
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ
FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

NÁVRH A ANALÝZA VÝKONNOSTI PARALELNÍHO
ZPRACOVÁNÍ SRTP PŘENOSŮ
DESIGN AND PERFORMANCE ANALYSIS OF PARALLEL PROCESSING OF SRTP PACKETS

DIPLOMOVÁ PRÁCE
MASTER'S THESIS

AUTOR PRÁCE JAN WOZNIAK
AUTHOR

VEDOUCÍ PRÁCE Ing. PETER JURNEČKA
SUPERVISOR

BRNO 2013

Abstrakt
Šifrování m u l t i m e d i á l n í c h d a t o v ý c h p ř e n o s ů v r e á l n é m čase je jednou z ú loh t e l ekomunikačn í
infrastruktury pro dosažen í n e z b y t n é ú r o v n ě zabezpečen í . Rychlost p roveden í šifrovacího
algori tmu m ů ž e h r á t kl íčovou rol i ve velikosti zpožděn í j edno t l i vých p a k e t ů a proto je tento
úkol z a j í m a v ý m z hlediska op t ima l i začn ích metod. Tato p r á c e se zaměřu je na m o ž n o s t i
paralelizace z p r a c o v á n í S R T P pro účely te lefonní ú s t ř e d n y s v y u ž i t í m O p e n C L frameworku
a n á s l e d n o u a n a l ý z u p o t e n c i á l n í h o zlepšení .

Abstract
Encryp t ion of real-time mul t imedia data transfers is one of the tasks for telecommunication
infrastructure in order to provide essential level of security. Execut ion t ime of ciphering
algori thm could play fundamental role i n delay of the packets, therefore, it provides inter­
esting challenge in terms of opt imizat ion methods. This thesis focuses on parallel ization
possibilities of processing S R T P for the purposes of private branch exchange w i t h the use
of O p e n C L framework and analysis of potential improvement.

Klíčová slova
A E S , obecné v ý p o č t y na G P U , O p e n C L , pa ra l e ln í výpoč ty , S R T P , SIP, te lefonní ú s t ř e d n a ,
b r á n a , VoIP.

Keywords
A E S , general-purpose G P U , O p e n C L , parallel computations, S R T P , SIP, private branch
exchange, gateway, VoIP .

Citace
Jan Wozniak: Design and Performance Analys is of Para l le l Processing of S R T P Packets,
d ip lomová p ráce , Brno, F I T V U T v B r n ě , 2013

Design and Performance Analysis of Parallel
Processing of S R T P Packets

Prohlášení
Proh lašu j i , že jsem tento s e m e s t r á l n í projekt vypracoval s a m o s t a t n ě pod v e d e n í m pana Ing.
Petera Ju rnečky .

Jan Wozniak
M a y 19, 2013

Poděkování
N a tomto m í s t ě bych r á d věnoval p á r slov s v é m u vedouc ímu Ing. Peteru Ju rnečkov i za
čas, k t e r ý m i by l o c h o t n ý věnova t , ochotu a pomoc př i řešení p r o b l é m ů a motivaci pro
dokončen í p r áce . Roněž bych r á d poděkova l spo lečnos t i Siemens Enterprise Communica­
tions za p o s k y t n u t í p r o s t o r ů a p r o s t ř e d k ů pro t e s t o v á n í implementace, jež byla součás t í
t é t o d ip lomové p ráce .

© Jan Wozniak, 2013.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in­

formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 4

2 Secure Real-time Transport Protocol 6
2.1 Packet Structure 6
2.2 Cryptographic Context 7
2.3 Master K e y Exchange 8
2.4 Pro toco l Summary 8
2.5 A E S 9

2.5.1 Mathemat ica l Prel iminaries 9
2.5.2 A l g o r i t h m Descript ion 10
2.5.3 Block Cipher Modes 13

3 General Purpose G P U 15
3.1 O p e n C L 16

3.1.1 P la t form M o d e l 17
3.1.2 Execut ion M o d e l 17
3.1.3 Memory M o d e l 17

4 Design 19
4.1 Design Patterns 19

4.1.1 Media tor Pat tern 19
4.1.2 Singleton Pat tern 20
4.1.3 Pro toco l Stack Pat tern 20

4.2 Model-view-controller 21
4.3 SIP Gateway 21
4.4 S R T P Stack 23

4.4.1 S R T P Processing 25
4.5 Transcoding 29

5 Implementation 31
5.1 SIP Gateway 31
5.2 S R T P Stack 32

5.2.1 Buffer P o o l 32
5.2.2 A E S 34
5.2.3 Transcoding 37

5.3 Management Tool 38

1

6 Results 4 0

6.1 Packet Enc ryp t ion 41

6.2 Round- t r ip T i m e Delay 42

7 Conclusion 44

A A E S Properties 49

B Management Tool 51

2

List of Figures

2.1 S R T P packet structure 7

3.1 O p e n C L platform model 17

4.1 Gateway scenario 22

4.2 L C P stack design 23
4.3 SIP gateway design 24
4.4 S R T P processing scheme 26
4.5 O p e n C L work-i tem mapping 27
4.6 Persistent thread work-i tem mapping 29
4.7 P l u g i n system design 30

5.1 Management tool message definition 39

6.1 Packet delay using serial implementat ion 42
6.2 Packet delay using parallel implementation 42
6.3 Compar ison of packet delays 43

B . l Management tool screenshot 51

3

Chapter 1

Introduction

One of the essential metrics for measuring V o I P gateway's performance is the number and
quali ty of simultaneous calls. It is affected mostly by the computat ional demands of used
communicat ion protocols and number of registered users. W h i l e the count of registered
users provides very l imi ted room for improvement by the nature of the problem itself, there
could be wide variety of approaches i n implementing the protocol stacks.

The communicat ion protocols for V o I P gateway can be divided into two groups. Sig-
nalization, which consists mostly of textual ly represented protocols, where the messages'
occurrence is either periodical w i th quite smal l frequency, or based on the users init iat ive
which is a stochastic event depending on the act ivi ty of the user. However, generally the re­
currence of both is rather similar . Comparab ly more resources during indirect simultaneous
cal l sessions consumes processing the second group of protocols, transport of mul t imedia
packets. Since security has recently grown to be necessary feature in V o I P communicat ion
and the encryption and decryption processes are designed wi th the idea of opt imizat ion, it
is pr imary scope of interest of this thesis.

Development and results in the areas of parallel architectures shows that many proce­
dures could be dist inctively accelerated by executing the algori thm on the processing unit
capable of parallel computations. Therefore, target of this thesis is implementat ion and
analysis of parallel processing of encrypted real-time mul t imedia data transfer.

Chapter 2 describes the structures and algorithms used i n Secure Real- t ime Transport
Pro tocol . Increased attention is devoted to explanation of Advanced Enc ryp t ion Standard,
which is default cipher used in S R T P , including brief theoretical background and analysis
of S R T P and A E S . Because S R T P doesn't provide key exchange mechanism for symmetric
A E S cipher, the chapter also includes description of selected protocol extensions for this
task.

Chapter 3 provides basic information about graphic processing unit and the usage of
G P U for general purpose computations. Par t of the chapter is pr incipal explanation of
O p e n C L framework and its elementary usage for the developer. A s the parallel processing
is diverse and wide study, the area of parallel paradigm that could be associated to the
further implementat ion of this thesis is mentioned wi th part icular interest and focus.

Chapter 4 defines the term SIP gateway for the context of this thesis, discusses the design
of such gateway and includes l is t ing of selected further implemented protocol stacks, their
mutual interaction and possible improvement of processing the passing data. The highest
amount of attention is devoted to the comparison of different approaches to design of S R T P
stack and identification of main characteristics of native O p e n C L programming pattern in
contrast to persistent thread model . The advantages of both parallel implementations over

4

serial code executed on the same hardware is mentioned as well . Short int roduct ion and
description of used design patterns is included in order to provide better comprehensibili ty
of the application schemes.

Chapter 5 covers the reference implementat ion of the previous theoretical part of this
thesis, used techniques and algorithms and reasoning behind their selection. Even though
the focus of the thesis is pr imar i ly research of available contemporary methods there were
many restrictions. The requirements of this chapter arise from currently used implementa­
t ion and hardware l imi ta t ion of the gateway.

F ina l ly chapters 6 and 7 summarize the potential benefits of usage the G P G P U for
the number of max ima l simultaneous calls and shows visualizat ion of achieved results in
improvement and decrease of latency. Also these chapters discuss possible contr ibution to
related topics, such as transcoding of media compressing codecs which parallel implemen­
tat ion may provide even higher level of improvement.

5

Chapter 2

Secure Real-time Transport
Protocol

To achieve confidentiality and necessary security for real-time mul t imedia transmission over
T C P / I P connection there has been invented S R T P []. Except previously mentioned, it
provides message authentication and replay protection for both R T P and R T C P traffic,
however, the thesis is going to focus on the implementat ion and computat ion t ime of the
security. The default cipher is A E S i n counter mode.

2.1 Packet Structure

S R T P packet can be described as R T P extension. It keeps the R T P fields of the packet
such as:

• Version (V) - two bit number which currently is equal to 2.

• Padding (P) - boolean value whether the padding is set.

• Extens ion (X) - i f this field is set, fixed header must be followed by exactly one
extension header.

• C S R C count (C C) - number of C S R C identifiers that follow the fixed header.

• Marker (M) - interpretation defined by a profile.

• Payload Type (P T) - identifies the type of payload

• Sequence Number (SEQ) - increments by one for each R T P packet.

• Timestamp (TS) - reflecting the exact moment the payload was sampled.

• Synchronizat ion Source Identifier (SSRC) - identifier of R T P synchronization source
wi th in the single R T P session.

• Cont r ibu t ing Source Identifiers (C S R C) - list of 0 to 15 items identifying contr ibuting
sources.

The S R T P protocol defines that only payload is encrypted and also describes new fields
in the R T P header.

G

• Master K e y Identifier (M K I) - unique identifier of the master key (previously signaled)
to be used in session key derivation.

• Authent ica t ion Tag - carries message authentication data. If both encryption and
authentication are used, encryption should be applied first.

The packet length is variable and depends on number of C S R C used and length of
payload. The following scheme describes the packet w i th proport ional sizes of each field.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+<+
IV=21PIX| CC |M| PT | sequence number | |
+-+ |
I timestamp I |
+-+ |
I synchronization source (SSRC) i d e n t i f i e r | |
+=+ |
I contributing source (CSRC) i d e n t i f i e r s | |
I I I
+-+ |
I RTP extension (OPTIONAL) | |

+>+-+ |
I | payload ... I I | | + + |
I | I RTP padding | RTP pad count | |

+ > + - + < +
I " SRTP MKI (OPTIONAL) " |
| + - + |
I : authentication tag (RECOMMENDED) : |
| +-+ |

I I
+- Encrypted Portion* Authenticated Portion +

Figure 2.1: S R T P packet structure.

2.2 Cryptographic Context

In order to implement S R T P stack in the application, it is necessary to preserve certain
information about each encrypted session, which is called cryptographic context. It must
consist of the following:

• Rollover Counter - 32-bit unsigned number, records how many times has the R T P
sequential number been reset to zero passed the value 65 535.

• Highest Received S E Q - 16-bit unsigned number

• Identifier of the Encryp t ion A l g o r i t h m - the cipher and its mode

7

• Replay Lis t - containing indexes of recently received and authenticated S R T P packets

• M K I - i f the M K I is present i n current session, the length of the M K I field in octets,
actual value of currently used M K I

• Master Keys - enumeration of random and secret master keys and counter for each
key of how many packets have been sent w i th that key. Single Master K e y identifies
S R T P stream and corresponding S R T C P stream.

• Session Keys - current key for encryption and authentication including stored their
lengths i n n_e and n_a

A n d for every master key, the cryptographic context may contain also random but
possibly public Master Salt which w i l l be used i n key derivation.

2.3 Master Key Exchange

There are three most common protocols for key exchange in S R T P session between the end
users - S D E S , M I K E Y , and Z R T P . They differ i n what protocol in V o I P communicat ion
they extend, provided security guarantees and possible communicat ion overhead.

Z R T P is a protocol extension of R T P for secure establishing session key using Diffie-
Hel lman key exchange improved for detection of man-in-the-middle attack, which is briefly
described i n section 2.4. Another advantage of the improvement is that it doesn't require
any prior shared secret nor public key infrastructure [34].

