, and are consequently suitable to evaluate order-picking
efficiency by travel distance, an aisle congestion never takes place in such models.
In real-world situations the congestion is a normal everyday situation in systems
with multiple order-picking and dozens of workers. The throughput analysis for
order-picking with multiple pickers and aisle congestion is investigated in [47] and
[48]. Heuristic methods were investigated in [49] and it was proved that the storage
assignment policies in a multiple picker warehouse environment are outperformed
by the proposed heuristics policies in this paper.

The batching in the narrow-aisle order-picking system with picker blocking con
sideration was investigated in [50]. The paper propose strategies to control picker
blocking with 5 % - 15 % reduction in the total retrieval time. Ant Colony Op-

26

timization (ACO) routing algorithm for two order pickers with consideration of
congestions was proposed in [51]. The paper analyzes the warehouse layout and
its impact on order-picking system performance and proves a good performance in
dealing with the congestions if two pickers are used simultaneously. Two new batch
construction heuristics called K-means Batching and Self-Organization Map Batch
ing, which minimize the total travel distance and average picking vehicle utility,
were proposed in [52].

Also the online version of the multiple picking agents for warehouse management
has been studied in [53]. The rescheduling of buffer of order to which the new
orders arrive randomly while old orders are being picked was investigated and two
real time algorithms were proposed. The solution performs good when dynamism
is low or moderate, when it is high the solution tends to fail. The dynamic order-
picking and cost reduction generated by optimal policies is discussed in [54]. In
this research the Markov Decision Process based heuristics, which is compared to
some naive heuristics, has been used and the improvement in the range of 7 % -
99 % is depicted. Another heuristic approach for online batching based on offline
batching is introduced in [55] and [56]. The algorithms are evaluated in a series of
experiments and it is shown that the choice of an appropriate batching method can
lead to significant minimization of a maximum completion time. A*-algorithm for
routing and SA-algorithm for batching were proposed in [57]. For batches of tree
customers, the proposed algorithm produces results with an error of less than 1.2 %
compared to the optimal solution.

Shipping ensures that the packed consignment is provided by transport des
tinations, assigned to the truck and optimally loaded on the truck. The shipping
process is ensured by shipping department which can also secure following opera
tions, such as: consolidation, checking, and packing. Consolidation of an order
is a process of completion a customer's order in case that it was picked by more
than one picker. The paper [58] proposed the design and operation of an order-
consolidation warehouse. The paper proposes a simulation model and shows its
application. When order is consolidated, the process of checking follows. Checking
of an order is a process that checks if the order is complete and accurate. Packing
ensures that the picked and consolidated goods, also checked for completeness of an
order, are packed for transportation and given to the shipping department. Packing
can also be ensured by an autonomous packing department in the warehouse, then
the consolidation and checking is usually part of this department.

Cross-docking is a process which minimizes the storage and order-picking time
while the receiving and shipping operations are still allowed to the full scope. The
basic idea is to transfer goods directly from incoming to outgoing departments with
out any other warehouse operations in between. In [59] the problem was handled as

27

a V R P . A solution for multiple delivery centers by many sub-optimizations of single
centers based on Neighborhood Search (NS) and TS algorithms was developed in
[60]. The scheduling of trucks in the cross-docking system with five meta-heuristic
algorithms (GA, SA, TS, Electromagnetism-like Algorithm, Variable NS) with re
spect to minimization of total operation time was described in [61]. The analytical
models for pre-distribution cross-docking (on the side of manufacturing company)
and post-distribution cross-docking (on the side of warehousing company) proposed
in [62] were compared with a traditional distribution center system. Analytical re
sults showed a pre-distribution cross-docking as a preferred solution for centers with
a shorter supply lead time and lower uncertainty of demand, but in general the
preference depends on the business environment [62].

2.1.5 Discussion

The optimal operation of a warehouse is achieved when each customer is satisfied
completely according to his order, in due time and when all warehouse and logistic
processes are done in the shortest possible time with minimal cost and optimal
utilization of resources under dynamically changing conditions.

The literature presented in this section gives great ideas of warehousing optimiza
tion possibilities, but only some of them are really applied in real-world warehouses.
The problem of warehouse layout lies mainly in the effective use of space so that
the typical rectangular warehouses with narrow-aisles are most utilized. There is
also a critical pressure on the effective utilization of equipment and labor and its
minimal quantity in the warehouse, which can also significantly save the costs.

The dedicated assignment based on the frequency of manipulation with goods
is broadly used, but some big and well-known companies, e.g. Amazon, use the
chaotic assignment system and its seems to be a good solution as well. The routing
methods supporting order-picking and picking itself has been investigated for single
picking tours, but batching seems to be a standard for many companies. Moreover,
the most of the scientific papers do not take into account the real conditions as the
blocking and congestion are, but there are dozens of workers working simultaneously
in real-world warehouses or multiple-block warehouses and the blocking, congestions
or even collisions must be taken into account in everyday operation.

The result of this review of warehouse optimization is that the real-world condi
tions should be applied instead of their relaxation for the good of application. The
work can be shared by many more employees than two, which was mostly investi
gated in the papers. The idea how to apply this optimization is to utilize the shop
scheduling techniques combined with vehicle routing problems solving techniques.

28

The shop scheduling techniques can be employed when the work is scheduled in
the warehouse, even when the work must by scheduled dynamically. The machines
in the shop scheduling problem are represented in the warehouse by any equip
ment needed for each job, such as trucks driven by workers (fork-lift hand pallet
truck, fork-lift low truck, fork-lift high truck), checking units (workers), packing
units (workers with special equipment) and others. The operations in the ware
house, called jobs in scheduling, represent the single assignment given to the worker
by operational manager, e.g. the employee has to unload the pallet from a lorry,
go through the warehouse and store it in the shelf. The job is composed of sub-
operations, called tasks. The task represents each single operation of job e.g. re
ceiving, unloading, putting-away, moving and storing etc. The tasks can be done by
several workers. So, the job is spread in few machines working in sequence in the
language of shop scheduling problems. Transports, moving and routing of trucks in
the warehouse could be inspired by Automated Guided Vehicles (AGV) techniques
transformed from open space V R P techniques to the warehouse environment. The
application of these methods could further reduce the blocking and congestions as
well as collisions of trucks.

29

2.2 An Overview of Scheduling Problems
The increasing popularity of the Total Quality Management and the consequent
on-time delivery of jobs become one of the crucial factors and a great demand for
customer satisfaction. The process of scheduling is very important for achieving
this goal. In fact, the planning is going hand in hand with scheduling and they
are among the most important issues of operational management in manufacturing
companies. The intractability of the scheduling problem makes it so much popular
even if there are hundreds of papers published on this topic.

The difference between planning and scheduling is following. Planning is de
fined as the process of identifying all activities necessary to complete the project.
The important questions in planning are "What?" and "How?" regarding the mate
rial, machines, employees, equipment, and due dates, or deadlines. Scheduling is
defined as the process of determining the sequential order of jobs, assigning planned
duration and determining the start and end of each job on a specific machine. The
important questions in scheduling are "Where?" regarding the machines and equip
ment, and "When?" regarding the start and end of operation. The scheduling is
quite a general process which can be considered in lots of environments, not only in
manufacturing. The theoretical background described in this section deals mainly
with machine scheduling models and focuses on the relevance of theory to the real-
world application in logistics. This section should give an obvious picture that the
scientific theory in scheduling has only a limited impact on real-world scheduling
problems in logistics.

In terminology there is a distinction between three types of scheduling [63]. The
first is sequencing, which is a permutation of n jobs or the order in which they
are processed on a given machine. The second is scheduling, which corresponds to
allocation of n jobs within m machines with more complicated settings in conformity
with Tab. 2.7 and Tab. 2.8. The third are scheduling policies, which describe
actions to do for any of the states the system may be in according to Tab. 2.6. Now,
let us look at the three common types of schedules:

Definition 1 — Semi-Active Schedule - A feasible non-preemptive schedule
is called semi-active if no job can be finished earlier without changing the order of
processing on any machine.

Definition 2 — Active Schedule - A feasible non-preemptive schedule is called
active if it is not possible to make schedule by changing the order of processing on
the machines and have at least one job finished earlier and no job finished later.

Definition 3 — Non-Delay Schedule A feasible schedule is called non-delay
if no machine is kept idle while an operation is waiting for processing.

30

2.2.1 Historical Perspective of Scheduling

The process of scheduling plays an important role in optimization area from the
beginning of the previous century with the work of Henry Gantt. In spite of that
the problem of scheduling is known for such a long time, the first publications
were released in the early fifties of the previous century. At first, static models were
investigated. Static model is a model where the basis of operations ordering does not
change during scheduling, all operations can be sorted only once. This was followed
by investigation of more advanced dynamic models, where the order of remaining
operations changed, the operations had to be resorted in queue or rescheduled after
every decision. In 1955 Jackson's rule [64] was proposed, which described how to
schedule jobs according to non-decreasing due dates. Smith's rule [65] from 1956
schedules jobs according to non-increasing ratios Wi/pi.

During the sixties, a significant progress in this area was done on formulations
of the problems and deterministic algorithms. Mathematical programming methods
for the solution of scheduling problems was studied, mainly integer programming,
dynamic programming, and branch-and-bound algorithm [66]. Richard Karp was
working on the complexity theory, he published a significant paper [67] which had
a large impact on many researchers in the next decades.

In the seventies, the research in scheduling area was focused mainly on the com
plexity theory and hierarchy of scheduling problems. In 1979, Ronald Lewis Graham
et al. [68] published the paper where Graham's notation was introduced for the
description of shop scheduling problems. Gittins index, introduced in [69], is the
largest value that is obtainable by dividing the total discounted expected reward
over a given time period (by stopping time) by the discounted time itself. This was
further studied by many researchers in stochastic scheduling [70]. In this decade,
a shop scheduling problems started to be investigated extensively [71], [72].

In the eighties, expansion of the stochastic scheduling algorithms began. With
the boom of personal computers, the scheduling problems were more and more ap
plied to various fields of interest, such as computer science, operations research,
industrial engineering, manufacturing, economics and others. The paper [73] in
troduced a very efficient algorithm for linear programming relaxation of Knapsack
problem, which can also be considered as a scheduling problem. The bottleneck
identification and the local re-optimization procedure are proposed in [74]. The
importance of approximation methods for combinatorial problems and the linkage
between operations research and artificial intelligence were suggested in [75].

With the nineties the scheduling theory started to play an important role also
in management and services. Problems regarding the complexity studies of various
scheduling problems, mainly 1-job-on-r-machines were analyzed in [76]. The paper

31

briefly reviews some of the recent extensions of the scheduling theory and recent
developments in local search techniques and their use in the scheduling practice.
Other reviews of scheduling problems are present in [77], [78] and approximation
methods, such as G A , SA, TS are presented in [79], [80], [81], respectively.

In the last years, from the year of 2000, the methods for solving one- and multiple-
machine problems as well as shop scheduling problems are further developed with
focus on meta-heuristic algorithms. The SA [82] and G A [83] algorithms were stud
ied extensively also with the support and combination of local search techniques
[84]. Furthermore, the multi-objective approaches were investigated with focus on
flexible shop scheduling problems [85], [86]. In recent years, also many new algo
rithms were developed, such as Beam-ACO [87], Immune Algorithm Approach [88],
Biogeography-Based Optimization (BBO) algorithm [89] and many others. Even
though all of them are somehow connected to evolutionary computation techniques,
it cannot be concluded that one significantly outperforms another.

2.2.2 Deterministic and Stochastic Models

This subsection describes deterministic and stochastic models. In deterministic mod
els all sets of variables are uniquely determined by parameters and by sets of previous
states of these variables. Hence, these models give the same output for the same
input data and initial conditions. On the contrary, the stochastic models are based
on a certain degree of randomness. Variables are not given deterministically by
a unique definition, but by probability distribution. The common notation for both
models is described in Tab. 2.1.

Tab. 2.1: The common scheduling notation.
n The number of jobs.

m The number of machines.
Jj The job j; j = l,...,n.

Mi The machine i; % — 1,..., m.
Wj The weight of j represents a priority factor, i.e. how the job is impor

tant in comparison to the other jobs in the job buffer.

In deterministic version of the scheduling problem all the jobs and machines are
of a finite number. The description of deterministic model is presented in Tab. 2.2.
It is described by the notation defined in [63], which is based on Graham's notation
[68]. In the scope of stochastic models the notation has been changed a little bit.
The description of stochastic model is presented in Tab. 2.3. Random variables are
capitalized, but other symbols remain the same as in the deterministic models.

32

Tab. 2.2: Deterministic scheduling problem notation.

Pj The processing time of job j, pij refers also to machine i. The i can be
omitted if the processing time of job j is not relevant to the machine
i or if the job j is only to be processed on one specific machine.

Tj The release date or ready date, the earliest time when the job j is
allowed to be processed, this attribute is not related to the machines.

dj The due date of job j represents the committed completion date of the
job, after this date the job is penalized. It can also be referred to as
a deadline when the due date must be met, deadline is denoted by dj.

Tab. 2.3: Stochastic scheduling problem notation.

Xj The random processing time of the job j, X^ refers also to machine
i, The i can be omitted if the processing time of job j is not relevant
to the machine i or if the job j is only to be processed on one specific
machine. The expected value of the variable Xij is denoted by 1/Ajj.

Rj The random release date of job j.
Dj The random due date of job j.

Graham's notation [63], [68] is a triplet a|/3|7. The 7 sign represents the objective
to which the scheduling problem is optimized. The most common and basic objective
which is used for quality measurement of the solution is the completion time and
the lateness in its both variants (earliness/tardiness). For more basic objectives,
see Tab. 2.4. The regular performance measures used in algorithms consist of these
mentioned basic objectives, e.g. the makespan, which is the maximum completion
time, or maximum of any other basic objective. The common variant of regular
objective is also the weighted form of the objective, which represents a priority
factor or importance of each job. For more regular objectives, see Tab. 2.5.

The typical dispatching priority rules, also called sequencing rules or basic heuris
tics stating the basic algorithms of dispatching, which should be considered in every
scheduling algorithm, are described in Tab. 2.6. Dispatching rule is a rule that pri
oritizes all jobs waiting in a buffer for processing on a machine. Every single time
when a machine has been freed, a dispatching rule inspects the buffer of waiting jobs
and selects the job with the highest priority. The advantages of dispatching rules
are very simple implementation, fast processing, a possibility of reasonably good
solution in a relatively short time and optimality in special cases. Unfortunately
not for all cases, which limits the dispatching rules in practice and that is why the
dispatching rules can also find an unpredictably bad solution in some cases which
are not considered as special for a concrete dispatching rule. The combination of
rules is called a composite dispatching rule and can perform significantly better.

33

The (3 sign denotes details of processing characteristics and constraints (see
Tab. 2.7 and Tab. 2.8); other entries in (3 are self explanatory, e.g. pj = p means
that all processing times are equal, d = 3s implies that all due dates are equal
to 3 seconds etc. The a sign stands for a machine environment (see Tab. 2.9 and
Tab. 2.10) which is described in more details in the following sections.

Tab. 2.4: The basic objective functions for the time measuring - 7.

Cj The completion time for job Jj, the J2 Cj is also referred to as a flow
time. The CV, refers to the completion time for Jj on machine Mj .

Sj The starting time for job Jj, if it is less then rj the job started earlier,
if it is greater the job started late.

Lj The lateness of job Jj is Lj = Cj — dj, lateness is any deviation from
the due date, a positive value means that the job is completed late, a
negative value means that the job is completed earlier.

Ej The earliness of job Jj is Ej = max(dj — Cj, 0), earliness represents a
negative lateness, which means how much is the job completed earlier,
otherwise the value is zero.

Tj The tardiness of Jj is Tj = max(Cj — dj,0), tardiness represents a
positive lateness, which means how much is the job completed late.

Uj The unit penalty of Jj is Uj = 1 if Cj > dj and Uj = 0 otherwise.

Tab. 2.5: The regular performance measures of scheduling problems - 7.

The makespan; Cmax = max{C\,..., Cn) is the maximum completion
time. The completion time of the last job in a system, the minimal
value usually denotes the good utilization of machines.
The maximum lateness; Lmax = max(L1,..., Ln), measures the worst
violation of the due dates.
The maximum tardiness; Tmax = max(0, Cj — dj).
The total weighted completion time, often referred to as a
weighted flow time. Discounted total weighted completion time
J2wj(l ~ e ~ r C j) i refers to a more general cost function, where costs
are discounted at a rate of r, 0 < r < 1, per unit of time. Therefore,
if the job j is not completed at time t the cost Wjre~rtdt is added for
the period of time [t, t + dt}. If job j is completed at time t the cost is
equal to Wj — e~rt. The r is usually close to 0, e.g. 0.1.
The total weighted tardiness time.
The weighted number of tardy jobs.

Cn

Lmax

T
± max

EwjTj

34

Tab. 2.6: Typical dispatching priority rules.

CR Critical Ratio, the ratio between the processing time and the time
remaining until due date, the smallest critical ratio goes first.

FCFS First Come First Served, the jobs are processed in the order in which
they come. It is an analogy with the First In First Out (FIFO) queue.

ECT Earliest Completion Time first, the jobs are scheduled according to
their completion times.

EDD Earliest Due Date first, the jobs are scheduled according to their due
dates, the objective is the total maximum lateness Lmax.

ERD Earliest Release Date first, this is a variance of throughput times, this
rule works with various criteria.

LPT Longest Processing Time first, the rule balances the load on parallel
machines. The rule is used with the objective maximal processing time
Cmax - the makespan objective.

LSL the smallest slack time on the last machine
OSL the smallest overall slack time
SPT Shortest Processing Time first, the jobs with the shortest processing

time are scheduled first. It is used with the objective sum of completion
times J2 Cj.

STR Slack Time Remaining, the time remaining before due date and re
maining processing time, the smallest remaining slack time goes first
(maximal lateness), max(dj — pj — t,0).

WI With Biggest Weight first, the objective used is the total weighted
completion time J2wjCj.

WSPT Weighted Shortest Processing Path first (SPT) plans jobs in descend
ing order according to Wj/pj, the rule minimizes J2wjCj, when the
priorities are equal, the SPT rule should be used.

In the following subsection the Single and Parallel Machine Models are described
according to the objective functions. Also the preemptive and non-preemptive mod
els are mentioned as well as precedent rules models. The models represent problems
where each job is processed on one machine. These simple models are followed by
more advanced models in which each job requires execution on more than one ma
chine. Namely it is an Open Shop Open Shop (OS) - where the order of machines
through which the job passes is immaterial, Flow Shop Flow Shop (FS) - each job
has the same machine ordering, and Job Shop Job Shop (JS) - different machine
ordering is possible for various jobs.

35

Tab. 2.7: The processing characteristics and constraints 1-/3.

batch Batch processing, the machine is able to process a number of jobs, let
us say b jobs, simultaneously. The jobs can have a different processing
time a batch is finished when the last process is finished. [63]

block Blocking, only in Fm and FFc with a limited buffer between two
successive machines, when the buffer is full, the upstream machine is
not allowed to release a finished job. [63]

brkdwn Breakdowns mean that the machine may not be available all the time,
e.g. due to shifts, scheduled maintenance etc. A survey subjected to
this constraint is given in [90].

fmls Job families means that the jobs are spread to F different job families.
Jobs in one family can have different processing times, but they can be
processed on same machines without any machine setup. The setup
time is considered only when one family g is switched to another h on
one machine, and it is denoted as sgh- [63]

nwt No-wait, only in Fm and FFc, means that jobs are not allowed to wait
between two successive machines, this slows the start of processing on
the upstream machine until the process is not sure that successive
machines can process the job without any waiting. [63]

prec Precedence constraints, one or more jobs can be completed before
another job is allowed to start. There are several forms of these con
straints: chains - each job has at most one predecessor and at most
one successor), intree (at most one successor), outtree (at most one
predecessor). [68], [63]

prmp Preemptions mean that the scheduler is allowed to interrupt the pro
cessing of any job in any point of time and switch to another. When
the stopped job is rescheduled to be processed again, it can be done
on any machine identical to its start of processing. [68], [63]

prmu Permutations appear only in Fm and FFc with FIFO, which denotes
that the order in which jobs are processed by the first machine is given
by the scheduler. [63]

Tj Release dates mean that the job j is not allowed to be processed before
r-j. If Tj is not present the job j can start any time. [68], [63]

Sjk Sequence dependent setup times represent the situation that is in
curred between the processing of the job j and job k. If no Sjk is
defined there are no setup times considered. [63]

36

Tab. 2.8: The processing characteristics and constraints II - (3.

Mj Machine eligibility restrictions, only if Pm, and denotes that only Mj
machines can process the job j [63]

res The presence of s limited resources Rh where (h — 1,..., s). The job
Jj requires r^j units of Rh at all times during the processing. [68]

rcrc Recirculation, one machine more times, only in Jm and FJm. [63]

2.2.3 Single and Parallel Machine Models

This subsection describes very briefly Single and Parallel Machine Models. The
variants of models are described in Tab. 2.9. This section is present only for the
completeness of the scheduling problem, but the relevance of the Single and Parallel
Machine Models to this work is minimal, so these models would not be further
discussed in more details.

Tab. 2.9: Possible machine environments I - a.
1 Single machine, the simplest form of a scheduling problem, this is

a case of one single machine. Sometimes denoted as an empty set.
Pm Identical machines in parallel, Pm represents m identical machines in

parallel. Job j can be processed on any one of the m machines.
Qm Uniform machines in parallel with different speeds, Qm represents m

machines in parallel with a different speed of processing. The speed
of a machine % is denoted by V{. The time of processing p^j (which job
j spends on machine i) is equal to Pj/vi. It is a generalization of Pm.

Rm Unrelated machines in parallel, Rm represents m completely different
machines in parallel. The machines are different in speed and also
in the speed of processing of particular jobs. So, the job j can be
processed by machine % with speed Vij. Then, the time of processing
Pij is equal to Pj/vij. This environment further generalizes Qm.

Single Machine Model (SMM) environment comprises basic and simple models
which started to appear in publications in the middle fifties [65], [91]. SMMs are also
often used in complex environments, where the scheduling problem is decomposed
to sub-problems and applied to single machines. A majority of papers focuses on the
ability to solve the problem in maximally polynomial time. A l l these approaches are
influenced by Karp's complexity study [67]. In S M M the processing characteristics
and constraints such as precedence constraints, processing times, release dates and
due dates are mostly investigated. Also the preemptions were investigated, but it
was proved that there is no significant advantage of such constraint in S M M .

37

Parallel Machine Model (PMM) is of great importance to real world application,
because the machines often work in parallel groups. P M M can be considered as a two
step process. The first step is to allocate the jobs to the machines. The second step
is the determination of the job sequence on a specific machine. Three objectives are
commonly used in P M M : minimization of the makespan, the total completion time,
and the maximum lateness. Most of the problems in the parallel environment are
considered as offline scheduling problems. It means that all problem regarding data
(processing times, release dates, due dates etc.) are known before the optimization
process starts. In the online scheduling problems data are not known a priori. The
processing time of the job is known at the moment of job completion. The online
scheduling is under investigation more than in single machines. It is very significant
for real-world applications, because the information about the job is very limited
when the decision has to be made and it fills the gap between the deterministic
and stochastic scheduling. In the P M M it is also more important to decide if the
preemptions are good to use, e.g. when all jobs are released at the same time.

2.2.4 Shop Scheduling Problems

This subsection depicts three main problems, Open Shop OS - the order of machines
which job passes through is immaterial, Flow Shop FS - each job has the same
machine ordering, and Job Shop JS - different machine ordering for various jobs.

Open Shop Scheduling is a scheduling problem where n jobs and m machines
are given. Job has t tasks and t = m. Each task has to be processed on different
machine, so each job has to be processed on each machine at least once, even if some
processing tasks can be of the zero time value. The order of processing the job by
machine is not given and in fact it is a part of final solution. In another words, the
routing of each job is fully up to the scheduler. This kind of problem is proven to be
solvable in polynomial time, but only for two machines. Two machine problem is of
ten a subject of investigation in literature. When there are more than two machines,
the problem is classified as NP-hard. Only if there are more machines than two and
the operations are of the same length, the problem can be solved in polynomial time
thanks to the edge coloring problem for bipartite graphs. The typical application of
Open Shop Scheduling (OSS) is a product configuration which does not depend on
the order of operations. In fact, the problem is applicable everywhere as the Flow
Shop Scheduling (FSS), irrespective of the order of operations.

One of the first publication which appeared on this topic [71] deals with the
minimization of the finish time. The paper deals with a non-preemptive 02\\Cmax

(0(nx)) and 03\\Cmax (NP-hard) as well as preemptive 02\prmp\Cmax (0(n)) and
0\prmp\Cmax (0{nx)) cases of the OSS problem. In the OSS problem the non-

38

Tab. 2.10: Possible machine environments II - a.
Om The OS represents the problem where each job has to be processed

again on each one of the m machines, there are no restrictions of route,
and processing times can be of zero value.

Fm The FS represents m machines in series. Each job has to be processed
on all machines, all jobs have to flow in the same route, the FIFO queue
is usually used and if it is used the problem is known as a permutation
flow shop, j3 is equal to prmu.

FFc Flexible FS (or Hybrid FS, Multi-processor FS) represents the problem
with c stages in series, and each stage has a number of Pm machines,
every job has to be processed on all stages on any machine.

Jm The JS represents the problem where each job has a predefined route
to flow. There are two types of this problem according to that how
many times the job can visit the same machine: once or more. If more
times, the j3 value is equal to rcrc and it is referred to as recirculation.

FJm Flexible JS extends the Jm by parallel machine environments. There
are c work centers with a number of identical machines in parallel,
each job has its own route through the job and each job is processed
in each work center only once.

preemptive and preemptive cases are often discussed. The mostly used optimization
criteria are the makespan [92], the release and due dates [93], [94], and the maximum
completion times [95]. Also the complexity of the problem was examined [96]. The
online scheduling with minimization of makespan was investigated and an optimal
online algorithm was proposed [97]. One of the most frequent topic is the Two Ma
chine OSS problem. The problem was investigated with and without preemptions,
with controllable machine speeds [98], with transportation times [99], availability
constraints [100], batching [101], online scheduling [102] and many other constraints
and optimization objectives.

The most important in this literature research for the purpose of this work are the
methods on how the scheduling problems are being solved. A linear programming
formulation and a fast polynomial time algorithm for the OSS problem were studied
in [93]. The G A algorithm was introduced in [79] and compared to the existing
conventional search-based methods such as the Branch and Bound (BB) algorithm
with a positive result. The G A algorithm and case-based reasoning to find optimal
solution faster than simple G A were successfully combined [103]. At the turn of the
century, several significant papers on approximation methods were published. The
first work [104] deals with the TS algorithm with support of neighborhood structure

39

objected to the minimization of makespan. The algorithm proved to be able to find
high-quality solutions for hundreds randomly generated problems in a reasonable
time and was further developed for Two Machine OSS problem [105]. The second
paper [106] applied the SA algorithm supported with the NS method objected again
to the minimization of makespan. The papers declare that some of benchmark prob
lems were solved to optimality for the first time by this algorithm. The paper [84]
proposed a hybrid G A algorithm which incorporates local improvement procedures
based on the TS and simple GAs. This step ensures the algorithm to perform search
over the subspace of local optima. The results significantly outperform previous two
algorithms in terms of the quality of solution. On the other hand, not all benchmark
tests were solved to optimality. The competitive G A was proposed in [107].

In fact, there are only few exact solution methods available for the OSS problem.
The paper [108] describes the B B algorithm which performs better than the other
algorithms existing until then. A dynamic programming algorithm in two machine
environment with availability constraints was proposed in [109]. A few years later,
hybridized A C O with beam search was applied which became a state-of-the-art
in OSS [87]. Another SA algorithm [102] was proposed, the solution is based on
bottleneck and objected to minimization of J2wjTj- A n immune mechanism was
incorporated to G A [110], also based on bottleneck and objected to minimization of
J2wjTj. A completely new approach based on PSO was introduced in [111]. The
solution was modified according to the standard PSO, and also the Beam Search
Method was incorporated. The approach was further developed and modified to
Multi-objective OSS [112]. The special Network Flow based algorithm was presented
in [113]. The problem is formulated as a Mixed Integer Programming (MIP) model
with minimization of Cmax. The multi agent approach with combination of SA
and Fuzzy Logic was proposed in [114]. The algorithm emphasizes the flexibility
of solution rather than optimality. A different hybrid G A algorithm was proposed
in [115]. The paper proposes the advanced techniques to search space reduction
such as special crossover operator and memory implemented to mutation which
prevents a redundant solution generation. This solution outperforms other GAs.
The paper [116] introduces an unusual Parallel Kangaroo algorithm based on random
jumping method, the results are comparable to all well-known optimization methods.
Another approximation algorithms are proposed in [117], [118], and [119].

The OSS problem can also be generalized. Concurrent OSS problems and Order
Scheduling models are also considered in [120], [121], [63]. The problems Om| | J2Cj
and Om\prmp\ J2Cj are NP-hard for m > 2 and m > 3, respectively. In the recent
years also the OSS problem can also be generalized to Flexible OSS problem with
job overlaps, which is under investigation. In this problem the processing times of
any given job on different machines are allowed to overlap.

40

Flow Shop Scheduling is represented by n jobs and m machines. Each of n jobs
comprises a set of tasks t which must be done on different machines. The processing
operation order is the same for all jobs as they go through the machines. The tasks
cannot be interrupted. Each machine can process only one task in a time. The
problem is to find the configuration (job sequences) which minimizes the Cmax. The
problem is NP-hard and that is why it is usually solved by meta-heuristic methods.
FSS represents the production lines and assembly lines in mass production where the
machines are arranged in serial order. The representative problem can be e.g. food
industry, fabric industry, automotive, aerospace and many others. This problem is
often simulated with unlimited intermediate storage. This is actually the capacity
between successive machines. The unlimited intermediate storage can be used when
the products processed are very small. When the products are large the intermediate
storage must have a limited capacity, which may cause blocking.

The majority of the papers deal with the minimization of Cmax objective, be
cause it is the easiest objective. But, in the FSS, this statement is valid only up to
3 machines. Several MIP algorithms were introduced as well as various B B meth
ods. First implementations of the B B algorithm for FSS were introduced in [66]
and [122]. The problem was also investigated in environments where the jobs are
scheduled and, at any stage, there may exist multiple machines [77]. This type of
problem is called Hybrid FS problem. Two Machine FSS problem was also investi
gated with many variations. The sequence dependent setup times solved by dynamic
programming are described in [123] and [124]. The problem with jobs grouping is
described in [125] and equal sized transfer batches on 2 and 3 machines [126] and
also a lot streaming and sizing are quite discussed [127]. The objective function was
also quite often under investigation. Researchers were focused mostly on scheduling
with time lags, earliness and tardiness, waiting times and setup effects [128], also
fuzzy processing times [129], problems with preemptions and non-preemptions, and
availability constraints [130]. The problem focused on complexity and approxima
tions was discussed in [72] and the problem with transportation constraints, which
is quite related to this work, was studied in [131].

A fundamental algorithm for solving F\\Cmax was proposed in the famous paper
[91] for creation of optimal schedule. Special cases of the problem with start lags l\j
and stop lags l%j which represent the minimal time between starting times on M\
and M 2 , and completion times, respectively, were tested in [132] and [133]. Some
F3\\Cmax problems are solvable by Johnson's algorithm. The algorithm solves also
the F2\prmp\Cmax problem, but this problem with F3 is NP-hard. A n important
variation of the FSS problem is no-wait problem F2\nowait\Cmax. The process has
to be completed without interruption, e.g. "hot ingot" problem in which the metal
has to be processed at a continuously high temperature [134], solved by the BB

41

algorithm [135]. The review of blocking and no-wait models is presented in [136].
As well as the OSS problem, also the FSS problem was solved by many different

algorithms and their combinations and many approximability studies were published
[137]. The problem with fuzzy due-dates solved by local search algorithms was
described in [138]. A comparison of local search methods is presented in [139]. One
of the first use of heuristic approaches is introduced in [140]. Other new heuristic
approaches were proposed in [141]. This paper was dealing with a two stage problem
with parallel machines at one stage and the analysis of classes of heuristics objected
to minimization of Cmax. Also the TS algorithms with support of NS techniques were
developed for the FSS problem [81] and G A algorithms [142] were often improved
by search space reduction, parallelization, or with multiple objective approaches.

Random Permutation FSS problems with the study of search space topology and
algorithm performance are described in [143]. The performance is tested on random
problems and the main topic of the paper is the validity of such testing. A Hybrid
G A was proposed for a lot streaming [144]. The job (lot) in this paper is split into few
smaller tasks (sub-lots) so that the successive operations can be overlapped. Another
Hybrid G A was proposed in [83]. The algorithm is investigated to the intent of the
effect of initialization methods and genetic operators on the performance of GA.
A multi-objective evolutionary search algorithm using TSP based G A algorithm is
proposed in [145]. The initialization is done by TSP with the help of a random
insertion perturbation scheme. Most of the algorithms use the minimization of the
Cmax as their objective function. The recirculation problem was also solved by G A
[146]. The SA algorithm proposed in [147] was focused on a reasonable running
time of an algorithm which is done by a well-designed initial solution generator.
The learning effects were studied in [148] and furthermore it was shown that the
classical Johnson's rule is not the an optimal solution for Two Machine FSS to
minimize the Cmax with a learning effect. The differential evolution was also used for
scheduling of FS [149]. The paper described a novel optimization method handling
discrete variables as boundary constraints, which appeared to be widely applicable
in engineering problems. The Hybrid G A [150] was also used for scheduling with
limited buffers, which is a problem with strong industrial background. Simulation
results and comparison benchmarks are demonstrated.

Most of the researchers ignore setup times or assume that setup times on each
machine are independent of the job sequence. A n immune algorithm approach with
sequence dependent setup times, which can reasonably schedule complex problems
in acceptable time, is proposed in [88]. Also the PSO algorithm with some hy
bridization [151] was used for no-wait FSS problem. This problem requires jobs
to be processed without interruption between consecutive machines and shows how
important this fact is in production scheduling. Then the PSO algorithm was devel-

42

oped [152] for the Permutation FSS problem with the investigation of some special
local searching operators to balance the exploration and exploitation abilities. The
hybridization and combinations of algorithms are quite often the case how to solve
the FSS problem, also the use of multi-objective criteria is in focus in the recent
years. A multi-objective approach based on Hybrid Quantum-Inspired G A was pro
posed in [153] and Hybrid Multi-Objective Immune algorithm in combination with
Bacterial Optimization to find Pareto optimal solutions that minimizes both the
weighted mean completion time over bar and weighted mean tardiness over bar was
proposed in [154]. The effective Hybrid PSO algorithm for problems with limited
buffers to minimize the Cmax was proposed in [155].

A novel differential evolution algorithm for solving no-wait FSS problem with
Cmax and maximum tardiness is proposed in [156]. A novel approach of differen
tial evolution described in [157] focuses on blocking problem which is objected to
minimization of Cmax. New crossover and mutation operators are developed and
introduced in this paper. The SA algorithm for Hybrid FSS with multiprocessor
tasks to minimize Cmax was introduced in [158]. The proposed algorithm showed
its efficiency in solving Hybrid FSS problem with multiple processors for very large
problems. A completely new approach, called Discrete Artificial Bee Colony algo
rithm, proposed in [159], is focused on lot streaming with the criterion of J2wjEj
and J2 wjTj penalties under both the wait and no-wait cases. Also the efficient
initialization method is used, which is based on various dispatching rules.

A Hybrid FSS problem has been examined recently, an extensive review and
classification of such problem is published in [160], [161]. The G A algorithm for
robust Hybrid FSS problem was introduced in [162]. The benefit of this algorithm
is that it takes an uncertainty of processing time of each job into account. The
algorithm is bi-objective and minimizes simultaneously the makespan and the devi
ation between the makespan of all the disrupted scenarios and the makespan of the
initial scenario. The proposed results depict that the algorithm can generate trade
off for effectiveness and robustness. The PSO algorithm to minimize the Cmax was
introduced in [163]. This algorithm with the help of the Cocktail Decoding Method
significantly outperforms the majority of existing algorithms in terms of the quality
of solutions, particularly for large problems. The combination of G A and SA was
introduced in [164]. This paper is focused on the minimization of energy consump
tions and environmental impacts. The paper proposed the mathematical model and
the algorithm to solve multi-objective optimization problems. From the previous
text it can be concluded that mostly the makespan and total (weighted) completion
times were used in both the scientific and the engineering applications.

43

Job Shop Scheduling can be described as follows: the set of n jobs and m ma
chines is given as input. Each job j comprises a set of tasks t. The tasks cannot be
interrupted and each machine can process only one task in a time. The successive
tasks are mostly processed on different machines. The problem is to find an optimal
configuration to a given objective. JSS representatives are custom-made products or
piece production, in other words, it is a problem for production and assembly lines
in piece production with a large number of different products. This represents e.g.
the production of machine tools or the custom-made production of cars and motor
bikes. The NP-complete problems are not guaranteed to give an optimal solution in
polynomial time, which means that no deterministic optimization methods can be
used for a more complex problem of this type. This problem is more than seventy
years old and it is still very actual. For better understanding and a more precise
description of the problem, let us introduce the following notation coming from [76].

One of the first reviews of the JSS problem was published in [165]. The problems
of One-Machine JSS regarding the theory of scheduling and computations were
reviewed in [166] and in [167], respectively. The work dealing with the general JSS
was proposed in [168]. The survey of Dynamic JSS was described in [169]. A broader
view of the JSS from the point of view of robustness measures and robust scheduling
was presented in [170]. A review of Deterministic JSS was provided in [78].

A simple extension of algorithm for F2\\Cmax allows to solve J2\\Cmax in 0(n •
login)) time [171]. The general JS is very hard to solve optimally, the 10-job 10-
machine problem formulated in 1963 [172] was solved for the first time in [173].
The solution in that year took 4 hours (17982 s) and the solution was only for
a problem with no new jobs and no machine breakdowns. The most convenient
problem representation of JS is possible by disjunctive graph models. In the context
of JSS problem, the same or very similar problems which were mentioned for the
OSS and the FSS problems are solved. The special emphasis is given on machine
blocking and no-wait constraints, which are described in [174].

The JSS was often solved by linear programming, constrained programming, dis
junctive programming, shifting bottleneck approaches, and B B algorithms. In the
early sixties the problem [175] that involved sequencing restrictions and also non
interference constrains for individual pieces of equipment was introduced. The algo
rithm was based on discrete linear programming. One of the best solution was gained
by the B B algorithm [176] which combined l\rj\Lmax bound with the enumeration
of active schedules. The paper [177] was focused on JSS by implicit enumeration
objected to minimization of Cj. The preemptions are also discussed quite often, as
well as a many other objectives. The survey of dispatching rules for various objec
tives were published in [178] and [179]. Another important issue, i.e. the frequency
of scheduling, is discussed in [180]. The amazing work [74], dealing with the shifting

44

bottleneck procedure, which had an extensive impact on other publications, is ob
jected to the Cmax. The work deals with sequencing and the local optimization on
each machine in successive order. This approach gets better results than any other
solution up to this publication. The paper [181] discusses what is relevant to the
JSS theory. Breakdown predictions are discussed in [182].

JSS with multi-purpose machines was described in [183], and JSS with alterna
tive machines was described in [184]. The paper [185] proposed a new search space
for sequencing problems applied to the JSS, the effectiveness was demonstrated on
the problem with minimization of the Cmax. Methodologies based on Lagrangian
relaxation applied to the JSS with multiple machine types, generic precedence con
straints, and simple routing considerations also proved to be computationally ef
ficient [186]. A n overview of B B algorithms based on active schedule generations
was presented in [187]. A n adaptation of the B B algorithm called Beam Search
was also used [188] and the B B algorithm for fast JSS solving was developed in
[189]. The approach solved the 10 x 10 problem which was opened for more than
20 years. The paper proposed a complete description of algorithms and presented
computational results. A new variant of depth search procedure called Guided Local
Search was presented in [190]. The method is based on an interchange scheme and
neighborhood trees, then the procedure was embedded into the shifting bottleneck
framework. Also fuzzy constraints were applied to the JSS [191]. Another approach
with fuzzy processing times in combination with G A was proposed in [192].

