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Abstrakt 
Šifrování m u l t i m e d i á l n í c h d a t o v ý c h p ř e n o s ů v r e á l n é m čase je jednou z ú loh t e l ekomunikačn í 
infrastruktury pro dosažen í n e z b y t n é ú r o v n ě zabezpečen í . Rychlost p roveden í šifrovacího 
algori tmu m ů ž e h r á t kl íčovou rol i ve velikosti zpožděn í j edno t l i vých p a k e t ů a proto je tento 
úkol z a j í m a v ý m z hlediska op t ima l i začn ích metod. Tato p r á c e se zaměřu je na m o ž n o s t i 
paralelizace z p r a c o v á n í S R T P pro účely te lefonní ú s t ř e d n y s v y u ž i t í m O p e n C L frameworku 
a n á s l e d n o u a n a l ý z u p o t e n c i á l n í h o zlepšení . 

Abstract 
Encryp t ion of real-time mul t imedia data transfers is one of the tasks for telecommunication 
infrastructure in order to provide essential level of security. Execut ion t ime of ciphering 
algori thm could play fundamental role i n delay of the packets, therefore, it provides inter­
esting challenge in terms of opt imizat ion methods. This thesis focuses on parallel ization 
possibilities of processing S R T P for the purposes of private branch exchange w i t h the use 
of O p e n C L framework and analysis of potential improvement. 
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Chapter 1 

Introduction 

One of the essential metrics for measuring V o I P gateway's performance is the number and 
quali ty of simultaneous calls. It is affected mostly by the computat ional demands of used 
communicat ion protocols and number of registered users. W h i l e the count of registered 
users provides very l imi ted room for improvement by the nature of the problem itself, there 
could be wide variety of approaches i n implementing the protocol stacks. 

The communicat ion protocols for V o I P gateway can be divided into two groups. Sig-
nalization, which consists mostly of textual ly represented protocols, where the messages' 
occurrence is either periodical w i th quite smal l frequency, or based on the users init iat ive 
which is a stochastic event depending on the act ivi ty of the user. However, generally the re­
currence of both is rather similar . Comparab ly more resources during indirect simultaneous 
cal l sessions consumes processing the second group of protocols, transport of mul t imedia 
packets. Since security has recently grown to be necessary feature in V o I P communicat ion 
and the encryption and decryption processes are designed wi th the idea of opt imizat ion, it 
is pr imary scope of interest of this thesis. 

Development and results in the areas of parallel architectures shows that many proce­
dures could be dist inctively accelerated by executing the algori thm on the processing unit 
capable of parallel computations. Therefore, target of this thesis is implementat ion and 
analysis of parallel processing of encrypted real-time mul t imedia data transfer. 

Chapter 2 describes the structures and algorithms used i n Secure Real- t ime Transport 
Pro tocol . Increased attention is devoted to explanation of Advanced Enc ryp t ion Standard, 
which is default cipher used in S R T P , including brief theoretical background and analysis 
of S R T P and A E S . Because S R T P doesn't provide key exchange mechanism for symmetric 
A E S cipher, the chapter also includes description of selected protocol extensions for this 
task. 

Chapter 3 provides basic information about graphic processing unit and the usage of 
G P U for general purpose computations. Par t of the chapter is pr incipal explanation of 
O p e n C L framework and its elementary usage for the developer. A s the parallel processing 
is diverse and wide study, the area of parallel paradigm that could be associated to the 
further implementat ion of this thesis is mentioned wi th part icular interest and focus. 

Chapter 4 defines the term SIP gateway for the context of this thesis, discusses the design 
of such gateway and includes l is t ing of selected further implemented protocol stacks, their 
mutual interaction and possible improvement of processing the passing data. The highest 
amount of attention is devoted to the comparison of different approaches to design of S R T P 
stack and identification of main characteristics of native O p e n C L programming pattern in 
contrast to persistent thread model . The advantages of both parallel implementations over 
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serial code executed on the same hardware is mentioned as well . Short int roduct ion and 
description of used design patterns is included in order to provide better comprehensibili ty 
of the application schemes. 

Chapter 5 covers the reference implementat ion of the previous theoretical part of this 
thesis, used techniques and algorithms and reasoning behind their selection. Even though 
the focus of the thesis is pr imar i ly research of available contemporary methods there were 
many restrictions. The requirements of this chapter arise from currently used implementa­
t ion and hardware l imi ta t ion of the gateway. 

F ina l ly chapters 6 and 7 summarize the potential benefits of usage the G P G P U for 
the number of max ima l simultaneous calls and shows visualizat ion of achieved results in 
improvement and decrease of latency. Also these chapters discuss possible contr ibution to 
related topics, such as transcoding of media compressing codecs which parallel implemen­
tat ion may provide even higher level of improvement. 
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Chapter 2 

Secure Real-time Transport 
Protocol 

To achieve confidentiality and necessary security for real-time mul t imedia transmission over 
T C P / I P connection there has been invented S R T P [ ]. Except previously mentioned, it 
provides message authentication and replay protection for both R T P and R T C P traffic, 
however, the thesis is going to focus on the implementat ion and computat ion t ime of the 
security. The default cipher is A E S i n counter mode. 

2.1 Packet Structure 

S R T P packet can be described as R T P extension. It keeps the R T P fields of the packet 
such as: 

• Version (V) - two bit number which currently is equal to 2. 

• Padding (P) - boolean value whether the padding is set. 

• Extens ion (X) - i f this field is set, fixed header must be followed by exactly one 
extension header. 

• C S R C count ( C C ) - number of C S R C identifiers that follow the fixed header. 

• Marker (M) - interpretation defined by a profile. 

• Payload Type ( P T ) - identifies the type of payload 

• Sequence Number (SEQ) - increments by one for each R T P packet. 

• Timestamp (TS) - reflecting the exact moment the payload was sampled. 

• Synchronizat ion Source Identifier (SSRC) - identifier of R T P synchronization source 
wi th in the single R T P session. 

• Cont r ibu t ing Source Identifiers ( C S R C ) - list of 0 to 15 items identifying contr ibuting 
sources. 

The S R T P protocol defines that only payload is encrypted and also describes new fields 
in the R T P header. 
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• Master K e y Identifier ( M K I ) - unique identifier of the master key (previously signaled) 
to be used in session key derivation. 

• Authent ica t ion Tag - carries message authentication data. If both encryption and 
authentication are used, encryption should be applied first. 

The packet length is variable and depends on number of C S R C used and length of 
payload. The following scheme describes the packet w i th proport ional sizes of each field. 

0 1 2 3 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<+ 
IV=21PIX| CC |M| PT | sequence number | | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
I timestamp I | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
I synchronization source (SSRC) i d e n t i f i e r | | 
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ | 
I contributing source (CSRC) i d e n t i f i e r s | | 
I .... I I 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
I RTP extension (OPTIONAL) | | 

+>+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 
I | payload ... I I | | + + | 
I | I RTP padding | RTP pad count | | 

+ > + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + < + 
I " SRTP MKI (OPTIONAL) " | 
| + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + | 
I : authentication tag (RECOMMENDED) : | 
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 

I I 
+- Encrypted Portion* Authenticated Portion + 

Figure 2.1: S R T P packet structure. 

2.2 Cryptographic Context 

In order to implement S R T P stack in the application, it is necessary to preserve certain 
information about each encrypted session, which is called cryptographic context. It must 
consist of the following: 

• Rollover Counter - 32-bit unsigned number, records how many times has the R T P 
sequential number been reset to zero passed the value 65 535. 

• Highest Received S E Q - 16-bit unsigned number 

• Identifier of the Encryp t ion A l g o r i t h m - the cipher and its mode 
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• Replay Lis t - containing indexes of recently received and authenticated S R T P packets 

• M K I - i f the M K I is present i n current session, the length of the M K I field in octets, 
actual value of currently used M K I 

• Master Keys - enumeration of random and secret master keys and counter for each 
key of how many packets have been sent w i th that key. Single Master K e y identifies 
S R T P stream and corresponding S R T C P stream. 

• Session Keys - current key for encryption and authentication including stored their 
lengths i n n_e and n_a 

A n d for every master key, the cryptographic context may contain also random but 
possibly public Master Salt which w i l l be used i n key derivation. 

2.3 Master Key Exchange 

There are three most common protocols for key exchange in S R T P session between the end 
users - S D E S , M I K E Y , and Z R T P . They differ i n what protocol in V o I P communicat ion 
they extend, provided security guarantees and possible communicat ion overhead. 

Z R T P is a protocol extension of R T P for secure establishing session key using Diffie-
Hel lman key exchange improved for detection of man-in-the-middle attack, which is briefly 
described i n section 2.4. Another advantage of the improvement is that it doesn't require 
any prior shared secret nor public key infrastructure [34]. 

S D E S is protocol extension of SDP[23, 14] typical ly in SIP[ ] message. It is respon­
sibi l i ty of the SIP stack to protect the key as secured secret, which is possible v i a T L S 
connection for instance. 

M I K E Y defines the key exchange as part of S D P payload i n SIP message. The algo­
r i thm is basic Diffie-Hellman which requires either prior shared secret or P K I 1 . The SIP 
stack doesn't have to protect the transferred information any further. 

2.4 Protocol Summary 

M a i n concerns about the use of S R T P are whether the increase of computat ional complexity 
and packet size don't make R T P hardly usable and what degree of security does it provide. 

Computat ional Overhead 

In V o I P communicat ion the t ime has essential impact on the quali ty of t ransmit ted infor­
mation, therefore it is important that ensuring the security of R T P wouldn' t increase the 
latency over the acceptable level. A m o n g common l imitat ions of real-time communications 
belong[31]: 

• M a x i m a l tolerable latency round-trip t ime 300ms. 

• Smaller packet loss than 5%. 

• Sensit ivity to factors that are difficult to objectively measure such as j i t ter. 

1 Public Key Infrastructure for digital certificates 
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It has been proven that increase in size of the packet S R T P is insignificant compared 
to the RTP[12 , 13]. Average throughput of secured V o I P is usually around 2% more than 
unsecured VoIP . 

Security 

V o I P suffers from many similar security threats as other standard internet services. 
Man in the middle i n computer security is form of active eavesdropping. The attacker 

creates connections to both endpoints of the session which allows h i m to monitor, record or 
modify the packets i n communicat ion making the endpoints believe that the conversation 
is secured. Protect ion against such attack could be achieved by key negotiating protocol 
ZRTP which is able to detect this activity[31]. 

Denial of service is considered an attempt to make target machine unavailable to to 
its intended users. T y p i c a l method of this attack is to saturate the target machine wi th 
excessive requests that could lead to overloading the machine. Replay protection mechanism 
of S R T P w i t h replay lists and authentication headers provide sufficient protection against 
DoS attack[15, 8]. 

2.5 A E S 

This section treats necessary theoretical background of Advanced Enc ryp t ion Standard, 
which is the default cipher, and as the text has been wri t ten the only cipher, of Secure 
Real-t ime Transport P ro toco l used in V o I P communicat ion. 