S D E S is protocol extension of SDP[23, 14] typical ly in SIP[] message. It is respon­
sibi l i ty of the SIP stack to protect the key as secured secret, which is possible v i a T L S
connection for instance.

M I K E Y defines the key exchange as part of S D P payload i n SIP message. The algo­
r i thm is basic Diffie-Hellman which requires either prior shared secret or P K I 1 . The SIP
stack doesn't have to protect the transferred information any further.

2.4 Protocol Summary

M a i n concerns about the use of S R T P are whether the increase of computat ional complexity
and packet size don't make R T P hardly usable and what degree of security does it provide.

Computat ional Overhead

In V o I P communicat ion the t ime has essential impact on the quali ty of t ransmit ted infor­
mation, therefore it is important that ensuring the security of R T P wouldn' t increase the
latency over the acceptable level. A m o n g common l imitat ions of real-time communications
belong[31]:

• M a x i m a l tolerable latency round-trip t ime 300ms.

• Smaller packet loss than 5%.

• Sensit ivity to factors that are difficult to objectively measure such as j i t ter.

1 Public Key Infrastructure for digital certificates

8

It has been proven that increase in size of the packet S R T P is insignificant compared
to the RTP[12 , 13]. Average throughput of secured V o I P is usually around 2% more than
unsecured VoIP .

Security

V o I P suffers from many similar security threats as other standard internet services.
Man in the middle i n computer security is form of active eavesdropping. The attacker

creates connections to both endpoints of the session which allows h i m to monitor, record or
modify the packets i n communicat ion making the endpoints believe that the conversation
is secured. Protect ion against such attack could be achieved by key negotiating protocol
ZRTP which is able to detect this activity[31].

Denial of service is considered an attempt to make target machine unavailable to to
its intended users. T y p i c a l method of this attack is to saturate the target machine wi th
excessive requests that could lead to overloading the machine. Replay protection mechanism
of S R T P w i t h replay lists and authentication headers provide sufficient protection against
DoS attack[15, 8].

2.5 A E S

This section treats necessary theoretical background of Advanced Enc ryp t ion Standard,
which is the default cipher, and as the text has been wri t ten the only cipher, of Secure
Real-t ime Transport P ro toco l used in V o I P communicat ion.

Advanced Encryption Standard is symmetric block cipher which means it uses the same
key for both encryption and decryption and encodes the input i n uniform sized blocks. The
algori thm was developed to supersede Data Encryption Standard due to various security
reasons 2 i n electronic data transmission.

For this purpose Nat iona l Institute of Standards and Technology (NIST) announced
public competi t ion for new encryption standard i n 1997 and considering mult iple require­
ments the Rijndael3 was selected as the most suitable algori thm for the t a sk f l l] .

2.5.1 M a t h e m a t i c a l P r e l i m i n a r i e s

A l l the bytes i n A E S are interpreted as 8-bit values in finite field 2 8 . For better readabil i ty
the values are printed using hexadecimal notat ion. Fol lowing mathematical therms and
operations are used i n A E S algorithm:

Galois field

In algebra Galois field is finite field w i th finite number of elements. C o m m o n notat ion is
GF(pk) where p is prime number and k is positive natural number. Therefore it is possible
to classify the Galois fields by their size, because only single GF(pk) exists for each p and
k. Characteristics of the field is equal to the p.

2 For instance COPACOBANA is F P G A based machine that could find an exhaustive key for DES in
no longer than a week[25].

3 Rijndael was original name of the AES as abbreviation of authors' names - Joan Daemen and Vincent
Rijmen.

9

Each byte is in fact a polynomia l w i th degree equal to 7 wi th coefficients bi 0 or 1 and
this notat ion b^x7 + b$x6

 + 6 5 X 5 + 6 4 X 4 + 6 3 X 3 + b2x2 + bix1
 + 6 0 • The decimal number 95

could be represented as:

• 5.F i n hexadecimal

• 0101 1111 in binary as a byte

• x 6 + x 4 + x 3 + x2 + x1 + 1 as polynomia l w i th degree equal to 7

A d d i t i o n

A d d i t i o n is defined as addit ion of coefficients of both polynomials modulo 2. This operation
has the same result as bitwise X O R and because each value is its own inversion, addi t ion
and subtraction are equal operations.

Mult ip l icat ion

Mul t ip l i ca t ion is defined as mul t ip l ica t ion of both polynomials modulo irreducible polyno­
mia l of degree eight. For A E S the irreducible polynomia l is defined as

m(x) = xs+ x4+ x3+ x + l (2.1)

Mult ip l icat ion by x

Mul t ip l i ca t ion of binary polynomia l by polynomia l x results i n polynomia l of higher de­
gree therefore the result must be reduced modulo m(x). Fol lowing equation is the binary
polynomial mul t ip l ied by polynomia l x.

b7x8 + b6x7 + 6 5 x 6 + 6 4 x 5 + 6 3 x 4 + b2x3 + b\x2 + b0x (2.2)

If 6 7 = 1 the result must be X O R e d w i t h the polynomia l m{x). This operation can be
accomplished as bitwise left shift and X O R wi th IB.

2.5.2 A l g o r i t h m D e s c r i p t i o n

The A E S is block cipher, therefore both encryption and decryption processes are performed
on a matr ix of 4x4 bytes called state. Even though state has fixed block size 128-bit,
supported key sizes are 128-bit, 196-bit and 256-bit.

Encryp t ion process as described in pseudocode 1 has 4 operations performed on each
state of the data in specific number of cycles which varies from key length.

• 10 cycles for 128-bit key

• 12 cycles for 196-bit key

• 14 cycles for 256-bit key

10

A l g o r i t h m 1 A E S encryption
Cipher(State, Key)
state <— AddRoundKey(State, Key[0])

for i <— (l . . n — 1) do
state <— SubBytes(state)
state <— Shi ft Rows (state)
state <— MixCo^t tmns(s ta te)
state <— AddRoundKey (state, Key[i])

end for

state <— SubBytes(state)
state <— Shi ft Rows (state)
state <— AddRoundKey (state, Key[n])

return state

K e y Expansion

R o u n d keys are derived from cipher key through process called A:ey expansion. For the
ciphering and deciphering purposes, the round keys could be thought as array of 4x4 8-bit
values, which length is 10, 12 or 14 according to the used key size. The first mat r ix is copy
of first 128 bits of cipher key. The following round keys are always calculated from the
previous key and rcon array as explained i n the algori thm 2.

A l g o r i t h m 2 K e y Expans ion
E x p a n d R o u n d K e y (K e y , size)
rk[0] <- Key[0]

for i <— (L.size) do
k.col(O) <— K e y [i — l] .col(3).rotate(l) .map(sbox © K e y [i — l].col(0)) © rcon
for j <- (1..3) do

k.col(j') <- Key[z-l] .col(j) © k.col(j - 1)
end for
rk[i] —̂ k

end for

return rk

Cipher ing Process

AddRoundKey is X O R operation on the state w i th specific round key. R o u n d key is extracted
from the cipher key in ExpandRoundKey. Since this operation uses X O R , it is its own inverse
form as well.

11

«oo «01 «02 «03
«10 «11 «12 «13
«20 S21 «22 «23
«30 «31 «32 «33

kpp fcoi k02 k03

hi ku ki3 kw

k22 k23 k2p k2i
k33 k30 k3i k32

aoo aoi (102 ao3
an (112 (113 aw
(122 (123 (120 (121
a33 d30 (131 (132

Table 2.1: A d d R o u n d K e y on state s w i th key k where = Sij © kij.

ShiftRows is performed on each row of the state matr ix . The first row is not shifted,
second row is shifted by one byte to the left, t h i rd row is shifted by two bytes to the left
and fourth row is shifted by three bytes to the left. Inverted ShiftRows for decryption is
s imply reversion.

o-oo a o i 002 ao3 o-oo aoi ao2 ao3

aw a n ai2 ai3 (111 ai2 ai3 a i o

O20 021 <322 <323
?

a22 a23 O20 021

O30 031 a32 033 (133 a30 031 <332

Table 2.2: State on the right is the first state after ShiftRows is performed.

MixColumns together wi th ShiftRows provides diffusion in the A E S algori thm. Dur ing this
operation each column of the state is mul t ip l ied i n Galois field 2 8 by mat r ix 2.3.

(2 3 1 1 \
1 2 3 1
1 1 2 3

\ 3 1 1 2 /

(2.3)

A s a result of this mul t ipl icat ion, each column [soc, sic, S2C, «3c] is replaced by the column
[aoc, aic, a2c, a3c] which could be calculated:

aoc = 2 • s0c © 3 • s3c © «2c i Q sic
aic = Sic © 2 • s0c © 3 - s 3 c i & «2c
a2c = «2c © Sic © 2 • s0c 6 B 3 • s 3 c

a3c = 3 • s3c © 2 • s2c © sic e & SOc

(2.4)

SubBytes is non-linear transformation of the input state. E a c h byte in the state mat r ix is
replaced wi th byte from substi tut ion array of 256 8-bit values called S-box. The S-box A
for encryption is generated by determining the mult ipl icat ive inverse for a given number in
GF(2S) Rijndael 's finite field and then affine transformation. The S-box A for decryption
uses the same matr ix but has first applied addine transformation and then the mult ipl icat ive
inverse. For implementat ion purposes both S-boxes are precomputed.

12

" yo ' " 1 0 0 0 1 1 1 1 " " XQ ' " 1 "

yi 1 1 0 0 0 1 1 1 Xl 1

2/2 1 1 1 0 0 0 1 1 X2 0

2/3 1 1 1 1 0 0 0 1 0

2/4 1 1 1 1 1 0 0 0 £4 0

2/5 0 1 1 1 1 1 0 0 1

2/6 0 0 1 1 1 1 1 0 X6 1

. 2/7 . . 0 0 0 1 1 1 1 1 _ . X7 . . 0 .

(2.5)

In this transformation [XQ, . . ,£7] is the mult ipl icat ive inverse as vector, and ® is X O R
operation.

2.5.3 B l o c k C i p h e r M o d e s

Dur ing encryption the same key is applied repeatedly on the uniform length blocks of data
to whose the message is separated into. Large amount of ciphered data w i th the same
encryption key might present security threat unless the ciphering algori thm provides form
of randomizat ion the output value. Such procedure might be achieved by addi t ional input
value.

There are many variations on block cipher to provide this confidentiality [19], for A E S al­
gori thm the most often used are counter mode and f8-mode. B o t h algorithms keep standard
high level of confusion of the A E S algori thm and provides necessary diffusion' 1.

B o t h algorithms share some similar terminology and acronyms:

• IV - in i t i a l value used for encrypting the first block

• d - ciphertext block number i

• Pi - plaintext block number i

• EK - encryption function

• DK ~ decryption function

Counter M o d e

The counter mode (C T R) turns A E S block algori thm into stream cipher w i th possibil i ty
for parallel computations []. It is possible to decrypt the cipher text even wi th loss of
number of blocks because the encrypted blocks are not dependent on the previous blocks.
Instead the addi t ional diffusion value are achieved by specific counter.

Equat ion 2.6 describes computat ion of counter value, equation 2.7 describes ciphering
the counter value, equation 2.8 is encryption process - X O R operation of plaintext w i th
encrypted counter value which produces ciphered text and equation 2.9 is decryption pro­
cess.

CTRi = (IV + mod 2B (2.6)

Hi = EK(CTRi,key) (2.7)

d = Pi® Hi (2.8)

Pi = d®Hi (2.9)

Confusion and diffusion are basic two properties of secure cipher introduced by Claude Shannon []

13

The last block of the plaintext doesn't have to be padded 5 , it is common to use only the
most significant bits of ciphered counter to be X O R e d wi th plaintext i n cipher algori thm
(and i n similar way for deciphering).

The f8-mode is a variant of commonly known Output Feedback Mode (O F B) wi th more
elaborate in i t ia l iza t ion and feedback function [15, 19]. The first output block 0\ is computed
from IV, then it is X O R e d wi th plaintext to produce the first ciphertext block. The output
block from previous step O j - i is used to compute the current output block Oj which is
always X O R e d wi th current plaintext i n encryption algori thm.