The application of GAs was described in [193]. The G A was applied as a method
generating manufacturing process plans. Another promising G A with focus on
rescheduling in the JSS and the OSS was proposed in [79]. A n evolution learn
ing based on sequences of dispatching rules for job assignment was published in
[194]. The algorithm performs better than any shifting bottleneck heuristic or a SA
based approach. The permutation with repetition approach with G A was proposed
in [195], the new crossover operator was introduced. A great tutorial survey of G A
in JSS was described in [196] and hybrid genetic search strategies were described
in [197]. The paper [85] proposed a multi-objective evolutionary optimization ap
proach focused on the assignment and scheduling of jobs. The pareto-optimality
approach with multiple-criteria was described in [86], [198]. The integration of pro
cess planning and scheduling was important for efficient utilization of manufacturing
resources and was studied in [199]. The parallelization of GAs with focus on the
Island model was proposed in [200], results were compared to traditional GAs, a sig
nificant improvement is shown. The optimization focuses mostly on one objective
which is Cmax, but also others were used, such as Tj [201], Uj [202]. The G A pro
posed in [203] uses global selection and local selection for initialization procedure,
computational results were proved to be effective and efficient.

45

The Neural Network (NN) approach described in [204] is based on a linear pro
gramming network based on the Hopfield network. The key contribution of the paper
was to show how to map a difficult constraint satisfaction problem onto a simple
N N . A modified back-error propagation model of N N was introduced in [205]. The
paper [80] describes a SA based algorithm for finding the minimum Cmax in the
JSS problem, this algorithm became the basic building block or state-of-the-art in
optimization of JSS. Another approach of SA was described in [206]. A n effective
hybrid optimization based on SA and G A was introduced in [82], the G A was ap
plied because of implicit parallelism mechanisms and SA was applied as the G A
cannot easily regulate the convergence because of disruptive effect of genetic opera
tors. A TS method guided by shifting bottleneck was presented in [207], [208]. The
TS algorithm was also applied to the Flexible JSS problem objected to minimize
Cmax [209] - the first part of the algorithm searches for the best sequence of job
operations and the second part finds the best choice of machine alternatives. The
problem was that most of the papers were tested on randomly generated test prob
lems. A TS algorithm with a new neighborhood structure was proposed in [210].
This approach is one of the most effective algorithms for JSS. Efficient initial strate
gies for GAs were described in [211] and quite comparable results to the best known
TS algorithms were obtained.

Many other algorithms were applied to solving the JSS problem. A C O combined
with TS was also used for schedule optimization [212]. Flexible JSS with the Parallel
Variable Neighborhood Search algorithm was proposed in [213]. PSO was used for
Multi-objective Flexible JSS [214]. The Artificial Immune Algorithm was proposed
in [215]. The Hybrid Shifting Bottleneck Procedure proposed in [216] is based on
a disjunctive graph model in combination with TS algorithm. And a completely new
B B O algorithm for flexible JSS is proposed in [89]. The B B O algorithm is based
on migration strategy of animals and is developed for searching a solution area
and finding the optimum or near-optimum solution. The solution was successively
compared with GAs which are the most similar group of algorithms.

2.2.5 Discussion

The S M M could be the one of the possible solutions of this work. In this case,
the trucks in the warehouse would represent a single machine and the optimization
of jobs could be done by many ways known from literature according to various
optimization criteria. But still, there would be a problem of how to allocate the jobs
to single machines. So, this is not considered as the best way of how to solve the
proposed problem and the SMMs could be used later for additional optimization of
single trucks. Because of the mentioned problem of allocation, the P M M appears

46

to be better for the purposes of this work. The P M M is investigated more as
an offline scheduling problem. Since the information about the job in the case
of this work is very limited when the decision of scheduling has to be made, the
problem is considered as the online scheduling problem. So, the data is not known
a priori and the algorithm has to handle this situation. In the case of this work, also
preemptions have to be considered, because many jobs can be released in the same
time. Furthermore, the preemptions can help in the situation when one worker will
finish the work on the job and gives it to another worker for completion, because
e.g. another worker can finish the job in a shorter time or with another equipment.

In real-world warehouses and distribution centers, the most common methodo
logy used for process planning is material resource planning, which is more a plan
ning tool than a solution for detailed schedule creation. In this work the material
resource planning methodology is not used at all. The inspiration of how to solve the
warehouse job planning problem comes from shop scheduling problems, mostly from
the JSS problem. It follows from the preceding literature research that JSS could
be the most convenient and proper way, because it is applicable to piece production
or any other custom-made products. The most promising technique for solution
appears to be an approach based on evolutionary computation, such as G A with
some degree of hybridization. Since the hypothesis is stated, but the structure of
chromosome is not strictly given, the GP seems like a better solution then GAs.
The GP is not wide spread for this type of problems, but there are some papers.

One of the first integration of GP into JSS was introduced in [217] (2003). Un
fortunately, more details are not known about this implementation, because the
paper is not available for download and it was not possible to contact the authors.
Another application of GP on Cmax optimization of JSS problem was described in
[218] (2009). This paper briefly reviews the JSS problem and various algorithms ap
plied to this field of interest. The implementation of GP to JSS was described and
many benchmarks were successfully tested. Also, reasonable parameters settings for
the GP algorithm were discussed. The problem was objected to minimization of
Cmax. In the recent years, the GP were applied in two known cases. The first case
[219] (2012) described the method for scheduling policies evolving for the Dynamic
Multi-Objective JSS problem. The new hyper-heuristic method based on GP was
proposed for an automatic design of scheduling policies including dispatching rules
and due-date assignment rules. The evolved policies showed a promising perfor
mance on various types of scheduling configurations. The proposed algorithm was
successfully compared to NSGA-II and SPEA2 algorithms. The second paper [220]
(2013) also discussed dispatching rules, in particular the iterative learning.

47

2.3 An Overview of Routing Problems
At this point, the most interesting question regarding this work, "How to plan and
schedule jobs and allocate them to trucks?", should be answered by the literature
research on the scheduling topic, described in the previous section. The topic of
this section comprises two questions: "How to route trucks in a warehouse?" and
of course, "How to avoid situations, such as blocking, congestions, and collisions of
trucks?". The beginning of this section describes the historical perspective of routing
which comes directly from scheduling problems. Moreover, the fully automated
routing is described in details as well as the basic methods of routing inspired by or
coming directly from Vehicle Routing Problems.

2.3.1 Historical Perspective of Routing

The complete beginning of A G V s is connected to the beginning of scheduling, which
is dated to the early fifties of the previous century. First, the man-aboard tow truck
had been used in factories for dozens of years. The first invention in this field
of automation consists of imbedded wire in the factory floor which was followed by
truck. This was not actually the real A G V system, it was called a driver-less system.
It worked on the principle of magnetic fields. The sensors on the bottom of a truck
looked for a magnetic field. The magnetic field was crated by the current running
through the wire imbedded in the floor. The stops consisted of an array of magnets,
so the truck got a signal that should stop the truck at a certain place. The A G V
systems at this level of technology were used until the mid-seventies. The entering
of new materials and technologies evolves the A G V systems much more further. Of
course, the wire in the floor is still an available and used solution. However, more
sophisticated sensors or computers on board to communicate, control and manage
systems bring more possibilities, e.g. laser measurement, radio frequency etc.

2.3.2 Fully Automated Routing

Material handling is one of the most expensive processes in any manufacturing or
warehousing system. According to [3] it is almost 80 % of the total cost. Therefore,
the attempts to reduce this cost extremely increased the need of new methodology
for planning and scheduling of material handling operations. To meet this need,
there are three criteria which must be met simultaneously [76]:

Sequencing which specifies the order in which jobs are processed at machines;

Scheduling makes time-phased routing and dispatching for pick-up and delivery;

Facility layout and flow-path design make efficient operations possible.

48

Unfortunately, most papers published in this area take into account only one or
two of the three criteria. Moreover, the most of the papers consider the problem as
static - all jobs are ready at the time zero, and there are no dynamic arrivals. Fur
thermore, all tasks of the jobs are non-instantaneous and non-preemptive. Neither
a truck nor any other machine can hold more than one job at any time. The problem
is then to find a feasible schedule for all employees and trucks in the warehouse so
that a given objective is optimized. The recent work related to this problem is di
vided into three groups: (a) the Robotic Cell Scheduling, (b) the Hoist Scheduling,
and (c) the AGVs . The general versions of these problems are NP-hard in the strong
sense. Besides, the problems especially in real-time versions or with more constraints
are so complicated that they preclude a formal mathematical formulation.

The Robotic Cell Scheduling - This problem has the fewest constraints. The
cell is of a flow-line type with several flexible machines and a single material handling
robot. The size of in-process buffers is either zero or finite. The main concern is
to identify the optimal job input sequence and the robot operation sequence with
respect to certain objectives. Two basic example solutions are depicted in Fig. 2.4.

This is a typical problem of cellular manufacturing systems, where each cell is
equipped with a single material handling robot and several flexible machines [221].
Buffers between machines are very limited or zero, which makes the cell performance
dependent on the sequence of robot moves. Therefore, the problem of sequencing
and scheduling is quite discussed [222], [223]. The 2-machine or 3-machine cases are
the most frequent cases of this problem [224], [225]. The problem is quite specific
and the solution is not applicable for the purpose of this work.

Machine 1 Machine 2 Machine 1

Fig. 2.4: A n example of the robotic cell scheduling system.

The Hoist Scheduling Problem - This type of problem can be viewed as
a special case of the FSS problem with a certain number of machines and wait and
non — wait constraints [226]. This is mostly used in electroplating and chemical
industries. A typical line in this industry consists of a large number of chemical

49

tanks considered as machines and hoists transporting the products between tanks.
Each job is a barrel carrying identical parts to be plated. A different job type may
require a different treatment. A tank and a hoist can hold only one job at a time.

The cyclic scheduling of hoist with time-windows constraints is the most restric
tive problem. This problem typically deals with multiple hoists in a flexible flow
shop. The most distinct feature is that the job processing time at each machine
is not fixed, but is strictly limited by a lower and an upper bound (i.e. the time
window constraint) and collision-free constraint. For this type of problem determin
istic [227] as well as stochastic algorithms [228] were investigated and developed.
Also the collisions were considered [229], but still, this is not the best solution for
inspiration since the work is done by track fixed hoists, see Fig. 2.5.

U U

Hoist

IflJ
Tank 0 Tank 1 Tank 2 Tank 3

(loading station)

Track

Tank(m-l) Tank m Tank(m+1)
(unloading station)

Proceeding sequence

Fig. 2.5: A n example of the hoist scheduling system.

The Automated Guided Vehicles - The A G V typically occurs in the pro
cess of flexible manufacturing [230], [231]. Such process typically consists of software
controlled machines. Each machine has limited input and output buffers, intercon
nected by a material flow network. The A G V scheduling deals with an automated
JSS with non-instantaneous material delivery, non-zero buffers at machining centers
and multiple A G V s traveling on a shared network. The main constraint which must
be satisfied by schedule is to avoid collisions of A G V s during their processing. The
main problem is how to schedule the moves of vehicles so that traffic collisions are
eliminated. This problem is discussed in the papers [232], [233].

During the manufacturing process, A G V s circulate on a guided paths connect
ing machine centers and transport materials and goods among these centers. Any
improper dispatching of A G V s will immediately lead to congestions, collisions, long
delays, and financial losses [234], [235]. The paths in practice are uni-directional or

50

bi-directional. Of course, bi-directional paths lead to better productivity, but the
requirements on their implementation and control are much more expensive. The
networks are commonly in the configuration of a single-loop or multi-loop network.
In the single-loop network, the machines follow one loop and it is very easy to avoid
all collisions there. In the multi-loop network, the network blocking is the topic of
scheduling, especially in the bi-directional network. Since the paths are given by
the layout design of the environment, because the vehicles are guided by the wire,
laser or spot infrastructure which is given (see Fig. 2.6), all these properties have to
be taken into account during the scheduling. Most analytical approaches that guar
antee the optimal schedule with respect to certain objectives are limited to special
cases and collisions are not much considered or solved by machine waiting than by
collision prediction.

Wire Guidance Spot Guidance

Jn

O C

Laser Navigation

\\\\

1 AGV

R AGV

Fig. 2.6: A n example of the Automated Guided Vehicle system.

There are three categories of papers on the topic how to predict and avoid col
lisions [230]. The first approach is to design guide-paths in a way that collisions
and deadlocks are avoided. The second approach is to divide the environment into
non-overlapping areas or zones, which prevents the collisions. The third approach is
to use a routing strategy. The third approach could be the solution of the problem
discussed in this work. The routing strategies can be divided into two groups, static
and dynamic. Static routing is connected to V R P , especially concerning the sub-
problem with time windows, which will be discussed in the following sub-section.
Dynamic routing is also somehow connected to V R P where multiple demands for
customer service in real-time have to be satisfied. Analogies between the A G V and

51

V R P are quite clear, also the algorithms for one problem can be applied to another
problem, because the main goal is to minimize waiting times of a job. The problem
is that the V R P models do not take into account congestions, because the traffic net
work is bi-directional and if it is not, the traffic rules are given, so there is no need to
predict collisions. Conflict free routes in a bi-directional network based on Dijkstra's
algorithm were proposed in [236] and the solution for conflicting routes based on
Petri Nets was proposed in [237]. Generally, the approaches are based on complete
route planning or incremental route planning. The complete route planning plans
the entire route from the point of origin to the final destination. The incremental
route planning plans segment by segment until the destination is reached. The dis
advantage of complete routing is that this solution is not flexible for unpredictable
events which can occur all the time. On the other hand, the optimality of routes
based on the incremental approach is quite disregarded.

The literature discusses the route planning and its optimization according to
breakdowns and collisions, but it does not say much about the prediction of these
situations itself. Also various types of interruptions might occur, e.g. vehicle break
downs, maintenance breakdowns, objects in path etc. As a result of these circum
stances the blocking can occur and jobs could not be finished on time.

2.3.3 Vehicle Routing Problem

Pickup and Delivery Problem (PDP) is tightly connected with the logistic opti
mization, especially with the problem of how to determine how many warehouses
a company should have, where to locate them, and which customers allocate to
which warehouses. In the general version of this problem a set of routes has to be
constructed so that all transportation requests are satisfied. The routing process
is influenced by parameters of each transportation vehicle, such as e.g. a given ca
pacity, size, speed, start location, and end location. A n extensive research related
to the aspects of modeling and optimization of V R P was done in the past decades.
This was done due to the need of efficiency improvement, because the traffic in
creases much faster than the traffic network grows. Therefore, the research is lately
focused mainly on how to prevent the breakdown of the system and preserve the
productivity of transportation.

In 2008 two very interesting papers regarding the P D P were published. The
first paper [238] refers to transportation problems from/to a depot. This general
problem is usually referred to as Vehicle Routing Problem with Backhauls (VRPB) .
This problem is divided into four sub-categories. In the first two sub-categories
customers can represent either delivery stop (line-haul customers) or pickup stop
(back-haul customers). The last two sub-categories represent a situation where

52

each customer requires a stop for both the delivery and pickup. The first sub
category is described by the criterion that the group of delivery customers has to be
served before the first pickup customer. The second sub-category does not consider
a group criterion, and mixed visiting of customers is explicitly allowed. The third
and the fourth sub-categories of customers can be both the line-haul and back
haul customers, but the fourth sub-category allows the vehicle to visit a customer
only once, while the third sub-category allows recirculation. More about the sub
categories is described in [238]. The second paper [239] refers to transportation
problems between customers. This represents a general problem which is usually
referred to as Vehicle Routing Problem with Pickups and Deliveries (VRPPD) and is
divided into two sub-categories. The first sub-category refers to the situation where
P D P locations are unpaired. Each unit of goods picked up can satisfy demands of
any delivery customer, and only homogeneous goods are considered. The second
sub-category is a general P D P with a Dial-A-Ride Problem (DARP). Both types
consider transportation requests. While P D P deals with the transportation of goods,
the D A R P considers the transportation of passengers. More about this problems
is described in [239]. There is a lot of variants of the general PDPs or VRPs,
e.g. stochastic or dynamic versions of a problem, problems with limited capacity of
vehicles or split delivery, time windows and other versions of these problems. On the
other hand, these problems have a common basis in TSP, so the algorithms to find
the solution for these problems also comes from the algorithms for TSP solving and
V R P is just another combinatorial optimization problem applied to transportation,
distribution and logistics domains classified also as NP-hard. In the following text,
the attention is paid to the indoor V R P and the methods for collision prediction in
the V R P s which could be possibly used in the solution of this work.

The most extensively studied problem related to this work is a Vehicle Routing
Problem with Time Windows (VRPTW) . The time windows are associated to
customer visits and depots. Waiting time is allowed upon an early arrival and
forbidden for late arrival. A n extensive review of V R P s and V R P T W is presented
in [240] and [241], respectively. The most efficient exact methods can solve problems
up to 100 customers, and few instances up to 1000 customers [242], but the problems
are very dependent on the instance of problem and the width of time window.
Also the heuristic algorithms have been applied successfully, such as evolutionary
algorithms combined with local search [243] and Hybrid GAs [244] with various
types of crossover and mutation operators. When facing directly traffic network
congestions, the Time Dependent Vehicle Routing Problem (TDVRP) is the most
related problem which is frequently combined with V R P T W and the FIFO property
for the travel times (earlier starting vehicle arrives earlier). For this problem, the
frequent approaches are also based on evolutionary computation or TS [245] and

53

A C O algorithms [246]. Additionally, more time related attributes on routes have
been introduced e.g. the velocity of vehicles, waiting-times, multiple-time windows,
time-dependent services and many others. The conclusion is that heuristics proved
to be efficient for this problem.

2.3.4 Discussion

Automated warehouses use a lot of variants of extensive conveyors, sortation equip
ment, AGVs , and ASRSs. Automated warehousing is very popular in rich countries
where the land cost is very high and labor willing to do the job in the warehouse
is small (e.g. Japan and Hong-Kong). The solution of automated warehouse is
quite expensive and the payback period of such solution is more than two times
longer than in traditional manual warehouses. Of course, the traditional manual
warehouses are not completely manual. The labor there works with various types of
fork-lift trucks, conveyors and other equipment which helps with transportation of
goods and saves the energy of labor. The problem of choice which type of warehouse
is the best for a particular company depends on many factors. If the company needs
a high-throughput warehouse, the full automation is not the best choice, because
the risk is increased by necessity of maintenance, and when one component is under
maintenance, the whole operation of such warehouse is affected. On the other hand,
the manual warehouse is more flexible when any changes are applied. In contrast
to that, the fully automated warehouse has to be reprogrammed by experienced op
erators, while the manual warehouse in the simple way can be changed by workers
(move racking, change warehouse flow, add another service).

Summarizing, in the production environments, static and dynamic algorithms
have been developed to solve the routing problem. It can be concluded on the basis
of the literature research in the above sections that scheduling and routing issues
are studied mostly as two different areas. The integration of these two aspects is
a challenging problem. It is concluded in the survey [230] that there is not much
research on integration of scheduling, dispatching and routing. There is also written
that more attention should be paid to the simultaneous scheduling of different types
of material handling equipment incorporating capacity, space and time constraints.

The benefits of the full automated warehouse include reductions in manpower and
labor costs, a fork-lift equipment and its maintenance, which implies that the work
efficiency is improved. The full automation is also ideal for high density warehouses,
where the manipulation with goods is minimal, product damage is reduced. Such
warehouses are designed for pallets and boxes as well as other items, but the goods
with special size and high weight need special treatment. And the biggest benefit is
24/7 operation without overtime costs.

54

Disadvantages of the fully automated warehouse are high capital investment,
low tolerance to discrepancies due to mechanization, steep cost of downtime - the
warehouse operation comes to a complete halt, reduced flexibility of the warehouse,
and much higher maintenance costs. These reasons are the answer to the question
why the fully automated warehouses are not still leading the market.

55

2.4 The State of the Art in Genetic Programming
This section presents a brief explanation of genetic programming. First, the ba
sic concepts and ideas of G A and GP are described followed by the description of
the conventional GP algorithm. Then, the basic aspects of GP and the research of
scientific literature are introduced. Particularly, initialization and selection meth
ods, genetic operators and fitness measurement are discussed. Furthermore, some
advanced techniques and problems accompanying GP are mentioned.

2.4.1 Basic Concepts and Ideas

Genetic Programming GP [247] is a systematic, domain-independent method be
longing to a group of evolutionary optimization techniques. GP is based on G A
using the Darwinian principle of survival and reproduction of the fittest. G A tries
to find the best solution of the given problem by genetically breeding the population
of individuals over a number of generations [303]. The process is similar to bio
logical evolution and it is based on occurring genetic operations such as crossover
and mutation. The population represents a set of programs, solutions of simulated
problems. Every single program in the population is called individual. Individuals
are created on the basis of an assumed solution structure called chromosome. Chro
mosome comprises of parameters related to the problem which are known as genes.
Genes with assigned values are alleles and form individuals.

GP is an attempt to deal with one of the most important questions in computer
science: "How can computers learn to solve problems without being explicitly pro
grammed?" [248]. Before the GP algorithm can be applied to a problem, there are
five major preparatory steps for a proper operation:

Identification of terminal set - A set of terminals represents inputs of an algo
rithm, e.g. images, sounds, no argument functions, variables, constants...

Identification of non-terminal set - Arithmetic and logical operations, stan
dard mathematical and standard programming operations, domain-specific
operations etc. The set of terminals and the set of non-terminals are the
ingredients from which the solution of problem is constructed. The sets have
to satisfy sufficiency requirement and closure requirement. The sufficiency
requirement tells that the set of terminals and the set of non-terminals are
together capable of expressing a solution of the problem. This requirement
ensures that it is possible to solve, or approximately solve, the problem. The
closure requirement tells that each of the functions in the non-terminal set
should be able to accept on input any value that may be returned by any

56

other function and any value that may possibly be in the terminal set. This
ensures the validity of the solution.

Fitness measure (Evaluation) - The fitness function drives the evolutionary
process. The fitness function evaluates how well each individual candidate
solution in the population performs in a problem. The function should be
fully defined, which should ensure that all possible candidate solutions which
appear in any generation will be properly evaluated.

Parameters for controlling the run - The primary parameters are the popula
tion size and the maximum number of generations to be run. The secondary
parameters are e.g. the maximum size/depth of the individual, the maximum
number of nodes of the individual, the ratio of genetic operators which may
be fixed or adaptable depending on the diversity of the population etc.

Terminating criterion and result designating In general, the termination
criterion is the running time of algorithm or the reach of the predefined level
of accuracy of the solution. Usually, the best individual is stated as the result
of the algorithm.

When the preparatory steps are finished, the GP algorithm can be designed. The
general GP algorithm (see Fig. 2.7) breeds candidate solutions to solve problems by
executing the following three steps [247], [248]:

Population Initialization - The initial population is generated by random com
position of terminals and non-terminals with respect to the requirement of
sufficiency and the requirement of closure.

Evolutionary Process - The following sub-steps are performed iteratively until
the terminating criterion is met and the result is designated.

Fitness measure - Each candidate solution in the population of individ
uals is measured by fitness function.

New Population - New population of candidate solution is created by
genetic operators. Genetic operators are applied to candidate solutions from
previous generation selected with a probability based on fitness measure.

The first possibility is reproduction, which is simple copying of individual
into a new population. This is connected to elitism, which means that the most
fittest individuals are guaranteed a place in the next generation.

The second possibility is to use genetic operators, such as crossover
which genetically recombines randomly chosen parts of two parental individ
uals, which results in two new offspring individuals, or to use mutation which
mutates a randomly chosen part of one parental individual and creates one
offspring individual. Of course, there are also other genetic operators, but
these two are fundamental and considered as primary genetic operators.

57

Result Designating - At this stage, the method that identifies a best-so-far
individual as a result of GP algorithm has to be stated. This result represents
an optimal solution, or sub-optimal solution, to the problem.

The basic conventional flowchart of GP which implements the steps mentioned
above is depicted in Fig. 2.7. The flowchart has been introduced by John R. Koza in
[247], [248] and the mutation branch has been added. In Fig. 2.7 the RUN represents
the current run number and ./V denotes the maximal number of runs. The variable
GEN refers to the current generation number (evolution step) and M is the size
of population. The index % refers to the current individual in the population. The
algorithm works on the probability principles, so the probability of reproduction is
pr, the probability of crossover is pc, and the probability of mutation is pm.

During the evolutionary process the population is developed by genetic opera
tors. Because the population is involved, GP algorithm is considered as a parallel
search algorithm. While the parental individuals are affected by genetic operators,
more offspring individuals than in the original population can occur. The number
of individuals in the population may have a rising trend, or may have a maximum
number of individuals preserved in each population, due to the already high com
putational complexity of the optimization process. New offspring individuals are
selected to a new population based on evolutionary principles, so that the fittest
individuals are most likely to participate in the creation of a new population.

When comparing GP to G A the main difference is in the representation of data
structures of individuals. GAs usually handle linear data structures of a fixed length,
which is usually represented by binary data. In contrast to that, GP operates
with a population of hierarchically structured individuals which represent computer
algorithms or programs. GP concept was originally designed for tree expressions
based on LISP programming language and its S'-expressions. Of course, GP is not
tied only to one language and can be used in any other language. Fig. 2.8 shows
the tree representation of the mathematical expression and its form written in the
prefix standard used in LISP and also in the commonly known infix notation.

Although GP, originally designed by John R. Koza [247], [248], [249], works with
tree data structures, it can also by adapted to other data structures. It should also
be noted that the Tree Genetic Programming (TGP) is based on the general graph
data structure which also includes Cartesian Genetic Programming (CGP) designed
by Julian Miller in 1998 [250]. Julian Miller originally derived the C G P data repre
sentation from electrical circuits, designed a few years earlier with Peter Thomson.
Another widespread type is a Linear Genetic Programming (LGP) which works with
linear data structures. L G P was comprehensively described by Markus Brameierem
and Wolfgang Banzhaf in [251]. Of course, there are many other types of GP enjoyed

58

in the scientific community, but they are beyond the scope of this thesis. A brief
summary of the types of GP may be found in [252]. Since the early beginning of
GP good results in various fields of interests were obtained, e.g. in finance predic
tion, economic modeling, control and optimization of industry, medicine, biology,
bio-informatics, etc. The results of GP are comparable to human or even surpass
human, which is proven by thousands of papers dealing with GP applications [253].

The evolutionary process is based on blind random search. One of the most
discussed topic in algorithms based on randomness is "How to reduce the search
space and preserve only valid individuals?" and simultaneously satisfy the closure

RUN 1

GEN := 0

T
Generate random
initial population

I

(Is termination
criterion true? P

No

Fitness measurement
of each individual

GEN := GEN + I *—(
 l = M ? >

No
•

Select genetic operation
by probability

I

Select one individual
based on fitness

Perform reproduction

Copy into new population

Select one individual
based on fitness

Perform mutation

f
Insert one offpsring into

new population

, U

End
—I—

Yes

- (R U N = N ?)

>

RUN:= RUN + 1

*

Designates
result for run

Select two individuals
based on fitness

Perform crossover

Insert two offsprings into
new population

i + 2

Fig. 2.7: The conventional flowchart of the Genetic Programming algorithm.

59

requirement. The performance improvement of GP can be done by search space re
duction. Limitation of building blocks forming a syntactic trees reduces the search
space by elimination of meaningless combinations of blocks [254]. The basic tech
niques to reach this goal is to use Strongly Typed Genetic Programming (STGP)
[255]. STGP is an enhanced version of GP which enforces data-type constraints.
The combination of generic functions and generic data types makes GP more pow
erful among other type-constraint enforcement approaches. Furthermore, there are
methods based on grammatical conditions limiting the generated syntax trees rep
resenting a candidate solution to a problem. These techniques include Grammatical
Evolution [256], [257], [258], Context-Free Grammar [259], and Context-Sensitive
Grammar [260], [261]. G G G P is an extension of traditional T G P and solves the clo
sure problem using a Context-Free Grammar rules, which provide a formal definition
of the syntax tree rules of the problem. A n example of such a definition of rules is
shown in Fig. 2.9. Methods using grammar or any of the other techniques reducing
the search space usually require special rules which control the initialization meth
ods and genetic operators. Detailed information related to G G G P are described in
the following sub-sections.

2.4.2 The Process of Initialization

GP algorithms begin by creating an initial population of individuals. Typically, the
individuals are generated randomly across the entire search space. Initialization is
an important process, since it can significantly affect the rate of convergence to the
result. The initial population must contain a sufficient degree of diversity among the
individuals on which basis it will be possible to create following populations with
promising individuals in forthcoming generations.

The simplest initialization methods are based on random coupling of terminal
and non-terminal symbols. In this case, only the closure requirement is considered,

1
CD D C

L D G D G D Q

Prefix:

max((-x5),/(*xx)(+2y))

Infix:

max((x-5),(x*x)/(2+y))

Fig. 2.8: The tree-based chromosome with prefix and infix notation.

60

so all individuals remain valid. There are two basic methods using randomness,
the full method and the grow method. The full method generates syntax trees of
depth n and the grow method generates syntax trees of depth 1 to n, where n is
the maximum depth of the syntax tree. Grow method can generate population with
much more diversified individuals. The method combining both approaches was
created and named the ramped half-and-half method. This method generates a half
of the individuals using the full method and the other half using the grow method.
The maximum depth of the syntax trees generated is ramped, such that individuals
are created in a range of sizes. The method is recommended by John R. Koza [247]
just because of a rich variety of different shapes of syntax trees.

The restrictive conditions, such as a uniform distribution of individuals across
the search space, or criteria related to a defined structure of the problem are used in
more sophisticated initialization methods. One of the first algorithms, designed by
Hitoshi Iba [262], is called the RAND-TREE. This algorithm puts emphasis on the
structure of syntactic trees to be uniformly spread across the search space (approxi
mate spreading). In the same year, Böhm and Geyer-Schulz proposed an algorithm
with the exact uniform distribution [263]. In the year 1997 Kumar Chellapila [264]
proposed the algorithm RANDOMBRANCH with an approximately uniform distri
bution and the algorithm was focused on the speed maximization of tree creation.
Another example might be the Probabilistic Tree Creation (PTC) method designed
by Sean Luke [265]. S. Luke introduced in this publication two initialization al
gorithms, each of them was introduced in a randomized form and also in the form
based on STGP. Another interesting approach is the solution based on Context-Free
Grammar. First attempts were made by P. A . Whigham in [259], [266] and in 2006
by a team of researchers from the Polytechnic University of Madrid [267]. The last

ID 1

Context-Free Grammar
(BNF Notation):

S := E I N

E := E + E I E - E I F + E I
F - E I N

F := N

N := 1 I 2 I 3 I 4 I 5 I
6 I 7 I 8 I 9 I 0

7 = 1 + 5

Fig. 2.9: The context-free grammar and generated syntactical tree.

61

method is compared with the earlier approach in [267] and shows the best results in
finding solutions to a symbolic regression, which was found in the smallest number
of generations of all compared methods. This method was studied and implemented
in practical experiments during the research taking place in the context of the work.

2.4.3 The Process of Selection

During the evolution process, the individuals from the existing population are se
lected as parents to breed a new population. Usually, the choice is based on a fitness
value and the fittest individuals are more likely to participate in the breeding process.
In spite of that, the fittest individuals may not necessarily be chosen to participate
in the process creating the new population, as well as the weakest individuals may
not be excluded from the breeding process. When the selection method is applied, it
is necessary to take into account an evolutionary biology. In the evolutionary biol
ogy it can also happen that a stronger individual can be excluded from the breeding
process due to accidental death and the weakest individual may participate. The
main point of success during the selection process is to ensure the diversity of pop
ulation so that the possibilities of evolution process are not limited due to lack of
diversity, also the premature convergence to solution and getting stuck in a local
extreme should be avoided. The degree of producing the high quality individuals
for breading a new generation is called selective pressure. The value of selective
pressure depends on selection methods. If the method with a high selective pressure
is used, there is a danger that the process may get stuck in a local optimum. On the
other side, when the selection pressure is small, a larger space of possible solutions
is scanned, and the algorithm converges to the solution very slowly.

Selection methods are described in almost every book dealing with GAs [268] and
GP [247]. There is a large amount of selection methods. The most commonly used
methods will be described in the following text. The most used and recommended
selection method is the tournament selection, also the roulette wheel selection and
the rank based selection, which is only a variation of the classical roulette wheel
selection. The tournament selection is inspired by the rivalry of animals. First,
the subset of individuals m (m is usually equal to 2) is selected. Second, one of
m individuals is declared as the winner of tournament and has the opportunity to
participate in the breeding process. The roulette wheel selection represents a selec
tion mechanism in which the selection of individuals is directly proportional to the
fitness evaluation of individuals, and it is one of the most used selection mechanism.
This mechanism imitates natural selection, thus the fittest individuals most likely
survive. The disadvantage of this method lies in the fact that several individuals
with a relatively high fitness value take the biggest part on the roulette wheel, which

62

prevents the method to select the individuals with worse values. At first sight, this
does not seem bad, but this approach significantly reduces the diversity, which has
a big impact on the whole evolution process. This should be prevented by the rank
based selection, in which individuals are selected on the principle of roulette wheel,
but instead of fitness values the order of individuals in population is used.

2.4.4 The Process of Breeding

The core of each GP algorithm and driving mechanism of population breeding are
genetic operators. Genetic operators drive the creation of each new individual {off
spring) by modifying individuals {parents) selected from the previous population.
Originally, the operators were divided by John R. Koza [247] into two groups, pri
mary operators and secondary operators. Initially, the primary operators were rep
resented only by reproduction and sexual recombination known as crossover, and
secondary operators were represented by mutation, permutation, editing, encapsula
tion, and decimation. In many publications, the mutation operator is considered as
a very powerful operator and is classified as one of the primary operators. In this
work, the mutation operator is also considered as a primary operator.

The reproduction operator is based on the principle of natural selection of the
fittest individual. The operation is asexual, which means that it operates only with
one parent and produces only one offspring. The operator works in two steps. In
the first step, the parental individual is selected. In the second step, the selected
individual is copied, without any alternation, to a new population. The process
strongly depends on the used selection method. The process is also called elitism,
which means that n elite (fittest) individuals are reproduced to guarantee that the
level of fitness value of the best individual is not decreasing. Monotony of evolution
is ensured right by reproduction operation which simply copies the individuals.

The crossover operator represents a sexual recombination, which means that
this operator operates with two parents and also produces two offsprings. The
parents are in most cases chosen based on the selection method and fitness measure.
Then, a randomly selected crossover point in each parent has to be selected. Now,
two sub-trees for swapping are selected, the root of each sub-tree is the crossover
point in each parental individual. After the sub-tree swapping operation, two new
offsprings are inserted to the new population. Because of the closure property, both
new individuals created are syntactically valid. The crossover operator is the most
commonly used genetic operator. There are many variants of crossover operator and
their contribution to the evolutionary process is compared in [269] and [270]. The
simplest variant operators do not follow any complicated rules and the only rule is
to follow the closure property which ensures generating of only valid individuals.

63

On the other hand, there are also more advanced techniques of using GP to confine
the search space and speed up the convergence to the result. These techniques
also require modification of initialization method as well as modification of genetic
operators with respect to the validity of individuals.

The standard crossover, designed by John R. Koza [247], is based on sub-tree
swapping which randomly selects the crossover points in the first and second parent
and swaps sub-trees, which creates two new individuals. It is worth noting that this
operator can generally work also as an incest crossover operator or the multi-parent
crossover. In incestuous crossover, the process of recombination operates with two
identical parents and different crossover points are selected [247], which can cause
the creation of two new individuals. However, incest prevention mechanism is often
implemented, because the diversity of population is decreasing when one parent is
used very often. Multi-parent crossover [271], [272] is based on diagonal crossover
points [273]. Crossover points are randomly selected in all n parents, and n sub-trees
to swap operation are produced. Selected n sub-trees are swapped along the main
diagonal, so that each of the newly created individuals includes a new sub-tree.

The One Point crossover [274] is a more sophisticated method of recombination.
Operator works on the same principle as a standard Sub-Tree crossover, but selects
the second crossover point depending on syntactical similarities with the first selected
sub-tree. This operator was also often studied from the perspective of scheme theory
predicting behavior by mathematical model [275]. The Size-Fair crossover [276],
based on a similar size of individuals, a sub-tree with the same or near same shape
is selected in both parents. Crossing points are chosen in these sub-trees, and
the proper sub-trees are swapped. This approach has an advantage in that it is
carried by a sufficient amount of genetic information from parents to offspring,
which precedes the destruction of the genetic information of an individual based
on a defined scheme. The loss of genetic information is discussed in [277]. Another
advantage of this approach is that it takes into account the size of individual (the
depth of the syntactical tree), which prevents the problems with code bloat.

The more complex variants of crossover operators take into account the semantic
meaning of the individuals or the context of the problem. A n example of these might
be Context Preserving Crossover (CPC), which exists also in STGP version [278],
Whigham's Crossover (WX) [259], Grammar-based Crossover (GBX) [279], [280] or
Semantics Aware Crossover (SAC) [281], [282]. W X [259] provides enhancements in
the form of crossing point selection. These points are selected randomly, but the
same non-terminal symbol with the different sub-tree is selected in each individual.
This ensures, to some extent, the preservation of genetic information. The last two
mentioned methods will be discussed in more details. G B X provides a possibility
to define the system, how the new individuals will be composed, which brings a

64

significant advantage for the search space reduction. The three most valuable fea
tures of the G B X crossover are that a) it always generates a valid individual, b)
searches all nodes of parental individuals that can generate new rules depending
on the grammar and can possibly lead to the desired solution, and c) provides an
effective mechanism to control code bloat. G B X is based on a set of rules defined
in [279], [280]. The comparison of G B X , W X , One Point Crossover and Size-fair
crossover is described in [279] on the example of symbolic regression. When the
G B X was used, the result was found in the eighth generation, using the W X in the
tenth generation, using the One Point Crossover in the fifteenth generation, and us
ing the Size-Fair Crossover also in the fifteenth generation. The test was repeated a
hundred times and measurements were arithmetically averaged. Another interesting
approach, published in the recent years, is a crossover based on problem semantics
[281], [282]. The paper [281] presents two kinds of crossovers. SAC and Semantic
Similarity-based Crossover (SSC). These methods are not based on the principles of
grammar which defines the limits between the syntactical structure of trees. These
methods are based on the semantic distance calculation between the selected sub
trees for swapping operation. It is an interesting approach that allows to maintain
a certain degree of genetic information of parents and simultaneously modify its
certain parts and create new offsprings. A disadvantage may be the result of slower
convergence, because the calculation of semantic distance is quite time demanding.

Mutation operator is mainly used in the case when the population is loosing
diversity of individuals and the evolution process tends to converge prematurely. The
mutation operator is asexual and works only with one parent. When the individual
is selected with a given probability, the mutation point is randomly selected, which
gives the sub-tree that will be changed. The operator then removes the sub-tree
under the mutation point and the removed code is replaced by a newly generated
sub-tree, which gives the new offspring the new population. This mutation is called
a Sub-Tree Mutation [283] and nicknamed as Headless Chicken Crossover operator.
Another mutations used are Point Mutation, Hoist Mutation, and Shrink Mutation.
The Point Mutation generates only a new mutation point with the same number of
arguments, but the whole sub-tree is completely preserved [284]. The Hoist Mutation
replaces the sub-tree of mutation point by a randomly selected branch of sub-tree
being currently removed. The Shrink Mutation replaces the sub-tree of mutation
point by randomly generated terminal symbol. Another mutations tries to optimize
the structure of the sub-tree by using other secondary operators.

The most important types of mutations for this work are Grammar-based Mu
tation (GBM) [280] and Semantically Driven Mutation (SDM) [285]. G B M is made
a€<a€<by the same authors as G B X and works on the same principle, using the
Context-free Grammar. The SDM algorithm generates a completely different sub-

65

tree than the original sub-tree, which ensures that the resulting offspring will achieve
very different results. This approach drives the required diversification in popula
tion if needed. The authors of SDM claim that the operator is not resistant to code
bloat, which is the aim of further work related to this operator. Mutation opera
tors, in comparison with the crossover operators, are used only in a small percentage
of population breeding, especially when there is a lack of diversification as it was
written above. G B M was selected for the experiments in the scope of this work.

