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Abs t rac t 
Many scientific observations and measurement techniques, that rely on data 
from images, include an image registration step. The results of such techniques 
thus often heavily rely on the precision of the image registration. This the
sis describes a novel, robust and highly accurate sub-pixel image registration 
method (based on the standard phase correlation image registration method), 
and its applications in various fields. 

Abs t r ak t 
Mnoho vědeckých pozorování a měření, které pracují s obrazovými daty, ob
sahují krok, ve kterém je nutno dané obrazy registrovat (navzájem sesadit). 
Výsledky těchto metod tak často silně závisí na přesnosti registrace obrazů. 
Tato práce popisuje novou, robustní a vysoce přesnou metodu sub-pixelové 
registrace obrazů (založenou na registraci standardní fázovou korelací) a její 
aplikace v různých oborech. 

Keywords 
image registration, cross-correlation, phase correlation, Fourier transform, sub-
pixel accuracy, optimization 
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registrace obrazů, křížová korelace, fázová korelace, Fourierova transformance, 
sub-pixelová přesnost, optimalizace 
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Introduction 
The need to effectively and reliably solve the image registration problem arises 
in many domains, ranging from medical and satellite imaging [Jenkinson and 
Smith, 2001, Mahmood and Lee, 2019] to optical flow [Lefebure and Cohen, 
2001], experimental mechanics [Bing et al., 2006], 3D reconstruction [Gravel 
et al., 2012], astrophysics [Chen et al., 2014, Zhou and Yu, 2018, Shapiro et al., 
2013] and many more. 

Intensity-based methods (methods based on a notion of correlation) are 
one of the most frequently used and widely-known techniques in this domain 
[Leng et al., 2019], mostly because of their relative computational efficiency, 
which is often achieved by a clever use of the convolution/correlation theorem 
together with the Fast Fourier Transform algorithm [Brigham and Morrow, 
1967]. Popular intensity-based image registration methods include the cross-
correlation method and the phase correlation method, upon which many of 
the state of the art methods are built [Debella-Gilo and Kaab, 2011, Heid and 
Kaab, 2012, Abdou, 1998, Foroosh et a l , 2002, Balci and Foroosh, 2006]. 

Contrary to intensity-based image registratiom methods, feature-based meth
ods do not produce a single image shift estimate for the whole registered image 
pair, but a set of varying image shift estimates at multiple automatically de
tected locations. Feature-based image registration methods are therefore well 
suited for registering images with non-uniform motion. Many feature detection 
and description methods exist, each with its own advantages and drawbacks, 
which include speed, accuracy, robustness, ease of use (number of parameters) 
and availability (license type). Popular and frequently used feature detec
tors/descriptors include O R B [Rublee et a l , 2011], SIFT [Lowe, 1999] and 
SURF [Bay et al., 2008]. 

The main results of this work include various novel astrophysical applica
tions of state of the art intensity-based and feature-based image registration 
methods, along with a detailed description and evaluation of a novel, robust 
and highly accurate sub-pixel image registration method and some of its many 
potential applications. The novel Iterative Phase Correlation (IPC) method is 
an extension of the standard phase correlation method of image registration 
to the sub-pixel domain. The high sub-pixel accuracy of the IPC method is 
mainly suited for scientific measurements using high quality image data. 
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A general overview of the most frequently used image registration tech
niques can be found in Chapter 1, containing popular intensity-based methods 
in Section 1.1 and popular feature-based methods in Section 1.2. The novel 
IPC image registration method is described in detail in Chapter 2. Rigorous 
sub-pixel accuracy measurements for various image sizes and noise levels and 
comparison with other image registration methods can be found in Section 2.7. 
Various novel astrophysical applications of the IPC algorithm and other image 
registration algorithms are presented in Chapter 3, including dissimilar image 
alignment (3.1), solar differential rotation speed measurement (3.2) and solar 
wind speed measurement (3.3). 
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Chapter 1 

Image registration 
methods 

1.1 Intensity-based methods 
The cross-correlation function describes a measure of similarity between two 
input signals, based on their relative displacement. Thus, for each pair of 
sufficiently similar regions in the two correlated signals, the cross-correlation 
function will contain a local maximum - a distinct "peak" at the location of 
the corresponding relative displacement. The value of the cross-correlation 
function in each of these local maxima depends on the extent of similarity, 
and therefore may vary significantly across all local maxima. 

To measure the relative x and y shift (denoted Ax and Ay) between images 
h(x, y) and h(x, y) via the cross-correlation image registration method, firstly, 
the Fourier transform of the first image (denoted T {h(x, y)}) and the complex 
conjugate of the Fourier transform of the second image (denoted T {hix, y)}) 
are computed. These Fourier spectra are then multiplied element-wise (de
noted by 0 ) , and an inverse Fourier transform of the result is calculated. This 
results in the discrete cross-correlation landscape C(x,y). 