Advanced Encryption Standard is symmetric block cipher which means it uses the same 
key for both encryption and decryption and encodes the input i n uniform sized blocks. The 
algori thm was developed to supersede Data Encryption Standard due to various security 
reasons 2 i n electronic data transmission. 

For this purpose Nat iona l Institute of Standards and Technology (NIST) announced 
public competi t ion for new encryption standard i n 1997 and considering mult iple require­
ments the Rijndael3 was selected as the most suitable algori thm for the t a sk f l l ] . 

2.5.1 M a t h e m a t i c a l P r e l i m i n a r i e s 

A l l the bytes i n A E S are interpreted as 8-bit values in finite field 2 8 . For better readabil i ty 
the values are printed using hexadecimal notat ion. Fol lowing mathematical therms and 
operations are used i n A E S algorithm: 

Galois field 

In algebra Galois field is finite field w i th finite number of elements. C o m m o n notat ion is 
GF(pk) where p is prime number and k is positive natural number. Therefore it is possible 
to classify the Galois fields by their size, because only single GF(pk) exists for each p and 
k. Characteristics of the field is equal to the p. 

2 For instance COPACOBANA is F P G A based machine that could find an exhaustive key for DES in 
no longer than a week[25]. 

3 Rijndael was original name of the AES as abbreviation of authors' names - Joan Daemen and Vincent 
Rijmen. 
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Each byte is in fact a polynomia l w i th degree equal to 7 wi th coefficients bi 0 or 1 and 
this notat ion b^x7 + b$x6

 + 6 5 X 5 + 6 4 X 4 + 6 3 X 3 + b2x2 + bix1
 + 6 0 • The decimal number 95 

could be represented as: 

• 5.F i n hexadecimal 

• 0101 1111 in binary as a byte 

• x 6 + x 4 + x 3 + x2 + x1 + 1 as polynomia l w i th degree equal to 7 

A d d i t i o n 

A d d i t i o n is defined as addit ion of coefficients of both polynomials modulo 2. This operation 
has the same result as bitwise X O R and because each value is its own inversion, addi t ion 
and subtraction are equal operations. 

Mult ip l icat ion 

Mul t ip l i ca t ion is defined as mul t ip l ica t ion of both polynomials modulo irreducible polyno­
mia l of degree eight. For A E S the irreducible polynomia l is defined as 

m(x) = xs+ x4+ x3+ x + l (2.1) 

Mult ip l icat ion by x 

Mul t ip l i ca t ion of binary polynomia l by polynomia l x results i n polynomia l of higher de­
gree therefore the result must be reduced modulo m(x). Fol lowing equation is the binary 
polynomial mul t ip l ied by polynomia l x. 

b7x8 + b6x7 + 6 5 x 6 + 6 4 x 5 + 6 3 x 4 + b2x3 + b\x2 + b0x (2.2) 

If 6 7 = 1 the result must be X O R e d w i t h the polynomia l m{x). This operation can be 
accomplished as bitwise left shift and X O R wi th IB. 

2.5.2 A l g o r i t h m D e s c r i p t i o n 

The A E S is block cipher, therefore both encryption and decryption processes are performed 
on a matr ix of 4x4 bytes called state. Even though state has fixed block size 128-bit, 
supported key sizes are 128-bit, 196-bit and 256-bit. 

Encryp t ion process as described in pseudocode 1 has 4 operations performed on each 
state of the data in specific number of cycles which varies from key length. 

• 10 cycles for 128-bit key 

• 12 cycles for 196-bit key 

• 14 cycles for 256-bit key 
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A l g o r i t h m 1 A E S encryption 
Cipher(State, Key) 
state <— AddRoundKey(State, Key[0]) 

for i <— ( l . . n — 1) do 
state <— SubBytes(state) 
state <— Shi ft Rows (state) 
state <— MixCo^t tmns(s ta te ) 
state <— AddRoundKey (state, Key[i]) 

end for 

state <— SubBytes(state) 
state <— Shi ft Rows (state) 
state <— AddRoundKey (state, Key[n]) 

return state 

K e y Expansion 

R o u n d keys are derived from cipher key through process called A:ey expansion. For the 
ciphering and deciphering purposes, the round keys could be thought as array of 4x4 8-bit 
values, which length is 10, 12 or 14 according to the used key size. The first mat r ix is copy 
of first 128 bits of cipher key. The following round keys are always calculated from the 
previous key and rcon array as explained i n the algori thm 2. 

A l g o r i t h m 2 K e y Expans ion 
E x p a n d R o u n d K e y ( K e y , size) 
rk[0] <- Key[0] 

for i <— (L.size) do 
k.col(O) <— K e y [ i — l] .col(3).rotate(l) .map(sbox © K e y [ i — l].col(0)) © rcon 
for j <- (1..3) do 

k.col(j') <- Key[z-l] .col( j ) © k.col( j - 1) 
end for 
rk[i] —̂ k 

end for 

return rk 

Cipher ing Process 

AddRoundKey is X O R operation on the state w i th specific round key. R o u n d key is extracted 
from the cipher key in ExpandRoundKey. Since this operation uses X O R , it is its own inverse 
form as well. 
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«oo «01 «02 «03 
«10 «11 «12 «13 
«20 S21 «22 «23 
«30 «31 «32 «33 

kpp fcoi k02 k03 

hi ku ki3 kw 

k22 k23 k2p k2i 
k33 k30 k3i k32 

aoo aoi (102 ao3 
an (112 (113 aw 
(122 (123 (120 (121 
a33 d30 (131 (132 

Table 2.1: A d d R o u n d K e y on state s w i th key k where = Sij © kij. 

ShiftRows is performed on each row of the state matr ix . The first row is not shifted, 
second row is shifted by one byte to the left, t h i rd row is shifted by two bytes to the left 
and fourth row is shifted by three bytes to the left. Inverted ShiftRows for decryption is 
s imply reversion. 

o-oo a o i 002 ao3 o-oo aoi ao2 ao3 

aw a n ai2 ai3 (111 ai2 ai3 a i o 

O20 021 <322 <323 
? 

a22 a23 O20 021 

O30 031 a32 033 (133 a30 031 <332 

Table 2.2: State on the right is the first state after ShiftRows is performed. 

MixColumns together wi th ShiftRows provides diffusion in the A E S algori thm. Dur ing this 
operation each column of the state is mul t ip l ied i n Galois field 2 8 by mat r ix 2.3. 

(2 3 1 1 \ 
1 2 3 1 
1 1 2 3 

\ 3 1 1 2 / 

(2.3) 

A s a result of this mul t ipl icat ion, each column [soc, sic, S2C, «3c] is replaced by the column 
[aoc, aic, a2c, a3c] which could be calculated: 

aoc = 2 • s0c © 3 • s3c © «2c i Q sic 
aic = Sic © 2 • s0c © 3 - s 3 c i & «2c 
a2c = «2c © Sic © 2 • s0c 6 B 3 • s 3 c 

a3c = 3 • s3c © 2 • s2c © sic e & SOc 

(2.4) 

SubBytes is non-linear transformation of the input state. E a c h byte in the state mat r ix is 
replaced wi th byte from substi tut ion array of 256 8-bit values called S-box. The S-box A 
for encryption is generated by determining the mult ipl icat ive inverse for a given number in 
GF(2S) Rijndael 's finite field and then affine transformation. The S-box A for decryption 
uses the same matr ix but has first applied addine transformation and then the mult ipl icat ive 
inverse. For implementat ion purposes both S-boxes are precomputed. 
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" yo ' " 1 0 0 0 1 1 1 1 " " XQ ' " 1 " 

yi 1 1 0 0 0 1 1 1 Xl 1 

2/2 1 1 1 0 0 0 1 1 X2 0 

2/3 1 1 1 1 0 0 0 1 0 

2/4 1 1 1 1 1 0 0 0 £4 0 

2/5 0 1 1 1 1 1 0 0 1 

2/6 0 0 1 1 1 1 1 0 X6 1 

. 2/7 . . 0 0 0 1 1 1 1 1 _ . X7 . . 0 . 

(2.5) 

In this transformation [XQ, . . ,£7] is the mult ipl icat ive inverse as vector, and ® is X O R 
operation. 

2.5.3 B l o c k C i p h e r M o d e s 

Dur ing encryption the same key is applied repeatedly on the uniform length blocks of data 
to whose the message is separated into. Large amount of ciphered data w i th the same 
encryption key might present security threat unless the ciphering algori thm provides form 
of randomizat ion the output value. Such procedure might be achieved by addi t ional input 
value. 

There are many variations on block cipher to provide this confidentiality [19], for A E S al­
gori thm the most often used are counter mode and f8-mode. B o t h algorithms keep standard 
high level of confusion of the A E S algori thm and provides necessary diffusion' 1. 

B o t h algorithms share some similar terminology and acronyms: 

• IV - in i t i a l value used for encrypting the first block 

• d - ciphertext block number i 

• Pi - plaintext block number i 

• EK - encryption function 

• DK ~ decryption function 

Counter M o d e 

The counter mode ( C T R ) turns A E S block algori thm into stream cipher w i th possibil i ty 
for parallel computations [ ]. It is possible to decrypt the cipher text even wi th loss of 
number of blocks because the encrypted blocks are not dependent on the previous blocks. 
Instead the addi t ional diffusion value are achieved by specific counter. 

Equat ion 2.6 describes computat ion of counter value, equation 2.7 describes ciphering 
the counter value, equation 2.8 is encryption process - X O R operation of plaintext w i th 
encrypted counter value which produces ciphered text and equation 2.9 is decryption pro­
cess. 

CTRi = (IV + mod 2B (2.6) 

Hi = EK(CTRi,key) (2.7) 

d = Pi® Hi (2.8) 

Pi = d®Hi (2.9) 

Confusion and diffusion are basic two properties of secure cipher introduced by Claude Shannon [ ] 
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The last block of the plaintext doesn't have to be padded 5 , it is common to use only the 
most significant bits of ciphered counter to be X O R e d wi th plaintext i n cipher algori thm 
(and i n similar way for deciphering). 

The f8-mode is a variant of commonly known Output Feedback Mode ( O F B ) wi th more 
elaborate in i t ia l iza t ion and feedback function [15, 19]. The first output block 0\ is computed 
from IV, then it is X O R e d wi th plaintext to produce the first ciphertext block. The output 
block from previous step O j - i is used to compute the current output block Oj which is 
always X O R e d wi th current plaintext i n encryption algori thm. 

The equation 2.10 describes the improved in i t ia l iz ing function where m is the mask. 
The equations 2.11 and 2.12 describes computat ion of value, which is used for ciphering 
algori thm to produce output values i n equation 2.13. Equa t ion 2.14 describes ciphering 
and equation 2.15 describes deciphering. 

