
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

NÁVRH A ANALÝZA VÝKONNOSTI PARALELNÍHO
ZPRACOVÁNÍ SRTP PŘENOSŮ
DESIGN AND PERFORMANCE ANALYSIS OF PARALLEL PROCESSING OF SRTP PACKETS

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE JAN WOZNIAK
AUTHOR

VEDOUCÍ PRÁCE Ing. PETER JURNEČKA
SUPERVISOR

BRNO 2013

Abstrakt
Šifrováńı multimediálńıch datových přenos̊u v reálném čase je jednou z úloh telekomunikačńı
infrastruktury pro dosažeńı nezbytné úrovně zabezpečeńı. Rychlost provedeńı šifrovaćıho
algoritmu může hrát kĺıčovou roli ve velikosti zpožděńı jednotlivých paket̊u a proto je tento
úkol zajimavým z hlediska optimalizačńıch metod. Tato práce se zaměřuje na možnosti
paralelizace zpracováńı SRTP pro účely telefonńı ústředny s využit́ım OpenCL frameworku
a následnou analýzu potenciálńıho zlepšeńı.

Abstract
Encryption of real-time multimedia data transfers is one of the tasks for telecommunication
infrastructure in order to provide essential level of security. Execution time of ciphering
algorithm could play fundamental role in delay of the packets, therefore, it provides inter-
esting challenge in terms of optimization methods. This thesis focuses on parallelization
possibilities of processing SRTP for the purposes of private branch exchange with the use
of OpenCL framework and analysis of potential improvement.

Kĺıčová slova
AES, obecné výpočty na GPU, OpenCL, paralelńı výpočty, SRTP, SIP, telefonńı ústředna,
brána, VoIP.

Keywords
AES, general-purpose GPU, OpenCL, parallel computations, SRTP, SIP, private branch
exchange, gateway, VoIP.

Citace
Jan Wozniak: Design and Performance Analysis of Parallel Processing of SRTP Packets,
diplomová práce, Brno, FIT VUT v Brně, 2013

Design and Performance Analysis of Parallel
Processing of SRTP Packets

Prohlášeńı
Prohlašuji, že jsem tento semestrálńı projekt vypracoval samostatně pod vedeńım pana Ing.
Petera Jurnečky.

. .
Jan Wozniak
May 19, 2013

Poděkováńı
Na tomto mı́stě bych rád věnoval pár slov svému vedoućımu Ing. Peteru Jurnečkovi za
čas, který mi byl ochotný věnovat, ochotu a pomoc při řešeńı problémů a motivaci pro
dokončeńı práce. Roněž bych rád poděkoval společnosti Siemens Enterprise Communica-
tions za poskytnut́ı prostor̊u a prostředk̊u pro testováńı implementace, jež byla součást́ı
této diplomové práce.

c© Jan Wozniak, 2013.
Tato práce vznikla jako školńı d́ılo na Vysokém učeńı technickém v Brně, Fakultě in-
formačńıch technologíı. Práce je chráněna autorským zákonem a jej́ı užit́ı bez uděleńı
oprávněńı autorem je nezákonné, s výjimkou zákonem definovaných př́ıpad̊u.

Contents

1 Introduction 4

2 Secure Real-time Transport Protocol 6
2.1 Packet Structure . 6
2.2 Cryptographic Context . 7
2.3 Master Key Exchange . 8
2.4 Protocol Summary . 8
2.5 AES . 9

2.5.1 Mathematical Preliminaries . 9
2.5.2 Algorithm Description . 10
2.5.3 Block Cipher Modes . 13

3 General Purpose GPU 15
3.1 OpenCL . 16

3.1.1 Platform Model . 17
3.1.2 Execution Model . 17
3.1.3 Memory Model . 17

4 Design 19
4.1 Design Patterns . 19

4.1.1 Mediator Pattern . 19
4.1.2 Singleton Pattern . 20
4.1.3 Protocol Stack Pattern . 20

4.2 Model-view-controller . 21
4.3 SIP Gateway . 21
4.4 SRTP Stack . 23

4.4.1 SRTP Processing . 25
4.5 Transcoding . 29

5 Implementation 31
5.1 SIP Gateway . 31
5.2 SRTP Stack . 32

5.2.1 Buffer Pool . 32
5.2.2 AES . 34
5.2.3 Transcoding . 37

5.3 Management Tool . 38

1

6 Results 40
6.1 Packet Encryption . 41
6.2 Round-trip Time Delay . 42

7 Conclusion 44

A AES Properties 49

B Management Tool 51

2

List of Figures

2.1 SRTP packet structure . 7

3.1 OpenCL platform model . 17

4.1 Gateway scenario . 22
4.2 LCP stack design . 23
4.3 SIP gateway design . 24
4.4 SRTP processing scheme . 26
4.5 OpenCL work-item mapping . 27
4.6 Persistent thread work-item mapping . 29
4.7 Plugin system design . 30

5.1 Management tool message definition . 39

6.1 Packet delay using serial implementation . 42
6.2 Packet delay using parallel implementation 42
6.3 Comparison of packet delays . 43

B.1 Management tool screenshot . 51

3

Chapter 1

Introduction

One of the essential metrics for measuring VoIP gateway’s performance is the number and
quality of simultaneous calls. It is affected mostly by the computational demands of used
communication protocols and number of registered users. While the count of registered
users provides very limited room for improvement by the nature of the problem itself, there
could be wide variety of approaches in implementing the protocol stacks.

The communication protocols for VoIP gateway can be divided into two groups. Sig-
nalization, which consists mostly of textually represented protocols, where the messages’
occurrence is either periodical with quite small frequency, or based on the users initiative
which is a stochastic event depending on the activity of the user. However, generally the re-
currence of both is rather similar. Comparably more resources during indirect simultaneous
call sessions consumes processing the second group of protocols, transport of multimedia
packets. Since security has recently grown to be necessary feature in VoIP communication
and the encryption and decryption processes are designed with the idea of optimization, it
is primary scope of interest of this thesis.

Development and results in the areas of parallel architectures shows that many proce-
dures could be distinctively accelerated by executing the algorithm on the processing unit
capable of parallel computations. Therefore, target of this thesis is implementation and
analysis of parallel processing of encrypted real-time multimedia data transfer.

Chapter 2 describes the structures and algorithms used in Secure Real-time Transport
Protocol. Increased attention is devoted to explanation of Advanced Encryption Standard,
which is default cipher used in SRTP, including brief theoretical background and analysis
of SRTP and AES. Because SRTP doesn’t provide key exchange mechanism for symmetric
AES cipher, the chapter also includes description of selected protocol extensions for this
task.

Chapter 3 provides basic information about graphic processing unit and the usage of
GPU for general purpose computations. Part of the chapter is principal explanation of
OpenCL framework and its elementary usage for the developer. As the parallel processing
is diverse and wide study, the area of parallel paradigm that could be associated to the
further implementation of this thesis is mentioned with particular interest and focus.

Chapter 4 defines the term SIP gateway for the context of this thesis, discusses the design
of such gateway and includes listing of selected further implemented protocol stacks, their
mutual interaction and possible improvement of processing the passing data. The highest
amount of attention is devoted to the comparison of different approaches to design of SRTP
stack and identification of main characteristics of native OpenCL programming pattern in
contrast to persistent thread model. The advantages of both parallel implementations over

4

serial code executed on the same hardware is mentioned as well. Short introduction and
description of used design patterns is included in order to provide better comprehensibility
of the application schemes.

Chapter 5 covers the reference implementation of the previous theoretical part of this
thesis, used techniques and algorithms and reasoning behind their selection. Even though
the focus of the thesis is primarily research of available contemporary methods there were
many restrictions. The requirements of this chapter arise from currently used implementa-
tion and hardware limitation of the gateway.

Finally chapters 6 and 7 summarize the potential benefits of usage the GPGPU for
the number of maximal simultaneous calls and shows visualization of achieved results in
improvement and decrease of latency. Also these chapters discuss possible contribution to
related topics, such as transcoding of media compressing codecs which parallel implemen-
tation may provide even higher level of improvement.

5

Chapter 2

Secure Real-time Transport
Protocol

To achieve confidentiality and necessary security for real-time multimedia transmission over
TCP/IP connection there has been invented SRTP[15]. Except previously mentioned, it
provides message authentication and replay protection for both RTP and RTCP traffic,
however, the thesis is going to focus on the implementation and computation time of the
security. The default cipher is AES in counter mode.

2.1 Packet Structure

SRTP packet can be described as RTP extension. It keeps the RTP fields of the packet
such as:

• Version (V) – two bit number which currently is equal to 2.

• Padding (P) – boolean value whether the padding is set.

• Extension (X) – if this field is set, fixed header must be followed by exactly one
extension header.

• CSRC count (CC) – number of CSRC identifiers that follow the fixed header.

• Marker (M) – interpretation defined by a profile.

• Payload Type (PT) – identifies the type of payload

• Sequence Number (SEQ) – increments by one for each RTP packet.

• Timestamp (TS) – reflecting the exact moment the payload was sampled.

• Synchronization Source Identifier (SSRC) – identifier of RTP synchronization source
within the single RTP session.

• Contributing Source Identifiers (CSRC) – list of 0 to 15 items identifying contributing
sources.

The SRTP protocol defines that only payload is encrypted and also describes new fields
in the RTP header.

6

• Master Key Identifier (MKI) – unique identifier of the master key (previously signaled)
to be used in session key derivation.

• Authentication Tag – carries message authentication data. If both encryption and
authentication are used, encryption should be applied first.

The packet length is variable and depends on number of CSRC used and length of
payload. The following scheme describes the packet with proportional sizes of each field.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+<+

|V=2|P|X| CC |M| PT | sequence number | |

+-+ |

| timestamp | |

+-+ |

| synchronization source (SSRC) identifier | |

+=+ |

| contributing source (CSRC) identifiers | |

| | |

+-+ |

| RTP extension (OPTIONAL) | |

+>+-+ |

| | payload ... | |

| | +-------------------------------+ |

| | | RTP padding | RTP pad count | |

+>+-+<+

| ~ SRTP MKI (OPTIONAL) ~ |

| +-+ |

| : authentication tag (RECOMMENDED) : |

| +-+ |

| |

+- Encrypted Portion* Authenticated Portion ---+

Figure 2.1: SRTP packet structure.

2.2 Cryptographic Context

In order to implement SRTP stack in the application, it is necessary to preserve certain
information about each encrypted session, which is called cryptographic context. It must
consist of the following:

• Rollover Counter – 32-bit unsigned number, records how many times has the RTP
sequential number been reset to zero passed the value 65 535.

• Highest Received SEQ – 16-bit unsigned number

• Identifier of the Encryption Algorithm – the cipher and its mode

7

• Replay List – containing indexes of recently received and authenticated SRTP packets

• MKI – if the MKI is present in current session, the length of the MKI field in octets,
actual value of currently used MKI

• Master Keys – enumeration of random and secret master keys and counter for each
key of how many packets have been sent with that key. Single Master Key identifies
SRTP stream and corresponding SRTCP stream.