To produce the estimate of the image shift [Ax, Ay], the location of the 
maximum correlation value (maximum element in C(x, y)) is found. The [x, y] 
coordinates of the maximum correlation location are then the corresponding 
cross-correlation image registration shift estimates, mathematically expressed 
as 

[Ax, Ay] = argmax (V"1 {r{h{x, y)} 0 F{h{x, y)}\) . (1.1) 
x,y ^ ^ ' ' 

Similarly to the cross-correlation function, the phase correlation function 
also describes the similarity between two input signals, based on their relative 
displacement. The process of obtaining the correlation landscape with phase 
correlation is also very similar, the only difference being that the cross power 
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spectrum (the result of multiplying the Fourier transforms together) is normal
ized before the inverse Fourier transform is applied, mathematically expressed 
as 

[Arc, Ay] = arg max T 
x,y \ 

- l 
F{h{x,y)}QF{I2{x,y)} 

F{h{x,y)}QF{I2{x,y)} 
(1.2) 

The resulting image shift estimate obtained by the standard cross-correlation 
and phase correlation methods is inherently restricted to integer values, since 
it directly corresponds to the location of maximal correlation. Multiple newer 
image registration techniques aim to improve the registration accuracy of the 
phase correlation method by extending it to the sub-pixel domain [Alba et al., 
2015]. These correlation extensions employ many various ideas, e.g. image up-
sampling, quadratic/Gaussian/sinc fitting in correlation space, linear fitting in 
frequency space, local correlation center of mass (centroid), upsampling in the 
frequency space and more. 

1.2 Feature-based methods 
For some types of image registration tasks, using intensity-based (correlation) 
image registration algorithms yields very poor results. Such tasks mostly in
clude registering image pairs, that contain multiple distinct regions, which are 
shifted by a different amount and/or in a different direction, or registering 
images with non-stationary regions and a stationary background. In these 
cases, intensity-based image registration methods have difficulty estimating 
the correct image shift, since there is no single correct underlying image shift 
for the whole image. The correlation landscapes for such image pairs often in
clude multiple similarly strong peaks, and for this reason, the resulting image 
shift estimates become unreliable and tend to oscillate between multiple val
ues. The only possible solution (using intensity-based methods) in such case 
is to partition the registered images into equally-sized sub-regions and esti
mate the image shift individually for each sub-region. However, this approach 
only works, if the non-uniform overall image shift becomes sufficiently close 
to being uniform in each sub-region. It might be challenging to estimate the 
correct shape and number (and therefore size) of sub-regions in the partition, 
so that each sub-region sufficiently fulfills the image shift uniformity condition. 
Furthermore, for small sub-regions, the resolution might become insufficient 
to obtain a reliable image shift estimate. 

The feature-based image registration process consists of three main steps 
- feature detection, feature description and feature matching. Firstly, both 
images are scanned and points of interest (keypoints) are detected in each 
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image (feature detection). Secondly, feature descriptors are computed for each 
of the detected keypoints, carrying information about the local neighborhood 
of the keypoint (feature description). Finally, the descriptors of the keypoints 
detected in the first image are matched with the descriptors of the keypoints 
detected in the second image, yielding a set of matching keypoint pairs. The 
resulting image shift estimate for the given keypoint pair is then simply the 
difference between the corresponding keypoint locations. 
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Chapter 2 

The Iterative phase 
correlation method 
The Iterative Phase Correlation (IPC) image registration method is a sub-pixel 
extension of the standard phase correlation algorithm. The registration accu
racy improvement is obtained mainly by the means of cross-power spectrum fil
tering, correlation interpolation and iterative sub-pixel centroid refinement, all 
of which will be discussed in the sections to come. It is important to mention, 
that exactly the same extension can also be applied to the cross-correlation 
algorithm. However, the standard phase correlation approach frequently out
performs the standard cross-correlation approach (in the sense of accuracy, 
resolution and brightness invariance), and thus is the preferred candidate for 
further attempts of accuracy improvement. 

2.1 Image windowing 

Before the first and most computationally expensive phase correlation step of 
computing the discrete Fourier transforms (DFTs) of both input images, it 
often proves beneficial to multiply both images by a window function W(x, y) 
(or simply just window), to reduce the effects of spectral leakage. The term 
"spectral leakage" originates from the fact, that the D F T power of a given 
underlying image frequency often "leaks" to the adjacent frequency bins. The 
effects of spectral leakage are present in all DFTs of aperiodic images, due to 
the periodic input assumption of the discrete Fourier transform. 

The simplest approach to mitigate such negative D F T effects is setting all 
pixels on the image boundary to the same value (usually zero), or letting the 
image pixels unmodified but increasing the image size by adding black (zero) 
borders on all sides, which effectively makes the image periodic in both x and y 
directions. This approach, however, introduces large gradients near the image 
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boundary for most real-world images. The resulting D F T power spectrum is 
then often corrupted with large values at high frequencies, which arise as a 
direct consequence of the large image boundary gradients. This simple con
stant boundary approach thus resolves one negative D F T effect, but introduces 
another, which often affects the resulting D F T spectrum even more severely. 
As previously mentioned, the approach, which then usually works the best, is 
the multiplication of the whole image by a window function W(x,y), which 
modifies the image minimally near the center, and tends smoothly towards 
zero near the image borders. Such window then does not introduce any signif
icant high frequency noise to the resulting D F T , while mitigating the spectral 
leakage effect. 