2.4.5 The Process of Evaluation

Let us suppose that there is a relatively randomly generated population where fitness
for current environment of all individuals is on a pretty low level. However, some
individuals show better results than others and so it is necessary to measure how
the individuals fit to the observed environment. For these reasons, it is essential to
design a special evaluation function which is also called a fitness function. In general,
the fitness function can be defined as a number of errors between the veritable output
and the desired output of the GP algorithm, the amount of time needed to calculate
the desired accuracy of the resulting individual, etc. The fitness function can be
represented in different ways, which depends on the nature of the solved problem.

The most general form of fitness function is a raw fitness. The raw fitness
represents the difference between the achieved and expected value of the result.
Obviously, it is a minimization problem. The raw fitness is often transformed to the
reference value, e.g. standardized fitness. So, it is always a numeric value, where
the lower value represents a better solution (the best solution is represented by 0).
Other basic forms of the fitness function are adjusted fitness and normalized fitness.
Both functions ensure that the resulting value lies in the interval < 0; 1 > and an
optimal result is assessed by value 1. Besides of these basic forms of fitness functions
which were defined in the early years of evolutionary computation techniques [247],
user is able to define own function which best suites to the solved problem.

2.4.6 Advanced Techniques

Among the most used advanced techniques in GP are the already mentioned re
strictive conditions of a search space, e.g. context or context-free grammar etc.
Other solution is a grammatical evolution which comes from an idea to separate the
genotype from the phenotype. The genotype is an ordered list of numbers which
code the selected rules from a defined context-free grammar. The phenotype then is
a tree-like data structure which is evaluated by fitness function. In the standard GP
algorithm the genotype and phenotype are interpreted as the same object. There is

66

also a lot of variants of grammatical evolution, e.g. the most interesting enhanced
version is searching the variants of genotype by G A or PSO. This problem domain is
also connected to the schema theory [275], [286], [287]. The theory, in general, says
that schema (a template) identifies parts of individuals with similarities at certain
part of individuals' topology. Based on these findings, a certain part of individuals
is marked as optimal and are not changed in further process.

Other advanced techniques used are automatic learning and auto-organizing
operations that alter the structure of individuals and are known as Architecture-
Altering Operations (AAO). The AAOs simply allow to automatically create and
delete functions for altering the structure of individuals and change their number
of input parameters. The first representative of such functions are Automatically
Defined Functions (ADF)s [247], [288]. The purpose of ADFs is to encapsulate
repetitive parts of the source code or sub-structures of individual, which can later
be reused many times or may become a part of a terminal symbol set. These tech
niques also include Automatically Defined Iterations (ADI), Automatically Defined
Loops (ADL), Automatically Defined Recursions (ADR), and Automatically De
fined Storage (ADS). There is also a lot of other techniques related to architecture
organization, but it is beyond the scope of this thesis.

The advanced techniques also cover the parallelization of source code of GP
algorithm and distributed models. There are two basic models of parallelization: the
Coarse-Grained Model so called Island Model and the Fine-Grained Model so called
Cellular or Grid Model. There are also other possibilities such as parallelization on
graphic cards, field-programmable gate arrays and others, but for the purpose of
this thesis the first two models are the most important.

The Island Model divides the population into smaller finite sub-populations
called demes, between which some migration can occur. There is a standard GP
algorithm which is responsible for initialization, evaluation and evolution of the
entrusted sub-populations above each of these sub-populations. The standard GP
algorithms are commonly enhanced by the migration operator which periodically
exchanges the individuals across all sub-populations. How many individuals and
how often they are migrated depends on the setting of migration operator.

The Cellular or Grid Model assigns each individual to a single cell in a cellular
network. The population is essentially a system of active individuals who interact
only with the neighbors in the immediate surroundings (4 neighbors in the von
Neumann neighborhood and 8 neighbors in the Moore neighborhood). Evaluation,
selection and reproduction are ensured by a common coordinating algorithm for all
cells. There is also a possibility to use a migration operator which in this case is
used only for swapping of the individuals in distant cells.

67

2.4.7 Known Problems

In spite of the indisputable advantages of GP algorithms, there are also some tricky
problems which have to be handled. These problems include, e.g. introns, which are
basically non-functional parts of the source code. Introns cause code bloat, which
means that they generate a code with no apparent functionality, e.g. a + 0, a* 1, etc.
The first problem mentioned is a code bloat and another, but very similar problem
is a code growth. These two terms are often used interchangeably, however, they
represent something a little bit different. The code bloat [289], [290] is an issue
in which an individual is expressed by many introns or operations that could be
simplified into a shorter term with the same meaning, while the code growth [291],
[292] is undesirable in terms of time and memory consumption, even though it may
bring some positive results in the context of an individual.

Other problems are directly connected to the GP algorithm and its setting. The
basic problems are how to choose the correct number of individuals [293] or the
number of generations when the evolution process is handled in this way, or how to
preserve a reasonable degree of diversity of individuals in population, which is related
to the genetic operators used, and to the probability of their usage and many other
parameters which can significantly affect the evolutionary process and convergence
to the desired solution. The question of diversity is very important. If the diversity
becomes very low, the evolutionary process tends to premature convergence and the
result will get stuck in a local optimum. Otherwise, if the diversity is too high,
the algorithm is searching in a very wide search space, which reduces the rate of
convergence. This is also somehow related to redundancy of individuals, which can
be prevented by a wisely chosen initialization method and selection mechanism.

Other problems are the problems of over-fitting and under-fitting. If the GP
algorithm is trained on a small set of training data, it achieves excellent results
(high fitness value), but if the algorithm is applied on new and unknown data,
the results are very poor (low fitness value), which means that the generalization
of solution generated by GP algorithm is too low and the algorithm memorized
the training data. The opposite of this problem is the under-fitting, which means
that the algorithm is trained and the degree of generalization is too high. Another
problem may be the time-consuming calculation of the fitness function, which can
be to some extent solved by the fitness cache.

2.4.8 Discussion

The GP algorithms are used in various fields of interest in which they often exceed
the solutions designed by human experts. Of course, there is a lot of problems
the GP algorithms suffer from, but with the expert design of preparatory steps of

68

GP algorithm, lots of them can be suppressed or completely avoided. This section
mentions the most frequently used GP techniques and approaches, which served as
an inspiration for the implementation of the GP algorithm used in this thesis.

Since the design of the GP algorithm is not quite an easy task, it was decided that
the Evolutionary Framework will be designed based on modular architecture and the
GP algorithm will be the first module. This decision seemed to be a reasonable step,
because it can be reused in future and easily extended by other possible modules,
such as other artificial intelligence and machine learning algorithms.

The proposed GP module will be built on the C F G and the core of the algorithm
will run on tree-like data structures. When the C F G was used, the standard genetic
operators were adjusted. According to the literature review done in this section, the
best choice, easily implemented and powerful, seems to be the approach based right
on the C F G , which was used with the initialization method Grammar-based Initial
ization Method (GBIM), crossover G B X , and mutation G B M . Also the semantically
driven operators are quite interesting, but this approach was obviated because of
the computational demands and the problem with similarity measurement, which is
quite difficult for some types of problems, and of course, the similarity measurement
is also computationally expensive when the algorithm operates with data, such as
audio, images, and video.

The proposed GP algorithm as well as the Java Evolutionary Framework is
described in Section 6 [304]. The use of the proposed algorithm was then adjusted
to the JSS problem applied in logistic warehouses and distribution centers, which is
described in Section 7 in details [305]. The proposed GP algorithm was tested also
on other examples, such as text processing and the emotion recognition [306], [307],
and image processing and image mining [308], [309], [310], and [311].

69

3 T H E OBJECTIVES OF DISSERTATION
This chapter is divided into two sections. Section 3.1 describes the scientific hypoth
esis which will be subjected to investigation in the following chapters. Section 3.2
describes the partial goals which should directly support and confirm the determined
hypothesis and reach the specified goals of contribution.

3.1 Hypothesis

The testing hypothesis of proposed doctoral thesis has been determined as follows:

// an appropriate combination of the Job Shop Scheduling and the Vehicle Routing
Problem solving techniques will be implemented by the Genetic Programming algo
rithm driven by the Context-free Grammar and the Multi-Criteria Fitness Function,
then the current state-of-the-art of work-flow scheduling in logistic warehouses and
distribution centers used in real-world warehouse environments can be outperformed.

The following section describes the specific goal of this project from the economic
point of view and partial goals, which should help support and confirm the deter
mined hypothesis in this section, more particularly as well as the main points of
realization.

3.2 Goal & Partial Goals

The main goal, coming from the hypothesis stated in the previous section, is a

"substantial increase of productivity and reduction of operating costs".

The specified goal can be reached when the number of executed manipulations with
commodities will be continuously increased over time, the bottlenecks will be ana
lyzed and the material flow in the warehouse will be increased, the transportation
paths will be shortened as much as possible, the scheduling of jobs will be done
also with respect to employees' performance, trucks' velocity, size and manipulation
possibilities, the number of employees and trucks will be reduced as well as the
overtime bonuses, which will together lead to reductions in operating costs and sig
nificant acceleration of the return on investment in the warehousing environments.

70

The partial goals of the thesis are defined as follows:

1. Involvement of the human factor in the optimization parameters.
The involvement of the human factor in the optimization parameters enhances
the standard mathematical model (see Chapter 4), which becomes more com
plex, but could also help to save the processing time. Heretofore, only the
parameters related to jobs and machines have been considered. Since the per
formances of particular employees considerably differ from each other, it is
possible to save the processing time when the jobs are scheduled with respect
to this parameter. Similarly, when different types of jobs are scheduled, it is
possible to prevent inadvertent errors in processing, because some employees
are more conscientious than others, and save time which should normally be
used for checking and controlling of a job done by the previous employee.

2. Involvement of the multi-criteria fitness function for optimization.
The involvement of the multi-criteria fitness function in the optimization pro
cess can respect more than one customer's requirement to which we are trying
to optimize the solution. This approach also includes a subjective weighting
factor used in the current software used by warehouse operators. This partial
goal basically describes the fitness function working with respect to the opti
mization of time processing and the number of collision situations, as well as
other factors such as the balanced workload of employees. The minimization
of mutual crossing of manipulation routes of trucks is necessary to solve for de
creasing collision situations. This solution could also minimize the possibility
of commodity and equipment damage. Moreover, it is also possible to extend
the fitness function by employees' performance, trucks' velocity, size etc.

3. The variability of time planning and simulation (minutes/hours/shift).
Generally, the jobs are scheduled ad-hoc and when the jobs on work-plan are
done, the employee gets a new work-plan. Thanks to the databases of incom
ing jobs and evolutionary processes the system should be able to schedule the
work for a few next minutes as well as for the whole working shift. There is
no problem to make the plan presently, but for the sake of missing simulation
and visualization, nobody is able to say where the employee is working in the
specific time, which leaves a space for further time optimization. So, what
is needed is a dynamic simulation of job scheduling in the warehouse envi
ronment for highly qualified assessment by operational manager, which could
lead to further optimization and changes. A l l of these will be done by visual
simulation of how the scheduled work is done.

71

4. The possibility of co-operative jobs. The co-operative jobs are a great
possibility how to decrease the time of job processing. Generally, each em
ployee has his own work-plan and has to fulfill assigned jobs. The co-operative
jobs help to solve situations when one employee is able to unload the pallet
from the truck, move it to a specific cell in the warehouse, but is not able to
store it to the rack due to the limits of used equipment. So, another employee
can continue the work and store the pallet to a higher level of the shelf, which
could not be carried out by the first employee with the fork-lift hand pallet
truck without changing the equipment. Besides this fact, the employees may
not have an authorization for all types of equipment.

5. Design, implementation, and validation of the framework. Another
goal is to design and to implement the evolutionary framework, which should
be able to run on genetic programming algorithms driven by context-free gram
mar. The possibility of an easily extensible design is very welcomed as well as
a flexible fitness function definition with further extension possibilities. The
GP algorithm or the framework itself have to be validated, and then adapted
in the way that they could work with a defined JSS problem applied to the
logistic warehouse environments and distribution centers.

6. Design, implementation, and validation of benchmark tests. The last,
but not least, goal is to design and to implement benchmark tests, which would
prove the functionality of the proposed solution and prove that the hypothesis
is true. The validation will be done also by benchmark tests extracted from
the real-world warehouse environments.

72

4 T H E M A T H E M A T I C A L MODEL
The common mathematical model for the flexible JSS problem used across the re
search publication (see [294], [295], [296], [297]) is described in this chapter, see
Section 4.1. The basic notation - parameters and decision variables are described
as well as the most frequent optimization criterion and the common constraints to
which the optimization criterion is subjected to. The second part of this chapter,
Section 4.2, describes the extension of the Flexible JSS problem model, specifically
how it is possible to use the common Flexible JSS model in the warehouse and
distribution center environments. This section also describes which parameters are
used, which variables are known or not known at the beginning of scheduling and
the additional constraints are also described.

4.1 The Job-Shop Scheduling Model

The standard Flexible JSS problem is formulated as follows. The Flexible JSS
problem has m machines and n jobs. Each job consists of a sequence of operations
Oj,h, h = 1,...,/, where Ojth stands for the h-th operation of job j and / stands
for the number of operations required for job j.

The set of machines is noted M,M = M\,..., Mm. The specific machine is
indexed by %. The set of jobs is noted J , J = J i , . . . , J n . The specific job is indexed
by j and the specific operation of job is indexed by h. The specific operation of job is
noted as Ojth and requires one machine of suitable machines M3^ out of a machine
set M (Mjth C M), which are together described by processing time Pi,j,h- The
subset Mjth is defined by O j j , ^ . Then, the index k is defined for each machine
which describes the sequence of allocated operations according to the weight of job
(a priority factor) Wj. The complete notation is described in Tab. 4.1.

Tab. 4.1: The general notation of the Flexible JSS problem.

h index of operation, Ojh denotes operation h in job j , h — 1,..., /
i index of machine, Mj denotes machine i, % — 1 , . . . , m
j index of job, Jj denotes job j,j = 1 , . . . , n
k index of allocated operation for specific machine,
ki number of operations assigned to machine %
I number of operations, each job has a different number of operations
m number of machines which can be used for job processing
n number of jobs, each job consists of a sequence of operations
w weight also called a priority factor, Wj weight of job j

73

In order to describe the Flexible JSS model precisely, the following parameters
and decision variables must be introduced (see Tab. 4.2). The mixed integer linear
programming model formulation is also described in the following text.

Tab. 4.2: The parameters of the Flexible JSS problem.
ai,j,h describes the capable machine set assigned to operation Oj^
Pi,j,h processing time of operation Ojh performed on machine Mf, Pitjth > 0
Psjth processing time of operation Oj^ after selecting a machine
tjth start time of the processing of operation O^h
Trrii^k start of working time for machine % in priority k
L a large number

Q>i,j,h

•Ei,j,h,k

Vij,h

1 If Ojyh can be performed on machine i,
0 Otherwise,

1 If Ojyh is performed on machine % in priority k,
0 Otherwise,

1 If machine % is selected for operation Oj^,
0 Otherwise.

The objective is to minimize the makespan (Cmax).

Subjected to the following constraints:

Cmax > thhj+Pshhj (Vj) ; (4.1)

Y^Vij,h • Pi,j,h = Psj,h (V j , h); (4.2)
i.

hh + Psj,h < tjth+1 (Vj, h = 1 , . . . , I - 1); (4.3)

Tmi)k + Psj)h • x i J A k < Tmi)k+1 (Vz, j , h, k = 1 , . . . , kt - 1); (4.4)

Tmi)k < tjjh + (1 - xi)j)h)k) • L (Vz, j , h, k); (4.5)

74

Tmitk + (1 - XijAk) • L > tjjh (V i , j, h; k); (4.6)

Vi,j,h < ai,j,h (V i , j, /i); (4.7)

E E ^ A * = 1 (V i , A;); (4.8)
i ft

= 1 (V i , (4.9)

EZxM>,fc = (V i , j , h)\ (4.io)

^ > 0 (Vj , (4.11)

Psj,h > 0 (V j , (4.12)

Tmi:k > 0 (V i , fc); (4.13)

Xij,h,k e {0,1} (V i , j , / i , fc); (4.14)

to G {0,1} (V i , j , /i); (4.15)
The minimization objective is the makespan (Eq. 4.1). Constraint Eq. 4.2 deter

mines the processing time of operation O^h done on machine i . Constraint Eq. 4.3
ensures that each job will follow the specified processing order of operations. Con
straint Eq. 4.4 ensures that each machine will process only one operation simultane
ously. Constraint Eq. 4.5 and Eq. 4.6 ensure that each operation Ojh is allowed to
be processed when the previous operation Oj^-i is completed. Constraint Eq. 4.7
declares suitable machines for each operation. Constraint Eq. 4.8 assigns the opera
tions to a machine. Constraints Eq. 4.9 and Eq. 4.10 ensure that all operations will
be performed only on one machine with a certain priority. Constraint Eq. 4.11 de
scribes that the start time of all operations is greater or equal to zero, which means
that all operations are prepared immediately and can be started immediately. Con
straint Eq. 4.12 describes that processing time of all operations is not a negative
value. Constraint Eq. 4.13 describes that the operation which is assigned to a ma
chine can start immediately, if the machine is in idle time. Constraint Eq. 4.14
describes that Oj^ is performed on machine i with priority k and Eq. 4.15 describes
that machine i is selected for this operation.

75

4.2 The Extended Job-Shop Scheduling Model
The JSS model described in Section 4.1 has been extended for the purposes of this
work with respect to the warehousing environments as follows. The problem has e
employees, m machines and n jobs. Each job consists of a sequence of operations
Oj,hi h — 1,..., /, where Oj^ stands for the h-th operation of job j and / stands for
the number of operations required for job j.

Since we are not talking about automatic production lines, but the warehouses
and distribution centers, the labor in the warehouse environment has the same im
portance as the warehouse equipment or machines. The set of employees is noted
E, E = Ei,..., Ea. The specific employee is indexed by e. The set of jobs is noted
J, J — Ji,..., Jn. The specific job is indexed by j and the specific operation of job
is indexed by h. The specific operation of the job noted as O^h always requires one
employee of suitable employees E^h out of an employee set E (Ejjh C E), which are
together described by processing time Pej,h- Some operations require one machine
of suitable machines M^h out of a machine set M (Mjjh C M), which could be de
scribed by processing time Pij,h- Since not every employee has authorization for all
equipment, the suitable set of machines for employee is stated as M e j ^ out of suit
able machines for operation M^h (Mejjh C M^h C M). The subset M^h is defined
by a>i,j,h a n d the subset Ej, h is defined by 6e,j,/i- The operation can be performed on
the machine % only if the employee e has an authorization for the specific machine.

Tab. 4.3: The extended notation of the Flexible JSS problem,
e index of employee, Ee denotes employee e, e = 1,..., o
o number of employees which can be used for job processing

Tab. 4.4: The extended parameters of the Flexible JSS problem.
bejth describes the capable employee set E^h assigned to operation Oj^
Pe,i,j,h processing time of operation Oj^ performed on machine Mj by em

ployee Ee; pe,i,j,h > 0, this replaces the original Pij,h
Psjth changes to processing time of operation Oj^ after selecting a machine

and an employee, this notation definition is also changed
Cij^h the completion time of operation O^h is not known a priori
Cj the completion time of job % is not known a priori
Dj the due date for job j is given a priori
Dj the deadline for job j should also be given a priori

1 If Ojyh can be performed by employee e,
0 Otherwise,

76

z,

1 If employee e is authorized for machine i,
0 Otherwise.

1 If employee e is selected for operation Oj^,
0 Otherwise.

In the warehouse environment, performing an operation on machine % by autho
rized employee e has no setup time and also no setup cost. So, that is the advantage
of the warehouse environment. The batch processing, which is the performing of
the same operations on the set of jobs, is an advantage only when the next job is
located in the a distant part of the warehouse and the employee with a truck should
relocate to that position.

The constraints are extended as follows:

Ze,j,h < be,j,h (Ve, j , h); (4.16)

ce,, = 1 (Ve, z); (4.17)

Vi,j,h • ze,j,h = c£ji (Ve, i, j, h); (4.18)

J2ze,3,h = 1 (V j , h); (4.19)
e

DS > Cj (Vj); (4.20)

Dj > Dj (Vj); (4.21)

zeJ,h e {0,1} (Ve, j, h); (4.22)

Constraint Eq. 4.16 declares a suitable employee for each operation. Constraint
Eq. 4.17 ensures that employee e is authorized for machine %. Constraint Eq. 4.18
ensures that the selected employee is authorized for the selected machine. Con
straint Eq. 4.19 ensures that all operations will be performed only by one employee.
Constraint Eq. 4.20 ensures that the due date is less or equal to the completion time
of the specific job. Constraint Eq. 4.21 ensures that the deadline for job j has to be
fulfilled, and the Eq. 4.22 describes the parameter interval of the selected employee
for operation Ohj-

77

5 T H E COLLISION PREDICTION ALGORITHM
This chapter is based on the paper [312] and deals with investigation of collisions
of particles and their exploitation in the real-world application which is in the con
text of this thesis the logistic warehouse environment. The collisions of particles
are important physical phenomena met by people every day, e.g. billiards, racket
striking ball (ping-pong, tennis, squash, ricochet, and others), golf, car accident etc.
Generally, a collision is an isolated process in which two or more moving particles
exert their forces on each other over a relatively short period of time.

Collision is a phenomenon, limited in time and space, in which two or more
objects mutually affect each other [298], [299]. During the mutual affection of objects
the redistribution of momentum (p) and kinetic energy (£&) dawn in the system.
There are two basic types of collisions: elastic and inelastic (plastic). The collision
of two particles is called binary collision and the collision of more particles is called
multi-particle collision. If the particles are physically in contact it is a near collision,
e.g. billiards, if they are not in physical contact it is a distant collision which is
represented by a gravitational force, magnetic force, electric force, e.g. the earth
circulates around the sun. Since the perfect conditions are impossible to reach in
a real-world, the simulations are done in an isolated system. The isolated system
respects the law of conservation of momentum and kinetic energy, and also the
internal structure of particles. The elastic collisions conserve both, the momentum
and the kinetic energy, while inelastic collisions conserve only the momentum but not
the kinetic energy. The collisions are categorized based on the conservation of E^.

There is a plenty of fork-lift trucks in the logistic environments, manipulating
simultaneously with homogenous or heterogeneous pallets between shelves. When
the trucks are crossing the aisles and paths of other trucks the collisions may occur.
In consequence of that, the congestion and blocking of aisles in the warehouse may
arise, which spins out the time of job completion of particular workers and decreases
the productivity of warehouse or worse, it leads to complete cut-off of the warehouse
work-flow. The main idea of this chapter is to propose an approach of how to avoid
congestions, blocking, and possible financial losses by predicting potential collisions
of trucks and to give a notice to warehouse operator who can prepare an appropriate
reaction, e.g. to send one truck by a different path, to make a time-window for one
truck and let it to finish its job before the second truck will come etc.

Section 5.1 describes physical basics, which are elastic and inelastic collisions
[300]. The applied example of collision of two objects in a 2-dimensional environment
is described in section 5.2. Section 5.3 describes types of fork-lift truck collisions
which can occur. Section 5.4 describes an example of collision detection and the
design of algorithm is described in section 5.5

78

5.1 Elastic and Inelastic Collisions
Suppose two scenarios of elastic collisions in a 1-dimensional environment.
In the first scenario, two objects are moving on a frictionless surface in the same
direction at an initial velocity. The velocity of object 0\ is higher then that of object
0 2 , see Fig. 5.1. In the second scenario only object o\ is moving towards object o2

which is at rest.

Fig. 5.1: A collision in a 1-dimensional environment.

In Fig. 5.1 m stands for the mass of an object, v stands for the velocity of an
object before collision, w stands for the velocity of an object after collision, and
p = m x v is the momentum. The objects are distinguished by subscripts. Since
it is an elastic collision, the total kinetic energy of system Ek before and after the
collision must be equal, because it is conserved due to the law of conservation of
momentum and kinetic energy, which is shown in Eq. 5.1.

Ekl + Ek2 = E'kl + E'k2 ,

1 2 1 2 1 2 1 2 (5 ' 1) -m1v1 + -m2v2 = -m1w1 + -m2w2 .

The pi and p2 of objects can change after collision, but according to the law
of conservation of momentum, the momentum of the system is conserved, which is
shown in Eq. 5.2:

Pl+P2=P!+P2,
{0.2)

iriiVi + m2v2 = m\W\ + m2w2 .

A system of Eqs. 5.3 is obtained by adjustment of Eq. 5.1 and Eq. 5.2:

mx{v\ -w[) = m2(wl -v2

2) ,
(5.3)

m1{v1 - wi) = m2(w2 - v2) .

The Eq. 5.3 helps to formulate particular velocities of objects after collision:

^ 1 + ^ 1 = ^ 2 + ^ 2 ;

w\ = v2 + w2 - vi , (5.4)

W2 = Vi + Wi - v2 .

79

and final velocities are determined by combination of Eq. 5.2 and Eq. 5.4:

(mi - m2)vi + 2m2v2

wi = • ,
m i + m 2

(m2 — mi)v2 + 2m\V\
w2 = • •

mi + m2

The Eq. 5.5 discovers one interesting fact. If the mass of both objects is of the
same value, the collision simply switches the velocities of objects. Likewise, if one of
objects is not moving, the moving object passes its velocity to the standing object
and stops. The degree of elasticity is quantified by the coefficient of restitution,
which is the ratio of velocities after and before an impact, see Eq. 5.6:

k = . (5.6)
v 1 - v 2

If the collision is a perfect elastic collision, the value of coefficient of restitution is
1, while the value 0 represents a state when a hitting object stops at collision. When
the elastic collision is not perfect, the coefficient of restitution differs in dependence
on material and it is also dependent on the velocities of colliding objects. When the
velocities are high, the deformation of objects is considerable and the coefficient of
restitution decreases.

Now, suppose an elastic collision in a 2-dimensional environment. The
first object is moving and the second object is at rest. Suppose, further, that it is
not a head-on collision, and after the collision object 0\ is moving off at an angle
9\ and object o2 at an angle 92. In this example, the total momentum must be
considered as a vector quantity, since the motion is 2-dimensional, see Fig. 5.2.

r t i iWi

Fig. 5.2: A collision in a 2-dimensional environment.

80

The collision environment takes place within the x — y plane, so the total mo
mentum before and after the collision must be considered:

m\V\ = miWiCos(6i) + m2w2cos(62) ,
(5.7)

m\Wisin{9i) = m2w2sin{92) .

When this is a case of an elastic collision, the total kinetic energy of both objects
before and after the collision is:

l m i U 2 = \^nxW\ + \^n2w\ . (5.8)

In case that both objects are moving, the system of equations is following:

miViCos{6i) + m2v2cos{62) = miWiCos(Qi) + m2w2cos(Q2) ,
(5.9)

—m\V\sin{9i) + m2v2sin{92) = m 2u>ism(6i) — m2w2sin(Q2) ,

and for the case of an elastic collision, the total kinetic energy of both objects
before and after the collision is Eq. 5.1.

In the following text an inelastic collision will be considered, because most
of collisions occurring in the real world are not elastic. A certain fraction of the ini
tial kinetic energy of the colliding objects is ordinarily transformed into some other
kind of energy, e.g. heat energy in case of the ball games, or mechanical deforma
tion in case of a truck accident. These collisions are called inelastic. In general,
the presented equations are valid also for inelastic collisions except the equations of
kinetic energy. The totally inelastic collision causes that the objects stick together
and their velocity after the collision is equal, w\ = w2. In this case, the Eq. 5.2 is
reduced and the final velocity of the stuck objects is:

mivi + m2v2 w = . (5.10)
mi + m 2

In other words, the common final velocity of the two objects is directly equal
to the center of mass velocity of the entire system. Furthermore, suppose that the
second object is initially at rest (i.e., v2 = 0). In this special case, the common final
velocity of the two objects is:

mi
W= ; V! . (5.11)

mi + m 2

 v '

81

Note that the hitting object is slowed down by the collision. The fractional loss
in the kinetic energy of the system due to the collision is given by:

_ mxv\ - (mi + m2)w2

m\v\
The loss in is small if the stationary object is much more lighter than the

hitting one (i.e., if m 2 <C mi), and almost 100 % if the hitting object is much lighter
than the stationary one (i.e., if m 2 3> mi). Of course, the lost Ek of the system is
transformed into some other form of the energy mentioned above.

5.2 Col l is ion of 2 Objects in 2 Dimensions

At the start, the positions and velocities of two objects Oi and o2 are given at time
t. The quest is to determine if and when they will collide with each other.

\ (W X1, Wyl)

(wx2, w y 2

time = t + At

(VX2, V y 2)

(VX1, V y l)
m,

Fig. 5.3: Another collision in a 2-dimensional environment.

The situation is depicted in Fig. 5.3, where (rxi,ryi) and (rX2,ry2) stand for the
positions of objects o\ and o 2 at the moment of collision t + St. When the objects
collide, the centers of objects are distant a = <j\ + <r2, which is:

^2 = ij!xi ~ r'x2? + (r'yi ~ r'y2f . (5.13)

Before the collision, the objects were moving on straight-line trajectories with
constant velocities. Thus,

' x l rxl + At x vxl

ryi = ryi + A t x vyi .

x2 rx2 + Atxv.
(5.14)

,c2

ry2 = ry2 + A t X Vy2 •

82

Substituting Eq. 5.14 with Eq. 5.13 gives a quadratic equation for At . Select
ing the relevant root and simplifying the expression for A t in terms of the known
positions, velocities, and radii gives the Eq.5.15:

where

oc
A t = I oc

AvxAr+Vd
AvxAv

if Av x A r > 0,
if d < 0,
otherwise,

(5.15)

d = (Av x A r) 2 - (Av x Av) x (Ar x A r - a2

Ar = (Arx, Ary) = (rx2 - rxl, ry2 - ryl) ,

Av = (AVX, AVy) = (Vx2 - Vxl,Vy2 -Vyl) .

A r X Ar = (Arxf + (A r ,) 2 ,

Av X Av = (A ^) 2 + (Avyf ,

Av X Ar = (Avx) x (Arx) + (Avy) x (Ar ,) .

According to the equations depicted above, the A t > 0, only if Av x A r > 0 or
d < 0 the quadratic equation has no solution for A t > 0.

5.3 Types of Fork-lift Truck Collisions
This section describes the collision situations which can occur between two fork-lift
trucks. The multiple-truck collisions are not considered, because they are always
simplified into particular collisions between two trucks. The typical warehouse lay
out is of a rectangular shape. Only two dimensions are considered, so the layout
is represented by a 2D matrix called the cellular model. The path of each truck is
described by particular moves (i.e. consecutive cells in a model). Consequently, the
current position of the truck is given by the coordinates in the cellular model of the
warehouse. The truck is able to move in 4 possible ways represented by the von
Neumann neighborhood (i.e. left, right, up, down, and null). The null value means
that the truck is not moving anywhere or is already on the target cell. The cellular
model of the warehouse is limited by the cells marked as racks and walls.

In the case of collision prediction, the direction of movement is used especially
for the determination of a threshold. The threshold represents the percentage of
occupancy of cell by truck when the collision is detected on the cell. The threshold
is a number from the bounded interval < 0,1 > usually expressed in percentage. It
can be decided if there is a possibility to avoid a collision without any intervention

83

[0,0] [0,1] [0,2] [0,3] [0,4] [0,0] [0,1] [0,2] [0,3] [0,4] [0,0] [0,1] [0,2] [0,3] [0,4]

[0,0] [0,0]

[1,0] • [1,0]

[2,0] • [2,0]

[3,0] • [3,0]

[4,0] [4,0]

[0,0] [0,1] [0,2] [0,3] [0,4]

[0,0]

[1,0]

[2,0]

[3,0]

[4,0]

[0,0]

[1,0]

[2,0]

[3,0]

[4,0]

[0,0] [0,1] [0,2] [0,3] [0,4]

[0,0]

[1,0]

[2,0]

[3,0]

[4,0]

Fig. 5.4: Types of collisions in the warehouse environment.

of an operator with the help of threshold. Of course, it does not mean that the high
value of threshold avoids the real collision. The threshold must be set carefully due
to the size of cells and trucks. Note that the warehouse has two types of cells, wide
aisles and narrow aisles. While the wide aisles are located around the perimeter of
the warehouse and the trucks have a possibility to get out of one's way, it is not
possible in the narrow aisles between the racks.

Collisions can be divided into two basic categories. The first category is the
collision in a straight direction, depicted in Fig. 5.4. The trucks in this category
are moving in the opposite directions (see Fig. 5.4a), in the same direction (see
Fig. 5.4b), or only one truck is moving (see Fig. 5.4c). The second category repre
sents the collisions in a perpendicular direction. Trucks in this category collide in
the right angle, either indirectly, i.e. the first truck is leaving the cell of collision but
it is not quick enough and the second truck hits the first truck, (see Fig. 5.4d), or
directly, i.e. both trucks are moving towards the cell of collision (see Fig. 5.4e). Off
course, the other parameters such as the type of aisle (wide aisle or narrow aisle)
have to be considered.

84

5.4 A Numerical Example of Truck Collision
The following text describes a numerical example of collision prediction. Fig. 5.5
shows an indirect perpendicular collision. More particularly, truck 0\ (colored blue)
is moving from cell [4,1] to the cell [2, 2] and truck o2 (colored red) is moving from
cell [0, 0] to cell [2,1]. This example describes the situation where truck o\ hits the
back of truck o 2. The part of truck o 2 on cell [2,0] is 75 %, which is higher than the
established threshold 20 % in this case. The complete paths of both trucks, cell by
cell, are depicted in Tab. 5.1.

[0,0] [0,1] [0,2] [0,3] [0,4] [0,0] [0,1] [0,2] [0,3] [0,4] [0,0] [0,1] [0,2] [0,3] [0,4]

[0,0]

[1,0]

[2,0]

[3,0]

[4,0]

[0,0]

[1,0]

[2,0]

[3,0]

[4,0]

[0,0]

[1,0]

[2,0]

[3,0]

[4,0]

t = 0.50

[0,0] [0,1] [0,2] [0,3] [0,4]

t = 0.75 t = 1.00 t = 1.25

Fig. 5.5: A numerical example of the collision detection.

Velocities of trucks are important variables of collisions prediction. Generally,
if the velocity of one truck (e.g. 0\ in this case) is very high and the velocity of
the second truck (o2) is smaller, the collision can be avoided. The collision time is
calculated from the exact paths of both trucks and their velocities, both related to
the type of cell where the collision is going to occur (i.e. wide or narrow aisles). The
path is represented by the cells which are passed by trucks in the cellular model.

The problem described in Tab. 5.1 is depicted in Fig. 5.5. In the first step
the cells containing both trucks in the same time (i.e. the collision cells) must be
calculated. This is not so obvious from Tab. 5.1, but these are cells [2,0] and [2,1]
depicted in Fig. 5.5 in orange color. The process of collision calculation is present
in the next paragraph.

85

Tab. 5.1: The coordinates & paths of truck o\ and truck o2

Index of Step 0 1 2 3 4 5

Coordinates of truck o\ [4,1] [4,0] [3,0] [2,0] [2,1] [2,2]
Percentage of truck o\ 100 % 100 % 100 % 100 % 100 % 100 %

Coordinates of truck o 2 [0,0] [1,0] [2,0] [2,1] [2,1] [2,1]
Percentage of truck o2 100 % 75 % 50 % 25% 100 % 100 %

Steps of truck o\ N U L L U P L E F T L E F T D O W N D O W N

Steps of truck o2 N U L L R I G H T R I G H T D O W N N U L L N U L L

The velocity of truck o\ is v\ = 4 m s - 1 and velocity of truck o2 is t>2 = 3 ms~l.
The distance which both trucks have to overcome is for truck o\ equal to S\ — 5 ce/Zs
and for truck o2 equal to s 2 = 3 cells. With these data t\ and t 2 can be simply
determined. Then, the time in which both trucks can pass one cell has to be com
puted. The results of calculation are depicted in Tab. 5.2. The value sref describes
the size of movement of each truck which is done in the time of one time step of
the fastest truck expressed in percents, e.g. there are only two trucks, so o\ is the
truck with the highest velocity, so s i r e / = 100 % - every step is one whole cell,
obviously. Truck o2 is slower, so in one step it is moving s 2 r e / = 75 % of the cell.
For better understanding, everything is shown in Fig. 5.5. And this is the process
how the collisions are detected. Note the narrow aisle constraint, so the collision
occurs only in t — 1.00 s.

Tab. 5.2: A numerical computation of the collision prediction.

V s t tcell

Truck 01 4 5 1.25 0.25 100%
Truck o2 3 3 1.00 0.33 75%

5.5 The Design of Collision Prediction Algorithm
The previous section described the numerical computation of collision cell and colli
sion time. To make a solution complete, it is necessary to know the position (vx, vy)
and the velocity (rx,ry) of trucks. Furthermore, it is necessary to know if there is
any manipulation with pallet (loading, unloading, storing etc.) on the cell or not,
because this manipulation also consumes some amount of time. For this reason,
a flag which carries the information about the type of manipulation is added. Then,
the flag tells what type of manipulation is being done and how many time units it
will take. In the following text the design of the collision prediction algorithm will

86

be presented and shown in the class diagram, see Fig. 5.6. Only the most impor
tant parameters and methods are depicted in the class diagram. The description of
partial classes is present below the image.

Coll ision Predict ion

- i d l : int
- id2 : int
- time : double
- next: boolean
- wallH : boolean
- wallV : boolean
- r x l : double
- ry l : double
- rx2 : double
- ry2 : double
- v x l : double
- v y l : double
- vx2 : double
- vy2 : double

+ Event{...)

- par t ic le l : Particle
- particle2 : Particle
- coordX : int
- coordY : int
- collisionTime : double

+ CollisionjParticle,Particle,int,int,double)

- id : int
- vx : double
- v y : double
- ry: double
- rx: double
- count: int
- mass: double
- radius: double

+ Particle(double,double,double..

—predictions

—finalized

C o l l i s i o n P r e d i c t i o n

particles: Collection<Particle>
predictions: Collection<Event>

- finalized : Collection<Event>
- hit Time : double
- simulationTime : double

V isua l i za t ion

+ readXMLConfig(..
fstart(...)

Fig. 5.6: The simplified class diagram of the collision detection algorithm.

The class Particle represents each object which can be a possible element of
collision. This class contains parameters which describe each particle, such as the
identification (id), the coordinates (vx, vy), the velocity (rx, ry) in the directions x
and y, the count of collisions with other particles (count), the mass of the particle
(mass), and the radius of the last step (radius).

The class Collision represents each collision which can occur in simulation. The
collision always consists only of two particles (particlel, particle2), the coordinates
of the cell where the collision has been detected (coordX, coordY), and of course the
time of collision (collisionTime).

The class CollisionPrediction computes collisions and the output is the X M L file
describing all collisions in a given simulation time interval. The class references the
class Particle, because the system has to be aware of all particles which are present.
The class also references the class Collision because it has to be aware of the time
when the collision occured, the collisions are computed by the method compute().
The method compute() is used only to detect the first collision in a time. Other

87

collisions are irrelevant, because the direction and the velocity of objects after the
first collision change and can significantly affect other particles and collisions. Then,
the update() method is called, which recomputes new positions of all objects in the
environment till the next collision. After the update of variables the computation
continues until the simulation time interval is exceeded. When the simulation is
done, the log of collisions is created with the help of Event class.

The class Event represents the collision prediction logger. The class contains
the information about the object identifiers, the time of collision, the velocity of
objects in both directions of axes, and of course the coordinates of objects. Other
information is about the collision with a horizontal and a vertical wall, which is
actually not in the warehouse implementation. If both of these variables are set to
false, it is a collision of two objects, otherwise only one identifier of object is set.
And the last variable denotes if there are more collisions in the same time. The
class Visualization is only a supportive class for visual validation of the collision
prediction algorithm.