The equation 2.10 describes the improved in i t ia l iz ing function where m is the mask.
The equations 2.11 and 2.12 describes computat ion of value, which is used for ciphering
algori thm to produce output values i n equation 2.13. Equa t ion 2.14 describes ciphering
and equation 2.15 describes deciphering.

F8 -mode

IV' = EK(IV,key®m)

h = IV'

ij = Oj-!® iv' ® j

Oj = EK(Ij,key)

Cj = Pj © Oj

Pj = Cj ® Oj

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

5 Padding can be used for the plaintext that is not aligned to the multiplies of the block.

14

Chapter 3

General Purpose G P U

This chapter describes the basic ideas and techniques behind G P U parallel programming
model and architecture. Fol lowing text w i l l focus on possibilities of effective implemen­
tat ion for G P G P U and integrated G P U i n modern C P U using O p e n C L framework, brief
description of selected principles and development of parallel applications.

Paral le l machines have impressive performance to cost ratio compared to the common
sequential machines[I], but br ing well known problems for software development such as
run-time resource allocation and resource sharing. M a p p i n g parallel program to mult ipro­
cessor machine is complex problem that needs to decide about task allocation, scheduling
of processes, communicat ion patterns and much more.

W h i l e current C P U s are powerful and sophisticated chips, their design must be focused
on wide variety of tasks, therefore vast majori ty of resources might not be as fully ut i l ized as
could have been. The G P U chips provide much better theoretical performance for certain
tasks for smaller price[30]. Interest among developers has grown in using the power G P U s
provide for other tasks than graphics pipeline.

In order to achieve improvement in certain algori thm it is necessary to analyze the
procedures and find possibilities for parallel ization and take under consideration that usage
of addi t ional processing unit brings computat ional overhead. The characteristics of such
application are[29]:

• Ut i l i za t ion of data-parallelism - many non-graphical problems might be separated
into fractional procedures and computed separately, such as mat r ix calculations indi­
v idual ly for each cell.

• Large por t ion of computat ion - G P U processors are opt imized for computations over
handling condit ional evaluations.

• Throughput over Latency - computations on G P U are designed for large overall
throughput of entire data rather than short response t ime of each ind iv idua l op­
eration.

The current trend i n development shows that parallel computations either i n the form
of G P U computations and A P U 1 are worth examinat ion and research. S I M D 2 has already
proven it 's value on improving performance wi th parallel ization of various algorithms[5, 2].

1 Accelerated Processing Unit - in this context it means C P U with G P G P U chip.
2 Single Instruction Multiple Data - multiple processing elements that perform the same operation on

multiple data points simultaneously[20].

15

A P U

Usua l solutions w i th graphics card can have high power consumption. The modern trend
and need of transportable forced development to reduce negative effects of G P U s while
keeping as much of latest visual experience as possible[17, 24]. B o t h solutions uti l ize a
port ion of computer's system R A M memory.

A P U is Accelerated Processing Un i t that is designed to accelerate certain type of com­
putations outside of C P U in single chip. It could include G P U , F P G A or s imilar specialized
processing unit . A m o n g the best known there are Intel H D Graphicsf], A M D Fusion[1]
and N V I D I A Project Denver[6].

3.1 OpenCL

Development for parallel computat ion brought need for infrastructure. O p e n C L is an indus­
t ry standard framework for programming heterogeneous systems composed of a combination
of C P U s , G P U s , D S P and other processing units[26]. W i t h O p e n C L it is possible to write a
software that w i l l run on wide variety of platforms from cell phones or computers to massive
supercomputers.

The OpenCL programming language has syntax based on the language C wi th few addi­
tions and l imitat ions arising from the design and architecture of heterogeneous platforms.
A m o n g most important l imitat ions it omits the use of recursion, function pointers and
header files. O n the other hand, the language is extended to the use of parallel ism wi th
bu i ld i n types and synchronization. Also it defines many functions and four new keywords
as memory region qualifiers: __global, __local, ..constant and __private.

For further reading of the text and better comprehensibility, there are listed necessary
words from O p e n C L terminology[26].

• Context - contains one or more devices used for kernel execution and are used for
managing command queues, memory and program.

• Kerne l - function wri t ten in O p e n C L programming language that is executed on
O p e n C L device.

• Work- i t em - instance of executing kernel.

• Work-group - organization of work-items.

• Command-queue - interaction between the host and O p e n C L device through com­
mands posted by the host and provides synchronization methods for the execution of
the commands.

O p e n C L platform includes single host that communicates w i th the user and the O p e n C L
program. The host is connected to one or more O p e n C L devices where the kernels are
executed. Kernel could be considered as the entry point between host and G P U . In order to
achieve parallelism, the device consists of many work-items whose execute mult iple instances
of kernel at the same time. The work-items are organized i n integer indexed orthogonal
grid where the unique index of a work-i tem is called global I D . The identification of work-
i tem is possible through combination of its local I D inside a specific work-group and the
work-group global ID .

16

3.1.1 P l a t f o r m M o d e l

The O p e n C L provides a high-level abstraction model representing any heterogeneous plat­
form. The host is a bridge between parallel computations on one or more devices and
interaction wi th external environment. Device could be C P U , G P U , D S P or any other pro­
cessing unit support ing O p e n C L and consists of compute units which are further divided
into processing elements. Processing element is abstraction of a work-i tem and compute
unit is i n s imilar way representation of work-group.

Compute Device

Figure 3.1: O p e n C L platform model w i th one host and mult iple devices[26].

3.1.2 E x e c u t i o n M o d e l

The O p e n C L software executes on two levels

• Host code - the O p e n C L doesn't define any restrictions about the host part of the
application, it defines only the interaction between host and devices. It consists of
selection and ini t ia l izat ion of the context - selected platform and devices.

• Device code - wri t ten i n O p e n C L programming language i n the form of short func­
tions, kernels, that usually transform an input array through series of processes into
output array. It is compiled v ia O p e n C L compiler and executed on the device's work-
items.

The host program takes care of synchronization and plans the execution of each kernel
on the devices. Each instance of kernel runs i n separate work-i tem and the work-items
wi th in each work-group execute concurrently.

3.1.3 M e m o r y M o d e l

O p e n C L defines two types of memory objects. The buffer object is versatile type that could
be used for representation of any data type available in C or O p e n C L language. The image
object is restricted to containing pictures only and is opt imized for the specific needs of
image processing.

O p e n C L uses a hierarchically structured memory. The types differ i n access t ime,
availabil i ty and types of usage[26]:

17

• Private M e m o r y - each work-i tem has it 's own private memory which could be
thought of as analogy to C P U ' s registers. It is the fastest type of memory used in
O p e n C L .

• Local M e m o r y - designed for sharing data between work-items who belong to the
same work group. It is used to reduce the number of accesses to the global memory.
L o c a l memory is slower than private memory but faster than global memory. The
programmer is denied both direct access and control over local memory. The analogy
could be the cache i n C P U .

• Global M e m o r y - shared among a l l work-items i n the same context.

• Host M e m o r y - memory visible only for the host, O p e n C L only defines how the
host interacts w i th O p e n C L objects and constructs.

There could be another type of memory i n graphic cards that O p e n C L doesn't define

• P C I M e m o r y - type of memory that could be used by the program and G P U , part
of host memory. It is slower than global memory.

18

Chapter 4

Design

The a im of the implementat ion is to determine whether the parallel processing of S R T P
could improve the l imitat ions on modern V o I P softgates. The development of sophisti­
cated softgate requires elaborate engineering and implementation of various communica­
t ion protocols that would overshadow the effort i n parallel processing. Therefore, only
narrow selection of well know communicat ion protocols has been implemented. For V o I P
telephony, registration and maintenance of users serves SIP protocol, for the media trans­
mission description and session description SDP protocol, and for secure media transport
SRTP. There is also implementat ion of LCP s tack 1 .

4.1 Design Patterns

More complex the application is the higher level of considerate design it requires. There are
plenty of already well tested design patterns from which the implementat ion could be based
on and as the field of V o I P communicat ion has been known for decent amount of time, there
are currently couple of advised design patterns, from which the part icular implementat ion
for this thesis stands on three - mediator pattern, singleton pattern[21] and protocol stack
pattern []. None of these design patterns could be thought as contr ibut ion of the thesis as
they a l l belong to common public knowledge and their examination was not the main topic
of the research. However, their explanation is provided i n order to make the rest of the
chapter more comprehensible.

4.1.1 M e d i a t o r P a t t e r n

In object oriented design the common problem may be the large number of classes and their
mutual interaction. One of the possible solutions for the latter can be behavioral pattern
called mediator, which is named after the way it alters the running behavior. The pattern
consists of following participants:

• Mediator - defines an interface for communicat ing wi th colleague objects

• ConcreteMediator - implements cooperative behavior by coordinating colleague
objects, it knows and maintains its colleagues

1 Light-weight Control Protocol - communication protocol for Siemens prototype VoIP phone.

19

• ConcreteColleague - each colleague knows its mediator object and it communicates
w i t h its mediator whenever it would have otherwise communicated w i t h another col­
league

The mediator object communicates w i th mult iple colleague object through defined in­
terface, the interaction between colleague objects is s tr ict ly l imi ted. One of the issues
of such design is that the data flow might be bottlenecked by the only option of mutual
communicat ion is realized v ia single object. If there is a need for cr i t ica l section and their
exclusion some of the colleagues may not get the chance as often as they would need slowing
down the to ta l responsiveness.

4.1.2 S ing le ton P a t t e r n

Dur ing creation of the application architecture certain class may be required to provide
global point of access to it while preserving only one instance. One approach could be to
have global variable but that is not complete fulfillment of the requests, because multiple
instances could s t i l l be created. Singleton design pattern offers a solution when the class
itself is responsible for the number of instances which ensures that nowhere i n the code
mult iple object of such class may be created. This doesn't affect the rest of the design, only
one single class, therefore, it has only one participant:

• Singleton - there must be exactly one instance of the class and class must prevent
from instantiat ion of mult iple instances, it must be globally available from well known
access point

4.1.3 P r o t o c o l Stack P a t t e r n

There are two design patterns closely related to the protocol stack design pattern which it
uses as higher level of abstraction i n explaining the corresponding relations i n design.

• Protocol Layer - provide a common interface for implementing different layers of
communicat ion protocol stack.

• Protocol Packet - unification and simplification of internal packet buffers and their
access.

This pattern's usage is concentrated but not l imi ted to dynamic exchange of protocol
layers from the stack, their insertion and removal, thanks to separate view and decoupling
of each implemented protocol and its layers.

The participants of protocol stack pattern are:

• Protocol Stack - contains and maintains list of used protocols.

• Protocol Layer - provides interface and communicat ion point for each ind iv idua l
layer. The certain layers are abstracted from the actual type of the upper layer and
lower layer classes.

20

4.2 Model-view-controller

The M V C belongs to the group of software architecture patterns which shall not be confused
wi th O O P design patterns. It has more strict rules for design and implementat ion than
pure design patterns and influences development to the higher degree. A l so it is not l imited
to the object oriented programming paradigm even though i n this part icular case M V C is
used wi th O O P .

The M V C pattern defines both the participants and their mutua l interaction.

• M o d e l - contains the information and inner implementat ion of the system, under­
stands and responds to requests from it 's associated view and controller and it may
also inform them about changes of inner state and data.

• V i e w - creates visual representation for the user of the information and data the
model stores.

• Controller - represents user actions associated wi th view and responds through
interface commands to the model.

4.3 SIP Gateway

In order to create a session for V o I P communicat ion between two endpoints, there must
be device that w i l l be able to create such connection and negotiate protocols for their
interaction and data exchange. In telecommunications such device is called gateway. The
essential function of gateway is protocol t ranslat ion to interconnect networks and devices
using different protocol technologies. The SIP gateway used i n this thesis provides protocol
conversion between subset of SIP protocol and full implementat ion of L C P protocol.

Mul t ip l e SIP or L C P telephones are connected to the SIP gateway whose appear as users
to the SIP registrar 2 . The SIP gateway in this scenario works as bridging point between the
SIP telephones and SIP registrar, L C P phones and SIP registrar or L C P phones directly.

The modules of SIP gateway are implemented using two different programming lan­
guages which made the interaction l i t t le more complicated. E a c h of the modules serve
specified purpose and interacts w i th remaining modules either directly or through the gate­
way core.