2.2 Cross-power spectrum filtering 

The first substantial deviation of the IPC method from the standard phase 
correlation algorithm is the addition of adjustable cross-power spectrum filter
ing. The filtering is applied to the normalized cross power spectrum CP(x, y) 
of the input images. The motivation behind the use of a cross-power spec
trum filter is twofold. Firstly, as is usual in signal processing, higher spatial 
frequencies often mostly contain the information about noise, and thus should 
almost always be attenuated. Secondly, lower spatial frequencies mostly con
tain the information about the overall brightness of the image, which should 
not be important to the image registration algorithm. Furthermore, the overall 
brightness of the two input images could differ not only due to the image shift 
itself, but also due to some external factors, such as different image calibration 
or different exposure times. These external factors should not play a big role 
in the resulting image shift estimate, and thus the lower spatial frequencies 
should also be attenuated. The ideal cross-power spectrum filter for the IPC 
algorithm is then a band-pass filter B(x, y) with adjustable parameters affect
ing the amount of attenuation of both lower and higher spatial frequencies. 
The band-pass filter can be implemented with sharp (rectangular) or smooth 
(Gaussian) transitions. 

2.3 Correlation sub-regions and upsampling 

After the inverse D F T of the band-pass filtered normalized cross power spec
trum of the two windowed input images I\ and I2 is computed, the correlation 
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function 

L , = r { B Q F{hQW}QF{I2QW} 

T{hQW}QF{I2QW} 
(2.1) 

denoted as L 3 , is obtained. The additional parameter £ in the normalized 
cross-power spectrum denominator effectively prevents division by zero er
rors. Additionally, with larger values of £, the resulting correlation landscape 
becomes gradually more and more similar to the standard cross-correlation 
landscape. 

Since upsampling the entire correlation landscape L 3 is unnecessary and 
computationally expensive, a sub-region of L 3 , centered around the point of 
maximal correlation is extracted (denoted as L2). The size of this sub-
region (denoted | L 2 | ) is a parameter and can be modified by the user. However, 
since the sub-region should be centered around a specific point, odd sub-region 
sizes are preferred, so that the specified point can correspond precisely to the 
central pixel. 

The extracted correlation sub-region L2 is upsampled with a two-dimensional 
interpolation method, yielding an upsampled version of L 2 , denoted as L2U. 
The type of the interpolation method and the size of L2U (or equivalently, the 
correlation upsampling factor U) are additional adjustable parameters, which 
can be modified according to the characteristics of the input images. Most 
commonly used two-dimensional interpolation methods include the nearest 
neighbor interpolation, bilinear interpolation and bicubic interpolation. 

Finally, another correlation sub-region centered around the maximal cor
relation point is extracted, this time from the already upsampled sub-region 
L2U. The size of this sub-region is another modifiable parameter, however, 
specifying it as a ratio of \L2U\ adds more clarity to the meaning of this pa
rameter. With the L1 size ratio denoted as L\ and satisfying 0 < L\ < 1, the 
size of the final extracted L 1 sub-region becomes 

IL 1 ! = max (IA1 

r 
max ( \L \ 

L2U 

L2U 
, 3 ) , if [ L M L ^ I J odd 
+ 1, 3) , otherwise 

where the degenerate cases of too small sub-region sizes are solved simply by 
clamping the result from the bottom by introducing a maximum function with 
the value of 3, which is the lowest pixel size, that is odd and can still yield 
sub-pixel improvements during the iterative refinement process. 

The L 1 sub-region represents the closest neighborhood of the maximum 
phase correlation point L^&x of the original phase correlation landscape L 3 , 
and will be the only region that will be updated in each iteration during the 
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iterative refinement process. The purpose of this region is to represent the 
phase correlation peak as closely as possible, all the while omitting all other 
irrelevant correlation variations from the rest of L 3 . Since the horizontal cross 
sections of the phase correlation peak are always of a circular shape, filtering of 
the correlation values that do not contribute to the main correlation peak can 
be done by multiplying the entire L 1 region point-wise with a binary circular 
mask M, defined as 

m (*,,) = J i f {x + ( y - ^ ) < (¥) ( 2 . 3 ) 

I 0, otherwise. 

2.4 Iterative refinement 
After the L 3 , L 2 , L2U and L1 regions are computed, the process of iterative sub-
pixel refinement is started. The aim of this process is to accurately estimate 
the sub-pixel part of the image shift and thus improve the final registration 
accuracy. Since zero image shift corresponds to the central pixel of L 3 , the 
pixel level accuracy image shift estimate [Ax, Ay] can be computed simply by 

[Arc, Ay] = L3

max [x, y] - [x, y], (2.4) 

where L^x [x, y] is the point of maximum phase correlation and L 3 ^ [x, y] is 
the central pixel of L 3 . This is the standard phase correlation result, to which 
the final sub-pixel image shift estimate obtained by the iterative refinement 
will be added. 