C D

•"--{)

Fig. 5.7: A block scheme of the collision detection algorithm.

88

Two main methods, described in details in the further text, are used for the
collision prediction and the computation of collision time. The first method is for
the detection of the same cells in the paths of trucks. The method considers how
many trucks are in the simulation, because if there is only one truck, no collision
can be predicted and the process ends. If there are more trucks, two local variables
aTime and bTime for each pair of trucks are created. These variables are used sums
of times during which the trucks are moving through the warehouse.

Afterwards, the prediction algorithm runs two loops in which all trucks are
checked with each other. Then inside the loops there are other two loops where
the paths of both compared trucks are checked cell by cell for the identical cells
which they are passing through. If there are identical cells, the second method is
called which decides if there is a collision on specific cell or not. Furthermore, the
bTime is incremented by the time quanta spent on the specific manipulation if the
flag is set. After all steps the aTime is incremented if the flag has been set.

The second method implements the detection and computation of collision of two
trucks on the same cell. The input of this method includes two objects describing
the parameters of trucks. The variables a and b denote the indexes of path steps
of both trucks, the variables aTime and bTime describe the incremental time of
truck movement. The Threshold represents a threshold of cell, the hitTime denotes
a collision time, and m\ and m<i are used for the direction of movement of trucks on
the collision cell.

89

6 T H E EVOLUTIONARY F R A M E W O R K
This chapter describes the design of the Evolutionary Framework which has been
developed for the purposes of several research projects including the project related
to this thesis. At first, a brief introduction and the motivation of development of
a new framework are described. The main motivation to develop the new framework
is that the most of existing frameworks consist of e.g. outdated and unmaintained
algorithms, algorithms which cannot be modified for specific problems and on the
other hand, algorithms too specific without possibility of generalization, with a lack
of documentation, a lack of suitable examples and use cases, with unsuitable license
under which the frameworks are distributed and so on. Also the programming
language in which the framework is developed can be unsuitable, which can be
a significant problem for integration to some projects.

The framework was developed also with the intent to unify the use of optimiza
tion algorithms and to use only one tool inside our research group. This should help
to develop a single project implemented in the Java programming language which
could serve as a shared code library and to help increase a cooperation among re
searchers in laboratory. Everyone can contribute by their own algorithms, which
should enable to improve and extend the framework, and of course to use different
algorithms for each problem and make them easily comparable to everyone. With
such framework each researcher does not have to implement the algorithms from
scratch. Another reason for creating the new optimization framework was to create
the library which can be distributed under the friendly license in the scientific com
munity as well as in the business community. The framework is distributed under
the G N U Library General Public License (LGPL, also called Lesser GPL) which is
a compromise between the strong-copy left G N U G P L and permissive licenses. The
result is that the software published under the L G P L can be linked with (used by)
a non-(L)GPL program which has a copyrighted source code. The framework is
available for free to anyone and it is an open source software product.

The rest of the chapter is structured as follows. Section 6.1 describes the design
of the framework and the design of the GP module with focus on GP driven by the
C F G . In this section the simplified class structure with an appropriate description
is presented. Section 6.2.1 describes the initialization method, and the genetic op
erators such as crossover and mutation, also driven by the Context-free Grammar
are described in section 6.2.2 and section 6.2.3. Section 6.3 describes the first use
case example which is a design of non-cryptographic hash function, section 6.4 deals
with a method for localization of Common Carotid Artery (CCA) in the transverse
section of B-mode ultrasound images for medical purposes.

90

6.1 The Design of Framework Architecture
It is not an easy task to design a flexible, modular, and robust framework architecture
and meet all the demands including the definition of optimization problems and
desired parameters of GP algorithm. The framework is based on layered architecture
which is easily extensible for future development and its architecture is described in
the following text. The framework architecture is shown in Fig. 6.1 - Fig. 6.1.

The first layer contains classes that are mentioned to be a common ground for
all algorithms based on the evolutionary computation and should be helpful and
essential for particular implementations of such algorithms. This layer contains tools
for random number generation, statistics of program run, configuration parameters
etc. This functionality is used by classes in higher layers. The second layer consist
of basic classes which serve as models or templates for particular implementations of
algorithms. This layer includes common interfaces, configurations of algorithms, and
prescriptions of production classes representing population, algorithms and evolution
process. The third layer represents particular extensive modules, e.g. the GP module
presented in these further sections, and its particular production classes.

The main class is the class Program which starts the optimization process. The
class Config contains common important configuration parameters for all optimiza
tion algorithms. The other first layer classes are the class Logger for logging of all
actions which come up in the framework, the class RandomGenerator which repre
sents a random number generator, the interface IFitnessEvaluator which gives the
prescription of how to specify the evaluation algorithms for every specific problem,
and the interface IEvolutionSpecifier which prescribes the methods which initialize
the population of individuals and evolves each generation during evolution process.

The second layer classes contain also some basic implementations of how the
evolution process should look like. The Population class contains basic operations
over the whole population and a set of chromosomes of the class type Chromosome
which gives a general template for all the chromosome types. Next important ele
ment is the class EvolutionSpecifier'Adapter which implements an interface IEvolu
tionSpecifier and tells how the main concept of sequence of genetic operators should
be started. The class DefaultEvolutionSpecifier is inherited from the class Evolu
tionSpecifier Adapter and represents a particular default implementation of how the
population should be processed in a single evolution step. Another very important
class is the class Grammar which represents a definition of C F G . The grammar is
constructed from single rules specified by the class Rule. Each rule of the gram
mar consists of objects constructed by the class ActionTree which in fact represents
a particular implementation of the class Action which is actually the action, function
or non-terminal symbol performed on a tree node.

91

The third layer here represents a particular implementation of the GP mod
ule. The definition of Context-free Grammar represented by the class Grammar
was incorporated into the particular implementation of the class DefaultEvolution-
SpecifierTree. The class DefaultEvolutionSpecifierTree is implemented specially for
Tree-based GP. The concrete implementation of chromosome was implemented into
the class TreeChromosome which represents a data structure of Tree-based GP. The
tree structure consists of nodes represented by the class Node which can construct
both a terminal symbol and also a non-terminal symbol.

Important building blocks have to propose the universal representation of can
didate solutions, evolutionary operators such as selection, crossover, mutation, and
others can take many forms and must meet various criteria and comply with re
strictive conditions. Some operators such as selection, can be designed globally for
most of optimization techniques, while others such as recombination and mutation
operators must be concretized for each kind of evolutionary technique or a certain
problem. This section is focused on a framework design and the GP module driven
by the C F G . The framework was published in [313].

Evolutionary Framework

Program

Fig. 6.1: The class diagram of Evolution Framework part I, the first layer.

92

Evolutionary Framework

Fig. 6.2: The class diagram of Evolution Framework part II, the second layer.

Evolutions ryFramework

DefaultEvolutionSpecifierTGP

Def a u It E vol ut io nS pec if i e r TreeChromosome Chromosome

Fig. 6.3: The class diagram of Evolution Framework part III, the third layer.

93

6.2 Grammar Driven Genetic Programming
The GP module proposed in this section was built on the standard tree-based data
structures, proposed by J. R. Koza in [247], and it was supported by C F G . This
combination of methods, so called G G G P , was implemented on the basis of inspi
ration by the concept presented in the papers [267] and [280]. The main goal of
employing this technique into the GP module was the fact that the use of gram
mar simplified significantly the search space, solved the closure problem, and always
facilitated generating of valid individuals.

The Context-free Grammar G is defined as a 4-tuple G = {Y,N,Y,T, S, P},
E a t fl S T = 0, where T,N stands for a set of non-terminal symbols, S T stands for
a set of terminal symbols, S represents the start symbol of the grammar, and P is
the set of production rules written in the Backus-Naur Form. The C F G depicted
in Fig. 6.4 is used in this section to clarify the examples and it is inspired by the
grammar defined in [267] and [280]. A n example of syntactical tree generated with
respect to the defined grammar is also depicted in Fig. 6.4.

CD
I

CS = 1

ID CD

£ H = {S, E , F , N>
E t = { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 }
P = { S

E
F
N

= E = N ;
= E + E | E - E | F + E | F - E | N ;
= N ;
= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 } .

CD
J CD CDCp CD CpCp

CD CD
CDC

Fig. 6.4: Definition of the Context-free Grammar and an example of the process
generating syntactical tree for the sentence (2 + 5 = 7).

Since the C F G was applied and the initialization method was implemented simi
lar to G B I M , the other genetic procedures implemented, such as the standard genetic

94

sub-tree crossover and the sub-tree mutation, have to be adapted to this new concept
as well. The adaptation of the genetic operators was done similarly to the proposed
solution by the author of the paper [267]. The crossover was inspired by G B X and
the mutation by G B M proposed in [280].

6.2.1 Grammar Driven Initialization Method

The GP module becomes the G G G P module. In the first stage the initialization
process has been adapted. The initial population is now generated by the method
inspired by G B I M method proposed in [280] which helps to increase the convergence
speed when new individuals are generated. This is caused by the included gram
mar with which the proposed method is able to generate always valid individuals
belonging to the search space, because they all represent a candidate solution of
the problem. The definition of the grammar establishes formal rules, syntactical
restrictions of the chromosome structure of the candidate solutions.

The main difference between the G B I M and the implemented method is that we
have narrowed down the implementation for the method only to the most impor
tant things connected to initialization. The rest of the code was implemented to
the grammar or other code elements. The constructed syntactical tree, candidate
solution, in [267] and [280] based on C F G is a little bit different from the proposed
syntactical tree in this paper. In the G B I M the non-terminal symbols such as +,
— , * , / are handled in the same way as the terminal symbols. In this proposal, the
non-terminal symbols are considered as actions (or operations) of an element which
produces consequent rules. So, when the production rule S ::= E = N is given, the
action of S is an equal sign (=) and the elements of this action are the non-terminal
symbols E and N, which can generate consequent production rules. The initializa
tion method is described below and it is built on the same four definitions as the
G B I M in [267]:

Defini t ion 1 - The length of each terminal symbol is 0; denoted as a G £ t -

Defini t ion 2 - The length of the production rule that only derives a terminal
symbol is 1; L(A ::= a) = 1, W l G and Va G £ t -

Defini t ion 3 - The length of the production rule A ::= a is the result of adding
one to the maximal length of the symbol constituting the consequent; L(A ::= a).

Defini t ion 4 - The length of the non-terminal symbol A is the minimal length
of all its productions; L(A).

95

Fig. 6.4 shows the process of generation of the individual which belongs to the
proposed grammar in the same figure, taking the maximal depth of tree D = 5 as
an argument. The grammar computes the necessary information according to Def.
1 - Def. 4 and then the initialization method is applied:

1. The first step is to create a root of syntactical tree and simultaneously propose
the information of the maximal depth of this tree.

• In the example depicted in Fig. 6.4, there is only one rule for the root
symbol derivation, which is S ::= E = N. If there would be more
possibilities, one would be randomly selected.

• Of course, the condition of minimal production length which has to be
lower than the maximal depth of tree has to be satisfied.

• In the beginning, the current size (CS) of tree was 0 and after the first
step it was 1.

2. When the root symbol is generated, the rest of tree is generated randomly
according to the given grammar and the maximal depth of tree.

• CS of tree is increased by 1 in every step until the end of every production
rule is reached.

• In each step, the rule which satisfies the condition CS + L(A ::= a) < D
is randomly selected.

• This process is repeated until every branch of tree is finished by the leaf
of terminal symbol, and then the CS is incremented by one.

6.2.2 Grammar Driven Crossover Operator

The crossover operator has to be adjusted to the C F G model, because the complete
random process of sub-tree swapping was eliminated when the C F G was employed.
So, several rules of how the crossover works were defined. The crossover operator
presented in this section was inspired by the G B X operator proposed in [280] and
slightly simplified in few steps. The process of how the operator works is described
below and depicted in Fig. 6.5.

1. The first step is to select one syntactical tree as the first parent and decide if it
is suitable to crossover all nodes, or only non-terminal symbols. As a default
option we consider that all nodes can be processed. Then the set N that
contains all appropriate symbols of the first parent, except the root, is created.

2. If N ^ 0, then one element of this set is selected randomly. This element is
called crossover node (CN1). If N is empty, there is no node of given type

96

to be crossed and the process starts from scratch. The symbol E shaded gray
was selected as CN1 in Fig. 6.5.

3. The parent of CN1 regarding to given C F G in Fig. 6.4 represents the symbol
A of the grammar (see definitions). This symbol produces one or more conse
quent rules. A l l of these consequent rules derived from A are stored in the set
R. Regarding our example, the parent of C X I is the symbol E, therefore the
set R = {E + E,E — E,F + E,F — E, N}.

4. Then, according to [280] the tuple T = (l,p, a) is calculated, where a refers to
the production rule which generates C X I , I is the length of production rule -
it means the number of terminal and non-terminal symbols in the rule, in our
example a is E + E and its length is 2, because this rule has two operators of
the symbol E, and p stands for the position of C X I in the production rule.
The tuple T = (2,1st, E + E).

5. After the tuple T is determined, all the rules of different length of I are removed
from the set R. So, R = {E + E,E-E,F + E,F-E} in this case.

6. Thereafter, each element of R is compared to the rule a which is E + E except
the element on the position p, and those where the change in action or in
symbol on the right is detected are removed. So, the set R is adjusted again
R = {E + E, F + E}.

7. In this step, the set X is formed by all symbols which are in R on the position
p, so the set X = {E, F}.

8. If X ^ 0 then the crossover symbol CS is randomly selected from X. The set
P is created from the second parent and filled in by all nodes which include the
symbol CS. If X is an empty set, it is not possible to determine the crossover
node in the second parent. In such case, new C X I has to be randomly selected
from N and the process continues by step no. 2. In this example, CS = F
and P contains all nodes from the second parent the symbol of which is F
(only one element in this case).

9. If P ^ 0 the CN2 is randomly selected from P. Otherwise, CS is removed
from X and step 8 is performed again. In this example, only one node F is
present and is stated as CN2.

10. The P I value is calculated as the depth of node C X I plus the depth of sub
tree whose root is CN2. P2 is calculated similarly. If P I or P2 exceeds the
value of the maximal depth of tree D, then CN2 is removed from the set P
and the process continues by step 9. In this case, P I = 2 + 2 and P2 = 3 + 2,
which means that both P 1 , P 2 < 5, therefore it is possible to cross sub-trees
and continue the process.

11. Finally, two new descendants are generated by swapping the sub-trees and
given to a new population.

97

6.2.3 Grammar Driven Mutat ion Operator

The Grammar-Driven Mutation (GDM) works identically with the Grammar-Driven
Crossover in the first seven steps, just the crossover node (CN1) is renamed to a mu
tation node (MN), and the following steps are described below:

8. If X ^ 0 the CS is randomly chosen, otherwise it is impossible to find a valid
mutation node MN. If the operation is impossible, the node MN is removed
from N and the process continues with step 2.

9. Now, the mutation length (ML) is calculated as the depth of the MN minus
the maximal given depth of the tree D. And the value 0 is assigned to the
current depth CD = 0 of the new sub-tree generated within the scope of
mutation.

10. Then the set of production rules PP is stated similarly to G D I M and the
condition CD + L(CD ::= a) < ML has to be satisfied, where a e E j v U E t .

If the PP is an empty set, CS is removed from the set X and the mutation
process continues with step 8.

11. Choose a production rule randomly from the set PP and continue with the
random generation of sub-tree as this were an initialization of a new tree. Of
course, the condition of the maximal tree depth has to be fulfilled, which is
(CD + 1) + L(A :: = a) < ML in this case.

98

6.3 Use Case — Non-Cryptographic Hash Design
This use case presents one of the first examples which incorporate the use of the
GP module of Evolutionary Framework. The main goal of this task was to design
a non-cryptographic hash function comparable to the other known function of this
type e.g. GPHash [301], [302], which is a hash function generated by the GP.
GPHash function is considered a fast algorithm and its results regarding collisions
are also quite impressive. Another hash function used for comparison is the non-
cryptographic hash function named FNVHash. The basis of algorithm was taken
from an idea sent as reviewer comments to the IEEE POSIX P1003.2 committee
by Glenn Fowler, Phong Vo and Landon C. Noll in 1991. This function is used in
domain name servers, databases, web search engines, email servers, anti-spam filters
and many other applications. DEKHash is an algorithm proposed by the well-known
mathematician Donald E. Knuth in The Art of Computer Programming - Volume
3, under the topic of sorting and search. DJBHash is a hash function presented
by professor D. J. Bernstein and at the same time it is one of the most efficient
non-cryptographic hash algorithm published. BJHash is a hash function introduced
by R. Jenkins and it is mostly used in data structures such as hash tables.

At the beginning, a non-terminal symbols set (functions) and terminal symbols
(inputs) have been set as basic building blocks. The non-terminal set comprises:
logical conjunction (and, &), logical disjunction (or, |), logical negation (not,~),
multiplication (mult, x) , summation (sum, +), logical exclusive disjunction (xor, A),
and right bit rotation (rr). The terminal set comprises hash (the hashed value),
character (character at certain position in the processed input string sequence),
and magic_no (magic number inspired by FNVHash). The number brings the non-
linearity and produces a hash of certain length. The value of number is 0x811C9DC5
(in decimal form it is 2,166,136,231 and of course, the number is a prime number).

The objective function has been designed in the following way. The sum of
collisions acquired by hashing 106 random strings of 32bit length. Firstly, the hash
is computed, bit by bit, from the 32bit input string by the candidate hash function
produced automatically by GP. The 106 strings generated at random are hashed by
the candidate solution. Secondly, it is calculated how many collisions were produced
by the candidate hash function, and this is the score of the hash function, the fitness
value. The hash function which reaches the minimum number of collisions is declared
the best solution given by the evolution framework.

The grammar used is described in Algorithm 1 and in more details in [314] as well
as the whole design of the GP algorithm, inputs in the form of terminal and non
terminal symbols, a fitness measure, configuration parameters etc. The pseudo-code
of resulting non-cryptographic hash function is depicted in Algorithm 2.

99

Algorithm 1 The grammar defined for the hash function design.

Root := E,
E := EAE\E or E\E&E\E + E\ ExE\

EAC\E or C\EkC\E + C\ ExC\
EAN\E or N\EkN\E + N\ ExN\
N AC \N or C\NkC\N + C\ NxC\F,

F := RR N | RR F \ RR E \
NOT N | NOT F \ NOT E \ N.

C := 0x811C9IX75,
N := hash (from previous iteration, the first is equal to 0)
char (character of string in successive order).

Algorithm 2 The proposed EFHash function algorithm.

input: string str of size length to be hashed
output: hash long number

magic_no <— 0x811C9DC5
hash <— 0

for % 4— 0 to length do
hash <— ((hash & magic_no) + str.getCharAtPosition(i))
hash <— hash x ((~ ((~ hash) + magic_no)) » 2)

end for

return hash

Many different configurations of terminal and non-terminal sets and fitness func
tion have been tried. The rates of crossover and mutation have been subjected to
exhaustive examination too. And after many weeks of testing the GP algorithm,
the appropriate parameters which refer to controlling the run were set, please see
[314], and the best solution was finally found.

The speed test was carried out as follows. A l l hash algorithms have been imple
mented in JAVA programming language, in which all tests were carried out. At the
beginning, the strings of 32, 64, 128, 256, 512, and 1024 bits were randomly gen
erated. In each group there were 106 random strings. The hash function processed
each group ten times. These ten measurements were averaged arithmetically and
stored. The results of time simulation are depicted in Tab. 6.3 and Fig. 6.6.

100

Tab. 6.1: Speed test of non-cryptographic hash algorithms, results in [ms].
Algorithm 32bit 64bit 128bit 256bit 512bit 1024bit

BJHash 0.367 0.413 0.606 0.986 1.816 2.871
EFHash 0.074 0.105 0.169 0.293 0.550 1.065
GPHash 0.074 0.111 0.177 0.301 0.575 1.125
DEKHash 0.056 0.074 0.104 0.183 0.318 0.598
DJBHash 0.057 0.074 0.103 0.181 0.314 0.595
FNVHash 0.061 0.084 0.111 0.190 0.340 0.640

BJHash
EFHash
GPHash

DEKHash
DJBHash
FNVHash

3234 128 256 512 1,024
String size [bits]

Fig. 6.6: Speed test of non-cryptographic hash algorithms.

The first collision test was performed on the same randomly generated strings as
the speed test. There are six sets of different bit lengths and each of sets contains
unique strings. The strings are randomly generated from characters a-z and 0-9.
A l l sets are mixed up to one set with 106 randomly generated strings in the range
from 32 bits to 1024 bits. Hash functions were started on this set. The first 102,
103, 104, 105, and 106 strings of each set were processed and the results of reached
collisions are depicted in Tab. 6.3.

The second collision test shows how many hashes (in average) a hash function
algorithm can produce before generating the first collision. Besides, it is depicted
how the number of collisions grows when the number of hashes grows. The Mersenne
Twist Generator was used in this test. The test set consists of random numbers
only. The maximum length of random number is 1,024 bits. The hash function was
processed ten times. These measurements were averaged arithmetically and rounded
up. The results reached are depicted in Tab. 6.3.

101

Tab. 6.2: The collision test of hash functions I.
Algorithm 102 103 104 105 106

BJHash 0 0 0 2 119
EFHash 0 0 0 0 0
GPHash 0 0 0 0 0
DEKHash 0 35 319 1293 1340
DJBHash 0 29 288 951 992
FNVHash 0 0 0 0 0

Tab. 6.3: The collision test of hash functions II.
Algorithm 1 2 3 4 5

BJHash 117 145 168 322 178 507 182 541 188 182
EFHash 73 561 148 137 165 383 251 736 306 792
GPHash 76 519 133 368 137 280 156 540 161 076
DEKHash 123 094 187 204 206 570 212 548 233 598
DJBHash 57 724 90 071 127 812 188 884 218 495
FNVHash 152 515 207 282 210 895 215 018 227 487

The total number of collisions, which occurred during hashing the set of 107

randomly generated strings by Mersenne Twister Generator are shown in Fig. 6.7.
The resulting values of all algorithms are very similar, but it can be seen that
EFHash reached a very good position.

BJHash EFHash GPHash DEKHash DJBHash FNVHash
Non-cryptographic hash algorithm

Fig. 6.7: Quantitative test of non-cryptographic hash algorithms.

The proposed results show that the EFHash is at an average level of the existing
non-cryptographic hash functions. However, the direct comparison with GPHash
shows that they are basically at the same level even if different GP algorithms were
used for the development of these functions, which proves a good architecture of the
proposed Java Evolutionary Framework. The use cases were implemented in the
Java language, and all test were deployed on the Intel C2D E8400 architecture.

102

6.4 Use Case — Artery Localization Method
This use case example presents the use of the GP module in the biomedical image
analysis. The goal of this example is to localize a common carotid artery in B-mode
ultrasound images, which is a source of important information that doctors can use
to evaluate the patients' health in non-invasive way. The most often measured pa
rameters are arterial stiffness, lumen diameter, wall thickness, and other parameters
which depend on the localization of artery in the image. The GP module in this use
case example was used to automatically design an image filter for initial localization
of the artery in the image which must precede the main measurements.

First of all, it was necessary to establish a set of non-terminal symbols and
a set of terminal symbols. The set of functions includes image transformations such
as blurring operations (Gaussian blur) for smoothing the input image, then the
operations which analyze the degree of curvature in the image (Hessian, Laplace,
Sobel, Watershed), the operations for image equalization (Histogram equalization),
the morphological operations (Erosion, Dilatation, Close, Open), the thresholding
operations (Thresholding, Entropy Thresholding), and finally the operation for circle
detection (Hough). In the terminal set there is now only the analyzed image and the
integer value used in some filters from the non-terminal set. The C F G used for the
design of algorithm for the C C A localization from images is depicted in Algorithm 3.

Algorithm 3 The grammar defined for the CCA artery localization.

Root ::= HoughTransform,
HoughTransform ::= Erode Integer Integer Integer

Dilate Integer Integer Integer
Close Integer Integer Integer
Open Integer Integer Integer ,

Erode Dilate ::= Threshold EntThreshold,
Close Open ::= Threshold EntThreshold,
Threshold ::= HistEqual, Laplace, Sobel, Watershed,
EntThreshold ::= HistEqual, Laplace, Sobel, Watershed,
HistEqual ::= - Hessian,
Hessian ::= Blur Logarithm,
Laplace :: = Blur Logarithm,
Sobel ::= Blur Logarithm,
Watershed :: = • Blur Logarithm,
Blur ::= Logarithm Integer Image Integer,
Logarithm ::= - Image.

103

Subsequently, the database of 155 images was created and the center position of
circular C C A was marked in each of these images. The training database consists
only of 9 images, and the rest was used for the testing process.

The objective function was designed for the evaluation of individuals based on
the calculation of the accuracy of the detection of centers in all arteries. The filter
was designed in 40 evolution steps with initialization population which contained
100 chromosomes, with 80 % crossover rate and 30 % mutation rate. The total time
of the final filter design was 12 hours 11 minutes. The detection of artery by an
individual chromosome (candidate filter) takes from 1.2 s to 1.8 s in an individual
image. The resulting filter is depicted in Fig. 6.8.

D E

Fig. 6.8: The steps of processing of the designed image filter - a) Original image,
b) Output of Gaussian smooth, c) Output of Hessian, d) Output of Histogram
equalization, e) Output of Threshold, and f) Output of Hough transform with the
final localized artery in the input image.

The input image is given to the entry of Gaussian blur. This filter is one of the
linear smoothing filters and its main task is to reduce noise. The blurring value must
not be chosen too large to prevent the filter to remove some important properties
of the image. The blurred image then enters the block which analyzes the degree of
curvature in the image using the Hessian. The operator indicates with a light color
the areas where a certain curvature is apparent. This can be used with advantage
to find circular shapes as required by assignment. The proposed filter then performs
histogram equalization which enhances the image contrast. This is followed by binary
thresholding. The accepted method comes out of the assumption that the input
image is generated from two signals: the foreground and the background signal.

104

A n ideal thresholding occurs at the moment when the sum of entropies of the
two signals reaches the maximum. Based on this premise, a formula is established to
determine the ideal threshold, which is then used for binary thresholding. Over the
binary images, the morphological operations of erosion and dilation, constituting
together the operation Close, were performed. The last step, strictly prescribed by
grammar, is Hough transform. Besides the input image, it takes also the minimum
and the maximum size of the circle and the step to analyze the range of values.

The success of the C C A localization in images of the testing set was approxi
mately 75 %. The success at this stage of development was very good. More about
the experiments using ultrasound images as inputs is described in [315], [316].

The experiment was further developed and performed on ultrasound video se
quences with much better results. The training database contained 16 video sequen
ces and the validation database contained 52 video sequences which were used for the
evaluation of accuracy. The resulting success of the proposed solution was 82.7 %,
which exceeded the current state of the art by 4 % while the computation time
requirements were acceptable. More about this experiments can be found in the pa
per [317] which proposes a complete process of automatic construction of a machine
vision system for the C C A localization in B-mode ultrasound video sequences.

The set of non-terminal symbols in the video sequence version of the problem was
enhanced. Approximately 30 different functions were implemented for our specific
utilization - for designing the C C A localization process. The function set contains,
for example, optical flow (Lucas & Kanade), morphological operations (dilatation,
erosion, open, close), blur (Gaussian, anisotropic diffusion, median filtering), thresh
olding (fixed-level binary threshold, adaptive threshold, thresholding with automatic
threshold setting according to entropy), sharp and many others [317].

In this implementation three types of parameters are use: numerical parameters,
images, and video sequences. Numerical parameter is an input of numerical con
stants that can be used for the settings of parameters of particular building blocks
of image processing. The value is generated from the range specific for the compo
nent. For example, two parameters entering the thresholding building block, where
the first specifies the threshold (range from 0 to 255) and the second specifies the
thresholding method (range from 0 to 12). The parameter image is used as image
input and the parameter video sequence is used for video sequences (i.e. a set of
consecutive images). Because the grammar for this problem is too complex, only
a simplified version for the localization from images is depicted in Algorithm 3.

105

The objective function has to reflect all the important measurable parameters.
In this implementation, the most precise determination of the centers of circular
artery in a set of training video sequences is the most important thing. Therefore,
the first and the most important parameter is the number of precise localizations
h (number of phenomena, the artery was localized with a deviation of less than the
chosen 20 px) and the second parameter is the accuracy of localization centers of the
artery pi in a particular video sequence in the training set, % belongs to the interval
from 1 to N. The formula is depicted in Eq. 6.1.

N
f = hx 100,000 + J2 Pi-

i = 1
Multiplying the value h by the constant 100,000 secures assigning a significant weight
to this variable in the process of calculation of the fitness function, and the fitness
value will be well analyzable. The value Pi gives the precision of artery localization
in the i-th video sequence. The values pi are in the range from 0 to 255, where the
highest value represents a better localization according to Eq. 6.2:

Pi = 255 - m m (1 0 x dist{X°, Xf), 255), (6.2)

where X? is the determined artery center in the i-th video sequence, and Xf is the
center localized by the proposed algorithm. The operation dist is the calculation of
Euclidean distance. The result of proposed filter is depicted in Fig. 6.9.

D E F

Fig. 6.9: The steps of processing of the designed video sequence filter - a) Original
image, b) After optical flow, c) After further processing, d) The set of circles found
by the Hough transform, e) Selected circle, and f) Image with the localized artery.

106

7 T H E WAREHOUSE OPTIMIZATION ALGO
RITHM

This chapter describes how all the expert knowledge and algorithms implemented
were put together into one algorithm for warehouse process optimization. Chapter
represents the main contribution of the thesis which should directly lead to reach
the goal of the thesis and confirm the hypothesis by results in the next chapter.

The chapter is divided into four sections. Section 7.1 describes the design of the
optimization algorithm from scratch. This section depicts how the set of terminal
and non-terminal symbols was identified and defined, the complete design of objec
tive function, the parameters for controlling the run of the optimization algorithm
and the termination criterion with the method for designating the result of the al
gorithm's run. Section 7.2 describes the set of recursive rewriting rules which were
used for the search space restriction. Section 7.3 describes the genetic operators
which were designed specially for the problem of warehouse process scheduling, and
section 7.5 gives a description of algorithm's work-flow.

7.1 The Design of Optimization Algorithm

First of all, the design of the algorithm had to be made with the support of the
expert consultant in the area of logistic optimization, who was willing to tell the
basic facts about warehouse optimization, such as basic building blocks for the GP
algorithm. The optimization algorithm was designed from scratch, which means
that five preparatory steps of the GP algorithm were discussed with the expert.

7.1.1 The Set of Terminal Symbols

In this case, the terminal symbol represents one single indivisible operation in the
warehouse. As terminal symbols were identified the following operations which
represent the very basic tasks, which are common to all employees in the warehouse,
and other warehouse equipment such as trucks and employees. These basic building
blocks, terminal symbols, are depicted in Tab. 7.1.

The tasks TaskLoad and TaskUnload are directly connected with the pallet ma
nipulation, while TaskMove, TaskRelax, and TaskWait can be performed even with
an unloaded truck, or even without a truck completely. The TaskMove represents
all transports and transfers of employees and trucks through the warehouse. The
TaskRelax represents a break of an employee for food, toilet etc. The TaskWait rep
resents a waiting time when the aisle is congested and the employee with the truck
has to wait until it will be free, it is quite a variable time window which should be

107

Tab. 7.1: The terminal symbols identified for the GP algorithm.

Employee The
Commodity The
Coordinate The
ForkLiftHand The
ForkLiftLow The
ForkLiftHigh The
TaskLoad The
TaskMove The
TaskRelax The
TaskUnload The
TaskWait The

minimized. Of course, there is a lot more operations such as TaskCheck for check
ing the order, TaskPack for packing the order, TaskShip for shipping the order and
many other tasks that represent all operations in the warehouse.

The Employee represents an employee of the warehouse. A l l employees have to
have assigned a truck of following three types: ForkLiftHand pallet truck, ForkLift
Low pallet truck, or ForkLiftHigh pallet truck. The trucks have different parameters,
such as maximal velocity, size, level of loading the goods in the axis z, etc. Of course,
there can be lots of other instruments and machines such as PackingMachine etc.

7.1.2 The Set of Non-terminal Symbols

The set of non-terminal symbols was determined as follows. The basic function is
represented by the Workplan. The work-plan represents the structure of the jobs
which must be fulfilled by one employee. The work-plan consists of Jobs. This
is a function which can directly represent a JoblnStore or JobOutStore or can be
divided into one of these particular jobs and other jobs. The JoblnStore represents
the job which starts both in the warehouse or outside the warehouse, but always
ends in the warehouse, such as storage. The JobOutStore represents the job which
starts in the warehouse, but ends outside the warehouse, such as truck loading. The
set of non-terminal symbols is depicted in Tab. 7.2.

Tab. 7.2: The non-terminal symbols identified for the GP algorithm.

Job Job represents job from the job buffer.
JoblnStore Job represents job in the warehouse or heading to the warehouse.
JobOutStore Job represents job starting in the warehouse and heading outside.
Workplan The basic function which starts the structure of the work-plan.

108

7.1.3 The Design of Objective Function

The next step is to define the objective function for the suitability measurement of
particular individuals of the population. In most cases, the suitability is defined
as an error of the resulting individual of the GP algorithm. The closer this value
is to zero, the better solution it is. Due to the NP-hardness of this problem, it is
not possible to clearly determine an optimal solution to the problem of scheduling.
However, the main task is to achieve the lowest time required to successfully carry
out all jobs in the work-plan. The final suitability can be obtained as the maximal
final times among all work-plans, i.e. Cmax = max(Ci,..., Cn). This maximum
represents the inverse of the suitability solution, therefore the best solution will be
an individual with the lowest maximum of end time, depicted in Eq. 7.1.

m a x (C i , . . . , C n) . (7.1)
fitness

To avoid unnecessary hassle during deployment in practice, collisions of trucks are
expected. Therefore, the resulting fitness functions will include the sum of the
maximum end time and the number of collisions (0) that occurred during all tasks
which were processed throughout the warehouse. Also, individual weighting factors
(wi,w2) were assigned to all parts of fitness function and the fitness function will
be therefore (see Eq. 7.2):

j i t ^ e s s = wi x max{C1,...,Cn) + w2 x 9. (7.2)

Now, the fitness function formed should be sufficient. But, for better results, and
even for a better distribution of jobs through the employees, another parameter will
be added. The average duration of a single job. The resulting fitness function is
then a function in Eq. 7.3 and of course, accompanied by the weighting factor w3:

n

i h T l

wi x max(Ci,..., Cn) + w2 x 0 + w3 x . (7.3) fitness n

7.1.4 The Parameters for Controlling the Run

Thanks to the grammar defined in section 7.2 it is ensured that the basic criteria
for the GP algorithm run, such as sufficiency requirement and closure requirement,
are fulfilled. The parameters for controlling the run of the algorithm are following:

7.1.5 The Termination Criterion and The Result Design

The final step is to define the initialization conditions which end the algorithm.
As the optimal solution is not known, the termination condition is defined as the

109

Tab. 7.3: The parameters of controlling the run of the GP algorithm.

Population Size
Evolution Size
Fitness Precision
Simulation Time
Elitism Rate
PA Mutation Rate
JO Mutation Rate
SJ Mutation Rate
SW Mutation Rate
SP Mutation Rate

The size of the population, the number of chromosomes.
The size of evolution process, the number of generations.
The desired precision of the fitness function.
The maximal time of the simulation.
The number of individuals copied to the new population.
The rate of path mutation.
The rate of job order mutation.
The rate of swap job mutation.
The rate of swap work-plan mutation.
The rate of split job mutation.

maximum number of generations if the desired precision of result is not met. Then,
the best individual is selected and claimed as the optimal solution.

7.2 The Design of Context-Free Grammar

The next step is to define the relationships between the terminal and the non
terminal symbols which form grammar together. The grammar gives syntactic re
strictions to the algorithm and clearly defines a list of allowed terms in the language
understandable to machines. Using the grammar in the GP algorithm can signifi
cantly reduce the search space. The structure of C F G is defined by Algorithm 4,
and a descriptive example is shown in Fig. 7.1.

Algorithm 4 The grammar defined for the warehouse optimization.

Root ::= Workplan Employee Equipment,
Workplan ::= Job \ Job Job \ JoblnStore \ JobOutStore
Job ::= JoblnStore \ JoblnStore Job |

JobOutStore \ JobOutStore Job
JoblnStore ::= TaskLoad TaskMove TaskUnload Coord Coord Commodity
JobOutStore ::= TaskLoad TaskMove TaskUnload Coord Coord Commodity
Equipment ::= Truck \ Machine
Truck ::= ForkLiftHand \ ForkLiftLow \ ForkLiftHigh
Machine ::= Packing Machine \ Cleaning Machine

110

The starting symbol is denoted as ROOT. The ROOT has three basic compo
nents, which are Workplan, Employee, and Equipment. The Workplan represents
a set of jobs for the Employee which should be done with the help of Equipment.
The Workplan can be rewritten to Job or two Jobs, or directly to JoblnStore or
JobOutStore. The Job can evolve to both JoblnStore and JobOutStore or one of
these functions accompanied by another Job. The JoblnStore and JobOutStore
are pretty much the same functions which differ only in the purpose of use. Both
jobs consist of a predefined chain of tasks, i.e. TaskLoad, TaskMove, TaskUnload,
Coord of starting place, Coord of end place, and Commodity which is transferred
through the warehouse. The tasks TaskRelax and TaskWait are added into this
chain of tasks at request of an employee. The Employee is selected from the database
of employees. The Equipment is either Truck or Machine. The Truck is of three
types ForkLiftHand, ForkLiftLow, and ForkLiftHigh. The Machine represents
everything else.

ROOT

Workplan

Job

Job J Job

\
JoblnStore JobOutStore Job

J

^JoblnStorej-

Employee ^Equipmentj

J Truck

ForkLiftLow J

TaskLoad TaskMove ̂ • TaskUnload ^CoordJ Coord Commodity

Fig. 7.1: A n example of the tree generated by the context-free grammar.

I l l

7.3 The Design of Optimization Operators
The genetic operators are described in this section. The design of all operators is
described and accompanied by a graphical example of how the each of them works.
Together, five new operators were designed, implemented and tested, namely Path
Mutation 7.3.1, Job Order Mutation 7.3.2, Swap Job Mutation 7.3.3, Swap Work-
Plan Mutation 7.3.4, and Split Job Mutation 7.3.5. A l l mutation operators designed
are depicted in figures. The orange colored blocks depict the movement between two
jobs and the brown colored blocks depict the changed, mutated parts of the task,
job, or work-plan.

End Time
of Job 1

Fig. 7.2: A n example of the gene structure used in the optimization algorithm.

7.3.1 Path Muta t ion

Path Mutation 7.3 is the first genetic operator designed for the purpose of this work.
This kind of mutation is the simplest operator and its purpose is to change the path
of truck used to process a specific task during the TaskMove (e.g. transportation
of a pallet through the warehouse) between the TaskLoad and TaskUnload. The
advantage of this operator lies in changing the path, especially when the collision of
two trucks is very probable or the aisle between racks is congested for any reason.
In the future, this operator could also be used for the path mutation of TaskMove
between jobs, or any other movement, e.g. when the truck is heading the parking
lot in the case of TaskRelax or at the end of employee's shift.

The example in Fig. 7.3 shows how the operator works. The parameter Rpa

represents a percentage of chromosomes which are selected for this mutation. First,
the job is selected at random in a chromosome. In this case, it is job number one.
Second, the TaskMove with Path A is selected in the job. Then, the Path Mutation
is applied and the transportation path is changed to Path B which changes the
TaskMove operation and it should be shortened. The change is depicted in brown
in the figure. This operator was published in the paper [318].

112

c
a>
E
Q.