• Session Keys – current key for encryption and authentication including stored their
lengths in n e and n a

And for every master key, the cryptographic context may contain also random but
possibly public Master Salt which will be used in key derivation.

2.3 Master Key Exchange

There are three most common protocols for key exchange in SRTP session between the end
users – SDES, MIKEY, and ZRTP. They differ in what protocol in VoIP communication
they extend, provided security guarantees and possible communication overhead.

ZRTP is a protocol extension of RTP for secure establishing session key using Diffie-
Hellman key exchange improved for detection of man-in-the-middle attack, which is briefly
described in section 2.4. Another advantage of the improvement is that it doesn’t require
any prior shared secret nor public key infrastructure[34].

SDES is protocol extension of SDP[23, 14] typically in SIP[32] message. It is respon-
sibility of the SIP stack to protect the key as secured secret, which is possible via TLS
connection for instance.

MIKEY defines the key exchange as part of SDP payload in SIP message. The algo-
rithm is basic Diffie-Hellman which requires either prior shared secret or PKI1. The SIP
stack doesn’t have to protect the transferred information any further.

2.4 Protocol Summary

Main concerns about the use of SRTP are whether the increase of computational complexity
and packet size don’t make RTP hardly usable and what degree of security does it provide.

Computational Overhead

In VoIP communication the time has essential impact on the quality of transmitted infor-
mation, therefore it is important that ensuring the security of RTP wouldn’t increase the
latency over the acceptable level. Among common limitations of real-time communications
belong[31]:

• Maximal tolerable latency round-trip time 300ms.

• Smaller packet loss than 5%.

• Sensitivity to factors that are difficult to objectively measure such as jitter.

1 Public Key Infrastructure for digital certificates

8

It has been proven that increase in size of the packet SRTP is insignificant compared
to the RTP[12, 13]. Average throughput of secured VoIP is usually around 2% more than
unsecured VoIP.

Security

VoIP suffers from many similar security threats as other standard internet services.
Man in the middle in computer security is form of active eavesdropping. The attacker

creates connections to both endpoints of the session which allows him to monitor, record or
modify the packets in communication making the endpoints believe that the conversation
is secured. Protection against such attack could be achieved by key negotiating protocol
ZRTP which is able to detect this activity[34].

Denial of service is considered an attempt to make target machine unavailable to to
its intended users. Typical method of this attack is to saturate the target machine with
excessive requests that could lead to overloading the machine. Replay protection mechanism
of SRTP with replay lists and authentication headers provide sufficient protection against
DoS attack[15, 8].

2.5 AES

This section treats necessary theoretical background of Advanced Encryption Standard,
which is the default cipher, and as the text has been written the only cipher, of Secure
Real-time Transport Protocol used in VoIP communication.

Advanced Encryption Standard is symmetric block cipher which means it uses the same
key for both encryption and decryption and encodes the input in uniform sized blocks. The
algorithm was developed to supersede Data Encryption Standard due to various security
reasons2 in electronic data transmission.

For this purpose National Institute of Standards and Technology (NIST) announced
public competition for new encryption standard in 1997 and considering multiple require-
ments the Rijndael3 was selected as the most suitable algorithm for the task[11].

2.5.1 Mathematical Preliminaries

All the bytes in AES are interpreted as 8-bit values in finite field 28. For better readability
the values are printed using hexadecimal notation. Following mathematical therms and
operations are used in AES algorithm:

Galois field

In algebra Galois field is finite field with finite number of elements. Common notation is
GF (pk) where p is prime number and k is positive natural number. Therefore it is possible
to classify the Galois fields by their size, because only single GF (pk) exists for each p and
k. Characteristics of the field is equal to the p.

2 For instance COPACOBANA is FPGA based machine that could find an exhaustive key for DES in
no longer than a week[25].

3 Rijndael was original name of the AES as abbreviation of authors’ names – Joan Daemen and Vincent
Rijmen.

9

Each byte is in fact a polynomial with degree equal to 7 with coefficients bi 0 or 1 and
this notation b7x

7 + b6x
6 + b5x

5 + b4x
4 + b3x

3 + b2x
2 + b1x

1 + b0. The decimal number 95
could be represented as:

• 5F in hexadecimal

• 0101 1111 in binary as a byte

• x6 + x4 + x3 + x2 + x1 + 1 as polynomial with degree equal to 7

Addition

Addition is defined as addition of coefficients of both polynomials modulo 2. This operation
has the same result as bitwise XOR and because each value is its own inversion, addition
and subtraction are equal operations.

Multiplication

Multiplication is defined as multiplication of both polynomials modulo irreducible polyno-
mial of degree eight. For AES the irreducible polynomial is defined as

m(x) = x8 + x4 + x3 + x+ 1 (2.1)

Multiplication by x

Multiplication of binary polynomial by polynomial x results in polynomial of higher de-
gree therefore the result must be reduced modulo m(x). Following equation is the binary
polynomial multiplied by polynomial x.

b7x
8 + b6x

7 + b5x
6 + b4x

5 + b3x
4 + b2x

3 + b1x
2 + b0x (2.2)

If b7 = 1 the result must be XORed with the polynomial m(x). This operation can be
accomplished as bitwise left shift and XOR with 1B.

2.5.2 Algorithm Description

The AES is block cipher, therefore both encryption and decryption processes are performed
on a matrix of 4x4 bytes called state. Even though state has fixed block size 128-bit,
supported key sizes are 128-bit, 196-bit and 256-bit.

Encryption process as described in pseudocode 1 has 4 operations performed on each
state of the data in specific number of cycles which varies from key length.

• 10 cycles for 128-bit key

• 12 cycles for 196-bit key

• 14 cycles for 256-bit key

10

Algorithm 1 AES encryption

Cipher(State, Key)
state ← AddRoundKey(State, Key[0])

for i← (1..n− 1) do
state ← SubBytes(state)
state ← ShiftRows(state)
state ←MixColumns(state)
state ← AddRoundKey(state, Key[i])

end for

state ← SubBytes(state)
state ← ShiftRows(state)
state ← AddRoundKey(state, Key[n])

return state

Key Expansion

Round keys are derived from cipher key through process called key expansion. For the
ciphering and deciphering purposes, the round keys could be thought as array of 4x4 8-bit
values, which length is 10, 12 or 14 according to the used key size. The first matrix is copy
of first 128 bits of cipher key. The following round keys are always calculated from the
previous key and rcon array as explained in the algorithm 2.

Algorithm 2 Key Expansion

ExpandRoundKey(Key, size)
rk[0] ← Key[0]

for i← (1..size) do
k.col(0) ← Key[i− 1].col(3).rotate(1).map(sbox ⊕ Key[i− 1].col(0)) ⊕ rcon
for j ← (1..3) do

k.col(j) ← Key[i-1].col(j) ⊕ k.col(j − 1)
end for
rk[i] ← k

end for

return rk

Ciphering Process

AddRoundKey is XOR operation on the state with specific round key. Round key is extracted
from the cipher key in ExpandRoundKey. Since this operation uses XOR, it is its own inverse
form as well.

11

s00 s01 s02 s03
s10 s11 s12 s13
s20 s21 s22 s23
s30 s31 s32 s33

⊕

k00 k01 k02 k03
k11 k12 k13 k10
k22 k23 k20 k21
k33 k30 k31 k32

=

a00 a01 a02 a03
a11 a12 a13 a10
a22 a23 a20 a21
a33 a30 a31 a32

Table 2.1: AddRoundKey on state s with key k where aij = sij ⊕ kij .

ShiftRows is performed on each row of the state matrix. The first row is not shifted,
second row is shifted by one byte to the left, third row is shifted by two bytes to the left
and fourth row is shifted by three bytes to the left. Inverted ShiftRows for decryption is
simply reversion.

a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

−→

a00 a01 a02 a03
a11 a12 a13 a10
a22 a23 a20 a21
a33 a30 a31 a32

Table 2.2: State on the right is the first state after ShiftRows is performed.

MixColumns together with ShiftRows provides diffusion in the AES algorithm. During this
operation each column of the state is multiplied in Galois field 28 by matrix 2.3.

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 (2.3)

As a result of this multiplication, each column [s0c, s1c, s2c, s3c] is replaced by the column
[a0c, a1c, a2c, a3c] which could be calculated:

a0c = 2 · s0c ⊕ 3 · s3c ⊕ s2c ⊕ s1c
a1c = s1c ⊕ 2 · s0c ⊕ 3 · s3c ⊕ s2c
a2c = s2c ⊕ s1c ⊕ 2 · s0c ⊕ 3 · s3c
a3c = 3 · s3c ⊕ 2 · s2c ⊕ s1c ⊕ s0c

(2.4)

SubBytes is non-linear transformation of the input state. Each byte in the state matrix is
replaced with byte from substitution array of 256 8-bit values called S-box. The S-box A
for encryption is generated by determining the multiplicative inverse for a given number in
GF (28) Rijndael’s finite field and then affine transformation. The S-box A for decryption
uses the same matrix but has first applied addine transformation and then the multiplicative
inverse. For implementation purposes both S-boxes are precomputed.

12

y0
y1
y2
y3
y4
y5
y6
y7

=

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

x0
x1
x2
x3
x4
x5
x6
x7

⊕

1
1
0
0
0
1
1
0

(2.5)

In this transformation [x0, .., x7] is the multiplicative inverse as vector, and ⊕ is XOR
operation.

2.5.3 Block Cipher Modes

During encryption the same key is applied repeatedly on the uniform length blocks of data
to whose the message is separated into. Large amount of ciphered data with the same
encryption key might present security threat unless the ciphering algorithm provides form
of randomization the output value. Such procedure might be achieved by additional input
value.

There are many variations on block cipher to provide this confidentiality[19], for AES al-
gorithm the most often used are counter mode and f8-mode. Both algorithms keep standard
high level of confusion of the AES algorithm and provides necessary diffusion4.

Both algorithms share some similar terminology and acronyms:

• IV – initial value used for encrypting the first block

• Ci – ciphertext block number i

• Pi – plaintext block number i

• EK – encryption function

• DK – decryption function

Counter Mode

The counter mode (CTR) turns AES block algorithm into stream cipher with possibility
for parallel computations[33]. It is possible to decrypt the cipher text even with loss of
number of blocks because the encrypted blocks are not dependent on the previous blocks.
Instead the additional diffusion value are achieved by specific counter.

Equation 2.6 describes computation of counter value, equation 2.7 describes ciphering
the counter value, equation 2.8 is encryption process – XOR operation of plaintext with
encrypted counter value which produces ciphered text and equation 2.9 is decryption pro-
cess.

CTRi = (IV + i− 1) mod 2B (2.6)

Hi = EK(CTRi, key) (2.7)

Ci = Pi ⊕Hi (2.8)

Pi = Ci ⊕Hi (2.9)

4 Confusion and diffusion are basic two properties of secure cipher introduced by Claude Shannon[16].

13

The last block of the plaintext doesn’t have to be padded5, it is common to use only the
most significant bits of ciphered counter to be XORed with plaintext in cipher algorithm
(and in similar way for deciphering).