In each iterative refinement iteration (denoted with index i), firstly, the 
current circular upsampled sub-region Ll (i) is computed as a sub-region of 
L2U, centered around the current upsampled maximum phase correlation lo
cation L2^ (i) [x, y}. Secondly, the sub-pixel centroid location L ^ e n (i) [x, y] of 
the current circular upsampled sub-region L1 (i) is calculated. Thirdly, the 
current upsampled maximum phase correlation location L2^ (i) [x, y] in the 
L2U sub-region is calculated by adding the integer part of the current relative 
L1 (i) centroid location (relative to the L 1 origin L ^ i d [x,y]) to its value from 
the previous iteration as 

L2JL (i) [x, y] = L2^ (i - 1) [x, y] + [Llen (i) [x, y] - L ^ d [x, y]\ . (2.5) 

This iterative process is repeated until the circular upsampled sub-region cen
troid location is less than 0.5 pixels away from the origin in both x and y 
directions, or if the maximum number of iterations (denoted AT m a x ) is reached. 
The threshold distance of 0.5 pixels reflects the fact, that the L1 sub-region 

13 



can be moved only by an integer number of (upsampled) pixels in each itera
tion. Therefore, if this distance is less than 0.5 pixels in both directions, the 
algorithm converged and the iterative refinement process is terminated. 

2.5 Rotation and scale estimation 
In the general IPC image alignment procedure, estimates of the rotation and 
scale parameters ip and s are obtained by exploiting three important Fourier 
transform properties, namely the Fourier transform scale property, the fact 
that translation in the image domain does not affect the frequency domain 
magnitude spectrum and the fact that rotation in the image domain corre
sponds to equivalent rotation in the frequency domain. The task of rotation 
and scale estimation can thus be transformed into translation estimation be
tween the log-polar transformed magnitude spectra of Fourier transforms of 
both images. 

To significantly improve the robustness of this alignment step, two addi
tional operations are performed. Firstly, a window (see Section 2.1) is applied 
to both images prior to the Fourier transform magnitude spectrum computa
tion to reduce spectral leakage effects. Secondly, since most of the frequency 
power of the majority of real-world images is concentrated near the origin (at 
lowest frequencies), a logarithm function is applied to both magnitude spectra 
to increase contrast for the subsequent shift estimation. 

Once the rotation and scale estimates are obtained, the second input image 
is rotated and scaled back by the estimated amounts. Afterwards, the sub-
pixel shift between the first image and the rotated and scaled second image is 
calculated. The second image is then shifted back by the computed amount, 
completing the alignment. Both affine transformations (rotation/scale and 
translation) can be computed with sub-pixel precision via bilinear interpola
tion. 

2.6 Parameter optimization 
The accuracy and robustness of the IPC method is affected by multiple pa
rameters. In some of the following sections, sensible default values of all the 
parameters are given and explained. These default values have been tested and 
work well for a wide range of image types and sizes. However, if the registra
tion estimates are to be obtained with absolute maximum sub-pixel accuracy, 
the IPC parameters shall be adapted (optimized) for a particular image type. 
Optimal IPC parameters mainly depend on the size of the image, on the image 
signal-to-noise ratio and on the spatial frequency characteristics of the objects 
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and structures contained within the image. 
The central part of any optimization problem is the objective function. 

In this case, there are many unique ways to quantitatively express the per
formance of an image registration algorithm. The most natural and general 
measure of sub-pixel image registration performance is the sub-pixel image 
registration accuracy metric, defined as 

e = ^/{Ax - A x ) 2 + {Ay - Ay)2, (2.6) 

where [Ax, Ay] is the refined IPC shift estimate and [Ax, Ay] is the true (ref
erence) underlying sub-pixel shift between the two input images. A n image 
pair with a given pre-determined underlying sub-pixel shift [Ax, Ay] can be 
obtained by artificially shifting an image via bilinear interpolation. 

Firstly, to evaluate shifts of varying magnitudes and directions (and thus 
remove measurement bias), the sub-pixel image registration accuracy is eval
uated on a linearly spaced two-dimensional grid of artificial shifts [Ax, Ay], 
ranging from -2 to 2 pixels in each direction. 

Secondly, mutually independent artificial Gaussian noise is added to each 
input image, to simulate noise present in real image pairs. For most accurate 
results, the noise characteristics of the artificial noise (mainly the mean and 
the standard deviation) should closely match the characteristics of the real 
noise in the images. 

Finally, to further improve robustness, the sub-pixel image registration ac
curacy metric can be computed on grids of artificial image pairs from multiple 
images. The resulting image-average and artificial image shift grid-average 
sub-pixel registration accuracy can then be defined as 

1 Nt Nx Ny  

E = N N N S S S V ~ A x ^ y ) 2 + (A^y ~ A f e ) 2 > ( 2 - 7 ) 
i x y i = i x=i y—l 

where Nj is the number of evaluated image pairs, Nx is the number of image 
shift grid points in the x direction and Ny is the number of image shift grid 
points in the y direction. 