F8 -mode 

IV' = EK(IV,key®m) 

h = IV' 

ij = Oj-!® iv' ® j 

Oj = EK(Ij,key) 

Cj = Pj © Oj 

Pj = Cj ® Oj 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

5 Padding can be used for the plaintext that is not aligned to the multiplies of the block. 
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Chapter 3 

General Purpose G P U 

This chapter describes the basic ideas and techniques behind G P U parallel programming 
model and architecture. Fol lowing text w i l l focus on possibilities of effective implemen­
tat ion for G P G P U and integrated G P U i n modern C P U using O p e n C L framework, brief 
description of selected principles and development of parallel applications. 

Paral le l machines have impressive performance to cost ratio compared to the common 
sequential machines[ I], but br ing well known problems for software development such as 
run-time resource allocation and resource sharing. M a p p i n g parallel program to mult ipro­
cessor machine is complex problem that needs to decide about task allocation, scheduling 
of processes, communicat ion patterns and much more. 

W h i l e current C P U s are powerful and sophisticated chips, their design must be focused 
on wide variety of tasks, therefore vast majori ty of resources might not be as fully ut i l ized as 
could have been. The G P U chips provide much better theoretical performance for certain 
tasks for smaller price[30]. Interest among developers has grown in using the power G P U s 
provide for other tasks than graphics pipeline. 

In order to achieve improvement in certain algori thm it is necessary to analyze the 
procedures and find possibilities for parallel ization and take under consideration that usage 
of addi t ional processing unit brings computat ional overhead. The characteristics of such 
application are[29]: 

• Ut i l i za t ion of data-parallelism - many non-graphical problems might be separated 
into fractional procedures and computed separately, such as mat r ix calculations indi­
v idual ly for each cell. 

• Large por t ion of computat ion - G P U processors are opt imized for computations over 
handling condit ional evaluations. 

• Throughput over Latency - computations on G P U are designed for large overall 
throughput of entire data rather than short response t ime of each ind iv idua l op­
eration. 

The current trend i n development shows that parallel computations either i n the form 
of G P U computations and A P U 1 are worth examinat ion and research. S I M D 2 has already 
proven it 's value on improving performance wi th parallel ization of various algorithms[5, 2]. 

1 Accelerated Processing Unit - in this context it means C P U with G P G P U chip. 
2 Single Instruction Multiple Data - multiple processing elements that perform the same operation on 

multiple data points simultaneously[20]. 

15 



A P U 

Usua l solutions w i th graphics card can have high power consumption. The modern trend 
and need of transportable forced development to reduce negative effects of G P U s while 
keeping as much of latest visual experience as possible[17, 24]. B o t h solutions uti l ize a 
port ion of computer's system R A M memory. 

A P U is Accelerated Processing Un i t that is designed to accelerate certain type of com­
putations outside of C P U in single chip. It could include G P U , F P G A or s imilar specialized 
processing unit . A m o n g the best known there are Intel H D Graphicsf ], A M D Fusion[1] 
and N V I D I A Project Denver[6]. 

3.1 OpenCL 

Development for parallel computat ion brought need for infrastructure. O p e n C L is an indus­
t ry standard framework for programming heterogeneous systems composed of a combination 
of C P U s , G P U s , D S P and other processing units[26]. W i t h O p e n C L it is possible to write a 
software that w i l l run on wide variety of platforms from cell phones or computers to massive 
supercomputers. 

The OpenCL programming language has syntax based on the language C wi th few addi­
tions and l imitat ions arising from the design and architecture of heterogeneous platforms. 
A m o n g most important l imitat ions it omits the use of recursion, function pointers and 
header files. O n the other hand, the language is extended to the use of parallel ism wi th 
bu i ld i n types and synchronization. Also it defines many functions and four new keywords 
as memory region qualifiers: __global, __local, ..constant and __private. 

For further reading of the text and better comprehensibility, there are listed necessary 
words from O p e n C L terminology[26]. 

• Context - contains one or more devices used for kernel execution and are used for 
managing command queues, memory and program. 

• Kerne l - function wri t ten in O p e n C L programming language that is executed on 
O p e n C L device. 

• Work- i t em - instance of executing kernel. 

• Work-group - organization of work-items. 

• Command-queue - interaction between the host and O p e n C L device through com­
mands posted by the host and provides synchronization methods for the execution of 
the commands. 

O p e n C L platform includes single host that communicates w i th the user and the O p e n C L 
program. The host is connected to one or more O p e n C L devices where the kernels are 
executed. Kernel could be considered as the entry point between host and G P U . In order to 
achieve parallelism, the device consists of many work-items whose execute mult iple instances 
of kernel at the same time. The work-items are organized i n integer indexed orthogonal 
grid where the unique index of a work-i tem is called global I D . The identification of work-
i tem is possible through combination of its local I D inside a specific work-group and the 
work-group global ID . 
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3.1.1 P l a t f o r m M o d e l 

The O p e n C L provides a high-level abstraction model representing any heterogeneous plat­
form. The host is a bridge between parallel computations on one or more devices and 
interaction wi th external environment. Device could be C P U , G P U , D S P or any other pro­
cessing unit support ing O p e n C L and consists of compute units which are further divided 
into processing elements. Processing element is abstraction of a work-i tem and compute 
unit is i n s imilar way representation of work-group. 

Compute Device 

Figure 3.1: O p e n C L platform model w i th one host and mult iple devices[26]. 

3.1.2 E x e c u t i o n M o d e l 

The O p e n C L software executes on two levels 

• Host code - the O p e n C L doesn't define any restrictions about the host part of the 
application, it defines only the interaction between host and devices. It consists of 
selection and ini t ia l izat ion of the context - selected platform and devices. 

• Device code - wri t ten i n O p e n C L programming language i n the form of short func­
tions, kernels, that usually transform an input array through series of processes into 
output array. It is compiled v ia O p e n C L compiler and executed on the device's work-
items. 

The host program takes care of synchronization and plans the execution of each kernel 
on the devices. Each instance of kernel runs i n separate work-i tem and the work-items 
wi th in each work-group execute concurrently. 

3.1.3 M e m o r y M o d e l 

O p e n C L defines two types of memory objects. The buffer object is versatile type that could 
be used for representation of any data type available in C or O p e n C L language. The image 
object is restricted to containing pictures only and is opt imized for the specific needs of 
image processing. 

O p e n C L uses a hierarchically structured memory. The types differ i n access t ime, 
availabil i ty and types of usage[26]: 
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• Private M e m o r y - each work-i tem has it 's own private memory which could be 
thought of as analogy to C P U ' s registers. It is the fastest type of memory used in 
O p e n C L . 

• Local M e m o r y - designed for sharing data between work-items who belong to the 
same work group. It is used to reduce the number of accesses to the global memory. 
L o c a l memory is slower than private memory but faster than global memory. The 
programmer is denied both direct access and control over local memory. The analogy 
could be the cache i n C P U . 

• Global M e m o r y - shared among a l l work-items i n the same context. 

• Host M e m o r y - memory visible only for the host, O p e n C L only defines how the 
host interacts w i th O p e n C L objects and constructs. 

There could be another type of memory i n graphic cards that O p e n C L doesn't define 

• P C I M e m o r y - type of memory that could be used by the program and G P U , part 
of host memory. It is slower than global memory. 
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Chapter 4 

Design 

The a im of the implementat ion is to determine whether the parallel processing of S R T P 
could improve the l imitat ions on modern V o I P softgates. The development of sophisti­
cated softgate requires elaborate engineering and implementation of various communica­
t ion protocols that would overshadow the effort i n parallel processing. Therefore, only 
narrow selection of well know communicat ion protocols has been implemented. For V o I P 
telephony, registration and maintenance of users serves SIP protocol, for the media trans­
mission description and session description SDP protocol, and for secure media transport 
SRTP. There is also implementat ion of LCP s tack 1 . 

4.1 Design Patterns 

More complex the application is the higher level of considerate design it requires. There are 
plenty of already well tested design patterns from which the implementat ion could be based 
on and as the field of V o I P communicat ion has been known for decent amount of time, there 
are currently couple of advised design patterns, from which the part icular implementat ion 
for this thesis stands on three - mediator pattern, singleton pattern[21] and protocol stack 
pattern [ ]. None of these design patterns could be thought as contr ibut ion of the thesis as 
they a l l belong to common public knowledge and their examination was not the main topic 
of the research. However, their explanation is provided i n order to make the rest of the 
chapter more comprehensible. 

4.1.1 M e d i a t o r P a t t e r n 

In object oriented design the common problem may be the large number of classes and their 
mutual interaction. One of the possible solutions for the latter can be behavioral pattern 
called mediator, which is named after the way it alters the running behavior. The pattern 
consists of following participants: 

• Mediator - defines an interface for communicat ing wi th colleague objects 

• ConcreteMediator - implements cooperative behavior by coordinating colleague 
objects, it knows and maintains its colleagues 

1 Light-weight Control Protocol - communication protocol for Siemens prototype VoIP phone. 
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• ConcreteColleague - each colleague knows its mediator object and it communicates 
w i t h its mediator whenever it would have otherwise communicated w i t h another col­
league 

The mediator object communicates w i th mult iple colleague object through defined in­
terface, the interaction between colleague objects is s tr ict ly l imi ted. One of the issues 
of such design is that the data flow might be bottlenecked by the only option of mutual 
communicat ion is realized v ia single object. If there is a need for cr i t ica l section and their 
exclusion some of the colleagues may not get the chance as often as they would need slowing 
down the to ta l responsiveness. 

4.1.2 S ing le ton P a t t e r n 

Dur ing creation of the application architecture certain class may be required to provide 
global point of access to it while preserving only one instance. One approach could be to 
have global variable but that is not complete fulfillment of the requests, because multiple 
instances could s t i l l be created. Singleton design pattern offers a solution when the class 
itself is responsible for the number of instances which ensures that nowhere i n the code 
mult iple object of such class may be created. This doesn't affect the rest of the design, only 
one single class, therefore, it has only one participant: 

• Singleton - there must be exactly one instance of the class and class must prevent 
from instantiat ion of mult iple instances, it must be globally available from well known 
access point 

4.1.3 P r o t o c o l Stack P a t t e r n 

There are two design patterns closely related to the protocol stack design pattern which it 
uses as higher level of abstraction i n explaining the corresponding relations i n design. 

• Protocol Layer - provide a common interface for implementing different layers of 
communicat ion protocol stack. 

• Protocol Packet - unification and simplification of internal packet buffers and their 
access. 

This pattern's usage is concentrated but not l imi ted to dynamic exchange of protocol 
layers from the stack, their insertion and removal, thanks to separate view and decoupling 
of each implemented protocol and its layers. 

The participants of protocol stack pattern are: 

• Protocol Stack - contains and maintains list of used protocols. 

• Protocol Layer - provides interface and communicat ion point for each ind iv idua l 
layer. The certain layers are abstracted from the actual type of the upper layer and 
lower layer classes. 
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4.2 Model-view-controller 

The M V C belongs to the group of software architecture patterns which shall not be confused 
wi th O O P design patterns. It has more strict rules for design and implementat ion than 
pure design patterns and influences development to the higher degree. A l so it is not l imited 
to the object oriented programming paradigm even though i n this part icular case M V C is 
used wi th O O P . 