F8-mode

The f8-mode is a variant of commonly known Output Feedback Mode (OFB) with more
elaborate initialization and feedback function[15, 19]. The first output block O1 is computed
from IV , then it is XORed with plaintext to produce the first ciphertext block. The output
block from previous step Oj−1 is used to compute the current output block Oj which is
always XORed with current plaintext in encryption algorithm.

The equation 2.10 describes the improved initializing function where m is the mask.
The equations 2.11 and 2.12 describes computation of value, which is used for ciphering
algorithm to produce output values in equation 2.13. Equation 2.14 describes ciphering
and equation 2.15 describes deciphering.

IV ′ = EK(IV, key ⊕m) (2.10)

I1 = IV ′ (2.11)

Ij = Oj−1 ⊕ IV ′ ⊕ j (2.12)

Oj = EK(Ij , key) (2.13)

Cj = Pj ⊕Oj (2.14)

Pj = Cj ⊕Oj (2.15)

5 Padding can be used for the plaintext that is not aligned to the multiplies of the block.

14

Chapter 3

General Purpose GPU

This chapter describes the basic ideas and techniques behind GPU parallel programming
model and architecture. Following text will focus on possibilities of effective implemen-
tation for GPGPU and integrated GPU in modern CPU using OpenCL framework, brief
description of selected principles and development of parallel applications.

Parallel machines have impressive performance to cost ratio compared to the common
sequential machines[18], but bring well known problems for software development such as
run-time resource allocation and resource sharing. Mapping parallel program to multipro-
cessor machine is complex problem that needs to decide about task allocation, scheduling
of processes, communication patterns and much more.

While current CPUs are powerful and sophisticated chips, their design must be focused
on wide variety of tasks, therefore vast majority of resources might not be as fully utilized as
could have been. The GPU chips provide much better theoretical performance for certain
tasks for smaller price[30]. Interest among developers has grown in using the power GPUs
provide for other tasks than graphics pipeline.

In order to achieve improvement in certain algorithm it is necessary to analyze the
procedures and find possibilities for parallelization and take under consideration that usage
of additional processing unit brings computational overhead. The characteristics of such
application are[29]:

• Utilization of data-parallelism – many non-graphical problems might be separated
into fractional procedures and computed separately, such as matrix calculations indi-
vidually for each cell.

• Large portion of computation – GPU processors are optimized for computations over
handling conditional evaluations.

• Throughput over Latency – computations on GPU are designed for large overall
throughput of entire data rather than short response time of each individual op-
eration.

The current trend in development shows that parallel computations either in the form
of GPU computations and APU1 are worth examination and research. SIMD2 has already
proven it’s value on improving performance with parallelization of various algorithms[5, 2].

1 Accelerated Processing Unit – in this context it means CPU with GPGPU chip.
2 Single Instruction Multiple Data – multiple processing elements that perform the same operation on

multiple data points simultaneously[20].

15

APU

Usual solutions with graphics card can have high power consumption. The modern trend
and need of transportable forced development to reduce negative effects of GPUs while
keeping as much of latest visual experience as possible[17, 24]. Both solutions utilize a
portion of computer’s system RAM memory.

APU is Accelerated Processing Unit that is designed to accelerate certain type of com-
putations outside of CPU in single chip. It could include GPU, FPGA or similar specialized
processing unit. Among the best known there are Intel HD Graphics[3], AMD Fusion[1]
and NVIDIA Project Denver[6].

3.1 OpenCL

Development for parallel computation brought need for infrastructure. OpenCL is an indus-
try standard framework for programming heterogeneous systems composed of a combination
of CPUs, GPUs, DSP and other processing units[26]. With OpenCL it is possible to write a
software that will run on wide variety of platforms from cell phones or computers to massive
supercomputers.

The OpenCL programming language has syntax based on the language C with few addi-
tions and limitations arising from the design and architecture of heterogeneous platforms.
Among most important limitations it omits the use of recursion, function pointers and
header files. On the other hand, the language is extended to the use of parallelism with
build in types and synchronization. Also it defines many functions and four new keywords
as memory region qualifiers: global, local, constant and private.

For further reading of the text and better comprehensibility, there are listed necessary
words from OpenCL terminology[26].

• Context – contains one or more devices used for kernel execution and are used for
managing command queues, memory and program.

• Kernel – function written in OpenCL programming language that is executed on
OpenCL device.

• Work-item – instance of executing kernel.

• Work-group – organization of work-items.

• Command-queue – interaction between the host and OpenCL device through com-
mands posted by the host and provides synchronization methods for the execution of
the commands.

OpenCL platform includes single host that communicates with the user and the OpenCL
program. The host is connected to one or more OpenCL devices where the kernels are
executed. Kernel could be considered as the entry point between host and GPU. In order to
achieve parallelism, the device consists of many work-items whose execute multiple instances
of kernel at the same time. The work-items are organized in integer indexed orthogonal
grid where the unique index of a work-item is called global ID. The identification of work-
item is possible through combination of its local ID inside a specific work-group and the
work-group global ID.

16

3.1.1 Platform Model

The OpenCL provides a high-level abstraction model representing any heterogeneous plat-
form. The host is a bridge between parallel computations on one or more devices and
interaction with external environment. Device could be CPU, GPU, DSP or any other pro-
cessing unit supporting OpenCL and consists of compute units which are further divided
into processing elements. Processing element is abstraction of a work-item and compute
unit is in similar way representation of work-group.

...
...

...
...

...
...

...
......

...
...

......
...

...
...

Host

Compute Device

Compute Unit

Processing
Element

Figure 3.1: OpenCL platform model with one host and multiple devices[26].

3.1.2 Execution Model

The OpenCL software executes on two levels

• Host code – the OpenCL doesn’t define any restrictions about the host part of the
application, it defines only the interaction between host and devices. It consists of
selection and initialization of the context – selected platform and devices.

• Device code – written in OpenCL programming language in the form of short func-
tions, kernels, that usually transform an input array through series of processes into
output array. It is compiled via OpenCL compiler and executed on the device’s work-
items.

The host program takes care of synchronization and plans the execution of each kernel
on the devices. Each instance of kernel runs in separate work-item and the work-items
within each work-group execute concurrently.

3.1.3 Memory Model

OpenCL defines two types of memory objects. The buffer object is versatile type that could
be used for representation of any data type available in C or OpenCL language. The image
object is restricted to containing pictures only and is optimized for the specific needs of
image processing.

OpenCL uses a hierarchically structured memory. The types differ in access time,
availability and types of usage[26]:

17

• Private Memory – each work-item has it’s own private memory which could be
thought of as analogy to CPU’s registers. It is the fastest type of memory used in
OpenCL.

• Local Memory – designed for sharing data between work-items who belong to the
same work group. It is used to reduce the number of accesses to the global memory.
Local memory is slower than private memory but faster than global memory. The
programmer is denied both direct access and control over local memory. The analogy
could be the cache in CPU.

• Global Memory – shared among all work-items in the same context.

• Host Memory – memory visible only for the host, OpenCL only defines how the
host interacts with OpenCL objects and constructs.

There could be another type of memory in graphic cards that OpenCL doesn’t define

• PCI Memory – type of memory that could be used by the program and GPU, part
of host memory. It is slower than global memory.

18

Chapter 4

Design

The aim of the implementation is to determine whether the parallel processing of SRTP
could improve the limitations on modern VoIP softgates. The development of sophisti-
cated softgate requires elaborate engineering and implementation of various communica-
tion protocols that would overshadow the effort in parallel processing. Therefore, only
narrow selection of well know communication protocols has been implemented. For VoIP
telephony, registration and maintenance of users serves SIP protocol, for the media trans-
mission description and session description SDP protocol, and for secure media transport
SRTP. There is also implementation of LCP stack1.

4.1 Design Patterns

More complex the application is the higher level of considerate design it requires. There are
plenty of already well tested design patterns from which the implementation could be based
on and as the field of VoIP communication has been known for decent amount of time, there
are currently couple of advised design patterns, from which the particular implementation
for this thesis stands on three – mediator pattern, singleton pattern[21] and protocol stack
pattern[7]. None of these design patterns could be thought as contribution of the thesis as
they all belong to common public knowledge and their examination was not the main topic
of the research. However, their explanation is provided in order to make the rest of the
chapter more comprehensible.

4.1.1 Mediator Pattern

In object oriented design the common problem may be the large number of classes and their
mutual interaction. One of the possible solutions for the latter can be behavioral pattern
called mediator, which is named after the way it alters the running behavior. The pattern
consists of following participants:

• Mediator – defines an interface for communicating with colleague objects

• ConcreteMediator – implements cooperative behavior by coordinating colleague
objects, it knows and maintains its colleagues

1 Light-weight Control Protocol – communication protocol for Siemens prototype VoIP phone.

19

• ConcreteColleague – each colleague knows its mediator object and it communicates
with its mediator whenever it would have otherwise communicated with another col-
league

The mediator object communicates with multiple colleague object through defined in-
terface, the interaction between colleague objects is strictly limited. One of the issues
of such design is that the data flow might be bottlenecked by the only option of mutual
communication is realized via single object. If there is a need for critical section and their
exclusion some of the colleagues may not get the chance as often as they would need slowing
down the total responsiveness.

4.1.2 Singleton Pattern

During creation of the application architecture certain class may be required to provide
global point of access to it while preserving only one instance. One approach could be to
have global variable but that is not complete fulfillment of the requests, because multiple
instances could still be created. Singleton design pattern offers a solution when the class
itself is responsible for the number of instances which ensures that nowhere in the code
multiple object of such class may be created. This doesn’t affect the rest of the design, only
one single class, therefore, it has only one participant:

• Singleton – there must be exactly one instance of the class and class must prevent
from instantiation of multiple instances, it must be globally available from well known
access point

4.1.3 Protocol Stack Pattern

There are two design patterns closely related to the protocol stack design pattern which it
uses as higher level of abstraction in explaining the corresponding relations in design.

• Protocol Layer – provide a common interface for implementing different layers of
communication protocol stack.

• Protocol Packet – unification and simplification of internal packet buffers and their
access.

This pattern’s usage is concentrated but not limited to dynamic exchange of protocol
layers from the stack, their insertion and removal, thanks to separate view and decoupling
of each implemented protocol and its layers.

The participants of protocol stack pattern are:

• Protocol Stack – contains and maintains list of used protocols.

• Protocol Layer – provides interface and communication point for each individual
layer. The certain layers are abstracted from the actual type of the upper layer and
lower layer classes.

20

4.2 Model-view-controller

The MVC belongs to the group of software architecture patterns which shall not be confused
with OOP design patterns. It has more strict rules for design and implementation than
pure design patterns and influences development to the higher degree. Also it is not limited
to the object oriented programming paradigm even though in this particular case MVC is
used with OOP.