• Gateway core - provides communicat ion between each module and encapsulates
basic functionality of a gateway, mutual translat ion of both protocols SIP to L C P
and vice versa, the management of R T P stack and devices representation.

• SIP Stack - includes network interface for communicat ion over SIP protocol w i t h
registrar, representing L C P telephones as SIP clients. Encapsulates part of the SIP
protocol w i th automated answers without put t ing unnecessary load on the gateway
core. Remain ing communicat ion is provided through interface functions to either
gateway core or directly to L C P stack.

• L C P Stack - separate network interface for devices communicat ing v i a L C P protocol.
Includes complete L C P stack and interface for management of the connected devices.

2 Used registrars were Asterisk and Siemens HiPath 4000

21

SIP GATEWAY

Figure 4.1: SIP gateway wi th two V o I P telephones accessible, L C P phone directly connected
and SIP phone through SIP Registrar.

• R T P Stack - for non-direct connections where the telephones couldn' t agree on
communicat ion channel for the session, R T P stack provides necessary br idging point.

Measurement of u t i l iza t ion of computat ional resources during execution of ciphering al­
gori thm does provide correct and exact results, however i n real deployment the effectiveness
could be negatively affected by the other processes running on the softgate. SIP Gateway
is a collection of programs and utili t ies whose together implement a server for lightweight
L C P phones and supplement a SIP functionality for each phone to be able to connect to
an actual SIP registrar.

The core application should offer simple management v i a command line for both devel­
opment and tracing of the flowing communicat ion and basic functionality for communicat ion
and session management.

The core class of the gateway is Daemon, which controls the flow of data inside the
application and provides interfaces to communicate w i th external applications. Dur ing the
composit ion of gateway the mediator design pattern was used where the daemon is mediator
and a l l directly communicat ing classes are colleagues.

SIP Stack provides the interface to communicate w i th SIP Registrar. The single SIP
Stack is shared for a l l users, impl ic i t ly runs on well known port for SIP communicat ion
5060, which could be expl ici t ly changed i f necessary.

22

LcpcpStack «interface»
LcpcpListener

X
T

LcpcpListeningPoint NetworkListener LcpcpListeningPoint
1 1..*

NetworkListener

LcpcpMessage

A

\£<instantiate» /«implements» «instantiate» I

I

LcpcpMessageFactory

Network Layer

I
UdpNetworkLayer TcpNetwork Layer

Figure 4.2: Archi tecture of L C P stack, design was inspired by the J A I N - S I P api[27].

LCP Stack visualized on the figure 4.2 was designed to reflect the elaborate design used
in J A I N SIP[7]. W h i l e SIP is much richer protocol than L C P , the design of the stack was
extremely shortened but the basic structure of elementary components and their interaction
remained the same. L C P stack runs impl ic i t ly on the recommended port 4066, but as well
as SIP stack port, the port could be variable if needed. E a c h S I P / L C P client is instance of
Client class, and universal interface for remote communicat ion and administrat ion shall
be provided as well .

RTP Stack is devoted increased amount of attention i n design because it covers the
focus of this thesis. A l l of the stacks are interchangeable and during their design were used
recommendations from protocol stack design pattern and its related patterns.

4.4 S R T P Stack

The essential point of implementation improvement lies in design of S R T P stack as it has
been mentioned i n previous text that it consumes majori ty of resources of the gateway
during indirect media sessions. Proper implementat ion must not lack following properties:

• encryption module - implementat ion of A E S - 1 2 8 b cipher as defined i n R F C -
3711 [15] in at least C R T mode that provides protection of transferred data w i th
different keys for each endpoint i n a l l concurrent sessions.

• input and output buffers - i n order to avoid exhaustive allocation and deallocation
of structures for input and output packets, the data storage should be implemented
as thread safe poo l of buffers w i th sufficient size and both, synchronization techniques
and memory override protection.

23

«singleton»
Daemon

T
I

«implements» «interface» 1 0..*
Client Clientüstener Client

s
N

«implements»!

«implements>^
1 > \

«implements»

«interface»
Uiüstener

0..1

«interface»
SipLayerüstener

«interface»
LcpcpLayerüstener

Ui
1 0..1

CommandLine

0..1

LcpcpLayer

0..1

RemoteUi SipLayer

Figure 4.3: Archi tecture of SIP Gateway wi th singleton design pattern. Consists of Daemon
class, mult iple L C P phones connected v i a L C P stack and represented as instances of Client
class and mult iple user interfaces for control over the gateway.

• transcoding module - due to various reasons, endpoints may not be able of negoti­
ate the same media compressing codec. The S R T P stack should allow the transcoding
and then encapsulate the process without unnecessary addi t ional demands for the
gateway.

• integration interface - most of the procedures implemented i n S R T P stack should
be encapsulated to minimize overloading data transfers w i t h the gateway providing
only essential and min ima l interface w i t h callback features to simplify and unify the
integration process.

A n advanced techniques like j i t ter buffer may improve overall quali ty of V o I P commu­
nication, however, each end device capable of such communicat ion must implement these
techniques as well, therefore, it may render itself redundant and generating min imal , but
s t i l l addit ional latency.

24

4.4.1 S R T P P r o c e s s i n g

Advantage of usage A E S i n C T R mode is that it allows out-of-order processing. Because
majori ty of R T P implementations are bu i ld on U D P transport layer, which is simple model
w i th min ima l protocol mechanisms, neither order nor delivery of the packets are guaranteed
in exchange for smaller average delay and smaller traffic.

The exact size of payload in S R T P packet can differ widely according to the used codec,
its bit rate, and sampling frequency. The selection of used voice codecs, their sampling
periods and payload size are mentioned in table 4.1.

Codec and B i t Rate Pay load Size Sampling Per iod Packets Per Second
G.711 - 64 K b p s 160 bytes 20 ms 50
G.722 - 64 K b p s 160 bytes 20 ms 50
G.729 - 8 K b p s 20 bytes 20 ms 50
G.726 - 32 K b p s 80 bytes 20 ms 50
G.728 - 16 K b p s 60 bytes 30 ms 33

Table 4.1: Selected codecs and payload informationflO].

F i x e d block size of A E S is 16 bytes, which means that one or more states could be
mapped to the packet using any of the mentioned common codecs. Paral le l izat ion of the
encryption process could be performed either on a single state, where value during every
method of the A E S of each cell of the state is computed separately, therefore a work-i tem
can be mapped on computing for each cell. Theoret ical common hardware should be capable
of u t i l iz ing 16 work-items i n a single work-group which is the max ima l number of needed
by this design.

Another possible approach for codecs wi th larger payload size, such as G.711, could be
to map mult iple states for the parallel execution of entire packet, which for the part icular
codec would require significantly more computat ional units.

The S R T P processing scheme from figure 4.4 visualizes the ideas behind the design of
S R T P stack and encapsulates implementat ion details for easier explanation from the mul t i ­
threaded application design point of view. The entire stack runs i n three separate threads
which shall minimize the delay caused by wait ing on modules wi th varying t ime of execution
per packet.

• Network T h r e a d - the incoming and outgoing data are captured v i a two sockets,
for R T P and R T C P . This thread includes a pool of buffers for the storage of packets
and another the processed data.

• Stack T h r e a d - the interaction and selection attributes for the processing thread is
taken care in the stack thread as well as interface for higher layers of the application
using the S R T P stack.

• Packet Processing T h r e a d - extraction of important values from the packet header,
encoding and decoding provided wi th transcoding interface of the entire packet pay-
load according to the previously extracted data.

The thread design could be mapped to another type of view on the layers of the stack
design. The S R T P layers as shown i n the scheme 4.4 are subset of the entire S R T P stack
functionality and the classes from the scheme have following purposes:

25

Incomming
Packets

Outgoing
Packets

Network Layer
UDP Socket Packet Buffer Pool

recv_packet()
send_packet()

get_buffer()
release_buffer()

"Input Buffer
"Output Buffer

Packet Processing
Parse Packet

get_header()
get_iv()
get_key()
get_payload()

Initialize Values
AES::expand_key()
CL::write_buffers()

"Output Buffer

SRTP Packet
Structure

SRTP
Header Payload

*Output Buffer
*SRTP Stream

Encode Payload

I

encode_block()
AES::xor_key()

AES::shift_rows()

AES::mix_column()

AES::xor_key() 1
AES::sub_bytes()

AES::shift_rows()

AES::xor_key()

update_counter()

Figure 4.4: S R T P processing scheme.

• Network Layer - enables the communicat ion wi th external devices through S R T P
protocol, transfer of the mul t imedia data packets between endpoints and implements
buffer pool for packet data.

• Packet Processing Layer - without unnecessary data reallocation the proper struc­
tures are casted for easier readabili ty and extraction of important data from the in­
coming packets.

• Payload Encoding - complete implementations of encryption and decryption of the
packet payload.

Serial Processing

The designed applicat ion captures data from network i n the network layer which ensures
communicat ion wi th both endpoints of mul t imedia session and is running i n its own thread.
It contains buffer pools for incoming and outgoing data to ensure max ima l level of paral-
lelization in each layer of applicat ion. Pointers for input and output buffers are passed for
further packet processing where are extracted information such as header and payload from
the packet, copied data from the memory to O p e n C L data structures and serial implemen­
tat ion of A E S key schedule.

For better understanding of improvement this thesis is provided wi th reference serial
implementation which design w i l l be analyzed as well . The payload encryption design as
visualized in figure 4.4 shows, that the execution is separated into mult iple consecutive
callings of A E S algori thm w i t h updat ing of counter i n between for C T R mode. Thanks to
the decomposition of the code, the design of parallel encryption is done i n similar fashion.

26

The design prevents the executing implementations from creating any addi t ional tempo­
rary buffers to decrease unnecessary allocations. These can be predicted i n the start-up of
S R T P stack and already preallocated wi th max ima l size a packet can have. This approach
consumes more memory, but improves memory management and saves execution t ime dur­
ing cr i t ica l sections. A l so it is assumed that softgate gateway code runs on machine wi th
enough memory and these buffers most certainly shouldn't mean any excessive memory
consumption.

The buffer pools provided are used i n both serial and parallel encryption, and to increase
the level of algori thm categorization, their implementat ion is based on template classes. The
pool guarantees to protect buffer from overwrite and data persistence.

Massive Parallel Processing

Tradi t ional parallel programming style relies heavily on S I M T 3 and S P M D 1 programming
paradigms []. The native O p e n C L approach is based on abstracting the units of work
from the programmers code into v i r tua l threads - work-items. The convenience it offers in
allocation of resources brings couple of l imitat ions as well.

The figure 4.5 demonstrates the processing of packet pay load of G.711 codec on the
chip wi th work-group size 16. Work load on the work-items can be highly irregular and each
work-i tem execution is finished after the processing of the part icular A E S block, therefore,
this code w i l l need 160 invocations of work-items during the kernel execution. Tha t would
bring unnecessary computat ional overhead.

SRTP header
Payload

dc de c4 c5 dc dO d5 51 53 5d 5f 5b 46 46 46 5b AES block 1

46 46 46 5b 44 41 42 4f 42 47 42 43 59 58 59 5f AES block 2

5f 52 59 44 44 5f 51 54 55 55 51 56 50 52 5e 58 AES block 3

5d 52 52 50 57 54 d4 d6 d5 51 53 57 d6 d6 dO d7 AES block 4

57 56 57 dO d3 d6 d5 55 51 50 d6 df d2 d l d4 d6 AES block 5

dc db da dd d6 55 dc dO d4 5d 44 5c 56 d6 d5 d4 AES block 6

d5 d7 50 d4 51 dO 61 6f 76 fe ef f7 77 66 50 ff AES block 7

e5 d7 74 4a c9 f9 f7 5c 76 5f f5 f3 dd 4e 42 d8 AES block 8

f7 c9 50 44 50 cd c9 d4 4d 41 57 d l 51 58 44 52 AES block 9

d3 d l 50 58 5b 55 d4 53 59 43 47 5f 51 5d 56 d2 AES block 10

MKI & Authentication tag

Figure 4.5: Work- i t em mapping on packet payload wi th native O p e n C L approach.