>

i [TaskLood 11 TaskMove , J [TaskUnIoad 1
c
w
E
Q. ^ TaskLoad J ^ TaskM^tt_^ ^ TaskUnIoad J o-

S ^ ^ TaskMove J ^ TaskLood J ^ TaskMove J ^ TaskUnIoad J

U a-

3>
1

^ TaskMove J ^ TaskLoad ^ ^ TaskMove J ^ TaskUnIoad ^ O
&
E

j> ^TaskMove^ ^TaskLoad J ^ TaskMove J ̂ TaskUnIoadJ

O
a.
E

\)
^ ^TaskMovej ^ TaskLoad J ^ TaskMove J ̂ TaskUnIoadJ
P — \

Fig. 7.3: A n example of the Path Mutation operator.

7.3.2 Job Order Muta t ion

The Job Order Mutation 7.4 is the second genetic operator designed. This operator is
also quite simple, and its aim is to shuffle the jobs in the work-plan of one employee.
This operator can show its advantage especially when the first task in the work-
plan looks to be quite distant and it is more logical to process a closer job and
then go further and further and process more distant jobs. This mutation operator
brings the main advantage in cases when the work-plan of employee consists of many
distant tasks. This can bring the continuity of work from one side of the warehouse
to another. In other words, the work-plan should be processed from the closest jobs
to more distant jobs.

The example in Fig. 7.4 shows how the operator works. The parameter Rj0

represents the percentage of chromosomes which will be mutated by this operator.
When the work-plan is selected based on the probability of RjQ, the operator starts.
First, the first job is selected at random, in this case Job 3. Second, the second job
is selected at random, in this case Job 2. Then two selected jobs are swapped. As it
can be seen in the figure, the finish time of work-plan is shorter, because the third
job was closer to the first job and the TaskMove between Job 1 and Job 2 is shorter
after the mutation. This operator was published in the paper [318].

u
ip

m
en

t
J

u
ip

m
en

t
J

^ ^TaskLoadJ^ TaskMove TaskUnIoad

TL

J

ŕ ^

j> ^ TaskMove J ^ TaskLoad J ^ TaskMove J ^ TaskUnIoad ^

\

§>

"S.

1

^TaskMove^ TaskLoad TaskMove Ĵ TaskUnloadĴ
1

E

V —)
j> ^TaskMoveJ ^ TaskLoad J ^ TaskMove J ^TaskUnIoad J

J

E - g | ^TaskMovej^ TaskLoad J TaskMove J T a s k U n l o a d J

^ J

Fig. 7.4: A n example of the Job Order Mutation operator.

113

7.3.3 Swap Jobs Mutat ion

The Swap Jobs Mutation 7.5 is the third operator presented. This operator is the
first which uses two work-plans. The mutation is based on the simple principle which
is the swap of two jobs between two work-plans. This operator is advantageous
especially in situations when two employees are located in opposite parts of the
warehouse and the jobs are randomly assigned, but the employee can fulfill the
closest job instead of more distant. The operator swaps the jobs between the work-
plans, which helps to save the time of processing and minimizes the path crossing
of the trucks.

The example in Fig. 7.5 represents how the operator works. The parameter
RSj denotes the percentage rate of this mutation. First of all, two chromosomes are
selected based on the probability of RSj. Second, one job is randomly selected in each
chromosome. Job 2 is selected in Workplan A, and Job 3 is selected in Workplan
B. The third step is the swap of selected jobs. The swap also causes a change of
TaskMove time, which is given by movement from the first job to second job. The
swapped jobs are colored brown.

C TaskUnload J

I

^ TaskMove J ^ TaskLoad J ^ TaskMove J ^ TaskUnloaT^

^TaskMove J ^ TaskLoad J ^

J ^ TaskUnload J

*

^ ^ TaskLoad J ^ TaskMove J ^ TaskUnload ^

>

^ ^TaskMoveJ^ TaskLoad J ^ TaskMove J ^ TaskUnload ^

^ T̂askMoveJ ^ TaskLoad ^ TaskMove P J TaskUnload ^

J

^TaskLoad J ^ ^ TaskUnload J

T̂askMoveJ ^ TaskLoad J ^ TaskMove J ^ TaskUnload J
^ TaskLoad J T̂askMoveJ ^TaskUnload J

^ TaskLoad"J ^ TaskMove J ^ TaskUnload̂ J

^ TaskMove ^ TaskLoad J ^TaskMove TaskUnload

^ TaskLoad J ^TaskMoveJ T̂askUnloadJ

Fig. 7.5: A n example of the Swap Job Mutation operator.

7.3.4 Swap Work-Plan Mutat ion

The Swap Work-Plan Mutation 7.6 is the fourth operator in use. The Swap Work-
Plan Mutation operator is based on the principle of work-plan swapping among
the population of individuals. The work-plan is bounded with an employee and

114

an assigned truck. The possibility of work-plan swapping could bring another time
improvement, because another employee can have a faster truck, or a truck more
suitable for another batch of jobs due to storage level demands etc.

The example in Fig. 7.6 shows the Swap Work-Plan Mutation. The operator
works with the parameter Rsw which denotes how many individuals will be processed
by this operator. When the chromosomes are selected based on this probability, the
process of mutation is started. The first step is to randomly select two work-plans
and the second step is to swap the work-plans.

ip
m

en
t

A

J

T̂askLoadJ ^ TaskMove TaskUnload ^

ip
m

en
tA

J

II ^ TaskLoad^ ^ TaskMove J ^ TaskUnload ^ 1

3

—̂)
/—\

< W
or

kp
la

n
A

^ TaskMove J ^ TaskLoad J ^ TaskMow J ^ TaskUnload ^

a-

4 I ^TaskMove J ^ TaskLoad J ^ TaskMove J ^ TaskUnload ^ 1

^
E

m
pl

oy
ee

1 ?

T̂askMoveJ ^ TaskLoad J ^ TaskMove

-*

TaskUnload J
I 1 ll ^TaskMove J ^ TaskLoad J ^TaskMove^ T̂askUnloadJ 1

ip
m

en
t

B

J

^TaskLoad J ^ TaskMove J ^ TaskUnload ^

J

ip
m

en
t

B

J

I "§ | ^TaskLoad J ^ TaskMove J ^ TaskUnload

3

v—) ^ ^TaskMove^ ^ TaskLoad ^ ^ TaskWove J ^ TaskUnload - J
3
er

l-l̂ j ^ TaskMove J ^ TaskLoad J ^ TaskMove J ^ TaskUnload

^
E

m
pl

oy
ee

 1

^ -

J=j ^TaskMove J ^ TaskLoad J ^TaskMove J ^TaskUnload J

^
E

m
pl

oy
ee

 1

1 1̂1 ^TaskMove^ ^ TaskLoad J ^ TaskMove J ^ TaskUnload

Fig. 7.6: A n example of the Swap Work-Plan Mutation operator.

7.3.5 Split Job Muta t ion

The Split Job Mutation is depicted in Fig. 7.7 and it is the last operator designed
for the problem solving. The main aim of this mutation is to split the job into
two single jobs with the minimal level of dependence. The key utilization of this
operator is in very difficult situations, when it is preferred to process one job with
more employees, e.g. Employee A with the assigned ForkLiftLow truck is going to
process Job A which starts somewhere in the middle of the warehouse, during his
transfer he is able to load the commodity of Job B and move it a little bit closer
to Employee B with the ForkLiftHigh truck. Employee B loads the commodity of
Job B and goes to his destination, e.g. at level five of the shelf. During this process
Employee A is working on Job A, because he would not be able to finish Job B
anyway, since he is equipped only with the ForkLiftLow truck. This operator brings
an advantage of cooperation into the problem.

115

The example of mutation operator is depicted in Fig. 7.7. First, genes for mu
tation were selected with probability Rsp. Then the first work-plan was randomly
selected, as well as the job in this work-plan. In this example it is Workplan A and
Job 1 with the longest TaskMove. The TaskMove was split up into two jobs Job A.l
and Job A.2. Job A.l is kept by Workplan A, but Job A.2 was moved to Workplan
B at the end of the job list.

u
ip

m
en

t
A

J

p .

f

^TaskLoodJ ^ TaskMove J ^ To skUnload 1

/

4
E
5
E

TaskLoad I TaskMove 1 TaskUnload!

iE"

V — /

4

W
or

kp
la

n
A

^ TaskMove J ^ TaskLoad J ^ TaskMove Ta

>

skUnload J

)

a-

4

W
or

kp
la

n
A

J= ^TaskMoveJ^ TaskLoad ^ TaskMon

• J ^

e 1 TaskUnload

E
m

pl
oy

ee

%

(J

^TaskMoveJ ^ TaskLoad J ^ TaskMove J ^ T iskUnload J

/ E
m

pl
oy

ee

ijM ^TaskMoveJ ^ TaskLoad J ^ T jskMove J ^ T(skUnload J

'
— 'J

u
ip

m
en

t
B

^TaskLoad J ^ TaskMove J ^ TaskUnlood J
u

ip
m

en
t

B

i 1 TaskLoad I I TaskMove J ^ TaskUnload

)
uT

i

S

(J

^TaskMoveJ ^ TaskLoad J ^ TaskMove J ^ TaskUnload —

a-

^—>
c

1
^ ^TaskMoveJ ^ TaskLoad J ^ TaskMo e J ^ TaskUnload

(
E

m
pl

oy
ee

 B

1

CO

.I

J

J

^ ^TaskMoveJ QaskLoad^ ^ToskMoveJ ' M
TaskUnloadl

* ' J '.

Fig. 7.7: A n example of the Split Job Mutation operator.

7.4 Maintaining Mechanisms of Algorithm
Of course, with the implementation of genetic operators, several maintaining mech
anisms for the algorithm were also implemented. One of the mechanisms is checking
if the employee is authorized to work with the equipment, or if he/she is authorized
to process the given job, because not all roles of employees can do each type of jobs.

The maintaining mechanisms connected to genetic operators are as follows. The
first mechanism is to ensure that the job which was split up can be completed
successfully. It means that the first part of the job will be processed before the
second part of the job. So, in situations like this, the TaskWait is inserted into
the beginning of the second part of the job, which ensures the continuity. Already
split up parts of the job can be further divided by algorithm. So, ensuring of the
continuity is a key feature. A related situation occurs when the job is split up,
then re-ordered or swapped. The continuity of jobs has also to be ensured. The
situation when the job is split up, the parts are swapped and re-ordered and they

116

meet together in one work-plan can also come up during the generations. In such
situation, the parts of one job in one work-plan are again connected to one single job.
So, this is how the work-plans and jobs are maintained, to be completed successfully.

7.5 The Work-flow of Optimization Algorithm
The optimization algorithm designed in this work is shown in Fig. 7.8. The blocks
of algorithm and the basic structure of the algorithm is based on the conventional
flowchart proposed by John R. Koza in [247], [248]. The main difference is the change
of the genetic operators which were designed specially for the problem of warehouse
optimization. Also, the fitness measurement was enhanced by the parameters related
to the warehouse environments.

RUN :=0

GEN = 0

End

Generate initial population
according to grammar

I

(Is termination A y <

criterion true? J

(RUN = N ?)

RUN := RUN + 1

Designates
result for run

Fitness measurement of each individual

Count Total Time of
Chromosome Processing

i
Count Total Number of

Collisions of Trucks

Count Utilization of
Employees

GEN := GEN + 1

i :=0

-Yes Q i = M ? ^

Elitism
(select k individuals)

Select one individual
based on fitness

Perform
Path Mutation

Copy into new population

Select genetic operation
by probability

Select one individual
based on fitness

Select two individual
based on fitness

IE
Select two individuals

based on fitness
Select two individuals

based on fitness

Perform
JobOrderMutation

Perform
SwapJob Mutation

Copy into new population

Perform
SwapWorkplanMutation

Insert one offpsring into
new population

Perform Maintenance
Mechanism

1 . - -1- 1

Insert two offsprings into
new population

Perform
SplitJobMutation

Insert two offsprings into
new population

Perform Maintenance Mechanisms

Fig. 7.8: A n example of the block scheme of designed optimization algorithm and
all genetic operators used including the elitism and the fitness measurement.

117

8 B E N C H M A R K I N G AND TEST SETS
This chapter describes the benchmark definitions and test sets. Section 8.1 is dedi
cated to the description of layout of the tested warehouse. Section 8.2 outlines the
steps of experimental integration which lies in the basic assumptions for benchmarks
and test sets definitions, which are based on historical data of warehouse work-flow.
Section 8.3 deals with information standardization and normalization, needed for
benchmarking. Section 8.4 deals with special real data samples extracted directly
from historical data. Section 8.5 deals with the synthetic data generator designed
specially for the performance testing of the algorithm proposed in this work. The
results of testing are described in the next chapter. The benchmark test and reached
results were presented in the paper [318], [319], and [320].

8.1 Layout of Tested Warehouse

The referenced warehouse described in this section is based on a real-world situation.
The warehouse layout is built on the warehouse presented in Fig. 2.1 - traditional
layout 1. The particular simulation model used in the implemented algorithm is
depicted in Fig. 8.1. The warehouse consists of the same parts as the example
in Fig. 2.1, such as: trucks importing and exporting commodities; receiving and
shipping areas; warehouse gates; office of employees; fork-lift hand pallet truck (able
to operate with shelves at level 0, which represents the floor) located on coordinates
[8; 1]; fork-lift low truck (operates with shelves at levels 0-2) located on coordinates
[2; 5]; fork-lift high truck (operates with shelves at levels 0-9) located on coordinates
[10; 7]; the example of pallet, carrying commodity, is located on coordinates [1; 0],
and all stationary racks in the warehouse, with shelves 0-9 for commodity storing are
colored orange. The rest of the warehouse consists of wide aisles and manipulation

for receiving, packing, checking and other processes.
The warehouse, in fact, is described by three coordinates [x, y, z\. In the reference

model, 10 columns of racks are in the warehouse. Each column consists of 19 racks
standing next to each other and every rack has 10 shelves one above another to
store pallets (0 indicates standing on the floor). The warehouse space is divided
into x equal sized cells, where the cell size was chosen in view of the fact that
it coincided with the largest dimensions of the trucks. The velocity is the most
important parameter of trucks and it is a central parameter of the time simulation
when moving commodities through the warehouse. Time delay with the imposition
of the floor rack is now negligible. This implies that the velocity of the truck has in
this basic benchmark the most significant impact on the time of processing of the
whole buffer of jobs.

118

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10

11

12

13

14

15

16

17

18

19

20

§§
r y

ft

Fig. 8.1: A n example of the reference warehouse environment.

8.2 Definition of Benchmarking

The basic assumption for the benchmarking of designed optimization algorithm was
the setting of the basic reference level of results - the baseline which was used in
further experiments for the comparison of the state of the art of real-world warehouse
environments and the proposed optimization algorithm. Since the expert consultant
was fully available, and the historical data from the warehouse work-flow were also
obtained, the benchmarks were developed on these foundations.

The data obtained were summarized and exported from the SAP information
system. The data represent the full use of the warehouse during the last two weeks
before the Christmas time. The data were provided with expert's comments and
further backstage knowledge of the expert. The reference level should be set as

119

simply as possible and it should comprehensively describe the state of the art before
the implementation of the new system. It serves as a starting point for evaluating the
results of the new system and the impact of the implementation and deployment of
the new system into the warehouse environment. The result should be the noticeable
differences between the initial state and the state after the system implementation.

The established reference level also describes the state of the warehouse in every
scenario, e.g. the number of pallets entering the warehouse, as well as the number of
pallets leaving the warehouse, all of that in a specified unit of time (in ten minutes, in
one hour, in one working shift, in the whole day, etc. - the working shift means eight
hours of work, the whole day means three consecutive working shifts). Furthermore,
there are also fixed data related to the individual employee, such as processing speed
of the jobs, reliability and performance. Likewise, the data on storage resources
was also recorded and stored (e.g trucks used in the warehouse, their parameters,
especially velocity, handling characteristics and suitability of particular resources for
different operations).

Furthermore, the data related to job roles of individual employees were recorded,
as well as associated privileges to the equipment. Based on these data, so far the
jobs were distributed by supervisor - the operational manager, who was trying to
maximize the utilization of all resources (including employees) with regard to the
priority of the job - it means that the operator takes into account only a time factor
in which it is necessary to complete the job (such as loading and unloading trucks,
store specific commodities in the freezer, etc.).

Currently, when the jobs are scheduled by the operational manager, one factor
is very noticeable, the stress. When the operational manager is in tense situations
the scheduling of work is done very inefficiently Reserve employees are mobilized
and the utilization of employees is not done optimally. With the new optimization
algorithm which should help the operator, it will be easy to compare the results of
operator's scheduling and the result of the proposed system. At first glance, it will
be obvious how to set the evolutionary core of the optimization algorithm and how
it affects the results of the optimization.

8.3 Standardization, Normalization

The standardized warehouse has also standardized operations with fixed time norms.
The fixed time norms were made by expert consultant based on the veritable time of
processing measured in the warehouse several weeks and averaged. The standardized
operations and normalized time of these operations are described in Tab. 8.1.

There are also standardized roles for employees. Performance of a specific role is

120

Tab. 8.1: Standardized operations in the warehouse environment.

ID Operation Required Fix Time Norm

1 Unloading Always 2
2 Receiving Always 4
3 Partial Transport Sometimes Distance / Velocity
4 Storing, level 0 Always 2
5 Storing, level 1-2 Sometimes 4
6 Storing, level 3-9 Sometimes 7
7 Shifting up to 30 m Sometimes Distance / Velocity
8 Shifting beyond 30 m Sometimes Distance / Velocity
9 Picking, heterogeneous Always 15
10 Picking, homogenous Sometimes 2-7, based on level
11 Dropping, level 1-2 Sometimes 2
12 Dropping, level 3-7 Sometimes 7

normalized based on historical data of performance of single employees, see Tab. 8.2.
The heading of Tab. 8.2 represents the Role of an employee, the normalized perfor
mance (Per/.) of the role, and the numbers of operations (On). The table charac
terizes the roles of employees in the way of suitability, it means which operation is
the most suitable for the specific role. The suitability is described in Tab. 8.3.

Tab. 8.2: Standardized roles of employees in the warehouse environment.

Role Perf. 01 02 03 04 05 06 07 08 09 O10 O i l 012

Handler jr. 1 4 1 3 4 3 2 3 4 2 3 3 3
Handler sr. 3 3 4 3 3 4 4 3 2 2 2 2 3
Storemanjr. 1 3 3 3 2 2 2 3 3 3 4 4 3
Storeman sr. 3 2 2 3 2 2 2 3 2 4 3 3 3
Shift leader 5 1 2 1 1 1 1 1 2 1 2 1 1

Tab. 8.3: The suitability table for the roles of employees and operations.

Suitability Value

May not 1
Unsuitable 2
Suitable 3
Best suitable 4
Not necessary 5

Based on the layout of warehouse, standardized operations, and normalized
times, the ground for benchmarking and testing of optimization was set.

121

8.4 The Test Set - Real Data
On the basis of the experimental integration research related to benchmarking defi
nition several basic scenarios representing real situations from the warehouse work
flows were defined. The scenarios were divided into several specific sets that form
logical groups of benchmarks for measuring the performance of the proposed op
timization algorithm which can be easily compared to the results achieved by the
operational manager. First, we get the data, as the jobs were processed, scheduled
respectively, by the operational manager. As it was already written above, these
data were extracted from the warehouse work-flows from the pre-Christmas time,
when the operational manager was most burdened by stress and fatigue. These sce
narios represent a set of jobs which were distributed to employees during a working
shift. Solving these scenarios by a skilled operational manager is the reference point
for the proposed optimization algorithm. During the experimental integration of the
optimization algorithm 60 scenarios were extracted. These scenarios were divided
into 5 categories according to the intensity of work load for employees and the level
of difficulty of scheduling for operational manager. The scenarios are described in
the following five sub-sections and they are accompanied by suitable figures.

8.4.1 Scenarios no. 01—10

The first set of scenarios represents the most simplified cases extracted from the
operational data. These scenarios are simplified in such a way that all the trucks
in the warehouse are the fork-lift hand pallet trucks. This simplification was intro
duced because these trucks are used in all types of warehouse environments and it is
possible to demonstrate the performance of the proposed optimization algorithm on
the simplest types of problems where the optimization of work-flow is not so com
plicated and it could be easily done only by looking at the problem without the aid
of a mathematical or software apparatus. The results obtained in these examples
have demonstrated the competitiveness of the algorithm even though the scenarios
encompassed the minimal space for optimization.

This set of scenarios includes the most simple and realistic scenarios which are
defined as follows. Each truck is the fork-lift hand pallet truck. Each employee
performs one simple task from the beginning to the end. The collision of trucks, the
distance between the job and the employee, employee's performance, and truck's
velocity are not taken into account, as they are all of the same type. A n illustra
tive example is described in the scenario in Tab. 8.4 and is accompanied by visual
representation of the scenario in Fig. 8.2.

122

Tab. 8.4: A n example of the simplest set of scenarios no. 01-10.

Scenario no. 09

Employees 3 x Handler jr. - coordinates [4, 6]; [6, 4]; [12, 2]
Equipment 3 x Fork-lift hand truck (same for all employees)
Description The first employee (red) loads the pallet on cell [1, 0]

and stores on shelf [0, 8]. The second employee (blue)
loads the pallet on cell [5, 0] and stores on shelf [11,
7]. The third employee (green) loads the pallet on cell
[11, 0] and stores on shelf [7, 5]. A l l employees work
simultaneously.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
,•"">,
] j

L nlo; d

u nloa

L nloa d

Fig. 8.2: A n example of the scenario no. 09 from the first set.

8.4.2 Scenarios no. 11-20

The second set of scenarios also includes realistic scenarios of the warehouse work
flow. These relatively simple examples contain two types of trucks - fork-lift hand
pallet trucks and fork-lift low pallet trucks, which are able to store goods on shelves
on level 1 and 2 as well as on the ground level 0.

This set of scenarios is defined as follows. The trucks are of two types, as men
tioned in the previous paragraph. Each employee performs one simple task, collisions
of trucks are not taken into account, as well as the distance between the job and
the employee. The velocity of truck is a key parameter since two types of trucks
are used. Deployment of various truck types can also bring visible improvements in
terms of time processing of jobs even in simple scenarios. At the scale of entire shift

123

in the warehouse, many such simple optimizations can yield significant reductions
in the time required for processing the job buffer. A set of scenarios shares the
composition of trucks, employees, pallets and coordinates of jobs with the previous
set of scenarios. The example scenario from this set is described in Tab. 8.5 and it
can be seen in Fig. 8.3.

Tab. 8.5: A n example of the set of scenarios no. 11-20.

Scenario no. 17

Employees
1 x Handler sr. - coordinates [10, 0]
1 x Store-man sr. - coordinates [12, 1]

Equipment
1 x Fork-lift hand truck - coordinates [10, 0]
1 x Fork-lift low truck - coordinates [12, 1]

Description The first employee (red) loads the pallet on cell [1, 0]
and stores on shelf [7, 7]. The second employee (blue)
loads the pallet on cell [5, 0] and stores on shelf [7, 8].
A l l employees work simultaneously.

I1—4

>—i

0

D —

•>—

1

1
2 3 4

]

5 6 1 8 9 10 l i 12 13 14 15 16 17 18 19 20

™ 0

1

2

3

4

5

6

7

8

9

10

11

12

13

i t - | ™ 0

1

2

3

4

5

6

7

8

9

10

11

12

13

ft

™ 0

1

2

3

4

5

6

7

8

9

10

11

12

13

™ 0

1

2

3

4

5

6

7

8

9

10

11

12

13

™ 0

1

2

3

4

5

6

7

8

9

10

11

12

13

™ 0

1

2

3

4

5

6

7

8

9

10

11

12

13

™ 0

1

2

3

4

5

6

7

8

9

10

11

12

13

™ 0

1

2

3

4

5

6

7

8

9

10

11

12

13

i nip; d

™ 0

1

2

3

4

5

6

7

8

9

10

11

12

13

u nloa d

™ 0

1

2

3

4

5

6

7

8

9

10

11

12

13

™ 0

1

2

3

4

5

6

7

8

9

10

11

12

13

™ 0

1

2

3

4

5

6

7

8

9

10

11

12

13

™ 0

1

2

3

4

5

6

7

8

9

10

11

12

13

™ 0

1

2

3

4

5

6

7

8

9

10

11

12

13

Fig. 8.3: A n example of the scenario no. 17 from the second set.

124

8.4.3 Scenarios no. 21-30

The third set of scenarios represents more difficult situations or situations of the
previous sets of scenarios which were extended by further conditions. This set of
scenarios is defined as follows. The scenarios contain three types of trucks, the well-
known fork-lift hand pallet truck, the fork-lift low pallet truck and the fork-lift high
pallet truck. The fork-lift high pallet trucks are able to operate in racks with the
goods on the shelves up to level 9. These trucks are proportionately slower when
moving from place A to place B then other trucks, because they are more robust.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10

11

12

13

14

15

16

17

18

19

20

Hi

y
i nlo; d

nloa

L nloa d nloa

. nnn .

Fig. 8.4: A n example of the scenario no. 25 from the third set.

Furthermore, each employee performs only one simple task. The algorithm takes
into account the distance of the job and the employee, employee's performance and
truck's velocity. Thus, it is ensured that the employee with the fork-lift hand pallet

125

truck will not pass the routes disproportionately long compared to motorized pallet
trucks. This set of scenarios does not take into account collisions of the trucks yet.
The illustrative scenario is described in Tab. 8.6 and in Fig. 8.4.

Tab. 8.6: A n example of the set of scenarios no. 21-30.

Scenario no. 25

Employees
1 x Handler jr. - coordinates [4, 2]
1 x Store-man jr. - coordinates [6, 4]
1 x Store-man sr. - coordinates [2, 5]

Equipment
1 x Fork-lift hand truck - coordinates [4, 2]
2 x Fork-lift low truck - coordinates [6, 4]; [2, 5]

Description The first employee (red) loads the pallet on cell [9, 0]
and stores on shelf [13, 3]. The second employee (blue)
loads the pallet on cell [1,0] and stores on shelf [3, 12].
The third employee (green) loads the pallet on cell [1,
0] and stores on shelf [9, 5]. Then, the third employee
moves to cell [9, 20] and loads the pallet and stores it
on shelf [7, 12]. A l l employees work simultaneously.

Tab. 8.7: A n example of the set of scenarios no. 31-40.

Scenario no. 33

Employees
1 x Handler jr. - coordinates [4, 2]
1 x Store-man jr. - coordinates [6, 4]
2 x Store-man sr. - coordinates [2, 5]; [0, 8]

Equipment
1 x Fork-lift hand truck - coordinates [4, 2]
3 x Fork-lift low truck - coordinates [6, 4]; [2, 5]; [0, 8]

Description The first employee (red) loads the pallet on cell [9, 0]
and stores on shelf [13, 3]. The second employee (violet)
loads the pallet on cell [1, 0] and stores on shelf [3, 12]
then moves to cell [3, 20], loads the pallet and stores
on shelf [7, 13]. The third employee (green) loads the
pallet on cell [1, 0] and stores on shelf [9, 5]. Then, the
third employee moves to cell [9, 20], loads the pallet and
stores it on shelf [7, 12]. The fourth employee (blue)
loads another pallet on cell [3, 20] and stores on shelf
[7, 3], then moves to cell [9, 0], where another pallet
is waiting, and stores it on shelf [15, 9]. A l l employees
work simultaneously.

126

8.4.4 Scenarios no. 31-40

The fourth set of scenarios also contains quite complex examples. These are new
scenarios and also more advanced scenarios from the previous sets (the same sce
narios but in a wider time scale). Every employee in this set of scenarios fulfills
one or more jobs. Furthermore, the distance between the employee and the job and
the distance between the job and the prospective job are taken into account. In
addition, the performance of employees and the truck velocity are also covered as in
the previous sets of scenarios. In this set of scenarios, for the first time, collisions of
trucks are taken into account and the algorithm is trying to avoid them, or penal
ize solutions containing collisions. Notice that the trucks overlapping in the aisles
around the perimeter of the warehouse are not considered as collisions, since they
are wide aisles where the trucks can avoid each other (see Fig. 8.5 and Tab. 8.7).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

y
u n loa d

ft
t i i nl IX

i n l o ; d

J . n loa d I n l o ;

I n los d

m

Fig. 8.5: A n example of the scenario no. 33 from the fourth set.

127

8.4.5 Scenarios no. 41—60

The last set of scenarios contains twenty most complex and difficult cases represent
ing the warehouse work-flow, which are characterized mainly by the possibility of
cooperation of two or even more employees on one single job. The scenarios may
include trucks of all three types mentioned in the paragraphs above. Each employee
performs one single job or a list of jobs with the possibility of job sharing.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

I nloa
loat

d m
—1

L nloa d

id

6

njpa d

L nloc

-gas

Fig. 8.6: A n example of the scenario no. 54 from the fifth set.

Furthermore, the distance between the employee and the job and the distance
between the job and the prospective job are taken into account. In addition, the
performance of employees and the truck velocity are taken into account in the pre
vious set of scenarios. In this set of scenarios collision of trucks are again computed
and taken into account when the fitness function computes the suitability value.

128

The optimization algorithm tries to avoid all possible collisions, or penalize such
a solution. Trucks overlapping in the aisles around the perimeter of the warehouse
are not considered as collisions, since they are wide aisles where the trucks can avoid
each other. This set of scenarios model the worst case examples of the logistic ware
house work-flow without any simplification or condition relaxation. The illustrative
example is depicted in Fig. 8.6 and described in Tab. 8.8.

Tab. 8.8: A n example of the set of scenarios no. 41-60.

Scenario no. 54

Employees
2 x Store-man jr. - coordinates [12, 18]; [0; 6]
1 x Store-man sr. - coordinates [3, 20]

Equipment
2 x Fork-lift low truck - coordinates [12, 18]; [0; 6]
1 x Fork-lift high truck - coordinates [3, 20]

Description The first employee (red) loads the pallet on cell [17, 20]
and stores it on intermediate cell [9, 0] for processing by
another employee, then he moves to cell [17, 0], loads
the pallet and stores it on shelf [19, 4]. The second
employee (green) loads the pallet on intermediate cell
and moves it to cell [6, 5], then he continues to cell [3,
0] loads the pallet and stores it on shelf [3, 16]. The
third employee (blue) loads the pallet on intermediate
cell [6, 5] and stores it on shelf [5, 17]. A l l employees
work simultaneously.

8.5 The Test Set - Synthetic Data
Since the scenarios described in the previous section are quite short (they consist of
the units jobs), there is a need to construct more complex testing data consisting
of dozens or hundreds of jobs. This led to the design and implementation of the
synthetic data set generator which is able to generate such tests based on a few
input parameters. The generator consists of four classes, such as the NameGenerator
for generating the fictional names of employees, the GeneratorConfig which allows
to set the values of parameters, the Generator which generates single parts of the
warehouse work-flow, such as employees, equipment, commodities, and a list of jobs.
The last class is the BatchFile class which runs the synthetic data generator and
generates tests. The generator uses the same warehouse layout as the real data set
of scenarios. The simplified class diagram is depicted in Fig. 8.7.

129

S y n t h e t i c T e s t G e n e r a t o r

GeneratorConfig NameGenerator

- e m p l o y e e C o u n t : integer
- forkLi f tHandProbab : double
- forkLi f tLowProbab : double
- fo rkL i f tH ighProbab : double
- c o m m o d i t y C o u n t : integer
- job lnStoreProbab : double
- i n te rmed ia teProbab : double
- taskRelaxProbab : double

- names : String[]
- su rnames : String[]

+ getlMame()

Generator

- genConfig : GeneratorConf ig
- appConf ig : Appl icat ionConf ig
- resources : StorehouseResources
- map : S to rehouseMap
- close : List<String>
- employees : List<Employee>
- randomGen : Random

Batch File
- map : S to rehouseMap
- close : List<String>
- employees : List<Employee>
- randomGen : Random + runGenerator()
- generateEquipment()
- generateEmployees()
- generateCommodity()
- generateJobsRelax()
+ createUseCase()
+ runEvolution()

1

Fig. 8.7: The class diagram of the synthetic test set generator.

The most interesting part of the generator is the Generator class which operates
on the basis of several configuration parameters which are described in Tab. 8.9.
At first, the given number of employees is generated. The employees are assigned
the starting coordinates [x, y] which are always placed in some aisle, given by the
formula Eq. 8.1:

x = 2 x (i mod W ^ -) , (8.1)

where % stands for the number of employees which should be generated, decreased
by the number of already generated employees, and w stands for the width of the
warehouse (the number of cells in y axes), which is 21 in this case. The coordinate
y is generated at random in the range of the aisle. A l l coordinates which have
been already generated are placed in the close list, which prevents that two or more
employees will share the same cell on the map of warehouse. During the generation
process, the employee is also assigned a random name, surname, and a truck. The
type of truck is selected based on the input parameters of probability described in
Tab. 8.9. Notice that the probability here is the probability of truck occurrence of
all trucks. So, the 50% probability of fork-lift hand truck means that about 50 % of
all generated trucks are fork-lift hand trucks. The sum of all probabilities is 1.0.

130

The second part of the synthetic test generator deals with the commodity and job
generation. The commodity represents only one pallet. The start point as well as the
end point of commodity is generated and assigned to the newly generated job. The
number of jobs is directly connected to the number of commodities. Furthermore,
the type of job is generated, i.e. if the job is the in store or out store job, and there
is also possibility that the commodity is placed on an intermediate cell, and that it
must be moved in or out the store. The start point of commodity is generated by
the same formula as the employee's start point. The end point of the job can be the
rack, intermediate cell, or the warehouse gate, which is randomly selected.

Tab. 8.9: The configuration parameters of the synthetic test set generator.

Parameter Description

EmployeeCount The number of employees.
ForkLiftHandProbab The probability of fork-lift hand truck.
ForkLiftLowProbab The probability of fork-lift low truck.
ForkLiftHighProbab The probability of fork-lift high truck.
CommodityCount The number of commodities.
JoblnStoreProbab The probability that the job is the in store job.
IntermediateProbab The probability of where the commodity is placed.
TaskRelaxProbab The probability of TaskRelax occurrence in jobs.

131

9 M E A S U R E M E N T AND VALIDATION
This chapter describes the results of benchmarking. Section 9.1 describes results of
the real data set measured by the optimization algorithm and the comparison with
the results reached by the operational manager. The results of the real data set
proved the competitiveness of the system with the results reached by the operational
manager. Section 9.2 gives the results reached on the synthetic data sets. These
results of measurement are a great source for further improvement and optimization
of the proposed optimization algorithm, since the synthetic data are much more
complex and difficult than the data in the real data set.

9.1 The Results of Real Data Set

The parameters for controlling the run and the parameter representing the stop
condition were set according to the values depicted in Tab. 9.1. The precision of the
fitness function was not set, because this parameter is not used in the evolutionary
optimization algorithm adapted for the warehouse optimization problem.

A l l the measurements were applied to 20 individuals in 20 generations, which was
quite enough for a crashing majority of scenarios to outperform the results reached
by the operational manager or at least to reach the same level of performance. The
elitism was set to 5 %, so only the best individual of the population will be copied to
the new population without change. The rates of other operators were set to 60 %,
which gives a better chance to breed the population. The Split Job Mutation was
set to 10 % because this operator is applicable mostly in the most complex cases,
otherwise this operator could possibly cause a slower convergence to the solution in
simple cases. The high rate of mutations causes high computational demands, but
it is helpful during the breeding process. Finally, only 20 individuals survive in each
generation after the decimation process.

Tab. 9.1: The settings for controlling the run of the GP algorithm.

Population Size 20 individuals
Evolution Size 20 generations
Fitness Precision not set
Elitism Rate 5 %
PA Mutation Rate 60 %
JO Mutation Rate 60 %
SJ Mutation Rate 60 %
SW Mutation Rate 60 %
SP Mutation Rate 10 %

132

The first line (Operational Manager (OM)) in all tables (Tab. 9.2 - Tab. 9.7)
in the following five subsections represents the results reached by the operational
manager, which were set as the reference baseline. Other lines represent the measure
ments of the optimization algorithm. The measurements differ in the combinations
of the used genetic operators. The best results reached by the optimization algo
rithm are depicted in the orange colored box. Other results, the same level or the
worst level in comparison to the reference baseline, are depicted in the black colored
text. If the result reached by O M was outperformed or the same result was reached,
the O M result is in the red colored box. If the result reached by O M is better than
all results reached by the optimization algorithm, the O M result is in the green
colored box. This coloration is valid for all measurements in sections 9.1 and 9.2.

During the process of benchmarking and testing, all genetic operators were tested
alone, to see the performance of each single operator. Then, all pairs of genetic
operators were tested, all the triplets of operators, all the quartets of operators, and
in the last run of the algorithm all operators were tested together.

The results depicted in the following subsections show that each genetic operator
itself is competitive with the results of the operational manager. The combination
of genetic operators was used to get a wider variability in individuals across the
population and to gain more variants of solutions. In general, it can be concluded
that the use of all operators together reduces the computational performance, but the
results of the computations are better than the results of single operators, especially
in more complex and difficult situations.

During the development of the optimization algorithm various settings of the
algorithm were tested. Various sizes of population and various numbers of generation
steps were given under investigation. The 20 individuals in the population and 20
generation steps seem to be an optimal setting with respect to the computational
time and the precision of results for the purpose of testing scenarios 1 - 60. The
elitism rate was also tested, but when the population size is 20 individuals, 5 %
(one individual) is sufficient to maintain a non-decreasing character of the fittest
individual during the evolution process with the preserved diversity of population.

Furthermore, the rate of all mutation operators was given also under investiga
tion. It was proved that the rate of the mutation is not a key parameter as well
as the parameter used in the evolution process when the population size is only
20 individuals. Only one parameter is significantly different: the rate of the Split
Job Mutation. If the scenarios tested are quite simple, the operator can literally
break the jobs in to small sub-jobs and distribute them across the employees. This
behavior of the algorithm is not required in such simple tasks.

133

9.1.1 Scenarios no. 01—10

This subsection describes the results of the first ten scenarios. The results are
depicted in Tab. 9.2. As it can be seen from the table, all scenarios except no. 6
was outperformed at least by one single genetic operator or a combination of several
genetic operators. This gives 90 % precision of the first test set of scenarios. It must
be said that such good results were not expected in the simple scenarios like these.
The set represents only very simple scenarios where there is only a very limited space
for any optimization. The results in the table suggested that certain optimization
of scheduling can be done even in very simple cases.