The MVC pattern defines both the participants and their mutual interaction.

• Model – contains the information and inner implementation of the system, under-
stands and responds to requests from it’s associated view and controller and it may
also inform them about changes of inner state and data.

• View – creates visual representation for the user of the information and data the
model stores.

• Controller – represents user actions associated with view and responds through
interface commands to the model.

4.3 SIP Gateway

In order to create a session for VoIP communication between two endpoints, there must
be device that will be able to create such connection and negotiate protocols for their
interaction and data exchange. In telecommunications such device is called gateway. The
essential function of gateway is protocol translation to interconnect networks and devices
using different protocol technologies. The SIP gateway used in this thesis provides protocol
conversion between subset of SIP protocol and full implementation of LCP protocol.

Multiple SIP or LCP telephones are connected to the SIP gateway whose appear as users
to the SIP registrar2. The SIP gateway in this scenario works as bridging point between the
SIP telephones and SIP registrar, LCP phones and SIP registrar or LCP phones directly.

The modules of SIP gateway are implemented using two different programming lan-
guages which made the interaction little more complicated. Each of the modules serve
specified purpose and interacts with remaining modules either directly or through the gate-
way core.

• Gateway core – provides communication between each module and encapsulates
basic functionality of a gateway, mutual translation of both protocols SIP to LCP
and vice versa, the management of RTP stack and devices representation.

• SIP Stack – includes network interface for communication over SIP protocol with
registrar, representing LCP telephones as SIP clients. Encapsulates part of the SIP
protocol with automated answers without putting unnecessary load on the gateway
core. Remaining communication is provided through interface functions to either
gateway core or directly to LCP stack.

• LCP Stack – separate network interface for devices communicating via LCP protocol.
Includes complete LCP stack and interface for management of the connected devices.

2 Used registrars were Asterisk and Siemens HiPath 4000

21

SIP GATEWAY

SIP Stack LCP Stack

SIP Registrar

RTP Stack

Parallel
SRTP Processing

Bob

SIP Phone

Alice

LCP Phone

Figure 4.1: SIP gateway with two VoIP telephones accessible, LCP phone directly connected
and SIP phone through SIP Registrar.

• RTP Stack – for non-direct connections where the telephones couldn’t agree on
communication channel for the session, RTP stack provides necessary bridging point.

Measurement of utilization of computational resources during execution of ciphering al-
gorithm does provide correct and exact results, however in real deployment the effectiveness
could be negatively affected by the other processes running on the softgate. SIP Gateway
is a collection of programs and utilities whose together implement a server for lightweight
LCP phones and supplement a SIP functionality for each phone to be able to connect to
an actual SIP registrar.

The core application should offer simple management via command line for both devel-
opment and tracing of the flowing communication and basic functionality for communication
and session management.

The core class of the gateway is Daemon, which controls the flow of data inside the
application and provides interfaces to communicate with external applications. During the
composition of gateway the mediator design pattern was used where the daemon is mediator
and all directly communicating classes are colleagues.

SIP Stack provides the interface to communicate with SIP Registrar. The single SIP
Stack is shared for all users, implicitly runs on well known port for SIP communication
5060, which could be explicitly changed if necessary.

22

LcpcpFactory

LcpcpStack

LcpcpListeningPoint

LcpcpProvider

<<interface>>
LcpcpListener

NetworkListener

NetworkLayer

UdpNetworkLayer TcpNetworkLayer

LcpcpMessage

LcpcpMessageFactory

<<instantiate>>

<<instantiate>>

<<instantiate>>

<<instantiate>>

<<implements>> <<instantiate>>

1

0..*

1 1..*

1

1

Figure 4.2: Architecture of LCP stack, design was inspired by the JAIN-SIP api[27].

LCP Stack visualized on the figure 4.2 was designed to reflect the elaborate design used
in JAIN SIP[27]. While SIP is much richer protocol than LCP, the design of the stack was
extremely shortened but the basic structure of elementary components and their interaction
remained the same. LCP stack runs implicitly on the recommended port 4066, but as well
as SIP stack port, the port could be variable if needed. Each SIP/LCP client is instance of
Client class, and universal interface for remote communication and administration shall
be provided as well.

RTP Stack is devoted increased amount of attention in design because it covers the
focus of this thesis. All of the stacks are interchangeable and during their design were used
recommendations from protocol stack design pattern and its related patterns.

4.4 SRTP Stack

The essential point of implementation improvement lies in design of SRTP stack as it has
been mentioned in previous text that it consumes majority of resources of the gateway
during indirect media sessions. Proper implementation must not lack following properties:

• encryption module – implementation of AES-128b cipher as defined in RFC-
3711[15] in at least CRT mode that provides protection of transferred data with
different keys for each endpoint in all concurrent sessions.

• input and output buffers – in order to avoid exhaustive allocation and deallocation
of structures for input and output packets, the data storage should be implemented
as thread safe pool of buffers with sufficient size and both, synchronization techniques
and memory override protection.

23

<<singleton>>
Daemon

<<interface>>
ClientListener

<<interface>>
UiListener

<<interface>>
SipLayerListener

<<interface>>
LcpcpLayerListener

Ui LcpcpLayerCommandLine

SipLayer

Client

RemoteUi

<<implements>>

<<implements>>

<<implements>>

<<implements>>

1 0..*

1

0..1

1

0..1

1

0..1

1 0..1

1

0..*

Figure 4.3: Architecture of SIP Gateway with singleton design pattern. Consists of Daemon
class, multiple LCP phones connected via LCP stack and represented as instances of Client
class and multiple user interfaces for control over the gateway.

• transcoding module – due to various reasons, endpoints may not be able of negoti-
ate the same media compressing codec. The SRTP stack should allow the transcoding
and then encapsulate the process without unnecessary additional demands for the
gateway.

• integration interface – most of the procedures implemented in SRTP stack should
be encapsulated to minimize overloading data transfers with the gateway providing
only essential and minimal interface with callback features to simplify and unify the
integration process.

An advanced techniques like jitter buffer may improve overall quality of VoIP commu-
nication, however, each end device capable of such communication must implement these
techniques as well, therefore, it may render itself redundant and generating minimal, but
still additional latency.

24

4.4.1 SRTP Processing

Advantage of usage AES in CTR mode is that it allows out-of-order processing. Because
majority of RTP implementations are build on UDP transport layer, which is simple model
with minimal protocol mechanisms, neither order nor delivery of the packets are guaranteed
in exchange for smaller average delay and smaller traffic.

The exact size of payload in SRTP packet can differ widely according to the used codec,
its bit rate, and sampling frequency. The selection of used voice codecs, their sampling
periods and payload size are mentioned in table 4.1.

Codec and Bit Rate Payload Size Sampling Period Packets Per Second

G.711 – 64 Kbps 160 bytes 20 ms 50
G.722 – 64 Kbps 160 bytes 20 ms 50
G.729 – 8 Kbps 20 bytes 20 ms 50
G.726 – 32 Kbps 80 bytes 20 ms 50
G.728 – 16 Kbps 60 bytes 30 ms 33

Table 4.1: Selected codecs and payload information[10].

Fixed block size of AES is 16 bytes, which means that one or more states could be
mapped to the packet using any of the mentioned common codecs. Parallelization of the
encryption process could be performed either on a single state, where value during every
method of the AES of each cell of the state is computed separately, therefore a work-item
can be mapped on computing for each cell. Theoretical common hardware should be capable
of utilizing 16 work-items in a single work-group which is the maximal number of needed
by this design.

Another possible approach for codecs with larger payload size, such as G.711, could be
to map multiple states for the parallel execution of entire packet, which for the particular
codec would require significantly more computational units.

The SRTP processing scheme from figure 4.4 visualizes the ideas behind the design of
SRTP stack and encapsulates implementation details for easier explanation from the multi-
threaded application design point of view. The entire stack runs in three separate threads
which shall minimize the delay caused by waiting on modules with varying time of execution
per packet.

• Network Thread – the incoming and outgoing data are captured via two sockets,
for RTP and RTCP. This thread includes a pool of buffers for the storage of packets
and another the processed data.

• Stack Thread – the interaction and selection attributes for the processing thread is
taken care in the stack thread as well as interface for higher layers of the application
using the SRTP stack.

• Packet Processing Thread – extraction of important values from the packet header,
encoding and decoding provided with transcoding interface of the entire packet pay-
load according to the previously extracted data.

The thread design could be mapped to another type of view on the layers of the stack
design. The SRTP layers as shown in the scheme 4.4 are subset of the entire SRTP stack
functionality and the classes from the scheme have following purposes:

25

*Input Buffer
*Output Buffer

Encode Payload

encode_block()

AES::sub_bytes()

AES::shift_rows()

AES::xor_key()

AES::xor_key()

AES::mix_column()

AES::shift_rows()

AES::sub_bytes()

AES::xor_key()

update_counter()

Network Layer

Packet Buffer Pool

get_buffer()
release_buffer()

UDP Socket

recv_packet()
send_packet()

Packet Processing

Initialize Values

AES::expand_key()
CL::write_buffers()

Parse Packet

get_header()
get_iv()
get_key()
get_payload()

*Output Buffer

SRTP Packet
Structure

SRTP
Header

Payload

*Output Buffer
*SRTP Stream

Incomming
Packets

Outgoing
Packets

Figure 4.4: SRTP processing scheme.

• Network Layer – enables the communication with external devices through SRTP
protocol, transfer of the multimedia data packets between endpoints and implements
buffer pool for packet data.

• Packet Processing Layer – without unnecessary data reallocation the proper struc-
tures are casted for easier readability and extraction of important data from the in-
coming packets.

• Payload Encoding – complete implementations of encryption and decryption of the
packet payload.

Serial Processing

The designed application captures data from network in the network layer which ensures
communication with both endpoints of multimedia session and is running in its own thread.
It contains buffer pools for incoming and outgoing data to ensure maximal level of paral-
lelization in each layer of application. Pointers for input and output buffers are passed for
further packet processing where are extracted information such as header and payload from
the packet, copied data from the memory to OpenCL data structures and serial implemen-
tation of AES key schedule.

For better understanding of improvement this thesis is provided with reference serial
implementation which design will be analyzed as well. The payload encryption design as
visualized in figure 4.4 shows, that the execution is separated into multiple consecutive
callings of AES algorithm with updating of counter in between for CTR mode. Thanks to
the decomposition of the code, the design of parallel encryption is done in similar fashion.

26

The design prevents the executing implementations from creating any additional tempo-
rary buffers to decrease unnecessary allocations. These can be predicted in the start-up of
SRTP stack and already preallocated with maximal size a packet can have. This approach
consumes more memory, but improves memory management and saves execution time dur-
ing critical sections. Also it is assumed that softgate gateway code runs on machine with
enough memory and these buffers most certainly shouldn’t mean any excessive memory
consumption.

The buffer pools provided are used in both serial and parallel encryption, and to increase
the level of algorithm categorization, their implementation is based on template classes. The
pool guarantees to protect buffer from overwrite and data persistence.