The M V C pattern defines both the participants and their mutua l interaction. 

• M o d e l - contains the information and inner implementat ion of the system, under­
stands and responds to requests from it 's associated view and controller and it may 
also inform them about changes of inner state and data. 

• V i e w - creates visual representation for the user of the information and data the 
model stores. 

• Controller - represents user actions associated wi th view and responds through 
interface commands to the model. 

4.3 SIP Gateway 

In order to create a session for V o I P communicat ion between two endpoints, there must 
be device that w i l l be able to create such connection and negotiate protocols for their 
interaction and data exchange. In telecommunications such device is called gateway. The 
essential function of gateway is protocol t ranslat ion to interconnect networks and devices 
using different protocol technologies. The SIP gateway used i n this thesis provides protocol 
conversion between subset of SIP protocol and full implementat ion of L C P protocol. 

Mul t ip l e SIP or L C P telephones are connected to the SIP gateway whose appear as users 
to the SIP registrar 2 . The SIP gateway in this scenario works as bridging point between the 
SIP telephones and SIP registrar, L C P phones and SIP registrar or L C P phones directly. 

The modules of SIP gateway are implemented using two different programming lan­
guages which made the interaction l i t t le more complicated. E a c h of the modules serve 
specified purpose and interacts w i th remaining modules either directly or through the gate­
way core. 

• Gateway core - provides communicat ion between each module and encapsulates 
basic functionality of a gateway, mutual translat ion of both protocols SIP to L C P 
and vice versa, the management of R T P stack and devices representation. 

• SIP Stack - includes network interface for communicat ion over SIP protocol w i t h 
registrar, representing L C P telephones as SIP clients. Encapsulates part of the SIP 
protocol w i th automated answers without put t ing unnecessary load on the gateway 
core. Remain ing communicat ion is provided through interface functions to either 
gateway core or directly to L C P stack. 

• L C P Stack - separate network interface for devices communicat ing v i a L C P protocol. 
Includes complete L C P stack and interface for management of the connected devices. 

2 Used registrars were Asterisk and Siemens HiPath 4000 
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SIP GATEWAY 

Figure 4.1: SIP gateway wi th two V o I P telephones accessible, L C P phone directly connected 
and SIP phone through SIP Registrar. 

• R T P Stack - for non-direct connections where the telephones couldn' t agree on 
communicat ion channel for the session, R T P stack provides necessary br idging point. 

Measurement of u t i l iza t ion of computat ional resources during execution of ciphering al­
gori thm does provide correct and exact results, however i n real deployment the effectiveness 
could be negatively affected by the other processes running on the softgate. SIP Gateway 
is a collection of programs and utili t ies whose together implement a server for lightweight 
L C P phones and supplement a SIP functionality for each phone to be able to connect to 
an actual SIP registrar. 

The core application should offer simple management v i a command line for both devel­
opment and tracing of the flowing communicat ion and basic functionality for communicat ion 
and session management. 

The core class of the gateway is Daemon, which controls the flow of data inside the 
application and provides interfaces to communicate w i th external applications. Dur ing the 
composit ion of gateway the mediator design pattern was used where the daemon is mediator 
and a l l directly communicat ing classes are colleagues. 

SIP Stack provides the interface to communicate w i th SIP Registrar. The single SIP 
Stack is shared for a l l users, impl ic i t ly runs on well known port for SIP communicat ion 
5060, which could be expl ici t ly changed i f necessary. 
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Figure 4.2: Archi tecture of L C P stack, design was inspired by the J A I N - S I P api[27]. 

LCP Stack visualized on the figure 4.2 was designed to reflect the elaborate design used 
in J A I N SIP[ 7]. W h i l e SIP is much richer protocol than L C P , the design of the stack was 
extremely shortened but the basic structure of elementary components and their interaction 
remained the same. L C P stack runs impl ic i t ly on the recommended port 4066, but as well 
as SIP stack port, the port could be variable if needed. E a c h S I P / L C P client is instance of 
Client class, and universal interface for remote communicat ion and administrat ion shall 
be provided as well . 

RTP Stack is devoted increased amount of attention i n design because it covers the 
focus of this thesis. A l l of the stacks are interchangeable and during their design were used 
recommendations from protocol stack design pattern and its related patterns. 

4.4 S R T P Stack 

The essential point of implementation improvement lies in design of S R T P stack as it has 
been mentioned i n previous text that it consumes majori ty of resources of the gateway 
during indirect media sessions. Proper implementat ion must not lack following properties: 

• encryption module - implementat ion of A E S - 1 2 8 b cipher as defined i n R F C -
3711 [15] in at least C R T mode that provides protection of transferred data w i th 
different keys for each endpoint i n a l l concurrent sessions. 

• input and output buffers - i n order to avoid exhaustive allocation and deallocation 
of structures for input and output packets, the data storage should be implemented 
as thread safe poo l of buffers w i th sufficient size and both, synchronization techniques 
and memory override protection. 
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Figure 4.3: Archi tecture of SIP Gateway wi th singleton design pattern. Consists of Daemon 
class, mult iple L C P phones connected v i a L C P stack and represented as instances of Client 
class and mult iple user interfaces for control over the gateway. 

• transcoding module - due to various reasons, endpoints may not be able of negoti­
ate the same media compressing codec. The S R T P stack should allow the transcoding 
and then encapsulate the process without unnecessary addi t ional demands for the 
gateway. 

• integration interface - most of the procedures implemented i n S R T P stack should 
be encapsulated to minimize overloading data transfers w i t h the gateway providing 
only essential and min ima l interface w i t h callback features to simplify and unify the 
integration process. 

A n advanced techniques like j i t ter buffer may improve overall quali ty of V o I P commu­
nication, however, each end device capable of such communicat ion must implement these 
techniques as well, therefore, it may render itself redundant and generating min imal , but 
s t i l l addit ional latency. 
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4.4.1 S R T P P r o c e s s i n g 

Advantage of usage A E S i n C T R mode is that it allows out-of-order processing. Because 
majori ty of R T P implementations are bu i ld on U D P transport layer, which is simple model 
w i th min ima l protocol mechanisms, neither order nor delivery of the packets are guaranteed 
in exchange for smaller average delay and smaller traffic. 

The exact size of payload in S R T P packet can differ widely according to the used codec, 
its bit rate, and sampling frequency. The selection of used voice codecs, their sampling 
periods and payload size are mentioned in table 4.1. 

Codec and B i t Rate Pay load Size Sampling Per iod Packets Per Second 
G.711 - 64 K b p s 160 bytes 20 ms 50 
G.722 - 64 K b p s 160 bytes 20 ms 50 
G.729 - 8 K b p s 20 bytes 20 ms 50 
G.726 - 32 K b p s 80 bytes 20 ms 50 
G.728 - 16 K b p s 60 bytes 30 ms 33 

Table 4.1: Selected codecs and payload informationflO]. 

F i x e d block size of A E S is 16 bytes, which means that one or more states could be 
mapped to the packet using any of the mentioned common codecs. Paral le l izat ion of the 
encryption process could be performed either on a single state, where value during every 
method of the A E S of each cell of the state is computed separately, therefore a work-i tem 
can be mapped on computing for each cell. Theoret ical common hardware should be capable 
of u t i l iz ing 16 work-items i n a single work-group which is the max ima l number of needed 
by this design. 

Another possible approach for codecs wi th larger payload size, such as G.711, could be 
to map mult iple states for the parallel execution of entire packet, which for the part icular 
codec would require significantly more computat ional units. 

The S R T P processing scheme from figure 4.4 visualizes the ideas behind the design of 
S R T P stack and encapsulates implementat ion details for easier explanation from the mul t i ­
threaded application design point of view. The entire stack runs i n three separate threads 
which shall minimize the delay caused by wait ing on modules wi th varying t ime of execution 
per packet. 

• Network T h r e a d - the incoming and outgoing data are captured v i a two sockets, 
for R T P and R T C P . This thread includes a pool of buffers for the storage of packets 
and another the processed data. 

• Stack T h r e a d - the interaction and selection attributes for the processing thread is 
taken care in the stack thread as well as interface for higher layers of the application 
using the S R T P stack. 

• Packet Processing T h r e a d - extraction of important values from the packet header, 
encoding and decoding provided wi th transcoding interface of the entire packet pay-
load according to the previously extracted data. 

The thread design could be mapped to another type of view on the layers of the stack 
design. The S R T P layers as shown i n the scheme 4.4 are subset of the entire S R T P stack 
functionality and the classes from the scheme have following purposes: 
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Figure 4.4: S R T P processing scheme. 

• Network Layer - enables the communicat ion wi th external devices through S R T P 
protocol, transfer of the mul t imedia data packets between endpoints and implements 
buffer pool for packet data. 

• Packet Processing Layer - without unnecessary data reallocation the proper struc­
tures are casted for easier readabili ty and extraction of important data from the in­
coming packets. 

• Payload Encoding - complete implementations of encryption and decryption of the 
packet payload. 

Serial Processing 

The designed applicat ion captures data from network i n the network layer which ensures 
communicat ion wi th both endpoints of mul t imedia session and is running i n its own thread. 
It contains buffer pools for incoming and outgoing data to ensure max ima l level of paral-
lelization in each layer of applicat ion. Pointers for input and output buffers are passed for 
further packet processing where are extracted information such as header and payload from 
the packet, copied data from the memory to O p e n C L data structures and serial implemen­
tat ion of A E S key schedule. 

For better understanding of improvement this thesis is provided wi th reference serial 
implementation which design w i l l be analyzed as well . The payload encryption design as 
visualized in figure 4.4 shows, that the execution is separated into mult iple consecutive 
callings of A E S algori thm w i t h updat ing of counter i n between for C T R mode. Thanks to 
the decomposition of the code, the design of parallel encryption is done i n similar fashion. 
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The design prevents the executing implementations from creating any addi t ional tempo­
rary buffers to decrease unnecessary allocations. These can be predicted i n the start-up of 
S R T P stack and already preallocated wi th max ima l size a packet can have. This approach 
consumes more memory, but improves memory management and saves execution t ime dur­
ing cr i t ica l sections. A l so it is assumed that softgate gateway code runs on machine wi th 
enough memory and these buffers most certainly shouldn't mean any excessive memory 
consumption. 

The buffer pools provided are used i n both serial and parallel encryption, and to increase 
the level of algori thm categorization, their implementat ion is based on template classes. The 
pool guarantees to protect buffer from overwrite and data persistence. 

Massive Parallel Processing 

Tradi t ional parallel programming style relies heavily on S I M T 3 and S P M D 1 programming 
paradigms [ ]. The native O p e n C L approach is based on abstracting the units of work 
from the programmers code into v i r tua l threads - work-items. The convenience it offers in 
allocation of resources brings couple of l imitat ions as well. 