Tab. 9.2: The results of the measurement of scenarios no. 01-10.
M e t h o d 1 2 3 4 5 6 7 8 9 10

O M 7.50

P A 7.00 8.17 8.17 8.17 6.83 7.83 7.67 5.33 6.83 8.00

J O 7.00 8.17 12.17 8.17 6.83 11.50 7.67 5.33 6.83 8.00

S J 7.00 8.17 12.17 8.17 6.83 11.50 7.67 5.33 6.83 8.00

sw 7.00 8.17 12.17 7.50 6.67 11.50 7.00 5.33 6.83 8.00

S P 7.00 8.17 12.17 8.17 6.83 11.50 7.67 5.33 6.83 8.00

P A , J O 7.00 8.17 8.17 8.17 6.83 10.67 7.67 5.33 6.83 8.00

P A , S J 7.00 8.17 8.17 8.17 6.83 7.83 7.67 5.33 6.83 8.00

P A , S W 7.00 8.17 7.00 8.17 6.67 7.83 7.67 5.33 6.83 8.00

P A , S P 7.00 8.17 8.50 8.17 6.83 7.83 7.67 5.33 6.83 8.00

J O , S J 7.00 8.17 12.17 8.17 6.83 11.50 7.67 5.33 6.83 8.00

J O , S W 7.00 8.17 12.17 8.17 6.83 7.67 7.00 5.33 6.83 8.00

J O , S P 7.00 8.17 13.17 8.17 6.83 11.50 7.67 5.33 6.83 8.00

S J , S W 7.00 8.17 13.17 8.17 6.67 7.67 7.00 5.33 6.83 8.00

S J , S P 7.00 8.17 12.17 8.17 6.83 11.50 7.67 5.33 6.83 8.00

S W , S P 7.00 8.17 12.17 8.17 6.83 11.50 7.67 5.33 6.83 8.00

P A , J O , S J 7.00 8.17 8.17 8.17 6.83 7.83 7.67 5.33 6.83 8.00

P A , J O , S W 7.00 8.17 6.50 8.17 6.83 7.83 7.67 5.33 6.83 8.00

P A , J O , S P 7.00 8.17 10.00 8.17 6.83 7.83 7.67 5.33 6.83 8.00

P A , S J , S W 7.00 8.17 7.00 8.17 6.83 7.83 7.00 5.33 6.83 8.00

P A , S J , S P 7.00 8.17 7.00 8.17 6.83 11.00 7.67 5.33 6.83 8.00

P A , S W , S P 7.00 8.17 7.00 8.17 6.83 7.83 7.67 5.33 6.83 8.00

J O , S J , S W 7.00 8.17 7.00 8.17 6.83 7.67 7.67 5.33 6.83 8.00

J O , S J , S P 7.00 8.17 12.17 8.17 6.83 11.50 7.67 5.33 6.83 8.00

J O , S W , S P 7.00 8.17 12.17 8.17 6.83 11.50 7.67 5.33 6.83 7.00

S J , S W , S P 7.00 8.17 12.17 8.17 6.67 11.50 7.67 5.33 6.83 8.00

P A , J O , S J , S W 7.00 8.17 12.83 8.17 6.83 7.67 7.67 5.33 6.83 8.00

P A , J O , S J , S P 7.00 8.17 12.83 8.17 6.83 7.83 7.67 5.33 6.83 8.00

P A , J O , S W , S P 7.00 8.17 7.17 8.17 6.83 7.83 7.67 5.33 6.83 8.00

P A , S J , S W , S P 7.00 8.17 8.17 8.17 6.83 7.83 7.00 5.33 6.83 7.00

J O , S J , S W , S P 7.00 8.17 12.17 8.17 6.83 11.50 7.67 5.33 6.83 8.00

A l l operators 7.00 8.17 7.17 8.17 6.83 7.83 7.67 5.33 6.83 8.00

A v e r a g e 7.00 8.17 10.01 8.15 6.81 9.36 7.56 5.34 6.84 7.94

V a r i a n c e 0,00 0,00 6,06 0,01 0,00 3,27 0,06 0,00 0,00 0,06

D e v i a t i o n 0.00 0.00 2.46 0.12 0.06 1.81 0.24 0.06 0.03 0.25

M o d e 7.00 8.17 12.17 8.17 6.83 7.83 7.67 5.33 6.83 8.00

M i n i m u m 7.00 8.17 6.50 7.50 6.67 7.50 7.00 5.33 6.83 7.00

M a x i m u m 7.00 8.17 13.17 8.17 6.83 11.50 7.67 5.67 7.00 8.17

134

9.1.2 Scenarios no. 11—20

This subsection shows the results of the second dozen of scenarios. The results are
depicted in Tab. 9.3. As it can be seen from the table, all the scenarios except no.
2 and no. 6 were outperformed, or the same level of performance was reached, at
least by one single genetic operator or a combination of several genetic operators.
This gives 80 % precision of the proposed optimization algorithm of the second set
of scenarios. As this is still quite a simple set of scenarios, no big improvement
of results was expected in comparison to the operational manager, but still, the
algorithm showed the competitiveness.

Tab. 9.3: The results of the measurement of scenarios no. 11-20.
M e t h o d 1 2 3 4 5 6 7 8 9 10

O M 7.33

P A 6.25 7.67 8.00 7.33 6.38 7.88 7.13 5.33 6.67 7.00

J O 6.25 7.67 10.88 7.33 6.38 10.63 7.13 5.33 6.67 7.00

S J 6.25 7.67 10.88 7.33 6.38 10.63 7.13 5.33 6.67 7.00

sw 6.25 7.67 10.88 5.13 6.38 10.63 7.13 5.33 6.67 7.00

S P 6.25 7.67 10.88 7.33 6.38 10.63 7.13 5.33 6.67 7.00

P A , J O 6.25 7.67 8.50 7.33 6.38 7.83 7.13 5.33 6.67 7.00

P A , S J 6.25 7.67 7.17 7.33 6.38 7.83 7.13 5.33 6.67 7.00

P A , S W 6.25 7.67 7.00 7.33 6.38 7.83 7.13 5.33 6.67 7.00

P A , S P 6.33 7.67 8.50 7.33 6.38 7.83 7.13 5.33 6.83 7.00

J O , S J 6.25 7.67 10.88 7.33 6.38 10.63 7.13 5.33 6.67 7.00

J O , S W 6.25 7.67 10.88 7.33 6.33 10.63 7.13 5.33 6.67 7.00

J O , S P 6.25 7.67 10.88 7.33 6.38 10.63 7.13 5.33 6.67 7.00

S J , S W 6.25 7.67 10.88 7.33 6.38 10.63 7.13 5.33 6.67 7.00

S J , S P 6.25 7.67 10.88 7.33 6.38 10.63 7.13 5.33 6.67 7.00

S W , S P 6.25 7.67 10.88 7.33 6.38 10.63 7.13 5.33 6.13 7.00

P A , J O , S J 6.25 7.67 7.00 7.33 6.38 7.83 7.13 5.33 6.67 7.00

P A , J O , S W 6.25 7.67 7.00 7.33 6.38 7.83 6.50 5.33 6.67 7.00

P A , J O , S P 6.25 7.67 7.00 7.33 6.38 7.88 7.13 5.33 6.67 7.00

P A , S J , S W 6.25 7.67 7.17 7.33 6.38 7.83 7.13 5.33 6.67 7.00

P A , S J , S P 6.25 7.67 7.17 7.33 6.38 7.83 7.13 5.33 6.67 7.00

P A , S W , S P 6.25 7.67 9.50 7.33 6.33 7.83 7.13 5.33 6.67 7.00

J O , S J , S W 6.25 7.67 10.88 7.33 6.38 10.63 6.50 5.33 6.67 7.00

J O , S J , S P 6.25 7.67 10.88 7.33 6.38 10.63 7.13 5.33 6.67 7.00

J O , S W , S P 6.25 7.67 10.88 7.33 6.33 10.63 7.13 5.33 6.67 7.00

S J , S W , S P 6.25 7.67 10.88 7.33 6.38 10.63 7.13 5.33 6.67 7.00

P A , J O , S J , S W 6.25 7.67 7.17 7.33 6.38 7.83 6.50 5.33 6.67 7.00

P A , J O , S J , S P 6.25 7.67 8.50 7.33 6.38 7.83 7.13 5.33 6.67 7.00

P A , J O , S W , S P 6.25 7.67 7.17 7.13 6.38 7.83 7.13 5.33 6.67 7.00

P A , S J , S W , S P 6.25 7.67 7.00 7.33 6.38 7.83 6.50 5.33 6.67 7.00

J O , S J , S W , S P 6.25 7.67 10.88 7.33 6.38 10.63 7.13 5.33 6.67 7.00

A l l operators 6.25 7.67 7.17 7.33 6.38 7.88 7.13 5.33 6.67 7.00

A v e r a g e 6.25 7.66 9.10 7.26 6.37 9.14 7.06 5.34 6.67 7.04

V a r i a n c e 0,00 0,00 3,08 0,15 0,00 1,96 0,05 0,00 0,01 0,04

D e v i a t i o n 0.01 0.06 1.76 0.38 0.01 1.40 0.23 0.03 0.12 0.20

M o d e 6.25 7.67 10.88 7.33 6.38 10.63 7.13 5.33 6.67 7.00

M i n i m u m 6.25 7.33 7.00 5.13 6.33 7.50 6.50 5.33 6.13 7.00

M a x i m u m 6.33 7.67 10.88 7.33 6.38 10.63 7.67 5.50 7.00 8.17

135

9.1.3 Scenarios no. 21—30

This subsection describes the results of the third dozen of scenarios. The results are
depicted in Tab. 9.4. As it can be seen from the table, all the scenarios except no. 9
was outperformed at least by one single genetic operator or a combination of several
genetic operators, which gives together 90 % precision of the optimization algorithm
of the third set of scenarios. Still, one scenario was not solved at the same level of
performance as it was solved by the operational manager.

Tab. 9.4: The results of the measurement of scenarios no. 21-30.
M e t h o d 1 0

20.38

23.13 24.63 16.63

27.33 24.83 16.63

26.88 23.50 16.63

27.17 21.25 16.63

27.00 24.83 16.63

21.75 23.33 15.63

21.75 20.75 14.88

20.63 23.00 17.13

24.00 22.13 15.38

25.83 23.83 14.88

26.13 21.25 16.13

27.88 23.33 15.63

27.17 23.33 14.88

26.63 22.88 15.38

25.00 23.50 15.38

22.13 20.75 15.13

22.63 22.13 16.63

22.38 22.88 16.88

22.13 21.25 15.63

22.38 21.13 16.63

23.13 22.13 16.63

27.00 23.50 14.88

27.33 23.33 15.13

26.88 24.17 16.63

26.25 24.00 16.63

21.50 20.75 14.88

22.13 20.75 15.63

23.00 23.00 15.38

22.88 20.50 16.63

27.00 23.75 11.50

22.38 22.75 15.88

P A

J O

SJ

sw
S P

P A , J O

P A , S J

P A , S W

P A , S P

J O , S J

J O , S W

J O , S P

S J , S W

S J , S P

S W , S P

P A , J O , S J

P A , J O , S W

P A , J O , S P

P A , S J , S W

P A , S J , S P

P A , S W , S P

J O , S J , S W

J O , S J , S P

J O , S W , S P

S J , S W , S P

P A , J O , S J , S W

P A , J O , S J , S P

P A , J O , S W , S P

P A , S J , S W , S P

J O , S J , S W , S P

A l l operators

10.38

10.00

9.83

10.00

10.00

10.83

10.25

10.83

10.00

9.83

11.00

10.25

10.00

9.83

9.83

9.83

10.38

9.83

9.83

10.00

9.83

10.00

10.00

10.00

9.83

10.50

9.83

9.83

9.83

9.83

11.67

11.67

11.67

11.67

11.67

11.67

11.67

11.67

11.67

11.67

11.67

11.67

11.67

11.67

11.67

11.67

11.67

11.67

11.67

11.67

11.67

11.67

11.67

11.67

11.67

11.67

11.67

11.67

11.67

11.67

13.00

14.83

14.83

14.83

15.33

14.13

13.00

13.00

13.75

14.00

14.00

14.83

10.63

14.83

14.83

14.00

13.38

13.75

13.00

12.50

12.50

14.00

14.83

14.00

14.00

12.50

12.88

12.50

13.75

11.63

12.50

11.50

11.50

11.50

11.50

11.50

11.50

11.50

11.50

11.50

11.50

11.50

11.50

11.50

11.50

11.50

11.50

11.50

11.50

11.50

11.50

11.50

11.50

11.50

11.50

11.50

11.50

11.50

6.38

11.50

12.63

12.63

11.88

12.63

12.63

12.50

11.50

12.63

12.63

11.88

11.88

12.50

11.88

12.50

12.63

11.88

12.63

11.50

11.50

11.50

12.63

11.88

11.88

11.88

11.88

11.50

11.88

12.75

11.50

11.88

11.50

12.00

11.83

11.17

12.00

12.00

12.00

12.00

12.00

12.00

11.17

12.00

12.00

12.00

11.83

12.00

11.17

11.17

12.00

12.00

11.17

12.00

11.17

11.17

11.17

11.83

11.17

11.88

12.00

11.17

11.38

11.63

19.50

20.75

19.50

20.88

20.50

20.00

21.50

19.83

20.63

20.63

20.13

19.50

19.88

19.25

16.33

19.83

19.25

19.83

19.25

18.17

19.88

19.83

21.63

16.00

20.50

18.75

18.17

19.83

20.75

16.17

20.63

A v e r a g e

V a r i a n c e

D e v i a t i o n

M o d e

M i n i m u m

M a x i m u m

9.99

0,43

0.65

9.83

6.83

11.00

11.49

0,97

0.99

11.67

6.00

11.67

13.60

1,12

1.06

14.83

10.63

15.33

11.19

3,31

1.82

11.50

6.38

17.00

12.14

0,25

0.50

11.88

11.50

13.38

11.70

0,15

0.38

12.00

11.17

12.25

19.61

1,84

1.36

19.83

16.00

21.63

24.40

5,44

2.33

27.00

20.63

27.88

22.61

1,81

1.34

23.33

20.38

24.83

15.81

1,14

1.07

16.63

11.50

17.13

136

9.1.4 Scenarios no. 31-40

This subsection describes the results of the fourth dozen of scenarios. The results
are depicted in Tab. 9.5. In this case, all the scenarios in the set were outperformed
for the first time at least by one single genetic operator or a combination of several
genetic operators, which is a great result of the optimization algorithm in the fourth
set of scenarios. The best results of this set were obtained by the combination of
operators, not any operator alone.

Tab. 9.5: The results of the measurement of scenarios no. 31-40.
M e t h o d 1 0

P A 16.00 16.13 15.13 14.00 10 75 16.00 23.38 19.17 24.75 14.00

J O 15.00 18.25 16.63 14.00 10 75 16.25 23.63 20.33 22.67 15.17

S J 14.83 17.75 16.63 14.00 10 75 16.00 24.00 18.88 21.63 13.17

sw 14.83 16.83 14.63 15.00 10 75 16.13 25.63 21.17 22.50 13.38

S P 14.83 18.38 16.63 14.83 10 75 15.00 28.00 18.88 24.13 15.00

P A , J O 14.83 18.00 13.25 15.67 10 75 14.67 25.50 17.33 23.25 13.00

P A , S J 14.83 16.25 16.13 15.00 10 75 13.63 22.38 16.83 23.00 14.83

P A , S W 14.25 15.88 16.13 15.00 10 75 12.75 21.75 17.67 20.75 13.38

P A , S P 14.83 18.38 15.75 14.00 10 75 16.00 24.25 18.17 21.67 13.50

J O , S J 14.83 17.00 17.00 14.00 10 75 14.67 22.63 19.88 22.38 13.38

J O , S W 14.83 16.13 16.63 14.67 10 75 16.00 26.00 20.17 23.13 13.17

J O , S P 15.00 19.50 17.00 14.83 10 75 16.00 23.00 19.33 24.13 13.33

S J , S W 14.83 16.13 16.63 14.00 10 75 10.25 24.38 18.88 22.33 13.83

S J , S P 14.83 16.83 17.00 14.00 10 75 14.50 23.88 18.88 22.33 13.17

S W , S P 14.83 19.38 17.00 15.00 10 75 15.00 24.50 21.38 22.83 13.88

P A , J O , S J 13.13 16.25 15.75 15.00 10 75 13.13 21.25 16.38 20.50 12.63

P A , J O , S W 14.38 16.13 14.13 15.00 10 75 16.13 22.00 17.33 21.67 15.33

P A , J O , S P 15.67 15.00 14.63 15.00 10 75 13.50 25.00 19.50 22.33 13.50

P A , S J , S W 13.13 14.13 15.25 12.00 10 75 12.75 22.13 18.33 22.50 13.00

P A , S J , S P 14.83 18.17 15.38 14.83 10 75 13.00 19.38 17.67 20.67 13.33

P A , S W , S P 14.50 16.50 15.88 14.00 10 75 14.50 22.00 13.63 19.50 13.17

J O , S J , S W 14.83 16.25 15.88 14.00 10 75 13.67 22.17 18.88 22.67 13.17

J O , S J , S P 14.83 16.13 17.25 15.00 10 75 13.67 22.88 19.33 22.13 13.50

J O , S W , S P 14.83 16.83 18.38 15.00 10 75 15.25 25.75 21.00 24.13 15.00

S J , S W , S P 12.33 18.67 16.88 15.00 10 75 15.13 22.50 19.38 22.50 13.38

P A , J O , S J , S W 13.13 14.75 13.83 14.00 10 75 13.00 23.00 18.17 20.88 13.38

P A , J O , S J , S P 15.00 15.38 16.63 14.00 10 75 13.50 20.50 20.33 20.25 13.50

P A , J O , S W , S P 8.67 16.63 14.88 15.33 10 75 14.33 22.50 20.17 21.67 11.67

P A , S J , S W , S P 13.13 14.63 14.50 14.00 10 75 13.00 23.00 18.00 21.00 11.88

J O , S J , S W , S P 14.83 16.25 15.88 14.00 8.38 14.67 21.25 18.88 13.25 13.17

A l l operators 13.63 15.17 15.50 14.00 10.75 12.83 22.63 17.67 18.75 11.67

A v e r a g e 14.33 16.62 15.85 14.51 10.68 14.33 23.16 18.65 21.69 13.49

V a r i a n c e 1,64 1,96 1,27 0,53 0,17 1,90 3,27 2,68 4,48 0,78

D e v i a t i o n 1.28 1.40 1.13 0.73 0.41 1.38 1.81 1.64 2.12 0.88

M o d e 14.83 16.13 16.63 14.00 10.75 16.00 22.63 18.88 22.50 13.38

M i n i m u m 8.67 14.13 13.25 12.00 8.38 10.25 19.38 13.63 13.25 11.67

M a x i m u m 16.00 19.50 18.38 16.00 10.75 16.25 28.00 21.38 24.75 15.33

137

9.1.5 Scenarios no. 41—60

This subsection describes the results of the last set of scenarios. This set is twice
bigger than the previous sets. It contains 20 examples in total. The results are
depicted in Tab. 9.6 and Tab. 9.7. In this case, all the scenarios in the set were
outperformed at least by one single genetic operator or by a combination of several
genetic operators, which give great results in the last set of scenarios. The best
results of this set were obtained by the combination of operators to which no single
operator can compete. Since these are quite complex scenarios, the best time reached
by the optimization algorithm was obtained by the combinations of operators.

Tab. 9.6: The results of the measurement of scenarios no. 41-50.
M e t h o d 1 2 3 4 5 6 7 8 9 10

O M

P A 14.25 7.88 8.00 8.00 7.50 7.13 16.88 11.50 8.17 13.00

J O 12.38 7.88 8.00 8.00 7.75 7.13 16.38 12.00 8.17 12.00

S J 12.38 7.88 8.00 8.00 7.75 7.13 16.38 12.00 8.17 12.00

sw 9.50 7.88 8.00 8.00 7.75 7.13 16.88 12.00 8.17 13.00

S P 14.25 7.88 8.00 8.00 7.75 7.13 16.88 12.00 8.17 13.00

P A , J O 12.38 7.88 8.00 8.00 7.50 7.13 16.38 11.50 8.17 12.00

P A , S J 12.38 7.88 8.00 8.00 7.50 7.13 16.38 11.50 8.17 12.00

P A , S W 14.25 7.88 8.00 8.00 7.50 7.13 16.88 11.63 8.17 13.00

P A , S P 14.25 7.88 8.00 8.00 7.50 7.13 16.88 11.50 8.17 13.00

J O , S J 12.38 7.88 8.00 8.00 7.75 7.13 16.38 12.00 8.17 12.00

J O , S W 9.50 7.88 8.00 8.00 7.75 7.13 16.38 12.00 8.17 12.00

J O , S P 12.38 7.88 8.00 8.00 7.75 7.13 16.38 12.00 8.17 13.25

S J , S W 12.38 7.88 8.00 8.00 7.75 7.13 16.38 12.00 8.17 12.00

S J , S P 12.38 7.88 8.00 8.00 7.75 7.13 16.38 12.00 8.17 12.63

S W , S P 14.25 7.88 8.00 8.00 7.75 7.13 16.88 12.00 6.25 13.00

P A , J O , S J 12.38 7.88 8.00 8.00 7.50 7.13 16.38 11.50 8.17 12.00

P A , J O , S W 12.38 7.88 8.00 8.00 7.50 7.13 16.38 11.50 8.17 13.00

P A , J O , S P 12.38 7.88 8.00 8.00 7.50 7.13 16.38 11.50 8.17 12.00

P A , S J , S W 12.38 7.88 8.00 8.00 7.50 7.13 16.38 11.50 8.17 12.00

P A , S J , S P 12.38 7.88 8.00 8.00 7.50 7.13 16.38 11.50 8.17 12.00

P A , S W , S P 14.25 7.88 8.00 8.00 7.50 7.13 16.88 11.50 8.17 13.00

J O , S J , S W 12.38 7.88 8.00 8.00 7.75 5.67 16.38 12.00 8.17 12.00

J O , S J , S P 12.38 7.88 8.00 8.00 7.75 7.13 16.38 12.00 8.17 12.00

J O , S W , S P 12.38 7.88 8.00 8.00 7.75 7.13 16.38 12.00 8.17 12.88

S J , S W , S P 9.50 7.88 8.00 8.00 7.75 6.00 16.75 12.00 8.17 12.88

P A , J O , S J , S W 12.38 7.88 8.00 8.00 7.50 7.13 16.38 11.50 8.17 12.63

P A , J O , S J , S P 12.38 7.88 8.00 8.00 7.50 7.13 16.38 11.50 8.17 12.00

P A , J O , S W , S P 12.38 7.88 8.00 8.00 7.50 7.13 16.75 11.50 8.17 12.00

P A , S J , S W , S P 12.38 7.88 8.00 8.00 7.50 7.13 16.38 10.00 8.17 12.88

J O , S J , S W , S P 9.50 7.88 8.00 8.00 7.75 7.13 16.38 12.00 8.17 12.00

A l l operators 12.38 7.88 8.00 8.00 7.50 7.13 16.38 11.50 8.17 12.00

A v e r a g e 12.55 7.99 8.23 8.09 7.89 7.16 16.84 12.03 8.37 12.75

V a r i a n c e 2,74 0,40 1,70 0,27 2,34 0,52 3,30 3,52 2,24 3,45

D e v i a t i o n 1.66 0.63 1.30 0.52 1.53 0.72 1.82 1.88 1.50 1.86

M o d e 12.38 7.88 8.00 8.00 7.50 7.13 16.38 12.00 8.17 12.00

M i n i m u m 9.50 7.88 8.00 8.00 7.50 5.67 16.38 10.00 6.25 12.00

M a x i m u m 18.25 11.50 15.50 11.00 16.38 10.75 26.88 22.25 16.50 22.75

138

As the examples represent really complex and difficult situations, the combina
tions of genetic operators gave very different results as it can be seen from the results
of variance and standard deviation. This means that more difficult situations can
result in many possible solutions, but of course, not all of them are considered as
good results, even if they outperformed the reference baseline, because there are
much better results given by the other combinations of genetic operators.

Tab. 9.7: The results of the measurement of scenarios no. 51-60.
M e t h o d 1 2 3 4 5 6 7 8 9 10

O M 31.88 27.88 33.50 20.00 29.25 27.50 30.13 37.13 26.38 32.17

P A 18.50 26.00 24.88 13 50 21.50 14.75 12.75 17.63 13.63 13.13

J O 20.38 27.13 25.63 15 75 24.50 14.75 12.83 17.63 13.63 12.63

S J 20.17 26.00 24.88 15 75 24.00 14.75 12.83 17.63 13.63 12.63

sw 21.50 26.00 24.88 15 75 24.00 13.75 12.75 17.83 13.63 13.13

S P 21.50 26.00 26.33 15 75 24.63 14.75 12.83 17.63 13.63 12.63

P A , J O 20.50 23.63 23.63 13 50 23.13 14.75 12.83 17.83 13.63 12.63

P A , S J 17.50 25.13 25.00 13 50 20.38 14.75 11.50 17.63 13.63 12.63

P A , S W 18.88 25.83 24.00 13 50 21.50 14.75 11.50 17.88 13.63 12.63

P A , S P 18.83 25.50 26.13 13 50 21.50 14.75 12.83 17.63 13.63 12.63

J O , S J 20.17 25.50 25.63 15 75 23.88 14.75 12.83 17.63 13.63 12.63

J O , S W 22.00 26.00 27.63 15 75 24.00 15.50 12.83 17.63 13.63 12.63

J O , S P 21.50 27.38 27.63 15 75 23.88 14.75 12.83 17.63 13.63 12.63

S J , S W 20.38 25.83 26.13 15 75 23.88 13.75 12.83 17.63 13.63 12.63

S J , S P 21.00 26.63 27.88 15 75 24.00 14.75 12.83 17.63 13.63 12.63

S W , S P 21.00 26.00 28.38 15 75 24.00 14.75 12.83 17.63 13.63 13.88

P A , J O , S J 17.75 24.25 23.88 13 50 21.50 14.75 11.50 17.75 13.63 12.63

P A , J O , S W 18.75 23.83 23.50 13 50 25.00 14.75 11.50 17.88 13.63 12.63

P A , J O , S P 17.25 24.00 25.38 13 50 24.75 14.75 11.50 18.25 13.63 13.13

P A , S J , S W 18.67 23.75 23.88 11.25 21.50 14.75 11.50 18.25 13.63 12.63

P A , S J , S P 17.83 23.17 23.00 11.25 23.88 14.75 11.50 18.67 13.63 12.63

P A , S W , S P 18.25 23.50 23.75 11.25 25.75 14.75 11.50 17.63 13.63 13.13

J O , S J , S W 20.75 21.75 22.33 15.75 24.50 14.75 12.83 17.63 13.63 12.63

J O , S J , S P 21.00 26.63 24.88 15.75 24.00 14.75 12.83 17.63 13.63 12.63

J O , S W , S P 20.38 27.38 26.13 15.75 24.50 14.75 12.83 17.63 13.63 12.63

S J , S W , S P 18.25 26.63 28.38 15.75 24.63 14.75 12.83 12.88 13.63 13.13

P A , J O , S J , S W 15.25 24.50 26.25 13.50 21.50 13.25 12.75 17.63 13.63 12.63

P A , J O , S J , S P 17.00 23.25 24.00 11.63 22.75 14.75 12.75 17.63 13.63 12.88

P A , J O , S W , S P 19.00 21.25 24.17 13.50 23.38 14.75 11.50 17.63 13.63 12.63

P A , S J , S W , S P 17.25 25.88 25.75 13.50 19.88 14.75 11.50 17.63 13.63 12.63

J O , S J , S W , S P 21.33 26.00 27.88 15.75 24.63 14.75 11.50 18.25 13.63 12.63

A l l operators 15.63 24.13 24.50 11.25 21.50 14.75 11.50 17.83 13.63 12.63

A v e r a g e 19.69 25.20 25.62 14.42 23.49 15.06 12.86 18.22 14.02 13.36

V a r i a n c e 7,87 2,53 4,51 3,59 3,20 5,13 10,01 12,32 4,92 11,48

D e v i a t i o n 2.81 1.59 2.12 1.90 1.79 2.27 3.16 3.51 2.22 3.39

M o d e 20.38 26.00 24.88 15.75 21.50 14.75 12.83 17.63 13.63 12.63

M i n i m u m 15.25 21.25 22.33 11.25 19.88 13.25 11.50 12.88 13.63 12.63

M a x i m u m 31.88 27.88 33.50 20.00 29.25 27.50 30.13 37.13 26.38 32.17

139

9.2 The Results of Synthetic Data Set
The parameters for controlling the run and the parameter representing the stop
condition were set according to the values depicted in Tab. 9.8. The precision of the
fitness function was not set, because this parameter is not used in the evolutionary
optimization algorithm adapted for the warehouse optimization problem.

Both measurements were applied again to 20 individuals in 20 generations. Both
measurements were started 5 times for all combinations of operators and arithmeti
cally averaged (Avg Duration), and for the information, the collisions were counted
and also arithmetically averaged (Avg Collisions). The algorithm was set as follows.
The elitism remained the same (5 %), so only the best individual of the population
was copied to the new population without change. The first example contains 20
employees in a shift and 50 jobs in the buffer. The rates of genetic operators were
set to 20 % or 60 %. The second example contains 20 employees and 100 jobs in the
buffer. The rates of genetic operators were set to 20 % or 80 % to prove that quite
nothing will change when the rate of mutation will by slightly higher (60 % in the
first case or 80 % in the second case).

Tab. 9.8: The settings for controlling the run of the GP algorithm.

Population Size 20 individuals
Evolution Size 20 generations
Fitness Precision not set
Elitism Rate 5 %
PA Mutation Rate Tab. 9.9 = 20/60 % / Tab. 9.10 = 20/80 %
JO Mutation Rate Tab. 9.9 = 20/60 % / Tab. 9.10 = 20/80 %
SJ Mutation Rate Tab. 9.9 = 20/60 % / Tab. 9.10 = 20/80 %
SW Mutation Rate Tab. 9.9 = 20/60 % / Tab. 9.10 = 20/80 %
SP Mutation Rate Tab. 9.9 = 20/60 % / Tab. 9.10 = 20/80 %

After several weeks of testing, the results of the optimization algorithm were
obtained. After the final testing and optimization of algorithm, the last measure
ment of averaged values took 2 days 18 hours 36 minutes (238907 s). The results of
the example of 20 employees and 50 jobs are given in Tab. 9.9. The results of the
example of 20 employees and 100 jobs are given in Tab. 9.10. Three best results
are highlighted in the orange colored box in each table. A l l results were measured
on the Intel C2D E8400 architecture, 8GB R A M . The algorithm, more particularly
the initialization method of evolutionary process generating all individuals, and the
application of mutation operators during the evolution, was done in 8 threads.

140

Tab. 9.9: The results of measurement of the synthetic scenario generated with 20

employees and 50 jobs. A l l combinations of genetic operators were tested with 20

% and 60 % of the mutation rate.

Emps Jobs PA JO SJ SW SP Avg Duration Avg Collisions
20 50 0,20 0,20 0,20 0,20 0,20 37,50 318
20 50 0,60 0,20 0,20 0,20 0,20 38,03 329
20 50 0,20 0,60 0,20 0,20 0,20 35,79 344
20 50 0,60 0,60 0,20 0,20 0,20 36,06 334
20 50 0,20 0,20 0,60 0,20 0,20 35,75 326
20 50 0,60 0,20 0,60 0,20 0,20 36,54 327
20 50 0,20 0,60 0,60 0,20 0,20 37,49 339
20 50 0,60 0,60 0,60 0,20 0,20 36,43 375
20 50 0,20 0,20 0,20 0,60 0,20 36,91 369
20 50 0,60 0,20 0,20 0,60 0,20 37,01 341
20 50 0,20 0,60 0,20 0,60 0,20 38,05 327
20 50 0,60 0,60 0,20 0,60 0,20 37,50 315
20 50 0,20 0,20 0,60 0,60 0,20 38,03 334
20 50 0,60 0,20 0,60 0,60 0,20 36,32 342
20 50 0,20 0,60 0,60 0,60 0,20 36,09 349
20 50 0,60 0,60 0,60 0,60 0,20 36,83 328
20 50 0,20 0,20 0,20 0,20 0,60 35,00 324
20 50 0,60 0,20 0,20 0,20 0,60 38,88 305
20 50 0,20 0,60 0,20 0,20 0,60 38,68 323
20 50 0,60 0,60 0,20 0,20 0,60 35,70 329
20 50 0,20 0,20 0,60 0,20 0,60 36,05 316
20 50 0,60 0,20 0,60 0,20 0,60 36,28 359
20 50 0,20 0,60 0,60 0,20 0,60 37,24 311
20 50 0,60 0,60 0,60 0,20 0,60 38,06 318
20 50 0,20 0,20 0,20 0,60 0,60 38,91 320
20 50 0,60 0,20 0,20 0,60 0,60 37,93 355
20 50 0,20 0,60 0,20 0,60 0,60 35,88 337
20 50 0,60 0,60 0,20 0,60 0,60 38,06 324
20 50 0,20 0,20 0,60 0,60 0,60 38,72 311
20 50 0,60 0,20 0,60 0,60 0,60 35,22 352
20 50 0,20 0,60 0,60 0,60 0,60 37,37 349
20 50 0,60 0,60 0,60 0,60 0,60 36,81 349

Average 37.03 333.77
Variance 1.17 286.25

Deviation 1.08 16.92
Mode 37.50 333.80

Min imum 35.00 305.40
Maximum 38.91 375.40

141

Tab. 9.10: The results of measurement of the synthetic scenario generated with 20

employees and 100 jobs. A l l combinations of genetic operators were tested with 20

% and 60 % of the mutation rate.

Emps Jobs PA JO SJ SW SP Avg Duration Avg Collisions
20 100 0,20 0,20 0,20 0,20 0,20 73,67 721
20 100 0,80 0,20 0,20 0,20 0,20 73,38 705
20 100 0,20 0,80 0,20 0,20 0,20 71,67 731
20 100 0,80 0,80 0,20 0,20 0,20 67,50 783
20 100 0,20 0,20 0,80 0,20 0,20 72,50 797
20 100 0,80 0,20 0,80 0,20 0,20 64,67 711
20 100 0,20 0,80 0,80 0,20 0,20 79,50 687
20 100 0,80 0,80 0,80 0,20 0,20 61,50 637
20 100 0,20 0,20 0,20 0,80 0,20 68,00 603
20 100 0,80 0,20 0,20 0,80 0,20 62,50 643
20 100 0,20 0,80 0,20 0,80 0,20 73,50 637
20 100 0,80 0,80 0,20 0,80 0,20 74,33 663
20 100 0,20 0,20 0,80 0,80 0,20 68,00 547
20 100 0,80 0,20 0,80 0,80 0,20 73,75 739
20 100 0,20 0,80 0,80 0,80 0,20 67,88 690
20 100 0,80 0,80 0,80 0,80 0,20 66,38 680
20 100 0,20 0,20 0,20 0,20 0,80 72,00 740
20 100 0,80 0,20 0,20 0,20 0,80 69,50 637
20 100 0,20 0,80 0,20 0,20 0,80 74,63 612
20 100 0,80 0,80 0,20 0,20 0,80 77,50 800
20 100 0,20 0,20 0,80 0,20 0,80 78,75 624
20 100 0,80 0,20 0,80 0,20 0,80 68,67 774
20 100 0,20 0,80 0,80 0,20 0,80 68,63 677
20 100 0,80 0,80 0,80 0,20 0,80 80,63 743
20 100 0,20 0,20 0,20 0,80 0,80 72,17 680
20 100 0,80 0,20 0,20 0,80 0,80 77,50 736
20 100 0,20 0,80 0,20 0,80 0,80 71,63 681
20 100 0,80 0,80 0,20 0,80 0,80 72,63 747
20 100 0,20 0,20 0,80 0,80 0,80 70,00 683
20 100 0,80 0,20 0,80 0,80 0,80 71,33 728
20 100 0,20 0,80 0,80 0,80 0,80 69,67 750
20 100 0,80 0,80 0,80 0,80 0,80 65,25 668

Average 71.22 695.44
Variance 21.25 3454.68

Deviation 4.61 58.78
Mode 77.50 637.00

Min imum 61.50 547.00
Maximum 80.63 800.00

142

10 CONCLUSION
This chapter gives a conclusion to the submitted doctoral thesis. Section 10.1 de
scribes the discussion of the results reached by the proposed optimization algorithm,
based on GP driven by the C F G . The results reached on the real and synthetic data
are presented. Section 10.2 describes the summary of the thesis, the contribution to
the area of scheduling and the final evaluation of results. And the last section 10.3
gives the ideas of future work which could possibly extend the proposed solution.
This thesis also represents a part of the project reg. no. FR-TI1/444 "Research
and Development of the System for Manufacturing Optimization" which was led by
principal investigator Prof. Ing. Zdenek Smekal, CSc.

10.1 Discussion of Results

The optimization algorithm showed very good results of the measurements of the
real data set. The overall performance of the optimization algorithm reached 93.33
%, which means that the results of the operational manager were outperformed
in 56 cases of the total number of 60 scenarios. The first three sets of scenarios
reached only 86.67 %, but only because the scenarios in these sets are very simple
case studies. It is worth of noting that in such simple scenarios the improvement
of solution was not expected at all. The results worst or on the same level of
performance as the operational manager were expected in these cases.

In fact, it is quite surprising that the algorithm was capable to find the solution
which is better than the original one reached by the operational manager, because
the scenarios represent such simple cases where the space for further optimization is
almost unrecognizable. The second three sets of scenarios represent complex cases
of scheduling problems. In these cases, the recognizable optimization was expected,
because these cases are quite difficult to solve with conventional methods used in
warehouses in an optimal way. In this cases, all results reached by the operational
manager were outperformed by the proposed optimization algorithm.

The results reached on the real data sets depicted in section 9.1 show that any
single operator can be used alone on both the very simple scenarios and the complex
scenarios, but the performance of only one single operator, no matter which, is better
in simple cases. More complicated scenarios should be optimized by the combination
of at least two or three genetic operators, but the more operators used the better
result should be obtained and the diversity of population will be supported.

The results reached on the synthetic data sets presented in section 9.2 show that
the time of processing of job buffer increases linearly. It is also shown that the
setting of mutation rate higher than 20 % does not have a significant impact on the

143

results. The only influenced factor is a computational time which rapidly decreases
with a higher rate of mutations.

10.2 Summary of Thesis

The goals stated in chapter 3 were reached. The human factor was involved in the
optimization parameters, which enhanced the standard mathematical model (see
chapter 4). So, the performance of particular employees was taken into account
which could positively influence the processing time of the scheduling of jobs. The
multi-criteria fitness function was involved in the optimization process.

The fitness function can respect multiple criteria now. The function works with
respect to the optimization of time processing, the balanced workload of employ
ees, and the number of collisions of trucks. The variability of time planning and
simulation was implemented. The simulation is capable to schedule the work for a
few next minutes as well as for the whole working shift, or also longer time inter
vals, which of course is much more time consuming. The possibility of co-operative
jobs was analyzed, designed, and implemented to the optimization algorithm as one
of the genetic operators. The co-operative jobs helps to solve situations when one
employee is able to do only a part of job and another employee has to finish the job.

New Evolutionary Framework, which is able to run on genetic programming
algorithms driven by context-free grammar was developed as flexible and robust
as possible. The Evolutionary Framework was tested also on different tasks where
the validity of this solution was proved. The last, but not least, the goal was
to design and to implement benchmark tests, which would prove the functionality
of the proposed solution and prove that the hypothesis is true. The design and
implementation of benchmark test was done and the results of measurement proved
that the proposed optimization algorithm is competitive to the operational manager,
the results were outperformed in 93.33 % of cases, which leaves a little space for
further development of the evolutionary optimization algorithm.

Of course, the deployment of the algorithm is not suitable in all situations.
If the scenarios are quite simple (small warehouses with units of employees), the
performance of the algorithm is not so good as in the complex scenarios with diffi
cult situations, dozens of employees and trucks. Even if the proposed algorithm is
not suitable in all warehousing environments, the main goal of the doctoral thesis
"substantial increase of productivity and reduction of operating costs"
was reached and the hypothesis was proved to be true.

144

The main contributions of the proposed doctoral thesis are:

a) A comprehensive literature review of the warehouse optimization connected
to the scheduling problems and the vehicle routing problem was written in chap
ter 2. The basics found in the literature helped to define the hypothesis and goals
(chapter 3), and to extend the mathematical model (chapter 4 for the warehouse
work-flow optimization with the help of employees' performance which positively
influences the processing time of the scheduling process.

b) The new, extensible, flexible, and multi-platform Evolutionary Framework
with the computational core based on GP driven by the C F G was developed, imple
mented, and validated (chapter 6). The framework is based on the existing G G G P
approach presented also in this chapter.

c) The new algorithm for the warehouse work-flow optimization problem (chap
ter 7) based on the proposed framework (chapter 6) was developed and supported by
several new genetic operators, which give the possibility of co-operative job process
ing. The fitness function can respect multiple criteria, such as the time of processing
of the whole job buffer (the makespan), balanced workload of employees, and the
number of collisions of trucks (chapter 5).

d) The problem of the warehouse work-flow optimization was described along
with the motivation to solve the problem. The set of benchmark tests was created
as well as the evaluation process. These together give the reference baseline of the
results for the optimization (chapter 8).

The most interesting part of the thesis is a design of the optimization algorithm,
which uses a new technology in the form of the high-level object oriented genetic
programming, designed specially for this thesis. Such a solution can find the appli
cations not only in the field of optimization of logistics environments, but also in
e.g. manufacturing companies where the guarantee of smooth flow of material and
flow of individual components must be ensured. The effort is made to prevent shut
downs and/or production interruptions and bring significant cost savings not only
to manufacturing company, but also to other business partners in logistics chain.