The average sub-pixel image registration accuracy objective function is gen
erally non-convex and non-continuous. These properties significantly reduce 
the number of appropriate optimizers. One of the most robust and performant 
non-convex non-continuous derivative-free state of the art optimizers is the 
Differential evolution (DE) optimizer [Price, 2013, Das and Suganthan, 2010, 
Pant et al., 2020]. The only inputs of the D E optimizer are the objective 
function and the lower and upper bounds of each of the optimized parameters. 
The D E optimizer then initializes a random "population" of possible solutions 
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W x H o P C PCS IPC IPCO 
32x32 0.00 0.392±0.147 1.344±0.556 0.079±0.033 0 .029±0 .019 
32x32 0.02 0.392±0.147 1.583±0.751 0.087±0.045 0 .076±0 .038 
32x32 0.05 0.401±0.158 1.734±1.177 0.171±0.089 0 .112±0 .058 
64x64 0.00 0.392±0.147 0.253±0.122 0.035±0.017 0 .012±0 .006 
64x64 0.02 0.392±0.147 0.321±0.151 0.040±0.020 0 . 0 2 2 ± 0 . 0 1 1 
64x64 0.05 0.392±0.147 0.370±0.185 0.069±0.034 0 .051±0 .026 

128x128 0.00 0.392±0.147 0.239±0.080 0.036±0.017 0 .009±0 .005 
128x128 0.02 0.392±0.147 0.270±0.079 0.032±0.016 0 . 0 1 4 ± 0 . 0 0 7 
128x128 0.05 0.392±0.147 0.244±0.089 0.041±0.020 0 . 0 3 4 ± 0 . 0 1 7 
256x256 0.00 0.392±0.147 0.173±0.083 0.024±0.013 0 .008±0 .005 
256x256 0.02 0.392±0.147 0.170±0.064 0.028±0.014 0 .010±0 .005 
256x256 0.05 0.392±0.147 0.169±0.059 0.036±0.017 0 . 0 1 4 ± 0 . 0 0 7 

Table 2.1: Average sub-pixel image registration accuracy and its standard de
viation measured on datasets of image pairs with various sizes (width W and 
height H) and noise levels (standard deviation a). Measured image registra
tion methods: standard phase correlation (PC), OpenCV implementation of a 
5x5 weighted centroid sub-pixel phase correlation (PCS), Iterative Phase Cor
relation (IPC), Iterative Phase correlation with optimized parameters (IPCO). 

within the specified parameter bounds and then produces progressively im
proved parameter combinations in each iteration (evolution generation), until 
one of the termination criteria are met. Wi th large enough population size, the 
D E optimizer is very robust in finding the global objective function optimum. 

2.7 Accuracy measurements and comparison 
The performance of various sub-pixel image registration methods can be objec
tively evaluated by the average sub-pixel image registration accuracy metric 
on a given dataset of shifted image pairs. The sub-pixel image registration 
accuracy results for various methods, image sizes and noise levels can be seen 
in Table 2.1. 

Naturally, the accuracy results of all sub-pixel methods show a clear trend 
of decreasing accuracy with increasing noise levels. The standard deviation of 
the sub-pixel accuracy also seems to increase with increasing noise levels for all 
sub-pixel methods. The accuracy results of the IPC method with optimized 
parameters show significantly improved average sub-pixel accuracy and also 
improved sub-pixel accuracy standard deviation. 
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Chapter 3 

Applications 

3.1 Dissimilar image alignment 
In many different fields dealing with image data (e.g. astrophotography, mi
croscopy, satellite imaging and more), it is often necessary to compose images 
taken with different instruments and varying wavelengths. These images can 
be noticeably misaligned due to differences in instrument positions, varying 
times of acquisition and/or different instrument optics. Misalignments typi
cally include a combination of image translation, image rotation and scaling. 
To accurately align two such images, four parameters need to be precisely es
timated - translational shifts Arc and Ay in the x and y directions, rotation 
angle ip and a scale factor s. If these four parameters are computed with good 
sub-pixel accuracy, the resulting composed image can have distinctly better 
characteristics than a composed image obtained by standard pixel-level accu
racy image registration methods. 

Both correlation-based and feature-based image registration methods often 
fail to correctly align images with low levels of similarity. A typical application, 
where aligning visibly very dissimilar images with high accuracy is required, 
is the composition of images taken by various instruments of the Atmospheric 
Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) 
[Lemen et al., 2011]. A typical example of a dissimilar image pair obtained by 
304A and 171A S D O / A I A instruments roughly at the same moment can be 
seen in Fig. 3.1. 

Contrary to standard rotation/scale/translation image alignment methods, 
the IPC general image alignment method (described in Section 2.5) can adapt 
to the vastly different characteristics of the input images via parameter opti
mization (see Section 2.6). This increases the robustness of the alignment and 
increases the interval of image similarity, in which the method aligns images 
correctly. 

The IPC general image alignment procedure is demonstrated on a pair of 
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(a) (b) 
Figure 3.1: A n example of a significantly dissimilar image pair - contrast-
enhanced 304A (a) and 17lA (artificially transformed) (b) images taken by 
the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory. 