3 SIMT - Single Instruction Multiple Thread
4 SPMD - Single Program Multiple Data

27

Persistent T h r e a d Processing

The requirements and attributes imposed by massive parallel processing style divide the
workload into mult iple blocks, more than can be simultaneously executed during kernel
launch time, and the synchronization is ensured by the O p e n C L . For massive parallel ap­
plications the obvious approach would be to uti l ize as much of machine's power as possible
to gain the largest speed-up in every single execution. However, the a im of this thesis is
to minimize large delays for mult iple sessions which requires rather careful al location of
resources. Persistent threads is special type of programing paradigm combining both, the
possible gain of mapping the program for parallel computat ion and considerate usage of
resources [22].

Since the in i t ia l iza t ion of computat ional kernel can consume significant amount of time
compared to the actual execution, larger kernel reusing its resources for mult iple similar
computations could render the in i t ia l iza t ion negligible t rading off por t ion of parallelization.
This approach has been chosen for packet parsing, while instead of mapping 160 O p e n C L
work-items on the G.711 packet's payload it uses one work-i tem for each A E S block cell in
a loop that goes through the data.

M a x i m a l simultaneous work-items launched dur ing the kernel execution is equal to the
number of blocks i n A E S algori thm and it must not be larger than the amount of work-
items in work-group. The persistent thread style provides couple of relevant improvements
that are not resolved in common parallel implementat ion to the satisfactory degree.

• Global synchronization - as the kernel uses only as many work-items as can be
simultaneously scheduled, the tools O p e n C L offers for synchronization wi th in work­
group can be used to synchronize calculations through the entire execution at any
given point which is used i n synchronization across A E S blocks for update of round
key.

• Computat ional overhead - the amount of computations i n a work-i tem for 128-bit
A E S is larger than ini t ia l izat ion, start-up and cleanup of the kernel, but those fac­
tors are not completely insignificant. L i m i t i n g the number of consecutive executions
decreases the ratio of O p e n C L overhead and the algori thm performance in positive
way.

• Resource requirement consistency - memory requirements are similar for both
persistent thread and massive parallel style, but size of the payload for single packet
may consume up to 160 work-items on the G P U if kernel is programmed i n non
persistent thread style. A s it doesn't seem to be much for one packet, if the stack
should take care of mult iple S R T P streams, the resources may prompt ly become
insufficient which w i l l increase the weight of O p e n C L overhead. Persistent thread
kernel w i l l not use more than 16 work-items per packet.

28

SRTP header
Payload

dc de c4 c5 dc dO d5 51 53 5d 5f 5b 46 46 46 5b AES block 1

46 46 46 5b 44 41 42 4f 42 47 42 43 59 58 59 5f AES block 2

5f 52 59 44 44 5f 51 54 55 55 51 56 50 52 5e 58 AES block 3

5d 52 52 50 57 54 d4 d6 d5 51 53 57 d6 d6 dO d7 AES block 4

57 56 57 dO d3 d6 d5 55 51 50 d6 df d2 d l d4 d6 AES block 5

dc db da dd d6 55 dc dO d4 5d 44 5c 56 d6 d5 d4 AES block 6

d5 d7 50 d4 51 dO 61 6f 76 fe ef f7 77 66 50 ff AES block 7

e5 d7 74 4a c9 f9 f7 5c 76 5f f5 f3 dd 4e 42 d8 AES block 8

f7 c9 50 44 50 cd c9 d4 4d 41 57 d l 51 58 44 52 AES block 9

d3 d l 50 58 5b 55 d4 53 59 43 47 5f 51 5d 56 d2 AES block 10

MKI & Authentication tag

Figure 4.6: Work- i t em mapping on packet payload using persistent thread paradigm.

4.5 Transcoding

Essential part of the media server is abi l i ty to negotiate the best codec for both endpoints
i n real-time media session. W h e n a l l par t ic ipat ing devices can not communicate using
the same compressing media codec, the gateway must be able of transcoding to provide
the channel for communicat ion. R T P protocol defines 127 different codecs for audio and
video profile. Therefore, the designed S R T P stack uses plugin system for mul t imedia codec
transcoding.

The design of plugin system takes into consideration the lifetime of packet data buffers
and for opt imizat ion purposes may defer the release of buffers on the side of codec plugin.
The core design is simple and consists of two parts.

• P lug in System M o d u l e - part of the gateway, on the start-up browses defined
directory for any plugins and dynamical ly links them into the application. The plugin
system may offer the management of packet memory buffers on the side of codec
plugin, but the system doesn't guarantee the consistency through the entire lifetime
and i f necessary, the buffer may be rewritten, in which case the flag for data correctness
is set off.

• Codec P lug in - compiled files implementing the plugin interface capable at least
of both transcoding the codec from and into P C M and preferably also optimized
transcoding into another codec, i f such algori thm is presented. The codec plugin
is responsible for implementing or control of any buffers i f necessary, concurrently
transcode mult iple different streams, and must separate the buffers and another saved
information from given stream ID. The plugin may not use the opt imizat ion option,

5 P C M - Pulse-code modulation.

29

duplicate the data into its own buffers and keep the memory management on the part
of S R T P stack itself.

SRTP parser

Packet
Processing

buffer_pool

encryption))
decry ption() I

Plugin
Module

codec list

InltO
transcode()
cleanup!)

"buffers

G.726
G.711-U

G.711-A
PT
encoding_name

transcodef)
to_raw()
from_raw()

Figure 4.7: Interaction between plugin system on the gateway and separate codec plugins.

30

Chapter 5

Implementation

The application's specifications were variable through the life-cycle of the entire develop­
ment. SIP gateway's implementat ion started as a prototype for translat ing L C P protocol
and subset of S IP protocol enabling basic functionality for new lightweight prototype tele­
phones. A s the statement of requirements included reference Java applicat ion that combined
L C P server and mult iple SIP clients, the implementat ion languages differ from the S R T P
stack which is the core of this thesis.

A s mentioned before, the reference applicat ion implements only a subset of the full com­
municat ion protocols and instead of understanding a l l of the complex scenarios the protocols
offer, it brings research value examining the possibilities of improvement implementing com­
putat ionally demanding algorithms using parallel programming paradigm. Another benefit
this work brings, is experimental study and comparison of established implementations used
either commercial ly or free.

5.1 SIP Gateway

It is only possible to translate l imi ted subset of complete SIP protocol to L C P protocol. The
the solution is capable of registration, cal l , hold and transfers. Implementation language
for SIP gateway was chosen Java as it was one of the requirements. The applicat ion runs
in three threads

• SIP Network Layer - receiving and processing of SIP messages, as implementat ion
of SIP stack was used ja in SIP A P I ' s reference implementat ion by N I S T as it is one
of the most reliable and fastest implementation available for Java[27].

• L C P Network Layer - receiving and processing of L C P messages, timers for L C P
t imed responses and interface for rest of the application.

• Appl icat ion Logic - translation between both networks and communicat ion proto­
cols, data and devices representation.

For management connected devices the SIP gateway offers command line interface and
remote interface protocol, which is described i n 5.3. B o t h have same set of commands to
change device's and registrar's properties.

31

5.2 S R T P Stack

The implementat ion of S R T P stack is wri t ten in 0 + + following the recommendation of
standard C + + 1 1 . Even though the standard defines mult i- threading model w i th synchro­
nization, at the t ime of development S R T P stack, there were no compilers sufficiently
implementing the language property, therefore, that part icular language feature was left
neglected. The short list of used libraries and frameworks dur ing implementat ion include
the following.

• Boost - set of libraries for 0 + + programming language. The class thread was
used to implement multi-threaded applicat ion and mutex w i th condition_variable
to implement thread-safe semaphores.

• S T L Containers - usage l imi ted only to the list of free buffer indexes in imple­
mentation of Buf f er_pool, otherwise the data sizes are static and known dur ing the
compilat ion, therefore, usage of dynamic structures is unnecessary.

• Sockets - G N U facilities for interprocess communicat ion defined in sys/socket .h,
the implementat ion supports both IPv6 and IPv4.

• Dynamic L ibrary Loading - the codec processing is designed as plugin system
w i t h dynamic l ink ing of each codec separately. U n i x operating systems provide im­
plementation of dynamic loading wi th interface defined in d l f cn.h.

• O p e n C L - framework for parallel computations described i n 3.

The implementat ion design follows simple rule - each class or namespace or module
unit has it 's own header file, also, the list of classes w i th comments can be generated by
Doxygen.

5.2.1 Buffer P o o l

Since the application is multi threaded passing the data from one thread to another, there
is a necessity for cr i t ica l section handling. For the allocation of buffer first must be called
method get.buffer_id() which returns integer value representing the free buffer I D . In
this method it is crucial to avoid releasing the same I D for different buffers, therefore,
must be executed atomically. The applicat ion may access the memory of the buffer by
method get_item(id) taking as argument the previously received buffer I D . Even though
this method accesses possibly the cr i t ica l section of the memory, it doesn't need any syn­
chronization, because it is a l l handled in previous code and at this moment it is guaranteed
that the allocated buffers are exclusively used only by a single thread and branch of code.
The releasing of the buffer is enabled by release_buf f er (id) method again taking as argu­
ment the allocated buffer I D . The buffer pool ensures that releasing of the buffer is atomic.
The allocation and release of buffer is achieved by only adding and removal of integer
value i n queue, which makes the cr i t ica l section code very fast and not vulnerable to basic
mult i- threading problems such as deadlock and starvation.

32

1 template <class b u f f e r _ i t e m > c las s B u f f e r _ p o o l {
2 p r i v a t e : / / i m p l e m e n t a t i o n
3 b u f f e r _ i t e m * * p o o l = n u l l p t r ;
4 s td : :queue< in t> f r e e _ b u f f e r _ i n d e x ;
5
f:

in t p o o l _ s i z e ;

U
7 p u b l i c : / / i n t e r f a c e
8 / / i n i t i a l i z e p o o l and f r e e _ b u f f e r _ i n d e x
9 B u f f e r _ p o o l (i n t p o o l _ s i z e) { . .] • ;

10 / / c l e a n u p of r e s o u r c e s
11 " B u f f e r _ p o o l () { . . } ;
12 / / r e t u r n s a v a i l a b l e b u f f e r ID
13 in t ge t_buf f e r _ i d () { . .] • ;
14 / / r e t u r n s s i z e of p o o l
15 in t g e t _ p o o l _ s i z e () { . . } ;
16 / / r e t u r n s a v a i l a b l e b u f f e r w i t h ID
17 b u f f e r _ i t e m * g e t _ i t e m (i n t i d) { . . };
18 / / makes b u f f e r w i t h ID a v a i l a b l e
19 void r e l e a s e _ b u f f e r (i n t i d) { . . };
20 };

To achieve higher degree of code reusability and categorization, buffer pool is imple­
mented as template class offering both the O p e n C L implementat ion use its own pool for
memory objects on the host side and network interface use its own pool for incoming and
outgoing packets and their structures.

Class RTP_item implements items for buffer pool storing data captured from network
and their processed variant . l t includes the buffers for incoming and outgoing packets and
the pointers to payload to avoid perpetual header removal. Network interface uses G N U
C standard implementat ion of B S D sockets, therefore, this i tem includes structures for the
sockets as well to keep the information persistent through packet processing. The i tem
consists of following arrays and structures:

• Source data buffer - array of bytes allocated to max ima l allowed S R T P packet
length, later mentioned only as src.

• Destination data buffer - array of bytes allocated to same length as src, later
only dst.

• Payload data - pointers to src data buffer after processing S R T P header in incoming
packet and another pointer to dst as well right after S R T P header.

• Temporary buffer - dur ing encryption implementat ion and codec translation, some
pay loads might use temporary buffers. To prevent costly allocations during sessions,
auxi l iary buffers are stat ically allocated at the compilat ion time.

• Structures for sockets - function recvmsgO expects specific structures present for
capturing packets, sockaddr_in6 for representation of IPv6 address, iovec as header
to gather I / O and msghdr as structure encapsulating inner logic and min imiz ing the
number of directly supplied parameters to recvmstO.