Massive Parallel Processing

Traditional parallel programming style relies heavily on SIMT3 and SPMD4 programming
paradigms[20]. The native OpenCL approach is based on abstracting the units of work
from the programmers code into virtual threads – work-items. The convenience it offers in
allocation of resources brings couple of limitations as well.

The figure 4.5 demonstrates the processing of packet payload of G.711 codec on the
chip with work-group size 16. Workload on the work-items can be highly irregular and each
work-item execution is finished after the processing of the particular AES block, therefore,
this code will need 160 invocations of work-items during the kernel execution. That would
bring unnecessary computational overhead.

 SRTP header

 Payload

AES block 1

AES block 2

AES block 3

AES block 4

AES block 5

AES block 6

AES block 7

AES block 8

AES block 9

AES block 10

MKI & Authentication tag

dc de c4 c5 dc d0 d5 51 53 5d 5f 5b 46 46 46 5b

46 46 46 5b 44 41 42 4f 42 47 42 43 59 58 59 5f

5f 52 59 44 44 5f 51 54 55 55 51 56 50 52 5e 58

5d 52 52 50 57 54 d4 d6 d5 51 53 57 d6 d6 d0 d7

57 56 57 d0 d3 d6 d5 55 51 50 d6 df d2 d1 d4 d6

dc db da dd d6 55 dc d0 d4 5d 44 5c 56 d6 d5 d4

d5 d7 50 d4 51 d0 61 6f 76 fe ef f7 77 66 50 ff

e5 d7 74 4a c9 f9 f7 5c 76 5f f5 f3 dd 4e 42 d8

f7 c9 50 44 50 cd c9 d4 4d 41 57 d1 51 58 44 52

d3 d1 50 58 5b 55 d4 53 59 43 47 5f 51 5d 56 d2

Figure 4.5: Work-item mapping on packet payload with native OpenCL approach.

3 SIMT – Single Instruction Multiple Thread
4 SPMD – Single Program Multiple Data

27

Persistent Thread Processing

The requirements and attributes imposed by massive parallel processing style divide the
workload into multiple blocks, more than can be simultaneously executed during kernel
launch time, and the synchronization is ensured by the OpenCL. For massive parallel ap-
plications the obvious approach would be to utilize as much of machine’s power as possible
to gain the largest speed-up in every single execution. However, the aim of this thesis is
to minimize large delays for multiple sessions which requires rather careful allocation of
resources. Persistent threads is special type of programing paradigm combining both, the
possible gain of mapping the program for parallel computation and considerate usage of
resources[22].

Since the initialization of computational kernel can consume significant amount of time
compared to the actual execution, larger kernel reusing its resources for multiple similar
computations could render the initialization negligible trading off portion of parallelization.
This approach has been chosen for packet parsing, while instead of mapping 160 OpenCL
work-items on the G.711 packet’s payload it uses one work-item for each AES block cell in
a loop that goes through the data.

Maximal simultaneous work-items launched during the kernel execution is equal to the
number of blocks in AES algorithm and it must not be larger than the amount of work-
items in work-group. The persistent thread style provides couple of relevant improvements
that are not resolved in common parallel implementation to the satisfactory degree.

• Global synchronization – as the kernel uses only as many work-items as can be
simultaneously scheduled, the tools OpenCL offers for synchronization within work-
group can be used to synchronize calculations through the entire execution at any
given point which is used in synchronization across AES blocks for update of round
key.

• Computational overhead – the amount of computations in a work-item for 128-bit
AES is larger than initialization, start-up and cleanup of the kernel, but those fac-
tors are not completely insignificant. Limiting the number of consecutive executions
decreases the ratio of OpenCL overhead and the algorithm performance in positive
way.

• Resource requirement consistency – memory requirements are similar for both
persistent thread and massive parallel style, but size of the payload for single packet
may consume up to 160 work-items on the GPU if kernel is programmed in non
persistent thread style. As it doesn’t seem to be much for one packet, if the stack
should take care of multiple SRTP streams, the resources may promptly become
insufficient which will increase the weight of OpenCL overhead. Persistent thread
kernel will not use more than 16 work-items per packet.

28

 SRTP header

 Payload

AES block 1

AES block 2

AES block 3

AES block 4

AES block 5

AES block 6

AES block 7

AES block 8

AES block 9

AES block 10

dc de c4 c5 dc d0 d5 51 53 5d 5f 5b 46 46 46 5b

46 46 46 5b 44 41 42 4f 42 47 42 43 59 58 59 5f

5f 52 59 44 44 5f 51 54 55 55 51 56 50 52 5e 58

5d 52 52 50 57 54 d4 d6 d5 51 53 57 d6 d6 d0 d7

57 56 57 d0 d3 d6 d5 55 51 50 d6 df d2 d1 d4 d6

dc db da dd d6 55 dc d0 d4 5d 44 5c 56 d6 d5 d4

d5 d7 50 d4 51 d0 61 6f 76 fe ef f7 77 66 50 ff

e5 d7 74 4a c9 f9 f7 5c 76 5f f5 f3 dd 4e 42 d8

f7 c9 50 44 50 cd c9 d4 4d 41 57 d1 51 58 44 52

d3 d1 50 58 5b 55 d4 53 59 43 47 5f 51 5d 56 d2

MKI & Authentication tag

Figure 4.6: Work-item mapping on packet payload using persistent thread paradigm.

4.5 Transcoding

Essential part of the media server is ability to negotiate the best codec for both endpoints
in real-time media session. When all participating devices can not communicate using
the same compressing media codec, the gateway must be able of transcoding to provide
the channel for communication. RTP protocol defines 127 different codecs for audio and
video profile. Therefore, the designed SRTP stack uses plugin system for multimedia codec
transcoding.

The design of plugin system takes into consideration the lifetime of packet data buffers
and for optimization purposes may defer the release of buffers on the side of codec plugin.
The core design is simple and consists of two parts.

• Plugin System Module – part of the gateway, on the start-up browses defined
directory for any plugins and dynamically links them into the application. The plugin
system may offer the management of packet memory buffers on the side of codec
plugin, but the system doesn’t guarantee the consistency through the entire lifetime
and if necessary, the buffer may be rewritten, in which case the flag for data correctness
is set off.

• Codec Plugin – compiled files implementing the plugin interface capable at least
of both transcoding the codec from and into PCM 5 and preferably also optimized
transcoding into another codec, if such algorithm is presented. The codec plugin
is responsible for implementing or control of any buffers if necessary, concurrently
transcode multiple different streams, and must separate the buffers and another saved
information from given stream ID. The plugin may not use the optimization option,

5 PCM – Pulse-code modulation.

29

duplicate the data into its own buffers and keep the memory management on the part
of SRTP stack itself.

...

PT
encoding_name

transcode()
to_raw()
from_raw()

G.726

PT
encoding_name

transcode()
to_raw()
from_raw()

G.711-μ

PT
encoding_name

transcode()
to_raw()
from_raw()

SRTP parser

G.711-A

PT
encoding_name

transcode()
to_raw()
from_raw()

Packet
Processing

encryption()
decryption()

buffer_pool

Plugin
Module

codec_list

init()
transcode()
cleanup()

*buffers

Figure 4.7: Interaction between plugin system on the gateway and separate codec plugins.

30

Chapter 5

Implementation

The application’s specifications were variable through the life-cycle of the entire develop-
ment. SIP gateway’s implementation started as a prototype for translating LCP protocol
and subset of SIP protocol enabling basic functionality for new lightweight prototype tele-
phones. As the statement of requirements included reference Java application that combined
LCP server and multiple SIP clients, the implementation languages differ from the SRTP
stack which is the core of this thesis.

As mentioned before, the reference application implements only a subset of the full com-
munication protocols and instead of understanding all of the complex scenarios the protocols
offer, it brings research value examining the possibilities of improvement implementing com-
putationally demanding algorithms using parallel programming paradigm. Another benefit
this work brings, is experimental study and comparison of established implementations used
either commercially or free.

5.1 SIP Gateway

It is only possible to translate limited subset of complete SIP protocol to LCP protocol. The
the solution is capable of registration, call, hold and transfers. Implementation language
for SIP gateway was chosen Java as it was one of the requirements. The application runs
in three threads

• SIP Network Layer – receiving and processing of SIP messages, as implementation
of SIP stack was used jain SIP API’s reference implementation by NIST as it is one
of the most reliable and fastest implementation available for Java[27].

• LCP Network Layer – receiving and processing of LCP messages, timers for LCP
timed responses and interface for rest of the application.

• Application Logic – translation between both networks and communication proto-
cols, data and devices representation.

For management connected devices the SIP gateway offers command line interface and
remote interface protocol, which is described in 5.3. Both have same set of commands to
change device’s and registrar’s properties.

31

5.2 SRTP Stack

The implementation of SRTP stack is written in C++ following the recommendation of
standard C++11. Even though the standard defines multi-threading model with synchro-
nization, at the time of development SRTP stack, there were no compilers sufficiently
implementing the language property, therefore, that particular language feature was left
neglected. The short list of used libraries and frameworks during implementation include
the following.

• Boost – set of libraries for C++ programming language. The class thread was
used to implement multi-threaded application and mutex with condition variable

to implement thread-safe semaphores.

• STL Containers – usage limited only to the list of free buffer indexes in imple-
mentation of Buffer pool, otherwise the data sizes are static and known during the
compilation, therefore, usage of dynamic structures is unnecessary.

• Sockets – GNU facilities for interprocess communication defined in sys/socket.h,
the implementation supports both IPv6 and IPv4.

• Dynamic Library Loading – the codec processing is designed as plugin system
with dynamic linking of each codec separately. Unix operating systems provide im-
plementation of dynamic loading with interface defined in dlfcn.h.

• OpenCL – framework for parallel computations described in 3.

The implementation design follows simple rule – each class or namespace or module
unit has it’s own header file, also, the list of classes with comments can be generated by
Doxygen.

5.2.1 Buffer Pool

Since the application is multithreaded passing the data from one thread to another, there
is a necessity for critical section handling. For the allocation of buffer first must be called
method get buffer id() which returns integer value representing the free buffer ID. In
this method it is crucial to avoid releasing the same ID for different buffers, therefore,
must be executed atomically. The application may access the memory of the buffer by
method get item(id) taking as argument the previously received buffer ID. Even though
this method accesses possibly the critical section of the memory, it doesn’t need any syn-
chronization, because it is all handled in previous code and at this moment it is guaranteed
that the allocated buffers are exclusively used only by a single thread and branch of code.
The releasing of the buffer is enabled by release buffer(id) method again taking as argu-
ment the allocated buffer ID. The buffer pool ensures that releasing of the buffer is atomic.
The allocation and release of buffer is achieved by only adding and removal of integer

value in queue, which makes the critical section code very fast and not vulnerable to basic
multi-threading problems such as deadlock and starvation.