The figure 4.5 demonstrates the processing of packet pay load of G.711 codec on the 
chip wi th work-group size 16. Work load on the work-items can be highly irregular and each 
work-i tem execution is finished after the processing of the part icular A E S block, therefore, 
this code w i l l need 160 invocations of work-items during the kernel execution. Tha t would 
bring unnecessary computat ional overhead. 

SRTP header 
Payload 

dc de c4 c5 dc dO d5 51 53 5d 5f 5b 46 46 46 5b AES block 1 

46 46 46 5b 44 41 42 4f 42 47 42 43 59 58 59 5f AES block 2 

5f 52 59 44 44 5f 51 54 55 55 51 56 50 52 5e 58 AES block 3 

5d 52 52 50 57 54 d4 d6 d5 51 53 57 d6 d6 dO d7 AES block 4 

57 56 57 dO d3 d6 d5 55 51 50 d6 df d2 d l d4 d6 AES block 5 

dc db da dd d6 55 dc dO d4 5d 44 5c 56 d6 d5 d4 AES block 6 

d5 d7 50 d4 51 dO 61 6f 76 fe ef f7 77 66 50 ff AES block 7 

e5 d7 74 4a c9 f9 f7 5c 76 5f f5 f3 dd 4e 42 d8 AES block 8 

f7 c9 50 44 50 cd c9 d4 4d 41 57 d l 51 58 44 52 AES block 9 

d3 d l 50 58 5b 55 d4 53 59 43 47 5f 51 5d 56 d2 AES block 10 

MKI & Authentication tag 

Figure 4.5: Work- i t em mapping on packet payload wi th native O p e n C L approach. 

3 SIMT - Single Instruction Multiple Thread 
4 SPMD - Single Program Multiple Data 
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Persistent T h r e a d Processing 

The requirements and attributes imposed by massive parallel processing style divide the 
workload into mult iple blocks, more than can be simultaneously executed during kernel 
launch time, and the synchronization is ensured by the O p e n C L . For massive parallel ap­
plications the obvious approach would be to uti l ize as much of machine's power as possible 
to gain the largest speed-up in every single execution. However, the a im of this thesis is 
to minimize large delays for mult iple sessions which requires rather careful al location of 
resources. Persistent threads is special type of programing paradigm combining both, the 
possible gain of mapping the program for parallel computat ion and considerate usage of 
resources [22]. 

Since the in i t ia l iza t ion of computat ional kernel can consume significant amount of time 
compared to the actual execution, larger kernel reusing its resources for mult iple similar 
computations could render the in i t ia l iza t ion negligible t rading off por t ion of parallelization. 
This approach has been chosen for packet parsing, while instead of mapping 160 O p e n C L 
work-items on the G.711 packet's payload it uses one work-i tem for each A E S block cell in 
a loop that goes through the data. 

M a x i m a l simultaneous work-items launched dur ing the kernel execution is equal to the 
number of blocks i n A E S algori thm and it must not be larger than the amount of work-
items in work-group. The persistent thread style provides couple of relevant improvements 
that are not resolved in common parallel implementat ion to the satisfactory degree. 

• Global synchronization - as the kernel uses only as many work-items as can be 
simultaneously scheduled, the tools O p e n C L offers for synchronization wi th in work­
group can be used to synchronize calculations through the entire execution at any 
given point which is used i n synchronization across A E S blocks for update of round 
key. 

• Computat ional overhead - the amount of computations i n a work-i tem for 128-bit 
A E S is larger than ini t ia l izat ion, start-up and cleanup of the kernel, but those fac­
tors are not completely insignificant. L i m i t i n g the number of consecutive executions 
decreases the ratio of O p e n C L overhead and the algori thm performance in positive 
way. 

• Resource requirement consistency - memory requirements are similar for both 
persistent thread and massive parallel style, but size of the payload for single packet 
may consume up to 160 work-items on the G P U if kernel is programmed i n non 
persistent thread style. A s it doesn't seem to be much for one packet, if the stack 
should take care of mult iple S R T P streams, the resources may prompt ly become 
insufficient which w i l l increase the weight of O p e n C L overhead. Persistent thread 
kernel w i l l not use more than 16 work-items per packet. 
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SRTP header 
Payload 

dc de c4 c5 dc dO d5 51 53 5d 5f 5b 46 46 46 5b AES block 1 

46 46 46 5b 44 41 42 4f 42 47 42 43 59 58 59 5f AES block 2 

5f 52 59 44 44 5f 51 54 55 55 51 56 50 52 5e 58 AES block 3 

5d 52 52 50 57 54 d4 d6 d5 51 53 57 d6 d6 dO d7 AES block 4 

57 56 57 dO d3 d6 d5 55 51 50 d6 df d2 d l d4 d6 AES block 5 

dc db da dd d6 55 dc dO d4 5d 44 5c 56 d6 d5 d4 AES block 6 

d5 d7 50 d4 51 dO 61 6f 76 fe ef f7 77 66 50 ff AES block 7 

e5 d7 74 4a c9 f9 f7 5c 76 5f f5 f3 dd 4e 42 d8 AES block 8 

f7 c9 50 44 50 cd c9 d4 4d 41 57 d l 51 58 44 52 AES block 9 

d3 d l 50 58 5b 55 d4 53 59 43 47 5f 51 5d 56 d2 AES block 10 

MKI & Authentication tag 

Figure 4.6: Work- i t em mapping on packet payload using persistent thread paradigm. 

4.5 Transcoding 

Essential part of the media server is abi l i ty to negotiate the best codec for both endpoints 
i n real-time media session. W h e n a l l par t ic ipat ing devices can not communicate using 
the same compressing media codec, the gateway must be able of transcoding to provide 
the channel for communicat ion. R T P protocol defines 127 different codecs for audio and 
video profile. Therefore, the designed S R T P stack uses plugin system for mul t imedia codec 
transcoding. 

The design of plugin system takes into consideration the lifetime of packet data buffers 
and for opt imizat ion purposes may defer the release of buffers on the side of codec plugin. 
The core design is simple and consists of two parts. 

• P lug in System M o d u l e - part of the gateway, on the start-up browses defined 
directory for any plugins and dynamical ly links them into the application. The plugin 
system may offer the management of packet memory buffers on the side of codec 
plugin, but the system doesn't guarantee the consistency through the entire lifetime 
and i f necessary, the buffer may be rewritten, in which case the flag for data correctness 
is set off. 

• Codec P lug in - compiled files implementing the plugin interface capable at least 
of both transcoding the codec from and into P C M and preferably also optimized 
transcoding into another codec, i f such algori thm is presented. The codec plugin 
is responsible for implementing or control of any buffers i f necessary, concurrently 
transcode mult iple different streams, and must separate the buffers and another saved 
information from given stream ID. The plugin may not use the opt imizat ion option, 

5 P C M - Pulse-code modulation. 
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duplicate the data into its own buffers and keep the memory management on the part 
of S R T P stack itself. 

SRTP parser 

Packet 
Processing 

buffer_pool 

encryption)) 
decry ption() I 

Plugin 
Module 

codec list 

InltO 
transcode() 
cleanup!) 

"buffers 

G.726 
G.711-U 

G.711-A 
PT 
encoding_name 

transcodef) 
to_raw() 
from_raw() 

Figure 4.7: Interaction between plugin system on the gateway and separate codec plugins. 
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Chapter 5 

Implementation 

The application's specifications were variable through the life-cycle of the entire develop­
ment. SIP gateway's implementat ion started as a prototype for translat ing L C P protocol 
and subset of S IP protocol enabling basic functionality for new lightweight prototype tele­
phones. A s the statement of requirements included reference Java applicat ion that combined 
L C P server and mult iple SIP clients, the implementat ion languages differ from the S R T P 
stack which is the core of this thesis. 

A s mentioned before, the reference applicat ion implements only a subset of the full com­
municat ion protocols and instead of understanding a l l of the complex scenarios the protocols 
offer, it brings research value examining the possibilities of improvement implementing com­
putat ionally demanding algorithms using parallel programming paradigm. Another benefit 
this work brings, is experimental study and comparison of established implementations used 
either commercial ly or free. 

5.1 SIP Gateway 

It is only possible to translate l imi ted subset of complete SIP protocol to L C P protocol. The 
the solution is capable of registration, cal l , hold and transfers. Implementation language 
for SIP gateway was chosen Java as it was one of the requirements. The applicat ion runs 
in three threads 

• SIP Network Layer - receiving and processing of SIP messages, as implementat ion 
of SIP stack was used ja in SIP A P I ' s reference implementat ion by N I S T as it is one 
of the most reliable and fastest implementation available for Java[27]. 

• L C P Network Layer - receiving and processing of L C P messages, timers for L C P 
t imed responses and interface for rest of the application. 

• Appl icat ion Logic - translation between both networks and communicat ion proto­
cols, data and devices representation. 

For management connected devices the SIP gateway offers command line interface and 
remote interface protocol, which is described i n 5.3. B o t h have same set of commands to 
change device's and registrar's properties. 
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5.2 S R T P Stack 

The implementat ion of S R T P stack is wri t ten in 0 + + following the recommendation of 
standard C + + 1 1 . Even though the standard defines mult i- threading model w i th synchro­
nization, at the t ime of development S R T P stack, there were no compilers sufficiently 
implementing the language property, therefore, that part icular language feature was left 
neglected. The short list of used libraries and frameworks dur ing implementat ion include 
the following. 

• Boost - set of libraries for 0 + + programming language. The class thread was 
used to implement multi-threaded applicat ion and mutex w i th condition_variable 
to implement thread-safe semaphores. 

• S T L Containers - usage l imi ted only to the list of free buffer indexes in imple­
mentation of Buf f er_pool, otherwise the data sizes are static and known dur ing the 
compilat ion, therefore, usage of dynamic structures is unnecessary. 

• Sockets - G N U facilities for interprocess communicat ion defined in sys/socket .h, 
the implementat ion supports both IPv6 and IPv4. 

• Dynamic L ibrary Loading - the codec processing is designed as plugin system 
w i t h dynamic l ink ing of each codec separately. U n i x operating systems provide im­
plementation of dynamic loading wi th interface defined in d l f cn.h. 

• O p e n C L - framework for parallel computations described i n 3. 

The implementat ion design follows simple rule - each class or namespace or module 
unit has it 's own header file, also, the list of classes w i th comments can be generated by 
Doxygen. 