(a) (b) 
Figure 3.2: General IPC image alignment of S D O / A I A 304A and 17lA images 
- after rotation, scale and translation alignment. Rotation, scale and transla
tion aligned 171A (second) image (a), red-blue color composition of original 
S D O / A I A 304A image and rotation, scale and translation aligned 17lA image 
(b). 
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dissimilar 304A and 171A S D O / A I A images (from Fig. 3.1). To better demon
strate the robustness of the method, the second (171 A) image is significantly 
artificially rotated, scaled (enlarged) and shifted prior to the alignment pro
cess. Figure 3.2 shows the second image after rotation, scale and translation 
(complete) alignment. 

3.2 Solar differential rotation speed measure
ment 

The identification of sunspots with features on the solar surface led to the 
discovery of solar rotation in the 17th century, and the variation of the rota
tion speed with latitude, or the differential rotation rate, by Schemer [1630]. 
Advances in observational tools over the centuries led to the discovery of the os
cillation modes of the Sun [Leighton et al., 1962], which established the field of 
helioseismology [see review by Leibacher et al., 1985]. Helioseismology further 
revealed that the differential rotation rate changes with depth in the convection 
zone [Thompson et al., 1996]. Given that the differential rotation rate is now 
established as a necessary mechanism for generating solar magnetic fields, i.e. 
the solar dynamo [Elsasser, 1950, Babcock and Babcock, 1955, Parker, 1955], 
the accurate determination of the differential rotation rate, starting from the 
solar surface, becomes even more compelling. 

3.2.1 Measurement technique 
The inference of the solar rotational speed at different latitudes is achieved 
by measuring the local west-east and north-south image shifts Arc, Ay be
tween pairs of Solar Dynamics Observatory (SDO) Helioseismic and Magnetic 
Imager (HMI) continuum full disk 4096x4096 images by means of image reg
istration. Measured image shifts are then projected onto the solar surface, 
allowing the corresponding angular shifts to be found. 

The accuracy and reliability of the image registration technique depends 
heavily on the chosen time step At. A time step of 45s is used for all the mea
surements. Since the S D O / H M I images mostly contain information about the 
granulation on the solar surface, the time difference between the two pictures 
is limited by the lifetime of these granules. A typical granule has a lifetime of 
around 10-15 minutes, which limits the time step to around 4 minutes, to still 
keep good overlap and correlation between the images. The lowest possible 
time step of 45s is thus chosen to maximize the signal-to-noise ratio. 

The local image shifts were calculated for a chosen set of pixel coordinates 
(and their neighborhoods) by the iterative phase correlation (IPC) sub-pixel 
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F l o w speed curve type A B C 
W - E (B) (1 m.) 14.21 -1.61 -2.89 
W - E (B) (1 d.) 14.27 -1.46 -2.66 
W - E (N) (1 m.) 14.20 -1.93 -2.75 
W - E (N) (1 d.) 14.26 -1.24 -3.47 
W - E (S) (1 m.) 14.23 -1.28 -3.02 
W - E (S) (1 d.) 14.28 -1.68 -1.84 
N-S (N) (1 m.) 0.01 -0.82 8.18 
N-S (N) (1 d.) -0.01 -0.62 7.40 
N-S (S) (1 m.) -0.14 0.61 -5.84 
N-S (S) (1 d.) -0.27 1.29 -7.57 

Table 3.1: Best (least squares) fitting coefficients A, B, C for different types 
of west-east (W-E) and north-south (N-S) trigonometric flow speed profile fits 
for northern (N), southern (S) or both (B) hemispheres, obtained from both 
one month (1 m.) and one day (Id.) data sets in degrees per day according 
to cjt(0) = A + Bsm2{6) + Csin 4(/9). 

image registration algorithm. As the vast majority of west-east shifts between 
pairs of consecutive (At = 45s) images lie in the interval [0.1,0.2] px, the high 
sub-pixel precision of the IPC algorithm justifies the choice of the method. 
The main relevant advantage of the IPC algorithm is the potential for very 
high sub-pixel spatial accuracy, due to its iterative nature. 

3.2.2 Measurement results 

Since M sub-regions were equidistantly distributed among different latitudes 
on the central meridian of every picture and measurements for P picture pairs 
were made, very detailed 2D west-east and north-south central meridian flow 
speed maps with P x M resolution could be constructed for each data set. 
These maps can be seen in Fig. 3.3. Although the measured angular velocity 
clearly varies with time in a given latitude band, the temporally coherent 
angular velocity values in the flow speed maps demonstrate the good image 
registration quality. Measured from horizontally (temporally) adjacent image 
shifts, although being computed from entirely different pairs of images, they 
are very similar at each latitude, which is demonstrated by the existence of the 
clearly distinguishable coherent faster than average and slower than average 
flows in Fig. 3.3 (a). 
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Figure 3.3: Solar west-east and north-south flow speed maps obtained from 
orthographically backprojecting image shifts measured on 2000 S D O / H M I con
tinuum full-disk image pairs back onto the solar surface. First row: west-east 
flow speed map (a) obtained from images spanning approximately a one day 
period. Second row: same as the first row for a one month period. Third row: 
same as the first row for north-south flow. 
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3.3 Solar wind speed measurement 
The measurement of solar wind speed from processed contrast-enhanced com
posite solar eclipse images [Druckmuller et al., 2006, Druckmiiller, 2009] is a 
good example of an image registration task with non-uniform motion. The 
composite solar eclipse images contain both relatively stationary regions (e.g. 
coronal loops) and regions moving in different directions with different speeds 
(e.g. solar wind, solar flares, the Moon). This means, that (global) intensity-
based (correlation) methods are not well suited for this task, and (local) 
feature-based methods need to be used instead. Furthermore, due to the 
contrast-enhancing process, the images often contain regions with very low 
average signal-to-noise ratio. The feature detector/descriptor pair thus needs 
to be very robust and resilient to noise. 