32

1 template < c lass buffer_item > c lass Buffer_pool {

2 private: // implementation

3 buffer_item **pool = nullptr;
4 std::queue < int > free_buffer_index;

5 int pool_size;

6
7 public: // interface

8 // initialize pool and free_buffer_index

9 Buffer_pool(int pool_size) { .. };

10 // cleanup of resources

11 ~Buffer_pool () { .. };

12 // returns available buffer ID

13 int get_buffer_id () { .. };

14 // returns size of pool

15 int get_pool_size (){ .. };

16 // returns available buffer with ID

17 buffer_item* get_item(int id) { .. };

18 // makes buffer with ID available

19 void release_buffer(int id) { .. };

20 };

To achieve higher degree of code reusability and categorization, buffer pool is imple-
mented as template class offering both the OpenCL implementation use its own pool for
memory objects on the host side and network interface use its own pool for incoming and
outgoing packets and their structures.

Class RTP item implements items for buffer pool storing data captured from network
and their processed variant.It includes the buffers for incoming and outgoing packets and
the pointers to payload to avoid perpetual header removal. Network interface uses GNU
C standard implementation of BSD sockets, therefore, this item includes structures for the
sockets as well to keep the information persistent through packet processing. The item
consists of following arrays and structures:

• Source data buffer – array of bytes allocated to maximal allowed SRTP packet
length, later mentioned only as src.

• Destination data buffer – array of bytes allocated to same length as src, later
only dst.

• Payload data – pointers to src data buffer after processing SRTP header in incoming
packet and another pointer to dst as well right after SRTP header.

• Temporary buffer – during encryption implementation and codec translation, some
payloads might use temporary buffers. To prevent costly allocations during sessions,
auxiliary buffers are statically allocated at the compilation time.

• Structures for sockets – function recvmsg() expects specific structures present for
capturing packets, sockaddr in6 for representation of IPv6 address, iovec as header
to gather I/O and msghdr as structure encapsulating inner logic and minimizing the
number of directly supplied parameters to recvmst().

OpenCL requires specific memory objects that can be loaded to the device memory
called cl mem. Buffer pool item for parallel implementation represented in class cl item

requires only those memory objects.Because single network packet needs multiple callings

33

of clEnqueueWriteBuffer() during the data transfers to the OpenCL device memory, we
can select the option of non-blocking write, which is faster than blocking write. The calling
of the kernel can be immediate, but events returned by clEnqueueWriteBuffer must be
queried in order to release the cl item in the buffer pool. Partially both buffer items share
the data structures but they serve different function and their redundancy is necessary.
Common memory objects are packet payloads, because SRTP headers are not passed to
parallel processing, and temporary buffers.Extra structures, that are precomputed before
parallel execution are:

• Initial vector – buffer for CTR mode AES value of IV, which is calculated from
SRTP header for each packet.

• Round key – parallelization of round key calculation doesn’t propose any actual
execution gain and therefore is precomputed.

5.2.2 AES

For the SRTP stack the crucial is implementation of Advanced Encryption Standard. De-
scribed are two most relevant implementations, serial for comparison with the current
solutions and persistent thread as the representative of the the best examined parallel
implementation.

The header file aes.h offers the functions for encryption and decryption of packet pay-
load in CTR mode encapsulated in AES namespace.

Key Schedule

The master key defined for every SRTP session must be expanded into round key, which
is used in every round for encryption. The algorithm for round key schedule is provided
only in serial implementation, because its execution is prompt and doesn’t provide enough
calculations for the kernel device that would justify parallel implementation and diminish
OpenCL computational overhead.

1 // precomputed rcon table

2 stat ic const BYTE rcon[] = {0x8d, ... };

3 //key expansion

4 void AES:: expand_key(BYTE *mk, BYTE rk[ROUND KEY SIZE][BLOCK SIZE]){

5 get_first_rk(mk , rk[0]);

6 for (int i = 1; i<ROUND KEY SIZE; i++){

7 get_next_rk(mk[i-1], rk[i], rcon[i]);

8 }

9 }

Key expansion algorithm is different for the first round key and the rest of round keys.
The first round key is copy of first 128 bits from the master key. Other round keys are
derived from the previous round key. The algorithm is devided into two steps.

1. calculates the first column of the key state XORing values from last column of previous
round key applied on substitution box

2. and then are calculated columns two, three and four always derived from the previous
column of previous round key.

34

Because every array in the SRTP stack is considered one dimensional exactly as the
incoming packet, the index to the state matrix memory must be computed exclusively.

Serial Encryption

The AES encryption is divided into 4 steps exactly as described in previous chapters. Five
constants necessary for AES will be mentioned through this chapter in many code snippets
and are listed in the following algorithm for encryption. Their definitions are later skipped
to avoid information redundancy.

1 //AES constants

2 #define ROUND KEY SIZE 11

3 #define ROUNDS 10

4 #define BLOCK SIZE 16

5 #define ROWS 4

6 #define COLUMNS 4

7 //CTR encryption algorithm

8 void AES:: srtp_encode(BYTE *src , BYTE *dst , BYTE *key , BYTE *iv, int len){

9 xor_key(key ,iv ,key);

10 expand_key(key ,round_key);

11 int i = 0, j = 0;

12 int last_offset = len/BLOCK SIZE*BLOCK SIZE;

13 // encryption of counter and XORing with blocks

14 for (; i < length; i+=BLOCK SIZE){

15 encode_block(counter , dst+i, round_key);

16 xor_key(dst+i,dst+i,src+i);

17 update_counter(counter);

18 }

19 // encryption of counter is full but XORing only up to packet size

20 BYTE *last_block = dst+last_offset;

21 encode_block(counter , last_block , round_key);

22 for (i=i-BLOCK SIZE; i < length; i++, j++){

23 dst[i] = last_block[j] ^ src[i];

24 }

25 }

The function takes five arguments, four of those are input parameters and one is output,
result of the encryption. The first argument src is pointer to the buffer with packet payload
that needs to be encrypted, dst is pointer to the buffer with outgoing packet payload
after encryption, arguments key and iv represent encryption properties and finally the last
argument len has length of the packet payload.

Implementation of the block encode encode block() follows the algorithm described
in chapter 2 in algorithm 1. Since the CTR mode encrypts the counter, packet payload
doesn’t have to be presented to the encryption function.

The multiplication in Galois field by matrix defined in chapter 2 is computationally
expensive, therefore, the implementation consits of precomputed values stored in arrays
and then the mixture of columns.

Both xor key() and shift rows() are simple and self-explanatory functions. The
shift rows uses helper function rotate row(). The xor key() takes three arguments, it-
erates over AES state in the first argument src and applies XOR function on corresponding
byte from given key in argument key. Result is written to the dst array.

Following are two helper functions for AES algorithm that are neither described in the

35

theoretical part of the thesis nor the AES definition document. Their implementation has
single purpose – higher code readability.

The values in a row specified by arguments src and dst as pointers to the particular
row in both blocks are rotated by the value n. Code is split into two cycles when both
together cycle through the particular row only once.

Because AES block is stored in the linear memory by rows, when rotating columns it
won’t be sufficient to pass the pointer to specific column. Therefore, the function takes
arguments col1 as index of column in src block and col2 as index of column in dst block.
The argument n again defines the distance for rotation.

Parallel Encryption

Code for parallel encryption consists mostly of the kernel code in OpenCL language executed
in device. The code for host is large but programmed routines are common and doesn’t
display any efforts of improvement and own contribution.

Again the AES tables are precomputed and stored in constant memory space which is
cached. As a result, a read from constant memory shouldn’t cost more than one read from
device memory on a cache miss. For the persistent thread reading from the constant cache
is as fast as reading from a register as long as all threads read the same address.

The round key schedule was moved from the kernel to host code. Otherwise the code for
packet encryption for kernel in OpenCL language is quite similar to serial implementation
in C++. Firstly the work-item must find out its global ID and then continue the execution
only, if its global ID is smaller than number of bytes in AES block. Each work-item includes
single loop iterating through its indexed position in each AES block. In addition, only first
work-item takes care of updating counter the counter which requires a barrier for local
synchronization to avoid encoding part of payload with different counter.

1 void encode_block(l o ca l BYTE *counter , l o ca l BYTE *dst ,

2 l o ca l BYTE *temp , l o ca l BYTE *round_key){

3 xor_key(counter , temp , round_key);

4 barrier(CLK LOCAL MEM FENCE);

5 for (int i = 1; i < ROUNDS; i++){

6 sub_bytes(temp , dst);

7 barrier(CLK LOCAL MEM FENCE);

8 shift_rows(dst , temp);

9 barrier(CLK LOCAL MEM FENCE);

10 mix_columns(temp , dst);

11 barrier(CLK LOCAL MEM FENCE);

12 xor_key(dst , temp , round_key +(i*BLOCK SIZE));

13 barrier(CLK LOCAL MEM FENCE);

14 }

15 sub_bytes(temp ,dst);

16 barrier(CLK LOCAL MEM FENCE);

17 shift_rows(dst ,temp);

18 barrier(CLK LOCAL MEM FENCE);

19 xor_key(temp ,dst ,round_key +(ROUNDS*BLOCK SIZE));

20 }

Encoding the block requires local synchronization which is achieved again by barrier()

function. Each step of the algorithm may start computations after the previous step has
been finished for all work-items. Because both global and local ID of the work-item are

36

cached, calling function get global id() doesn’t bring any slack-off, therefore, it is not
necessary to pass the work-item ID to the functions of AES implementation.

The kernel code for mix column() and shift rows() requires work-item categoriza-
tion, which means that during kernel execution it must identify itself and then find out to
which branch of code it belongs. As the rows shifting and column mixture doesn’t pro-
vide any means for generalization. This branching in mentioned device code doesn’t bring
any considerable additional computations nor increase the overhead as it is only a simple
switch-case implementation.

5.2.3 Transcoding

The plugin system was implemented with usage of the GNU C Library. All of the important
functions for run-time dynamic loading are included from header dlfcn.h.

• dlopen() – loads dynamic library file with RTLD GLOBAL and RTLD NOW flags set to
make the symbols available for subsequently loaded libraries and perform eager symbol
resolution.

• dlsym() – returns address where the particular symbol is loaded into memory.

• dlclose() – unloads the dynamic library.

The plugin module searches folder plugins for any file ending with extension .so and
performs plugin test whether the file contains necessary properties.

1 PAYLOAD TYPES 127 //[RFC3551]

2 // structure for codec plugin

3 struct Codec {

4 int PT = -1;

5 char* encoding_name = nullptr;
6 int (* transcode)(BYTE *src , BYTE *dst , int l1, int *l2, int pt , int id);

7 void (* to_raw)(BYTE *src , BYTE *raw , int l1, int *l2 , int id);

8 void (* from_raw)(BYTE *raw , BYTE *dst , int l1, int *l2, int id);

9 };

10 // list of plugins

11 stat ic Codec transcode_plugins[PAYLOAD_TYPES];

12 // transcode module interface

13 int transcode(BYTE *src , BYTE *dst , // packet buffers

14 int l1 , int *l2, //data lengths

15 int pt1 , int pt2 , //codec types

16 int id); // stream ID

The code snippet above defines the structure for loaded codec plugins on the host
application side and interface for plugin module and rest of the SRTP stack. Transcoding
is always executed through transcode() function and never directly, because the function
handles the possibilities of plugins and selects the option with best effort ratio and in the
worst case transcodes through PCM.