O p e n C L requires specific memory objects that can be loaded to the device memory
called cl_mem. Buffer pool i tem for parallel implementat ion represented in class c l . i tem
requires only those memory objects.Because single network packet needs mult iple callings

33

http://variant.lt

of clEnqueueWriteBuff er () dur ing the data transfers to the O p e n C L device memory, we
can select the option of non-blocking write, which is faster than blocking write. The call ing
of the kernel can be immediate, but events returned by clEnqueueWriteBuf f er must be
queried in order to release the cl_item in the buffer pool . Par t i a l ly both buffer items share
the data structures but they serve different function and their redundancy is necessary.
C o m m o n memory objects are packet pay loads, because S R T P headers are not passed to
parallel processing, and temporary buffers.Extra structures, that are precomputed before
parallel execution are:

• Initial vector - buffer for C T R mode A E S value of I V , which is calculated from
S R T P header for each packet.

• R o u n d key - parallel ization of round key calculat ion doesn't propose any actual
execution gain and therefore is precomputed.

5.2.2 A E S

For the S R T P stack the crucial is implementat ion of Advanced Enc ryp t ion Standard. De­
scribed are two most relevant implementations, serial for comparison wi th the current
solutions and persistent thread as the representative of the the best examined parallel
implementation.

The header file aes.h offers the functions for encryption and decryption of packet pay-
load in C T R mode encapsulated i n AES namespace.

K e y Schedule

The master key defined for every S R T P session must be expanded into round key, which
is used i n every round for encryption. The algori thm for round key schedule is provided
only i n serial implementation, because its execution is prompt and doesn't provide enough
calculations for the kernel device that would justify parallel implementat ion and d iminish
O p e n C L computat ional overhead.

1 / / p r e c o m p u t e d r c o n t a b l e
2 s t a t i c const B Y T E r c o n [] = -[0x8(1, . . . };
3 / / k e y e x p a n s i o n
4 vo id AES : : e x p a n d _ k e y (BYTE *mk , B Y T E r k [ROUND_KEY_SIZE] [BL0CK.SIZE]) {
5 g e t _ f i r s t _ r k (m k , r k [0]) ;
6 f o r (i n t i = 1; i<R0UND_KEY_SIZE; i++) {
7 g e t _ n e x t _ r k (m k [i - 1] , r k [i] , r c o n [i]) ;
8 }
9 }

K e y expansion algori thm is different for the first round key and the rest of round keys.
The first round key is copy of first 128 bits from the master key. Other round keys are
derived from the previous round key. The algori thm is devided into two steps.

1. calculates the first column of the key state X O R i n g values from last column of previous
round key applied on substi tut ion box

2. and then are calculated columns two, three and four always derived from the previous
column of previous round key.

34

Because every array i n the S R T P stack is considered one dimensional exactly as the
incoming packet, the index to the state mat r ix memory must be computed exclusively.

Serial Encrypt ion

The A E S encryption is d ivided into 4 steps exactly as described in previous chapters. F ive
constants necessary for A E S w i l l be mentioned through this chapter i n many code snippets
and are listed in the following algori thm for encryption. The i r definitions are later skipped
to avoid information redundancy.

1 / / A E S c o n s t a n t s
2 #define ROUND_KEY_SIZE 11
3 #define ROUNDS 10
4 #define BLOCK.SIZE 16
5 #define ROWS 4
6 #define COLUMNS 4
7 / / C T R e n c r y p t i o n a l g o r i t h m
8 vo id AES : : s r t p . e n c o d e (BYTE * s r c , B Y T E *ds t , B Y T E *key , B Y T E * i v , in t l e n M
9 x o r _ k e y (k e y , i v , k e y) ;

10 e x p a n d _ k e y (k e y , r o u n d _ k e y) ;
11 int i = 0 , j = 0;
12 int l a s t _ o f f s e t = len/BL0CK_SIZE*BL0CK_SIZE;
13 / / e n c r y p t i o n of c o u n t e r and X O R i n g w i t h b l o c k s
14 for (; i < l e n g t h ; i+=BL0CK_SIZE) {
15 e n c o d e _ b l o c k (c o u n t e r , d s t + i , r o u n d _ k e y) ;
16 x o r _ k e y (d s t + i , d s t + i , s r c + i) ;
17 u p d a t e _ c o u n t e r (c o u n t e r) ;
18 }
19 / / e n c r y p t i o n of c o u n t e r i s f u l l bu t X O R i n g o n l y up t o p a c k e t s i z e
20 B Y T E * l a s t _ b l o c k = d s t + l a s t _ o f f s e t ;
21 e n c o d e _ b l o c k (c o u n t e r , l a s t _ b l o c k , r o u n d _ k e y) ;
22 for (i = i -BL0CK_SIZE; i < l e n g t h ; i++ , j+ + H
23 d s t [i] = l a s t _ b l o c k [j] " s r c [i] ;
24 }
25 }

The function takes five arguments, four of those are input parameters and one is output,
result of the encryption. The first argument src is pointer to the buffer w i th packet payload
that needs to be encrypted, dst is pointer to the buffer w i t h outgoing packet payload
after encryption, arguments key and i v represent encryption properties and finally the last
argument len has length of the packet payload.

Implementation of the block encode encode_block() follows the algori thm described
in chapter 2 in algori thm 1. Since the C T R mode encrypts the counter, packet payload
doesn't have to be presented to the encryption function.

The mul t ip l ica t ion i n Galois field by mat r ix defined i n chapter 2 is computat ional ly
expensive, therefore, the implementat ion consits of precomputed values stored i n arrays
and then the mixture of columns.

B o t h xor_key() and shift_rows() are simple and self-explanatory functions. The
shift_rows uses helper function rotate_row() . The xorJceyO takes three arguments, it­
erates over A E S state i n the first argument src and applies X O R function on corresponding
byte from given key i n argument key. Result is wri t ten to the dst array.

Fol lowing are two helper functions for A E S algori thm that are neither described in the

35

theoretical part of the thesis nor the A E S definition document. The i r implementat ion has
single purpose - higher code readability.

The values i n a row specified by arguments src and dst as pointers to the part icular
row i n both blocks are rotated by the value n. Code is split into two cycles when both
together cycle through the part icular row only once.

Because A E S block is stored i n the linear memory by rows, when rotat ing columns it
won't be sufficient to pass the pointer to specific column. Therefore, the function takes
arguments c o l l as index of column i n src block and col2 as index of column i n dst block.
The argument n again defines the distance for rotation.

Parallel Encrypt ion

Code for parallel encryption consists mostly of the kernel code i n O p e n C L language executed
in device. The code for host is large but programmed routines are common and doesn't
display any efforts of improvement and own contribution.

A g a i n the A E S tables are precomputed and stored i n constant memory space which is
cached. A s a result, a read from constant memory shouldn't cost more than one read from
device memory on a cache miss. For the persistent thread reading from the constant cache
is as fast as reading from a register as long as a l l threads read the same address.

The round key schedule was moved from the kernel to host code. Otherwise the code for
packet encryption for kernel i n O p e n C L language is quite similar to serial implementat ion
in C + + . F i r s t l y the work-i tem must find out its global I D and then continue the execution
only, i f its global ID is smaller than number of bytes i n A E S block. Each work-i tem includes
single loop iterating through its indexed posit ion i n each A E S block. In addit ion, only first
work-i tem takes care of updat ing counter the counter which requires a barrier for local
synchronization to avoid encoding part of payload wi th different counter.

1 vo id e n c o d e _ b l o c k (_ _ l o c a l B Y T E * c o u n t e r , _ _ l o c a l B Y T E *ds t ,
2 _ _ l o c a l B Y T E *temp , . . l o c a l B Y T E * r o u n d _ k e y) {
3 x o r . k e y (c o u n t e r , t e m p , r o u n d . k e y) ;
4 b a r r i e r (CLK_LOCAL_MEM_FENCE) ;
5 f o r (i n t i = 1; i < ROUNDS; {
6 s u b . b y t e s (t e m p , d s t) ;
7 barrier(CLK_LOCAL_MEM_FENCE) ;
8 s h i f t _ r o w s (d s t , t e m p) ;
9 barrier(CLK_LOCAL_MEM_FENCE) ;

10 m i x _ c o l u m n s (t e m p , d s t) ;
11 b a r r i e r (CLK_L0CAL_MEM_FENCE) ;
12 x o r _ k e y (d s t , t e m p , r o u n d . k e y + (i*BL0CK_SIZE)) ;
13 b a r r i e r (CLK_L0CAL_MEM_FENCE) ;
14 >
15 s u b . b y t e s (t e m p , d s t) ;
16 barrier(CLK_L0CAL_MEM_FENCE) ;
17 s h i f t _ r ows (d s t , t emp) ;
18 barrier(CLK_L0CAL_MEM_FENCE) ;
19 x o r . k e y (temp , d s t , r o u n d . k e y + (R0UNDS*BL0CK_SIZE)) ;
20 }

Encoding the block requires local synchronization which is achieved again by barrier ()
function. E a c h step of the algori thm may start computations after the previous step has
been finished for a l l work-items. Because both global and local ID of the work-i tem are

36

cached, cal l ing function get_global_id() doesn't br ing any slack-off, therefore, it is not
necessary to pass the work-i tem ID to the functions of A E S implementation.

The kernel code for mix_column() and shift_rows() requires work-i tem categoriza­
t ion, which means that during kernel execution it must identify itself and then find out to
which branch of code it belongs. A s the rows shifting and column mixture doesn't pro­
vide any means for generalization. Th is branching in mentioned device code doesn't br ing
any considerable addi t ional computations nor increase the overhead as it is only a simple
switch-case implementation.

5.2.3 T r a n s c o d i n g

The plugin system was implemented wi th usage of the G N U C Library . A l l of the important
functions for run-time dynamic loading are included from header dlfcn.h.

• dlopenO - loads dynamic l ibrary file w i th RTLD.GLOBAL and RTLD_N0W flags set to
make the symbols available for subsequently loaded libraries and perform eager symbol
resolution.

• dlsym() - returns address where the part icular symbol is loaded into memory.

• dlcloseO - unloads the dynamic library.

The plugin module searches folder plugins for any file ending wi th extension . so and
performs plugin test whether the file contains necessary properties.

1 PAYLOAD.TYPES 127 / / [R F C 3 5 5 1]
2 / / s t r u c t u r e f o r codec p l u g i n
3 s t r u c t Codec {
4 int PT = - 1 ;
5 char* e n c o d i n g _ n a m e = n u l l p t r ;
6 int (* t r a n s c o d e) (B Y T E * s r c , B Y T E * d s t , int 1 1 , int * 1 2 , int p t , int i d) ;
7 vo id (* t o _ r a w) (B Y T E * s r c , B Y T E *raw , int 1 1 , int * 1 2 , int i d) ;
8 vo id (* f r o m _ r a w) (B Y T E * r a w , B Y T E *ds t , int 1 1 , int * 1 2 , int i d) ;
9 };

10 / / l i s t of p l u g i n s
11 s t a t i c Codec t r a n s c o d e _ p l u g i n s [P A Y L 0 A D _ T Y P E S] ;
12 / / t r a n s c o d e module i n t e r f a c e
13 int t r a n s c o d e (B Y T E * s r c , B Y T E * d s t , / / p a c k e t b u f f e r s
14 int 1 1 , int * 1 2 , / / d a t a l e n g t h s
15 int p t l , int p t 2 , / / c o d e c t y p e s
16 int i d) ; / / s t r e a m ID

The code snippet above defines the structure for loaded codec plugins on the host
application side and interface for p lugin module and rest of the S R T P stack. Transcoding
is always executed through transcode () function and never directly, because the function
handles the possibilities of plugins and selects the option wi th best effort ratio and i n the
worst case transcodes through P C M .

37

1 / / codec i d e n t i f i c a t i o n [RFC3551]
2 extern const char* e n c o d i n g _ n a m e ;
3 extern const int PT;
4 / / t r a n s c o d e s m u l t i m e d i a d a t a f rom one codec t o a n o t h e r codec
5 int t r a n s code (B Y T E * s r c , B Y T E * d s t , int l . s r c , int * l _ d s t , int p t , in t i d) ;
6 / / t r a n s c o d e s codec t o raw PCM
7 vo id t o _ r a w (B Y T E * s r c , B Y T E * r a w , int l e n . s r c , int * l e n _ d s t , int i d) ;
8 / / t r a n s c o d e s raw PCM t o codec
9 vo id f r o m _ r a w (B Y T E * r a w , B Y T E * d s t , int l e n . s r c , int * l e n _ d s t , int i d) ;

The plugin must define a l l of the mentioned interface values and functions. To ensure
proper implementation, each codec plugin includes header file transcode_plugin.h.