5.2.1 Buffer P o o l 

Since the application is multi threaded passing the data from one thread to another, there 
is a necessity for cr i t ica l section handling. For the allocation of buffer first must be called 
method get.buffer_id() which returns integer value representing the free buffer I D . In 
this method it is crucial to avoid releasing the same I D for different buffers, therefore, 
must be executed atomically. The applicat ion may access the memory of the buffer by 
method get_item(id) taking as argument the previously received buffer I D . Even though 
this method accesses possibly the cr i t ica l section of the memory, it doesn't need any syn­
chronization, because it is a l l handled in previous code and at this moment it is guaranteed 
that the allocated buffers are exclusively used only by a single thread and branch of code. 
The releasing of the buffer is enabled by release_buf f er (id) method again taking as argu­
ment the allocated buffer I D . The buffer pool ensures that releasing of the buffer is atomic. 
The allocation and release of buffer is achieved by only adding and removal of integer 
value i n queue, which makes the cr i t ica l section code very fast and not vulnerable to basic 
mult i- threading problems such as deadlock and starvation. 
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1 template <class b u f f e r _ i t e m > c las s B u f f e r _ p o o l { 
2 p r i v a t e : / / i m p l e m e n t a t i o n 
3 b u f f e r _ i t e m * * p o o l = n u l l p t r ; 
4 s td : :queue< in t> f r e e _ b u f f e r _ i n d e x ; 
5 
f: 

in t p o o l _ s i z e ; 

U 
7 p u b l i c : / / i n t e r f a c e 
8 / / i n i t i a l i z e p o o l and f r e e _ b u f f e r _ i n d e x 
9 B u f f e r _ p o o l ( i n t p o o l _ s i z e ) { . . ] • ; 

10 / / c l e a n u p of r e s o u r c e s 
11 " B u f f e r _ p o o l ( ) { . . } ; 
12 / / r e t u r n s a v a i l a b l e b u f f e r ID 
13 in t ge t_buf f e r _ i d () { . . ] • ; 
14 / / r e t u r n s s i z e of p o o l 
15 in t g e t _ p o o l _ s i z e ( ) { . . } ; 
16 / / r e t u r n s a v a i l a b l e b u f f e r w i t h ID 
17 b u f f e r _ i t e m * g e t _ i t e m ( i n t i d ) { . . }; 
18 / / makes b u f f e r w i t h ID a v a i l a b l e 
19 void r e l e a s e _ b u f f e r ( i n t i d ) { . . }; 
20 }; 

To achieve higher degree of code reusability and categorization, buffer pool is imple­
mented as template class offering both the O p e n C L implementat ion use its own pool for 
memory objects on the host side and network interface use its own pool for incoming and 
outgoing packets and their structures. 

Class RTP_item implements items for buffer pool storing data captured from network 
and their processed variant . l t includes the buffers for incoming and outgoing packets and 
the pointers to payload to avoid perpetual header removal. Network interface uses G N U 
C standard implementat ion of B S D sockets, therefore, this i tem includes structures for the 
sockets as well to keep the information persistent through packet processing. The i tem 
consists of following arrays and structures: 

• Source data buffer - array of bytes allocated to max ima l allowed S R T P packet 
length, later mentioned only as src. 

• Destination data buffer - array of bytes allocated to same length as src, later 
only dst. 

• Payload data - pointers to src data buffer after processing S R T P header in incoming 
packet and another pointer to dst as well right after S R T P header. 

• Temporary buffer - dur ing encryption implementat ion and codec translation, some 
pay loads might use temporary buffers. To prevent costly allocations during sessions, 
auxi l iary buffers are stat ically allocated at the compilat ion time. 

• Structures for sockets - function recvmsgO expects specific structures present for 
capturing packets, sockaddr_in6 for representation of IPv6 address, iovec as header 
to gather I / O and msghdr as structure encapsulating inner logic and min imiz ing the 
number of directly supplied parameters to recvmstO. 

O p e n C L requires specific memory objects that can be loaded to the device memory 
called cl_mem. Buffer pool i tem for parallel implementat ion represented in class c l . i tem 
requires only those memory objects.Because single network packet needs mult iple callings 
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of clEnqueueWriteBuff er () dur ing the data transfers to the O p e n C L device memory, we 
can select the option of non-blocking write, which is faster than blocking write. The call ing 
of the kernel can be immediate, but events returned by clEnqueueWriteBuf f er must be 
queried in order to release the cl_item in the buffer pool . Par t i a l ly both buffer items share 
the data structures but they serve different function and their redundancy is necessary. 
C o m m o n memory objects are packet pay loads, because S R T P headers are not passed to 
parallel processing, and temporary buffers.Extra structures, that are precomputed before 
parallel execution are: 

• Initial vector - buffer for C T R mode A E S value of I V , which is calculated from 
S R T P header for each packet. 

• R o u n d key - parallel ization of round key calculat ion doesn't propose any actual 
execution gain and therefore is precomputed. 

5.2.2 A E S 

For the S R T P stack the crucial is implementat ion of Advanced Enc ryp t ion Standard. De­
scribed are two most relevant implementations, serial for comparison wi th the current 
solutions and persistent thread as the representative of the the best examined parallel 
implementation. 

The header file aes.h offers the functions for encryption and decryption of packet pay-
load in C T R mode encapsulated i n AES namespace. 

K e y Schedule 

The master key defined for every S R T P session must be expanded into round key, which 
is used i n every round for encryption. The algori thm for round key schedule is provided 
only i n serial implementation, because its execution is prompt and doesn't provide enough 
calculations for the kernel device that would justify parallel implementat ion and d iminish 
O p e n C L computat ional overhead. 

1 / / p r e c o m p u t e d r c o n t a b l e 
2 s t a t i c const B Y T E r c o n [] = -[0x8(1, . . . }; 
3 / / k e y e x p a n s i o n 
4 vo id AES : : e x p a n d _ k e y (BYTE *mk , B Y T E r k [ROUND_KEY_SIZE] [BL0CK.SIZE] ) { 
5 g e t _ f i r s t _ r k ( m k , r k [0] ) ; 
6 f o r ( i n t i = 1; i<R0UND_KEY_SIZE; i++) { 
7 g e t _ n e x t _ r k ( m k [ i - 1 ] , r k [ i ] , r c o n [ i ] ) ; 
8 } 
9 } 

K e y expansion algori thm is different for the first round key and the rest of round keys. 
The first round key is copy of first 128 bits from the master key. Other round keys are 
derived from the previous round key. The algori thm is devided into two steps. 

1. calculates the first column of the key state X O R i n g values from last column of previous 
round key applied on substi tut ion box 

2. and then are calculated columns two, three and four always derived from the previous 
column of previous round key. 
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Because every array i n the S R T P stack is considered one dimensional exactly as the 
incoming packet, the index to the state mat r ix memory must be computed exclusively. 

Serial Encrypt ion 

The A E S encryption is d ivided into 4 steps exactly as described in previous chapters. F ive 
constants necessary for A E S w i l l be mentioned through this chapter i n many code snippets 
and are listed in the following algori thm for encryption. The i r definitions are later skipped 
to avoid information redundancy. 

1 / / A E S c o n s t a n t s 
2 #define ROUND_KEY_SIZE 11 
3 #define ROUNDS 10 
4 #define BLOCK.SIZE 16 
5 #define ROWS 4 
6 #define COLUMNS 4 
7 / / C T R e n c r y p t i o n a l g o r i t h m 
8 vo id AES : : s r t p . e n c o d e (BYTE * s r c , B Y T E *ds t , B Y T E *key , B Y T E * i v , in t l e n M 
9 x o r _ k e y ( k e y , i v , k e y ) ; 

10 e x p a n d _ k e y ( k e y , r o u n d _ k e y ) ; 
11 int i = 0 , j = 0; 
12 int l a s t _ o f f s e t = len/BL0CK_SIZE*BL0CK_SIZE; 
13 / / e n c r y p t i o n of c o u n t e r and X O R i n g w i t h b l o c k s 
14 for ( ; i < l e n g t h ; i+=BL0CK_SIZE) { 
15 e n c o d e _ b l o c k ( c o u n t e r , d s t + i , r o u n d _ k e y ) ; 
16 x o r _ k e y ( d s t + i , d s t + i , s r c + i ) ; 
17 u p d a t e _ c o u n t e r ( c o u n t e r ) ; 
18 } 
19 / / e n c r y p t i o n of c o u n t e r i s f u l l bu t X O R i n g o n l y up t o p a c k e t s i z e 
20 B Y T E * l a s t _ b l o c k = d s t + l a s t _ o f f s e t ; 
21 e n c o d e _ b l o c k ( c o u n t e r , l a s t _ b l o c k , r o u n d _ k e y ) ; 
22 for ( i = i -BL0CK_SIZE; i < l e n g t h ; i++ , j+ + H 
23 d s t [ i ] = l a s t _ b l o c k [ j ] " s r c [ i ] ; 
24 } 
25 } 

The function takes five arguments, four of those are input parameters and one is output, 
result of the encryption. The first argument src is pointer to the buffer w i th packet payload 
that needs to be encrypted, dst is pointer to the buffer w i t h outgoing packet payload 
after encryption, arguments key and i v represent encryption properties and finally the last 
argument len has length of the packet payload. 

Implementation of the block encode encode_block() follows the algori thm described 
in chapter 2 in algori thm 1. Since the C T R mode encrypts the counter, packet payload 
doesn't have to be presented to the encryption function. 

The mul t ip l ica t ion i n Galois field by mat r ix defined i n chapter 2 is computat ional ly 
expensive, therefore, the implementat ion consits of precomputed values stored i n arrays 
and then the mixture of columns. 

B o t h xor_key() and shift_rows() are simple and self-explanatory functions. The 
shift_rows uses helper function rotate_row() . The xorJceyO takes three arguments, it­
erates over A E S state i n the first argument src and applies X O R function on corresponding 
byte from given key i n argument key. Result is wri t ten to the dst array. 

Fol lowing are two helper functions for A E S algori thm that are neither described in the 
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theoretical part of the thesis nor the A E S definition document. The i r implementat ion has 
single purpose - higher code readability. 

The values i n a row specified by arguments src and dst as pointers to the part icular 
row i n both blocks are rotated by the value n. Code is split into two cycles when both 
together cycle through the part icular row only once. 

Because A E S block is stored i n the linear memory by rows, when rotat ing columns it 
won't be sufficient to pass the pointer to specific column. Therefore, the function takes 
arguments c o l l as index of column i n src block and col2 as index of column i n dst block. 
The argument n again defines the distance for rotation. 

Parallel Encrypt ion 

Code for parallel encryption consists mostly of the kernel code i n O p e n C L language executed 
in device. The code for host is large but programmed routines are common and doesn't 
display any efforts of improvement and own contribution. 

A g a i n the A E S tables are precomputed and stored i n constant memory space which is 
cached. A s a result, a read from constant memory shouldn't cost more than one read from 
device memory on a cache miss. For the persistent thread reading from the constant cache 
is as fast as reading from a register as long as a l l threads read the same address. 

The round key schedule was moved from the kernel to host code. Otherwise the code for 
packet encryption for kernel i n O p e n C L language is quite similar to serial implementat ion 
in C + + . F i r s t l y the work-i tem must find out its global I D and then continue the execution 
only, i f its global ID is smaller than number of bytes i n A E S block. Each work-i tem includes 
single loop iterating through its indexed posit ion i n each A E S block. In addit ion, only first 
work-i tem takes care of updat ing counter the counter which requires a barrier for local 
synchronization to avoid encoding part of payload wi th different counter. 