37

1 // codec identification [RFC3551]

2 extern const char* encoding_name;

3 extern const int PT;

4 // transcodes multimedia data from one codec to another codec

5 int transcode(BYTE *src , BYTE *dst , int l_src , int *l_dst , int pt , int id);

6 // transcodes codec to raw PCM

7 void to_raw(BYTE *src , BYTE *raw , int len_src , int *len_dst , int id);

8 // transcodes raw PCM to codec

9 void from_raw(BYTE *raw , BYTE *dst , int len_src , int *len_dst , int id);

The plugin must define all of the mentioned interface values and functions. To ensure
proper implementation, each codec plugin includes header file transcode plugin.h.

5.3 Management Tool

As it is quite difficult to monitor processing and reliability of VoIP sessions the part of
implementation includes management tool for basic management of telephone devices in
the network and visualization of ongoing sessions and their states. For the development of
such tool was decided Ruby on Rails framework as it offers many of the requested qualities,
such as Fast and agile development, simple deployment, ability of integration into any
current solution.

Model-view-controller design also allows to interchange any of the application modules
without necessity of modifying the remaining modules. For the communication between
SIP gateway was designed simple protocol transferred through WebSocket containing only
two parts – header and body.

• header – required for every message, contains classification of one of the 6 types of
messages.

• body – omitted for group of system messages and optional for group of device mes-
sages, contains information about changed data in CSV format.

The communication between all participants is asynchronous and strictly stateless. Mes-
sage types are grouped into two categories.

• Device Messages

– update – information for the main view about update of client, sent only from
gateway to the tool.

– edit – information about the device information change, can be sent both ways.

– create – create of the new device.

– remove – deletion of the particular device.

• System Messages

– inform – exchange of the connection information between gateway and manage-
ment tool.

– error – the error handling of gateway and management tool.

38

As WebSocket communication is strictly slower than TCP and UDP socket communica-
tion, it is required to filter the information update only to essential level. Both SIP and LCP
protocol may generate large amount of messages considering the number of users registered
which will result in blocking the management tool. This message filter is implemented on
both the SIP gateway side, where it sends only the information updating client or server
relevant states, and management tool side, where it filters out the information irrelevant to
the current view.

ManagementProtocol DEFINITIONS ::= BEGIN

Message ::= SEQUENCE {

header ENUMERATED{inform, error, update, edit, create, remove},

body BodyType OPTIONAL

}

BodyType ::= SEQUENCE{

[[attr]] SeparatedAttribute OPTIONAL,

lastAttr Attribute

}

SeparatedAttribute ::= SEQUENCE {

attr Attribute,

separator (,)

}

Attribute ::= SEQUENCE {

definition IA5String

separator (:)

value IA5String

}

END

Figure 5.1: Definition of the message management tool and SIP gateway exchanges for
communication in ASN.1 notation.

39

Chapter 6

Results

One of the major delays caused on gateway during indirect calls is due to encryption and
transcoding. Since the core of this thesis was parallelization of SRTP encryption, the tests
and measurements focus on gathering relevant information regarding especially the correct
usage of SRTP on the gateway. Even though AES was designed to be fast algorithm, while
executed on large amount of flowing data it can cause measurable overhead.

For the purposes of this chapter there was designed load-test with following attributes:

• each test fulfilled these properties:

– 300 subscribers executing the calls

– 50 to 150 concurrent calls in the same time[9]

– BHCA 20001

• each call from the tests mentioned above:

– lasted 20 seconds

– used G.711-a or G.711-µ codec

– needed encryption of SRTP

The tests were executed on the machine running 32-bit OpenSUSE 12.2 with similar
hardware as HiPath4000 softgate is equipped. During the tests, only SIP gateway with
SRTP stack were running on the separate machine from the virtualized telephone clients.
The following list summarizes the softgate properties and used software products for com-
pilation of SRTP stack.

• processor intel i5 2500k with HD3000 graphics chip

• 8 GB RAM

• OpenCL 1.2

• gcc 4.7

The commercial gateway with optimized hardware and software can hold around 120
concurrent calls[9], therefore, the tests did not aim for much higher numbers and the analysis
of the results focus around the known maximal number.

1 BHCA – busy hour call attempts

40

The testing environment differed from the type of executed test. For the encryption
comparison in 6.1 was used only standard softgate hadware and implementation of simple
benchmark calling the packet encryption, the results were averaged and are presented in
table 6.1.

For the measurement of round-trip time delay in 6.2, the emulation of actual LCP
phones was modified and used to measure the delay of each particular packet. As previously
mentioned, due to computational demands of virtualized clients, the softgate was devoted
to the SIP gateway and SRTP stack only and clients were emulated on different computer.

And finally the real life test was executed in Siemens laboratories in Brno. The testing
scheme consisted of one real SIP telephone, one prototype of LCP phone, SIP gateway and
HighPath4000 SIP registrar. Effort of this test wasn’t any time or quality measurements,
but determination of integration capabilities. The last test was successful.

6.1 Packet Encryption

The most accurate results can be reached by measuring directly in the code for packet
encryption on the gateway. Also this approach offers the easiest way for comparison with
well-known implementations to increase credibility of the improvement of the reference
implementations distributed with this thesis.

AES

For the comparison of effectiveness of the AES implementation, in table 6.1 are given
time requirements for execution of multiple blocks encrypted by 128-bit AES with the
implementation proposed in this thesis and reference implementations M5t2 and OpenSSL3.
The values in table 6.1 were obtained through simple benchmark passing the array of
bytes representing network packet payload for encryption/decryption and averaged through
multiple measurements.

Implementation 1 block 5 blocks 10 blocks 15 blocks 20 blocks

M5t 26 µs 32 µs 46 µs 69 µs 82 µs
Serial 16 µs 28 µs 48 µs 66 µs 86 µs
Persistent thread 44 µs 45 µs 44 µs 44 µs 45 µs
Massive Parallel 55 µs 55 µs 54 µs 55 µs 62 µs
OpenSSL 9 µs 16 µs 33 µs 47 µs 63 µs

Table 6.1: Comparison of selected AES implementations.

The serial implementation of 128-bit AES is presumptively similar in execution speed
as the M5t AES implementation, which is the reference value for measuring the degree of
improvement. Therefore, later provided results of round-trip time delay can be assumed
as relevant for the evaluation the total contribution. Higher execution time for the M5t
implementation could be partially due to negative influence of not using the M5t framework
in the SRTP stack implementation, therefore, conversion between structures and data types
used might hindered the performance.

2 M5t framework includes AES implementation currently used in many Siemens devices[4].
3 OpenSSL is open-source implementation of SSL and TLS protocols including cryptographic

functions[28].

41

6.2 Round-trip Time Delay

The total delay is combination of many factors and even though information about measured
time of packet encryption on the gateway is exact, it doesn’t provide the most important
information about how affected the session is overall and what is the delay on endpoints.
The same test was executed once more but measurements were collected on modified virtual
clients.

Graphs 6.1 and 6.2 include packet delay during concurrent calls. Every captured SRTP
packet has been entered into results. Single column shows the distribution of delays during
the particular number of concurrent calls where the thicker area of the column visualizes 90%
of the packets. The remaining 10% were considered as abnormal and thanks to satisfying the
common limitations of real-time communications[31], the exceeding 5% can be neglected.

50 60 70 80 90 100 110 120 130 140 150

Number of concurrent calls

0

20

40

60

80

100

P
a
ck

e
t

d
e
la

y
 [

m
s]

Figure 6.1: Visualization of distribution of delays during SRTP sessions with serial encryp-
tion implementation.

50 60 70 80 90 100 110 120 130 140 150

Number of concurrent calls

0

20

40

60

80

100

P
a
ck

e
t

d
e
la

y
 [

m
s]

Figure 6.2: Visualization of distribution of delays during SRTP sessions with parallel en-
cryption implementation.

42

Predictably the average delay of the packet increases with the amount of concurrent
calls in figure 6.1 for serial implementation. The time for 150 concurrent calls was not
included due its excessive values which would make readability of the graph more difficult.
Even though the increase of delay seems to be linear, higher number of concurrent calls
shows that the increase is exponential, which can be visible on the figure 6.2 for persistent
thread implementation.

Less predictable increase is visible in persistent thread implementation. Inconsistent ex-
treme values of delays may be produced by host and device synchronization. Also memory
management for packet buffer pool and OpenCL buffer pool are two separate implemen-
tations, slowdown in one pool may have negative effect on the other, therefore, both may
combine in a negative way.

Comparing persistent thread implementation and serial implementation, the average
delay was dropped to one half for smaller amount of concurrent calls (50-90) and the best
results of speed-up was achieved in 140 concurrent calls where the average delay was dropped
to one third.

10 20 30 40 50 60

Delay [ms]

0

20

40

60

80

100

120

140

P
a
ck

e
t

C
o
u
n
t

Figure 6.3: Comparison of distribution of delays during SRTP sessions serial with parallel
encryption implementation.

The figure 6.3 centralizes on the most interesting results from previous tests which is
the delay for 120 concurrent calls. The detailed distribution of packet delays shows, that
parallel implementation, visualized in blue color, has the peak situated around 12 ms when
the serial implementation, visualized in purple color, has the most packet delays situated
around 27 ms.

43

Chapter 7

Conclusion

There are lot of possibilities for optimization of SRTP processing. Selected approach focuses
on methods of parallelization of encryption and decryption processes of default 128-bit AES
cipher in counter mode, which offers large potential thanks to recent development in the
field of parallel computational units.

Since the current development of processing units begins to be limited by physical
attributes of used materials, the focus drifts more on the design of such units. Instruction
and thread level parallelism brings new possibilities of improvement showing that software
design should take parallel paradigm under consideration. Not only in utilization of GPU
for general purpose computations but also modern CPU have multi-core design or hybrid
design consisting of additional computing units such as GPU chip or FPGA.

Proposed architectures and designs are currently far from being complete. The most
effort was invested in correct analysis and understanding of principles of further imple-
mented algorithms and knowledge of parallel programming paradigm focused on usage of
OpenCL framework for general-purpose computations on graphical processing unit. Mod-
ern GPU concentrate large amount of computational power, which could be to a certain
extent utilized, if the algorithm is correctly mapped for parallel execution. That brings
unusual complications in design whose must be carefully considered.