The S U R F feature detector/descriptor [Bay et al., 2008] is a very good fit 
for this difficult task. Furthermore, a special version of the SURF algorithm, 
called "upright" S U R F (or U-SURF) , which is not invariant to image rotation, 
can be used in this case, since the contrast-enhanced composite solar eclipse 
images do not contain any significantly scaled or rotated regions. This improves 
the algorithm computational performance, but more importantly in this case, 
also further increases the overall robustness of the results. 

To detect the SURF points of interest (keypoints) in all of the contrast-
enhanced solar eclipse images, a threshold Hessian determinant value of 100 
was chosen. This value proved to be a good compromise between detecting 
many low quality features and detecting too few features. To describe the 
neighborhood of the detected keypoints, the U-SURF (not rotationally in
variant) version of the SURF descriptor was used. Detected keypoints were 
matched by a brute-force L2 similarity metric comparison of the U-SURF de
scriptors. The resulting matches were then filtered by Lowe's ratio test [Lowe, 
2004] with a strict threshold ratio of 0.4. Overlapping matches (matches, whose 
initial keypoints were less than 40 pixels apart) were filtered out to improve 
overall clarity, always in favor of the match corresponding to a higher solar 
wind speed. 
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Figure 3.4: Solar wind speeds measured by the U-SURF method on sets of 10 
processed composite solar eclipse images. The depicted arrows originate from 
the corresponding automatically detected U-SURF keypoints and are scaled 
and color-coded according to the relative measured solar wind speed - from 
blue (relatively slow) to red (relatively fast). The actual corresponding solar 
wind speeds (in km/s) can be calculated from the feature shifts (in pixels), the 
time difference between images and pixel size. Captured during the 2017 total 
solar eclipse at Mitchell, Oregon observing site. 
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Chapter 4 

Summary and conclusions 

The first main goal of this thesis was to develop a novel state of the art high 
precision image registration method focusing on sub-pixel registration accu
racy. The new Iterative Phase Correlation (IPC) method is based on a reliable 
pixel-level accuracy phase correlation method. The IPC method is a ma
jor non-trivial extension of the standard phase correlation method, including 
procedures like image windowing, adjustable cross-power spectrum filtering, 
correlation upsampling, weighted correlation centroid computation and sub
sequent iterative centroid refinement. Many other sub-pixel cross-correlation 
and phase correlation extensions were previously developed, usually exploiting 
a particular idea to achieve a sub-pixel accuracy on the order of O.lpx. These 
ideas include image upsampling [Debella-Gilo and Kaab, 2011], fitting the cor
relation peak with an analytical function [Heid and Kaab, 2012, Abdou, 1998, 
Foroosh et al., 2002], calculating the centroid of the correlation peak [Michel 
and Rignot, 1999], counting the fractional number of cross-power spectrum 
phase cycles [Balci and Foroosh, 2006] and cross-power spectrum upsampling 
[Alba et a l , 2015, Young and Driggers, 2006, Zhang et al., 2011]. The IPC 
method combines multiple of these ideas among with iterative accuracy refine
ment into a single reliable and efficient method regularly achieving sub-pixel 
accuracy on the order of O.Olpx. The iterative centroid refinement step, which 
is the main source of high sub-pixel precision of the IPC method, is a very 
intuitive process, since it iteratively moves in the direction of higher average 
correlation. 

Furthermore, all the parameters of the IPC method can be easily opti
mized to maximize sub-pixel accuracy for a given image dataset. The main 
IPC parameters affecting image windowing, cross-power spectrum filtering, 
correlation upsampling and iterative centroid refinement gradually adapt to 
a specific kind of image during a differential evolution optimization process, 
optimizing a sophisticated non-convex non-continuous average sub-pixel ac
curacy metric. The IPC optimization process does not only improve overall 
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average sub-pixel error (registration accuracy), but also overall sub-pixel error 
standard deviation (registration robustness). 

Additionally, since the IPC method is an intensity-based method, it is com
putationally very efficient, mainly due to the use of the Fast Fourier Transform 
algorithm to compute the phase correlation. During each iteration in the iter
ative refinement process, only the centroid of a small correlation neighborhood 
needs to be recomputed, and thus the iterative character of the method does 
not significantly affect the overall computational efficiency when compared to 
the standard non-iterative cross-correlation and phase correlation methods. 
The IPC method can thus also serve as a good replacement of standard corre
lation methods in resource-constrained applications. 