10.3 Future of the Work

The future research will be focused on the dispatching rules. The rules will be
investigated and implemented to the optimization algorithm. The aim of this work
is to connect the logical priorities of the dispatching rules with the randomized
process of GP. The individuals could be generated based on randomized process
inspired by G B I M , the evolution process could work on the basis of genetic operators

145

designed for the purpose of this thesis, but the evolution would be supported in every
nth step by the dispatching rules which could improve the results.

The further research will also include the genetic operators themselves, the set
tings of the algorithm with newly applied operators and the optimization of the
performance in the way of memory management and computational performance.
Currently, the algorithm works as a simultaneous algorithm as well as a parallel
algorithm in t threads. The future work could deploy the distributed model of
the algorithm. Of course, when the algorithm is being developed, the test sets and
benchmarking tasks have also to be developed. So, the real data set will be regularly
extended on the basis of historical operational data from the logistic environment.

146

BIBLIOGRAPHY
[1] Leo Liberti and Nelson Maculan, Global Optimization: From Theory to Im

plementation, Springer, February 1 2006, ISBN-13: 978-0387282602.

[2] Thomas Weise, Global Optimization Algorithms - Theory and Application,
Thomas Wiese, 3rd edition, Apri l 24 2011.

[3] James A . Tompkins, John A. White, Yavuz A . Bozer, and J. M . A . Tanchoco,
Facilities Planning, Wiley, January 19 2010, ISBN-13: 978-0470444047.

[4] Bernhard Korte and Jens Vygen, Combinatorial Optimization: Theory and
Algorithms, Spring, 5th edition, January 10 2012, ISBN-13: 978-3642244872.

[5] Joseph-Frederic Bonnans, Jean Charles Gilbert, Claude Lemarechal, and Clau
dia A . Sagastizabal, Numerical Optimization: Theoretical and Practical As
pects, Springer, 2nd edition, November 13 2006, ISBN-13: 978-354035445.

[6] Michael T. Hompel and Thorsten Schmidt, Warehouse Managmenet - Automa
tion and Organisation of Warehouse and Order Picking Systems, Springer-
Verlag Berlin Heidelberg, 2007, ISBN-13: 971-3-540-35218-1.

[7] Jinxiang Gu, Marc Goetschalckx, and Leon F. McGinnis, "Research on ware
house design and performance evaluation: A comprehensive review," European
Journal of Operational Research, vol. 203, no. 3, pp. 539-549, 2010.

[8] Franco Caron, Gino Marchet, and Alessandro Perego, "Optimal layout in low-
level picker-to-part systems," International Journal of Production Research,
vol. 38, no. 1, pp. 101-117, 2000.

[9] Kees Jan Roodbergen and Rene de Koster, "Routing methods for warehouses
with multiple cross aisles," International Journal of Production Research, vol.
39, no. 9, pp. 1865-1883, 2001.

[10] Kees Jan Roodbergen and Rene de Koster, "Routing order pickers in a ware
house with a middle aisle," European Journal of Operational Research, vol.
133, no. 1, pp. 32-43, 2001.

[11] John J . Bartholdi and Steven T. Hackman, Warehouse & Distribution Science,
Georgia Institute of Technology, School of Industrial and Systems Engineering,
The Supply Chain and Logistics Institute, August 22 2011, Release: 0.95.

[12] Rene de Koster, Tho Le-Duc, and Kees Jan Roodbergen, "Design and con
trol of warehouse order picking: A literature review," European Journal of
Operational Research, vol. 182, no. 2, pp. 481-501, 2007.

147

[13] Sunderesh S. Heragu, Facilities Design, C R C Press, 3rd edition, June 19 2008,
ISBN-13: 978-1420066265.

[14] Kevin R. Gue and Russell D. Meller, "Aisle configurations for unit-load ware
houses," HE Transactions, vol. 41, no. 3, pp. 171-182, 2009.

[15] Letitia M . Pohl, Russell D. Meller, and Kevin R. Gue, "An analysis of dual-
command operations in common warehouse designs," Transportation Research
Pari E: Logistics and Transportation Review, vol. 45, no. 3, pp. 367-379, 2009.

[16] Letitia M . Pohl, Russell D. Meller, and Kevin R. Gue, "Optimizing fishbone
aisles for dual-command operations in a warehouse," Naval Research Logistics,
vol. 56, no. 5, pp. 389-403, 2009.

[17] Kevin R. Gue, Goran Ivanovic, and Russell D. Meller, " A unit-load warehouse
with multiple pickup and deposit points and non-traditional aisles," Trans
portation Research Part E: Logistics and Transportation Review, vol. 48, no.
4, pp. 795-806, 2012.

[18] K . Gue, R. Meller, and J. Skufca, "The effects of pick density on order picking
areas with narrow aisles," HE Transactions, vol. 38, no. 10, pp. 859-868, 2006.

[19] M . Napolitano, "Real dc stories: Low cost deep impact," Logistics Manage
ment, vol. 48, no. 1, pp. 46-49, 2009.

[20] John J. Bartholdi and Loren K . Platzman, "Retrieval strategies for a carousel
conveyor," HE Transactions, vol. 18, no. 2, pp. 166-173, 1986.

[21] Jay B. Ghosh and Charles E. Wells, "Optimal retrieval strategies for carousel
conveyors," Math, and Computer Modelling, vol. 16, no. 10, pp. 59-70, 1992.

[22] Nelly Litvak, "Optimal picking of large orders in carousel systems," Operations
Research Letters, vol. 34, no. 2, pp. 219-227, 2006.

[23] Jeroen P. Van Den Berg, "Multiple order-pick sequencing in a carousel system:
A solvable case of the rural postman problem," The Journal of the Operational
Research Society, vol. 47, no. 12, pp. 1504-1515, December 1996.

[24] Raymond G. Vickson and Allen Fujimoto, "Optimal storage locations in a
carousel storage and retrieval system," Location Science, vol. 4, no. 4, pp.
237-245, 1996.

[25] Yavuz A . Bozer and John A . White, "Travel-time models for automated
storage/retrieval systems," HE Trans., vol. 16, no. 4, pp. 329-338, 1984.

148

[26] Yavuz A . Bozer and John A. White, "Design and performance models for
end-of-aisle order picking systems," Management Science, vol. 36, no. 7, pp.
852-866, July 1990.

[27] Ya-Hong Hu, Shell Ying Huang, Chuanyu Chen, Wen-Jing Hsu, A h Cheong
Toh, Chee Kit Loh, and Tiancheng Song, "Travel time analysis of a new
automated storage and retrieval system," Computers & Operations Research,
vol. 32, no. 6, pp. 1515-1544, 2005.

[28] Tone Lerher, Iztok Potrč, Matjaž Sraml, and Tomaž Tollazzi, "Travel time
models for automated warehouses with aisle transferring storage and retrieval
machine," European Journal of Operational Research, vol. 205, no. 3, pp.
571-583, 2010.

[29] J. L. Haskett, "Cube-per-order index - a key to warehouse stock location,"
Transportation and Distribution Management, vol. 3, no. 1, pp. 27-31, 1963.

[30] Charles G. Petersen, "An evaluation of order picking routeing policies," In
ternational Journal of Operations & Production Management, vol. 17, no. 11,
pp. 1098-1111, 1997.

[31] H. Brynzer and M . I. Johansson, "Storage location assignment: Using the
product structure to reduce order picking times," International Journal of
Production Economics, vol. 46, no. 1, pp. 595-603, December 1996.

[32] Ronald J. Mantel, Peter C. Schuur, and Sunderesh S. Heragu, "Order oriented
slotting: A new assignment strategy for warehouses," European Journal of
Industrial Engineering, vol. 1, no. 3, pp. 301-316, January 1 2007.

[33] H. D. Ratliff and A. S. Rosenthal, "Order-picking in a rectangular warehouse:
A solvable case of the traveling salesman problem," Operations Research, vol.
31, no. 3, pp. 507-521, May-June 1983.

[34] G. Clarke and J. Wright, "Scheduling of vehicles from a central depot to a
number of delivery points," Oper. Research, vol. 12, no. 4, pp. 568-581, 1964.

[35] Rene de Koster, E. S. Van der Poort, and M . Woltersa, "Efficient orderbatching
methods in warehouses," International Journal of Production Research, vol.
37, no. 7, pp. 1479-1504, 1999.

[36] Inneke Van Nieuwenhuyse and René B . M . de Koster, "Evaluating order
throughput time in 2-block warehouses with time window batching," Interna
tional Journal of Production Economics, vol. 121, no. 2, pp. 654-664, 2009.

149

[37] Herwen de Ruijter, "Improved storage in a book warehouse," M.S. thesis,
University of Twente, Enschede - The Netherlands, October 2007.

[38] Tomasz Ambroziak and Konrad Lewczuk, " A method for scheduling the goods
receiving process in warehouse facilities," Total Logistic Management, vol. 5,
no. 1, pp. 7-14, 2008.

[39] Xiaowei Zhu, Samar K . Mukhopadhyay, and Hisashi Kurata, " A review of rfid
technology and its managerial applications in different industries," Journal of
Engineering and Technology Management, vol. 29, no. 1, pp. 152-167, 2012.

[40] Ming K. Lim, Witold Bahr, and Stephen C. H. Leung, "Rfid in the warehouse:
A literature analysis (1995-2010) of its applications, benefits, challenges and
future trends," International Journal of Production Economics, vol. 145, no.
1, pp. 409-430, 2013.

[41] Christophe Theys, Olli Braysy, Wout Dullaert, and Birger Raa, "Using a
tsp heuristic for routing order pickers in warehouses," European Journal of
Operational Research, vol. 200, no. 3, pp. 755-763, 2010.

[42] Klaus Moeller, "Increasing warehouse order picking performance by sequence
optimization," Social and Behavioral Sciences, vol. 20, pp. 177-185, 2011.

[43] H. Hwang, Y . H . Oh, and Y . K . Lee, "An evaluation of routing policies for order-
picking operations in low-level picker-to-part system," International Journal
of Production Research, vol. 42, no. 18, pp. 3873-3889, 2004.

[44] M . B. M . de Koster and M . Yu, "Minimizing makespan and throughput times
at aalsmeer flower auction," Journal of Operational Research Society, vol. 59,
no. 9, pp. 1182-1190, September 2008.

[45] S. Hong, A . L. Johnson, and B. A . Peters, "Analysis of picker blocking in
narrow-aisle batch picking," in Proceedings of 2010 International Material
Handling Research Colloquium (IMHRC), K .P . Ellis, K . Gue, d. R. Koster,
R. Meiler, B. Montreuil, and M . Oglep, Eds. The Material Handling Institue,
Charlotte, NC, USA, 2010.

[46] P. J. Parikh and R. D. Meiler, " A note on worker blocking in narrow-aisle
order picking systems when pick time is non-deterministic," HE Transactions,
vol. 42, no. 6, pp. 392-404, 2010.

[47] Jason Chao-Hsien Pan and Po-Hsun Shih, "Evaluation of the throughput of
a multiple-picker order picking system with congestion consideration," Com
puters & Industrial Engineering, vol. 55, no. 2, pp. 379-389, 2008.

150

[48] Jason Chao-Hsien Pan and Ming-Hung Wu, "Throughput analysis for or
der picking system with multiple pickers and aisle congestion considerations,"
Computers & Operations Research, vol. 39, no. 7, pp. 1661-1672, 2012.

[49] Jason Chao-Hsien Pan, Po-Hsun Shih, and Ming-Hung Wu, "Storage assign
ment problem with travel distance and blocking considerations for a picker-
to-part order picking system," Computers & Industrial Engineering, vol. 62,
no. 2, pp. 527-535, 2012.

[50] Soondo Hong, Andrew L. Johnson, and Brett A . Peters, "Batch picking in
narrow-aisle order picking systems with consideration for picker blocking,"
European Journal of Operational Research, vol. 221, no. 3, pp. 557-570, 2012.

[51] Fangyu Chen, Hongwei Wang, Chao Qi, and Yong Xie, "An ant colony op
timization routing algorithm for two order pickers with congestion considera
tion," Computers & Industrial Engineering, vol. 66, no. 1, pp. 77-85, 2013.

[52] Ling-Feng Hsieh and Yi-Chen Huang, "New batch construction heuristics to
optimise the performance of order picking systems," International Journal of
Production Economics, vol. 131, no. 2, pp. 618-630, 2011.

[53] Jose I. U . Rubrico, Toshimitu Higashi, Hirofumi Tamura, and Jun Ota,
"Online rescheduling of multiple picking agents for warehouse management,"
Robot. Comput.-Integr. Manuf., vol. 27, no. 1, pp. 62-71, February 2011.

[54] Yossi Bukchin, Eugene Khmelnitsky, and Pini Yakuel, "Optimizing a dynamic
order-picking process," European Journal of Operational Research, vol. 219,
no. 2, pp. 335-346, 2012.

[55] Sebastian Henn, "Algorithms for on-line order batching in an order picking
warehouse," Computers & Oper. Res., vol. 39, no. 11, pp. 2549-2563, 2012.

[56] Sebastian Henn and Verena Schmid, "Metaheuristics for order batching and
sequencing in manual order picking systems," Computers & Industrial Engi
neering, vol. 66, no. 2, pp. 338-351, 2013, ISSN: 0360-8352.

[57] Marek Matusiak, René Koster, Leo Kroon, and Jari Saarinen, " A fast simu
lated annealing method for batching precedence-constrained customer orders
in a warehouse," European Journal of Oper. Res., vol. ?, no. ?, pp. ?, 2013.

[58] Ann E. Gray, Uday S. Karmarkar, and Abraham Seidmann, "Design and oper
ation of an order-consolidation warehouse: Models and application," European
Journal of Operational Research, vol. 58, pp. 14-36, 1992.

151

[59] G. Mosheiov, "Vehicle routing with pick-up and delivery: Tour-partitioning
heuristics," Computers and Industrial Eng., vol. 34, no. 3, pp. 669-684, 1998.

[60] G. Barbarosoglu and D. Ozgur, " A tabu search algorithm for the vehicle
routing problem," Comp. and Op. Research, vol. 26, no. 3, pp. 255-270, 1999.

[61] B. Vahdani and M . Zandieh, "Scheduling trucks in cross-docking systems:
Robust meta-heuristics," Comp. & Ind. Eng., vol. 58, no. 1, pp. 12-24, 2010.

[62] Hong Yan and Shao-long Tang, "Pre-distribution and post-distribution cross-
docking operations," Transportation Research Part E: Logistics and Trans
portation Review, vol. 45, no. 6, pp. 843-859, 2009.

[63] Michael L. Pinedo, Scheduling: Theory, Algorithms, and Systems, Springer,
4th edition, January 6 2012, ISBN-13: 978-1461419860.

[64] J. R. Jackson, "Scheduling a production line to minimize maximum tardiness,"
Tech. Rep., University of California, Los Angeles, 1955.

[65] Wayne E. Smith, "Various optimizers for single-stage production," Naval
Research Logistics Quarterly, vol. 3, no. 1, pp. 59-66, 1956.

[66] Edward Ignall and Linus Schrage, "Application of the branch and bound
technique to some flow-shop scheduling problems," Operations Research, vol.
13, no. 3, pp. 400-412, May-June 1965.

[67] R. M . Karp, "Reducibility among combinatorial problems," in Complexity of
Computer Computations, R. E. Miller and J. W. Thatcher, Eds., pp. 85-103.
Plenum Press, 1972.

[68] R. L. Graham, E. L. Lawler, J. K . Lenstra, and A. H. G. Rinnooy Kan,
"Optimization and approximation in deterministic sequencing and scheduling:
a survey," in Discrete Optimization II Proceedings of the Advanced Research
Institute on Discrete Optimization and Systems, P. L. Hammer, E. L. Johnson,
and B. H. Korte, Eds., vol. 5, pp. 287-326. Elsevier, 1979.

[69] J. C. Gittins, "Bandit processes and dynamic allocation indices," Journal of
the Royal Statistical Society, vol. 41, no. 2, pp. 148-177, 1979.

[70] Richard Weber, "On the gittins index for multiarmed bandits," The Annals
of Applied Probability, vol. 2, no. 4, pp. 1024-1033, November 1992.

[71] Teofilo Gonzalez and Sartaj Sahni, "Open shop scheduling to minimize finish
time," Journal of the ACM, vol. 23, no. 4, pp. 665-679, October 1976.

152

[72] Teofilo Gonzalez and Sartaj Sahni, "Flowshop and jobshop schedules: Com
plexity and approximation," Op. Research, vol. 26, no. 1, pp. 36-52, 1978.

[73] C. N . Potts and L. N . van Wassenhove, "Algorithms for scheduling a single
machine to minimize the weighted number of late jobs," Management Science,
vol. 34, pp. 843-858, 1988.

[74] Joseph Adams, Egon Balas, and Daniel Zawack, "The shifting bottleneck
procedure for job shop scheduling," Management Science, vol. 34, no. 3, pp.
391-401, March 1988.

[75] Fred Glover, "Tabu search - part i , " Journal on Computing, vol. 1, no. 3, pp.
190-206, Summer 1989.

[76] Chung-Yee Lee, Lei Lei, and Michael Pinedo, "Current trends in deterministic
scheduling," Annals of Operations Research, vol. 70, pp. 1-41, 1997.

[77] R. Linn and W. Zhang, "Hybrid flow shop scheduling: A survey," Computers
& Industrial Engineering, vol. 37, no. 1-2, pp. 57-61, October 1999.

[78] A . S. Jain and S. Meeran, "Deterministic job-shop scheduling: Past, present
and future," European Journal of Operations Research, vol. 113, no. 2, pp.
390-434, March 1 1999.

[79] H. L. Fang, P. Ross, and D. Corne, " A promising genetic algorithm approach
to job-shop scheduling, rescheduling, and open-shop scheduling problems,"
in Proceedings of the Fifth International Conference on Genetic Algorithms,
S. Forrest, Ed., 1993, pp. 375-382.

[80] P. J. M . van Laarhoven, E. H. L. Aarts, and J. K . Lenstra, "Job shop schedul
ing by simulated annealing," Operations Research, vol. 40, no. 1, pp. 113-125,
January-February 1992.

[81] M . Ben-Daya and M . Al-Fawzan, " A tabu search approach for the flow shop
scheduling problem," European Journal of Operational Research, vol. 109, no.
1, pp. 88-95, August 16 1998.

[82] L. Wang and D. Z. Zheng, "An effective hybrid optimization strategy for job-
shop scheduling problems," Computers & Operations Research, vol. 28, no. 6,
pp. 585-596, May 2001.

[83] L. Wang and D. Z. Zheng, "An effective hybrid heuristic for flow shop schedul
ing," International Journal of Advanced Manufacturing Technology, vol. 21,
no. 1, pp. 38-44, 2003.

153

[84] C. F. Liaw, " A hybrid genetic algorithm for the open shop scheduling prob
lem," European Journal of Op. Res., vol. 124, no. 1, pp. 28-42, July 1 2000.

[85] I. Kacem, S. Hammadi, and P. Borne, "Approach by localization and multiob-
jective evolutionary optimization for flexible job-shop scheduling problems,"
IEEE Transactions on Systems Man and Cybernetics Part C-Applications and
Reviews, vol. 32, no. 1, pp. 1-13, February 2002.

[86] I. Kacem, S. Hammadi, and P. Borne, "Pareto-optimality approach for flexible
job-shop scheduling problems: Hybridization of evolutionary algorithms and
fuzzy logic," Mathematics and Computers in Simulation, vol. 60, no. 3-5, pp.
245-276, September 30 2002.

[87] C. Blum, "Beam-aco - hybridizing ant colony optimization with beam search:
An application to open shop scheduling," Computers & Operations Research,
vol. 32, no. 6, pp. 1565-1591, June 2005.

[88] M . Zandieh, S. M . T. Fatemi Ghomi, and S. M . Moattar Husseini, "An immune
algorithm approach to hybrid flow shops scheduling with sequence-dependent
setup times," Applied Mathematics and Computation, vol. 180, no. 1, pp.
111-127, SEP 1 2006.

[89] Seyed Habib A. Rahmati and M . Zandieh, " A new biogeography-based opti
mization (bbo) algorithm for the flexible job shop scheduling problem," In
ternational Journal of Advanced Manufacturing Technology, vol. 58, no. 9-12,
pp. 1115-1129, February 2012.

[90] Chung-Yee Lee, Handbook of Scheduling, chapter Machine Scheduling with
Availability Constraints, p. Chapter 22, Chapman and Hall, 2004.

[91] Selmer M . Johnson, "Optimal two- and three-stage production schedules and
setup times included," Naval Research Logistics Quarterly, vol. 1, no. 1, pp.
61-68, March 1954.

[92] Michael Andresen and Tanka Nath Dhamala, "New algorithms and complex
ity status of the reducibility problem of sequences in open shop scheduling
minimizing the makespan," Annals of Operations Research, vol. 196, no. 1,
pp. 1-26, July 2012.

[93] Y . Cho and S. Sahni, "Preemptive scheduling of independent jobs with release
and due times on open, flow and job shops," Operations Research, vol. 29, no.
3, pp. 511-522, 1981.

154

[94] Danyu Bai and Lixin Tang, "Open shop scheduling problem to minimize
makespan with release dates," Applied Mathematical Modelling, vol. 37, no. 4,
pp. 2008-2015, February 15 2013.

[95] B. Naderi, S. M . T. Fatemi Ghomi, M . Aminnayeri, and M . Zandieh, "Schedul
ing open shops with parallel machines to minimize total completion time,"
Journal of Computational and Applied Mathematics, vol. 235, no. 5, pp. 1275-
1287, January 1 2011.

[96] C. Y . Liu and R. L. Bulfin, "On the complexity of preemptive open-shop
scheduling problems," Op. Res. Letters, vol. 4, no. 2, pp. 71-74, 1985.

[97] Ming Liu, Chengbin Chu, Yinfeng X u , and Feifeng Zheng, "An optimal online
algorithm for two-machine open shop preemptive scheduling with bounded
processing times," Optimization Letters, vol. 4, no. 2, pp. 227-237, May 2010.

[98] H. Ishii and T. Nishida, "2 machine open shop scheduling problem with
controllable machine speeds," Journal of the Operations Research Society of
Japan, vol. 29, no. 2, pp. 123-132, June 1986.

[99] V . A . Strusevich, " A heuristic for the two-machine open-shop scheduling
problem with transportation times," Discrete Applied Mathematics, vol. 93,
no. 2-3, pp. 287-304, July 20 1999.

[100] J. Breit, G. Schmidt, and V . A . Strusevich, "Two-machine open shop schedul
ing with an availability constraint," Operations Research Letters, vol. 29, no.
2, pp. 65-77, September 2001.

[101] C. A . Glass, C. N . Potts, and V . A . Strusevich, "Scheduling batches with
sequential job processing for two-machine flow and open shops," INFORMS
Journal on Computing, vol. 13, no. 2, pp. 120-137, Spring 2001.

[102] Rui Zhang and Cheng Wu, " A simulated annealing algorithm based on bottle
neck jobs for the open shop scheduling problem," in 2008 7th World Congess
on Intelligent Control and Automation, Vols 1-23, 2008, pp. 4453-4457.

[103] S. J. Louis and Z. J. Xu , "Genetic algorithms for open shop scheduling and re
scheduling," in Computers and Their Applications - Proceedings of the ICS A
11th Int. Conf, M . E. Cohen and D. L. Hudson, Eds., 1996, pp. 99-102.

[104] C. F. Liaw, " A tabu search slgorithm for the open shop scheduling problem,"
Computers & Operations Research, vol. 26, no. 2, pp. 109-126, February 1999.

155

[105] C. F. Liaw, "An efficient tabu search approach for the two-machine preemptive
open shop scheduling problem," Computers & Operations Research, vol. 30,
no. 14, pp. 2081-2095, December 2003.

[106] C. F. Liaw, "Applying simulated annealing to the open shop scheduling prob
lem," HE Transactions, vol. 31, no. 5, pp. 457-465, May 1999.

[107] C Prins, "Competitive genetic algorithms for the open-shop scheduling prob
lem," Math. Methods of Op. Research, vol. 52, no. 3, pp. 389-411, 2000.

[108] U . Dorndorf, E. Pesch, and T. Phan-Huy, "Solving the open shop scheduling
problem," Journal of Scheduling, vol. 4, no. 3, pp. 157-174, May-June 2001.

[109] T. Lorigeon, J. C. Billaut, and J. L. Bouquard, " A dynamic programming
algorithm for scheduling jobs in a two-machine open shop with an availability
constraint," Journal of the Operational Research Society, vol. 53, no. 11, pp.
1239-1246, November 2002.

[110] Rui Zhang and Cheng Wu, "An immune mechanism for the open shop schedul
ing problem with application to genetic algorithm," in 2008 Chienese Control
and Decision Conference, Vols 1-11, 2008, pp. 159-164.

[Ill] D. Y . Sha and Cheng-Yu Hsu, " A new particle swarm optimization for the
open shop scheduling problem," Computers & Operations Research, vol. 35,
no. 10, pp. 3243-3261, October 2008.

[112] D. Y . Sha, Hsing-Hung Lin, and C. Y . Hsu, " A modified particle swarm
optimization for multi-objective open shop scheduling," in International Mul-
ticonference of Engineers and Computer Scientists (IMECS 2010) Vols I-III
S. I. Ao, O. Castillo, C. Douglas, D. D. Feng, and J. A . Lee, Eds., 2010,
Lecture Notes in Engineering and Computer Science, pp. 1844-1848.

[113] Y . Zhan, Y . G. Zhong, and H. T. Zhu, "Preemptive open-shop scheduling:
Network flow based algorithm," in Digital Design and Manufacturing Tech
nology II, C. Lu, Ed., 2011, vol. 215, pp. 111-114.

[114] Tadeusz Witkowski, Pawel Antczak, and Arkadiusz Antczak, "Hybrid method
for solving flexible open shop scheduling problem with simulated annealing
algorithm and multi-agent approach," in Manufacturing Science and Technol
ogy, W. Fan, Ed., 2012, vol. 383-390, pp. 4612-4619.

[115] Fardin Ahmadizar and Mehdi Hosseinabadi Farahani, " A novel hybrid genetic
algorithm for the open shop scheduling problem," Int. Journal of Advanced
Manufacturing Technology, vol. 62, no. 5-8, pp. 775-787, September 2012.

156

[116] M . Emin Baysal, Taha Durmaz, Ahmet Sarucan, and Orhan Engin, "To solve
the open shop scheduling problems with the parallel kangaroo algorithm,"
Journal of the Faculty of Engineering and Architecture of Gazi University.
vol. 27, no. 4, pp. 855-864, December 2012.

[117] Jianming Dong, A n Zhang, Yong Chen, and Qifan Yang, "Approximation
algorithms for two-machine open shop scheduling with batch and delivery
coordination," Theoretical Comp. Science, vol. 491, pp. 94-102, June 17 2013.

[118] Yong Chen, A n Zhang, Guangting Chen, and Jianming Dong, "Approximation
algorithms for parallel open shop scheduling," Information Processing Letters.
vol. 113, no. 7, pp. 220-224, Apri l 15 2013.

[119] Yong Zhan, Yuguang Zhong, and Haitao Zhu, "Research on open shop schedul
ing based on genetic algorithm," in Engineering Solutions for Manufacturing
Processes, Z. Y . Jiang, X . H. Liu, S. H. Jiao, and J. T. Han, Eds., 2013, vol.
655-657 of Advanced Materials Research, pp. 1670-1674.

[120] Chang Sup Sung and Sang Hum Yoon, "Minimizing total weighted completion
time at a pre-assembly stage composed of two feeding machines," International
Journal of Production Economics, vol. 54, no. 3, pp. 247-255, 1998.

[121] Thomas A. Roemer, " A note on the complexity of the concurrent open shop
problem," Journal of Scheduling, vol. 9, no. 4, pp. 389-396, 2006.

[122] G. B. McMahon and P. G. Burton, "Flow-shop scheduling with branch-and-
bound method," Operations Research, vol. 15, no. 3, pp. 473-481, 1967.

[123] B. D. Corwin and A. O. Esogbue, "2 machine flow shop scheduling prob
lems with sequence dependent setup times - dynamic-programming approach,"
Naval Research Logistics, vol. 21, no. 3, pp. 515-524, 1974.

[124] E. Nowicki and S. Zdrzalka, " A 2-machine flow-shop scheduling problem with
controllable job processing times," European Journal of Operational Research,
vol. 34, no. 2, pp. 208-220, March 1988.

[125] K . R. Baker, "Scheduling groups of jobs in the 2-machine flow-shop," Mathe
matical and Computer Modeling, vol. 13, no. 3, pp. 29-36, 1990.

[126] R. G. Vickson and B. E. Alfredsson, "2-machine and 3-machine flow-shop
scheduling problems with equal sized transfer batches," International Journal
of Production Research, vol. 30, no. 7, pp. 1551-1574, July 1992.

157

[127] C. N . Potts, "Analysis of a linear-programming heuristic for scheduling un
related parallel machines," Discrete Applied Mathematics, vol. 10, no. 2, pp.
155-164, 1985.

[128] C. Y . Liu and S. C. Chang, "Scheduling flexible flow shops with sequence-
dependent setup effects," IEEE Transactions on Robotics and Automation.
vol. 16, no. 4, pp. 408-419, August 2000.

[129] P Kouvelis, R L Daniels, and G Vairaktarakis, "Robust scheduling of a two-
machine flow shop with uncertain processing times," HE Transactions, vol.
32, no. 5, pp. 421-432, 2000.

[130] R. Aggoune, "Minimizing the makespan for the flow shop scheduling problem
with availability constraints," European Journal of Operational Research, vol.
153, no. 3, pp. 534-543, March 16 2004.

[131] A. Soukhal, A . Oulamara, and P. Martineau, "Complexity of flow shop
scheduling problems with transportation constraints," European Journal of
Operational Research, vol. 161, no. 1, pp. 32-41, February 16 2005.

[132] L. G. Mitten, "Sequencing n jobs on two machines with arbitrary time lags,"
Management Science, vol. 5, no. 3, pp. 293-298, 1959.

[133] Selmer M . Johnson, "Discussion sequencing n jobs on two machines with
arbitrary time lags," Management Science, vol. 5, no. 3, pp. 299-303, 1959.

[134] J. K . Lenstra and A. H. G. Rinnooy Kan, "Some simple applications of the
travelling salesman problem," Operational Research Quarterly, vol. 26, no. 4,
pp. 717-733, November 1975.

[135] John M . Van Deman and Kenneth R. Baker, "Minimizing mean flowtime in
the flow shop with no intermediate queues," AIIE Transactions, vol. 6, no. 1,
pp. 28-34, 1974.

[136] Nicholas G. Hall and Chelliah Sriskandarajah, " A survey of machine schedul
ing problems with blocking and no-wait in process," Operations Research, vol.
44, no. 3, pp. 510-525, May-June 1996.

[137] L. A . Hall, "Approximability of flow shop scheduling," Mathematical Pro
gramming, vol. 82, no. 1-2, pp. 175-190, June 1 1998.

[138] H. Ishibuchi, N . Yamamoto, S. Misaki, and H. Tanaka, "Local search algo
rithms for flow-shop scheduling with fuzzy due-dates," International Journal
of Production Economics, vol. 33, no. 1-3, pp. 53-66, January 1994.

158

[139] C. A . Glass and C. N . Potts, " A comparison of local search methods for flow
shop scheduling," Annals of Operations Research, vol. 63, pp. 489-509, 1996.

[140] L. F. Gelders and N . Sambandam, "4 simple heuristics for scheduling a flow-
shop," Int. Journal of Production Research, vol. 16, no. 3, pp. 221-231, 1978.

[141] B. Chen, "Analysis of classes of heuristics for scheduling a 2-stage flow-shop
with parallel machines at one-stage," Journal of the Operational Research
Society, vol. 46, no. 2, pp. 234-244, February 1995.

[142] G. A Clevelland and S. F. Smith, "Using genetic algorithms to schedule
flow-shop releases," in Proceedings of the Third Interantional Conference on
Genetic Algorithms, J. D. Schaffer, Ed., San Mateo, 1989, pp. 160-169.

[143] J. P. Watson, L. Barbulescu, L. D. Whitley, and A. E. Howe, "Contrasting
structured and random permutation flow-shop scheduling problems: Search-
space topology and algorithm performance," INFORMS Journal on Comput
ing, vol. 14, no. 2, pp. 98-123, Spring 2002.

[144] S. H. Yoon and J. A . Ventura, "An application of genetic algorithms to lot-
streaming flow shop scheduling," HE Trans., vol. 34, no. 9, pp. 779-787, 2002.

[145] S. G. Ponnambalam, H. Jagannathan, M . Kataria, and A . Gadicherla, "A tsp-
ga multi-objective algorithm for flow-shop scheduling," Int. Journal of Adv.
Manufacturing Technology, vol. 23, no. 11-12, pp. 909-915, June 2004.

[146] S. Bertel and J. C. Billaut, " A genetic algorithm for an industrial multipro
cessor flow shop scheduling problem with recirculation," European Journal of
Operational Research, vol. 159, no. 3, pp. 651-662, December 16 2004.

[147] C. Low, "Simulated annealing heuristic for flow shop scheduling problems
with unrelated parallel machines," Computer & Operations Research, vol. 32,
no. 8, pp. 2013-2025, August 2005.

[148] J. B. Wang and Z. Q. Xia , "Flow-shop scheduling with a learning effect,"
Journal of the Op. Research Society, vol. 56, no. 11, pp. 1325-1330, 2005.

[149] G. Onwubolu and D. Davendra, "Scheduling flow shops using differential
evolution algorithm," European Journal of Operational Research, vol. 171, no.
2, pp. 674-692, June 1 2006.

[150] L. Wang, L. Zhang, and D. Z. Zheng, "An effective hybrid genetic algorithm for
flow shop scheduling with limited buffers," Computers & Operations Research,
vol. 33, no. 10, pp. 2960-2971, October 2006.

159

[151] Bo Liu, Ling Wang, and Yi-Hui Jin, "An effective hybrid particle swarm opti
mization for no-wait flow shop scheduling," International Journal of Advanced
Manufacturing Technology, vol. 31, no. 9-10, pp. 1001-1011, January 2007.

[152] Bo Liu, Ling Wang, and Yi-Hui Jin, "An effective pso-based memetic algo
rithm for flow shop scheduling," IEEE Transactions on Systems Man and
Cybernetics Part B-Cybernetics, vol. 37, no. 1, pp. 18-27, February 2007.

[153] Bin-Bin L i and Ling Wang, " A hybrid quantum-inspired genetic algorithm
for multiobjective flow shop scheduling," IEEE Transactions on Systems Man
and Cybernetics Part B-Cybernetics, vol. 37, no. 3, pp. 576-591, June 2007.

[154] Reza Tavakkoli-Moghaddam, Alireza Rahimi-Vahed, and A l i Hossein Mirzaei,
" A hybrid multi-objective immune algorithm for a flow shop scheduling prob
lem with bi-objectives: Weighted mean completion time and weighted mean
tardiness," Inf. Sciences, vol. 177, no. 22, pp. 5072-5090, November 15 2007.

[155] Bo Liu, Ling Wang, and Yi-Hui Jin, "An effective hybrid pso-based algo
rithm for flow shop scheduling with limited buffers," Computers & Operations
Research, vol. 35, no. 9, pp. 2791-2806, September 2008.

[156] Quan-Ke Pan, Ling Wang, and Bin Qian, " A novel differential evolution
algorithm for bi-criteria no-wait flow shop scheduling problems," Computers
& Operations Research, vol. 36, no. 8, pp. 2498-2511, A U G 2009.

[157] Ling Wang, Quan-Ke Pan, P. N . Suganthan, Wen-Hong Wang, and Ya-Min
Wang, " A novel hybrid discrete differential evolution algorithm for blocking
flow shop scheduling problems," Computers & Operations Research, vol. 37,
no. 3, pp. 509-520, March 2010.

[158] Hui-Mei Wang, Fuh-Der Chou, and Ful-Chiang Wu, " A simulated anneal
ing for hybrid flow shop scheduling with multiprocessor tasks to minimize
makespan," International Journal of Advanced Manufacturing Technology,
vol. 53, no. 5-8, pp. 761-776, March 2011.

[159] Quan-Ke Pan, M . Fatih Tasgetiren, P. N . Suganthan, and T. J. Chua, " A dis
crete artificial bee colony algorithm for the lot-streaming flow shop scheduling
problem," Inf. Sciences, vol. 181, no. 12, pp. 2455-2468, June 15 2011.

[160] Imma Ribas, Rainer Leisten, and Jose M . Framinan, "Review and classifica
tion of hybrid flow shop scheduling problems from a production system and a
solutions procedure perspective," Computers & Operations Research, vol. 37,
no. 8, pp. 1439-1454, August 2010.

160

[161] Ruben Ruiz and Jose Antonio Vazquez-Rodriguez, "The hybrid flow shop
scheduling problem," European Journal of Operational Research, vol. 205, no.
1, pp. 1-18, August 16 2010.

[162] Tarek Chaari, Sondes Chaabane, Taicir Loukil, and Damien Trentesaux, " A
genetic algorithm for robust hybrid flow shop scheduling," International Jour
nal of Computer Integrated Manufacturing, vol. 24, no. 9, pp. 821-833, 2011.

[163] Fuh-Der Chou, "Particle swarm optimization with coctail decoding method
for hybrid flow shop scheduling problems with multiprocessor tasks," Int.
Journal of Production Economics, vol. 141, no. 1, pp. 137-145, January 2013.

[164] Min Dai, Dunbing Tang, Adriana Giret, Miguel A . Salido, and W. D. L i ,
"Energy-efficient scheduling for a flexible flow shop using an improved genetic-
simulated annealing algorithm," Robotics and Computer-Integrated Manufac
turing, vol. 29, no. 5, pp. 418-429, October 2013.

[165] P. Mellor, " A review of job shop scheduling," Operational Research Quarterly,
vol. 17, no. 2, pp. 161-171, 1966.

[166] L. Gelders and P. R. Kleindorfer, "Coordinating aggregate and detailed
scheduling decisions in one-machine job shop: 1. theory," Operations Research,
vol. 22, no. 1, pp. 46-60, 1974.

[167] L. Gelders and P. R. Kleindorfer, "Coordinating aggregate and detailed
scheduling in one-machine job shop: 2. computation and structure," Oper
ations Research, vol. 23, no. 2, pp. 312-324, 1975.

[168] Jeffrey R. Barker and Graham B. McMahon, "Scheduling the general job-
shop," Management Science, vol. 31, no. 5, pp. 594-598, 1985.

[169] R. Ramasesh, "Dynamic job shop scheduling - a survey of simulation research,"
Omega-Int. Journal of Managmenet Science, vol. 18, no. 1, pp. 43-57, 1990.

[170] V . J. Leon, S. D. Wu, and R. H. Storer, "Robustness measures and robust
scheduling for job shops," HE Trans., vol. 26, no. 5, pp. 32-43, Sep. 1994.

[171] J. R. Jackson, "An extension of Johnson's results on job lot scheduling," Naval
Research Logistics Quarterly, vol. 3, pp. 201-203, 1956.

[172] John F. Muth and Gerald L. Thompson, Industrial Scheduling, Prentice-Hall,
Englewood Clifs, 1963.

161

[173] Jacques Carlier, "The one-machine sequencing problem," European Journal
of Operational Research, vol. 11, no. 1, pp. 42-47, 1982.

[174] A. Mascis and D. Pacciarelli, "Job-shop scheduling with blocking and no-wait
constraints," European Journl of Operational Research, vol. 143, no. 3, pp.
498-517, December 16 2002.

[175] Alan S. Manne, "On the job-shop scheduling problem," Operations Research,
vol. 8, no. 2, pp. 219-223, March-April 1960.

[176] Graham McMahon and Michael Florian, "On scheduling with ready times and
due dates to minimize maximum lateness," Operations Research, vol. 23, no.
3, pp. 475-482, May-June 1975.

[177] B. J. Lageweg, J. K . Lenstra, and A . H. G. Rinnooy Kan, "Job-shop scheduling
by implicit enumeration," Mgmt Science, vol. 24, no. 4, pp. 441-450, 1977.