Contribution

After understanding the limitations in common kernel design and kernel execution for many
separate packets, such as lack of resources, there was effort for examination of alternative
kernel design named persistent thread. Trading off portion of parallelization for higher
level of control over kernel execution and limiting OpenCL computational overhead ratio
proven itself as valid approach especially for SRTP packets with larger payload. Processing
time for single G.711 packet can be reduced to half compared with serial implementation.
Measuring round-trip time during multiple sessions the improvement was successful to the
greater degree lowering the delay to one third for maximal number of concurrent channels
which is set to the gateway as 120.

At first, comparison of implemented algorithms effectiveness was measured on a simple
designed benchmark, where experimentally gained results endorsed the theoretical ideas
supporting the development. Even though these results produced exact comparison, it
was necessary to produce measurements on deployed machine experiencing real traffic to
confirm the design thoughts.

As the processing and routing of multimedia sessions represent only fraction of overall

44

workload, for gateways that are required to encode a high number of channels, the OpenCL
implementation of media server can be used as self-contained units and still save processor
load for another tasks.

Next Steps

Another important milestone is definition of integration of RTP stack with SRTP processing
into implemented SIP gateway and their mutual interaction. For the further development
number of issues must be taken into notice. For instance the delay generated by the
processing of separate SRTP packets should be reliably masked and interpolated across
the SRTP stream to reduce possible jitter. On the other hand stands the actual delay
of incoming packet, since after certain absolute value the conversation quality becomes
unbearable.

Nevertheless, partial value of this thesis lies in the understanding of current technologies
for future potential direction of development and exploration of new options in the field
communication infrastructure. In particular, closely related topic to real-time multimedia
sessions is transcoding. Unification of both problems and finding solution in utilizing alter-
native compute units to CPU may improve overall responsiveness of the gateway and ensure
smaller variability in service quality without depending on the current load the gateway is
experiencing.

45

Bibliography

[1] AMD Accelerated Processing Units [online].
http://www.amd.com/us/products/technologies/apu/Pages/apu.aspx.
Published 2011-6-8, accessed 2012-12-28.

[2] AMD and Leading Software Vendors Continue to Expand Offerings Optimized for
OpenCL Standard [online]. http://www.amd.com/us/press-releases/Pages/
offerings-optimized-for-opencl-2011jun08.aspx. Published 2011-6-8, accessed
2012-12-28.

[3] Intel HD Graphics [online]. www.intel.com/content/www/us/en/
architecture-and-technology/hd-graphics/hd-graphics-developer.html.
Accessed 2012-12-28.

[4] M5T Framework [online]. http://www.media5corp.com/m5t-framework. Accessed
2013-5-7.

[5] NVIDIA OpenCL SDK Code Samples [online].
http://mlso.hao.ucar.edu/hao/acos/sw/cuda-sdk/OpenCL/Samples.html.
Published 2012-10-1, accessed 2012-12-28.

[6] Project Denver [online]. http://blogs.nvidia.com/2011/01/
project-denver-processor-to-usher-in-new-era-of-computing/. Published
2011-1-5, accessed 2012-12-28.

[7] Protocol Stack Design Pattern [online]. http://www.eventhelix.com/
realtimemantra/PatternCatalog/protocol_stack.htm#.UYFRqbXQp-p. Accessed
2013-5-1.

[8] Securing Internet Telephony Media with SRTP and SDP [online].
www.cisco.com/web/about/security/intelligence/securing-voip.html.
Accessed 2012-1-2.

[9] Siemens Hipath 4000 [online]. http://www.athlsolutions.com/web/en/Products/
tabid/128/ProdID/38/Hipath_4000.aspx. Accessed 2013-3-3.

[10] Voice Over IP - Per Call Bandwidth Consumption [online]. http://www.cisco.com/
en/US/tech/tk652/tk698/technologies_tech_note09186a0080094ae2.shtml.
Published 2006-2-2, accessed 2013-1-7.

[11] Specification for the Advanced Encryption Standard (AES). Federal Information
Processing Standards Publication 197, 2001.

46

http://www.amd.com/us/products/technologies/apu/Pages/apu.aspx
http://www.amd.com/us/press-releases/Pages/offerings-optimized-for-opencl-2011jun08.aspx
http://www.amd.com/us/press-releases/Pages/offerings-optimized-for-opencl-2011jun08.aspx
www.intel.com/content/www/us/en/architecture-and-technology/hd-graphics/hd-graphics-developer.html
www.intel.com/content/www/us/en/architecture-and-technology/hd-graphics/hd-graphics-developer.html
http://www.media5corp.com/m5t-framework
http://mlso.hao.ucar.edu/hao/acos/sw/cuda-sdk/OpenCL/Samples.html
http://blogs.nvidia.com/2011/01/project-denver-processor-to-usher-in-new-era-of-computing/
http://blogs.nvidia.com/2011/01/project-denver-processor-to-usher-in-new-era-of-computing/
http://www.eventhelix.com/realtimemantra/PatternCatalog/protocol_stack.htm#.UYFRqbXQp-p
http://www.eventhelix.com/realtimemantra/PatternCatalog/protocol_stack.htm#.UYFRqbXQp-p
www.cisco.com/web/about/security/intelligence/securing-voip.html
http://www.athlsolutions.com/web/en/Products/tabid/128/ProdID/38/Hipath_4000.aspx
http://www.athlsolutions.com/web/en/Products/tabid/128/ProdID/38/Hipath_4000.aspx
http://www.cisco.com/en/US/tech/tk652/tk698/technologies_tech_note09186a0080094ae2.shtml
http://www.cisco.com/en/US/tech/tk652/tk698/technologies_tech_note09186a0080094ae2.shtml

[12] T. Adomkusv and E. Kalvaitis. Investigation of VoIP Quality of Service using SRTP
Protocol. pages 195–209, 2008.

[13] A. L. Alexander, A. L. Wijesinha, and R. Karne. An evaluation of secure real-time
transport protocol (srtp) performance for voip. In Network and System Security,
2009. NSS ’09. Third International Conference on, pages 95 –101, oct. 2009.

[14] F. Andreasen, M. Baugher, and D. Wing. Session Description Protocol (SDP)
Security Descriptions for Media Streams. (RFC 4568), 2006.

[15] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman. The Secure
Real-time Transport Protocol (SRTP). (RFC 3711), 2004.

[16] C. E. Shannon. Communication Theory of Secrecy Systems. vol.28-4:656 – 715, 1949.

[17] M. Daga, A.M. Aji, and Wu chun Feng. On the Efficacy of a Fused CPU+GPU
Processor (or APU) for Parallel Computing. In Application Accelerators in
High-Performance Computing (SAAHPC), 2011 Symposium on, pages 141 –149, July
2011.

[18] J. Darlington, M. Ghanem, and H. W. To. Structured Parallel Programming. In In
Programming Models for Massively Parallel Computers, pages 160–169. IEEE
Computer Society Press, 1993.

[19] M. Dworkin. Recommendation for Block Cipher Modes of Operation. Federal
Information Processing Standards Publication 800-38A, 2001.

[20] M. J. Flynn. Some computer organizations and their effectiveness. IEEE Trans.
Comput., 21(9):948–960, September 1972.

[21] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995.

[22] Kshitij Gupta, Jeff A. Stuart, and John D. Owens. A study of persistent threads
style gpu programming for gpgpu workloads. In Innovative Parallel Computing,
page 14, May 2012.

[23] P. Handley, V. Jacobson, and C. Perkins. SDP: Session Description Protocol. (RFC
4566), 2006.

[24] Owen Harrison and John Waldron. Practical symmetric key cryptography on modern
graphics hardware. In Proceedings of the 17th conference on Security symposium,
SS’08, pages 195–209, Berkeley, CA, USA, 2008. USENIX Association.

[25] S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler. Breaking ciphers with
copacobana – a cost-optimized parallel code breaker. In Workshop on Cryptographic
Hardware and Embedded Systems – Ches 2006, Yokohama, pages 101–118. Springer
Verlag, 2006.

[26] A. Munshi, B.R. Gaster, T.G. Mattson, J. Fung, and D. Ginsburg. OpenCL
Programming Guide. OpenGL Series. Prentice Hall, 2011.

47

[27] P. O’Doherty and M. Ranganathan. JAIN SIP Tutorial - Serving the Developer
Community. Technical report.

[28] OpenSSL Project [online]. Published 2006-08-09, Acessed 2013-5-12.

[29] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips. GPU
Computing. Proceedings of the IEEE, 96(5):879–899, May 2008.

[30] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. KrĂźger, A. Lefohn, and
T. J. Purcell. A Survey of General-Purpose Computation on Graphics Hardware.
Computer Graphics Forum, 26(1):80–113, 2007.

[31] C. Perkins. RTP: Audio and Video for the Internet. Addison-Wesley, June 2003.

[32] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler. SIP: Session Initiation Protocol. (RFC 3261), 2002.

[33] N. P. Tran, M. Lee, S. Hong, and S. J. Lee. Parallel Execution of AES-CTR
Algorithm Using Extended Block Size. In Computational Science and Engineering
(CSE), 2011 IEEE 14th International Conference on, pages 191 –198, August 2011.

[34] P. Zimmermann, A. Johnston, and J. Callas. ZRTP: Media Path Key Agreement for
Unicast Secure RTP. (RFC 6189), 2011.

48

Appendix A

AES Properties

Algorithm 3 AES decryption

Decipher(State, Key)
state ← AddRoundKey(State, Key[n])
state ← ShiftRows(state)
state ← SubBytes(state)

for i← (n− 1..1) do
state ← AddRoundKey(state, Key[i])
state ←MixColumns(state)
state ← ShiftRows(state)
state ← SubBytes(state)

end for

state ← AddRoundKey(state, Key[0])

return state

49

0 1 2 3 4 5 6 7 8 9 a b c d e f

00 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
10 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
20 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
30 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
40 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
50 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
60 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
70 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
80 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
90 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a0 e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b0 e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c0 ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d0 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e0 e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f0 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Table A.1: S-box for SubBytes transformation in hexadecimal notation.

0 1 2 3 4 5 6 7 8 9 a b c d e f

00 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
10 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
20 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
30 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
40 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
50 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
60 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
70 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
80 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
90 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a0 e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b0 e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c0 ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d0 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e0 e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f0 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Table A.2: Inverse S-box for SubBytes transformation in hexadecimal notation.

50

Appendix B

Management Tool

Figure B.1: Management tool screenshot.

51

	Introduction
	Secure Real-time Transport Protocol
	Packet Structure
	Cryptographic Context
	Master Key Exchange
	Protocol Summary
	AES
	Mathematical Preliminaries
	Algorithm Description
	Block Cipher Modes

	General Purpose GPU
	OpenCL
	Platform Model
	Execution Model
	Memory Model

	Design
	Design Patterns
	Mediator Pattern
	Singleton Pattern
	Protocol Stack Pattern

	Model-view-controller
	SIP Gateway
	SRTP Stack
	SRTP Processing

	Transcoding

	Implementation
	SIP Gateway
	SRTP Stack
	Buffer Pool
	AES
	Transcoding

	Management Tool

	Results
	Packet Encryption
	Round-trip Time Delay

	Conclusion
	AES Properties
	Management Tool