1 vo id e n c o d e _ b l o c k ( _ _ l o c a l B Y T E * c o u n t e r , _ _ l o c a l B Y T E *ds t , 
2 _ _ l o c a l B Y T E *temp , . . l o c a l B Y T E * r o u n d _ k e y ) { 
3 x o r . k e y ( c o u n t e r , t e m p , r o u n d . k e y ) ; 
4 b a r r i e r (CLK_LOCAL_MEM_FENCE) ; 
5 f o r ( i n t i = 1; i < ROUNDS; { 
6 s u b . b y t e s ( t e m p , d s t ) ; 
7 barrier(CLK_LOCAL_MEM_FENCE) ; 
8 s h i f t _ r o w s ( d s t , t e m p ) ; 
9 barrier(CLK_LOCAL_MEM_FENCE) ; 

10 m i x _ c o l u m n s ( t e m p , d s t ) ; 
11 b a r r i e r (CLK_L0CAL_MEM_FENCE) ; 
12 x o r _ k e y ( d s t , t e m p , r o u n d . k e y + ( i*BL0CK_SIZE) ) ; 
13 b a r r i e r (CLK_L0CAL_MEM_FENCE) ; 
14 > 
15 s u b . b y t e s ( t e m p , d s t ) ; 
16 barrier(CLK_L0CAL_MEM_FENCE) ; 
17 s h i f t _ r ows ( d s t , t emp ) ; 
18 barrier(CLK_L0CAL_MEM_FENCE) ; 
19 x o r . k e y (temp , d s t , r o u n d . k e y + (R0UNDS*BL0CK_SIZE) ) ; 
20 } 

Encoding the block requires local synchronization which is achieved again by barrier () 
function. E a c h step of the algori thm may start computations after the previous step has 
been finished for a l l work-items. Because both global and local ID of the work-i tem are 
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cached, cal l ing function get_global_id() doesn't br ing any slack-off, therefore, it is not 
necessary to pass the work-i tem ID to the functions of A E S implementation. 

The kernel code for mix_column() and shift_rows() requires work-i tem categoriza­
t ion, which means that during kernel execution it must identify itself and then find out to 
which branch of code it belongs. A s the rows shifting and column mixture doesn't pro­
vide any means for generalization. Th is branching in mentioned device code doesn't br ing 
any considerable addi t ional computations nor increase the overhead as it is only a simple 
switch-case implementation. 

5.2.3 T r a n s c o d i n g 

The plugin system was implemented wi th usage of the G N U C Library . A l l of the important 
functions for run-time dynamic loading are included from header dlfcn.h. 

• dlopenO - loads dynamic l ibrary file w i th RTLD.GLOBAL and RTLD_N0W flags set to 
make the symbols available for subsequently loaded libraries and perform eager symbol 
resolution. 

• dlsym() - returns address where the part icular symbol is loaded into memory. 

• dlcloseO - unloads the dynamic library. 

The plugin module searches folder plugins for any file ending wi th extension . so and 
performs plugin test whether the file contains necessary properties. 

1 PAYLOAD.TYPES 127 / / [ R F C 3 5 5 1 ] 
2 / / s t r u c t u r e f o r codec p l u g i n 
3 s t r u c t Codec { 
4 int PT = - 1 ; 
5 char* e n c o d i n g _ n a m e = n u l l p t r ; 
6 int ( * t r a n s c o d e ) ( B Y T E * s r c , B Y T E * d s t , int 1 1 , int * 1 2 , int p t , int i d ) ; 
7 vo id ( * t o _ r a w ) ( B Y T E * s r c , B Y T E *raw , int 1 1 , int * 1 2 , int i d ) ; 
8 vo id ( * f r o m _ r a w ) ( B Y T E * r a w , B Y T E *ds t , int 1 1 , int * 1 2 , int i d ) ; 
9 }; 

10 / / l i s t of p l u g i n s 
11 s t a t i c Codec t r a n s c o d e _ p l u g i n s [ P A Y L 0 A D _ T Y P E S ] ; 
12 / / t r a n s c o d e module i n t e r f a c e 
13 int t r a n s c o d e ( B Y T E * s r c , B Y T E * d s t , / / p a c k e t b u f f e r s 
14 int 1 1 , int * 1 2 , / / d a t a l e n g t h s 
15 int p t l , int p t 2 , / / c o d e c t y p e s 
16 int i d ) ; / / s t r e a m ID 

The code snippet above defines the structure for loaded codec plugins on the host 
application side and interface for p lugin module and rest of the S R T P stack. Transcoding 
is always executed through transcode () function and never directly, because the function 
handles the possibilities of plugins and selects the option wi th best effort ratio and i n the 
worst case transcodes through P C M . 
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1 / / codec i d e n t i f i c a t i o n [RFC3551] 
2 extern const char* e n c o d i n g _ n a m e ; 
3 extern const int PT; 
4 / / t r a n s c o d e s m u l t i m e d i a d a t a f rom one codec t o a n o t h e r codec 
5 int t r a n s code ( B Y T E * s r c , B Y T E * d s t , int l . s r c , int * l _ d s t , int p t , in t i d ) ; 
6 / / t r a n s c o d e s codec t o raw PCM 
7 vo id t o _ r a w ( B Y T E * s r c , B Y T E * r a w , int l e n . s r c , int * l e n _ d s t , int i d ) ; 
8 / / t r a n s c o d e s raw PCM t o codec 
9 vo id f r o m _ r a w ( B Y T E * r a w , B Y T E * d s t , int l e n . s r c , int * l e n _ d s t , int i d ) ; 

The plugin must define a l l of the mentioned interface values and functions. To ensure 
proper implementation, each codec plugin includes header file transcode_plugin.h. 

5.3 Management Tool 

A s it is quite difficult to monitor processing and rel iabil i ty of V o I P sessions the part of 
implementation includes management tool for basic management of telephone devices in 
the network and visual izat ion of ongoing sessions and their states. For the development of 
such tool was decided R u b y on Rai l s framework as it offers many of the requested qualities, 
such as Fast and agile development, simple deployment, abi l i ty of integration into any 
current solution. 

Model-view-controller design also allows to interchange any of the application modules 
without necessity of modifying the remaining modules. For the communicat ion between 
SIP gateway was designed simple protocol transferred through WebSocket containing only 
two parts - header and body. 

• header - required for every message, contains classification of one of the 6 types of 
messages. 

• body - omit ted for group of system messages and optional for group of device mes­
sages, contains information about changed data i n C S V format. 

The communicat ion between al l participants is asynchronous and str ict ly stateless. Mes­
sage types are grouped into two categories. 

• Device Messages 

— update - information for the main view about update of client, sent only from 
gateway to the tool . 

— edit - information about the device information change, can be sent both ways. 

— create - create of the new device. 

— remove - deletion of the part icular device. 

• System Messages 

— inform - exchange of the connection information between gateway and manage­
ment tool . 

— error - the error handling of gateway and management tool . 

38 



A s WebSocket communicat ion is s tr ict ly slower than T C P and U D P socket communica­
t ion, it is required to filter the information update only to essential level. B o t h SIP and L C P 
protocol may generate large amount of messages considering the number of users registered 
which w i l l result i n blocking the management tool . Th is message filter is implemented on 
both the SIP gateway side, where it sends only the information updat ing client or server 
relevant states, and management tool side, where it filters out the information irrelevant to 
the current view. 

ManagementProtocol DEFINITIONS ::= BEGIN 
Message ::= SEQUENCE { 

header ENUMERATED{inform, error, update, edit, create, remove}, 
body BodyType OPTIONAL 

} 

BodyType ::= SEQUENCE{ 
[[attr]] SeparatedAttribute OPTIONAL, 
last A t t r Attribute 

} 

SeparatedAttribute ::= SEQUENCE { 
attr Attribute, 
separator (,) 

} 

Attribute ::= SEQUENCE { 
de f i n i t i o n IA5String 
separator (:) 
value IA5String 

} 

END 

Figure 5.1: Defini t ion of the message management tool and SIP gateway exchanges for 
communicat ion in A S N . l notation. 
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Chapter 6 

Results 

One of the major delays caused on gateway during indirect calls is due to encryption and 
transcoding. Since the core of this thesis was parallel ization of S R T P encryption, the tests 
and measurements focus on gathering relevant information regarding especially the correct 
usage of S R T P on the gateway. Even though A E S was designed to be fast algori thm, while 
executed on large amount of flowing data it can cause measurable overhead. 

For the purposes of this chapter there was designed load-test w i th following attributes: 

• each test fulfilled these properties: 

— 300 subscribers executing the calls 

— 50 to 150 concurrent calls i n the same time[ ] 

— B H C A 2000 1 

• each cal l from the tests mentioned above: 

— lasted 20 seconds 

— used G.711-a or G.711-/X codec 

— needed encryption of S R T P 

The tests were executed on the machine running 32-bit O p e n S U S E 12.2 w i t h similar 
hardware as HiPath4000 softgate is equipped. D u r i n g the tests, only SIP gateway wi th 
S R T P stack were running on the separate machine from the vir tual ized telephone clients. 
The following list summarizes the softgate properties and used software products for com­
pilat ion of S R T P stack. 

• processor intel i5 2500k wi th HD3000 graphics chip 

• 8 G B R A M 

• O p e n C L 1.2 

• gcc 4.7 

The commercial gateway wi th opt imized hardware and software can hold around 120 
concurrent calls[9], therefore, the tests d id not a im for much higher numbers and the analysis 
of the results focus around the known max ima l number. 

1 B H C A - busy hour call attempts 
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The testing environment differed from the type of executed test. For the encryption 
comparison i n 6.1 was used only standard softgate hadware and implementat ion of simple 
benchmark cal l ing the packet encryption, the results were averaged and are presented in 
table 6.1. 

For the measurement of round-trip t ime delay i n 6.2, the emulat ion of actual L C P 
phones was modified and used to measure the delay of each part icular packet. A s previously 
mentioned, due to computat ional demands of vi r tual ized clients, the softgate was devoted 
to the SIP gateway and S R T P stack only and clients were emulated on different computer. 

A n d finally the real life test was executed i n Siemens laboratories i n Brno . The testing 
scheme consisted of one real SIP telephone, one prototype of L C P phone, SIP gateway and 
HighPath4000 SIP registrar. Effort of this test wasn't any t ime or quali ty measurements, 
but determination of integration capabilities. The last test was successful. 

6.1 Packet Encryption 

The most accurate results can be reached by measuring directly i n the code for packet 
encryption on the gateway. A l so this approach offers the easiest way for comparison wi th 
well-known implementations to increase credibi l i ty of the improvement of the reference 
implementations dis tr ibuted wi th this thesis. 

A E S 

For the comparison of effectiveness of the A E S implementation, in table 6.1 are given 
t ime requirements for execution of mult iple blocks encrypted by 128-bit A E S wi th the 
implementation proposed i n this thesis and reference implementations M 5 t 2 and O p e n S S L 3 . 
The values i n table 6.1 were obtained through simple benchmark passing the array of 
bytes representing network packet pay load for encrypt ion/decrypt ion and averaged through 
mult iple measurements. 