5.3 Management Tool

A s it is quite difficult to monitor processing and rel iabil i ty of V o I P sessions the part of
implementation includes management tool for basic management of telephone devices in
the network and visual izat ion of ongoing sessions and their states. For the development of
such tool was decided R u b y on Rai l s framework as it offers many of the requested qualities,
such as Fast and agile development, simple deployment, abi l i ty of integration into any
current solution.

Model-view-controller design also allows to interchange any of the application modules
without necessity of modifying the remaining modules. For the communicat ion between
SIP gateway was designed simple protocol transferred through WebSocket containing only
two parts - header and body.

• header - required for every message, contains classification of one of the 6 types of
messages.

• body - omit ted for group of system messages and optional for group of device mes­
sages, contains information about changed data i n C S V format.

The communicat ion between al l participants is asynchronous and str ict ly stateless. Mes­
sage types are grouped into two categories.

• Device Messages

— update - information for the main view about update of client, sent only from
gateway to the tool .

— edit - information about the device information change, can be sent both ways.

— create - create of the new device.

— remove - deletion of the part icular device.

• System Messages

— inform - exchange of the connection information between gateway and manage­
ment tool .

— error - the error handling of gateway and management tool .

38

A s WebSocket communicat ion is s tr ict ly slower than T C P and U D P socket communica­
t ion, it is required to filter the information update only to essential level. B o t h SIP and L C P
protocol may generate large amount of messages considering the number of users registered
which w i l l result i n blocking the management tool . Th is message filter is implemented on
both the SIP gateway side, where it sends only the information updat ing client or server
relevant states, and management tool side, where it filters out the information irrelevant to
the current view.

ManagementProtocol DEFINITIONS ::= BEGIN
Message ::= SEQUENCE {

header ENUMERATED{inform, error, update, edit, create, remove},
body BodyType OPTIONAL

}

BodyType ::= SEQUENCE{
[[attr]] SeparatedAttribute OPTIONAL,
last A t t r Attribute

}

SeparatedAttribute ::= SEQUENCE {
attr Attribute,
separator (,)

}

Attribute ::= SEQUENCE {
de f i n i t i o n IA5String
separator (:)
value IA5String

}

END

Figure 5.1: Defini t ion of the message management tool and SIP gateway exchanges for
communicat ion in A S N . l notation.

39

Chapter 6

Results

One of the major delays caused on gateway during indirect calls is due to encryption and
transcoding. Since the core of this thesis was parallel ization of S R T P encryption, the tests
and measurements focus on gathering relevant information regarding especially the correct
usage of S R T P on the gateway. Even though A E S was designed to be fast algori thm, while
executed on large amount of flowing data it can cause measurable overhead.

For the purposes of this chapter there was designed load-test w i th following attributes:

• each test fulfilled these properties:

— 300 subscribers executing the calls

— 50 to 150 concurrent calls i n the same time[]

— B H C A 2000 1

• each cal l from the tests mentioned above:

— lasted 20 seconds

— used G.711-a or G.711-/X codec

— needed encryption of S R T P

The tests were executed on the machine running 32-bit O p e n S U S E 12.2 w i t h similar
hardware as HiPath4000 softgate is equipped. D u r i n g the tests, only SIP gateway wi th
S R T P stack were running on the separate machine from the vir tual ized telephone clients.
The following list summarizes the softgate properties and used software products for com­
pilat ion of S R T P stack.

• processor intel i5 2500k wi th HD3000 graphics chip

• 8 G B R A M

• O p e n C L 1.2

• gcc 4.7

The commercial gateway wi th opt imized hardware and software can hold around 120
concurrent calls[9], therefore, the tests d id not a im for much higher numbers and the analysis
of the results focus around the known max ima l number.

1 B H C A - busy hour call attempts

40

The testing environment differed from the type of executed test. For the encryption
comparison i n 6.1 was used only standard softgate hadware and implementat ion of simple
benchmark cal l ing the packet encryption, the results were averaged and are presented in
table 6.1.

For the measurement of round-trip t ime delay i n 6.2, the emulat ion of actual L C P
phones was modified and used to measure the delay of each part icular packet. A s previously
mentioned, due to computat ional demands of vi r tual ized clients, the softgate was devoted
to the SIP gateway and S R T P stack only and clients were emulated on different computer.

A n d finally the real life test was executed i n Siemens laboratories i n Brno . The testing
scheme consisted of one real SIP telephone, one prototype of L C P phone, SIP gateway and
HighPath4000 SIP registrar. Effort of this test wasn't any t ime or quali ty measurements,
but determination of integration capabilities. The last test was successful.

6.1 Packet Encryption

The most accurate results can be reached by measuring directly i n the code for packet
encryption on the gateway. A l so this approach offers the easiest way for comparison wi th
well-known implementations to increase credibi l i ty of the improvement of the reference
implementations dis tr ibuted wi th this thesis.

A E S

For the comparison of effectiveness of the A E S implementation, in table 6.1 are given
t ime requirements for execution of mult iple blocks encrypted by 128-bit A E S wi th the
implementation proposed i n this thesis and reference implementations M 5 t 2 and O p e n S S L 3 .
The values i n table 6.1 were obtained through simple benchmark passing the array of
bytes representing network packet pay load for encrypt ion/decrypt ion and averaged through
mult iple measurements.

Implementation 1 block 5 blocks 10 blocks 15 blocks 20 blocks
M 5 t 26 [is 32 (IS 46 (IS 69 (IS 82 [IS

Serial 16 [is 28 (IS 48 (IS 66 (IS 86 [IS

Persistent thread 44 / J S 45 (IS 44 (IS 44 (IS 45 [IS

Massive Para l le l 55 /is 55 (IS 54 (IS 55 (IS 62 [IS

O p e n S S L 9 [is 16 [IS 33 [IS 47 [IS 63 [IS

Table 6.1: Compar ison of selected A E S implementations.

The serial implementat ion of 128-bit A E S is presumptively similar in execution speed
as the M 5 t A E S implementation, which is the reference value for measuring the degree of
improvement. Therefore, later provided results of round-tr ip t ime delay can be assumed
as relevant for the evaluation the to ta l contr ibution. Higher execution t ime for the M 5 t
implementation could be par t ia l ly due to negative influence of not using the M 5 t framework
in the S R T P stack implementation, therefore, conversion between structures and data types
used might hindered the performance.

2 M5t framework includes AES implementation currently used in many Siemens devices[l].
3 OpenSSL is open-source implementation of SSL and TLS protocols including cryptographic

functions [2 8].

41

6.2 Round-trip Time Delay

The total delay is combination of many factors and even though information about measured
t ime of packet encryption on the gateway is exact, it doesn't provide the most important
information about how affected the session is overall and what is the delay on endpoints.
The same test was executed once more but measurements were collected on modified v i r tua l
clients.

Graphs 6.1 and 6.2 include packet delay during concurrent calls. Every captured S R T P
packet has been entered into results. Single column shows the dis t r ibut ion of delays during
the part icular number of concurrent calls where the thicker area of the column visualizes 90%
of the packets. The remaining 10% were considered as abnormal and thanks to satisfying the
common l imitat ions of real-time communications[31], the exceeding 5% can be neglected.

100

80

60 >
CD

-a
0> 40

20 I I
50 60 70 80 90 100 110 120

Number of concurrent calls
130 140 150

Figure 6.1: Visua l iza t ion of dis t r ibut ion of delays during S R T P sessions wi th serial encryp­
t ion implementation.

100

80 -

> 60
to
CD
T3
CJ 40

_ ^
u ro
Q_

20

• • • |
80 90 100 110 120

Number of concurrent calls
130 140 150

Figure 6.2: Visua l iza t ion of dis t r ibut ion of delays during S R T P sessions wi th parallel en­
crypt ion implementation.

42

Predic tably the average delay of the packet increases wi th the amount of concurrent
calls i n figure 6.1 for serial implementat ion. The t ime for 150 concurrent calls was not
included due its excessive values which would make readabili ty of the graph more difficult.
Even though the increase of delay seems to be linear, higher number of concurrent calls
shows that the increase is exponential, which can be visible on the figure 6.2 for persistent
thread implementation.

Less predictable increase is visible i n persistent thread implementation. Inconsistent ex­
treme values of delays may be produced by host and device synchronization. A l so memory
management for packet buffer pool and O p e n C L buffer pool are two separate implemen­
tations, slowdown i n one pool may have negative effect on the other, therefore, both may
combine i n a negative way.

Compar ing persistent thread implementat ion and serial implementation, the average
delay was dropped to one half for smaller amount of concurrent calls (50-90) and the best
results of speed-up was achieved i n 140 concurrent calls where the average delay was dropped
to one th i rd .

c
3
O

U
-w
CD
U
(C

140

120

100

30
Delay [ms]

Figure 6.3: Compar ison of dis t r ibut ion of delays during S R T P sessions serial w i th parallel
encryption implementation.

The figure 6.3 centralizes on the most interesting results from previous tests which is
the delay for 120 concurrent calls. The detailed dis t r ibut ion of packet delays shows, that
parallel implementation, visualized i n blue color, has the peak situated around 12 ms when
the serial implementation, visualized i n purple color, has the most packet delays situated
around 27 ms.

43

Chapter 7

Conclusion

There are lot of possibilities for opt imizat ion of S R T P processing. Selected approach focuses
on methods of parallel ization of encryption and decryption processes of default 128-bit A E S
cipher i n counter mode, which offers large potential thanks to recent development i n the
field of parallel computat ional units.

Since the current development of processing units begins to be l imi ted by physical
attributes of used materials, the focus drifts more on the design of such units. Instruction
and thread level paral lel ism brings new possibilities of improvement showing that software
design should take parallel paradigm under consideration. Not only i n u t i l iza t ion of G P U
for general purpose computations but also modern C P U have multi-core design or hybr id
design consisting of addi t ional computing units such as G P U chip or F P G A .

Proposed architectures and designs are currently far from being complete. The most
effort was invested i n correct analysis and understanding of principles of further imple­
mented algorithms and knowledge of parallel programming paradigm focused on usage of
O p e n C L framework for general-purpose computations on graphical processing unit . M o d ­
ern G P U concentrate large amount of computat ional power, which could be to a certain
extent ut i l ized, if the algori thm is correctly mapped for parallel execution. Tha t brings
unusual complications in design whose must be carefully considered.

Contr ibut ion

After understanding the l imitat ions in common kernel design and kernel execution for many
separate packets, such as lack of resources, there was effort for examination of alternative
kernel design named persistent thread. Trading off por t ion of parallel ization for higher
level of control over kernel execution and l imi t ing O p e n C L computat ional overhead ratio
proven itself as val id approach especially for S R T P packets w i th larger payload. Processing
t ime for single G.711 packet can be reduced to half compared wi th serial implementation.
Measuring round-trip t ime during mult iple sessions the improvement was successful to the
greater degree lowering the delay to one th i rd for max ima l number of concurrent channels
which is set to the gateway as 120.

A t first, comparison of implemented algorithms effectiveness was measured on a simple
designed benchmark, where experimentally gained results endorsed the theoretical ideas
supporting the development. Even though these results produced exact comparison, it
was necessary to produce measurements on deployed machine experiencing real traffic to
confirm the design thoughts.

A s the processing and routing of mul t imedia sessions represent only fraction of overall

44

workload, for gateways that are required to encode a high number of channels, the O p e n C L
implementation of media server can be used as self-contained units and s t i l l save processor
load for another tasks.

Next Steps

Another important milestone is definition of integration of R T P stack w i t h S R T P processing
into implemented SIP gateway and their mutual interaction. For the further development
number of issues must be taken into notice. For instance the delay generated by the
processing of separate S R T P packets should be reliably masked and interpolated across
the S R T P stream to reduce possible j i t ter . O n the other hand stands the actual delay
of incoming packet, since after certain absolute value the conversation quali ty becomes
unbearable.

Nevertheless, par t ia l value of this thesis lies in the understanding of current technologies
for future potential direction of development and exploration of new options in the field
communicat ion infrastructure. In particular, closely related topic to real-time mul t imedia
sessions is transcoding. Unif icat ion of both problems and finding solution in u t i l iz ing alter­
native compute units to C P U may improve overall responsiveness of the gateway and ensure
smaller variabi l i ty in service quali ty without depending on the current load the gateway is
experiencing.