The second main goal of this work was to find novel applications of state 
of the art high precision image registration methods (including the newly de
veloped IPC method), mainly focused on astrophysical measurements and ob
servations. 

The first application of high precision image registration methods researched 
and described in this work is the alignment of images with low levels of similar
ity. A good example of such image pairs are the S D O / A I A 94A, 131 A, 171 A, 
211 A, 304A and 335A images. Even though these images contain information 
about vastly different phenomena (e.g. flaring/active regions, chromosphere, 
corona), the IPC general image alignment method is able to align them reli
ably. This includes the correct estimation and correction of a combination of 
image scale, image rotation and image translation. 

Another major astrophysical application of the IPC algorithm is the novel 
iterative phase correlation technique of solar differential rotation estimation. 
This technique offers a new method for the empirical determination of the 
differential rotation rate of the solar photosphere. It is based on the mea
surement of locally varying image shifts between consecutive (At = 45s) solar 
images. The technique was applied to S D O / H M I data and roughly covered 
one Carrington rotation of continuous observations from 1.1.2020 to 2.2.2020. 
The technique has a number of exceptional properties which make it superior 
to other correlation-based techniques, mainly in the domain of high spatial 
and temporal resolution. 

The local shift measurement between two images is not limited to contrasty 
features like sunspots, as it can be applied even to very low contrast structures, 
such as granulation and/or faculae. Hence, the differential rotation rate thus 
determined is independent of any a priori selection of solar features, and can 
be successfully applied to any location in the photosphere. Unlike magnetic 
feature tracking methods, the IPC differential rotation measurement method 
does not introduce systematic measurement biases arising from the fact that 
the rotational velocities of various types of magnetic features do not necessarily 
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correspond to the underlying rotation rate of the photosphere and further 
depend significantly on feature size, morphology and age [Ward, 1966, Gilman 
and Howard, 1984, Zappala and Zuccarello, 1991]. 

The unprecedented A t = 45s time step resulted in the most precise and 
reliable sub-pixel image shift measurements, as larger time steps correspond to 
significant non-uniform granulation changes, for which a sub-pixel image shift 
can not be measured reliably. The extreme temporal resolution of the IPC 
method of differential rotation measurement enables the study of short-period 
photospheric phenomena and the comparison of measurements on different 
days separated by an event that may have a global impact on the solar magnetic 
field, such as a solar flare or a coronal mass ejection. 

Furthermore, given that the technique does not rely on visible features, 
it can be used throughout a full solar cycle independently of the presence of 
specific features in the photosphere. While methods based on solar markers 
yield a limited number of data points, the iterative phase correlation technique 
is applicable to every pixel close to central meridian within a given latitude 
band. This yields a unique opportunity to study the rotation rate of the Sun 
locally. 

The method is also able to estimate the locally varying north-south shifts 
between consecutive solar images. Although being very small and hard to 
measure, the north-south image shifts obtained by the novel image registra
tion method show coherent results, displaying a consistent global trend. The 
reliability of the north-south image shift measurement allows further studies 
of the general (not only rotational) photospheric movements with great de
tail. The north-south flow speed results show an overall flow towards the solar 
equator, with speeds becoming more significant closer to the geographic poles. 
Both the west-east and north-south flow speed profiles were fitted with poly
nomial and trigonometric curves, whose best (least squares) parameters were 
calculated and compared with other methods. 

The reliability of the approach is underscored by the fact that the average 
sidereal differential rotation curve obtained is in the middle of other published 
results. At the same time it also clearly shows the now well established N-S 
rotational speed asymmetry. Furthermore, the quality of the results is further 
supported by the smoothness of the average west-east image shift profile ob
tained from a single Carrington rotation of S D O / H M I image data and also 
by the coherence of the measured flow speed values inferred from temporally 
adjacent images. As an added bonus, the novel technique described in this 
work allows the study of short-lived and previously undetected phenomena 
associated with the solar magnetic field. 

Intensity-based image registration methods are not suited for all astrophys-
ical applications. In some measurements, temporally adjacent images contain 
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multiple regions moving in significantly different directions and speeds. For 
such applications, feature-based image registration methods are more appro
priate. One such astrophysical application of feature-based image registration 
methods described in this work is the measurement of the solar wind speed 
from composite solar eclipse images. In this approach, the solar wind speed 
is estimated from regional shifts obtained by the SURF feature detector and 
descriptor on multiple pairs of processed contrast-enhanced composite solar 
eclipse images. The region locations correspond to the automatically detected 
feature keypoints. To improve the robustness of this technique, only features 
with very high Hessian threshold are considered. Furthermore, feature pairs 
not passing Lowe's ratio test with a strict L2 similarity ratio of 0.4 are dis
carded. The technique of feature-based image registration of pairs of contrast-
enhanced composite solar eclipse images offers a novel way of solar wind speed 
measurement at various distances from the solar surface. 

In conclusion, the high sub-pixel accuracy of the newly developed IPC im
age registration method is not only able to significantly improve the accuracy 
of some existing astrophysical measurements based on image registration tech
niques, but also allow novel measurements and observations in domains where 
image registration (or any other) techniques were previously not applicable. 
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