Implementation 1 block 5 blocks 10 blocks 15 blocks 20 blocks 
M 5 t 26 [is 32 (IS 46 (IS 69 (IS 82 [IS 

Serial 16 [is 28 (IS 48 (IS 66 (IS 86 [IS 

Persistent thread 44 / J S 45 (IS 44 (IS 44 (IS 45 [IS 

Massive Para l le l 55 /is 55 (IS 54 (IS 55 (IS 62 [IS 

O p e n S S L 9 [is 16 [IS 33 [IS 47 [IS 63 [IS 

Table 6.1: Compar ison of selected A E S implementations. 

The serial implementat ion of 128-bit A E S is presumptively similar in execution speed 
as the M 5 t A E S implementation, which is the reference value for measuring the degree of 
improvement. Therefore, later provided results of round-tr ip t ime delay can be assumed 
as relevant for the evaluation the to ta l contr ibution. Higher execution t ime for the M 5 t 
implementation could be par t ia l ly due to negative influence of not using the M 5 t framework 
in the S R T P stack implementation, therefore, conversion between structures and data types 
used might hindered the performance. 

2 M5t framework includes AES implementation currently used in many Siemens devices[l]. 
3 OpenSSL is open-source implementation of SSL and TLS protocols including cryptographic 

functions [2 8]. 
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6.2 Round-trip Time Delay 

The total delay is combination of many factors and even though information about measured 
t ime of packet encryption on the gateway is exact, it doesn't provide the most important 
information about how affected the session is overall and what is the delay on endpoints. 
The same test was executed once more but measurements were collected on modified v i r tua l 
clients. 

Graphs 6.1 and 6.2 include packet delay during concurrent calls. Every captured S R T P 
packet has been entered into results. Single column shows the dis t r ibut ion of delays during 
the part icular number of concurrent calls where the thicker area of the column visualizes 90% 
of the packets. The remaining 10% were considered as abnormal and thanks to satisfying the 
common l imitat ions of real-time communications[31], the exceeding 5% can be neglected. 
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Figure 6.1: Visua l iza t ion of dis t r ibut ion of delays during S R T P sessions wi th serial encryp­
t ion implementation. 
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Figure 6.2: Visua l iza t ion of dis t r ibut ion of delays during S R T P sessions wi th parallel en­
crypt ion implementation. 
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Predic tably the average delay of the packet increases wi th the amount of concurrent 
calls i n figure 6.1 for serial implementat ion. The t ime for 150 concurrent calls was not 
included due its excessive values which would make readabili ty of the graph more difficult. 
Even though the increase of delay seems to be linear, higher number of concurrent calls 
shows that the increase is exponential, which can be visible on the figure 6.2 for persistent 
thread implementation. 

Less predictable increase is visible i n persistent thread implementation. Inconsistent ex­
treme values of delays may be produced by host and device synchronization. A l so memory 
management for packet buffer pool and O p e n C L buffer pool are two separate implemen­
tations, slowdown i n one pool may have negative effect on the other, therefore, both may 
combine i n a negative way. 

Compar ing persistent thread implementat ion and serial implementation, the average 
delay was dropped to one half for smaller amount of concurrent calls (50-90) and the best 
results of speed-up was achieved i n 140 concurrent calls where the average delay was dropped 
to one th i rd . 
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Figure 6.3: Compar ison of dis t r ibut ion of delays during S R T P sessions serial w i th parallel 
encryption implementation. 

The figure 6.3 centralizes on the most interesting results from previous tests which is 
the delay for 120 concurrent calls. The detailed dis t r ibut ion of packet delays shows, that 
parallel implementation, visualized i n blue color, has the peak situated around 12 ms when 
the serial implementation, visualized i n purple color, has the most packet delays situated 
around 27 ms. 
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Chapter 7 

Conclusion 

There are lot of possibilities for opt imizat ion of S R T P processing. Selected approach focuses 
on methods of parallel ization of encryption and decryption processes of default 128-bit A E S 
cipher i n counter mode, which offers large potential thanks to recent development i n the 
field of parallel computat ional units. 

Since the current development of processing units begins to be l imi ted by physical 
attributes of used materials, the focus drifts more on the design of such units. Instruction 
and thread level paral lel ism brings new possibilities of improvement showing that software 
design should take parallel paradigm under consideration. Not only i n u t i l iza t ion of G P U 
for general purpose computations but also modern C P U have multi-core design or hybr id 
design consisting of addi t ional computing units such as G P U chip or F P G A . 

Proposed architectures and designs are currently far from being complete. The most 
effort was invested i n correct analysis and understanding of principles of further imple­
mented algorithms and knowledge of parallel programming paradigm focused on usage of 
O p e n C L framework for general-purpose computations on graphical processing unit . M o d ­
ern G P U concentrate large amount of computat ional power, which could be to a certain 
extent ut i l ized, if the algori thm is correctly mapped for parallel execution. Tha t brings 
unusual complications in design whose must be carefully considered. 

Contr ibut ion 

After understanding the l imitat ions in common kernel design and kernel execution for many 
separate packets, such as lack of resources, there was effort for examination of alternative 
kernel design named persistent thread. Trading off por t ion of parallel ization for higher 
level of control over kernel execution and l imi t ing O p e n C L computat ional overhead ratio 
proven itself as val id approach especially for S R T P packets w i th larger payload. Processing 
t ime for single G.711 packet can be reduced to half compared wi th serial implementation. 
Measuring round-trip t ime during mult iple sessions the improvement was successful to the 
greater degree lowering the delay to one th i rd for max ima l number of concurrent channels 
which is set to the gateway as 120. 

A t first, comparison of implemented algorithms effectiveness was measured on a simple 
designed benchmark, where experimentally gained results endorsed the theoretical ideas 
supporting the development. Even though these results produced exact comparison, it 
was necessary to produce measurements on deployed machine experiencing real traffic to 
confirm the design thoughts. 

A s the processing and routing of mul t imedia sessions represent only fraction of overall 
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workload, for gateways that are required to encode a high number of channels, the O p e n C L 
implementation of media server can be used as self-contained units and s t i l l save processor 
load for another tasks. 

Next Steps 

Another important milestone is definition of integration of R T P stack w i t h S R T P processing 
into implemented SIP gateway and their mutual interaction. For the further development 
number of issues must be taken into notice. For instance the delay generated by the 
processing of separate S R T P packets should be reliably masked and interpolated across 
the S R T P stream to reduce possible j i t ter . O n the other hand stands the actual delay 
of incoming packet, since after certain absolute value the conversation quali ty becomes 
unbearable. 

Nevertheless, par t ia l value of this thesis lies in the understanding of current technologies 
for future potential direction of development and exploration of new options in the field 
communicat ion infrastructure. In particular, closely related topic to real-time mul t imedia 
sessions is transcoding. Unif icat ion of both problems and finding solution in u t i l iz ing alter­
native compute units to C P U may improve overall responsiveness of the gateway and ensure 
smaller variabi l i ty in service quali ty without depending on the current load the gateway is 
experiencing. 
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Appendix A 

A E S Properties 

A l g o r i t h m 3 A E S decryption 
Decipher(State, Key) 
state <— AddRoundKey(State, Key[n]) 
state <— Shi ft Rows (state) 
state <— SubBytes(state) 

for i <— (n — 1..1) do 
state <— AddRoundKey (state, Key[i]) 
state <— MixCo^t tmns(s ta te ) 
state <— Shi ft Rows (state) 
state <— SubBytes(state) 

end for 

state <— AddRoundKey (state, Key[0]) 

return state 
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0 1 2 3 4 5 6 7 8 9 a b c d c f 
00 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76 
10 ca 82 c9 7d fa 59 47 fO ad d4 a2 af 9c a4 72 cO 
20 b7 fd 93 26 36 3f f7 cc 34 a5 c5 f l 71 d8 31 15 
30 04 c7 23 c3 18 96 05 9a 07 12 80 c2 eb 27 b2 75 
40 09 83 2c l a l b 6c 5 a aO 52 3b d6 b3 29 c3 2f 84 
50 53 d l 00 cd 20 fc b l 5b 6a cb be 39 4a 4c 58 cf 
60 dO ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8 
70 51 a3 40 8f 92 9d 38 f5 be b6 da 21 10 ff f3 d2 
80 cd Oc 13 cc 5f 97 44 17 c4 a7 7c 3d 64 5d 19 73 
90 60 81 4f dc 22 2a 90 88 46 cc b8 14 dc 5c Ob db 
aO eO 32 3a Oa 49 06 24 5c c2 d3 ac 62 91 95 e4 79 
bO e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ca 65 7a ac 08 
cO ba 78 25 2c l c a6 b4 c6 c8 dd 74 If 4b bd 8b 8a 
dO 70 3c b5 66 48 03 f6 Oc 61 35 57 b9 86 c l I d 9e 
eO e l f8 98 11 69 d9 8c 94 9b le 87 c9 cc 55 28 df 
fO 8c a l 89 Od bf e6 42 68 41 99 2d Of bO 54 bb 16 

Table A . l : S-box for SubBytes transformation i n hexadecimal notation. 

0 1 2 3 4 5 6 7 8 9 a b c d e f 
00 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76 
10 ca 82 c9 7d fa 59 47 fO ad d4 a2 af 9c a4 72 cO 
20 b7 fd 93 26 36 3f 17 cc 34 a5 c5 f l 71 d8 31 15 
30 04 c7 23 c3 18 96 05 9a 07 12 80 c2 eb 27 b2 75 
40 09 83 2c l a l b 6c 5 a aO 52 3b d6 b3 29 c3 2f 84 
50 53 d l 00 cd 20 fc b l 5b 6a cb be 39 4a 4c 58 cf 
60 dO ef aa lb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8 
70 51 a3 40 8f 92 9d 38 f5 be b6 da 21 10 ff f3 d2 
80 cd Oc 13 cc 5f 97 44 17 c4 a7 7c 3d 64 5d 19 73 
90 60 81 4f dc 22 2a 90 88 46 cc b8 14 dc 5c Ob db 
aO eO 32 3a Oa 49 06 24 5c c2 d3 ac 62 91 95 e4 79 
bO e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ca 65 7a ac 08 
cO ba 78 25 2c l c a6 b4 c6 c8 dd 74 If 4b bd 8b 8a 
dO 70 3c b5 66 48 03 f6 Oc 61 35 57 b9 86 c l I d 9e 
eO e l f8 98 11 69 d9 8c 94 9b le 87 c9 cc 55 28 df 
fO 8c a l 89 Od bf c6 42 68 41 99 2d Of bO 54 bb 16 

Table A . 2 : Inverse S-box for SubBytes transformation i n hexadecimal notation. 
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Appendix B 

Management Tool 

Figure B . l : Management tool Screenshot. 
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