45

Bibliography

[1] A M D Accelerated Processing Uni ts [online].
h t t p : / / w w w . a m d . c o m / u s / p r o d u c t s / t e c h n o l o g i e s / a p u / P a g e s / a p u . a s p x .
Publ ished 2011-6-8, accessed 2012-12-28.

[2] A M D and Leading Software Vendors Continue to E x p a n d Offerings Opt imized for
O p e n C L Standard [online]. h t t p : / / w w w . a m d . c o m / u s / p r e s s - r e l e a s e s / P a g e s /
o f f e r i n g s - o p t i m i z e d - f o r - o p e n c l - 2 0 1 1 j u n 0 8 . aspx. Publ ished 2011-6-8, accessed
2012- 12-28.

[3] Intel H D Graphics [online], w w w . i n t e l . c o m / c o n t e n t / w w w / u s / e n /
a r c h i t e c t u r e - a n d - t e c h n o l o g y / h d - g r a p h i c s / h d - g r a p h i c s - d e v e l o p e r . h t m l .
Accessed 2012-12-28.

[4] M 5 T Framework [online], h t tp : / /www.med ia5corp . com/m5t - f r amework . Accessed
2013- 5-7.

[5] N V I D I A O p e n C L S D K Code Samples [online].
h t t p : / / m l s o . h a o . u c a r . e d u / h a o / a c o s / s w / c u d a - s d k / O p e n C L / S a m p l e s . h t m l .
Publ ished 2012-10-1, accessed 2012-12-28.

[6] Project Denver [online], h t t p : / / b l o g s . n v i d i a . c o m / 2 0 1 1 / 0 1 /
p r o j e c t - d e n v e r - p r o c e s s o r - t o - u s h e r - i n - n e w - e r a - o f - c o m p u t i n g / . Publ ished
2011-1-5, accessed 2012-12-28.

[7] P ro toco l Stack Design Pa t te rn [online], h t t p : / / w w w . e v e n t h e l i x . c o m /
r e a l t i m e m a n t r a / P a t t e r n C a t a l o g / p r o t o c o l _ s t a c k . h t m # . U Y F R q b X Q p - p . Accessed
2013-5-1.

[8] Securing Internet Telephony M e d i a w i th S R T P and S D P [online].
w w w . c i s c o . c o m / w e b / a b o u t / s e c u r i t y / i n t e l l i g e n c e / s e c u r i n g - v o i p . h t m l .
Accessed 2012-1-2.

[9] Siemens H i p a t h 4000 [online]. h t t p : / / w w w . a t h l s o l u t i o n s . c o m / w e b / e n / P r o d u c t s /
t a b i d / 1 2 8 / P r o d I D / 3 8 / H i p a t h _ 4 0 0 0 . a s p x . Accessed 2013-3-3.

[10] Voice Over IP - Per C a l l B a n d w i d t h Consumpt ion [online], h t t p : / / w w w . c i s c o . c o m /
e n / U S / t e c h / t k 6 5 2 / t k 6 9 8 / t e c h n o l o g i e s _ t e c h _ n o t e 0 9 1 8 6 a 0 0 8 0 0 9 4 a e 2 . s h t m l .
Publ ished 2006-2-2, accessed 2013-1-7.

[11] Specification for the Advanced Enc ryp t ion Standard (A E S) . Federal Information
Processing Standards Pub l ica t ion 197, 2001.

46

http://www.amd.com/us/products/technologies/apu/Pages/apu.aspx
http://www.amd.com/us/press-releases/Pages/
http://www.intel.com/content/www/us/en/
http://www.media5corp.com/m5t-framework
http://mlso.hao.ucar.edu/hao/acos/sw/cuda-sdk/OpenCL/Samples.html
http://blogs.nvidia.com/2011/01/
http://www.eventhelix.com/
http://www.cisco.com/web/about/security/intelligence/securing-voip.html
http://www.athlsolutions.com/web/en/Products/
http://www.cisco.com/

[12] T . Adomkusv and E . Ka lva i t i s . Investigation of V o I P Qual i ty of Service using S R T P
Pro tocol , pages 195-209, 2008.

[13] A . L . Alexander , A . L . Wijesinha, and R . Karne . A n evaluation of secure real-time
transport protocol (srtp) performance for voip. In Network and System Security,
2009. NSS '09. Third International Conference on, pages 95 -101, oct. 2009.

[14] F . Andreasen, M . Baugher, and D . W i n g . Session Descr ipt ion Pro toco l (S D P)
Security Descriptions for M e d i a Streams. (R F C 4568), 2006.

[15] M . Baugher, D . M c G r e w , M . Naslund, E . Carrara , and K . Nor rman . The Secure
Real- t ime Transport P ro toco l (S R T P) . (R F C 3711), 2004.

[16] C . E . Shannon. Communica t ion Theory of Secrecy Systems, vol.28-4:656 - 715, 1949.

[17] M . Daga, A . M . A j i , and W u chun Feng. O n the Efficacy of a Fused C P U + G P U
Processor (or A P U) for Para l le l Comput ing . In Application Accelerators in
High-Performance Computing (SAAHPC), 2011 Symposium on, pages 141 -149, J u l y
2011.

[18] J . Dar l ington, M . Ghanem, and H . W . To. Structured Para l le l Programming. In In
Programming Models for Massively Parallel Computers, pages 160-169. I E E E
Computer Society Press, 1993.

[19] M . Dwork in . Recommendat ion for Block Cipher Modes of Operat ion. Federal
Information Processing Standards Pub l ica t ion 800-38A, 2001.

[20] M . J . F l y n n . Some computer organizations and their effectiveness. IEEE Trans.
Comput., 21(9):948-960, September 1972.

[21] E r i c h G a m m a , R ichard He lm, R a l p h Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Longman Publ i sh ing
Co . , Inc., Boston, M A , U S A , 1995.

[22] Ksh i t i j Gup ta , Jeff A . Stuart , and John D . Owens. A study of persistent threads
style gpu programming for gpgpu workloads. In Innovative Parallel Computing,
page 14, M a y 2012.

[23] P . Handley, V . Jacobson, and C . Perkins. S D P : Session Descript ion Pro tocol . (R F C
4566), 2006.

[24] Owen Harr ison and John Waldron . P rac t i ca l symmetric key cryptography on modern
graphics hardware. In Proceedings of the 17th conference on Security symposium,
SS'08, pages 195-209, Berkeley, C A , U S A , 2008. U S E N I X Associat ion.

[25] S. K u m a r , C . Paar , J . Pe lz l , G . Pfeiffer, and M . Schimmler. Breaking ciphers w i t h
copacobana - a cost-optimized parallel code breaker. In Workshop on Cryptographic
Hardware and Embedded Systems - Ches 2006, Yokohama, pages 101-118. Springer
Verlag, 2006.

[26] A . Munsh i , B . R . Gaster, T . G . Mat t son , J . Fung, and D . Ginsburg . OpenCL
Programming Guide. O p e n G L Series. Prentice H a l l , 2011.

47

[27] P . O 'Doher ty and M . Ranganathan. J A I N SIP Tutor ia l - Serving the Developer
Communi ty . Technical report.

[28] O p e n S S L Project [online]. Publ ished 2006-08-09, Acessed 2013-5-12.

[29] J . D . Owens, M . Houston, D . Luebke, S. Green, J . E . Stone, and J . C . Ph i l l ips . G P U
Comput ing . Proceedings of the IEEE, 96(5):879-899, M a y 2008.

[30] J . D . Owens, D . Luebke, N . Govindara ju , M . Harr is , J . K r A z g e r , A . Lefohn, and
T . J . Purce l l . A Survey of General-Purpose Computa t ion on Graphics Hardware.
Computer Graphics Forum, 26(1):80-113, 2007.

[31] C . Perkins. RTP: Audio and Video for the Internet. Addison-Wesley, June 2003.

[32] J . Rosenberg, H . Schulzrinne, G . Camar i l lo , A . Johnston, J . Peterson, R . Sparks,
M . Handley, and E . Schooler. S IP : Session Ini t ia t ion Pro tocol . (R F C 3261), 2002.

[33] N . P . Tran, M . Lee, S. Hong, and S. J . Lee. Para l le l Execut ion of A E S - C T R
A l g o r i t h m Using Extended Block Size. In Computational Science and Engineering
(CSE), 2011 IEEE 14th International Conference on, pages 191 -198, August 2011.

[34] P . Z immermann, A . Johnston, and J . Cal las . Z R T P : M e d i a P a t h K e y Agreement for
Unicast Secure R T P . (R F C 6189), 2011.

18

Appendix A

A E S Properties

A l g o r i t h m 3 A E S decryption
Decipher(State, Key)
state <— AddRoundKey(State, Key[n])
state <— Shi ft Rows (state)
state <— SubBytes(state)

for i <— (n — 1..1) do
state <— AddRoundKey (state, Key[i])
state <— MixCo^t tmns(s ta te)
state <— Shi ft Rows (state)
state <— SubBytes(state)

end for

state <— AddRoundKey (state, Key[0])

return state

49

0 1 2 3 4 5 6 7 8 9 a b c d c f
00 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
10 ca 82 c9 7d fa 59 47 fO ad d4 a2 af 9c a4 72 cO
20 b7 fd 93 26 36 3f f7 cc 34 a5 c5 f l 71 d8 31 15
30 04 c7 23 c3 18 96 05 9a 07 12 80 c2 eb 27 b2 75
40 09 83 2c l a l b 6c 5 a aO 52 3b d6 b3 29 c3 2f 84
50 53 d l 00 cd 20 fc b l 5b 6a cb be 39 4a 4c 58 cf
60 dO ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
70 51 a3 40 8f 92 9d 38 f5 be b6 da 21 10 ff f3 d2
80 cd Oc 13 cc 5f 97 44 17 c4 a7 7c 3d 64 5d 19 73
90 60 81 4f dc 22 2a 90 88 46 cc b8 14 dc 5c Ob db
aO eO 32 3a Oa 49 06 24 5c c2 d3 ac 62 91 95 e4 79
bO e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ca 65 7a ac 08
cO ba 78 25 2c l c a6 b4 c6 c8 dd 74 If 4b bd 8b 8a
dO 70 3c b5 66 48 03 f6 Oc 61 35 57 b9 86 c l I d 9e
eO e l f8 98 11 69 d9 8c 94 9b le 87 c9 cc 55 28 df
fO 8c a l 89 Od bf e6 42 68 41 99 2d Of bO 54 bb 16

Table A . l : S-box for SubBytes transformation i n hexadecimal notation.

0 1 2 3 4 5 6 7 8 9 a b c d e f
00 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
10 ca 82 c9 7d fa 59 47 fO ad d4 a2 af 9c a4 72 cO
20 b7 fd 93 26 36 3f 17 cc 34 a5 c5 f l 71 d8 31 15
30 04 c7 23 c3 18 96 05 9a 07 12 80 c2 eb 27 b2 75
40 09 83 2c l a l b 6c 5 a aO 52 3b d6 b3 29 c3 2f 84
50 53 d l 00 cd 20 fc b l 5b 6a cb be 39 4a 4c 58 cf
60 dO ef aa lb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
70 51 a3 40 8f 92 9d 38 f5 be b6 da 21 10 ff f3 d2
80 cd Oc 13 cc 5f 97 44 17 c4 a7 7c 3d 64 5d 19 73
90 60 81 4f dc 22 2a 90 88 46 cc b8 14 dc 5c Ob db
aO eO 32 3a Oa 49 06 24 5c c2 d3 ac 62 91 95 e4 79
bO e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ca 65 7a ac 08
cO ba 78 25 2c l c a6 b4 c6 c8 dd 74 If 4b bd 8b 8a
dO 70 3c b5 66 48 03 f6 Oc 61 35 57 b9 86 c l I d 9e
eO e l f8 98 11 69 d9 8c 94 9b le 87 c9 cc 55 28 df
fO 8c a l 89 Od bf c6 42 68 41 99 2d Of bO 54 bb 16

Table A . 2 : Inverse S-box for SubBytes transformation i n hexadecimal notation.

50

Appendix B

Management Tool

Figure B . l : Management tool Screenshot.

51