[178] John H. Blackstone, Don T. Phillips, and Gary L. Hogg, " A state-of-the-art
survey of dispatching rules for manufacturing job shop operations," Interna
tional Journal of Production Research, vol. 20, no. 1, pp. 27-45, 1982.

[179] O. Holthaus and C. Rajendran, "Efficient dispatching rules for scheduling in
a job shop," International Journal of Production Economics, vol. 48, no. 1,
pp. 87-105, January 10 1997.

[180] A. P. Muhlemann, A . G. Lockett, and C. K . Farn, "Job shop scheduling
heuristics and frequency of scheduling," International Journal of Production
Research, vol. 20, no. 2, pp. 227-241, 1982.

[181] K . N . McKay, F. R. Safayeni, and J. A . Buzacott, "Job-shop scheduling theory
- what is relevant," Interfaces, vol. 18, no. 4, pp. 84-90, J U L - A U G 1988.

[182] S. V . Mehta and R. M . Uzsoy, "Predictable scheduling of a job shop subject
to breakdowns," IEEE Transactions on Robotics and Automation, vol. 14, no.
3, pp. 365-378, June 1998.

[183] P. Brucker and R. Schlie, "Job-shop scheduling with multipurpose machines,"
Computing, vol. 45, no. 4, pp. 369-375, 1990.

[184] N . Nasr and E. A . Elsayed, "Job shop scheduling with alternative machines,"
Int. Journal of Production Research, vol. 28, no. 9, pp. 1595-1609, 1990.

[185] R. H. Storer, S. D. Wu, and R. Vaccari, "New search spaces for sequencing
problems with application to job shop scheduling," Management Science, vol.
38, no. 10, pp. 1495-1509, October 1992.

162

[186] D. J. Hoitomt, P. B. Luh, and K . R. Pattipati, " A practical approach to job-
shop scheduling problems," IEEE Transactions on Robotics and Automation,
vol. 9, no. 1, pp. 1-13, 1993.

[187] E. Pinson, Scheduling Theory and Applications, chapter The Job Shop
Scheduling Problem: A Concise Survey and Some Recent Developments, pp.
177-293, John Wiley, New York, 1995.

[188] I. Sabuncuoglu and M . Bayiz, "Job shop scheduling with beam search," Euro
pean Journal of Op. Research, vol. 118, no. 2, pp. 390-412, October 16 1999.

[189] P. Brucker, B. Jurisch, and B. Sievers, " A branch-and-bound algorithm for
the job-shop scheduling problem," Discrete Applied Mathematics, vol. 49, no.
1-3, pp. 107-127, March 30 1994.

[190] E Balas and A Vazacopoulos, "Guided local search with shifting bottleneck
for job shop scheduling," Mgmt Science, vol. 44, no. 2, pp. 262-275, 1998.

[191] D. Dubois, H. Fargier, and H. Prade, "Fuzzy constraints in job-shop schedul
ing," Journal of Int. Manufacturing, vol. 6, no. 4, pp. 215-234, August 1995.

[192] M . Sakawa and R. Kubota, "Fuzzy programming for multiobjective job shop
scheduling with fuzzy processing time and fuzzy duedate through genetic al
gorithms," European Journal of Operational Research, vol. 120, no. 2, pp.
393-407, January 16 2000.

[193] J. E . Biegel and J. J. Davern, "Genetic algorithms and job shop scheduling,"
Computers & Industrial Engineering, vol. 19, no. 1-4, pp. 81-91, 1990.

[194] U . Dorndorf and E. Pesch, "Evolution based learning in a job-shop scheduling
environment," Computers & Op. Research, vol. 22, no. 1, pp. 25-40, 1995.

[195] C. Bierwirth, " A generalized permutation approach to job-shop scheduling
with genetic algorithms," OR Spektrum, vol. 17, no. 2-3, pp. 87-92, 1995.

[196] R. W. Cheng, M . Gen, and Y . Tsujimura, " A tutorial survey of job-shop
scheduling problems using genetic algorithms - i . representation," Computers
& Industrial Engineering, vol. 30, no. 4, pp. 983-997, September 1996.

[197] R. W. Cheng, M . Gen, and Y . Tsujimura, " A tutorial survey of job-shop
scheduling problems using genetic algorithms, part i i : Hybrid genetic search
strategies," Comp. & Industrial Eng., vol. 36, no. 2, pp. 343-364, Apri l 1999.

163

[198] W. J. X ia and Z. M . Wu, "An effective hybrid optimization approach for
multi-objective flexible job-shop scheduling problems," Computers & Indus
trial Engineering, vol. 48, no. 2, pp. 409-425, March 2005.

[199] Y . K . Kim, K. Park, and J. Ko, " A symbiotic evolutionary algorithm for
the integration of process planning and job shop scheduling," Computers &
Operations Research, vol. 30, no. 8, pp. 1151-1171, July 2003.

[200] B. J. Park, H. R. Choi, and H. S. Kim, " A hybrid genetic algorithm for the
job shop scheduling problems," Computers & Industrial Engineering, vol. 45,
no. 4, pp. 597-613, December 2003.

[201] Imen Essafi, Yazid Mati, and Stephane Dauzere-Peres, " A genetic local search
algorithm for minimizing total weighted tardiness in the job-shop scheduling
problem," Computers & Op. Research, vol. 35, no. 8, pp. 2599-2616, 2008.

[202] Jie Gao, Linyan Sun, and Mitsuo Gen, " A hybrid genetic and variable neigh
borhood descent algorithm for flexible job shop scheduling problems," Com
puters & Operations Research, vol. 35, no. 9, pp. 2892-2907, September 2008.

[203] Guohui Zhang, Liang Gao, and Yang Shi, "An effective genetic algorithm for
the flexible job-shop scheduling problem," Expert Systems with Applications,
vol. 38, no. 4, pp. 3563-3573, Apri l 2011.

[204] D. N . Zhou, V . Cherkassky, T. R. Baldwin, and D. E. Olson, " A neural
network approach to job-shop scheduling," IEEE Transactions on Neural
Networks, vol. 2, no. 1, pp. 175-179, January 1991.

[205] A. S. Jain and S. Meeran, "Job-shop scheduling using neural networks," In
ternational Conference Journal of Production Research, vol. 36, no. 5, pp.
1249-1272, May 1998.

[206] M . Kolonko, "Ssome new results on simulated annealing applied to the job
shop scheduling problem," European Journal of Operational Research, vol.
113, no. 1, pp. 123-136, February 16 1999.

[207] F. Pezzella and E. Merelli, " A tabu search method guided by shifting bottle
neck for the job shop scheduling problem," European Journal of Operational
Research, vol. 120, no. 2, pp. 297-310, January 16 2000.

[208] Jun-Qing L i , Quan-Ke Pan, P. N . Suganthan, and T. J. Chua, " A hybrid tabu
search algorithm with an efficient neighborhood structure for the flexible job
shop scheduling problem," International Journal of Advanced Manufacturing
Technology, vol. 52, no. 5-8, pp. 683-697, February 2011.

164

[209] Mohammad Saidi-Mehrabad and Parviz Fattahi, "Flexible job shop scheduling
with tabu search algorithms," International Journal of Advanced Manufactur
ing Technology, vol. 32, no. 5-6, pp. 563-570, M A R 2007.

[210] Chao Yong Zhang, Pei Gen L i , Zai Lin Guan, and Yun Qing Rao, " A tabu
search algorithm with a new neighborhood structure for the job shop schedul
ing problem," Computers & Operations Research, vol. 34, no. 11, pp. 3229-
3242, November 2007.

[211] F. Pezzella, G. Morganti, and G. Ciaschetti, "A genetic algorithm for the
flexible job-shop scheduling problem," Computers & Operations Research,
vol. 35, no. 10, pp. 3202-3212, October 2008.

[212] Kuo-Ling Huang and Ching-Jong Liao, "Ant colony optimization combined
with taboo search for the job shop scheduling problem," Computers & Oper
ations Research, vol. 35, no. 4, pp. 1030-1046, Apri l 2008.

[213] M . Yazdani, M . Amiri , and M . Zandieh, "Flexible job-shop scheduling with
parallel variable neighborhood search algorithm," Expert Systems with Appli
cations, vol. 37, no. 1, pp. 678-687, January 2010.

[214] Lele Zhang and Andrew Wirth, "On-line scheduling of two parallel machines
with a single server," Computers & Operations Research, vol. 36, no. 5, pp.
1529-1553, May 2009.

[215] A. Bagheri, M . Zandieh, Iraj Mahdavi, and M . Yazdani, "An artificial im
mune algorithm for the flexible job-shop scheduling problem," Future Gener
ation Computer Systems - The International Journal of Grid Computing and
eScience, vol. 26, no. 4, pp. 533-541, Apri l 2010.

[216] S. Q. Liu and E. Kozan, " A hybrid shifting bottleneck procedure algorithm for
the parallel-machine job-shop scheduling problem," Journal of the Operational
Research Society, vol. 63, no. 2, pp. 168-182, February 2012.

[217] J. F. Chin and S. Meeran, "Integrating genetic programming into job shop
scheduling problem," in Advances in Manufacturing Technology - XVII, Y . Qin
and N . Juster, Eds., 2003, pp. 415-421.

[218] Shaohua Lu and Yun Xia , "Application of genetic programming on makespan
optimization of job shop scheduling problem," in Proceedings of the 6th In
ternational Conference on Innovation and Management, Vols I and II, A . De-
Hoyos, Ed., 2009, pp. 1284-1291.

165

[219] Su Nguyen, Mengjie Zhang, Mark Johnston, and Kay Chen Tan, " A coevo-
lution genetic programming method to evolve scheduling policies for dynamic
multi-objective job shop scheduling problems," in 2012 IEEE Congress on
Evolutionary Computation, 2012.

[220] Su Nguyen, Mengjie Zhang, Mark Johnston, and Kay Chen Tan, "Learning
iterative dispatching rules for job shop scheduling with genetic programming,"
International Journal of Advanced Manufacturing Technology, vol. 67, no. 1-4,
pp. 85-100, July 2013.

[221] N . G. Hall, H. Kamoun, and C. Sriskandarajah, "Scheduling in robotic cells:
Complexity and steady state analysis," European Journal of Operational Re
search, vol. 109, no. 1, pp. 43-65, August 16 1998.

[222] Y . Crama and J. Van de Klundert, "Cyclic scheduling of identical parts in a
robotic cell," Operations Research, vol. 45, no. 6, pp. 952-965, 1997.

[223] M . Dawande, H. N . Geismar, S. P. Sethi, and C. Sriskandarajah, "Sequencing
and scheduling in robotic cells: Recent developments," Journal of Scheduling,
vol. 8, no. 5, pp. 387-426, October 2005.

[224] N . G. Hall, H. Kamoun, and C. Sriskandarajah, "Scheduling in robotic cells:
Classification, two and three machine cells," Operations Research, vol. 45, no.
3, pp. 421-439, May-June 1997.

[225] M . H. Fazel Zarandi, H. Mosadegh, and M . Fattahi, "Two-machine robotic
cell scheduling problem with sequence-dependent setup times," Computers &
Operations Research, vol. 40, no. 5, pp. 1420-1434, May 2013.

[226] M . A . Manier and C. Bloch, " A classification for hoist scheduling problems,"
International Journal of Flexible Manufacturing Systems, vol. 15, no. 1, pp.
37-55, January 2003.

[227] Adnen E l Amraoui, Marie-Ange Manier, Abdellah E l Moudni, and Mohamed
Benrejeb, " A linear optimization approach to the heterogeneous r-cyclic hoist
scheduling problem," Computers & Industrial Engineering, vol. 65, no. 3, pp.
360-369, July 2013.

[228] Adnen E l Amraoui, Marie-Ange Monier, Abdellah E l Moudni, and Mohamed
Benrejeb, " A genetic algorithm approach for a single hoist scheduling prob
lem with time windows constraints," Engineering Applications of Artificial
Intelligence, vol. 26, no. 7, pp. 1761-1771, August 2013.

166

[229] A. Che and C. Chu, "Single-track multi-hoist scheduling problem: A collision-
free resolution based on a branch-and-bound approach," International Journal
of Production Research, vol. 42, no. 12, pp. 2435-2456, June 15 2004.

[230] I. F. A . Vis, "Survey of research in the design and control of automated guided
vehicle systems," European Journal of Operational Research, vol. 170, no. 3,
pp. 677-709, May 1 2006.

[231] T. Le-Anh and M . B. M . de Koster, " A review of design and control of au
tomated guided vehicle systems," European Journal of Operational Research,
vol. 171, no. 1, pp. 1-23, May 16 2006.

[232] B. S. Manda and U . S. Palekar, "Collision-free routing in automated guided
vehicle systems," in 2nd Industrial Engineering Research Conference Proceed
ings, D. A. Mitta, L. I. Burke, J. R. English, J. Gallimore, G. A . Klutke, and
G. L. Tonkay, Eds., 1993, pp. 510-514.

[233] P. S. Lee and L. L. Wang, "Collision-avoidance by fuzzy-logic control for
automated guided vehicle navigation," Journal of Robotic Systems, vol. 11,
no. 8, pp. 743-760, December 1994.

[234] N . Q. Wu and M . C. Zhou, "Modeling and deadlock control of automated
guided vehicle systems," IEEE-ASME Transactions on Mechatronics, vol. 9,
no. 1, pp. 50-57, March 2004.

[235] N . Q. Wu and M . C. Zhou, "Modeling and deadlock avoidance of automated
manufacturing systems with multiple automated guided vehicles," IEEE
Transactions on Systems Man and Cybernetics Part B-Cybernetics, vol. 35,
no. 6, pp. 1193-1202, December 2005.

[236] Chang W. K i m and J. M . A . Tanchoco, "Conflict-free shortest-time bidirec
tional agv routeing," International Journal of Production Research, vol. 29,
no. 12, pp. 2377-2391, 1991.

[237] Laiguang Zeng, Hsu-Pin Wang, and Song Jin, "Conflict detection of auto
mated guided vehicles: a petri net approach," International Journal of Pro
duction Research, vol. 29, no. 5, pp. 866-879, 1991.

[238] Sophie Parragh, Karl Doerner, and Richard Hartl, " A survey on pickup and
delivery problems: Part i : Transportation between customers and depot,"
Journal fur Betriebswirtschaft, vol. 58, no. 1, pp. 21-51, Apri l 2008.

167

[239] Sophie Parragh, Karl Doerner, and Richard Hartl, " A survey on pickup and
delivery problems: Part i i : Transportation between pickup and delivery loca
tions," Journal fur Betriebswirtschaft, vol. 58, no. 2, pp. 81-117, June 2008.

[240] Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, and Christian Prins,
"Heuristics for multi-attribute vehicle routing problems: A survey and syn
thesis," European Journal of Op. Research, vol. 231, no. 1, pp. 1-21, 2013.

[241] M . Gendreau and C. Tarantilis, "Solving large-scale vehicle routing problem
with time windows: The stat-of-the-art," Tech. Rep., CIRRELT, 2010.

[242] Roberto Baldacci, Aristide Mingozzi, and Roberto Roberti, "New route re
laxation and pricing strategies for the vehicle routing problem," Operations
Research, vol. 59, no. 5, pp. 1269-1283, 2011.

[243] P. P. Repoussis, C. D. Tarantilis, and G. Loannou, "Arc-guided evolutionary
algorithm for the vehicle routing problem with time windows," Evolutionary
Computation, IEEE Transactions on, vol. 13, no. 3, pp. 624-647, 2009.

[244] Yuichi Nagata, Olli Braysy, and Wout Dullaert, " A penalty-based edge assem
bly memetic algorithm for the vehicle routing problem with time windows,"
Computers & Operations Research, vol. 37, no. 4, pp. 724-737, 2010.

[245] Soumia Ichoua, Michel Gendreau, and Jean-Yves Potvin, "Vehicle dispatching
with time-dependent travel times," European Journal of Operational Research,
vol. 144, no. 2, pp. 379-396, 2003.

[246] S. R. Balseiro, I. Loiseau, and J. Ramonet, "An ant colony algorithm hy
bridized with insertion heuristics for the time dependent vehicle routing prob
lem with time windows," Computers & Operations Research, vol. 38, no. 6,
pp. 954-966, June 2011.

[247] John R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection, The MIT Press, Cambridge, M A , USA, 1st
edition edition, December 1992.

[248] John R. Koza, Genetic Programming II: Automatic Discovery of Reusable
Programs, The MIT Press, Cambridge, M A , USA, May 1994.

[249] John R. Koza, Forrest H. Bennett III, David Andre, and Martin A . Keane,
Genetic Programming III: Darwinian Invention & Problem Solving, Morgan
Kaufmann Publishers Inc., San Francisco, C A , USA, 1st edition, May 1999.

168

[250] Julian F. Miller, "An empirical study of the efficiency of learning boolean
functions using a cartesian genetic programming approach," in Proceedings of
the 1999 Genetic and Evolutionary Computation Conference (GECCO 1999),
Orlando, Florida, USA, July 14-17 1999, pp. 1135-1142.

[251] Markus F. Brameier and Wolfgang Banzhaf, Linear Genetic Programming,
Springer, New York, N Y , USA, 1st edition, 2007.

[252] Ajith Abraham, Nadia Nedjah, and Luiza Mourelle, Evolutionary Computa
tion: from Genetic Algorithms to Genetic Programming, vol. 13, chapter 1,
pp. 1-20, Springer Berlin Heidelberg, 2006.

[253] Jarmo T. Alander, "An indexed bibliography of genetic programming," Report
Series no 2008-1-GP, Department of Information Technology and Industrial
Management, University of Vaasa, Finland, 2008.

[254] William B. Langdon, Genetic Programming and Data Structures: Genetic
Programming + Data Structures = Automatic Programming!, vol. 1, Springer,
Kluwer, Boston, USA, 1st edition, Apri l 1998.

[255] David J. Montana, "Strongly typed genetic programming," Evolutionary
Computation, vol. 3, pp. 199-230, June 1994.

[256] Conor Ryan and Michael O'Neill, "Grammatical evolution: A steady state
approach," Late Breaking Papers, Genetic Prog., vol. 2, pp. 180-185, 1998.

[257] Michael O'Neill and Conor Ryan, "Grammatical evolution," IEEE Evolution
ary Computation, vol. 5, pp. 349-359, August 2001.

[258] Michael O'Neill, John Mark Swafford, James McDermott, Jonathan Byrne,
Anthony Brabazon, Elizabeth Shotton, Ciaran McNally, and Martin Hem-
berg, "Shape grammars and grammatical evolution for evolutionary design,"
in GECCO,09: Proceedings of the 11th Annual conference on Genetic and
evolutionary computation. 2009, pp. 1035-1042, N Y , USA.

[259] Peter A. Whigham, "Grammatically-based genetic programming," in Proceed
ings of the Workshop on Genetic Programming: From Theory to Real-World
Applications, Tahoe City, C A , USA, July 1995, pp. 33-41, Morgan Kaufmann.

[260] Nguyen Xuan Hoai, R. I. McKay, and H. A . Abbass, "Tree adjoining gram
mars, language bias, and genetic programming," in Genetic Programming,
Proceedings of EuroGP'2003, Essex, Apri l 14-16 2003, vol. 2610 of LNCS, pp.
335-344, Springer-Verlag.

169

[261] Nguyen Xuan Hoai, R. I. (Bob) McKay, and Daryl Essam, "Representation
and structural difficulty in genetic programming," IEEE Transactions on
Evolutionary Computation, vol. 10, no. 2, pp. 157-166, Apri l 2006.

[262] Hitoshi Iba, "Random tree generation for genetic programming," in Parallel
Problem Solving from Nature IV, Proceedings of the International Conference
on Evolutionary Computation, Germany, 1996, vol. 1141 of LNCS, pp. 144-
153, Springer-Verlang.

[263] Walter Bohm and Andreas Geyer-Schulz, Exact Uniform Initialization For
Genetic Programming, pp. 379-407, Morgan Kaufman, August 1996.

[264] Kumar Chellapilla, "Evolving computer programs without subtree crossover,"
IEEE Tran. on Evolutionary Computation, vol. 1, no. 3, pp. 209-216, 1997.

[265] Sean Luke, "Two fast tree-creation algorithms for genetic programming,"
IEEE Trans, on Evolutionary Comp., vol. 4, no. 3, pp. 274-283, Sep. 2000.

[266] Peter A . Whigham, "Inductive bias and genetic programming," in First Inter
national Conference on Genetic Algorithms in Engineering Systems: Innova
tions and Applications, Sheffield, U K , September 1995, vol. 414, pp. 461-466.

[267] Marc Garcia-Arnou, Daniel Manrique, Juan Rios, and Alfonso Rodriguez-
Paton, "Initialization method for grammar-guided genetic programming,"
Knowledge-Based Systems, Elsevier, vol. 20, no. 2, pp. 127-133, March 2007.

[268] S. N . Sivanandam and S. N . Deepa, Introduction to Genetic Algorithms,
Springer, 1st edition, November 2008.

[269] Sean Luke and Lee Spector, " A comparison of crossover and mutation in
genetic programming," in Genetic Programming 1997: Proceedings of the
Second Annual Conference. July 1997, pp. 240-248, Morgan Kaufmann.

[270] Sean Luke and Lee Spector, " A revised comparison of crossover and mutation
in genetic programming," in Genetic Programming 1998: Proceedings of the
Third Annual Conference. July 1998, pp. 208-213, Morgan Kaufmann.

[271] William M . Spears and Kenneth A . DeJong, "An analysis of multi-point
crossover," in Foundations of Genetic Algorithms, pp. 301-315. Morgan Kauf
mann, San Mateo, C A , USA, 1991.

[272] Kit Yan Chan and Terence C. Fogarty, "Experimental design based multi-
parent crossover operator," in Genetic Programming, Proceedings of Eu-
roGP'2003, Essex, Apri l 14-16 2003, vol. 2610 of LNCS, pp. 297-306.

170

[273] A . E. Eiben and C. H. M . Van Kemenade, "Diagonal crossover in genetic
algorithms for numerical optimization," Journal of Control and Cybernetics,
vol. 26, no. 3, pp. 447-465, 1997.

[274] Riccardo Poli and William B. Langdon, "Genetic programming with one-point
crossover," in Soft Computing in Engineering Design and Manufacturing,
Godalming, U K , June 1997, pp. 180-189, Springer-Verlang London.

[275] Riccardo Poli and William B. Langdon, "Schema theory for genetic program
ming with one-point crossover and point mutation," Evolutionary Computa
tion, vol. 6, no. 3, pp. 231-252, 1998.

[276] William B. Langdon, "Size fair and homologous tree crossovers for tree genetic
programming," Gen. Prog, and Evo. Machines, vol. 1, pp. 95-119, Apri l 2000.

[277] Lee Spector, Advances in Genetic Programming 3, The MIT Press, Cambridge,
M A , USA, June 1999.

[278] Patrik D'haeseleer, "Context preserving crossover in genetic programming," in
Proceedings of the 1994 IEEE World Congress on Computational Intelligence,
Orlando, Florida, USA, 1994, vol. 1, pp. 256-261, IEEE Press.

[279] Daniel Manrique, Fernando Marquez, Juan Rios, and Alfonso Rodriguez-
Paton, "Grammar based crossover operator in genetic programming," in
Artificial Intelligence and Knowledge Engineering Applications, Jose Mira and
Jose R. Alvarez, Eds. June 2005, vol. 3562 of Lecture Notes in Computer Sci
ence, pp. 252-261, Springer-Verlag Berlin Heidelberg.

[280] Jorge Couchet, Daniel Manrique, Juan Rios, and Alfonso RodriguePaton,
"Crossover and mutation operators for grammar-guided genetic program
ming," Soft Computing, vol. 11, no. 10, pp. 943-955, August 2007.

[281] Nguyen Quang Uy, Nguyen Xuan Hoai, and Michael O'Neill, "Semantic aware
crossover for genetic programming: The case for real-valued function regres
sion," in Proceedings of the 12th European Conference on Genetic Program
ming, EuroGP 2009, Taubingen, Apri l 2009, EvoStar, vol. 5481 of Lecture
Notes in Computer Science, pp. 292-302, Springer Berlin Heidelberg.

[282] Nguyen Quang Uy, Nguyen Xuan Hoai, Michael O'Neill, R. I. McKay, and
Edgar Galvan-Lopez, "Semantically-based crossover in genetic programming:
Application to real-valued symbolic regression," Genetic Programming and
Evolvable Machines, vol. 12, no. 2, pp. 91-119, June 2010.

171

[283] Peter J. Angeline, "Subtree crossover: Building block engine or macromu-
tation?," in Genetic Programming 1997: Proceedings of the Second Annual
Conference. July 13-16 1997, pp. 9-17, Morgan Kaufmann.

[284] S. Openshaw and I. Turton, "Building new spatial interaction models using
genetic programming," in Evolutionary Computing, AISB workshop, Leeds,
U K , Apri l 11-13 1994, AISB, LNCS, p. 10, Springer-Verlag.

[285] Lawrence Beadle and Colin G. Johnson, "Semantically driven mutation in
genetic programming," in 2009 IEEE Congress on Evolutionary Computation,
Norway, 18-21 May 2009, IEEE Comp. Intelligence Society, pp. 1336-1342.

[286] Riccardo Poli and Nicholas Freitag McPhee, "General schema theory for ge
netic programming with subtree-swapping crossover: Part i , " Evolutionary
Computation, vol. 11, no. 1, pp. 53-66, Mar. 2003.

[287] Riccardo Poli and Nicholas Freitag McPhee, "General schema theory for ge
netic programming with subtree-swapping crossover: Part i i , " Evolutionary
Computation, vol. 11, no. 2, pp. 169-206, May 2003.

[288] Peter J. Angeline and Jordan B. Pollack, "Evolutionary induction of sub
routines," in Proceedings of the l^th Annual Cognitive Science Conference,
Indiana, USA, 1992, pp. 236-241.

[289] Stephen Dignum and Riccardo Poli, "Generalisation of the limiting distri
bution of program sizes in tree-based genetic programming and analysis of
its effects on bloat," in Proceedings of the 9th annual conference on Genetic
and evolutionary computation (GECCO'2007), London, U K , July 7-11 2007,
vol. 2, pp. 1588-1595, A C M Press.

[290] Riccardo Poli, William B. Langdon, and Stephen Dignum, "On the limiting
distribution of program sizes in tree-based genetic programming," in Genetic
Programming, 10th European Conference, EuroGP 2007, April , 11-13 2007,
vol. 4445 of Lecture Notes in Computer Science, pp. 193-204.

[291] Terence Soule and Robert B. Heckendorn, "An analysis of the causes of code
growth in genetic programming," Genetic Programming and Evolvable Ma
chines, vol. 3, no. 3, pp. 283-309, 2002.

[292] Sean Luke, "Code growth is not caused by introns," in In Whitley, D. (Ed.),
Late Breaking Papers at the 2000 Genetic and Evolutionary Computation Con
ference (pp. 228-235). Las Vegas. 2000, pp. 228-235, Morgan Kaufmann.

172

[293] Chris Gathercole and Peter Ross, "Small populations over many generations
can beat large populations over few generations in genetic programming," in
Genetic Programming 1997: Proceedings of the Second Annual Conference,
San Francisco, C A , USA, July 13-16 1997, pp. 111-119, Morgan Kaufmann.

[294] Cemal Ozguven, Lale Ozbakir, and Yasemin Yavuz, "Mathematical models
for job-shop scheduling problems with routing and process plan flexibility,"
Applied Mathematical Modelling, vol. 34, no. 6, pp. 1539-1548, 2010.

[295] Onur Ozturk, Marie-Laure Espinouse, Maria Di Mascolo, and Alexia Gouin,
"Makespan minimisation on parallel batch processing machines with non-
identical job sizes and release dates," International Journal of Production
Research, vol. 50, no. 20, pp. 6022-6035, 2012.

[296] Parviz Fattahi, Mohammad Saidi Mehrabad, and Fariborz Jolai, "Mathemat
ical modeling and heuristic approaches to flexible job shop scheduling prob
lems," Journal of Intelligent Manufacturing, vol. 18, no. 3, pp. 331-342, 2007.

[297] Amir Jalilvand-Nejad and Parviz Fattahi, " A mathematical model and genetic
algorithm to cyclic flexible job shop scheduling problem," Journal of Intelligent
Manufacturing, pp. 1-14, 2013.

[298] T. I. Kopaleishvili, Collision Theory: A Short Course, World Scientific Pub
lishing Co Pte Ltd, December 1994.

[299] Marvin L. Goldberger and Kenneth M . Watson, Collision Theory, Dover
Publications Inc., September 2004.

[300] Robert Sedgewick and Wayne Kevin, Algorithms, Addison-Wesley Profes
sional, March 2011.

[301] Cesar Estebanez, Julio Cesar Hernandez-Castro, Arturo Ribagorda, and Pedro
Isasi, "Evolving hash functions by means of genetic programming," in Proceed
ings of the 8th Annual Conference on Genetic and Evolutionary Computation,
New York, N Y , USA, 2006, G E C C O '06, pp. 1861-1862, A C M .

[302] Cesar Estebanez, Julio Cesar Hernandez-Castro, Arturo Ribagorda, and Pe
dro Isasi, "Finding state-of-the-art non-cryptographic hashes with genetic
programming," in Proceedings of the 9th International Conference on Parallel
Problem Solving from Nature. 2006, pp. 818-827, Springer-Verlag.

173

BIBLIOGRAPHY OF AUTHOR
[303] Jan Karásek, "Portfolio selection based on analytic hierarchy process and

evolutionary computation," in Proceedings of the 17th Conference Student
EEICT 2011, Brno, Czech Republic, 2011, vol. 3, pp. 595-599.

[304] Jan Karásek and Lubomír Cvrk, "Stav vědy a techniky v oblasti genetického
programování," Elektrorevue, vol. 15, no. 2, pp. 147-155, 2013.

[305] Jan Karásek, Radim Burget, Jakub Muller, and Victor Manuel Peris Montalt,
"Automatization of vehicle routing in warehouse," Elektrorevue, vol. 2, no. 1,
pp. 1-8, Apri l 2011.

[306] Radim Burget, Jan Karásek, and Zdeněk Smékal, "Classification and detection
of emotions in czech news headlines," in Proceedings of the 33rd International
Conference on Telecommunication and Signal Processing, 2010, pp. 64-69.

[307] Radim Burget, Jan Karásek, and Zdeněk Smékal, "Recognition of emotions
in czech newspaper headlines," Radioengineering, vol. 20, no. 1, pp. 31-39,
April 2011.

[308] Radim Burget, Jan Karásek, Zdeněk Smékal, Václav Uher, and Otto Dostál,
"Rapidminer image processing extension: A platform for collaborative re
search," in Proceedings of the 33rd International Conference on Telecommu
nication and Signal Processing, 2010, pp. 114-118.

[309] Radim Burget, Jan Karásek, Václav Uher, and Martin Zukal, "Semi
automatic image data analysis," Elektrorevue, vol. 2010, no. 1, pp. 61-67,
2010.

[310] Jan Mašek, Radim Burget, Jan Karásek, Václav Uher, and Selda Guney, "Evo
lutionary improved object detector for ultrasound images," in 36th Interna
tional Conference on Telecommunications and Signal processing (TSP 2013),
July, pp. 586-590.

[311] Jan Karásek, Radim Burget, Jan Mašek, and Malay Kishore Dutta, "Genetic
programming based classifier in viola-jones rapidminer image mining exten
sion," in 36th International Conference on Telecommunications and Signal
Processing (TSP 2013), July 2013, pp. 872-876.

[312] Michal Jurčík and Jan Karásek, "Návrh metody pro výpočet predikce kolizí
vozíků v logistickém skladu založena na simulaci neelastických kolizí," Elek
trorevue, vol. 15, no. 3, pp. 194-204, 2013.

174

[313] Jan Karásek, Radim Bürget, Malay Kishore Dutta, and Anushikha Singh,
"Java evolutionary framework based on genetic programming," in 2014 In
ternational Conference on Signal Processing and Integrated Networks (SPIN).
February 2014, pp. ?-?

[314] Jan Karásek, Radim Bürget, and Ondřej Mořský, "Towards an automatic
design of non-cryptographic hash function," in 34th International Conference
on Telecommunications and Signal Processing (TSP 2011), 2011, pp. 19-23.

[315] Jan Karásek and Radek Beneš, "Image filter design based on evolution," in
Proceedings of the 16th Conference Student EEICT 2010, Brno, Czech Repub
lic, 2010, vol. 5, pp. 251-255.

[316] Jan Karásek, Radim Bürget, Radek Beneš, and Luboš Nagy, "Grammar
guided genetic programming for automatic image filter design," in The Con
ference Proceedings of the Knowledge in Telecommunication Technologies and
Optics, Miroslav Vozňák and Jan Skapa, Eds., Ostrava, Czech Rep., December
2010, pp. 205-210, VŠB-Technical University of Ostrava.

[317] Radek Beneš, Jan Karásek, Radim Bürget, and Kamil Říha, "Automatically
designed machine vision system for the localization of cca transverse section
in ultrasound images," Computer Methods and Programs in Biomedicine, vol.
109, no. 1, pp. 92-103, 2013.

[318] Jan Karásek, Radim Bürget, and Václav Uher, "Optimization of warehouse
processes - benchmark definition," in MENDEL 2013 19th International Con
ference on Soft Computing, June 2013, vol. 1, pp. 45-50.

[319] Jan Karásek, Radim Bürget, Václav Uher, Malay Kishore Dutta, and Yogesh
Kumar, "Optimization of logistic distribution centers process planning and
scheduling," in 2013 Sixth International Conference on Contemporary Com
puting (IC3-2013), August 2013, pp. 343-348.

[320] Jan Karásek, Radim Bürget, and Lukáš Povoda, "Logistic warehouse pro
cess optimization through genetic programming algorithm," in Advances in
Intelligent Systems and Computing, Apri l 2014, pp. ?-?, ISSN 2194-5357.

175

LIST OF ABBREVIATIONS
A A O Architecture-Altering Operations

A C O Ant Colony Optimization

A D F Automatically Defined Functions

A G V Automated Guided Vehicles

ASRS Automated Storage and Retrieval System

B B Branch and Bound

B B O Biogeography-Based Optimization

C C A Common Carotid Artery

C F G Context-Free Grammar

C G P Cartesian Genetic Programming

C P C Context Preserving Crossover

C P M Critical Path Method

D A R P Dial-A-Ride Problem

EP Evolutionary Programming

E R P Enterprise Resource Planning

ES Evolution Strategies

FIFO First In First Out

FS Flow Shop

FSS Flow Shop Scheduling

G A Genetic Algorithm

G B I M Grammar-based Initialization Method

G B M Grammar-based Mutation

G B X Grammar-based Crossover

G G G P Grammar Guided Genetic Programming

176

GP Genetic Programming

JS Job Shop

JSS Job-Shop Scheduling Problem

L G P Linear Genetic Programming

L P T Longest Processing Path first

L R Lagrangian Relaxation

MIP Mixed Integer Programming

N N Neural Network

NS Neighborhood Search

O M Operational Manager

OS Open Shop

OSS Open Shop Scheduling

P D P Pickup and Delivery Problem

P E R T Program Evaluation and Review Technique

P M M Parallel Machine Model

PSO Particle Swarm Optimization

P T C Probabilistic Tree Creation

R P T Reverse Processing Path first (Reverse SPT)

SA Simulated Annealing

SAC Semantics Aware Crossover

S D M Semantically Driven Mutation

S K U Stock Keeping Unit

S M M Single Machine Model

SPT Shortest Processing Path first

SSC Semantic Similarity-based Crossover

177

STGP Strongly Typed Genetic Programming

T D V R P Time Dependent Vehicle Routing Problem

T G P Tree Genetic Programming

TS Tabu Search

TSP Traveling Salesman Problem

V R P Vehicle Routing Problem

V R P B Vehicle Routing Problem with Backhauls

V R P P D Vehicle Routing Problem with Pickups and Deliveries

V R P T W Vehicle Routing Problem with Time Windows

W M S Warehouse Management System

W X Whigham's Crossover

178

LIST OF APPENDICES
C D

• The Java Evolutionary Framework (JEF)
• The Basic Instructions for J E F

179

Curriculum Vitae

Jan Karásek

Personal information:
Address: Rosice, Czech Republic
E-mail: karasekj@gmail.com
GSM: +420 777 933 554

School and education:

09/2009-present Brno University of Technology, Ph.D.
Faculty of Electrical Engineering and Communication
Specialization: Teleinformatics
Theme of thesis: High-Level Object Oriented Genetic
Programming in Logistic Warehouse Optimization

09/2011-01/2012 University of Eastern Finland, Ph.D. exchange stay
School of Computing
Specialization: Teleinformatics
Theme of thesis: High-Level Object Oriented Genetic
Programming in Logistic Warehouse Optimization

07/2008-06/2010 Brno University of Technology, MSc.
Faculty of Business and Management
Specialization: Economics and Management
Theme of thesis: The Application of Evolution Algorithm
for the Rating of Supplier of the Firm

07/2007-06/2009 Brno University of Technology, MSc.
Faculty of Electrical Engineering and Communication
Specialization: Communications and Informatics
Theme of thesis: Hash Functions - Characteristics,
Implementation and Collisions

07/2004-06/2007 Brno University of Technology, BSc.
Faculty of Electrical Engineering and Communication
Specialization: Teleinformatics
Theme of thesis: Multi-Layer Desktop Applications

180

mailto:karasekj@gmail.com

Work experience:

01/2013-present Junior Researcher, Brno University of Technology
05/2011-present Project Manager, Brno University of Technology
06/2005-01/2009 Programmer - Analyst of Logistic Inf. System Prystanis

Project participation

04/2012-12/2015 FR-TI4/151: Research and Development of Technology for
Machine Emotion Detection in Unstructured Data
Principal investigator: Prof. Ing. Zdeněk Smékal, CSc.

FEKT-S-11-17: Research of Sophisticated Methods for Digital
Audio and Image Signal Processing
Principal investigator: Prof. Ing. Zdeněk Smékal, CSc.

EE2.3.20.0094: Support for Incorporating R & D Teams in International
Cooperation in the Area of Image and Audio Signal Processing
Principal investigator: Ing. Jan Karásek

ED2.1.00/03.0072, Center of Sensor, Information and Communication
Systems, Principal investigator: Prof. Dr. Ing. Zbyněk Raida

FR-TI1/444: Research and Development of the System for Manufacturing
Optimization, Principal investigator: Prof. Ing. Zdeněk Smékal, CSc.

2272/2012/F1: Integration of Genetic Algorithms and Genetic Prog,
in Teaching, Principal investigator: Ing. Radim Burget, Ph.D.

2076/2011/G1: Integration of Evolutionary Algorithms in Teaching
Principal investigator: Ing. Jan Karásek

FEKT-S-10-16: Research of Communication Systems and Networks
Principal investigator: Prof. Ing. Kamil Vrba, CSc.

01/2011-12/2014

05/2011-05/2014

01/2013

08/2009-

01/2012-

01/2011-

01/2010-

12/2013

07/2013

12/2012

12/2011

12/2010

Designated reviewer:

• 6th International Conference on Teleinformatics (ICT 2011)
• 35th International Conference on Telecommunications and Signal Processing (TSP 2012)
• 36th International Conference on Telecommunications and Signal Processing (TSP 2013)
• 37th International Conference on Telecommunications and Signal Processing (TSP 2014)
• World Symposium on Computer Applications & Research (WSCAR' 2014)
• International Conference on Signal Processing & Integrated Networks (SPIN-2014)
• Elektrorevue - Internet Electrotechnics Magazine, ISSN 1213-1539
• D A T E S - Interntet All-Electronic Journal, ISSN 1805-5443

181

Invited Presentations:

• 2013, Amity University, Noida, New Delhi, India
• 2014, University of Stirling, Stirling, Great Britain
• 2014, University of Gran Canaria, Gran Canaria, Spain

Publication activities:

• Papers published in impact factor journals: 2
• Papers published in other journals: 9
• Papers published in international conferences: 18
• Papers published in domestic conferences: 3
• Papers indexed in WoS: 5
• Papers indexed in Scopus: 7
• H-index according to WoS: 2
• H-index according to Scopus: 2
• Number of released products: 5

Last Actualization: March 21, 2014

182

